

Optimal Co-Design of Hardware Architecture and Control Configuration
for Interacting Systems

Michiel Haemers

Doctoral dissertation submitted to obtain the academic degrees of

Doctor of Electromechanical Engineering Technology (UGent) and Doctor of Applied
Engineering (UAntwerpen)

Prof. Kurt Stockman, PhD* - Prof. Stijn Derammelaere, PhD** - Prof. Clara-Mihaela
Ionescu, PhD*

* Department of Electromechanical, Systems and Metal Engineering
Faculty of Engineering and Architecture, Ghent University

** Department of Electromechanics
Faculty of Applied Engineering, University of Antwerp

Supervisors

June 2021

Wettelijk depot: D/2021/10.500/39
NUR 978
ISBN 978-94-6355-491-6

Members of the Examination Board

Chair

Prof. Em. Hendrik Van Landeghem, PhD, Ghent University

Other members entitled to vote

Prof. Jeroen De Kooning, PhD, Ghent University
Wilm Decré, PhD, KU Leuven

Bruno Depraetere, PhD, Flanders Make
Niko Nevaranta, PhD, LUT University, Finland
Prof. Jan Steckel, PhD, University of Antwerp

Supervisors

Prof. Kurt Stockman, PhD, Ghent University
Prof. Stijn Derammelaere, PhD, University of Antwerp
Prof. Clara-Mihaela Ionescu, PhD, Ghent University

Preface

Met het indienen en verdedigen van dit werk komt een einde aan bijna vijf jaar

doctoraatsonderzoek aan UGent campus Kortrijk. Het verliep zeker niet altijd van

een leien dakje, maar ik heb doorheen deze periode enorm veel bijgeleerd en ik

ben dan ook zeer blij deze uitdaging tot een goed einde te kunnen brengen. Ik wil

daarbij enkele mensen bedanken die dit werk mede mogelijk gemaakt hebben.

In eerste instantie mijn promotoren: prof. dr. ing. Stijn Derammelaere, prof.

dr. ing. Kurt Stockman en prof. dr. ir. Clara Ionescu. Zij waren inhoudelijk mijn

grootste inspiratiebronnen en ik wil hen dan ook uitgebreid bedanken voor hun

tijd die in mij geı̈nvesteerd werd om bruikbare inzichten en feedback te voorzien.

Na elk overleg kreeg ik weer de nodige ‘drive’ om verder te gaan en dit werk te

vervolledigen. In het bijzonder wil ik Stijn bedanken. Sinds de lessenreeksen die

ik als student van hem kreeg, wist hij zijn passie voor regeltechniek op mij over te

brengen. Als begeleider van de legendarische Duitsland- en China-reizen leerde

ik hem ook op persoonlijk vlak kennen en kwam ik te weten dat hij mijn mening

deelt rond flauwe woordspelingen: “Beter een paar mindere te veel dan één goeie

te weinig.” Bovendien was hij ook de eerste die indertijd in mij een potentiële

doctor zag. Bedankt voor je wijze raad, je politieke duidingen en je Antwerpse

gidsbeurten die ons leidden van schrale café’s tot heuse kasteelfeesten.

Daarnaast wil ik ook alle collega’s van UGent campus Kortrijk en UAntwerpen

campus Groenenborger bedanken voor de aangename werksfeer. De bewijzen

van deze uitstekende collegialiteit zijn onder meer onze deelnames aan inter-

nationale bedrijfssportspelen, teamdagen en de vele aangename (lunch)pauzes.

Ik wil daarbij een speciaal dankwoord richten aan Japser, die na vier jaar samen

gestudeerd te hebben ook mijn collega bij UGent werd en ongeveer gelijktijdig zijn

doctoraat uitvoerde. We hebben vele leuke momenten beleefd: van conferenties,

studiedagen, summer schools en Doctoral Schools opleidingen tot evenementen

van de studentenclub Moeder EM die we gezamenlijk erfden van Stijn. Ook

bedankt aan Simon Houwen voor de gesprekken over onze gezamenlijke interesse

voor muziek en om mij grafische skills bij te brengen. Bedankt aan Simon De

Boever voor de verbouwtips en de ‘maker’ praatjes. Ik kom met veel plezier

klinken op je afgewerkte watermolen ergens rond het jaar 2070. Ook bedankt aan

iv Preface

David voor de zwemsessies, Stan om mijn Heulse bureaumaatje te zijn, Foeke

voor de vele GA-tips en Florian voor de regeltechnische inzichten. Ook bedankt

aan collega’s Bart, Pieter, José, Simon en Heinz voor hun praktische hulp rond het

construeren van de labo-opstelling. Much appreciated!

Daarenboven wil ook de leden van de examencommissie bedanken voor hun

tijd en moeite om mijn thesis grondig te lezen en mij van bruikbare feedback te

voorzien. Ook veel dank aan de KU Leuven en Flanders Make medewerkers van

het ROCSIS SBO-project waar mijn doctoraatsonderzoek onderdeel van was.

Op persoonlijk vlak wil ik uiteraard mijn vrouw Kimberly bedanken voor de

steun doorheen mijn doctoraat. Vooral naar het einde toe zat ik vaak buiten de

‘kantooruren’ nog aan mijn bureau en kwamen de huishoudelijke taken vooral op

haar schouders terecht. Bedankt voor je begrip, je steun en om er steeds voor mij

te zijn.

Ook bedankt aan mijn zoontjes Mats en Kamiel voor de nodige afleidingen. Het

wandelen naar school, het spelen in de tuin of het bouwen van een autobaan waren

welgekomen ontspanningsmomenten tijdens het drukke schrijfwerk. Ze zijn nog

te jong om het te beseffen, maar zij waren voor mij een grote bron van motivatie

om dit werk te volbrengen. Daarnaast wil ik ook mijn ouders bedanken voor de

steun en studiekansen, mijn zus omdat ze steeds oprecht vroeg: “Maar wat heb je

nu eigenlijk écht gedaan vandaag?”, en de rest van mijn familie en vriendengroep

voor de sociale ondersteuning.

Ruim een jaar geleden begon de druk gevoelig te stijgen om mijn doctoraats-

onderzoek af te ronden en deze thesis op te stellen. Rond datzelfde moment

werden we geteisterd door een wereldwijde COVID-19 pandemie. Het wegvallen

van de sociale contacten met collega’s en vrienden en het verplichte thuiswerk

vergemakkelijkten het schrijfproces niet. Op dit moment van schrijven zijn we in

België drie golven en bijna 25.000 betreurenswaardige COVID-19 sterfgevallen

verder, maar gaan de cijfers wel de goede kant uit door de doeltreffende vaccinatie-

campagne. Ik hoop dan ook dat de parallel zich verder zet en dat het einde van

mijn doctoraatsonderzoek ook het einde van de pandemie en geldende maatregelen

mag betekenen.

Nogmaals een welgemeende bedankt en veel leesplezier!

Michiel Haemers, mei 2021

vi Preface

Contents

Preface iii

Contents ix

Summary xi

Samenvatting xv

List of Abbreviations xix

List of Symbols xxi

1 Introduction 1

1.1 Context . 1

1.2 Conventional Development Methodologies 8

1.3 Motivation . 11

1.4 Research Questions . 14

1.5 Dissertation Outline . 15

1.6 Publications and Acknowledgment 16

2 Background on Co-Design 19

2.1 Multi-Domain Optimization . 19

2.2 Background on Optimizations 21

2.3 Co-Design Strategies . 24

2.4 State-of-the-art and Applications 26

2.5 Chapter Conclusions . 38

3 Multi-Domain Optimization Workflow 39

3.1 Optimization Workflow Overview 40

3.2 Optimization Objectives . 43

3.3 Optimization Algorithm Requirements 43

3.4 Optimization Algorithm Selection 44

3.4.1 Gradient-Based Optimization Approach 44

viii Contents

3.4.2 Derivative-Free Optimization Approach 47

3.4.3 Conclusions on the Optimization Algorithm Selection . . 56

3.5 Pareto Front . 58

3.6 Background on State-Space Modeling 59

3.6.1 Continuous LTI State-Space Modeling 59

3.6.2 Continuous State-Space Observer Modeling 60

3.6.3 Continuous LPV and LTV State-Space Modeling 62

3.6.4 Illustrative LTI case: Mechanical Synchronization Setup . 64

3.7 Chapter Conclusions . 68

4 Hardware Architecture Optimization 69

4.1 Actuator & Sensor Placement 70

4.2 Actuator & Sensor Selection . 73

4.2.1 Mechanical Synchronization Setup 74

4.3 Open-Loop Analysis . 76

4.3.1 Mechanical Synchronization Setup 79

4.4 Chapter Conclusions . 84

5 Control Configuration Optimization 85

5.1 Control Architecture Optimization 86

5.1.1 Background on Control Architecture Topologies 86

5.1.2 Decentralized/Distributed Control Architecture Features . 89

5.1.3 Implementation in Co-Design Methodology 94

5.1.4 Mechanical Synchronization Setup 94

5.2 Controller Tuning Optimization 97

5.2.1 Mechanical Synchronization Setup 99

5.3 Closed-Loop State-Space Methodology 101

5.3.1 Background and Motivation 101

5.3.2 Discrete State-Space Process and Observer Representation 103

5.3.3 Discrete State-Space PID Representation 104

5.3.4 Extensive Control Structure Possibilities 107

5.3.5 SSCL Methodology Workflow 109

5.3.6 Mechanical Synchronization Setup 118

5.4 Chapter Conclusions . 122

6 Hardware and Control Co-Design 125

6.1 Co-Design Optimization Properties 126

6.1.1 Objective Function . 126

6.1.2 Design Parameters . 126

6.1.3 Constraints . 127

6.2 Genetic Algorithm Implementation 128

6.3 LTI Case: Mechanical Synchronization Setup 131

6.3.1 Objective Function . 131

Contents ix

6.3.2 Design Parameters . 132

6.3.3 Constraints . 132

6.3.4 Genetic Algorithm Implementation 135

6.3.5 Optimization Results . 137

6.3.6 Comparison to Existing Controller Tuning Methods 141

6.3.7 Objective Function Surface Plots 149

6.4 LPV Case: Composite Plate . 153

6.4.1 Model Properties . 154

6.4.2 Objective Function . 155

6.4.3 Design Parameters . 155

6.4.4 Constraints . 156

6.4.5 Exhaustive Search . 156

6.4.6 Genetic Algorithm Implementation and Results 157

6.4.7 Case Conclusions . 159

6.5 Chapter Conclusions . 161

7 Case: Active Car Suspension Setup 163

7.1 Introduction on Active Suspension Systems 163

7.1.1 Semi-Active and Adaptive Suspension Systems 164

7.1.2 Active Suspension Systems 165

7.2 Active Car Suspension Lab Setup 167

7.2.1 Setup Properties . 167

7.2.2 State-Space Model Identification 170

7.2.3 Road Profile . 173

7.3 Hardware and Control Co-Design 175

7.3.1 Objective Function . 175

7.3.2 Design Parameters . 175

7.3.3 Constraints . 178

7.3.4 Genetic Algorithm Implementation 179

7.4 Results and Measurements . 180

7.4.1 Model-Based Pareto Optimizations 180

7.4.2 Validation Measurements 182

7.4.3 Comparison to Existing Controller Tuning Methods 185

7.5 Chapter Conclusions . 190

8 General Conclusions and Future Work 191

8.1 General Conclusions . 191

8.2 Recommendations for Future Work 193

A Resulting SSCL Algorithms 195

B Mechanical Synchronization Case Optimization Responses 201

C Active Car Suspension Setup Validation Measurements 217

x Contents

Summary

Today, consumer goods have become a combination of components originating

from different technological sub-domains empowering a common purpose. A typ-

ical omnipresent example is a passenger car. At the beginning of the twentieth

century, a car still consisted of rudimentary, isolated, and mainly mechanical parts.

In contrast, today’s cars can be labeled as highly interconnected systems in which

many different parts from varying technologies cooperate. Moreover, this car evo-

lution is not yet complete because, in the future, probably fully automated cars will

roam the streets that will bring the passengers to the desired destination based on

immense data streams from a vast range of sensors.

This evolution can also be found in industrial machines, for which it is also es-

sential that the various components work together to achieve optimum system per-

formance. Usually, there are several (teams of) engineers that take care of a specific

aspect of the system design. The problem with this approach is that these different

engineers look at the problem from a different perspective and also have differ-

ent objectives in mind. For example, a mechanical engineer will be less concerned

with the optimal control parameters that the control engineer must determine. Nev-

ertheless, the mechanical engineer’s choices can have a significant impact on what

performance the control engineer can achieve with the control settings. In other

words, there is a lack of understanding of the influence of the individual choices

regarding mechanical design and control design on the maximum achievable sys-

tem performance. This is the main research question to which this work provides

an answer.

In this dissertation, a co-design methodology is presented that allows the simul-

taneous optimization of both the hardware architecture and the control configura-

tion for systems consisting of multiple interacting subsystems. With the optimiza-

tion of the hardware architecture, both the optimal type and location of actuators

and sensors are determined. As part of the control architecture configuration, the

optimal architecture of the control loops and the optimal controller tuning settings

are determined. An extensive literature review shows that the current most ad-

vanced co-design only considers the hardware architecture and the tuning of the

controllers. Therefore, simultaneously considering the control loop architecture

and different types of actuators and sensors is a substantial addition to the current

state-of-the-art.

xii Summary

The problem must first be transformed into a computationally tractable formu-

lation in order to perform the optimization within a reasonable time. This work

describes how the different design options of the co-design can be linked to several

design parameters to be optimized. It shows that the optimization problem has a

discontinuous character with both continuous and discrete design parameters and

non-linear objectives and constraints. Multiple (possibly conflicting) objectives,

such as following a reference trajectory, energy consumption, or vibration reduc-

tion, can be taken into account simultaneously. The applicable constraints can be

related to, e.g., total implementation cost, maximum output of the actuator, or tol-

erances on mechanical movements. Due to the nature of the optimization problem,

the constraints, and the discontinuities that are present, only a limited number of

optimization algorithms are applicable, of which a Genetic Algorithm (GA) is cho-

sen as the most suitable. However, the optimization only becomes feasible if the

time required to execute the algorithm remains limited.

This work proposes some extensions to enable the computationally efficient

optimization and to solve the complex optimization problem within a reasonable

time. In the first place, by applying an open-loop analysis. During this analysis, the

feasibility of different hardware configurations can be determined efficiently with-

out the need to calculate a closed-loop response. This information then ensures that

no time is lost in calculating the system response of these predetermined infeasible

hardware configurations during the main optimization routine. A second extension

is to describe the system dynamics with various interconnected control loops as one

single state-space system representation. As a result, the system response based on

external inputs and disturbances can be computed much faster compared to exist-

ing methods used to describe extensive control loops. These additions significantly

reduce the computation time required to obtain a solution. The result of the pro-

posed co-design method is a Pareto analysis that provides a clear understanding of

the inevitable trade-off between the total implementation cost and the maximum

system performance to be achieved.

The proposed method is not tailored for one particular application or a spe-

cific optimization problem but is instead a generic method that can be used on a

wide range of applications (e.g., on mechatronic, electrical, or thermal systems).

Some practical cases are also considered in this work. For example, the hardware

and control co-design methodology is performed on a mechanical synchronization

example in which coupled inertias must follow a reference trajectory as closely

as possible under the influence of varying load torques. A second application in-

volves a composite plate for which the optimal location of collocated actuator and

sensor pairs and the associated control must be determined to reduce occurring vi-

brations. Finally, the hardware and control co-design methodology is implemented

on a setup representing a car with an active suspension. A downscaled lab setup

is built to validate the model-based optimization results. The setup is based on

a well-known general active car suspension model and allows to emulate the dy-

namic behavior of a car with an active suspension system that gives the possibility

xiii

to test different hardware architectures and control configurations. This also in-

volves applying disturbance signals that act on the central platform and correspond

to the forces encountered when driving over a given realistic road profile. The aim

is to design the hardware and control aspects in such a way that the active elements

in the suspension reduce the arising accelerations of the central platform as much

as possible to maximize the driver’s comfort.

These applications highlight the flexibility and effectiveness of the proposed

co-design method. Moreover, the results are also validated by comparing the ob-

tained controller settings with existing controller tuning methods. In addition, it

is also verified through objective function surface plots that none of the surround-

ing solutions shows a better performance than the obtained optimization result.

The model-based active car suspension optimization results are also validated with

measurements on the lab setup.

The results show that with the proposed methodology, a design engineer is

able to successfully perform the co-design of the hardware architecture and the

controller configuration. In doing so, the resulting Pareto analysis provides a very

valuable insight into the relationship between the maximum achievable system per-

formance and the total implementation cost to obtain an optimal system design.

xiv Summary

Samenvatting

Tegenwoordig zijn consumptiegoederen meer en meer een samenstelling van

onderdelen die uit verschillende technologische subdomeinen afkomstig zijn

maar die een gezamenlijk doel bekrachtigen. Een typisch voorbeeld daarvan

is een auto. Aan het begin van de twintigste eeuw bestond een auto nog uit

rudimentaire, geı̈soleerde en hoofdzakelijk mechanische onderdelen. Daarentegen

kunnen auto’s tegenwoordig bestempeld worden als sterk geı̈nterconnecteerde

systemen waarbij heel wat verschillende onderdelen uit variërende technologieën

samenwerken. Bovendien is deze evolutie van de auto nog niet volbracht, want

in de toekomst zullen er waarschijnlijk volledig geautomatiseerde auto’s in het

straatbeeld opduiken die de passagiers tot de gewenste bestemming zullen brengen

op basis van immense datastromen uit een heel resem sensoren.

Deze evolutie is ook terug te vinden in industriële machines waarbij het voor

dergelijke systemen belangrijk is dat de verschillende onderdelen samenwerken om

een optimale systeemprestatie te behalen. Doorgaans zijn er verschillende (teams

van) ingenieurs die een bepaald aspect van het systeemontwerp voor zich nemen.

Het probleem daarbij is dat deze verschillende ingenieurs het probleem vanuit een

andere invalshoek bekijken en daarbij ook andere doelstellingen voor ogen hebben.

Zo zal bijvoorbeeld een mechanisch ingenieur in mindere mate wakker liggen

van de optimale regelparameters die de regeltechnisch ingenieur moet bepalen.

Maar de keuzes van de mechanisch ingenieur kunnen wel degelijk een grote in-

vloed hebben op welke performantie de regeltechnisch ingenieur kan behalen met

de regeltechnische instellingen. Er is dus met andere woorden een tekort aan

inzicht in de invloed van de individuele keuzes inzake mechanisch ontwerp en

regeltechnisch ontwerp op de maximaal te behalen systeemprestatie. Dat is dan

ook de voornaamste onderzoeksvraag waar dit werk een antwoord op biedt.

In deze thesis wordt een methode toegelicht die het mogelijk maakt om

gelijktijdig het co-ontwerp van zowel de hardware architectuur als de regel-

technische configuratie te optimaliseren voor systemen die bestaan uit meerdere

interagerende subsystemen. Met de optimalisatie van de hardware architectuur

worden zowel het optimale type als de optimale locatie van actuatoren en

sensoren bepaald. Als onderdeel van de regeltechnische configuratie worden

de optimale architectuur van de regellus alsook de optimale instellingen van

de regelaars bepaald. Uit een uitgebreide literatuurstudie blijkt dat het huidige

xvi Samenvatting

meest geavanceerde co-ontwerp enkel de hardware architectuur en de afstelling

van de regelaars beschouwt. Het gelijktijdig overwegen van de architectuur

van de regellus en verschillende types hardware betekenen dan ook substantiële

toevoegingen aan de huidige state-of-the-art.

Het optimalisatieprobleem moet eerst getransformeerd worden naar een

wiskundig te optimaliseren formulering om de effectieve optimalisatie binnen

een redelijke tijd te kunnen uitvoeren. Dit werk beschrijft hoe de verschillende

ontwerpmogelijkheden van het co-ontwerp aan verscheidene te optimaliseren

ontwerpparameters gekoppeld kunnen worden. Hieruit blijkt dat het optimalisatie-

probleem een discontinu karakter heeft met continue en discrete ontwerp-

parameters en niet-lineaire objectieven en restricties. Hierbij kunnen meerdere

(conflicterende) objectieven zoals het volgen van een referentietraject, energie-

consumptie, optredende vibraties, enz. gelijktijdig in rekening gebracht worden.

De daarbij geldende restricties kunnen gerelateerd zijn aan bijvoorbeeld totale

implementatiekost, maximale uitgang van de actuator of toleranties op mech-

anische bewegingen. Door de aard van het optimalisatieprobleem zijn slechts

een beperkt aantal optimalisatie-algoritmes toepasbaar, waarvan een Genetisch

Algoritme (GA) als het best passende gekozen wordt. De optimalisatie wordt

echter pas haalbaar als de benodigde rekentijd om het algoritme uit te voeren

beperkt blijft.

In dit werk worden enkele uitbreidingen toegelicht om een rekenkundig

efficiënte optimalisatie mogelijk te maken en het complexe optimalisatieprobleem

binnen een afzienbare tijd te volbrengen. Een eerste uitbreiding is een open-lus

analyse. Tijdens deze analyse kan de werkbaarheid van de verschillende hardware

configuraties op een efficiënte manier bepaald worden zonder dat een gesloten-lus

responsie berekend hoeft te worden. Deze informatie zorgt er vervolgens voor

dat er tijdens het optimaliseren geen tijd verloren gaat aan het uitrekenen van de

systeemresponsie van deze vooraf bepaalde onhaalbare hardware configuraties.

Een tweede uitbreiding bestaat erin om de systeemdynamiek met verschillende

geı̈nterconnecteerde regellussen als één state-space systeemrepresentatie te

beschrijven. De systeemresponsie op basis van externe ingangen en storingen kan

hierdoor veel sneller uitgerekend worden in vergelijking met bestaande methodes

die het toelaten om uitgebreide regellussen toe te passen. Deze toevoegingen

zorgen voor een significante vermindering van de benodigde rekentijd. Het

resultaat van de voorgestelde co-ontwerp werkwijze is een Pareto-analyse die

een duidelijk inzicht verschaft in de onafwendbare afweging tussen de totale

implementatiekost en de maximaal te behalen systeemprestatie.

De voorgestelde werkwijze is niet gericht op één bepaalde toepassing of

een specifiek optimalisatieprobleem, maar is een algemeen toepasbare methode

en kan worden gebruikt op een breed scala aan applicaties (bijvoorbeeld op

mechatronische, elektrische of thermische systemen). In dit werk komen ook

enkele praktische toepassingen aan bod. Zo wordt de werkwijze voor het hardware

en controle co-ontwerp uitgevoerd op een mechanisch synchronisatievoorbeeld

xvii

waarbij gekoppelde inerties een referentietraject zo goed mogelijk moeten volgen

onder invloed van een variërend lastkoppel. Een tweede toepassing houdt een

composiet plaat in waarbij de optimale locatie van actuator- en sensorparen en

de daarbij horende controle bepaald moeten worden om optredende trillingen

te reduceren. Finaal wordt de werkwijze voor het optimaal co-ontwerp van de

hardware en controle uitgevoerd op een opstelling die een actieve auto-ophanging

voorstelt. Om de modelgebaseerde optimalisatieresultaten te valideren, wordt voor

deze applicatie een geschaalde labo-opstelling gebouwd die gebaseerd is op een

welgekend algemeen model van een auto met een actieve ophanging. De labo-

opstelling laat toe om het dynamisch gedrag na te bootsen van een auto met een

actief ophangingssysteem waarbij heel wat verschillende hardware architecturen

en controle configuraties getest kunnen worden. Daarbij worden storingssignalen

aangelegd die inwerken op het centraal platform en die overeenkomstig zijn met

de krachten die optreden bij het rijden over een realistisch wegprofiel. Het is

daarbij de bedoeling dat de hardware- en controle-aspecten zodanig ontworpen

worden dat de actieve elementen in de ophanging de optredende acceleraties van

het centrale platform zo veel mogelijk reduceren om het comfort van de chauffeur

te maximaliseren.

Deze toepassingen onderstrepen de flexibiliteit en de effectiviteit van de

voorgestelde co-ontwerp werkwijze. Bovendien worden de resultaten ook

gevalideerd door de bekomen regelaarsafstellingen te vergelijken met bestaande

methodes om een regelaar in te stellen. Daarnaast wordt door middel van een

oppervlaktegrafiek ook gecontroleerd dat geen van de omliggende oplossingen een

betere prestatie vertoont dan het bekomen optimalisatieresultaat. De optimalisatie-

resultaten van de actieve auto-ophanging worden ook gevalideerd met metingen

op de labo-opstelling.

De resultaten tonen aan dat een ontwerpingenieur met de voorgestelde

werkwijze in staat is om het co-ontwerp van de hardware architectuur en de

regeltechnische configuratie met succes uit te voeren. De resulterende Pareto-

analyse voorziet daarbij een heel waardevol inzicht in hoe de maximaal te behalen

systeemprestaties zich verhoudt tot de totale implementatiekost om een optimaal

systeemontwerp te bekomen.

xviii Samenvatting

List of Abbreviations

The following is a list of abbreviations that are used in this dissertation:

ACD Adaptive Coordinate Descent

CBD Causal Block Diagrams

CD Coordinate Descent

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CO Convex Optimization

CPS Cyber-Physical Systems

CPU Central Processing Unit

DC Direct Current

DIRECT Dividing Rectangles

DMS Direct Multisearch

DOF Degrees Of Freedom

DS Direct Search

EA Evolutionary Algorithms

ES Exhaustive Search

FRF Frequency Response Function

FV Fitness Value

GA Genetic Algorithm

GPS Global Positioning System

HEV Hybrid Electric Vehicle

IID Iterative and Incremental Development

IMC Internal Model Control

IPM Initial Population Matrix

ISE Integral of Square Error

IT Information Technology

LB Lower Bounds

LP Linear Programming

LPV Linear Parameter-Varying

LQR Linear-Quadratic Regulator

LSITS Large Space Intelligent Truss Structure

LTI Linear Time-Invariant

LTV Linear Time-Varying

xx List of Abbreviations

MEMS Microelectromechanical Systems

MFC Macro-Fiber Composite

MIMO Multiple-Input Multiple-Output

MPC Model Predictive Control

NASA National Aeronautics and Space Administration

NCS Networked Control System

NLP Non-Linear Programming

PEM Prediction Error Minimization

PID Proportional, Integral, Derivative

PLC Programmable Logic Controller

PM Polynomial Models

PS Pattern Search

PSO Particle Swarm Optimization

QP Quadratic Programming

RAM Random Access Memory

RMS Root Mean Square

SA Simulated Annealing

SISO Single-Input Single-Output

SO Surrogate Optimization

SQP Quadratic Sequential Programming

SRTM Shuttle Radar Topography Mission

SS State-Space

TF Transfer Function

UAV Unmanned Aerial Vehicle

UB Upper bounds

VIA Variable Impedance Actuation

XP Extreme Programming

List of Symbols

The following is a list of the most important symbols that are used in this disserta-

tion:

B Set of all binary number types

Z Set of all integer number types

R Set of all real number types

bact Actuator placement binaries

bsen Sensor placement binaries

iact Actuator selection integer

isen Sensor selection integer

BΘ Diagonal matrix grouping the actuator placement binaries

BΓ Diagonal matrix grouping the sensor placement binaries

BΥ Vector grouping the control architecture binaries

Zact Vector grouping the actuator selection integers

Zsen Vector grouping the sensor selection integers

Rtuning Vector grouping the controller tuning parameters

I Identity matrix

∇ Gradient

∇2 Hessian

SS State-space system representation

A State-space system matrix

B State-space input matrix

C State-space output matrix

D State-space feedthrough/feedforward matrix

L State-space observer gain matrix

x State-space state vector

y State-space output vector

u State-space input vector

e Controller input

l Number of available actuator inputs from input vector u
m Number of outputs in the output vector y
n Number of states in the state vector x
o Number of PID controllers in the control structure

xxii List of Symbols

p Number of possible actuator types

q Number of possible sensor types

r Number of reference trajectories

w Number of possible different open-loop hardware configurations

Dist External disturbance signal

Ref External reference signal

Kp PID control: proportional gain

Ti PID control: integral gain

Td PID control: derivative gain

c1, c2, and c3 Discrete PID controller parameters

Ts Sample time [s]
T0 Simulation starting time [s]
Tm Total simulation time [s]
Fs Sampling frequency [Hz]
K Number of simulation samples

k Simulation sample number

θ Angular displacement [rad]
θ Pitch angle [rad]
z Translational position [m]
ż Translational velocity [m/s]
z̈ Translational acceleration

[

m/s2
]

J Inertia
[

kgm2
]

f Force [N]
T Torque [Nm]
k Torsional spring constant [Nm/rad]
k Translational spring constant [N/m]
b Torsional damping constant [Nms/rad]
b Translational damping constant [Ns/m]
d Disturbance signal

CM Controllability matrix

OM Observability matrix

Q LQR weights on state

R LQR weights on actuator effort

γ Quantification of the closed-loop H∞ performance

φPM Phase margin

ω Frequency [Hz]
∠ Angle

j Imaginary unit satisfying j2 = −1

xxiii

The following is a list of sub- and superscripts that are commonly used in this

dissertation and what they refer to:

xOL Open-loop

xCL Closed-loop

xpro Process

xobs Observer

x̂ Estimated value

|x| Amplitude

xc Continuous time-domain

xd Discrete time-domain

xL Load

x1, x2, ... Feedback loop to system input

xdec Decentralized control

xdis Distributed control

xa, xb, ... Cascade control level

xff Feedforward control

xsc Synchronizing control

xpre Predefined matrices remaining constant during calculations

xAct Actuator

xSen Sensor

xfr Front-right

xfl Front-left

xrr Rear-right

xrl Rear-left

xxiv List of Symbols

Chapter 1

Introduction

This first chapter starts with a brief overview of the history of control design. The

evolution from primitive mechanical machines to complex, interconnected systems

is mentioned. This is followed by an explanation of some common development

methodologies to indicate what a conventional design cycle looks like for complex

(industrial) systems. Next, some shortcomings in the current design of complex

systems are pointed out while motivating the need for what is done in this PhD

dissertation. Subsequently, the research questions of this work are briefly yet con-

cisely addressed. After that, an overview is given of the different PhD dissertation

chapters and how they relate to each other. Finally, a list is given of the scientific

publications of the author of this PhD dissertation.

1.1 Context

Throughout the last centuries, society has undergone a real metamorphosis under

the influence of four major industrial revolutions. The first industrial revolution

started about 270 years ago in England, after which it spread to the rest of Europe at

the beginning of the nineteenth century. This revolution started with the invention

of a steam engine that ensured that people no longer depended on human resources,

horsepower, watermills, or windmills to do labor. From 1765 onward, the steam

engine was further improved by James Watt, causing significant changes in the

textile industry. In 1788, he applied the Watts flyball governor (see Fig. 1.1), which

is considered the first automatic control system. If the speed of the connected shaft

increases, the balls swing out, which closes the valve until a balance is achieved

between desired and the proportional gain of the linkage and valve. Although a

centrifugal regulator was invented by Christiaan Huygens to be used in windmills,

the adaptation of Watts was so important for the steam engine that Watts is often

mistakenly labeled as the inventor of the centrifugal regulator. This centrifugal

regulator controls the power transmission from a driving steam engine to a driven

machine by controlling the admission of steam into the cylinders [1].

2 Introduction

Figure 1.1: Overview of a centrifugal flyball governor (from [2])

Figure 1.2: Model of ’Spinning Jenny’, the first mechanical multi-spindle
spinning frame, as presented in the Museum of Early Industri-
alism, Wuppertal, Germany (from [3])

Fig. 1.2 shows a model of ’Spinning Jenny’, the first machine-driven spinning

frame invented by James Hargreaves [3]. A little later, Joseph-Marie Jacquard

developed a fully automatic silk looming machine [4], shown in Fig. 1.3. By ac-

tuating these machines with a steam engine, textiles could be produced on a large

scale. Small workshops were replaced by large factories, and labor-intensive crafts-

manship was eventually changed for mass-producing machines. The first industrial

revolution is also characterized by the introduction of cast iron. Under the influence

of these new techniques, it was possible to produce more cheaply, which meant that

more people could access more consumer goods and that the general standard of

living gradually improved [5].

1.1 Context 3

Figure 1.3: Overview of a Jacquard looming machine (from [4])

The second industrial revolution (also known as the technological revolution)

took place from the second half of the 19th century to the First World War and was

mainly characterized by the development of the Bessemer process in the 1860s,

developed by Sir Henry Bessemer. This process is distinguished by a new kind

of furnace that could convert molten crude iron into steel (see Fig. 1.4). This

technique further evolved into the introduction of new technologies, particularly

the internal combustion engine, the oil industry, new materials and substances (in-

cluding alloys and chemicals), and communication technologies such as telegraph

and radio. While the first industrial revolution focused on iron, steam technolo-

gies, and textile production, the second industrial revolution revolved around steel,

railroads, electric machines, and chemicals [6]. During the second industrial revo-

lution in the 20th century, the automotive industry took off, which has become one

of the world’s largest manufacturing industries by revenue. One of the best-known

examples of the first cars produced on a large scale is Henry Ford’s Model T, with

Fig. 1.5 showing an example of a Model T from 1910. Henry Ford was also a

pioneer in applying the principle of an assembly line [7].

From the 1950s, several new forms of communication were introduced, mainly

due to the rise of the computer. This made it possible to consult information almost

anywhere in the world and made it possible for companies to globalize. Also,

significant steps were taken to further automate the production processes, including

the introduction of the Programmable Logic Controller (PLC) [10]. As a result, the

control of an industrial machine shifted from mainly mechanical control that was

4 Introduction

Figure 1.4: Sir Henry Bessemer’s Bessemer converter, located in Sheffield
(from [8])

Figure 1.5: Ford Model T automobile from 1910 (from [9])

hard to adapt to flexible electronic controllers, but the focus was still mainly on

single-input single-output (SISO) control systems. From then on, coordination

of production and logistics could be carried out worldwide, enabling large-scale

economies. The switch from analog, electronic, and mechanical technology to

digital forms mark this third industrial revolution.

The rise of the internet indicates the start of the digital revolution. As a result,

the ’information society’ era has dawned, with the acquisition and processing of

information becoming more important than pure production. The processing of

data is generating increasingly large capital flows worldwide. For some, a fourth

industrial revolution is currently in full swing. This fourth industrial revolution is

1.1 Context 5

referred to as the ’smart industry’ or ’industry 4.0’ and stands for new automation

trends and profound data acquisition, storage and exchange in industrial manufac-

turing techniques [11, 12].

Nowadays, consumer goods and industrial machines are more and more com-

prised of co-operating parts from different technological subdomains. Therefore,

the design process of complex systems is rapidly shifting from small scale develop-

ment of isolated systems to large-scale development of integrated systems [13]. Re-

garding large-scale control, particular attention is paid to multiple-input multiple-

output (MIMO) controllers. The different parts of a system consisting of multiple

subsystems need to exchange data efficiently to obtain a high-performing assem-

bly. This is why the term ’cyber-physical systems’ (CPS) is used, in which the term

’cyber’ refers to the computer-based algorithms that monitor and control (different

processes of) the complete system. This controller will usually be implemented as

software and monitors the system activity by inputting sensor data and then using

actuators to control the physical parts based on appropriate decisions. This proce-

dure results in the traditional view of a physical process controlled by a software

component, also known as a feedback control system [14, 15]. The generic and

most basic representation of a feedback control system (with ’cyber’ and ’physi-

cal’ parts) is shown in Fig. 1.6.

Actuators

Cyber Physical

Sensors

Controller Plant

Figure 1.6: Generic representation of a feedback control system, showing
the interaction between the ’cyber’ and ’physical’ parts (repro-
duced from [14])

A practical example of a feedback control system is the cruise control of a car,

shown in Fig. 1.7. The car itself represents the physical parts that are actuated

by the control inputs generated by a cruise controller. The sensor of this cruise

controller is a tachometer that converts the wheel speed to the speed of the car.

The actuator is the throttle, quantifying the power going to the car engine. Based

on the current speed, the cruise controller software will determine to what extent

the throttle needs to be excited to maintain the desired speed, regardless of weight,

wind, slope, and other external factors [14].

6 Introduction

Desired

Speed

Cyber Physical

ThrottleCruise Controller Car

Tachometer

Figure 1.7: Graphical representation of a car cruise controller feedback sys-
tem (reproduced from [14])

The term ’embedded systems’ is used for systems that can largely be regarded

as standalone entities and that incorporate elements of control logic and real-world

applications. Embedded systems are typically a single device, specifically designed

to perform a limited number of tasks and often with limited resources. In contrast,

cyber-physical systems (CPS) include many constituent systems and operates at a

much larger scale, potentially including many embedded systems or other cyber-

physical system elements. It is well-accepted that cyber-physical systems consist

of a large number of interacting components and display some recurring character-

istics that distinguish them from classic control systems, such as extensive ’cyber’

components, a vast scale of operation, a hybrid discrete-continuous nature, high

adaptability, and integration with multiple external systems [14].

These cyber-physical systems are already widespread within our society. Con-

sider the example of a car. At the beginning of the 20th century, a car consisted of

rudimentary, isolated, and mainly mechanical parts. However, this changed drasti-

cally with the industrial and Information Technology (IT) revolutions. Nowadays,

these old-fashioned cars have evolved into versatile and inter-connected cyber-

physical systems with features like parking assist, gesture and voice control, and

regular updates of the operating system via the internet. In the field of car sus-

pensions, major innovations have been implemented in recent decades, whereby

passive spring-damper systems have been replaced by (semi) active components

that can substantially improve the road handling and the driver’s comfort. In Chap-

ter 7, the findings of this PhD are validated on an active car suspension lab setup.

The introduction of that chapter provides an overview of recent developments in

the field of different types of (semi) active car suspensions.

The development of complex cyber-physical systems is far from finished. For

example, the first forms of self-driving cars can already be seen in the public

streetscape, where the car drives autonomously based on data coming from GPS,

cameras, radars, lidars, and other sensors [16–18]. Fig. 1.8 gives an overview of

the various sensors that apply to modern-day self-driving cars. It is believed that

these self-driving cars will evolve even further in their autonomy into an exten-

sive network of cars that continually exchange information to control the traffic

flow and reduce congestions. For example, cars that approach an intersection may

1.1 Context 7

communicate to negotiate which one crosses first. The complexity of designing

and operating such novel systems is evident, especially in the face of the necessary

compatibility between the range of cars fielded by all the different car manufactur-

ers [19].

Front lidar

High-sensitivity
camera

Top lidar

GPS antenna

Rear RADAR

Lidar for
360° detection

Lidar for
360° detection

Wheel-speed
sensor (WSS)

Inertial measurement
unit (IMU)

Front RADAR

Figure 1.8: Graphical overview of the typical sensors used in autonomous
vehicles (from [20])

Other common examples of cyber-physical systems appear in telecommunica-

tion, healthcare, energy distribution, climate control, robotics, aerospace, etc. [21]

The strong interaction between the physical parts and the controlling cyber units

pose new challenges for the optimal design of fully integrated cyber-physical sys-

tems, as different interdisciplinary interests need to be covered through this inter-

action. That is why cyber-physical systems (CPS) have emerged in recent years as

a prominent research topic with practical relevance and has been drawing increas-

ingly more attention from different communities.

8 Introduction

1.2 Conventional Development Methodologies

The exponential rate at which CPSs evolve and their increasing complexity pose

new challenges to their design. To tackle the increasing complexity, engineers use

a model-based systems engineering methodology [22]. With this method, a model

of a (part of a) machine is formulated to closely mimic its behavior. In this way,

requirements relating to engineering, design, verification, and validation can be

carried out (at least partially) on a simulation [21]. This results in a substantial

reduction of the time needed to go through an entire design cycle from concept to

the later phases of the product life cycle.

There exist several development methodologies. The simplest is the so-called

’waterfall’ method, in which the development is broken down into five consecutive

steps: requirements, design, implementation, verification, and maintenance (see

Fig. 1.9) [23]. With this method, all development phases are completed sequen-

tially, so there is no simultaneous co-design of hardware and control.

Maintenance

Verification

Implementation

Requirements

Design

Figure 1.9: The waterfall development methodology (reproduced from
[23])

1.2 Conventional Development Methodologies 9

The V-model works similarly to the waterfall model but differs in that each step

after the implementation is tested against the corresponding step prior to the imple-

mentation phase. A graphical overview of the V-model is shown below in Fig. 1.10.

The main drawback of the V-model is that the total system design is established at

the beginning of the development, so little or no variation is possible. Likewise, it

is impossible to establish complex systems where components or interactions are

not known in advance [24]. The control design in the shown V-cycle is applied in

the implementation phase. Since interactions between different disciplines cannot

be considered, a co-design of hardware and control cannot be applied efficiently

using the V-cycle development methodology.

Requirements
Analysis

System
Design

Architecture
Design

Component
Design

Acceptance
Test

System
Test

Integration
Test

Component
Test

Implementation

Figure 1.10: The V-model development methodology (reproduced from
[25])

The spiral methodology uses mainly the same components as the waterfall

method: requirements, design, implementation, and testing. The difference is that

these are carried out cyclically, usually shifting the focus in one cycle to a particu-

lar part of the system design. In the case of one completed cycle, the requirements

are re-examined, and it is decided whether the system design can be labeled as fin-

ished. For every completed cycle, additional features are added to the system de-

sign [26]. Fig. 1.11 shows the graphical representation of the spiral methodology.

This development methodology can be used to perform the simultaneous co-design

of hardware and control, initially taking into account the full interactions between

the different subsystems of a system and then performing a co-design according to

the specified objectives and constraints.

10 Introduction

Determine
objectives

Review
Proto-
type 2

Proto-
type 1Start Final

Detailed
design

Integration

Test

Operation
concept

Requirements
plan

Implementation

Cumulative
cost

Plan next
cycle

Implement
and test

Assess
risks

Progress

Figure 1.11: The spiral development methodology (reproduced from [25])

Other examples of model-based design methodologies are Iterative and Incre-

mental Development (IID) [27], Scrum [28], and Extreme Programming (XP) [28].

These originally arose from software development and can only be applied to a lim-

ited extent in the model-based design of complex industrial machines. For more

information, please refer to the accompanying references. The choice of the de-

velopment methodology depends on factors such as size, complexity, flexibility,

and need for innovation. It is important to remember that applying model-based

methods allows the design cycle to be completed much quicker since testing and

validating a model is nearly always faster than having to do the same on physical

prototypes.

1.3 Motivation 11

1.3 Motivation

The complete system design consists of many different interacting hardware and

control design possibilities that each have an (unknown) influence on the overall

system performance. In conventional development strategies, the hardware and

control designs are treated sequentially and are therefore approached entirely sep-

arated [29]. This results in a so-called ’industrial design gap’ between hardware

engineering on the one hand and control engineering on the other hand. This in-

dustrial design gap is graphically displayed in Fig. 1.12.

Hardware Design

Mechanical/Hardware
Engineers

Hardware assembly?
 Weight, Inertia, Strength, etc.
Type of sensors/actuators?
Placement of sensors/actuators?
Division of plant into subsystems?
...

System

Subsystem
controller

Subsystem
n

Subsystem
controller

Subsystem
3

Subsystem
controller

Subsystem
2

Subsystem
controller

Subsystem
1

Control Design

Control Engineers

Control schemes?
 Cascaded control, Feedforward,
 Distributed/Decentralized, etc.
Control strategy?
 PID, MPC, H

2
, H∞, LQR, etc.

Sampling period?
Bandwidth?
Minimum Robustness/Stability?
...

P I D

-K
0

1/sr y
e u

x

x
i

-K
i-

+

+

+ x = Ax+Bu
y= Cx+Du

Industrial design gap

Figure 1.12: Graphical representation of the industrial design gap between
hardware design and control design, with properties typical for
each design aspect

In conventional development strategies, mechanical engineers start with the

design of a physical setup, corresponding with the structural objectives on, for

instance, weight, inertia, and strength. Next, the system is divided into subsys-

tems and the positions of the actuators and sensors in the system are determined.

Correspondingly, the actuator and sensor types are selected. Subsequently, con-

trol engineers design a control system for the fixed physical structure based on

the given inputs and outputs of actuators and sensors, satisfying a different set of

objectives, such as settling time, reference tracking properties or robustness to dis-

turbances. They also determine which control strategy to be used (e.g., PID, MPC,

12 Introduction

LQR, H∞) and which features the control scheme should contain. Based on all

this, satisfactory controller parameters (= controller tuning) are then determined.

This sequential design approach is intuitive to implement but suffers from several

problems when applied to more sophisticated applications consisting of several

subsystems.

First, there is usually a tight inter-dependency between the control configura-

tion and the hardware architecture that is almost totally neglected when applying

sequential design. For example, the ability to achieve acceptable control perfor-

mance is affected by the location and type of sensors and actuators, but the control

engineer cannot change it. Simply stated, the hardware can limit the controller de-

sign space and, hence, the optimal achievable control performance. In many cases,

it is hard to predict the distinct impact of these design properties on the overall

system performance. For example, it is often unclear what the effect is on the

overall system performance when a specific actuator or sensor is left out or sized

differently on a subsystem level. Therefore, the hardware engineers have to make

assumptions regarding the control configuration, after which the control engineers

have to stick to that hardware architecture. This sequential approach might not

lead to the most efficient or optimal design. Since modern systems are becoming

increasingly more complex and the resources are always constrained by cost and

space, a resource-efficient design has become an increasingly important issue [30].

Second, with sequential design, incorporating the needs of both hardware and

control engineers becomes even more complicated as the overall size of the system

and the number of interconnected subsystems increase. This results in sub-optimal

designs and considerable integration, test, and validation efforts. Therefore, there

is a rising demand for systematic and comprehensive co-design methods to ac-

complish both the optimal hardware architecture and control configuration [30].

Regarding the system’s hardware optimization, most literature only considers the

mechanical design or geometry parameters (e.g., [31–35]). Choices on the location

and types of actuators and sensors have, so far, been mainly dictated by practical

experience rather than by an actual optimization procedure.

The idea of looking at process equipment design and control system design as

an integrated problem definition is not new, as is clear from the following quote

from a paper by Ziegler and Nichols from 1943: ”In the application of automatic

controllers, it is important to realize that controller and process form a unit; credit

or discredit for results obtained are attributable to one as much as the other. A

poor controller is often able to perform acceptably on a process that is easily con-

trolled. The finest controller made, when applied to a miserably designed process,

may not deliver the desired performance. True, on badly designed processes, ad-

vanced controllers are able to eke out better results than older models, but on these

processes, there is a definite end point which can be approached by instrumenta-

tion and it falls short of perfection” [36]. Although considerable research has been

done on the control/architecture co-design problem in recent years, it is far from

being complete. For the co-design methods to really become powerful and prac-

1.3 Motivation 13

tical for industrial applications, further research efforts are needed to extend and

generalize current techniques.

This is also the case for the Flemish industry, dealing with systems consist-

ing of interacting subsystems that exhibit complex dynamic behavior. The current

industrial control approach for these systems is often a decentralized PID-like con-

trol that focuses on controlling each subsystem separately. This is mainly to man-

age the controller tuning complexity, which involves significant human interaction.

Moreover, engineers prefer diagnosis on PID controllers directly linked to subsys-

tems rather than PID controllers in which there is no direct physical connection.

For individual subsystems, PID controllers are relatively easy and intuitive to tune.

However, for systems consisting of interacting subsystems, PID controller tuning

is tedious and time-consuming even for an experienced operator. Due to its limited

degrees of freedom, decentralized PID control alone fails to address the complex

behavior of systems consisting of multiple subsystems as a whole. Consequently,

the achievable performance is limited and can no longer meet the continuously

increasing demands.

This leads to a need for a methodology to optimize the total system, combining

the dimensioning and selection of sensors, actuators, and corresponding control.

More complicated controllers and additional sensors and actuators do not neces-

sarily lead to an economic profit. The balance between the enhanced performance

and the elevated costs (more sensors, actuators, and a more complex control ar-

chitecture) must be right. Hence, when considering a more complicated machine

design, a systematic analysis and optimization of this interplay must be performed.

Additionally, a way must be found to visualize the optimization results to provide

the end-user with insights into the interplay between different design aspects.

The interplay between enhanced performance and elevated costs turns the con-

trol configuration design into a nontrivial task. Despite the strong industrial rel-

evance and interest, there are currently no tools to simultaneously optimize the

hardware and control for systems of interacting subsystems. Control design tools

assume a prefixed control architecture: they assume given sensors and actuators

and tune or optimize the controller parameters for a selected control and hardware

architecture. The only option for a control engineer in co-designing the hardware

and control is to try different configurations exhaustively and carefully analyze

the resulting performances. How to address, in a (more) automatic way, multi-

ple topologies with a large variety in the component types and numbers remains

an open question [37, 38]. However, the lack of tools that support hardware and

controller co-design is a critical problem that hinders the practical application of

co-design methodologies. Therefore, there is a need to develop a toolchain that

integrates the co-design framework and also bridges the gap between the separate

controller and hardware architecture design tools [30].

Therefore, this PhD research aims to establish a generally applicable method-

ology to optimize both the control design and hardware design simultaneously.

In doing so, multiple (conflicting) objectives and various constraints have to be

14 Introduction

taken into account. One difficulty of the control and hardware architecture co-

design is integrating both entities in a manageable form for optimization purposes.

Therefore, the interplay between the controller and the hardware architecture de-

sign spaces needs to be studied and identified, and specific characteristics on both

sides should be exploited to formulate the problem in a mathematical way. This

mathematical representation should allow the designer to efficiently apply a suit-

able optimization algorithm to obtain the results in a reasonable time. Additionally,

it should be investigated how system-level analysis techniques can be used so that

a priori insights can be obtained to effectively exclude pre-determined infeasible

combinations of hardware and control components. Finally, a visualization strategy

must be developed to present the resulting trade-off between conflicting objectives

in a clear and comprehensible way.

1.4 Research Questions

Based on the aforementioned issues, the following research questions can be for-

mulated:

• The complete design of complex machines consists of many different inter-

acting hardware and control design possibilities that each have an (unknown)

influence on the overall machine performance. How can the simultaneous

co-design of both hardware and control be systematically formulated in a

mathematical form, manageable for optimization purposes?

• How can the trade-off between (potentially) conflicting objectives be pre-

sented in a clear way?

• The application of iterative (evolutionary) optimization algorithms requires

a large number of simulations. How can the mathematical system descrip-

tion be adapted so that the complete setup can be simulated efficiently and

optimization results can be obtained in a reasonable time?

• Can system level analysis techniques be applied so that a priori insights can

be obtained to efficiently exclude pre-determined infeasible combinations of

hardware and control combinations?

1.5 Dissertation Outline 15

1.5 Dissertation Outline

Chapter 2 provides a thorough overview of the co-design concept and what it means

in the scope of this PhD dissertation. It first addresses a multi-objective optimiza-

tion problem and explains the general properties of optimization problems. Next,

an overview is given of existing co-design strategies, and extensive analysis is given

of the current state-of-the-art in hardware and control co-design. This will show

that none of the existing methods reaches the level of co-design applied in this

work.

Chapter 3 starts with an overview of the novel workflow developed in this work

to accomplish the hardware and control co-design. Next, the different objectives

that apply to this co-design problem are given. Subsequently, more background

information is given about the different types of optimization algorithms, and a

well-founded choice is made for the algorithm used to execute the co-design prob-

lem. As a final part of this chapter, a way to clearly and graphically represent the

optimization results is described.

After that, more detail is given on how the different parts of the workflow are

dealt with. Chapter 4 starts with how the hardware architecture optimization can

be mathematically represented and in this manner optimized using the suggested

optimization algorithm. In addition, this chapter also presents an open-loop analy-

sis that ensures that a priori information from the open-loop system can be used to

speed up the workflow and thus achieve a more efficient optimization.

Next, Chapter 5 provides an overview of the meaningful control architecture

features to obtain a satisfactory system performance. After that, the integration

of these industrially relevant different control configurations in the optimization

problem is discussed, which is a unique feature in the hardware and control co-

design. The second element of the control configuration optimization mentioned

in this chapter is the tuning of the corresponding controller parameters.

Furthermore, a novel methodology is explained to reformulate an open-loop

state-space system and the corresponding control architecture as one closed-loop

state-space system. One of the advantages of this method is that the closed-loop

system response can be calculated much faster, which in turn means that the general

co-design methodology can be performed more efficiently.

Thereafter, Chapter 6 describes how the approach of the different sub-problems

from the previous chapters can be combined to implement the innovative co-design

methodology. This chapter generically describes how the hardware and control

co-design is performed, and provides some examples of applying this co-design

methodology to models of practical cases.

Subsequently, Chapter 7 discusses in detail how the general hardware and con-

trol co-design methodology is accomplished on an active car suspension setup. The

co-design methodology results are also validated on the existing physical setup. Fi-

nally, general conclusions and suggestions for future work are formulated in Chap-

ter 8.

16 Introduction

1.6 Publications and Acknowledgment

Articles in International SCI Journals

An overview of peer-reviewed journal papers that were published in the scope of

this PhD:

• M. Haemers, S. Derammelaere, C. Ionescu, and K. Stockman, “Optimal

Hardware and Control Co-Design applied to an Active Car Suspension

Setup”, Machines, Vol.9, issue 3, pp. 55, 2021

• M. Haemers, S. Derammelaere, A. Rosich, C. Ionescu, and K. Stockman,

“Towards a generic optimal co-design of hardware architecture and con-

trol configuration for interacting subsystems”, Mechatronics, vol. 63, pp.

102275, 2019

An overview of peer-reviewed journal papers that were published outside the

scope of this PhD:

• S. Derammelaere, M. Haemers, C. Copot, F. Verbelen, C. Ionescu, and K.

Stockman, “Realtime locomotion control of a snakeboard robot based on a

novel model, enabling better physical insights”, European Journal of Con-

trol, vol. 63, pp. 102275, 2018

Articles in conference proceedings

An overview of peer-reviewed conference papers that were published in the scope

of this PhD:

• M. Haemers, C. Ionescu, B. Depraetere, K. Stockman, and S. Derammelaere,

“Hardware and Control Co-Design enabled by a State-Space Formulation of

Cascaded, Interconnected PID Controlled Systems”, 7th International Con-

ference on Optimization and Applications (ICOA2021), Wolfenbüttel, Ger-

many, 19-20 May 2020

• M. Haemers, S. Derammelaere, C. Ionescu, K. Stockman, J. De Viaene, and

F. Verbelen, “Proportional-Integral State-Feedback Controller Optimization

for a Full-Car Active Suspension Setup Using a Genetic Algorithm”, 3rd

IFAC Conference on Advances in Proportional-Integral-Derivative Control

(PID18), Ghent, Belgium, 9-11 May 2018

• M. Haemers, S. Derammelaere, and K. Stockman, “Co-design of Controller

and Setup Configuration using Genetic Algorithm”, 22nd IEEE Interna-

tional Conference on Emerging Technologies and Factory Automation

(ETFA), Limassol, Cyprus, 13-15 September 2017

1.6 Publications and Acknowledgment 17

An overview of peer-reviewed conference papers that were published outside the

scope of this PhD:

• C. Ionescu, M. Haemers, A. Maxim, C. Copot, S. Derammelaere and K.

Stockman, “Automatic tuning of predictive control in a hydrostatic drive

train system in nominal operation”, 23rd International Conference on Sys-

tem Theory, Control and Computing (ICSTCC), 2019

• F. Verbelen, M. Haemers, J. De Viaene, S. Derammelaere, K. Stockman, and

P. Sergeant, “Adaptive PI Controller for Slip Controlled Belt Continuously

Variable Transmission”, 3rd IFAC Conference on Advances in Proportional-

Integral-Derivative Control (PID18), 2018

• J. De Viaene, M. Haemers, F. Verbelen, S. Derammelaere, and K. Stockman,

“Current Reduction in Stepping Motor Applications Using an Adaptive PI

Controller Based on Linearized Dynamics”, 3rd IFAC Conference on Ad-

vances in Proportional-Integral-Derivative Control (PID18), 2018

• S. Derammelaere, M. Haemers, J. De Viaene, F. Verbelen, and K. Stock-

man, “A quantitative comparison between BLDC, PMSM, Brushed DC and

Stepping Motor Technologies”, 19th International Conference on Electrical

Machines and Systems (ICEMS), 2016

• J. De Viaene, F. Verbelen, M. Haemers, S. Derammelaere, and K. Stock-

man, “Quantifying the commutation error of a BLDC machine using sen-

sorless load angle estimation”, 19th International Conference on Electrical

Machines and Systems (ICEMS), 2016

Acknowledgment

This research was supported by Flanders Make, the strategic research centre for

the manufacturing industry, and is part of a Flanders Make SBO project: ’ROCSIS:

Robust and Optimal Control for Systems of Interacting Subsystems.’

18 Introduction

Chapter 2

Background on Co-Design

In this chapter, the concept of the simultaneous design of a system’s hardware and

control is discussed. An overview is given of the nomenclature that is used to

indicate the different parts of this co-design. Next, some general properties of op-

timizations are mentioned, after which different existing co-design strategies are

explained. The chapter ends with an overview of which parts of the co-design

can be found in the current literature and why previous works cannot achieve the

profound level of co-design aspired in this PhD. Although in this chapter several

properties of optimization algorithms are mentioned that are necessary to correctly

indicate the state-of-the-art in co-design, an in-depth overview of the different al-

gorithms to perform multi-objective optimizations will be explained in following

Chapter 3.

2.1 Multi-Domain Optimization

In industrial applications, several objectives from different engineering domains

are of importance. The simultaneous optimization of multiple, possibly conflict-

ing, objectives is labeled as ’multi-objective’ optimization [39]. One example is

the selection of a new car by a customer. Of course, the car’s comfort is crucial

and can be quantified under different aspects. For example, the engine capacity

will be essential to indicate how fast the car can accelerate. Other aspects such as

road handling, sound insulation, automatic gearbox or trunk space will also have

a particular influence on the perceived comfort. An unavoidable objective in this

problem (and by extension in almost all problems) is the total cost. Every compo-

nent that contributes to comfort will have a specific cost. Therefore, it is up to the

end-user to make a good trade-off between the multiple objectives and choose a car

that suits both the cost and the minimum desired level of comfort. Another example

is a motor control problem in which the tracking error and the power consumption

should be minimized. A minimal tracking error could be obtained at the expense of

high power consumption, or a large tracking error is allowed while using very little

20 Background on Co-Design

power. In the extreme case, the motor could be turned off to achieve zero power

consumption, but then the tracking error would be underwhelming [40].

Many industrial systems can be represented as a set of subsystems, connected

through physical interactions. The overall system design optimization involves two

main challenges (hence the term ’combined design’ or ’co-design’), where both

parts can have different objectives to take into account. These challenges are the

decision on the optimal hardware architecture and the optimal control configura-

tion. The hardware architecture is further subdivided into the actuator and sensor

selection on the one hand and the actuator and sensor placement on the other hand.

The control configuration consists of the control architecture and controller tuning.

Fig. 2.1 shows the subdivision of the different parts of the general co-design. This

co-design terminology is widely used in literature (e.g., [21,41–44]) and is consis-

tently used throughout this dissertation. The term co-design is sometimes referred

to in the literature as ’integrated design’.

Actuator & Sensor Selection

Actuator & Sensor Placement

Control Architecture

Controller Tuning

Hardware Architecture

Control Configuration

System
Composition

Figure 2.1: Overview of the nomenclature used for the different aspects of
the total system composition optimization

The hardware architecture optimization consists on the one hand of the actuator

and sensor placement optimization. This means optimizing the physical location

of the hardware within the entire system. The hardware architecture optimization

also consists of the actuator and sensor selection, by which the choice of the type

and size of actuators or sensors is understood. In this way, a distinction can be

made between actuators or sensors with different cost, dynamics, output saturation,

resolution, etc.

The control configuration optimization consists on the one hand of the control

architecture optimization, in which the structure of the controller is adjusted and

thus optimized. In this way, the consideration of different control features can

also be considered as part of the system composition optimization. On the other

hand, the control configuration optimization also consists of the controller tuning

optimization. This refers to setting the controller values (= controller parameters).

A generally applicable method for combined architecture design, component

sizing, and control configuration optimization of the overall system design is still

an open research question [38], as mentioned in detail in Section 1.3. This PhD re-

search will provide an answer by developing a generically applicable procedure in

which both the placement and selection of the actuators and sensors are carried out,

2.2 Background on Optimizations 21

as well as the simultaneous determination of the control architecture and associated

controller tuning. The overall system optimization aimed at in this work has a de-

sign space that is unprecedented in current control literature, as will be shown in

Section 2.4. This general co-design methodology will enable the end-user to gain

a better understanding of the inevitable trade-off between cost and performance.

2.2 Background on Optimizations

This section highlights some general principles of optimization problems that are

important in the scope of this dissertation. The complexity of the optimization

algorithm depends on the nature of the optimization problem (i.e., the nature of

its constraints and objectives) and its size (i.e., the number of design parameters

and constraints). The most basic and general form of a continuous optimization

problem is to minimize a scalar objective function f of the variable x, as seen

below in (2.1) where x ∈ R
n is a real vector with n ≥ 1 components and f(x) is a

smooth function.

min
x

f(x) (2.1)

This can be extended for multiple-objective optimization problems with k ob-

jectives, as shown in (2.2) [40].

min
x

f(x) = min
x

[f1(x), f2(x), ..., fk(x)] (2.2)

A function is said to be smooth when second derivatives exist and are contin-

uous. On the contrary, a function can be non-smooth and even discontinuous [45].

The difference between these three is shown in Fig. 2.2, in which a smooth func-

tion fs(x) is shown in blue, a non-smooth function fns(x) is shown in yellow, and

a discontinuous function fd(x) is shown in green.

22 Background on Co-Design

x

f
s
(x)

f
ns
(x)

f
d
(x)

f

Figure 2.2: General example of a smooth function fs(x) in blue, non-
smooth function fns(x) in yellow and a discontinuous function
fd(x) in green

A distinction is made between local and global minima. A local minimum is

a point at which the objective function is smaller than at all the other (feasible)

points in its vicinity, but possibly greater than at a distant point. Instead, a global

minimum is a point where the function value is smaller than or equal to the value

of all other feasible points. Fig. 2.3 shows a graph of an objective function with

multiple local minima and one global minimum.

x

global
minimum

f

local
minimum

local
minimum

Figure 2.3: General example of a function (blue) with two local minima
and one global minimum within the range of feasible x values
(yellow)

2.2 Background on Optimizations 23

Another important characteristic in optimizations is the concept of convex-

ity, which is a prerequisite for optimization algorithms that quickly and efficiently

reach a global minimum. A function f(x) is convex if for any two points x1 and x2,

the graph of f(x) lies below the straight line connecting (x1, f(x1)) to (x2, f(x2)).
Fig. 2.4 shows the difference between a convex function fc(x) and a non-

convex function fnc(x). The graph of fnc(x) lies above the dashed straight line

connecting two points on the graph, making it a non-convex function. In convex

optimizations, each local minimum is also a global minimum. Finding a local

minimum in convex optimization is sufficient to conclude that a global minimum

is found [45].

x

f
nc
(x)

f
c
(x)

f

Figure 2.4: Example of a convex function fc(x) in yellow and a non-convex
function fnc(x) in blue

Another classification within optimization problems is related to the use of con-

straints. In practical applications, there will always be certain constraints in effect.

Constraints can be ignored if it is assumed that they have no effect on the opti-

mization solution. Unconstrained problems also arise from reformulations of con-

strained problems, in which the constraints are replaced by penalization terms in

the fitness function which discourage constraint violations. Constrained optimiza-

tion problems emerge when there are explicit constraints on the design parameters.

These constraints can vary from simple bounds (0 ≤ xi ≤ 100) to more general

linear constraints (
∑

i xi ≤ 1), or non-linear inequalities that represent complex

relationships among the variables [45]. Below in (2.3), the general optimization

example of (2.1) is extended with an example of an inequality constraint.

min
x

f(x)

subject to 5x3 ≤ 42
(2.3)

24 Background on Co-Design

Some optimization problems have a particular type of constraints in which de-

sign parameters can only attain integer values. An example of this is when an

optimization problem can decide whether a specific controller feature is active or

not. In this example, the controller feature presence or absence is represented by a

binary number, implemented as an integer constraint with limits [0, 1]. The strat-

egy of ignoring the integer requirement, solving the problem with real values, and

then rounding all the components to the nearest integer cannot only lead to illogi-

cal solutions, but it can also by no means guarantee to give solutions that are even

close to optimal. Problems with both continuous and discrete design parameters are

denoted as mixed-integer problems and should be handled using discrete optimiza-

tion tools [45, 46]. One possibility is applying a branch-and-bound optimization

method, in which a set of possible integer values is presented as a tree structure

with different branches. The algorithm will check the branches of the tree that rep-

resent subsets of the solution. A branch (and thus subset of possible solutions) will

not be further considered if it cannot produce a better solution than the best one

found so far by the algorithm [47]. To incorporate mixed-integer problem require-

ments in the mathematical formulation, (2.3) is changed by adding a constraint on

the design parameters, as described in (2.4) where the design parameters x partly

consist of real values xr and integer values xi.

min
x

f(xr, xi)

subject to xr ∈ R

xi ∈ Z

(2.4)

2.3 Co-Design Strategies

In literature, the co-design optimization strategies are grouped by [48] into sequen-

tial, simultaneous, iterative and nested ones, see Fig. 2.5.

In the (traditional) sequential strategy, the hardware and controller optimiza-

tions are considered separately and therefore optimized independently. Since both

the hardware architecture and the control configuration have a significant influ-

ence on the entire system performance, this strategy cannot guarantee an optimal

situation [49].

Iterative strategies optimize a hardware architecture for a fixed control configu-

ration, then optimize the control, fixing the hardware, and so on until convergence.

Iterative strategies often reduce co-design optimization problems to sequences of

convex hardware and control optimization problems [50]. The sequential and itera-

tive strategies fail to guarantee system-level optimality because they do not neces-

sarily converge to an optimal solution. Also, they require large disparate teams

to solve complex multidisciplinary optimization problems collaboratively. [31].

An interesting example of a scenario in which iterative hardware architecture and

linear-quadratic regulator (LQR) controller tuning optimization fails to generate

2.3 Co-Design Strategies 25

Sequential Iterative

Nested Simultaneous

Optimize
the hardware

Optimize
the controller

Optimize the hardware
without compromising

controller

Optimize
the controller

Optimize
the controller

Optimize the system
by varying both the

hardware and
controller

Optimize the system
by varying the hardware

Figure 2.5: Co-design optimization strategies

an optimal system composition is the case in which the initial guess for the iter-

ative optimization is the output of a sequential system composition optimization.

Given this initial guess, the iterative process will not change the controller tuning

since the linear-quadratic regulator (LQR) method already includes some form of

optimization (see [36] for details). Correspondingly, the iterative process will not

change the hardware architecture for a given linear-quadratic regulator (LQR) con-

troller, as it assumes that the current hardware architecture is already optimal for

the control, and hence no better hardware architecture can be found. For that rea-

son, the output of the iterative process will be the sequential optimum, which is not

necessarily equal to the global optimum [49].

Nested strategies contain two optimization loops: an inner loop that completes

the controller optimization and an outer loop that completes an iteration of the

hardware optimization. For each iteration of the outer loop, an optimization of

the inner loop is performed. For example, a nested strategy optimization starts

with a proposal of the hardware configuration, after which an (iterative) optimiza-

tion algorithm is executed on the controller in the inner loop until an optimum is

26 Background on Co-Design

reached for the current hardware configuration. In turn, the outer loop also iterates

until a solution is obtained. Nested strategies can guarantee system optimality in

some cases while maintaining the more straightforward interdisciplinary partition-

ing used in sequential ones [51].

With the simultaneous strategies, a single optimization routine is performed in

which both the hardware and controller parameters are optimized at the same time.

With this strategy, only one optimization routine is conducted.

Previous work [38] provides a comprehensive overview of how the different

optimization strategies are applied to co-design the hardware and control of a hy-

brid electric vehicle (HEV). Conclusions of that work are that the interaction be-

tween HEV components is becoming increasingly important and that neglecting it

in the design step leads to loss of potential. Sequential HEV design strategies prove

clear advantages but also introduce several challenges in solving the optimization

problem. Nested HEV optimization poses more challenges in finding a global op-

timal solution at the system level and creates a shift towards multi-disciplinary

design. Even so, the paper shows that HEV designs with significantly lower fuel

consumption and emissions can be found using nested strategies compared to se-

quential strategies. Additionally in [31], the differences between sequential, itera-

tive, and combined strategies for the hardware and controller tuning co-design of

a DC motor are examined and compared. Solutions show that the combined op-

timization strategy outperforms the sequential and iterative strategies in terms of

motor weight, speed response error, and required voltage during a test schedule.

Conclusions of both cited papers also state that design and control analysts gener-

ally do not think in the same terms and that they need to integrate their tasks to a

simultaneous topology, sizing, and control design optimization exploring system-

level optima. This is precisely the main research question for this PhD dissertation.

2.4 State-of-the-art and Applications

As mentioned before, this work considers the co-design of hardware architecture

and control configuration. The hardware architecture is further subdivided into

actuator and sensor selection and placement, and the control configuration opti-

mization is further separated into control architecture optimization and controller

tuning optimization (see Fig. 2.1 on page 20). The following is a literature re-

view of these different co-design aspects, indicating the extent to which they have

already been optimized (simultaneously).

Determining the controller parameters for cyber-physical systems (CPS) is a

very widely described problem. There are numerous methods to obtain a desir-

able (not necessarily optimal) feedback control design, but without considering

hardware architecture design. For example, proportional-integral-derivative (PID)

controller parameters can be obtained based on root locus or frequency response re-

quirements or autotuning methods such as the Ziegler-Nichols method [52]. Other

ubiquitous control algorithms and corresponding tuning methods are, for exam-

2.4 State-of-the-art and Applications 27

ple, Internal Model Control (IMC) [53], linear-quadratic regulator (LQR) [36],

Model Predictive Control (MPC) [54], robust H∞ control [36], or Fractional Or-

der PID Control [55]. Multi-domain optimization methods have been applied to

obtain the controller parameters for mechatronic applications. Examples of previ-

ous work using a Genetic Algorithm (GA) to optimize feedback controller values

via the linear-quadratic regulator (LQR) method for an inverted pendulum, quarter-

car suspension, hovercraft control, and multi-machine power systems can be found

in [56–60], respectively. Furthermore, [61] and [62] used a Genetic Algorithm to

optimize a robust H∞ controller for a vehicle suspension control, while an optimal

Fractional Order PID controller tuning for an automatic voltage regulator system

is accomplished in [63]. These optimizations are limited in the sense that only the

control parameters are optimized.

There are also examples in which parts of the hardware architecture are opti-

mized without considering the control optimization. For example, in [64–67] an

optimization of mechanical design variables is done for a vehicle suspension sys-

tem, a motor-driven four-bar system, and a passive bipedal walker, respectively.

Fig. 2.6 displays the solutions using a sequential and a simultaneous optimization

strategy for the hardware design variables of a passive bipedal walker. The solution

found after executing the simultaneous optimization strategy shows a much better

fitness according to the objective function.

Sequential Simultaneous

Figure 2.6: Solutions after applying a sequential (left) and a simultaneous
(right) optimization strategy for a passive bipedal walker (from
[67])

Determining the optimal actuator placement is done in [68], where the optimal

placement problem is presented as a mixed-integer problem, and is solved using a

branch-and-bound procedure. Another recent example of actuator placement opti-

mization for dynamic networks (without considering control design) can be found

in [69]. The problem of selecting the optimal sensor locations is done by [70]

and [71] for the flow over an airfoil and a double-link variable stiffness actuated

28 Background on Co-Design

robot, respectively. Both examples obtain optimized sensor locations, but do not

take control design and changing hardware types (= actuator and sensor selection)

into account.

More recently, the simultaneous optimization of both the actuator and sensor

placement for a small shell structure using a Genetic Algorithm (GA) is performed

by [72]. The optimal actuator and sensor selection for a non-isothermal tubular re-

actor can be found in [73]. In that case, the optimization problem is converted to a

mixed-integer convex problem statement, which is only possible for specific prob-

lem classes. An optimization of both the placement and the selection of actuators

and sensors in shown in [74]. In that case, it concerns collocated actuator/sensor

pairs where each cantilever beam mode must meet a specific peak gain. In this sec-

tion’s examples, only the hardware architecture is optimized (or individual parts of

it), without optimizing the control design.

Up to this point, this literature overview does not provide examples of co-

design, as no hardware and control parts are treated simultaneously. Table 2.1 gives

an overview of the references cited so far, indicating which parts of the system

composition are optimized.

2
.4

S
tate-o

f-th
e-art

an
d

A
p
p
licatio

n
s

2
9

Table 2.1: Overview of cited works indicating which parts of the system composition are optimized. Since no hardware and
control parts are treated simultaneously, these examples do not represent a co-design optimization.

Hardware Architecture Control Configuration

Actuator Actuator Sensor Sensor Mechanical Control Controller Feedback H2 Other

Reference Placement Selection Placement Selection design variables Architecture Tuning LQR Gains H∞ PID methods Applications

[56] ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ Inverted pendulum

[58] ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ Vehicle suspension system

[57] ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ Inverted pendulum

[59] ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ Hovercraft control

[61] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ Vehicle suspension system

[62] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ Vehicle suspension system

[63] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ Voltage regulator system

[60] ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ Multi-machine power system

[64] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ Vehicle suspension system

[65] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ Vehicle suspension system

[66] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ Motor-driven four-bar system

[67] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ Passive bipedal walker

[68] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Integrator chain

[69] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Set of bench-mark case-studies

[70] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Airfoil flow

[71] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Double-link VIA robot

[72] • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Smart shell structure

[73] • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Non-isothermal tubular reactor

[74] • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Cantilever beam structure

30 Background on Co-Design

Figure 2.7: Structure of a two-link arm robot (from [77])

To a limited degree, efforts have been made to implement a multi-domain co-

design of control configuration and hardware architecture in electromechanical sys-

tems, but in all cases, it is always assumed that the control architecture is fixed. For

example, an optimization problem with a small number of design parameters de-

scribing a hard disc suspension geometry and its corresponding controller tuning

was formulated in [75]. The result is an optimization of the design variables of a

hard disc suspension geometry and the controller feedback gains through the use

of the linear-quadratic regulator (LQR) method. Similarly, the co-design of the

controller tuning through the use of a linear-quadratic regulator (LQR) method and

the geometrical properties of machine tools, an active vehicle suspension system,

a satellite altitude control, an angular motor controlling a mass position, and a

parallel manipulator mechanism was detailed in [29, 32, 33, 49, 76], respectively.

A design method for the sequential optimization of the mechanical structure

and the controller tuning for a two-link high-speed robot is developed in [77], of

which the setup is shown in Fig. 2.7. First, a two-link, non-rigid arm is analyzed,

and a simple dynamic model representing rapid positioning processes is attained.

Next, optimal feedback gains minimizing the settling time are obtained as functions

of the structural parameters describing the arm link geometry. These structural

parameters are then optimized using a gradient projection method to acquire an

overall optimal performance. This displays an example of the sequential co-design

strategy, as mentioned above in Section 2.3.

More recently, [78] combined mechanical design properties and the PD con-

troller tuning for an airborne wind energy system. Other controller tuning methods

are also used in the co-design of the controller parameters and mechanical design

variables. For example, [79] and [80] use the H2/H∞ method to obtain the con-

troller tuning parameters. PID values can also be directly optimized, as shown

in [31] for a DC motor. In [81], an example is shown where the co-design of

mechanical design variables and controller parameters is performed for a hybrid

2.4 State-of-the-art and Applications 31

Silicon
shuttle

Micro
hinge

Comb drive

ΔX

ΔXΔX

ΔX

ΔZ

Figure 2.8: Microelectromechanical System (MEMS) for a confocal scan-
ning microscope (from [35])

power train system used in a hydraulic excavator.

Microelectromechanical systems (MEMS) devices are useful in many fields,

including motion control applications, due to their small size and low power re-

quirements. In [35], the physical dimensions of a MEMS actuator and its controller

tuning are jointly optimized, both sequentially and simultaneously. This optimiza-

tion does not take control architecture optimization or actuator and sensor selection

into account. The particular MEMS device that is the subject of this research (see

Fig. 2.8) has been proposed for a confocal scanning microscope to study biological

phenomena that occur on a microsecond time-scale. This MEMS device uses four

actuators to produce an out-of-plane displacement. To produce this displacement,

each of the four actuators is excited with a voltage, resulting in horizontal move-

ment of the silicon shuttles. The micro-hinges on the platform bend as shown in

Fig. 2.9, and the platform moves vertically. The amount of movement resulting

from the actuation depends on both the applied voltage and the actuator physical

dimensions. The solutions found in the sequential problem constrained by the actu-

ator natural frequency closely relate to the solutions generated by the simultaneous

problem. Therefore, for a given application, there may be more than one design

available to satisfy displacement and settling time requirements. This also indicates

that for this particular case and this choice of decision variables, either co-design

strategy (sequential ↔ simultaneous) will produce a set of optimal solutions. A

nested hardware/controller optimization for a combined passive/active automotive

suspension for a quarter-car model was executed in [34]. In that case, the con-

troller feedback gains and the physical variables (passive stiffness and damping

coefficients) were optimized for an objective incorporating sprung mass accelera-

tion, tire deflection, suspension stroke, and maximum active control force.

The co-design of the sensor placement and the PID controller tuning (without

considering control architecture optimization) was recently performed for a flexible

32 Background on Co-Design

Figure 2.9: Microelectromechanical System (MEMS) hinge actuation
(from [35])

wing of an Unmanned Aerial Vehicle (UAV) using an evolutionary algorithm [82].

The co-design approach resulted in a 45,83% reduction in generalized vibrations

energy and about 52,16% reduction in wind load alleviation when compared with

designs where the sensor locations are not optimum. Similarly, the sensor place-

ment and an LQR controller tuning is performed for a mass-spring system in [83].

There are also examples where both sensor and actuator placement are optimized

as part of the hardware architecture and controller tuning co-design. For example,

both the actuator placement, sensor placement, and controller tuning are optimized

in [84–87]. The studied applications are a vibroacoustic plate, a random state-space

system, a robotic arm, and general stochastic linear systems. These examples do

not consider changing controller architectures or the hardware selection of different

types of actuators or sensors.

An application area where the co-design of the hardware architecture and the

controller tuning also received considerable attention is that of the large space intel-

ligent truss structures (LSITS). These are widely used in spacecrafts as the support-

ing truss structure in, e.g., shuttle radars or in space stations. An example of this is

NASA’s Shuttle Radar Topography Mission (SRTM) to measure a digital elevation

model of the earth surface. The sensors are connected to the shuttle through a 60

meter large space intelligent truss structure (LSITS) [88], as shown in Fig. 2.10.

Due to its properties, the vibration of LSITS will happen very quickly. If the truss

structure is impacted by some particles from outer space or if the spacecraft makes

an altitude maneuver, a structural vibration will manifest. As the vibration hap-

pens, it will cause many severe problems to the payloads supported on the truss

structure. Hence, the issue of vibration control for LSITS is crucial.

The control of intelligent truss structures has achieved remarkable progress by

using piezoelectric actuators and sensors, often applied in collocated pairs. This

way, a large space intelligent truss system (LSITS) becomes a complex truss sys-

2.4 State-of-the-art and Applications 33

Large space intelligent
truss system

60m

Outboard
antenna

Space shuttle

Figure 2.10: Example of a 60m long large space intelligent truss system
(LSITS) supporting an outboard antenna (from [88])

tem consisting of common rods and active rods, as for example in Fig. 2.11. In

each active rod, there is at least one actuator and one sensor. One of the critical

points in the vibration control for LSITS is the location assignment of actuators and

sensors. The placement optimization of actuators and sensors is essential for the

vibration control of LSITS. In [89] the actuator placement, sensor placement, and

controller tuning (in the form of Fuzzy control) are simultaneously optimized. An

optimization of particular mechanical design variables is added in [90]. Both pa-

pers use a Genetic Algorithm (GA) to find a solution while coping with the existing

constraints and the mixed-integer character of the optimization problem.

A hardware architecture and controller tuning co-design for controlling high

frequency vibrations in a flexible cantilever beam can be found in [91]. In that

work, a Genetic Algorithm (GA) is utilized for optimizing the location and types

of collocated sensor and actuator pairs, while simultaneously optimizing the con-

troller tuning using a linear-quadratic regulator (LQR) method. The cantilever

beam application has 64 possible positions and four possible sizes for the actu-

ator/sensor pairs, and by using a Genetic Algorithm (GA), a solution is found.

It is clear that a simultaneous co-design of both hardware architecture and con-

trol configuration can result in a more efficient design process, optimizing for mul-

tiple (possibly conflicting) objectives. The state-of-the-art shows that extensive

research has already been done into one or more aspects of the co-design of hard-

ware architecture and controller tuning. However, all of the co-design examples

mentioned above are limited because they can only deal with fixed and rather mod-

34 Background on Co-Design

active rod 1

active rod 2

active rod jactive rod i

active rod n

Figure 2.11: Large space intelligent truss system (LSITS) test setup (from
[89])

est control architecture. In other words, the control architecture is never included

as a design parameter. Furthermore, the examples are focused on one particular

application or a specific optimization problem and therefore lack universal appli-

cability.

In contrast, the approach presented in this PhD is a generally applicable

methodology, capable of simultaneously optimizing the actuator and sensor

selection and placement as well as the control architecture and controller tuning.

By doing so, a larger design space is explored to obtain a system-level optimum.

Moreover, in this work, the actuators and sensors are not necessarily arranged in

collocated pairs, which is required in specific methods mentioned above. This

is why none of the above examples succeeds in achieving the profound level of

co-design of control configuration and hardware architecture presented in this

dissertation.

Table 2.2 depicts an overview of recent papers considering different variations

of hardware architecture and controller tuning co-design. Many different controller

tuning methods can be implemented, e.g., PID, LQR, or H2/H∞ control, as indi-

cated in the table. It is important to note the general co-design framework proposed

in this PhD allows to carry out an advanced hardware architecture optimization

and simultaneously apply a wide range of controller methods. Additionally, the

proposed co-design methodology also allows to perform a control architecture op-

timization as part of the control configuration optimization. As can be seen in

Table 2.2, there is no previous work that provides this capability.

2
.4

S
tate-o

f-th
e-art

an
d

A
p
p
licatio

n
s

3
5

Table 2.2: Overview of the co-design elements of the cited works

Hardware Architecture Control Configuration

Actuator Actuator Sensor Sensor Mechanical Control Controller Feedback H2 Other

Reference Placement Selection Placement Selection design variables Architecture Tuning LQR Gains H∞ PID methods Applications

[75] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ Hard disc suspension

[32] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ Vehicle suspension system

[34] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ Vehicle suspension system

[33] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ Satellite altitude control

[49] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ Angular positioning motor

[35] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ MEMS

[77] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • High-speed two-link robot

[29] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • Machine tools feed system

[76] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • Parallel manipulator mechanism

[78] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • Airborne wind energy system

[79] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ Chip mounter machine

[80] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ Flexure-linked biaxial gantry

[31] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ DC motor

[81] ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ Hybrid power train system

[82] ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Flexible UAV wing

[83] ◦ ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ Mass-spring system

[84] • ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ Stochastic linear systems

[85] • ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ Vibroacoustic plate control

[86] • ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ Random state-space system

[87] • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ Robotic arm control

[89] • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • Intelligent truss system

[90] • ◦ • ◦ • ◦ • ◦ • ◦ ◦ ◦ Intelligent truss system

[91] • • • • ◦ ◦ • • ◦ ◦ ◦ ◦ Flexible beams

36 Background on Co-Design

The term ’co-design’ is also used in the research domain of Networked Control

Systems (NCS). A Networked Control System (NCS) is a control system wherein

the control loops are closed through a communication network in which control

and feedback signals are exchanged among the network in the form of information

packages. Random time delays between sensing and actuating or data corrup-

tion during transmission (so-called data attacks) are simulated to test the system

behavior when communication errors occur. Fig. 2.12 shows a general architec-

ture for a Networked Control System with different kinds of data attacks. Within

this research domain, ‘co-design’ is used to indicate the simultaneous determina-

tion of hardware components and controller tuning, but taking into account re-

strictions like changing sampling periods, delay, data bandwidth, jitter, switching

rules, or scheduling schemes. [92] provides a comprehensive introduction to Net-

worked Control Systems (NCS) and the related concepts of event-triggered and

self-triggered control.

Physical layer

Cyber layer

Remote control center

Actuator 1

Actuator l
...

Sensor 1

Sensor m

...
...

...

Plant

- State Estimator
- Anomaly/Attack Detector
- Controller
- Other functions

Communication network

A2A3

A1

Figure 2.12: A general representation of a Networked Control System
(NCS) under data attacks (yellow). Attack 1: data integrity at-
tacks on the system state. Attack 2: data availability and/or in-
tegrity attack on sensor data. Attack 3: data availability and/or
integrity attack on control data. (reproduced from [93])

For example, in [94], the co-design problem of controller tuning and commu-

nication sequence is addressed for networked control systems (NCS) where the

capacities of communication networks at both sides of the system are limited so

that the sensor and actuator data cannot be processed simultaneously. This co-

design problem is solved in three steps. First, feasible communication sequence

2.4 State-of-the-art and Applications 37

sets for both sides are determined. Second, output feedback controllers are built on

the feasible communication sequence sets. Third, switching rules are set up for the

communication sequences based on the designed controller. Notably, in the first

step, all the communication sequences are determined that preserve controllabil-

ity and observability of the system. Then in the second step, an output feedback

controller applicable for all these communication sequences is derived. Finally, a

switching strategy is established for the communication sequences to switch among

their feasible sets during system operation. For other recent co-design examples in

the research area of Networked Control Systems (NCS), please refer to [95–99]. In

addition, a detailed and recent overview can be found in [30].

Research and literature on Networked Control Systems (NCS) are more fo-

cused on optimally handling the limitations linked to the control network and dis-

tributing the needed communication forms over the different agents in the multi-

agent system [94, 97]. The use of Networked Control Systems (NCS) and how to

cope with the associated communication restrictions are outside the scope of this

dissertation.

38 Background on Co-Design

2.5 Chapter Conclusions

Nowadays, multiple objectives from different engineering domains have to be

taken into account for real-life applications since a present-day Cyber-Physical

System (CPS) involves the collaboration of different components from various

application areas. This also means that methods need to be developed to com-

bine these different parts thoroughly. This is typically called ‘multi-domain

optimization.’ Furthermore, some background on general optimization principles

is specified, such as objective function smoothness, local and global minima,

(objective function) convexity, and the application of (mixed-integer) constraints.

A specific example of multi-domain optimization occurs when both the hard-

ware architecture and the control configuration of a system are simultaneously op-

timized. Next, the nomenclature is mentioned that is used throughout this disserta-

tion to indicate the different parts of the system. The system composition co-design

refers to the hardware architecture on the one hand and the control configuration

on the other hand. In turn, the hardware architecture is subdivided into actua-

tor and sensor selection and placement, while control configuration refers to both

controller tuning and control architecture. Traditionally, these different parts are

optimized sequentially, leading to a sub-optimal solution. Better results can be ob-

tained if optimization strategies are applied that enable simultaneous optimization

of the hardware architecture and control configuration.

As a final section, this chapter provides a comprehensive overview of the state-

of-the-art in co-design of hardware architecture and control configuration. This

shows that much research has already been done in this field, but it also exhibits

that many important features have not yet been addressed in the co-design prob-

lem. First and foremost, none of the state-of-the-art works offers the possibility to

optimize the control architecture as part of the control configuration optimization.

This is a unique aspect of the co-design methodology presented in this PhD. The

literature overview also shows that many co-design techniques are tailored towards

specific system classes, and therefore lack a generic character with great freedom

in defining constraints and objectives.

The simultaneous optimization of different co-design aspects also influences

the necessary computing power of the optimization algorithm. In the next chapter,

the different types of optimization algorithms used for multi-objective optimiza-

tions are discussed.

Chapter 3

Multi-Domain Optimization

Workflow

This chapter starts with an overview of the workflow to optimize the intended co-

design of hardware and control. Initially, the different steps of the workflow are

introduced rather superficially, but they will be discussed in more detail in the

following chapters. This chapter then explains the optimization objectives and the

requirements that an optimization algorithm must meet to execute the hardware and

control co-design. Next, an overview is given of generally known multi-objective

optimization algorithms to arrive at a well-founded choice of the algorithm used in

this PhD. Then, an explanation is given on how the optimization results can be dis-

played graphically. Finally, background information is provided on the state-space

modeling used to represent the dynamics of the system to be optimized, includ-

ing an introduction to the state-space system used throughout this dissertation to

further explain specific parts of the co-design.

40 Multi-Domain Optimization Workflow

3.1 Optimization Workflow Overview

In this section, a general overview is given of the workflow to complete the co-

design methodology, starting from an initial system model to a graphical represen-

tation of the results. The content of each step is briefly discussed without going

into detail. The following chapters elaborate on the workflow components in more

detail, each time also discussing the content on an illustrative example. Therefore,

this section can be seen as a framework for what follows in the dissertation and can

be used to see how the different parts relate to each other in function of the com-

plete co-design methodology. Fig. 3.1 shows a graphical overview of the different

steps in the workflow.

Possible sensor
locations and types?

Possible actuator
locations and types?

SS
LTI/LPV/LTV

SS
OL

Feasible SS
OL

Feasible SS
CL

Open-loop analysis

Extensive control structures

Genetic Algorithm optimization

User-defined criteria

SS
CL

response

Fitness value

Trade-off
cost performance

Pareto front

Graphical representation

Figure 3.1: Graphical overview of the general co-design optimization work-
flow

3.1 Optimization Workflow Overview 41

At the start, a mathematical representation of a system is needed. Section 3.6

handles different kinds of state-space modeling techniques that can be used. The

general co-design methodology presented in this dissertation mainly focuses on

linear time-invariant (LTI) state-space systems, but the methodology is also appli-

cable to linear parameter-varying (LPV) and linear time-varying (LTV) systems

(see Section 6.4 on page 153).

Next, all possible locations of actuators and sensors in the system are defined.

The possible locations indicate on which physical location in the system an actuator

or sensor can be applied. In addition, the different possible types of actuators and

sensors are defined. For example, different types of actuators can indicate the

maximum actuator output. The types of sensors can represent which quantities

of the system can be measured or what sensor resolution is active. Each type of

actuator and sensor has a certain application-dependent cost and can be set by the

end-user. Defining the possible locations and types of actuators and sensors will

determine the hardware architecture design space. Sections 4.1 and 4.2 on pages

70 and 73 show how these design space possibilities are mathematically translated

into design parameters and corresponding changes in the state-space system. The

resulting (open-loop) state-space system is referred to as SSOL.

After the previous step, all possible combinations are defined in the hardware

architecture. Certain combinations of these hardware architectures will lead to a

system composition that is illogical or even infeasible. For example, it is easy

to see that a system composition without actuators or sensors will not result in a

workable situation. If the system consists of multiple subsystems, a link between

subsystems may be very weak or even non-existent. In these cases, it will not be

possible to control the subsystem if there is no actuator acting on it. The same goes

for the sensors: if a particular subsystem parameter cannot be measured or derived

from measurements on other sufficiently coupled subsystems, insufficient infor-

mation will be available to control this subsystem. These properties are referred

to as the system controllability and observability and can be determined quickly

and efficiently based on the open-loop state-space system. In Section 4.3 on page

76, an open-loop analysis is discussed in detail to determine the controllability,

observability, and feasibility of all possible hardware architectures. If it turns out

that a hardware architecture is not feasible, it is useless to (try to) calculate the re-

sponse. Therefore, this open-loop analysis can be used later in the optimization to

ensure that a non-feasible hardware architecture is detected before calculating its

closed-loop response. This way, the optimization will become more efficient, and

the results will be achieved faster.

The next step in the co-design workflow is to define the possibilities concern-

ing the control architecture in order to achieve closed-loop control. Many different

control loop possibilities can be applied, such as decentralized and distributed P,

PI and PID controllers, cascade controls, feedforward control, synchronizing con-

trol, etc. In this way, the design space of the control architecture is defined. The

presence or absence of specific control architectures can be established by linking

42 Multi-Domain Optimization Workflow

binaries to the different control features. In this way, the optimization algorithm

can choose whether to apply a control loop feature, depending on the performance

and constraints. More information on the control architecture optimization can be

found in Chapter 5. Then, the open-loop system and the entire control structure

are transformed into a discrete time closed-loop state-space system. The transfor-

mation algorithm is discussed in Chapter 5. The result is a mathematical represen-

tation of the closed-loop system whose main advantage is that the closed-loop re-

sponse can be calculated quickly and efficiently. Since the optimization algorithm

has to calculate a large number of system responses, this provides a tremendous

time-saving in the execution of the complete co-design methodology. After this

step, the state-space system is referred to as SSCL.

On this point in the workflow, the entire design space is determined in terms

of hardware architecture and control configuration, and this design space is trans-

lated into a mathematical form that allows to apply a suitable optimization algo-

rithm. Section 3.4 on page 44 provides an overview of different multi-objective

optimization algorithms and an explanation why a Genetic Algorithm (GA) is used

to perform the co-design in this work. By adjusting the design parameters, other

hardware architectures and control configurations will be effectuated, and thus vari-

ations will be obtained in the system composition. From each system composition,

the closed-loop response is calculated. From this closed-loop response, the perfor-

mance is quantified by a user-defined fitness function, resulting in a fitness value.

Based on this fitness value and the (non-linear) constraints, the Genetic Algorithm

will adjust the design parameters generation after generation to obtain a system

composition with the lowest possible fitness value and thus the highest possible

performance. More information on applying a Genetic Algorithm to optimize the

system composition can be found in Section 6.2 on page 128. It is important to

emphasize that the general co-design methodology described in this dissertation is

not restricted to using a Genetic Algorithm. If other (better) algorithms exist that

meet the same requirements as the Genetic Algorithm, they can also be applied to

accomplish a co-design of the hardware architecture and the control configuration.

The execution of the Genetic Algorithm is always done for a maximum sys-

tem cost. In this way, the maximum achievable performance is determined for a

fixed total cost of the system. In order to gain insight into the progress of this

maximum achievable performance in function of a range of maximum costs, the

Genetic Algorithm can be executed for several costs. In this way, the trade-off

between the total implementation cost and the maximum achievable performance

is determined and this trade-off can also be graphically displayed in a Pareto front

(see Section 3.5 on page 58 for more background information). This Pareto front

can provide a lot of insight to make a well-considered and well-informed choice

on which hardware architecture and control configuration to be applied.

3.2 Optimization Objectives 43

3.2 Optimization Objectives

Well-defined objectives are required to determine the performance of a system in

order to carry out an optimization. How well a setup meets a particular objective

is quantified based on a fitness value. The fitness value will change as a function

of the design parameters. An optimization will always try to adjust these design

parameters so that the fitness value is as low as possible.

A significant advantage of the co-design method described in this work is that

it allows a high degree of freedom in defining (multiple) objectives. For example,

the system performance can depend on tracking errors, settling times, vibrations,

energy consumption, frequency responses, etc. Multiple objectives can be repre-

sented in one fitness value by calculating a weighted average.

The objectives related to a system cost are generally inversely proportional to

the objectives indicating the performance. Thus, it seems logical that the machine’s

maximally achievable performance increases when it is allowed to cost more as

better actuators, sensors, and control techniques can be implemented. Contrary to

this, however, the economic aspect also plays an important role, and the cost of the

machine should preferably be reduced as much as possible. It is clear that there

will be a trade-off between cost and performance.

As mentioned before, the system cost will depend on the types and numbers of

actuators and sensors. Also, the control configuration will involve a specific cost.

This cost includes the controller hardware and, for example, the cost of program-

ming controllers or the cost of training engineers or operators to tune or diagnose

the controller. Therefore, determining the cost of a component can be very chal-

lenging. For example, hardware costs may depend on the number of orders, differ-

ent suppliers, delivery time, etc. That is why this dissertation does not indicate the

cost in a currency, but in percentages. These percentages will be chosen and set

according to the proportions of actual parts and services.

3.3 Optimization Algorithm Requirements

The general co-design methodology described in this dissertation is a multi-

objective optimization problem since an optimal solution is desired for different

(conflicting) objectives, such as total system cost, reference tracking, vibration

suppression, energy consumption, etc. For this purpose, a graphical representation

method is desired to clearly represent the trade-off between conflicting objectives.

Next to real numbers, multiple design parameters are integers or binaries since

the optimization algorithm has to make choices on whether or not to apply

control architecture features or on which discrete types of actuators and sensors

to apply. Therefore, the chosen optimization algorithm must be able to handle

mixed-integer problems. Moreover, these integer design parameters also cause a

discontinuous (and thus also non-smooth) objective function.

44 Multi-Domain Optimization Workflow

In addition to the integers and binaries representing the hardware selection and

control configuration, the controller tuning parameters must also be optimized si-

multaneously. For example, for PID controllers, this means three real number

design parameters for every controller. Preferably a large number of hardware

locations, hardware types and controller tuning parameters are optimized simulta-

neously to obtain a large system design space. The applied optimization algorithm

for this co-design problem must therefore be able to handle a large number of

design parameters.

In addition, the optimization algorithm must also be able to deal with non-

linear constraints. These apply, for instance, because the total cost of the system

depends on the chosen integer design parameters in a non-linear way.

3.4 Optimization Algorithm Selection

In general, one may distinguish between gradient-based and derivative-free algo-

rithms as the two main approaches to deal with multi-objective optimization prob-

lems. The following is a non-exhaustive overview of several common gradient-

based and derivative-free optimization algorithms with some explanation on their

basic working principles.

3.4.1 Gradient-Based Optimization Approach

In gradient-based optimization, an iterative search procedure is established in

which the search direction towards a local minimum of a differentiable objective

function is defined by the gradient of the objective function at the current

point [100]. At every point a, the (multi-variable) objective function fx decreases

fastest if the next point from a goes in the direction of the negative gradient of

f at a, denoted as −∇f(a). In an iterative way, point a converges to a local

minimum. This method is described as a ‘steepest descent’, which is a basic first

order method that is typically slow converging and scale-sensitive [101]. In the

remainder of this section, more advanced derivative-based methods are described.

Fig. 3.2 represents a graphical example of a gradient-based optimization that

converges towards a local minimum with iterations i0-i4.

3.4 Optimization Algorithm Selection 45

x
1

i
0

i
1

i
2

i
3

i
4x 2

F
it
n
es

s
va

lu
e

Figure 3.2: Graphical example of a gradient-based optimization approach
that converges towards a local minimum with iterations i0-i4

In order to choose the right gradient-based optimization algorithm for a

practical problem, one should know how to classify these algorithms in terms

of mathematical optimization problem forms and their accompanying optimiza-

tion limitations. Examples of different gradient-based optimization classes are

Non-Linear Programming (NLP) for differentiable objective functions, Linear

Programming (LP) for affine objective functions (see ’simplex method’ or ’interior

point method’), Quadratic Programming (QP) for affine constraint functions and

linear-quadratic objective functions [45]. It is believed by [102] that Sequential

Quadratic Programming (SQP) is the state-of-the-art in gradient-based optimiza-

tion. Concerning the problem nature, there is a great watershed between convex

and non-convex optimization problems. The former can be solved effectively

thanks to the absence of local optima, whereas the solution of non-convex opti-

mization problems is complicated by the presence of local optima, non-optimal

stationary points or disconnected feasible sets. An efficient method to arrive at

a local minimum for convex problems is to search according to the so-called

Newton direction. This direction is derived from the second-order Taylor series

approximation of the objective function. Methods using the Newton direction

have a fast rate of local convergence. The main drawback of the Newton direction

is the need for the Hessian ∇2f(x). Explicit computation of this matrix of second

derivatives is sometimes a cumbersome, error-prone and computationally expen-

sive process. Quasi-Newton search directions provide an attractive alternative in

that they do not require computation of the Hessian and yet still attain a linear rate

of convergence. Instead of the true Hessian, an approximation is used which is

46 Multi-Domain Optimization Workflow

updated after each step to take account of the additional knowledge gained during

the previous step [45].

Articles applying a gradient-based algorithm or describing a new method

include e.g. the Linear Programming (LP) ’simplex method’ [103], Sequential

Quadratic Programming (SQP) [104] or Convex Optimization (CO) [105]. An

advantage of the gradient-based algorithms is that they often need less time to

converge to an optimal solution [38]. Another advantage is that the solutions

are deterministic, which means that the same solution is obtained at different

algorithm runs with the same starting conditions. There are also some important

limitations of these methods. First, constraints usually result in convergence in

a local optimum, being an optimal point in the neighborhood around the found

solution. This local optimum is not necessarily a global optimum, being the

optimal point in the complete set. Converging to a local minimum instead of a

global minimum also causes the optimization results to be highly dependent on

the chosen starting point [102]. Second, gradient-based optimization algorithms

are not applicable on non-smooth objective functions, as it is impossible to predict

the behavior of the objective function near the point(s) of non-smoothness. That

is, no information on the objective function obtained at one point can be used to

infer anything about the objective function at neighboring points, because points

of non-differentiability may intervene [45]. A convexification-based approach

for non-convex problems only works for some specific cases, resulting in limited

applicability [106]. Additionally, it is often not directly possible to apply integer

constraints to (part of) the design parameters. In general, integer constraints can

only be applied in derivative-free optimizations [79, 107].

The objective function of the general co-design methodology in this disserta-

tion exhibits discontinuous behavior. This means that derivative or gradient infor-

mation generally cannot be used to determine the direction in which the objective

function is increasing (or decreasing) [108]. Dividing the objective into continu-

ous sub-problems or convexifying the objective function to apply gradient-based

algorithms would lead to a method that is too problem-specific and require deep

insights by the end-user. Therefore, it can be concluded that gradient-based op-

timization algorithms are not preferable for the presented co-design optimization

methodology.

3.4 Optimization Algorithm Selection 47

3.4.2 Derivative-Free Optimization Approach

In contrast to the gradient-based approach, the derivative-free (also called gradient-

free) algorithms are less vulnerable to black-box type problems and are generally

better at handling non-linearities and discontinuities [109,110]. Another advantage

is that they provide the ability to simultaneously cope with integer and real values,

or so-called mixed-integer programming, without the need of relaxations in the

constraints [111]. Furthermore, derivative-free methods are often the best global-

searching algorithms as they sample a large portion of the design space [112].

A drawback of these methods is that they are computationally expensive. How-

ever, due to the increase in computing power over the past decades, the use of these

optimization routines becomes more appealing to obtain a solution within a reason-

able time. Another drawback of certain derivative-free optimization approaches is

that they are stochastic and thus non-deterministic. They may yield different solu-

tions on different runs, even when started from the same point on the same model,

depending on which points are randomly sampled [108]. In the next subsections,

some examples of commonly used derivative-free algorithms are briefly explained.

Exhaustive Search (ES)

The simplest and most inefficient way to optimize a problem is to test every possi-

ble solution and choose the best one. This method is only applicable to problems

with a minimal design space and quickly becomes impossible to apply to larger

problems.

Pattern Search (PS)

Pattern Search (PS) (also known as Direct Search (DS)) optimization methods

solve optimization problems iteratively by computing a set of points around a cur-

rent point at every step. These points are called the ’coordinates’ and determine in

which direction an improvement of the objective function is obtained. If the algo-

rithm finds a coordinate that lowers the objective function, than this point becomes

the new current point at the next iteration step of the algorithm. If none of the

coordinates show a fitness value improvement, then a global solution is sought by

decreasing the mesh size [113–115].

An adaptation of a Pattern Search algorithm is Coordinate Descent (CD), in

which the mesh size is determined by performing a line search [116]. In this way, it

can be compared with the gradient-based methods, in which every Coordinate De-

scent iteration does not converge in the direction of steepest descent as in gradient-

based methods, but instead in the most favorable direction according to the coor-

dinates. This means that in the case of Coordinate Descent, no derivatives of the

objective function are needed. In accordance with the gradient-based optimization

methods, the coordinate descent method generally also has problems with non-

smooth objective functions [117]. An example of a Coordinate Descent optimiza-

48 Multi-Domain Optimization Workflow

x
1

x
2

F
it
n
e
s
s
 v

a
lu

e

x
0

Figure 3.3: Illustrative example of a Coordinate Descent (CD) optimization
method with meshes in blue applied to a Rosenbrock function
with initial point x0 (reproduced from [118])

tion method applied to a Rosenbrock function with initial point x0 = (−3,−4) is

seen in Fig. 3.3. The Coordinate Descent (CD) method reaches the optimum after

22231 function evaluations.

An improved version of the Coordinate Descent (CD) is the Adaptive Coordi-

nate Descent (ACD), in which the coordinates are not fixed, but are gradually trans-

formed so that the new coordinates correlate as little as possible with the objective

function [119]. Fig. 3.4 shows the application of an Adaptive Coordinate Descent

(ACD) applied to a Rosenbrock function with the same initial point x0 = (−3,−4)
as in the example with a Coordinate Descent (CD). The Adaptive Coordinate De-

scent (ACD) reaches the same point after only 325 function evaluations, or about

70 times faster than the Coordinate Descent (CD) method, which is comparable to

gradient-based optimizations [118].

Pattern Search, Coordinate Descent and Adaptive Coordinate Descent have the

disadvantage that they cannot inherently cope with mixed-integer constraints, mak-

ing them unsuited algorithms for the co-design optimization problem of this dis-

sertation.

3.4 Optimization Algorithm Selection 49

x
1

x
0

x
2

F
it
n
e
s
s
 v

a
lu

e

Figure 3.4: Illustrative example of an Adaptive Coordinate Descent (ACD)
optimization method with meshes in blue applied to a Rosen-
brock function with initial point x0 (reproduced from [118])

Bayesian Optimization

In Bayesian statistics, a ‘prior’ (short for ‘prior probability distribution’) of an

uncertain quantity is the probability distribution that would express one’s beliefs

about this quantity before some evidence of this quantity is taken into account. In

Bayesian Optimization, the objective function is treated as a random function and a

prior is placed over it. The prior is updated after the objective function evaluations

to form a posterior distribution, from which a next point can be extracted by using

an acquisition function. The development of Bayesian Optimization is primarily

attributable to Jonas Mockus from a series of publications in the 1970s and 1980s

[120–122].

The Bayesian Optimization approach originates from statistics and appears to

be used primarily for statistical and machine learning purposes. However, it has the

potential to be used to a wide assortment of applications, ranging from computer

graphics and visual design [123], autonomous vehicles [124] to automatic machine

learning toolboxes [125]. However, Bayesian Optimization cannot guarantee to

find a global optimum [126] and is practically limited to optimizing up to 20 design

parameters [127, 128], which is too little for applying the co-design methodology

presented in this PhD.

50 Multi-Domain Optimization Workflow

Dividing Rectangles (DIRECT)

DIRECT or Dividing Rectangles is a global optimization algorithm developed by

Donald R. Jones [129]. The algorithm begins by scaling the design space to an

n-dimensional unit hypercube. DIRECT initiates its search by evaluating the ob-

jective function at the center point of the hypercube. DIRECT then trisects this hy-

perrectangle and samples the center points of the other two resulting hyperrectan-

gles. From here, DIRECT selects and further trisects the optimal hyperrectangles.

This division process continues until a prespecified iteration limit is reached or un-

til convergence is achieved. An example of the division of rectangles in the first

three iterations for a two-dimensional problem is illustrated in Fig.3.5, in which the

blue rectangles represent the optimal rectangles selected for division in that partic-

ular iteration. DIRECT selects larger rectangles and smaller rectangles with better

objective function values to balance between the local and global search [112].

Direct Multisearch (DMS) is an technique developed by extending DI-

RECT from single to multi-objective optimization, able to deal with a any

type of constraints. It uses the concept of Pareto dominance to maintain a list of

non-dominated points from which the new iterates or poll centers are chosen [111].

It
er

a
ti
o
n
 1

Start
Select

Rectangles
Trisect &
Sample

It
er

a
ti
o
n
 2

It
er

a
ti
o
n
 3

Figure 3.5: Example of the first three iterations of a DIRECT Algorithm for
a two-dimensional problem in which the blue rectangles repre-
sent the optimal rectangles selected for division in that particular
iteration (reproduced from [129])

3.4 Optimization Algorithm Selection 51

Simulated Annealing (SA)

Simulated Annealing (SA) is a stochastic (thus non-deterministic) algorithm,

which means that they follow a random path in finding the global optimum.

Simulated Annealing algorithm is analogous to the process of annealing of metals.

When metals are at a high temperature, the atoms can move relatively freely, but

as the temperature is decreased slowly, the atom movements get restricted and

start adopting the most stable orientation by taking the lowest possible energy

state. Attaining the lowest possible energy state can be thought of as reaching the

global minimum in the optimization process. The algorithm starts at a random

design point. From this design point, the algorithm jumps to a new random design

point and evaluates the objective function value and feasibility. If the current point

is better than the previous, then the current point is accepted to be a potentially

optimal point and if the current point is worse than the previous point then its

acceptance or rejection depends on the Metropolis probability criterion given

by equation (3.1), with P the Metropolis probability, f the objective function

evaluations, and t the temperature.

P (f, t) = e
fnew−fcurrent

t (3.1)

From the equation above, it can be seen that the new design point is more likely

to be accepted if its function value is close to the objective function of the current

design parameters. Moreover, the probability of acceptance is higher when the tem-

perature t is high. The algorithm may accept a new design point which is worse

than the current one. It is this feature that prevents the method from becoming stuck

in a local minimum. The Simulated Annealing (SA) algorithm does a global search

initially when the temperature is high and even worse design points are more likely

to be accepted. The algorithm then switches to local search when temperature is

decreased and worse design points are less likely to be selected. Thus, the switch-

ing from the global search to local search depends on the value of the temperature.

This process of selection is continued as the temperature is decreased at each iter-

ation. The stopping criterion for this non-deterministic optimization technique is

defined by the number of prespecified iterations. In general, Simulated Annealing

(SA) is not suitable for multi-objective optimization problems [112, 130, 131].

Surrogate Optimization

In Surrogate Optimization (SO) a surrogate (= approximation) of the objective

function is used, with the advantage that the surrogate takes less time to evaluate.

Therefore, Surrogate Optimization (SO) is useful when the optimization problem

has a computationally expensive objective function. The objective function can be

non-smooth, but the algorithm works best for a continuous objective function. The

algorithm inherently makes a balance between two goals: speed and exploration.

Speed is needed to obtain a good solution in few objective evaluations, while ex-

52 Multi-Domain Optimization Workflow

ploration is used to search for a global minimum. Surrogate Optimization (SO)

converges to a global minimum, but convergence is slow [132, 133].

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is one of the many evolutionary optimization

algorithms in which biological processes like mutation and selection are used as

search operators. The operators are used in a loop, of which one iteration is called

a generation. The iterative calculation of subsequent generations is continued un-

til a termination criterion is met [134–136]. Particle Swarm Optimization (PSO)

solves a problem by having a population of candidate solutions, also called ’par-

ticles,’ and moving these particles around in the search-space according to sim-

ple mathematical formulas over the particle’s position and velocity. Each particle

movement is influenced by its own fitness value but is also guided towards the

best-known positions in the search-space, which are updated as better positions are

found by other particles. This is expected to move the swarm towards the best

solutions [137]. PSO is a heuristic algorithm that can search very large spaces of

candidate solutions. However, heuristic algorithms such as PSO do not guarantee

an optimal solution is ever found [138]. There are many different variants of evolu-

tionary algorithms, each of which shows differences in the processes modeled upon

biological processes. Some other examples of Evolutionary Algorithms (EA) are

Cuckoo Search [139], Ant Colony Optimization [140], and Artificial Bee Colony

Algorithm [141, 142].

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is another

evolutionary-based optimization algorithm broadly based on the principle of

biological evolution. Within this fairly new evolutionary strategy, new candidate

solutions are defined according to a multivariate normal distribution. Recombina-

tion consists of selecting a new mean value for the distribution, while mutation

consists of adding a random vector with zero mean. Pairwise dependencies

between the variables in the distribution are represented by a covariance matrix.

The covariance matrix adaptation (CMA) is a method to update the covariance

matrix of this distribution [143]. Furthermore, local gradient information can be

taken into account during optimization, even though the objective function is not

differentiable in all locations [144]. Fig. 3.6 illustrates an example of the CMA-ES

optimization procedure on a simple two-dimensional problem. The spherical

optimization landscape is depicted with solid lines of equal fitness values. On this

simple problem, the population concentrates over the global optimum within a few

generations [145].

3.4 Optimization Algorithm Selection 53

F
it
n
e
s
s
 v

a
lu

e
F
it
n
e
s
s
 v

a
lu

e

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

x
1

x
2

(a)

(d) (e) (f)

(b) (c)

Figure 3.6: Example of a CMA-ES optimization procedure on a simple two-
dimensional problem (reproduced from [146]). (a) Generate so-
lutions (black). (b) Rank the solutions and keep the ones with
the best fitness values. (c) Compute the evolution paths (green)
and update the covariance matrix (blue) accordingly. (d) Move
the center of the mutation distribution (purple) to the weighted
mean. (e) Update the step size. (f) Generate solutions for the
next generation.

Genetic Algorithm

Genetic Algorithms (GA) are a group of optimization algorithms based on evolu-

tionary processes and Darwin’s concept of natural selection [112]. It starts by (ran-

domly) generating an initial population of individual solutions utilizing a creation

function. Every solution consists of a combination of proposed design parameters.

For every individual solution, a fitness value is calculated using the objective func-

tion (often referred to as ‘fitness function’), resulting in a definite score of how

well the individual performs. When assigning a fitness value, the constraints are

also taken into consideration. Individual solutions that do not meet certain con-

straints are penalized with a much higher fitness value as a result.

54 Multi-Domain Optimization Workflow

Based on these fitness values, GA then applies three different operations to

create a new generation of individuals, being elite selection, crossover and muta-

tion. Elite selection implies that individuals with the best fitness have the most

significant probability of being directly selected to pass on to the next generation,

unchanged. Crossover (or recombination) is where (parts of) the design parameters

of two individuals are exchanged to get two new individuals. The crossover step

is a unique factor to distinguish a Genetic Algorithm (GA) from other evolution-

ary optimization strategies. Mutation is where design parameters of one individual

from the initial population are randomly changed to get a new individual. The

crossover fraction indicates the ratio between crossover and mutation. The above

process is executed to generate a new generation of individuals and is continued

to further improve the fitness of the best individual until a stopping criterion is

met [112]. Possible stopping criteria are related to a maximum calculation time,

a maximum number of generations or a minimum amount of change in the aver-

age fitness values over a number of successive generations. The workflow of the

algorithm is schematically displayed in Figure 3.7.

An advantage of the Genetic Algorithm is that there are no strict requirements

on the objective function (such as convexity, linearity, and continuity). This means

that there exist a large amount of freedom in the scoring of each individual in

the objective function. In this way, the individual’s fitness value can be calcu-

lated according to (a weighted sum of) several objectives, such as settling time,

reference tracking, energy consumption or robustness. This fitness function can

be non-linear and even discontinuous. The implementation of discontinuous (and

thus non-linear) constraints can easily be programmed in a constraint function.

In Genetic Algorithms, there is no convexification necessary as in gradient-based

optimization algorithms [147]. Moreover, there are no restrictions regarding the

maximum number of design parameters in the case of a Genetic Algorithm.

A disadvantage of the Genetic Algorithm is that a lot of objective function

evaluations are needed, resulting in a relatively long calculation time compared to

gradient-based methods [148]. Because this is also a non-deterministic algorithm,

it cannot be guaranteed that the solution found by the Genetic Algorithm is the

global minimum of the optimization problem [149]. However, the randomization

avoids being stuck in a local minimum as much as possible [150].

3.4 Optimization Algorithm Selection 55

No

Creation function

Elite selection

Mutation

Crossover

Are stopping
criteria met?

Initial population

Parents

Active population

Fitness value

Fitness calculation

Children

Solution is found

Yes

Figure 3.7: Simplified schematic overview of a Genetic Algorithm work-
flow

56 Multi-Domain Optimization Workflow

3.4.3 Conclusions on the Optimization Algorithm Selection

Table 3.1 summarizes the various mentioned optimization algorithms and their

main characteristics based on the literature review in this chapter.

Concerning the derivative-free optimization algorithms, the Exhaustive Search,

Bayesian Optimization, Genetic Algorithm, and Surrogate Optimization are the

only optimization algorithms that inherently support mixed-integer optimization

[151]. Exhaustive Search and Bayesian Optimizations cannot be applied in this

work because they can only be applied to problems with few design parameters.

From the remaining Genetic Algorithm and Surrogate Optimization, the Genetic

Algorithm is the only optimization algorithm that straighforwardly supports non-

linear constraints [152]. Consequently, it can be concluded that a Genetic Algo-

rithm (GA) is the derivative-free algorithm that is most suited to administer the

requirements for the optimization problem discussed in this dissertation. The main

drawbacks of using a Genetic Algorithm (GA) are that it is computationally expen-

sive and that it inherently cannot guarantee to find the global optimum. Therefore,

the end-user may not know how far the final solution is from the actual global opti-

mum. However, literature shows that even non-global solutions have better perfor-

mances compared to using classical iterative methods to find the system composi-

tion. Whether the results are ’good enough’ is certainly problem-dependent [153].

3
.4

O
p
tim

izatio
n

A
lg

o
rith

m
S

electio
n

5
7

Table 3.1: Summary of the various mentioned optimization algorithms and their main characteristics based on the literature
review in this chapter

Guaranteed Supports

Optimization algorithms Deterministic/ Objective convergence to integer Computation

stochastic? type global optimum? constraints? expense Additional remarks

Non-linear Programming (NLP) Deterministic Convex • ◦ Mid For differentiable objective functions

Linear Programming (LP) Deterministic Convex • ◦ Low
For affine objective

functions and constraints

Gradient-
Quadratic Programming (QP) Deterministic Convex • ◦ Low

For affine constraint functions and

based linear-quadratic objective functions

Sequential Quadratic
Deterministic Convex • ◦ Mid

Programming (QP)

Exhaustive Search (ES) Deterministic Non-smooth • • Very high
Only for problems with a

very small design space

Pattern Search (PS) Deterministic Non-smooth ◦ ◦ High Preferably smooth objective functions

Bayesian optimization Stochastic Non-smooth ◦ • Very high Limited to small-scale problems

Dividing Rectangles (DIRECT) Deterministic Non-smooth ◦ ◦ Very high

Simulated Annealing (SA) Stochastic Non-smooth • ◦ High
Converges to global optimum for bounded

Derivative- problems with very slow cooling schedule

free
Surrogate Optimization (SO) Stochastic Non-smooth • • Very high

For time-consuming objective functions,

does not support non-linear constraints

Particle Swarm
Stochastic Non-smooth ◦ ◦ High

Optimization (PSO)

Covariance Matrix Adaptation
Stochastic Non-smooth ◦ ◦ High

Ability to include local second-order

Evolution Strategy (CMA-ES) derivative information

Genetic Algorithm (GA) Stochastic Non-smooth ◦ • High
Supports non-linear constraint and

objective functions

58 Multi-Domain Optimization Workflow

3.5 Pareto Front

For the overall co-design methodology, cost and performance are conflicting ob-

jectives without a unique optimal solution. Instead, the concept of Pareto optimal-

ity can be used to characterize the trade-off between different objectives. Pareto

optimality is obtained when one objective of an individual solution cannot be im-

proved without another objective deteriorating. Such an individual solution is then

described as a Pareto point. All Pareto points collectively form a Pareto front that

indicates the boundary of the Pareto optimality [154,155]. In the context of this dis-

sertation, the main results from the optimizing algorithm can be graphically shown

in a Pareto front, revealing the trade-off between the total implementation cost and

the optimal achievable performance.

A general example of a Pareto front is given in Fig. 3.8. As stated before, the

lower the fitness value, the better the performance. Every variation of the design

parameters leads to a specific system composition with a certain cost and perfor-

mance. If all these individual points are shown in a graph, than an individual point

is said to be on the Pareto front if no objective can be improved without worsening

another objective [156]. If, for example, a system design is operating with a sub-

optimal performance (red point in Fig. 3.8), two different actions can be taken to

obtain Pareto optimality: performance can be increased without an extra cost (ar-

row 1) or the investment cost can be reduced without deterioration in performance

(arrow 2).

Cost

F
it
n
es

s
va

lu
e

P
er

fo
rm

an
ce

Possible solutions
Sub-optimal solution
Optimal solution at Pareto front

(1)

(2)

Figure 3.8: Example of a Pareto front (in blue) showing the interplay be-
tween two conflicting objectives. To obtain Pareto optimality
from a sub-optimal solution (red point), two different actions
can be taken: performance can be increased without an extra
cost (arrow 1), or the investment cost can be reduced without
deterioration in performance (arrow 2).

3.6 Background on State-Space Modeling 59

In the context of this dissertation, a Pareto front shows the maximum achievable

performance in function of the cost. This is a very useful tool to graphically provide

insights for the design engineer into the trade-off between performance and cost,

which is otherwise very complicated to predict. The Pareto front gives a set of

reasonable choices, but any choice from the Pareto front still entails a trade-off

between conflicting objectives. By restricting the feasible solutions to those who

are at the Pareto front, a designer can make more efficient trade-offs, rather than

considering the full design space of every design parameter. But it is still a question

of engineering judgment to select a point along the Pareto front as the ultimate

solution [40, 157].

3.6 Background on State-Space Modeling

The general co-design methodology described in this dissertation starts with a

model that describes the dynamics of the system to be controlled. More and more,

engineering relies on model-based design. The ever increasing computing power

makes it possible to accurately simulate the machine behavior and thus design a

machine without the need for expensive prototypes or time-consuming tests on

physical objects [25]. Over the past decades, the models have also become more

and more complex and inclusive in order to obtain a simulation of a (set of) ma-

chines as close as possible to the operation of a real system.

To arrive at a model representing the behavior of a process, an engineer

can start by mapping the individual physical relations in differential equations.

From these, many alternative model formats can be used to characterize dynamic

processes (e.g., Frequency Response Functions (FRF), Transfer Functions (TF)

or Polynomial Models (PM)). For complex systems, especially multiple-input

multiple-output (MIMO) problems [158], one of the most flexible and useful

structures for numerical calculations is the state-space representation.

3.6.1 Continuous LTI State-Space Modeling

In this representation, the process dynamics are described in a set of coupled first-

order differential equations, possibly linearized around an operating point [36, 52,

159, 160]. A continuous (open-loop) state-space representation SSpro,c is used to

represent these differential equations of a linear time-invariant (LTI) process in

matrix form. This structure is formulated in (3.2), with n being the number of

states in the state vector x, m being the number of outputs in the output vector y,

and l being the maximum number of available actuator inputs from input vector u.

The Apro,c, Bpro,c, Cpro,c and Dpro,c matrices are referred to as the continuous

time-domain process state matrix, input matrix, output matrix and feedthrough (or

direct transition) matrix, respectively [52].

60 Multi-Domain Optimization Workflow

SSpro,c =

{

ẋ(t) = Apro,c · x(t) +Bpro,c · u(t)
y(t) = Cpro,c · x(t) +Dpro,c · u(t)

,

with x ∈ R
n , u ∈ R

l , y ∈ R
m (3.2)

A schematic overview of a continuous LTI state-space system is depicted in

Fig. 3.9.

A
pro,c

+
+

1/s C
pro,c

xx
y(t)u(t)

B
pro,c

D
pro,c

+ +
�

Figure 3.9: Schematic overview of a continuous state-space process

3.6.2 Continuous State-Space Observer Modeling

In some applications, one or more states may not be directly accessible because

it is too expensive to install sensors and measure them. If the state variables are

not available because of system configuration or cost, it is possible to estimate the

states by using an observer (or sometimes called state estimator). The estimated

variables are denoted by a ’hat’ as in x̂ and ŷ to distinguish them from the process

variables x and y. The continuous observer state equations are depicted in (3.3).

SSobs,c =

{

˙̂x(t) = Aobs,c · x̂(t) +Bobs,c · u(t) + Lobs,c(y(t)− ŷ(t))
ŷ(t) = Cobs,c · x̂(t) +Dobs,c · u(t)

,

with x̂ ∈ R
n , u ∈ R

l , ŷ ∈ R
m (3.3)

Fig. 3.10 shows a state-space representation in the continuous time-domain of

a process (light blue) with an observer (dark blue). An additional observer gain

Lobs,c is added. The difference between the process output y(t) and the esti-

mated output ŷ(t) is multiplied by this matrix Lobs,c and subsequently added to

the observer state equations. In this way, a so-called Leuenberger observer is ob-

tained [161]. The observer is asymptotically stable if the error between the esti-

mated states x̂(t) and the process states x(t) converges to zero for t → ∞. This

condition is fulfilled when the matrix Aobs,c −Lobs,cCobs,c has stable eigenvalues.

3.6 Background on State-Space Modeling 61

As a rule of thumb, the poles of the observer Aobs,c − Lobs,cCobs,c are chosen to

converge ten times faster than the process poles, characterized by multiplying the

real parts of the process poles by a factor of 10 [161]. In theory, the Apro, Bpro,

Cpro and Dpro process matrices are the same as the respective observation matri-

ces Aobs, Bobs, Cobs and Dobs, but due to unavoidable modelling errors, there will

practically always be a (preferably small) difference. A more advanced form of

estimation can be obtained by applying a Kalman filter [162], but the use of this

filter is not further developed in this work and is also not mandatory to demon-

strate the operation of the general co-design methodology. More information on

state observer design can be found in [163].

A
pro,c

+
+

1/s C
pro,c

xx
y(t)

y(t)

u(t)
B
pro,c

D
pro,c

+ +
�

xx
�

A
obs,c

+
+

+

 L
obs,c

1/s C
obs,c

^
B
obs,c

D
obs,c

-
-

+

^ ^

Figure 3.10: Schematic overview of a continuous state-space process (light
blue) with observer (dark blue)

62 Multi-Domain Optimization Workflow

3.6.3 Continuous LPV and LTV State-Space Modeling

In some systems, a linear time-invariant (LTI) system with a linearization around a

single operating point is insufficient to model the dynamic behavior of the system.

This is the case when certain parameter variations have a drastic influence on the

dynamics of the system. The variability of certain process parameters can be taken

into account by formulating them explicitly as a variable in the state-space system.

In this way, linear parameter-varying (LPV) systems are obtained.

A classic example of an LPV system is a hoisting crane, depicted in Fig. 3.11

below. If an external force F is applied (e.g., by the wind), the mass m will start

to swing. The natural frequency f of the mass m suspended from a cable is:

f =
1

2π

√

g

l
. (3.4)

The gravitational acceleration g is assumed to remain constant. As long as

the cable length l does not change, this system can be simplified as a linear time-

invariant (LTI) state-space system. However, an essential part of the operation of

this crane is that the cable length l changes. Additionally, it can be seen that the nat-

ural frequency f varies depending on the cable length l. Thus, an LTI state-space

representation will not be sufficient to correctly represent the machine operation,

and a more advanced form of model (and control) is needed.

Figure 3.11: Hoisting crane overview with cable length l, cable angle α,
mass m and external force F (from [164])

3.6 Background on State-Space Modeling 63

A possible strategy to address this problem is called gain scheduling, in which

the system is linearized at different operating points depending on a changing

parameter. This changing parameter p(t) is called the ’scheduling parameter’ or

’scheduling variable’. Next, different linear controllers are designed for each oper-

ating point, and these controllers are then scheduled as a function of the scheduling

parameter p(t). In this way, a non-linear controller is obtained for a non-linear

system by combining multiple linear controllers. The active controller values are

determined by switching different linear controllers or by interpolation between

them [165].

A linear parameter-varying (LPV) state-space representation allows to model

one or more changing parameters directly into the system. In this way, the cumber-

some method of defining different linear controllers in the case of gain scheduling

is no longer necessary. The scheduling parameter p(t) should not be confused

with the standard system inputs u(t), as this scheduling parameter p(t) affects the

system input-output relationship [164]. In short, linear parameter-varying (LPV)

systems are linear systems, but with state-space descriptions that are a function

of time-varying parameters p(t). The time variations of the scheduling parameter

p(t) are not necessarily known in advance, but are measurable (or estimated) dur-

ing operation. The state-space system is shown in (3.5), which is similar to the

linear time-invariant (LTI) case, but with the inclusion of the scheduling parameter

p(t) [166, 167].

SSLPV,c =

{

ẋ(t) = Apro,c(p(t)) · x(t) +Bpro,c(p(t)) · u(t)
y(t) = Cpro,c(p(t)) · x(t) +Dpro,c(p(t)) · u(t)

,

with x ∈ R
n , u ∈ R

l , y ∈ R
m (3.5)

A variation of the linear parameter-varying (LPV) system is a so-called linear

time-varying (LTV) system, in which the scheduling parameter p(t) only depends

on time and not on other real-time measured values. It is important to note that

the general co-design methodology described in this dissertation can handle lin-

ear time-invariant (LTI), linear parameter-varying (LPV), and linear time-variant

(LTV) systems. As of next subsection, an LTI system is used as the process model,

while in Section 6.4 on page 153 the co-design methodology applied on an LPV

system is demonstrated.

64 Multi-Domain Optimization Workflow

3.6.4 Illustrative LTI case: Mechanical Synchronization Setup

Throughout the remainder of this dissertation, references are made to a mechanical

synchronization setup to explain the proposed co-design methodology. The main

purpose of this illustrative example is to position a central load inertia using an

actuator (with inertia) at each side of the central inertia. Common examples of this

type of application are steel ladles and overhead gantry cranes. First of all, a model

is established in which all possible actuator locations are included. A graphical

overview of the application is given in Fig. 3.12, with θ the angular displacement

[rad], T1 the actuator 1 torque [Nm], T2 the actuator 2 torque [Nm], TL the load

torque [Nm], k the torsional spring constant [Nm/rad] and b the torsional damping

constant [Nms/rad]. The three bodies (both motors and the load) are dynamically

coupled by rotational springs and dampers (k and b), as depicted in Fig. 3.12. The

values for these parameters are shown in Table 3.2.

T
1

T
L

T
L

T
2

Sensor

θ
1

Sensor

θ
load

Sensor

θ
2

Actuator

motor
 1

Actuator

motor
 2

Load

inertia

T
1

θ
1

T
2θ

2

θ
load

k
1

b
1

k
2

b
2

Figure 3.12: A mechanical synchronization application in which two actua-
tor inertias have to control the position of a central load inertia
(top), with schematic representation (bottom)

3.6 Background on State-Space Modeling 65

Table 3.2: System parameters for the mechanical synchronization applica-
tion

Parameter Value Unit

Actuator 1 inertia = J1 0,173 kgm2

Actuator 2 inertia = J2 0,173 kgm2

Load inertia = JL 3 kgm2

Torsional spring constant 1 = k1 150 Nm/rad
Torsional spring constant 2 = k2 150 Nm/rad
Angular damping constant 1 = b1 0.2 Nms/rad
Angular damping constant 2 = b2 0.2 Nms/rad

The differential equations are shown in (3.6).

θ̈1J1 = T1 − k1(θ1 − θL)− b1(θ̇1 − θ̇L)

θ̈2J2 = T2 − k2(θ2 − θL)− b2(θ̇2 − θ̇L)

θ̈LJL = −TL − k1(θL − θ1)− b1(θ̇L − θ̇1)− k2(θL − θ2)− b2(θ̇L − θ̇2)
(3.6)

After rearranging, (3.7) is obtained.

θ̈1 =
T1

J1
− k1

J1
θ1 +

k1
J1
θL − b1

J1
θ̇1 +

b1
J1
θ̇L

θ̈2 =
T2

J2
− k2

J2
θ2 +

k2
J2
θL − b2

J2
θ̇2 +

b2
J2
θ̇L

θ̈L = −
TL

JL
+ k1

JL
θ1 +

k2
JL

θ2 −
k2+k1
JL

θL + b1
JL

θ̇1 +
b2
JL

θ̇2 −
b1+b2
JL

θ̇L

(3.7)

The states, outputs and inputs for the state-space representation for this open-

loop LTI process are shown in (3.8), (3.9), and (3.10), respectively. The process

inputs u [Nm] are controller effort signals, while Dist [Nm] is the external distur-

bance signal acting on the load inertia.

xpro =

θ1
θ2
θL
θ̇1
θ̇2
θ̇L

(3.8)

ypro =

θ1
θ2
θL

 (3.9)

66 Multi-Domain Optimization Workflow

upro =

u1
u2

DistL

 (3.10)

The corresponding continuous linear time-invariant (LTI) state-space matrices

for the open-loop process can be found in (3.11) – (3.14).

Apro,c =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−k1
J1

0
k1
J1

−b1
J1

0
b1
J1

0
−k2
J2

k2
J2

0
−b2
J2

b2
J2

k1
JL

k2
JL

−(k1 + k2)

JL

b1
JL

b2
JL

−(b1 + b2)

JL

(3.11)

Bpro,c =

0 0 0
0 0 0
0 0 0
1

J1
0 0

0
1

J2
0

0 0
1

−JL

(3.12)

Cpro,c =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (3.13)

Dpro,c =

0 0 0
0 0 0
0 0 0

 (3.14)

The reference angular position trajectory Ref to be followed by the load in-

ertia JL can be seen in Fig. 3.13 (a) and consists of a trapezoidal movement to an

angle of 1.8 radians or approximately 103 degrees. The shape of the associated

load torque TL can be seen in Fig. 3.13 (b). The shape of the reference signal and

the associated disturbance signal originates from an example of a steel ladle ap-

plication in which a casting angle of 1.8 radians is attained to pour out the molten

metal.

3.6 Background on State-Space Modeling 67

Figure 3.13: (a) Reference trajectory Ref for the angular displacement to
be followed by the load inertia JL. (b) Associated load torque
TL.

68 Multi-Domain Optimization Workflow

3.7 Chapter Conclusions

This chapter introduces the general workflow to perform the co-design of hardware

architecture and control configuration. First, a global overview is presented of the

various steps to achieve a successful and efficient co-design. This overview can be

seen as a framework for the next chapters, in which each chapter goes into detail

on a particular part of the co-design.

The conflicting objectives of the overall co-design problem are discussed, and

the necessary requirements that an optimization algorithm must meet in order to

carry out the intended co-design of hardware and control are listed. This is fol-

lowed by an introduction to multi-objective optimization algorithms, explaining the

distinction between gradient-based and derivative-free optimization approaches.

Numerous examples are discussed to provide an overview of the most common

optimization techniques. Eventually, the conclusion is that a Genetic Algorithm

(GA) is the only optimization technique that can cope with the requirements of the

co-design optimization problem considered in this dissertation. This is followed

by an explanation of how to graphically present the optimization results in a Pareto

front.

A necessary condition to perform this co-design is the need for a mathematical

model of the machine or system. Therefore, the chapter ends with an overview

of several types of model representations, of which a state-space representation is

the most appropriate one. Continuous linear time-invariant (LTI), linear parameter-

varying (LPV), and linear time-varying (LTV) state-space systems are considered

in more detail, all of which can be used in the overall co-design methodology. The

use of an observer in state-space representations is also mentioned, and an illustra-

tive state-space model is presented that will be used throughout this dissertation to

demonstrate specific parts of the co-design.

Chapter 4

Hardware Architecture

Optimization

This chapter elaborates on how the hardware architecture can be optimized as part

of the system composition optimization (see Fig. 4.1). First, it is discussed how

the presence or absence of actuators and sensors can be established (= actuator

and sensor placement). It is then explained how different types of actuators and

sensors can be specified (= actuator and sensor selection). This chapter ends with

an open-loop analysis, enabling the determination of the hardware combinations’

feasibility without having to calculate a closed-loop system and response.

Control Architecture

Controller Tuning
Control Configuration

System
Composition

Actuator & Sensor Selection

Actuator & Sensor Placement
Hardware Architecture

Figure 4.1: Overview of the different aspects of the total system composi-
tion optimization with the focus of this chapter marked in blue

70 Hardware Architecture Optimization

4.1 Actuator & Sensor Placement

In Section 3.6.1 on page 59, a state-space representation for a linear time-invariant

(LTI) system is introduced. To define the actuator presence or absence, actuator

placement binaries’ bact,... ∈ [0, 1] are used for every possible actuator location.

These binaries are grouped in a diagonal matrix BΘ:

BΘ = Il ◦

bact,1
bact,2

...

bact,l

=

bact,1 0 · · · 0
0 bact,2 · · · 0
...

...
. . .

...

0 0 · · · bact,l

,

(4.1)

where Il is an identity matrix with dimensions l× l, with l being the number of

actuator inputs. This matrix Il is multiplied with an array of the actuator placement

binaries using an element-wise array multiplication (◦). As a consequence, BΘ is

a diagonal matrix with dimensions l × l. Equation (4.2) shows how these binaries

bact,... define whether an actuator will affect the LTI state-space system input or not.

The actuators possibly introduce mass dynamics properties into the system, which

are reflected in the system matrices. Therefore, the system matrix Apro,c, Bpro,c,

Cpro,c and Dpro,c are adjusted to A′

pro,c, B
′

pro,c, C
′

pro,c and D′

pro,c based on the

actuator placement binaries and the accompanying change in dynamics due to the

included or excluded actuators. An example in mechatronics of adjusting system

matrix Apro,c to A′

pro,c is where the influence of an actuator inertia (with possible

corresponding torsional stiffness k and damping b) is removed from the system

matrices when the actuator is absent. These adjustments to the system matrices

depend on the state equations and cannot be presented straightforwardly in one

formula. An example of adjusting the state matrices is given in Section 4.2.1.

4.1 Actuator & Sensor Placement 71

ẋ =A′

pro,c · x+B′

pro,c · BΘ · u

=

A′

1,1 A′

1,2 · · · A′

1,n

A′

2,1 A′

2,2 · · · A′

2,n
...

...
. . .

...

A′

n,1 A′

n,2 · · · A′

n,n

x1
x2
...

xn

+ ...

B′

1,1 B′

1,2 · · · B′

1,l

B′

2,1 B′

2,2 · · · B′

2,l
...

...
. . .

...

B′

n,1 B′

n,2 · · · B′

n,l

bact,1 0 · · · 0
0 bact,2 · · · 0
...

...
. . .

...

0 0 · · · bact,l

u1
u2
...

ul

=

A′

1,1 A′

1,2 · · · A′

1,n

A′

2,1 A′

2,2 · · · A′

2,n
...

...
. . .

...

A′

n,1 A′

n,2 · · · A′

n,n

x1
x2
...

xn

+

B′

1,1 B′

1,2 · · · B′

1,l

B′

2,1 B′

2,2 · · · B′

2,l
...

...
. . .

...

B′

n,1 B′

n,2 · · · B′

n,l

bact,1u1
bact,2u2

...

bact,lul

(4.2)

Similarly, the presence or absence of a physical sensor is represented using sen-

sor placement binaries bsen,... ∈ [0, 1]. The sensor placement binaries are grouped

in a diagonal matrix BΓ:

BΓ = Im ◦

bsen,1
bsen,2

...

bsen,m

=

bsen,1 0 · · · 0
0 bsen,2 · · · 0
...

...
. . .

...

0 0 · · · bsen,m

,

(4.3)

where Im is an identity matrix with dimensions m×m, with m being the num-

ber of sensor outputs. This matrix Im is multiplied with an array of the sensor

placement binaries using an element-wise array multiplication (◦). As a conse-

quence, BΓ is a diagonal matrix with dimensions m × m. Conventionally, the

output vector of a state-space system is appointed as y. The sparse rows of BΓ are

removed to prevent the system from having outputs that remain zero. By doing so,

B
′

Γ
is obtained with dimensions m′×m, where m′ depends on the number of acti-

vated sensors. In this way, B′

Γ
determines which of the original state-space system

output signals are available to be used as feedback signals, in correspondence with

72 Hardware Architecture Optimization

which sensors are active or not. Consequently, (4.4) shows how binaries bsen,...
define what signals from the output equation are available for the feedback loop,

indicated as y′. If system matrix D′

pro,c is not a zero matrix (which in continuous

state-space systems rarely occurs), the previously mentioned actuator placement

binaries bact,... also have an impact on y′ in the form of BΘ.

y′ =B
′

Γ · y

=B
′

Γ

(

C′

pro,c · x+D′

pro,c · BΘ · u
)

=

bsen,1 0 · · · 0
0 bsen,2 · · · 0
...

...
. . .

...

0 0 · · · bsen,m

·

C ′

1,1 C ′

1,2 · · · C ′

1,n

C ′

2,1 C ′

2,2 · · · C ′

2,n
...

...
. . .

...

C ′

m,1 C ′

m,2 · · · C ′

m,n

x1
x2
...

xn

+ ...

D′

1,1 D′

1,2 · · · D′

1,l

D′

2,1 D′

2,2 · · · D′

2,l
...

...
. . .

...

D′

m,1 D′

m,2 · · · D′

m,l

bact,1u1
bact,2u2

...

bact,lul

(4.4)

In this way, the basic state-space representation from (3.2) is extended to (4.5).

Note that the B and C matrix values are not design parameters for the general

optimization algorithm but are constant real values describing the initial state-space

process. The hardware placement optimization is done through BΘ for the actuator

placement binaries bact,... and BΓ for the sensor placement binaries bsen,.... This

state-space system is graphically displayed in Fig. 4.2.

SSpro,c =

{

ẋ = A
′

pro,c · x+B
′

pro,c · BΘ · u

y′ = B
′

Γ
· (C

′

pro,c · x+D
′

pro,c · BΘ · u)
(4.5)

A
pro,c
’

+

+
1/s C

pro,c

xx
u B

pro,c

D
pro,c

+ + y
y’

�

Θ Γ
’’’

’

Figure 4.2: Graphical representation of a state-space system, augmented
with matrices BΘ and B

′

Γ
defining the actuator and sensor place-

ment, respectively see (4.5)

4.2 Actuator & Sensor Selection 73

4.2 Actuator & Sensor Selection

Next to the presence or absence of the actuators and sensors, the overall co-design

optimizing algorithm should also be able to select between different types of actua-

tors and sensors. Therefore, hardware selection integer values iact,... and isen,... are

introduced and grouped in vectors Zact and Zsen, respectively. They correspond

with the different types of actuators and sensors at every active actuator or sen-

sor position. This is mathematically shown in (4.6) and (4.7) for the actuator and

sensor selection integers, respectively.

Zact = [iact,1, iact,2, . . . , iact,l] , ∀iact,... ∈ [0 : p] ,

with l = number of actuator inputs, and

p = number of possible actuator types

(4.6)

Zsen = [isen,1, isen,2, . . . , isen,m] , ∀isen,... ∈ [0 : q]

with m = number of sensor outputs, and

q = number of possible sensor types

(4.7)

If multiple actuator types are possible, then the optimizing algorithm can effec-

tively choose between each actuator and sensor type with specific properties and

constraints (e.g., different cost, maximum actuator output, or resolution) by chang-

ing the corresponding actuator and sensor integer values. For example, a more

expensive actuator can have a higher maximum control effort. Based on this in-

teger value, the accompanying properties are considered as non-linear constraints

during the general co-design optimization (further detailed in Chapter 6).

Notice that the actuator and sensor selection integers grouped (Zact and Zsen)

are not directly part of the state-space system, but they may have an indirect influ-

ence on this state-space system because values for the actuator and sensor place-

ment binaries (BΘ and BΓ) depend on these actuator and sensor selection integer

values. Furthermore, the selection of the type of actuators can also have an influ-

ence on the adjustment of the system matrices Apro,c, Bpro,c, Cpro,c, and Dpro,c to

A′

pro,c, B
′

pro,c, C
′

pro,c, and D′

pro,c, respectively, if different actuators have different

inertia values. For example, if it is defined that a different type of actuator has a

different inertia value J = f(iact), then this inertia value will have to be adjusted

in the system matrices.

The values of the actuator and sensor selection integers will directly determine

the actuator and sensor placement binaries. If an actuator or sensor selection inte-

ger is equal to zero, this corresponds to the absence of this actuator or sensor, and

the corresponding actuator or sensor placement binary will also be equal to zero.

If an actuator or sensor selection integer is at least equal to one, this will result in

the corresponding actuator or sensor presence, and the associated placement binary

74 Hardware Architecture Optimization

will therefore be equal to one. The sensor and actuator selection integers are de-

sign parameters for the overall co-design methodology. As a result, this co-design

methodology becomes a mixed-integer optimization problem. Additionally, the

objective function becomes highly discontinuous and non-convex by introducing

these discrete design parameters [86].

4.2.1 Mechanical Synchronization Setup

For the illustrative example of a mechanical synchronization case (introduced in

Section 3.6.4 on page 64), the general co-design optimizing algorithm can select

the presence and type of the two actuators at the sides of the load inertia from a

list of three possible motors, as listed in Table 4.1. Every motor has a specific cost

and a corresponding maximum actuator torque. This changing maximum actuator

torque can be included in the co-design methodology as a saturation of the input

signal during the system response calculation (see Chapter 5 for more information).

As mentioned earlier, these costs are entirely case-specific. Therefore, all costs

are indicated with a percentage (%) instead of an actual cost, relative to the most

expensive possible situation. In this mechanical synchronization case, all costs

are indicated relative to a setup where the two most expensive actuators, the most

expensive sensors and all possibilities of control architecture are active.

The actuator selection integers iact,1 and iact,2 for the left and right actuator can

have values from zero to three, according to the selected actuator. If the actuator

selection integer iact,... is equal to zero, no actuator is present on that location, and

the corresponding actuator placement binary bact,... also equals zero. The actuator

selection integers iact,1 and iact,2 are grouped in Zact.

Table 4.1: Different actuator types with their accompanying actuator selec-
tion integers, actuator placement binaries, cost, and maximum
torque

Actuator Actuator Maximum

Actuator selection placement Cost torque

selection integer iact,... binary bact,... [%] [Nm]

No actuator 0 0 0 0

Actuator type 1 1 1 5.3 1

Actuator type 2 2 1 13.3 3

Actuator type 3 3 1 26.7 5

As explained above, the absence of an actuator may also mean that the system

matrices need to be adjusted. For example, suppose that an actuator is present at the

left side of the central load inertia (meaning that iact,1 ≥ 1 and thus bact,1 = 1) and

no actuator is present at the right side of the central inertia (meaning that iact,2 = 0
and thus bact,2 = 0). In this case, the initial system matrices Apro,c and Bpro,c (see

(3.11)–(3.12)) are adjusted to:

4.2 Actuator & Sensor Selection 75

A′

pro,c =

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

−k1
J1

0
k1
J1

−b1
J1

0
b1
J1

0 0 0 0 0 0
k1
JL

0
−k1
JL

b1
JL

0
−b1
JL

(4.8)

and

B′

pro,c =

0 0 0
0 0 0
0 0 0
1

J1
0 0

0 0 0

0 0
−1

JL

. (4.9)

The initial state matrices Cpro,c and Dpro,c do not need to be adjusted because

they do not contain actuator specific values.

In the mechanical synchronization setup, there is a maximum of three inertias.

This means that three possible sensor locations can provide position and speed

feedback from the corresponding inertia. It is more convenient to add a sensor on

the actuator inertias since most actuators already provide relatively easy mounting

capabilities for encoders. This is why a sensor on the load inertia is more expensive

than a sensor on the outer inertias. Table 4.2 shows the possible sensor types and

the accompanying cost. Each sensor is assumed to feed back angular displacement

and velocity. As a result, the sensor selection integers isen,1 and isen,2 for the left

and right actuator can each have integer values from zero to two. The sensor se-

lection integer is zero if no sensor is used, one if a sensor on the corresponding

actuator inertia is used, and two if a sensor on the middle inertia is used. If the

sensor selection integer isen,... is equal to zero, no sensor is present, and the ac-

companying sensor placement binary bsen,... also equals zero. The sensor selection

integers isen,1 and isen,2 are grouped in Zsen.

Table 4.2: Different sensor types with their accompanying sensor selection
integers, sensor placement binaries, and cost

Sensor Sensor

Sensor selection placement Cost

selection integer isen... binary bsen... [%]

No sensor data used 0 0 0

Sensor on corresponding actuator 1 1 6.7

Sensor on load inertia 2 1 9.3

76 Hardware Architecture Optimization

4.3 Open-Loop Analysis

The number of possible different open-loop hardware configurations w is deter-

mined as:

w = 2l+m, (4.10)

with l and m being the number of actuator and sensor placement binaries, respec-

tively. With modern-day computing power, it would be possible to perform an

exhaustive search (also called ’brute-force’) calculation of every possible open-

loop hardware configuration with a fixed control loop. However, in the co-design

methodology presented in this PhD the control loop is not fixed but simultaneously

optimized with the hardware architecture. The real controller tuning parameters

Rtuning to be optimized result an optimization problem with an design space that

takes on proportions that cannot be calculated with an exhaustive search technique.

(This is even without considering the control architecture optimization, mentioned

in Chapter 5.)

Obviously, certain combinations of actuators and sensors will lead to an infea-

sible situation, even without considering the control configuration. For example, it

is easy to see that if all actuator integers are equal to zero, the system will not ex-

hibit good performance since then the actuator placement binaries will also equal

zero, and no actuators are present in the setup. In those cases, it is unnecessary to

let the optimization algorithm lose time trying to calculate a closed-loop response.

This can be avoided by using an open-loop analysis, as presented in this section.

Moreover, there are different degrees of interconnections in systems consist-

ing of multiple subsystems, varying from very strong to non-existent. A subsystem

without an actuator can still be sufficiently controlled by actuating another strongly

coupled subsystem. However, it is less evident for large and complex systems to

immediately see how strong the coupling is between individual subsystems and

whether the entire system can be controlled correctly. An example is given in

Fig. 4.3, in which a system is shown consisting of multiple interconnected subsys-

tems. Some of these subsystems are controlled by an actuator, while the subsystem

interconnections are displayed as arrows. Black arrows represent a strong connec-

tion, while blue dashed arrows represent weak connections. Subsystem three is not

directly actuated, but due to the strong interconnections with actuated subsystems

two and four, this subsystem can still be controlled to a desired state. However,

there is no actuator directly connected to subsystem four, and this subsystem does

not have sufficiently strong interconnections with actuated subsystems. Because of

this, the state of subsystem four cannot be controlled.

The extent to which the system input u(t) can steer the given initial system

states x(t0) to a desired final state value in finite time is referred to as ’con-

trollability’ (also known as ’reachability’), introduced by Rudolph Kalman in the

1960s [52]. If it is indeed possible to steer all system states from any initial value

to a desired final value within finite time, the system is said to be controllable.

Otherwise, the system is uncontrollable [163].

4.3 Open-Loop Analysis 77

System consisting of multiple subsystems

Subsystem 5

Subsystem 2

Subsystem 4

Subsystem 1

Actuator 1 Actuator 2

Actuator 3

Subsystem 3

Figure 4.3: Graphical overview of a system consisting of multiple intercon-
nected subsystems. Actuators are present to control specific
subsystems, while the strong and weak subsystem interconnec-
tions are shown in black and dashed blue arrows, respectively.

There are several tests to check the state controllability of a system, see [36]

for details. In brief, a first possible test is done by checking the input pole vector

from a specific expansion of the input-output transfer function matrix [168]. A

second possible controllability check is based on the rank of the Gramian matrix.

A third and most suitable possible controllability check is to define if an n-th order

multi-input system with state equation

ẋ = Ax+Bu (4.11)

is completely controllable if the matrix

CM =
[

B AB A2B · · · An−1B
]

(4.12)

is of rank n, where CM is called the controllability matrix [163]. (The rank of a

matrix is defined by the number of linearly independent matrix columns or rows

[169].)

Similarly, the concept of ’observability’ indicates the ability to deduce the state

variables x from a knowledge of the input u(t) and the output y(t). In other words,

78 Hardware Architecture Optimization

a system is observable if the initial state vector x(t0) can be found from the input

u(t) and the output y(t), measured over a finite time interval from t0. Otherwise,

the system is said to be unobservable [163].

Again, there are several tests to check the state observability of a system [36],

which are variations of the controllability checks. Once again, the most suitable

observability check is to define if an n-th order multi-input system with state and

output equations

ẋ =Ax+Bu

y =Cx+Du
(4.13)

is completely observable if the matrix

OM =

C

CA

CA2

...

CAn−1

(4.14)

is of rank n, where OM is called the observability matrix [163]. When a system is

observable, this means that an observer (see Section 3.6.2 on page 60 for details)

can be used to correctly estimate the progress of the system states based on the

measured system outputs.

In literature, definitions for other terms related to observability and controlla-

bility can be found. For example, there also exists a ’stabilizability’ condition, in-

dicating that the state variables remain bounded during the system behavior [170].

Another variation is ’detectability,’ stating that all the unobservable states remain

stable [171]. However, these extensions are not further addressed in this work but

could potentially be implemented in future work. More information on the system

controllability, observability and related variations with accompanying proofs can

be found in [36, 52, 160, 172].

Testing the controllability and observability of all w different (open-loop) state-

space systems can be done by comparing the rank of respectively the controllability

matrix and the observability matrix with the system order. Mind that changing sys-

tem matrices in function of the active actuators and sensors must be taken into

account. In the absence of specific actuators, certain inertias may no longer be

applicable in the system state equations and the state-space system must be ad-

justed accordingly. Calculating this matrix rank is not computationally intensive,

so this method can be used to relatively quickly perform an open-loop analysis to

determine which hardware architectures are controllable and observable, and thus

feasible. The workflow of this open-loop analysis is graphically shown in Fig. 4.4.

The valuable information obtained during this open-loop analysis can be stored

to be used later in the co-design methodology. More specifically, due to this open-

loop analysis, it can be decided during the iterative optimization algorithm not to

4.3 Open-Loop Analysis 79

SS
OL

2w different
combinations

w = # actuator &
sensor placement binaries

Check
observability

Check
controllability

For all w
combinations

Completed
SS

OL
 analysis

SS
OL

Figure 4.4: Graphical overview of the open-loop state-space analysis to de-
termine infeasible open-loop systems

calculate the closed-loop system and its response if the open-loop system already

appears to be infeasible.

The total time gain by applying this open-loop analysis will not be the same

for every setup, but will depend on the percentage of infeasible open-loop sys-

tems of all possible w open-loop systems. The larger the percentage of infeasible

open-loop systems, the more the optimization algorithm can avoid unnecessarily

calculating the closed-loop systems with responses, and thus the more significant

the total time gain will be.

4.3.1 Mechanical Synchronization Setup

Next, the open-loop analysis is performed on the illustrative example of a synchro-

nization setup, introduced in Section 3.6.4 on page 64. The number of actuator

placement binaries is two, being bact,1 and bact,1 for the left and right inertia, re-

spectively. The number of sensor placement binaries is three, being bsen,1, bsen,2,

and bsen,L, corresponding with sensor measurements on the left, right and central

80 Hardware Architecture Optimization

load inertia. Therefore, w = 5 and 2w = 25 = 32 different hardware architectures

are possible. The open-loop analysis determines which of the hardware architec-

tures are controllable and observable (as discussed in the previous subsection).

When setting up the state-space system, external disturbance inputs can be de-

fined in the system input matrix upro . These inputs cannot be controlled, and

should not be taken into account when determining the system controllability. Oth-

erwise it would be possible for a system to be appointed as controllable on the basis

of a non-controllable input.

Note that the system matrices for the open-loop analysis change in function of

the active actuators and sensors. Since the open-loop analysis can determine the

controllability and observability with respect to system matrices Apro,c, Bpro,c and

Cpro,c, the influence of the presence of actuators and sensors on matrix Dpro,c is

not important in the open-loop analysis. If sensors are not active, the correspond-

ing rows in the matrix Cpro,c are set to zero. In this mechanical synchronization

example, the first, second and third row of matrix Cpro,c are set to zero if a sensor

at, respectively, the inertia 1, inertia 2 and load inertia position is not present.

For defining the absence of actuators in the open-loop analysis, it is not suf-

ficient to set the corresponding rows of the Apro,c and Bpro,c matrix to zero, be-

cause then the state of the corresponding inertia will still affect the calculation of

the controllability and observability (via the rank of the controllability matrix and

observability matrix), while it is actually supposed to be removed from the system.

Therefore, in the absence of an actuator on inertia 1 (bact,1 = 0), for example, the

corresponding state equations are removed, resulting in a state-space system with

the following matrices:

xpro =

θ2
θL
θ̇2
θ̇L

, (4.15)

ypro =

[

θ2
θL

]

, (4.16)

upro = u2, (4.17)

Apro,c =

0 0 1 0
0 0 0 1

−k2
J2

k2
J2

−b2
J2

b2
J2

k2
JL

−k2
JL

b2
JL

−b2
JL

, (4.18)

4.3 Open-Loop Analysis 81

Bpro,c =

0 0
0 0
1

J2
0

0
−1

JL

, (4.19)

and

Cpro,c =

[

1 0 0 0
0 1 0 0

]

. (4.20)

Similarly, the absence of an actuator on inertia 2 (bact,2 = 0) results in a state-

space system with the following matrices:

xpro =

θ1
θL
θ̇1
θ̇L

, (4.21)

ypro =

[

θ1
θL

]

, (4.22)

upro = u1, (4.23)

Apro,c =

0 0 1 0
0 0 0 1

−k1
J1

k1
J1

−b1
J1

b1
J1

k1
JL

−k1
JL

b1
JL

−b1
JL

, (4.24)

Bpro,c =

0 0
0 0
1

J1
0

0
−1

JL

, (4.25)

and

Cpro,c =

[

1 0 0 0
0 1 0 0

]

. (4.26)

The results of this open-loop analysis are shown in Table 4.3. A hardware

architecture is considered feasible if it is both controllable and observable. There-

fore, the open-loop analysis shows that this mechanical synchronization setup is

only feasible if there is at least one actuator present with a sensor on the actuated

inertia or the central load inertia.

82 Hardware Architecture Optimization

Table 4.3: Table showing all possible combinations of the hardware place-
ment binaries with corresponding controllability, observability,
and feasibility for the example of a mechanical synchronization
setup. See Fig. 3.12 for a graphical overview of the setup.

Feasible

bact,1 bact,2 bsen,1 bsen,2 bsen,L Controllable? Observable? hardware

architecture?

0 0 0 0 0 ◦ ◦ ◦
0 0 0 0 1 ◦ • ◦
0 0 0 1 0 ◦ ◦ ◦
0 0 0 1 1 ◦ • ◦
0 0 1 0 0 ◦ ◦ ◦
0 0 1 0 1 ◦ • ◦
0 0 1 1 0 ◦ ◦ ◦
0 0 1 1 1 ◦ • ◦
0 1 0 0 0 • ◦ ◦
0 1 0 0 1 • • •
0 1 0 1 0 • • •
0 1 0 1 1 • • •
0 1 1 0 0 • ◦ ◦
0 1 1 0 1 • • •
0 1 1 1 0 • • •
0 1 1 1 1 • • •
1 0 0 0 0 • ◦ ◦
1 0 0 0 1 • • •
1 0 0 1 0 • ◦ ◦
1 0 0 1 1 • • •
1 0 1 0 0 • • •
1 0 1 0 1 • • •
1 0 1 1 0 • • •
1 0 1 1 1 • • •
1 1 0 0 0 • ◦ ◦
1 1 0 0 1 • • •
1 1 0 1 0 • • •
1 1 0 1 1 • • •
1 1 1 0 0 • • •
1 1 1 0 1 • • •
1 1 1 1 0 • • •
1 1 1 1 1 • • •

4.3 Open-Loop Analysis 83

The calculation of the open-loop analysis on this mechanical synchronization

example only took 0.25s using MATLAB® scripts on an Intel® Xeon® CPU @

3.10 GHz with 64 GB of RAM. The limited calculation time confirms the compu-

tational efficiency of the open-loop analysis. Next, the influence of this open-loop

analysis on the required time for the complete co-design methodology is tested.

The co-design optimization algorithm uses a non-deterministic Genetic Algoritm,

which means that repeated optimization runs do not always yield precisely the same

results. Therefore, the co-design optimization for this mechanical synchronization

example is done several times, both with and without open-loop analysis. For these

optimizations, a Genetic Algorithm is applied with 43 design parameters, contain-

ing nine binary values (∈ B), two integer values (∈ Z) and 32 real numbers (∈ R),

see Chapter 6. The Genetic Algorithm uses a population size of 200 individuals, an

elite count of 10 and a crossover fraction of 0.4. The stopping criteria is defined as

an average cumulative change in the fitness function value over 50 generations that

is less than 10−5. More details on applying a Genetic Algorithm for the co-design

optimization can be found in Chapter 6.

Table 4.4 shows the fitness value and the time needed to obtain a solution

for multiple optimization runs, both with and without incorporating the open-loop

analysis. The resulting fitness values for all 14 optimizations range from 30.655 to

30.672. The negligible differences among the results demonstrate that the proposed

open-loop analysis does not affect the obtained solution. In addition, the averages

of the total computation time for the different runs demonstrate that a considerable

time reduction of 22% is obtained if the open-loop analysis is applied.

Table 4.4: Table showing the fitness value and the total calculation time over
several optimization runs, both with and without open-loop anal-
ysis. The average values show that a time gain of 22% is achieved
when applying the open-loop analysis.

Without open-loop analysis With open-loop analysis

Fitness value Total time [s] Fitness value Total time [s]

Optimization run 1 30.672 336.67 30.656 283.91

Optimization run 2 30.657 372.99 30.661 261.40

Optimization run 3 30.655 341.24 30.656 244.24

Optimization run 4 30.658 359.42 30.662 390.62

Optimization run 5 30.668 377.01 30.666 284.48

Optimization run 6 30.661 328.97 30.656 231.61

Optimization run 7 30.657 405.97 30.659 276.00

Average values 30.661 360.32 30.659 281.75

84 Hardware Architecture Optimization

4.4 Chapter Conclusions

This chapter explains how the presence and absence of actuators and sensors can

be defined in a state-space system using actuator and sensor placement binaries

(bact,... and bsen,...) through diagonal matrices BΘ and BΓ, respectively. It is also

explained how different types of actuators and sensors can be represented using ac-

tuator and sensor selection integers Zact,... and Zsen,.... The values of the hardware

placement binaries (bact,... and bsen,...) depend on the chosen hardware selection

integers Zact,... and Zsen,.... In turn, these hardware selection integers are variables

that can be adjusted by the overall optimization algorithm. In this way, the hard-

ware architecture, being the hardware placement and selection, can be described in

a mathematical formulation that can be used by an optimization algorithm.

The various combinations of the hardware placement binaries also define the

different open-loop systems. An open-loop analysis is performed on each of these

open-loop systems to determine its feasibility without having to calculate a closed-

loop system and response. This information can be used to run the general co-

design optimization algorithm more efficiently. Incorporating this open-loop anal-

ysis in the co-design optimization results in a case-specific, yet substantial total

calculation time reduction, without influencing the obtained result.

Naturally, the calculation time to perform an open-loop analysis will increase

as it is applied to systems with a higher number of possible hardware combinations.

However, it is clear that applying the open-loop analysis results in extensive time

savings in executing the overall co-design methodology.

Chapter 5

Control Configuration

Optimization

In this chapter, the control configuration is discussed in more detail as part of the

hardware architecture and control configuration co-design (see Fig. 5.1). The con-

trol configuration optimization consists of the control architecture optimization on

the one hand and the controller tuning optimization on the other hand. First, it is

explained how the control architecture optimization can be performed with a large

freedom in its design space. A number of concepts and necessary notations are

provided that enable this control architecture optimization.

Furthermore, it is mentioned that next to the control architecture, also the con-

troller tuning optimization can be performed as part of the control configuration

optimization. In the scope of this control configuration optimization, a closed-loop

state-space methodology is established to reformulate an open-loop state-space

system with an extensive control architecture into one closed-loop state-space sys-

tem. This allows the compact and consistent modeling of a system with a wide va-

riety of control loops and enables the fast calculation of the corresponding closed-

loop response.

Finally, the findings of this chapter are also applied to a practical mechanical

synchronization example.

Actuator & Sensor Selection

Actuator & Sensor Placement

Control Architecture

Controller Tuning

Hardware Architecture

Control Configuration

System
Composition

Figure 5.1: Overview of the different aspects of the total system composi-
tion optimization with the focus of this chapter marked in blue

86 Control Configuration Optimization

5.1 Control Architecture Optimization

5.1.1 Background on Control Architecture Topologies

There are three general topologies concerning the control architecture for systems

consisting of multiple subsystems, being centralized, decentralized, and distributed

control (see Figure 5.2 for a graphical overview). With centralized control, the

entire system is manipulated using only one central controller. This also means

that the same controller is used to control all system inputs u in a desired and

logical way based on all the available system outputs y. The manual fine-tuning and

precise diagnosis of a completely centralized controller quickly becomes infeasible

as the size and number of subsystems increase.

Conversely, in decentralized control, a multi-variable process is decomposed

into multiple individual single-input-single-output (SISO) processes, and the con-

trollers are designed for each individual loop without taking the loop interactions

into account. So far, decentralized control is still the dominant control scheme in

multi-variable control because it has many advantages, such as flexibility in op-

eration, failure tolerance, and simplified design and tuning. Decentralized control

can generally work well when loop interactions are modest. However, when the

processes are closely coupled, it inevitably leads to performance degradation com-

pared to centralized control schemes, as the tuning of the controller is aimed at a

compromise between improving system performance and conquering loop interac-

tions [173].

Distributed control is placed somewhere in between entirely centralized and

decentralized control. In this control topology, the control tasks are mapped on

different processing units actuating on different subsystems, while control data is

transferred between the controllers using a communication system [30].

In [174], the differences between centralized and decentralized control for the

Airbus A320 longitudinal and lateral dynamics are investigated. When applying

the centralized method, the aircraft takes a longer time to minimize the oscilla-

tion response and get the airplane into a stable position compared to using two

controllers to control each aircraft motion (longitudinal and lateral) individually.

In that example, decentralized control is preferred over centralized control, while

distributed control is not examined. The optimal control architecture was also ex-

amined for a spatial six-degree-of-freedom electro-hydraulic parallel robot [175],

as seen in Fig. 5.3. The physical dynamic coupling effect existing in such a 6-DOF

parallel robot can limit or degrade the performance since the coupling may re-

strict the further improvement of control performances of various control schemes

and the development of the potential of such robot. Eliminating or reducing the

coupling of 6-DOF electro-hydraulic parallel robots can improve system control

accuracy and trajectory tracking performance in all DOFs. However, the reduction

of decoupling is not always straightforward and mostly application-dependent.

In [176], an overview and classification are provided of decentralized and dis-

tributed control topologies for large-scale systems. The design of distributed con-

5.1 Control Architecture Optimization 87

System

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

C
1

u
1

y
1

C
2

Communication system

u
2

y
2

C
3

(c)

u
3

y
3

C
4

u
4

y
4

System

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

C
1

u
1

y
1

C
2

u
2

y
2

C
3

(b)

u
3

y
3

C
4

u
4

y
4

System

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

C

u
1

y
1

u
2

y
2

(a)

u
3

y
3

u
4

y
4

Figure 5.2: Schematic overview of a system consisting of four interacting
subsystems (a) with one centralized controller C, (b) with four
decentralized controllers C1−C4, one for each subsystem, (c)
with distributed controllers C1−C4. The communication sys-
tem used for the information exchange between the distributed
controllers is highlighted in blue.

88 Control Configuration Optimization

Gimbal

Actuator

Rod

Moving
platform

Servo
valve

Fixed
base

Figure 5.3: Configuration of a 6-DOF parallel robot (from [175])

trollers for a class of systems consisting of several identical subsystems was de-

tailed in [177]. The work in that paper can only be applied if the system’s state-

space matrices satisfy a specific structural property. Similarly, [178] considers a

distributed linear-quadratic regulator (LQR) framework for a network of identical

dynamically decoupled multi-agent systems. In [179], a distributed Model Pre-

dictive Control (MPC) method was presented and compared with centralized and

decentralized MPC for a sextuple water tank system. Results show that the optimal

control method depends on the extent to which the model is identified and whether

reference tracking or disturbance rejection is preferred.

In the previous examples, different control architectures are considered

and compared. The conclusions show that the optimal control architecture is

application-dependent and that, therefore, not one particular control architecture

can be designated as superior. It also follows that the influence of the control

architecture on the final performance of a system is difficult to estimate in

advance. The cited papers compare different control architectures by running

them separately and then comparing the results, but so far, there is no easy way to

automatically optimize a system’s control architecture. As far as the co-design of

hardware architecture and control configuration is concerned, in current literature,

only the controller tuning is optimized while the control architecture is always

assumed fixed. There are, however, many control architecture features that

are very often used in industrial motion control and for which (to the author’s

knowledge) no other work is found that considers changing control architectures

during optimization. This is a substantial disadvantage of current literature as the

optimization of the control architecture has the potential to generate a considerable

gain in performance. The general co-design optimization algorithm presented

in this PhD dissertation allows an optimization algorithm to consider and apply

5.1 Control Architecture Optimization 89

different control architectures. Thus it allows to simultaneously optimize the

control architecture (together with the controller tuning) as part of the control

configuration optimization. This results in a very powerful tool capable of per-

forming a profound co-design of hardware architecture and control configuration.

Hereafter follows an overview of different control architecture features that can be

optimized as part of the general hardware and control co-design methodology.

5.1.2 Decentralized/Distributed Control Architecture Features

In literature, the description of control loops in the state-space domain is mostly

limited to an output or state feedback controller [36, 159], with or without inte-

gral reference tracking [163], or an observer to estimate non-measurable states

[52, 160]. Common examples of feedback control design methods in the state-

space formulation are linear-quadratic regulator (LQR) [56,180,181], H2 [36,148]

or robust H∞ [62, 182, 183] control. These methods have been intensively re-

searched but are mostly limited to determining a single feedback loop only. Un-

fortunately, state-space feedback controllers and their individual matrix element

gains are complicated to assess qualitatively, making it a challenging task to con-

duct user fine-tuning and diagnosis. Therefore, multiple interacting Single-Input

Single-Output (SISO) control loops are still preferred by many industrial users in

modern motion control applications. Examples of these commonly used control

architecture features are decentralized and distributed cascaded loops, feedforward

control, and synchronizing control [184–186]. Next, more background informa-

tion is given of how these different control features are implemented in feedback

control loops.

Decentralized controllers are the most basic feedback controllers and are part

of a feedback loop acting on a system input based on the difference between the

desired system value and a measured (or observed) system output. Moreover, dis-

tributed controllers can be used to allow interaction between different control loops.

In the scope of this work, the subscripts of the decentralized controllers indicate

which control loop they are part of, while the subscripts of the distributed con-

trollers indicate between which control loops the interaction is active. Therefore,

the subscripts of decentralized controllers will consist of one part, while the sub-

scripts of decentralized controllers will be two-part. For example, a decentralized

controller that is part of a feedback loop acting on system input 3 will be denoted

as C3, while a distributed controller that has its controller inputs from a subsystem

9 to control a subsystem 7 control loop will be denoted as C9−7. Fig. 5.4 shows a

general example of a system with two inputs u1 and u2, controlled by decentral-

ized controllers C1 and C2 and distributed controllers C1−2 and C2−1, with system

outputs y1 and y2, setpoints r1 and r2, and controller inputs e1 and e2.

90 Control Configuration Optimization

Plant with
multiple
subsystems

e
1

u
1

u
2

e
2

C
1

C
2

C
1-2

C
2-1

r
1 y

1

+

+

+
r

2

+

-

y
2+

+

-

Figure 5.4: Block diagram for a general control architecture with decen-
tralized controllers C1 and C2, distributed controllers C1−2 and
C2−1, inputs u1 and u2, system outputs y1 and y2, setpoints r1
and r2, and controller inputs e1 and e2

5.1 Control Architecture Optimization 91

Decentralized Control Variation: Cascaded Control

A first mentioned variation of decentralized control is cascaded control, in which

multiple SISO (Single-Input Single-Output) controllers are connected one after an-

other. In this case, the outer controller generates a control signal that serves as the

setpoint for the following controller. In the scope of this work, the cascade lev-

els are indicated with letters. The letter a represents the most inner loop cascade

level, followed by the letters b, c, ... for the subsequent outer cascade levels. This

is graphically shown in Fig. 5.5, with r1 and r2 being the outer and inner loop set-

points, y1, y2 being the plant outputs, u being the plant input, and Ca and Cb being

the cascade level a and b controllers.

This cascade control is commonly used in the process control where, for ex-

ample, an outer loop flow controller controls an inner loop valve orifice con-

troller [187]. It is also a common way of controlling a motion application’s po-

sition, where an outer and an inner controller are connected one after another. Typ-

ically, the inner loops have faster dynamics than the outer loops. That is why in

motion control applications, the inner and outer controllers are often speed and

position controllers, respectively. The outer position controller generates a control

signal that serves as the setpoint for the inner speed controller [36].

+

-
C
a

Plant
ur

2+

-
C
b

r
1

y
1

y
2

Figure 5.5: Block diagram for a general cascade control architecture, with
r1 and r2 being the outer and inner loop setpoints, y1, y2 being
plant outputs, u being the plant input, and Ca and Cb being the
cascade level a and b controllers

92 Control Configuration Optimization

Decentralized Control Variation: Feedforward Control

In addition to cascaded control, feedforward control is another commonly

used variation of decentralized control. This control variation is achieved by

pre-commanding the system depending on a reference signal or a disturbance

signal, without using any feedback from the system itself. As a result, reference

feedforward or disturbance feedforward can be obtained. See Fig. 5.6 for a general

example of a reference feedforward control loop, with r being the reference signal,

y being the system output, Cff and Cfb being the feedforward and feedback

controllers, uff and ufb being the feedforward and feedback controller outputs,

and u being the system input.

In process control, for example, a feedforward control can be used to immedi-

ately adjust a valve to a changing flow demand without using a feedback loop [187].

For motion applications, a reference feedforward control can clearly reduce the

tracking error and thus improve the trajectory tracking by forwarding the deriva-

tive(s) of the reference signal parallel with the controllers, multiplied with a spe-

cific feedforward gain [36]. Feedforward controllers Cff for motion applications

often consist of a derivative of the reference, multiplied with a single proportional

gain Kff .

+

+

Plant
uu

fb+

-
C
fb

u
ff

C
ff

r y

Figure 5.6: Block diagram for a general reference feedforward control, with
r being the reference signal, y being the system output, Cff and
Cfb being the feedforward and feedback controllers, uff and
ufb being the feedforward and feedback controller outputs and
u being the system input

5.1 Control Architecture Optimization 93

Distributed Control Variation: Synchronizing Control

Finally, synchronizing control can be used as a distributed control architecture ex-

tension to improve output synchronization between coupled subsystems that are

both parts of a more extensive system. Thereby, the synchronous control of sub-

system outputs is improved by taking into account the output deviations. This is

graphically shown in Fig. 5.7, with r being the setpoint for both system outputs y1
and y2, Csc being the synchronizing controller, e1 and e2 being the inputs for the

decentralized controllers C1 and C2 with controller outputs u1 and u2, d1 and d2
being disturbances and u being the system input.

Synchronizing control has been widely used in, for example, robotics, elec-

tric vehicles, steel rolling, and paper-making [188]. This synchronizing control

can be applied by adding separate controllers (e.g., P/PI/PID) acting on the rela-

tive fault signals between different states or outputs, reducing the error between

these different signals when one or more subsystems are disturbed internally or

externally [188]. An example of synchronizing speed control is where the output

difference between two actuated system speed outputs is taken as a compensation

signal. A controller Csc acts on this compensation signal, and its output is sent to

the corresponding speed reference signal. In this way, the speed error between the

two speed outputs is reduced when disturbances occur.

+

+

-

+

Plant

u
2

u

d
2

d
1

+

+

-

C
2

u
1

e
2

e
1

C
1

C
sc

r

y
2

y
1

+

+

+

-

-

Figure 5.7: Synchronizing control architecture to improve the synchroniza-
tion between two system outputs y1 and y2, with r being the
setpoint for both system outputs, Csc being the synchronizing
controller, e1 and e2 being the inputs for the decentralized con-
trollers C1 and C2 with controller outputs u1 and u2, d1 and d2
being disturbances and u being the system input

94 Control Configuration Optimization

5.1.3 Implementation in Co-Design Methodology

For this PhD’s general co-design optimization methodology, the design space of

the possible control architecture features applied to a system is decided by the

end-user and can consist of combinations of one or more previously mentioned ar-

chitecture features. In this control architecture design, reference signals Ref... and

input disturbances Dist... can also be taken into account. In addition, each control

architecture feature will have a certain cost that can be freely determined by the

end-user. The cost estimation can be influenced by, for example, hardware cost,

programming cost, or estimated training cost for operators or control technicians.

Each separate controller C... can be of various forms (e.g., P, PI, PID). For example,

a control architecture with multiple cascade control levels can be applied on a mo-

tion control setup with PID decentralized controllers, PID distributed controllers,

PI synchronizing controllers, and P feedforward controllers on both speed and po-

sition cascade loops. Each control architecture feature is accompanied by a binary

b... ∈ [0, 1] indicating its presence or absence. For clarity, the same subscripts

are used for the control architecture binaries b... as for the corresponding control

architecture features. Subscripts bdec and bdis can be used to group decentralized

and distributed controllers from the same cascade levels. For example, the pres-

ence of all distributed controllers for a specific cascade level c can be determined

simultaneously by one control architecture binary bc,dis. The control architecture

selection binaries are grouped in vector BΥ. The general co-design optimization

methodology can switch between different control architectures by changing the

binary values in BΥ. These binaries are then taken into account during the calcula-

tion of the closed-loop system response. As a result, every decentralized controller,

distributed controller, feedforward controller, and synchronizing controller can be

activated or deactivated by a corresponding binary in the general co-design opti-

mization methodology. This is a unique feature of this co-design methodology that

has not yet been described elsewhere.

5.1.4 Mechanical Synchronization Setup

Next, the control architecture design space is defined for the illustrative mechanical

synchronization setup, introduced in Section 3.6.4 on page 64. For this motion

application, the process state-space system with control architecture possibilities

are depicted in Fig. 5.8. The open-loop process of this mechanical synchronization

setup is seen in light blue (Apro, Bpro, Cpro, and Dpro). As can be seen in (3.8) on

page 65, the state matrix for this example contains both the position and the speed

of the inertias, while only the positions are available as process outputs (see (3.9)).

This means that the speed cannot be fed back directly from the process outputs.

A natural way of obtaining the speed of the inertias is by deriving these from the

inertia position information. However, by way of example, an observer is used to

estimate the inertia speeds in this mechanical synchronization case.

The state observer is shown in dark blue (Aobs, Bobs, Cobs, Dobs, and Lobs).

5.1 Control Architecture Optimization 95

A rule of thumb in observer design is to choose the observer poles so that their

dynamics are ten times faster than the process’s dynamics [163]. This is done

to ensure that the estimated states will approximate the process states sufficiently

quickly. More information on the observer design can be found in Subsection 3.6.2

on page 60.

For this control architecture example, there are two cascade levels denoted with

subscripts a and b for the inner speed control and outer position control, respec-

tively. The cascaded decentralized PID controllers and distributed PID controllers

can be seen in red and orange, respectively. Next to cascade control, feedforward

control can be applied to reduce the tracking error between the system outputs and

the references (marked in light green in Fig. 5.8). In this case, this feedforward

control is applied on the outer position control cascade level b by forwarding the

derivative of the reference signals, multiplied with gains Kff,b,.... The feedforward

control is shown in Fig. 5.8 in purple. This motion control application is a setup

where synchronization is essential. That is why synchronizing PID controllers on

both speed and position cascade levels are applied to improve output synchroniza-

tion between the coupled inertias.

The presence of the different control architecture features is indicated with bi-

naries, grouped in vector BΥ. The general co-design optimization algorithm con-

siders the design parameters in BΥ to optimize the control architecture as part of

the control configuration optimization. Table 5.1 shows the possible control archi-

tecture features with their corresponding binaries and respective implementation

costs. These costs are arbitrary and can be changed by the end-user according to

their estimated value.

Table 5.1: Control architecture features with their corresponding binaries
and implementation cost

Corresponding Cost

Control architecture feature binary [%]

Cascade level a decentralized speed control ba,dec 2.67

Cascade level a distributed speed control ba,dis 3.73

Cascade level b decentralized position control bb,dec 1.33

Cascade level b distributed position control bb,dis 2.13

Cascade level b feedforward control bb,ff 4.27

Cascade level a synchronizing speed control ba,sc 8.27

Cascade level b synchronizing position control bb,sc 8.27

9
6

C
o
n
tro

l
C

o
n
fi

g
u
ratio

n
O

p
tim

izatio
n

A
pro

+
+

1/s C
pro

x
pro

x
pro

y

e
a,1

u
1

B
pro

D
pro

e
a,2

+ +

PID
a,1

PID
a,2

PID
a,1-2

PID
a,2-1

�

x
pro

x
pro

�

A
obs

+
+

+

 L
obs

1/s C
obs

B
obs

Dist

D
obs

- -

+

^^

x̂

x̂

e
b,sc

PID
a,sc

PID
b,sc

e
a,sc

+

- +

-

u
2

Ref
1

Ref
2

-
+

-+

+

+

+

++

-+

+

+

+

-

-
+

+

-
+

K
ff,b,2

s

x̂

Open-loop processSynchronizing control

ObserverDisturbancesDistributed control

Decentralized controlReferences

Feedforward control

e
b,1 PID

b,1

PID
b,1-2

e
b,2 PID

b,2

PID
b,2-1

K
ff,b,1

s

Figure 5.8: Overview of the control scheme of the mechanical synchronization process (Apro, Bpro, Cpro, and Dpro) with
a state observer (Aobs, Bobs, Cobs, Dobs, and Lobs) to obtain the measured states x̂, controlled by decentralized
and distributed PID cascade controllers on cascade levels a and b for the speed and position control, respectively.
Also with feedforward P control and synchronizing PID control on both cascade levels a and b to follow the
references Ref1 and Ref2, while input disturbance Dist is present. e... are the controller input signals.

5.2 Controller Tuning Optimization 97

5.2 Controller Tuning Optimization

In previous parts of this chapter, it is mentioned that the control architecture can be

changed and thus optimized by the general co-design optimization methodology. It

is important to note that the co-design methodology discussed in this PhD not only

optimizes the control architecture but also simultaneously optimizes the control

parameters (= controller tuning) as part of the control configuration optimization.

These controller tuning parameters are grouped in vector Rtuning and are real

values. The amount of controller tuning parameters in Rtuning depends on the de-

sign space of the control architecture. For example, a simple state feedback matrix

for a system with n states and l inputs will have a feedback matrix K with dimen-

sions l× n. In that case, there will also be l · n variables that need to be optimized

by the co-design methodology as part of the controller tuning optimization. In

the case of proportional-integral-derivative (PID) control, each P, PI, and PID con-

troller will have one, two, and three controller tuning variables, respectively. The

P, I, and D values will be represented as proportional gain Kp, integral time Ti, and

derivative time Td respectively.

Fig. 5.9 shows a general example of a control loop for a system that is con-

trolled by a state feedback matrix K0. Furthermore, integral action is applied

to remove steady-state errors between the output y and reference r. A feedback

matrix Ki determines the gain of this integral action. In the simplest case, the

state-space feedback matrices K0 and Ki values can be chosen directly as design

parameters in the optimization algorithm. This way, the general optimization algo-

rithm chooses the best values for the feedback matrices K0 and Ki respecting the

applied objectives and constraints.

+

-

K
0

Plant
x
i

ue+

-
1/sr y

x

-K
i

Figure 5.9: A general example of a control loop for a system that is con-
trolled by a state feedback matrix K0 with integral action ma-
trix Ki to remove steady-state errors between the system output
y and reference r to be followed. e is the error signal, xi is the
integrated error signal, x represent the system states, and u is
the system input.

98 Control Configuration Optimization

Other ways can be used to obtain the controller feedback values. For example,

a linear-quadratic regulator (LQR) method can be applied (introduced in Chapter

2). An LQR method inherently involves a form of optimization in which the end-

user assigns weights to matrices Q and R to adjust the impact of the states and

inputs, respectively. The performance of an LQR controller comes down to the

determination of the diagonal values of the weighting matrices Q and R, and this

proves to be a challenging task. One of the reasons is that these weights are com-

pletely relative to each other and therefore are not directly related to time-domain

criteria such as maximum actuator effort or output range [36].

By applying the LQR method in the scope of this PhD, the diagonal values of

matrices Q and R are chosen as design parameters and optimized as a function of

the objectives and constraints. As a result, time-domain criteria such as maximum

actuator effort can easily be taken into account by programming these in the ob-

jective or constraint functions. This was done in the scope of this PhD, where the

hardware architecture and control parameters are simultaneously optimized for a

steel ladle application using the LQR method. More details can be found in [189].

This shows that the algorithm is able to adjust the Q and R weights to obtain a

controller that makes optimal use of the available actuator effort. In a similar way,

the tuning of robust controllers (e.g., H2 and H∞) can be optimized by designating

the weights in the frequency domain as design parameters in the general co-design

methodology. See Section 6.4 on page 153 for an example of the presented hard-

ware and control co-design methodology applied to an LPV composite plate model

with robust H∞ output feedback controller design.

5.2 Controller Tuning Optimization 99

5.2.1 Mechanical Synchronization Setup

The complete control architecture for the mechanical synchronization case is de-

picted in Fig. 5.8. It shows that P controllers are used for feedforward control.

The tuning of these controllers is determined by a single gain Kp,ff,... that needs

to be optimized. In addition, PID controllers are used for the decentralized and

distributed cascade control and the synchronization control. Each PID controller

PID... is of the standard form:

u(t) = Kp

(

e(t) +
1

Ti

✂ t

0

e(t)dt+ Td
de(t)

dt

)

, (5.1)

with e(t) and u(t) being the PID controller input and output [190]. Therefore, ev-

ery PID controller has three parameters to be optimized: Kp for the proportional

part, Ti for the integral part, and Td for the derivative part. Table 5.2 lists all con-

trollers for the mechanical synchronization setup with their corresponding tuning

parameters. This shows that 32 controller tuning parameters (grouped in vector

Rtuning) can be optimized as part of the control tuning optimization. The values of

these controller tuning parameters can be overridden by the corresponding control

architecture binaries BΥ during the operation of the optimization algorithm. For

example, if a feedforward control binary bff equals zero, the corresponding feed-

forward gains Kff will also be set to zero so that they do not affect the closed-loop

system response. The control configuration and hardware architecture co-design is

further detailed in Chapter 6.

100 Control Configuration Optimization

Table 5.2: List of all applicable controllers in the mechanical synchroniza-
tion example’s control architecture with their corresponding tun-
ing parameters. This shows that there are 32 controller tuning
parameters, grouped in vector Rtuning .

Controller

Controller description Controller tuning

annotation parameters

Decentralized cascade level a speed

control on feedback loop 1

Kp,a,1

PIDa,1 Ti,a,1

Td,a,1

Decentralized cascade level a speed

control on feedback loop 2

Kp,a,2

PIDa,2 Ti,a,2

Td,a,2

Distributed cascade level a speed

control from feedback loop 1 to 2

Kp,a,1−2

PIDa,1−2 Ti,a,1−2

Td,a,1−2

Distributed cascade level a speed

control from feedback loop 2 to 1

Kp,a,2−1

PIDa,2−1 Ti,a,2−1

Td,a,2−1

Decentralized cascade level b position

control on feedback loop 1

Kp,a,1

PIDb,1 Ti,b,1

Td,b,1

Decentralized cascade level b position

control on feedback loop 2

Kp,b,2

PIDb,2 Ti,b,2

Td,b,2

Distributed cascade level b position

control from feedback loop 1 to 2

Kp,b,1−2

PIDb,1−2 Ti,b,1−2

Td,b,1−2

Distributed cascade level b position

control from feedback loop 2 to 1

Kp,b,2−1

PIDb,2−1 Ti,b,2−1

Td,b,2−1

Synchronizing control on cascade

level a speed control

Kp,a,sc

PIDa,sc Ti,a,sc

Td,a,sc

Synchronizing control on cascade

level b position control

Kp,b,sc

PIDb,sc Ti,b,sc

Td,b,sc

Feedforward control on cascade Kff,b,1 Kff,b,1

level b position control Kff,b,2 Kff,b,2

Rtuning

5.3 Closed-Loop State-Space Methodology 101

5.3 Closed-Loop State-Space Methodology

Chapter 3 mentioned that derivative-free optimization algorithms are used to im-

plement the general co-design methodology in this PhD. These algorithms require

a large number of closed-loop response calculations to arrive at a solution. The

closed-loop system consists of the open-loop process with extended control ar-

chitecture features. These possible control architecture features are mentioned in

Section 5.1.2, where each controller can be a P, PI, or PID controller on its own.

The general co-design methodology has the important contribution that a com-

prehensive control structure with a wide range of control features can be applied

and efficiently optimized. This is possible by developing a closed-loop state-space

methodology to create a discrete closed-loop state-space system from an open-loop

state-space process with an observer and an extensive feedback control structure,

which is presented in this section.

The section starts with an elaborate motivation for applying the closed-loop

state-space modeling methodology, outlining its concrete benefits. After that, back-

ground information is provided on how to formulate the different parts of the ex-

tensive feedback control loop in the discrete time-domain, followed by a definition

of the nomenclature for the different components. Next, the different steps of the

generic closed-loop state-space methodology are explained in detail, after which

an application on the mechanical synchronization case is illustrated. Finally, the

results are compared with existing methods to demonstrate the validness and effec-

tiveness of the presented closed-loop state-space methodology.

5.3.1 Background and Motivation

Nowadays, in complex system design, the dynamic behavior is first modeled and

defined in a mathematical representation. This mathematical representation can be

accomplished using different model types, e.g., state-space models, transfer func-

tion models, zero-pole gain models, or frequency response data models. Together

with the open-loop model, feedback control loops can be included to simulate

the closed-loop behavior of the system before making expensive physical proto-

types. Conventionally, feedback control loops with complex control architectures

are modeled using graphical programming tools, such as MATLAB® Simulink

or National Instruments® LabVIEW. These causal block diagrams (CBD) offer

the advantages that the input and output relationships between the different inter-

connected control loop blocks can be flexibly adjusted and graphically arranged.

Another advantage is that libraries of pre-programmed blocks can be implemented

[13, 14, 191].

However, the main disadvantage of these graphical programming tools is that

they take a relatively long time to calculate a closed-loop response. This is not a

big issue for a single simulation, but it does pose a problem if it is to be used in it-

erative optimization algorithms. Frequently used evolutionary-based optimization

102 Control Configuration Optimization

algorithms use iterative calculations of system responses to arrive at an optimal

solution. When applying these iterative optimization algorithms, typically, a large

number of simulations is required. Therefore, the previously mentioned graphical

programming tools cannot be used to quickly and efficiently calculate the closed-

loop responses when using iterative optimization algorithms.

On the contrary, calculating the response of discrete open-loop state-space sys-

tem models can be done very quickly, thanks to fast matrix calculations. In current

literature, the description of control loops in the state-space domain is limited to

an output or state feedback controller [36, 159], with or without an integral ref-

erence tracking [163], or an observer to estimate non-measurable states [52, 160].

No examples were found of methods to implement a comprehensive control loop

in the state-space domain such as the ones shown in Fig. 5.8 on page 96. That is

why in this PhD dissertation, a generally applicable methodology is introduced to

generate a closed-loop state-space formulation of a process with an observer and

with a large variety of control loop possibilities. The presented methodology en-

ables the inclusion of an observer with combinations of cascaded decentralized and

distributed PID control, feedforward control and synchronizing PID control while

taking into account reference tracking and input disturbances. Moreover, the influ-

ence of non-linearities, such as actuator output saturation, can be considered using

this methodology. The impact of adding or omitting specific controller structures

can also be investigated quickly by setting the corresponding controller gains to

zero based on the active control architecture binary values. Together with the flexi-

ble adjustment of the controller architecture, process parameters can also easily be

adjusted, and their influence on the closed-loop system response can efficiently be

determined. Therefore, the presented closed-loop state-space methodology enables

to efficiently execute the simultaneous co-design of both the hardware architecture

and the control configuration, which is the primary goal of this PhD.

Another advantage of this generic methodology is that it enables to apply a

wide range of different state-space analysis techniques on the closed-loop model

with extended control structures [15, 163, 192, 193]. For example, the complete

closed-loop system stability can be examined in function of the applied control

structures with corresponding controller tuning. This makes it possible to prede-

termine the unstable behavior of specific closed-loop configurations without the

need to fully calculate the response.

This closed-loop state-space methodology only considers linear time-invariant

(LTI) systems in this PhD work, but the proposed methodology also allows for the

integration of non-linear state-space models like linear parameter-varying (LPV)

[194] or linear time-varying (LTV) [172] systems.

5.3 Closed-Loop State-Space Methodology 103

5.3.2 Discrete State-Space Process and Observer Representation

In Section 3.6 on page 59, background information is given on the continuous

time-domain state-space modeling. These continuous systems cannot be directly

simulated using a computer. For this purpose, discrete system descriptions are

needed instead. A discrete (open-loop) state-space representation SSpro,d is used to

represent a linear time-invariant (LTI) process in matrix form. A continuous-time

LTI model can be converted to a discrete-time model using various discretization

methods, for example, ’zero-order hold’ [195], ’first-order hold’ [196], ’impulse

variant’ [197], or ’Tustin’ [198]. The discretized state-space structure of the con-

tinuous LTI state-space system formulation in (3.2) is shown in (5.2), with n being

the number of states in the state vector x, m being the number of outputs in the

output vector y and l being the maximum number of available actuator inputs from

input vector u [52]. The resulting discrete state-space process matrix values de-

pend on the desired sampling time Ts. An alternative way to achieve a discrete

system representation is to obtain it through the use of ’difference equations’ (in

analogy with ’differential equations’ for continuous representations). More details

on discrete LTI systems can be found in [52, 160, 199].

SSpro,d =

{

x(k + 1) = Apro,d · x(k) +Bpro,d · u(k)
y(k) = Cpro,d · x(k) +Dpro,d · u(k)

,

with x ∈ R
n , u ∈ R

l , y ∈ R
m (5.2)

Assume that the discrete LTI process matrices Apro,d, Bpro,d, Cpro,d, Dpro,d

and input vector u are known for every sample from starting time T0 to total sim-

ulation time Tm with sampling time intervals Ts. In this case, the response of the

system, being the coarse of the system state vector x and the output vector y based

on the input vector u, can be calculated iteratively according to the pseudocode in

Algorithm 1.

Algorithm 1 Calculation of a discrete process state x(k) and output response y(k)
with known inputs u(k).

1: for k = 1 : Tm/Ts

2: x(k + 1) = Apro,d ∗ x(k) +Bpro,d ∗ u(k)
3: y(k) = Cpro,d ∗ x(k) +Dpro,d ∗ u(k)
4: end

Similarly, the continuous time-domain observer description from (3.3) can be

discretized, and this discrete observer response can be calculated using the pseu-

docode shown in Algorithm 2.

104 Control Configuration Optimization

Algorithm 2 Calculation of a discrete observer estimated states x̂(k) and estimated

output response ŷ(k) with known inputs u(k) and process output measurements

y(k).

1: for k = 1 : Tm/Ts

2: x̂(k + 1) = Aobs,d ∗ x̂(k) +Bobs,d ∗ u(k) + Lobs,d ∗ (y(k)− ŷ(k))
3: ŷ(k) = Cobs,d ∗ x̂(k) +Dobs,d ∗ u(k)
4: end

5.3.3 Discrete State-Space PID Representation

The algorithms mentioned above only consider the open-loop response of the pro-

cess. The methodology described in this chapter aims to extend the algorithms

mentioned above to calculate the closed-loop response of the process controlled

by comprehensive loop structures. Therefore, the next step is to describe a con-

tinuous Proportional-Integral-Derivative (PID) controller in a discrete state-space

representation. The relation from controller input e(t) to controller output u(t) for

a standard form PID controller in the continuous time-domain can be seen in (5.3),

of which Fig. 5.10 (a) gives a graphical overview [15].

u(t) =Kp

(

e(t) +
1

Ti

✂ t

0

e(t)dt+ Td
de(t)

dt

)

=Kpe(t) +
Kp

Ti

✂ t

0

e(t)dt+KpTd
de(t)

dt

(5.3)

The integral and derivative parts are discretized using numerical definitions to

forms suitable for computer computation. This can be seen in (5.4) and (5.5) for

the derivative and integral parts, respectively.

de(t)

dt
≈

e(t)− e(t− 1)

Ts
(5.4)

✂ t

0

e(t)dt ≈ Ts

k
∑

0

e(k) (5.5)

The discretized PID algorithm is shown below in (5.6).

u(k) = Kpe(k) +
KpTs

Ti

k
∑

0

e(k) +
KpTd (e(k)− e(k − 1))

Ts
(5.6)

(5.7) is obtained by time-shifting (5.6) back one sample.

u(k − 1) = Kpe(k − 1) +
KpTs

Ti

k−1
∑

0

e(k) +
KpTd (e(k − 1)− e(k − 2))

Ts
(5.7)

5.3 Closed-Loop State-Space Methodology 105

By subtracting (5.7) from (5.6) and rearranging, (5.8) is obtained.

u(k) = u(k − 1) +Kp (e(k)− e(k − 1)) + ...

KpTs

Ti
e(k) +

KpTd

Ts
(e(k)− 2e(k − 1) + e(k − 2))

= u(k − 1) +Kp

(

1 +
Ts

Ti
+

Td

Ts

)

e(k) + ...

−Kp

(

1 + 2
Td

Ts

)

e(k − 1) +
KpTd

Ts
e(k − 2)

(5.8)

This equation is also known as the discrete PID velocity form [200]. After rear-

ranging, (5.9) is obtained.

u(k) = u(k − 1) + c0e(k) + c1e(k − 1) + c2e(k − 2),

with: c0 = Kp

(

1 +
Ts

Ti
+

Td

Ts

)

,

c1 = −Kp

(

1 + 2
Td

Ts

)

, and

c2 =
KpTd

Ts

(5.9)

This discrete PID controller is graphically shown in Fig. 5.10 (b), from which

a discrete state-space representation can be derived with states x1 and x2. The

pseudocode to iteratively calculate the discrete PID controller output u(k) from an

input e(k) can be seen in Algorithm 3.

Algorithm 3 Calculation of a discrete PID controller output response u(k) to a

known input e(k) with separate calculations for the states x1(k) and x2(k).

1: c0 = Kp(1 + Ts/Ti + Td/Ts)
2: c1 = −Kp(1 + 2Td/Ts)
3: c2 = KpTd/Ts

4: for k = 1 : Tm/Ts

5: u(k) = x1(k) + c0 ∗ e(k)
6: x1(k + 1) = x2(k) + c1 ∗ e(k) + u(k)
7: x2(k + 1) = c2 ∗ e(k)
8: end

Using vertical matrix concatenation, the two equations to calculate the states

(lines 6 & 7 in Algorithm 3) can be combined into one equation that simultaneously

calculates both states, as shown in Algorithm 4.

106 Control Configuration Optimization

Td

Kp

1/Ti

s

1/s

+

+e(t) u(t)

(a)

(b)

+

z-1
+

z-1

c
0

x
1

x
2

e(k)

u(k)

+

c
1

+

+

c
2

Figure 5.10: (a) Schematic overview of a PID controller in continuous time
domain.
(b) Schematic overview of a PID controller in discrete time
domain. See (5.9) for clarification on values c0, c1 and c2.

Algorithm 4 Calculation of a discrete PID controller output response u(k) to a

known input e(k) with combined calculations for the states x(k).

1: c0 = Kp(1 + Ts/Ti + Td/Ts)
2: c1 = −Kp(1 + 2Td/Ts)
3: c2 = KpTd/Ts

4: for k = 1 : Tm/Ts

5: u(k) = x(k, 1) + c0 ∗ e(k)
6: x(k + 1, :) = [0 1; 0 0] ∗ x(k, :) + [c1; c2] ∗ e(k) + [1; 0] ∗ u(k)
7: end

5.3 Closed-Loop State-Space Methodology 107

5.3.4 Extensive Control Structure Possibilities

Modern industrial drives used for motion control have very extensive control ar-

chitecture possibilities, as can be seen in Section 5.1. This closed-loop state-space

methodology aims to implement these industrially relevant control loop possibili-

ties together with the existing process model into one closed-loop state-space rep-

resentation. Fig. 5.8 on page 96 depicts an example of a system with an extensive

control scheme. This figure is valid for both the continuous and the discrete time-

domain, which is why no distinction is made between the two time-domains for

the moment. The closed-loop state-space system is referred to as SSCL, which is

composed of the open-loop state-space process SSpro (containing matrices Apro,

Bpro, Cpro, and Dpro) with an observer (containing matrices Aobs, Bobs, Cobs,

Dobs, and Lpro) and its control structures. The process is driven by two actua-

tor inputs 1 and 2 with decentralized and distributed cascaded PID controllers on

the inner cascade level a (PIDa,1, PIDa,1−2, PIDa,2−1, and PIDa,2) and outer

cascade level b (PIDb,1, PIDb,1−2, PIDb,2−1, and PIDb,2), feedforward control

on the outer cascade level b (Kff,b,1 and Kff,b,2), synchronizing PID control on

both inner cascade level a (PIDa,sc) and outer cascade level b (PIDb,sc), refer-

ence tracking (Ref1 and Ref2), and input disturbance (Dist). Table 5.3 shows

the nomenclature for all relevant matrices and signals. Although the methodology

mainly refers to the example in Fig. 5.8, it is certainly not limited to this topology

and can be extended with, for example, more subsystem inputs (3, 4, etc.) or more

nested cascade loop levels (c, d, etc.). Typically, the number of cascade levels (a,

b, c, etc.) will depend on the order of the system.

108 Control Configuration Optimization

Table 5.3: Nomenclature for the relevant matrices, signals and gains, refer-
ring to Fig. 5.8 on page 96

Matrices

A... State-space system matrix

B... State-space input matrix

C... State-space output matrix

D... State-space feedforward matrix

Signals

xpro LTI Process state vector

x̂pro Observer state vector

y Output vector

Ref... Reference trajectories

Dist... Input disturbances

e... Controller inputs

u... LTI process inputs

Subscripts

... pro Referring to the LTI Process

... obs Referring to the observer

... a, ... b, etc. Referring to the cascade loop level

... 1, ... 2, etc. Referring to the actuator input

... ff Referring to feedforward control

... sc Referring to synchronizing control

Controllers

PID... PID controller

Kp... PID controller proportional gain

T i... PID controller integration time

Td... PID controller derivative time

Nomenclature examples

Bpro LTI process state-space input matrix

Cobs Observer state-space output matrix

PIDa,2 Cascade level a decentralized PID controller on actuator input 2

PIDb,1−2

Cascade level b distributed PID controller from actuator input 1 to

actuator input 2

eb,sc Input signal for the synchronizing PID controller on cascade level b
Kff,a,1 Cascade level a feedforward controller gain on actuator input 1

Kp,a,2
Cascade level a decentralized controller on actuator input 2

proportional gain

Ti,b,2−1

Cascade level b distributed controller from actuator 2 to actuator 1

integration time

Td,a,1
Cascade level a decentralized controller on actuator input 1

derivative time

5.3 Closed-Loop State-Space Methodology 109

5.3.5 SSCL Methodology Workflow

This section establishes a reasoning for the various steps an end-user must take

to obtain the desired closed-loop state-space formulation. Figure 5.11 shows an

overview of the methodology. Next, the different steps are explained in more detail.

State-space process SS
pro

 with observer
and extensive control architecture

Define logical signal naming
and identify external inputs

1.

2.

3.

4.

5.

6.

Determine the equations representing the
relationships between different system parts

Combine equations for the PID
controllers sharing the same inputs

Incorporate controller input equations into
successive controller state equations

Incorporate controller output equations into
successive controller state equations

Rearrange and group the equations into
one closed-loop state-space system

SS
CL

 constisting of
matrices A

CL
, B

CL
, C

CL
, and D

CL

Figure 5.11: Overview of the different steps behind the logic of the closed-
loop state-space methodology. The numbering of the different
tasks corresponds to the numbering in the text.

1. Label each controller input e... with a logical name. An overview of the

subscripts for the controller input names is given in Table 5.3. Next, iden-

tify the external inputs. These are the inputs from reference trajectories and

disturbances (light green and dark green in Fig. 5.8, respectively).

110 Control Configuration Optimization

2. Create a set of equations representing the relationships between the process,

the observer, and the controllers, using the appropriate inputs and outputs

from the previous step. As stated earlier, the LTI process SSpro has n states,

m outputs and l inputs and there are o PID controllers in the overall control

structure, with each PID controller having two states. The separate discrete

state-space calculations for an LTI process, an observer, and a PID controller

are shown in algorithms 1, 2, and 4, respectively. All separate LTI process,

observer, and controller state equations must be set up correctly using unique

(and preferably) logical naming. The parameters c0, c1 and c2 for every PID

controller are determined by (5.9).

The causality of the control loop determines the order of the equations and

interactions. This causality is represented as a Causal Block Diagram (CBD)

in Fig. 5.8 [13]. In this case, the order of the equations and interactions starts

from the external reference trajectory via the cascaded loop levels to the LTI

process and observer (in other words, from left to right, referring to Fig. 5.8).

The resulting pseudocode can be seen in Algorithm 5. The calculation of the

system response is in the discrete time-domain, but the subscripts ’d’ are not

used in the pseudocodes for the sake of simplicity.

Algorithm 5 Extensive iterative calculation of a process with an observer, decen-

tralized and distributed cascaded loop control, synchronizing control, reference

trajectories and disturbance inputs. An overview of the entire system can be seen

in Fig. 5.8 on page 96.

1: for k = 1 : Tm/Ts

Cascade levels a & b synchronizing controller inputs

2: eb,sc(k) = y(1, k)− y(2, k)
3: ea,sc(k) = x̂(1, k)− x̂(2, k)

Cascade levels a & b synchronizing controller equations

4: for i = [a,b]

5: PIDi,sc,u(k) = PIDi,sc,x(1, k) + ci,sc,0 ∗ ei,sc(k)
6: PIDi,sc,x(:, k + 1) = [0 1; 0 0] ∗ PIDi,sc,x(k) + ...

[ci,sc,1; ci,sc,2] ∗ ei,sc(k) + [1; 0] ∗ PIDi,sc,u(k)
7: end

Cascade level b controller inputs

8: eb,1(k) = Ref1(k)− y(1, k)− PIDb,sc,u(k)
9: eb,2(k) = Ref2(k)− y(2, k) + PIDb,sc,u(k)

...

5.3 Closed-Loop State-Space Methodology 111

Algorithm 6 (Continued from Algorithm 5.)
...

Cascade level b decentralized and distributed controller equations

10: for j = [1,2,1-2,2-1]

11: PIDb,j,u(k) = PIDb,j,x(1, k) + cb,j,0 ∗ eb,j(k)
12: PIDb,j,x(:, k + 1) = [0 1; 0 0] ∗ PIDb,j,x(k) + ...

[cb,j,1; cb,j,2] ∗ eb,j(k) + [1; 0] ∗ PIDb,j,u(k)
13: end

Cascade level a controller inputs

14: ea,1(k) = PIDb,1,u(k) + PIDb,2−1,u(k) + ...
Kff,b,1 ∗ (Ref1(k)−Ref1(k − 1)) /Ts − x̂(1, k)− PIDa,sc,u(k)

15: ea,2(k) = PIDb,2,u(k) + PIDb,1−2,u(k) + ...
Kff,b,2 ∗ (Ref2(k)−Ref2(k − 1)) /Ts − x̂(2, k) + PIDa,sc,u(k)
Cascade level a decentralized and distributed controller equations

16: for j = [1,2,1-2,2-1]

17: PIDa,j,u(k) = PIDa,j,x(1, k) + ca,j,0 ∗ ea,j(k)
18: PIDa,j,x(:, k + 1) = [0 1; 0 0] ∗ PIDa,j,x(k) + ...

[ca,j,1; ca,j,2] ∗ ea,j(k) + [1; 0] ∗ PIDa,j,u(k)
19: end

Process inputs

20: u(1, k) = PIDa,1,u(k) + PIDa,2−1,u(k)
21: u(2, k) = PIDa,2,u(k) + PIDa,1−2,u(k)
22: u(3, k) = Dist(k)

Process and observer equations

23: x(:, k + 1) = Apro ∗ x(:, k) +Bpro ∗ u(:, k)
24: y(:, k + 1) = Cpro ∗ x(:, k) +Dpro ∗ u(:, k)
25: x̂(:, k + 1) = Aobs ∗ x̂(:, k) +Bobs ∗ u(:, k) + Lobs ∗ (y(:, k)− ŷ(:, k))
26: ŷ(:, k + 1) = Cobs ∗ x̂(:, k) +Dobs ∗ u(:, k)
27: end

Algorithm 5 allows to quickly and efficiently calculate the closed-loop re-

sponse of the system with an extensive control structure. It is also possible to

include actuator output saturation. To do so, code lines 20 and 21 of Algorithm 5

above are extended as shown in Algorithm 7, in which umax,Act,... is the maximum

actuator output of the corresponding actuator. Depending on the chosen actuator

selection integers Zact, other values for umax,Act,... may apply. In this way, the gen-

eral co-design optimization algorithm can take into account changing, non-linear

actuator output saturation related to the selected actuator types.

112 Control Configuration Optimization

Algorithm 7 Edit of the process input calculations to implement (non-linear) actu-

ator output saturation, with umax,act,... being the maximum actuator output value

Process inputs

1: u(1, k) = min(umax,act,1,max(−umax,act,1, ...
P IDa,1,u(k) + PIDa,2−1,u(k)))

2: u(2, k) = min(umax,act,2,max(−umax,act,2, ...
P IDa,2,u(k) + PIDa,1−2,u(k)))

The closed-loop system response calculation equations in Algorithm 5 are not

in the general, condensed state-space form as in (5.2). The following steps describe

how to obtain this appropriate representation of SSCL.

3. Successive calculations for separate PID controllers having the same inputs

can be combined using matrix concatenations. An example of equations for

separate controllers PIDp and PIDq sharing the same input e are shown in

(5.10) and (5.11).

PIDp,u(:, k) =PIDp,x(1, k) + cp,0e(:, k)

PIDp,x(:, k + 1) =

[

0 1
0 0

]

PIDp,x(:, k) + ...

[

cp,1
cp,2

]

e(:, k) +

[

1
0

]

PIDp,u(:, k)

(5.10)

PIDq,u(:, k) =PIDq,x(1, k) + cp,0e(:, k)

PIDq,x(:, k + 1) =

[

0 1
0 0

]

PIDq,x(:, k) + ...

[

cq,1
cq,2

]

e(:, k) +

[

1
0

]

PIDq,u(:, k)

(5.11)

These equations can be combined to obtain a controller PIDr with equa-

tions:

PIDr,u(:, k) =PIDr,x(1, k) + PIDr,x(3, k)

[

cp,0
cq,0

]

e(:, k)

PIDr,x(:, k + 1) =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

PIDr,x(:, k) + ...

cp,1
cp,2
cq,1
cq,2

e(:, k) +

1 0
0 0
0 1
0 0

PIDr,u(:, k)

(5.12)

5.3 Closed-Loop State-Space Methodology 113

This approach can be applied on Algorithm 5 to obtain algorithm 9 in Ap-

pendix A.

4. The equations can be further grouped by integrating intermediate solutions

into the successive equations. More specifically for this methodology, the

controller input equations can be entered directly into the controller state

equations. An example follows of how the equations for the inputs e1 and

e2 for a system PIDx in (5.13) can be converted to a combined equation for

PIDx in (5.14).

e1(k) =Ref1(k)− y(1, k)− PIDsc,u(2, k)

e2(k) =Ref2(k)− y(2, k)− PIDsc,u(2, k)

PIDx(:, k + 1) =Spre,2PIDx(:, k) + ...

c1,1 0
c1,2 0
0 c2,1
0 c2,2

c1−2,1 0
c1−2,2 0
0 c2−1,1

0 c2−1,2

[

e1(k)
e2(k)

]

+ Spre,3PIDu(:, k)

(5.13)

PIDx(:, k + 1) =Spre,2PIDx(k) +

c1,1 0
c1,2 0
0 c2,1
0 c2,2

c1−2,1 0
c1−2,2 0
0 c2−1,1

0 c2−1,2

...

[[

Ref1(k)
Ref2(k)

]

+

[

−y(1, k)
−y(2, k)

]

+ ...

[

0 −1
0 −1

]

PIDsc,u(:, k)

]

+ Spre,3PIDu(k)

(5.14)

This step will reduce the number of lines for the discrete calculation, but

it will make the equations themselves more lengthy. Additionally, the pro-

cess and observer equations are combined. This approach can be used on

Algorithm 9 to obtain Algorithm 11, see Appendix A.

114 Control Configuration Optimization

5. Similarly as in the previous step, calculating the output u of each separate

part can be included in the state equations. During the iterative calculations,

the outputs of the separate parts are calculated for sample k, while the states

are calculated for the next sample k + 1. In other words, the calculation of

the states at sample k + 1 is always based on signals at the previous time

sample k.

Next, an example is given of how a system with separate equations for the

controller output u and controller states x (5.15) can be converted to a system

with only state equations (5.16) by integrating the output equations into the

state equations using matrix algebra. Part of the matrices are denoted as [...]
to save space and keep the equations organized. The values of these matrices

follow from the previous steps.

PIDsc,u(:, k) =[...]PIDsc,x(:, k) + [...]x(:, k) + [...]y(:, k)

PIDsc,x(:, k + 1) =[...]PIDsc,u(:, k) + [...]PIDsc,x(:, k) + ...

[...]x(:, k) + [...]y(:, k)

PIDb,u(k) =[...]PIDsc,u(:, k) + [...]PIDb,x(:, k) + ...

[...]y(:, k) + [...]

[

Ref1(k)
Ref2(k)

]

PIDb,x(:, k + 1) =[...]PIDsc,u(:, k) + [...]PIDb,u(k) + ...

[...]PIDb,x(k) + [...]y(:, k) + [...]

[

Ref1(k)
Ref2(k)

]

PIDa,u(k) =[...]PIDsc,u(:, k) + [...]PIDb,u(k) + ...

[...]PIDa,x(:, k) + [...]x(:, k) + ...

[...]

[

Ref1(k)
Ref2(k)

]

PIDa,x(:, k + 1) =[...]PIDsc,u(:, k) + [...]PIDb,u(k) + ...

[...]PIDa,u(k) + [...]PIDa,x(:, k) + ...

[...]x(:, k) + [...]

[

Ref1(k)
Ref2(k)

]

u(:, k) =

[

PIDa,u(:, k)
Dist(k)

]

x(:, k + 1) =[...]u(:, k) + [...]x(:, k) + [...]y(:, k)

y(:, k + 1) =[...]u(:, k) + [...]x(:, k)

(5.15)

5.3 Closed-Loop State-Space Methodology 115

PIDsc,x(:, k + 1) =[...]PIDsc,x(:, k) + [...]x(:, k) + [...]y(:, k)

PIDb,x(:, k + 1) =[...]PIDsc,x(:, k) + [...]PIDb,x(k) + ...

[...]x(:, k) + [...]y(:, k) + [...]

[

Ref1(k)
Ref2(k)

]

PIDa,x(:, k + 1) =[...]PIDsc,x(:, k) + [...]PIDb,x(k) + ...

[...]PIDa,x(k) + [...]x(:, k) + ...

[...]y(:, k) + [...]

[

Ref1(k)
Ref2(k)

]

u(:, k) =[...]PIDsc,x + [...]PIDb,x + [...]PIDa,x + ...

[...]x(:, k) + [...]y(:, k) + ...

[...]

[

Ref1(k)
Ref2(k)

]

+ [...]
[

Dist
]

x(:, k + 1) =[...]PIDsc,x + [...]PIDb,x + [...]PIDa,x + ...

[...]x(:, k) + [...]y(:, k) + ...

[...]

[

Ref1(k)
Ref2(k)

]

+ [...]
[

Dist
]

y(:, k + 1) =[...]PIDsc,x + [...]PIDb,x + [...]PIDa,x + ...

[...]x(:, k) + [...]y(:, k) + ...

[...]

[

Ref1(k)
Ref2(k)

]

+ [...]
[

Dist
]

(5.16)

After this step, very extensive equations can be obtained, with large parts

remaining constant throughout the iterative calculation of the closed-loop

system response. As stated before, these parts are grouped in predetermined

matrices and calculated in advance so that they do not need to be recalculated

for each sample. These sparse matrices Spre,... are too large to be shown here

clearly, but they follow from the previous steps in the described methodol-

ogy. By doing so, the calculations of the total closed-loop system SSCL are

accelerated. This approach can be used on Algorithm 11 to obtain Algo-

rithm 13, see Appendix A.

6. The last step is to combine the equations into one closed-loop state-space

system. For this purpose, the individual states (from the process, observer,

PID controllers, etc.) are grouped into one state matrix, and the system ma-

trices ACL, BCL, CCL, and DCL are correspondingly grouped, ensuring

that the original equations remain valid. The complete closed-loop system

SSCL states consist of the LTI process states xpro, observer states x̂pro, and

116 Control Configuration Optimization

states of each PID controller xPID... (with subscripts referring to the corre-

sponding input and appropriate cascade level). The general form of the state

matrix xCL for the closed-loop system SSCL is shown in (5.17).

xCL =

[

xOL

]

n× 1
[

x̂OL

]

n× 1
[

xPID...

]

2× 1
[

xPID...

]

2× 1
...

=
[xCL]

(2 · n+ o · 2)× 1

with n the number of states in the open-loop LTI process, and

o the total number of PID controllers in the control structure.

(5.17)

This also means that the size of matrix ACL will be [(2 ·n+ o · 2)× (2 ·n+
o · 2)]. The closed-loop system SSCL input matrix uCL consists of the LTI

process outputs yOL (from the previous sample), complemented by external

disturbances Dist... and reference trajectories Ref....

A general representation of this input matrix uCL can be seen in (5.18).

uCL =

[

yOL

]

n× 1
[

Dist...
]

q × 1
[

Ref ...
]

r × 1

=
[uCL]

[(n+ q + r)× 1]

with n the number of states in the LTI process,

q the number of external disturbance signals,

r the number of reference trajectories.

(5.18)

The outputs for this closed-loop system SSCL are the same m outputs as for the

LTI process. The closed-loop matrices CCL and DCL will have dimensions m ×
(2 · n+ o · 2) and m× (n+ q + r), respectively.

Below in Algorithm 8, the pseudocode is shown to iteratively calculate the

closed-loop system SSCL response based on external reference signals Ref... and

disturbance signals Dist... after the closed-loop matrices ACL, BCL, CCL, and

DCL have been determined using the previous steps.

5.3 Closed-Loop State-Space Methodology 117

Algorithm 8 General example of how the response of the resulting closed-loop

state-space system SSCL is iteratively calculated.

Non-iterative determination of the invariable closed-loop matrices (following

from previous methodology steps)

1: ACL = ...
2: BCL = ...
3: CCL = ...
4: DCL = ...

Iterative response calculation

5: for k = 1 : Tm/Ts

Determine the inputs on sample k
6: u(:, k) = [y(:, k);Dist...(:, k);Ref...(:, k)]

Determine the states for the next sample k + 1
7: x(:, k + 1) = ACL ∗ x(:, k) +BCL ∗ u(:, k) + L ∗ (y(:, k)− ŷ(:, k))

Determine the outputs for the next sample k + 1
8: y(:, k + 1) = CCL ∗ x(:, k) +DCL ∗ u(:, k)
9: end

118 Control Configuration Optimization

5.3.6 Mechanical Synchronization Setup

Applying the Methodology

Starting from the open-loop LTI process, the methodology described in this chapter

can be applied to the mechanical synchronization case introduced in Section 3.6.4.

This methodology is applied to obtain a closed-loop state-space system SSCL con-

taining the LTI process with state observer and extensive control structures, as can

be seen in Fig. 5.8 on page 96. The states, inputs, and outputs for SSCL of this me-

chanical synchronization case are shown in (5.19), (5.20), and (5.21), respectively.

[xCL]
32× 1

=

[

[xpro]
6× 1

;
[x̂pro]
6× 1

;
[xPID,a]
8× 1

;
[xPID,b]
8× 1

;
[xPID,sc]
4× 1

]

=

θ1
θ2

θload
θ̇1
θ̇2

θ̇load

;

θ̂1
θ̂2

θ̂load
ˆ̇
θ1
ˆ̇
θ2
ˆ̇
θload

;

xPID,a,1,1

xPID,a,1,2

xPID,a,2,1

xPID,a,2,2

xPID,a,1−2,1

xPID,a,1−2,2

xPID,a,2−1,1

xPID,a,2−1,2

; ...

xPID,b,1,1

xPID,b,1,2

xPID,b,2,1

xPID,b,2,2

xPID,b,1−2,1

xPID,b,1−2,2

xPID,b,2−1,1

xPID,b,2−1,2

;

xPID,sc,a,1

xPID,sc,a,2

xPID,sc,b,1

xPID,sc,b,2

(5.19)

[uCL]
10× 1

=

[

[ypro]
6× 1

;
[Dist]
1× 1

;
[Ref1]
1× 1

;
[Ref2]
1× 1

]

(5.20)

[yCL]
6× 1

=
[ypro]
6× 1

=

θ1
θ2

θload
θ̂1
θ̂2

θ̂load

(5.21)

5.3 Closed-Loop State-Space Methodology 119

Results and Comparison with Existing Methods

As a result, the closed-loop state-space system matrices ACL, BCL, CCL, and

DCL are obtained, containing the open-loop LTI process SSpro with an observer

and extensive control structure in a closed-loop state-space formulation. The sym-

bolic representations of these matrices are so extensive that they cannot be dis-

played here in an orderly manner. Note that the presented closed-loop state-space

methodology is generally applicable, but other matrices will be obtained for other

applications with different feedback structures. Algorithm 8 on page 117 shows the

pseudocode on how to calculate the closed-loop system response for the resulting

closed-loop matrices ACL, BCL, CCL, and DCL.

Next, the time savings of the proposed methodology are demonstrated by com-

paring the simulation of the model with the proposed methodology using stan-

dard MATLAB® workspace scripts versus the simulation of the same model with

MATLAB® Simulink using the built-in ’ode3’ (Bogacki-Shampine) solver [201].

Both simulation runs are performed on the same Intel® Xeon® CPU @ 3.10 GHz

with 64 GB of RAM. In total, 1000 closed-loop response simulations are performed

with a total simulation time Tm = 30s and a sample time Ts = 0.01s using the

proposed SSCL methodology, with different controller values for the closed-loop

controllers for every simulation. The total calculation time is determined, being

36.6 s. Next, the Simulink model is simulated for the same 1000 different com-

binations of controller values as in the previous case and with the same simula-

tion time Tm and sample time Ts. The time needed to perform these MATLAB®

Simulink simulations is 3477.4 s. This shows that the calculation of 1000 simula-

tions is approximately 95 times faster with the proposed methodology, as depicted

in Fig. 5.12. This also indicates that this closed-loop state-space methodology will

offer a significant advantage in calculating the general co-design methodology.

120 Control Configuration Optimization

R

3477 s

36 s

Figure 5.12: Calculation time comparison between using MATLAB®

Simulink versus using the proposed SSCL methodology with
standard MATLAB® workspace scripts to perform the same
1000 model simulations

For one of the 1000 simulations in the previous comparison, the outputs of

both the MATLAB® Simulink simulation and the proposed SSCL methodology

are compared. As shown in Fig. 5.13 and 5.14, practically the same results are

obtained from both approaches, validating that the proposed SSCL methodology

provides reliable simulation results.

In addition to the time advantage, the proposed methodology also allows the ac-

tivation or inactivation of specific control structures by adjusting the corresponding

controller values. For example, the distributed cascaded PID controllers, synchro-

nizing PID controllers, and feedforward controllers can be deactivated by setting

the controller values to zero. The decentralized PID controllers can be deactivated

by setting 1/T i... and Td... to zero and setting Kp... equal to 1.

Existing state-space analysis techniques can be applied on the closed-loop ma-

trices ACL, BCL, CCL, and DCL (e.g., stability or sensitivity analysis [15, 52,

163]), which is not directly possible in existing graphical programming environ-

ments with techniques to simulate systems with extensive control structures.

5.3 Closed-Loop State-Space Methodology 121

R

Figure 5.13: The course of the reference trajectory and the displacement
of the three inertias θ1, θ2 and θload when simulating the
MATLAB® Simulink model

Figure 5.14: The course of the reference trajectory and the displacement of
the three inertias θ1, θ2 and θload when simulating the model
using the proposed SSCL methodology

122 Control Configuration Optimization

5.4 Chapter Conclusions

In this chapter, the control configuration optimization is detailed as part of the

general hardware architecture and control configuration co-design. This control

configuration optimization consists of a control architecture optimization and a

controller tuning optimization.

First, the control architecture optimization is discussed, and an overview is

given of three different control architecture topologies: centralized, decentralized,

and distributed. A literature review on these different control architectures is

carried out, showing that the optimal control architecture method is application-

dependent. With this information in mind, a control architecture optimization

method is developed as part of the general hardware and control co-design method-

ology to determine the optimal control architecture automatically. This control

architecture design space can be defined freely by the end-user and can consist of

combinations of controller architecture features common in industrial applications.

Examples of these architecture features are decentralized and distributed control,

cascaded control, synchronizing control, and feedforward control. The presence

or absence of the control architecture features is indicated by binaries, grouped in

vector BΥ. The literature review also shows that simultaneous optimization of the

control architecture as part of a hardware and control co-design is unprecedented.

Not only the controller architecture but also the controller tuning parameters are

optimized as part of the control configuration optimization. These controller

tuning parameters are grouped in vector Rtuning.

Subsequently, a general methodology is proposed to establish a closed-loop

state-space system SSCL from an open-loop LTI process with an extensive control

structure. At the same time, the necessary reference trajectories and input distur-

bances can be taken into account. In this chapter, a generic methodology is de-

scribed for a two-level cascaded control structure. However, the described generic

methodology can be applied on more extensive (more cascaded levels or more in-

puts/outputs) or smaller systems. In that case, the methodology stays the same, but

different resulting closed-loop matrices ACL, BCL, CCL, and DCL will be ob-

tained. Extensions to non-linear systems (e.g., linear parameter-varying (LPV) or

linear time-varying (LTV)) instead of linear time-invariant (LTI) systems can also

be handled.

There are several advantages of using the proposed closed-loop state-space

methodology compared to conventional methods that allow the implementation

of comprehensive control structures. First and foremost, calculating the closed-

loop system SSCL response to external inputs and disturbances is much faster than

conventional methods because the closed-loop response calculation is reduced to

rapidly performed matrix calculations. For example, it is shown that the proposed

methodology is up to 95 times faster than conventional methods for calculating dif-

ferent model simulations for a mechanical synchronizing setup with different con-

troller settings. This advantage will have a significant impact when using iterative

5.4 Chapter Conclusions 123

algorithms (e.g., evolutionary algorithms), which require numerous simulations.

Moreover, the proposed SSCL methodology enables to easily adjust the activa-

tion or deactivation of specific control structures in the same model framework by

correspondingly adjusting specific controller parameters. In this way, the impact

of the activation or elimination of specific control structures on the closed-loop

functioning of the system can be calculated quickly and efficiently. That is why

this closed-loop state-space methodology enables the efficient application of the

general co-design methodology presented in this PhD.

Furthermore, existing state-space analysis techniques can be applied after im-

plementing the proposed methodology, which is not directly possible with conven-

tional simulation tools. For example, stability or sensitivity analyses can be carried

out on the closed-loop matrices of the entire system.

Finally, the application of both the control architecture optimization and con-

troller tuning optimization is shown on the practical example of a mechanical syn-

chronization case that is used as an example throughout this dissertation.

124 Control Configuration Optimization

Chapter 6

Hardware and Control Co-Design

The previous chapters specify how the hardware architecture and control configu-

ration co-design problem can be formulated in a mathematically optimizable form.

In this chapter, the application of an optimization algorithm to perform the hard-

ware and control co-design is discussed.

First, a general description of the objective function, design parameters, and

constraints concerning the proposed co-design optimization problem is given. An

explanation is provided on the Genetic Algorithm (GA) implementation and the

typical GA settings to perform the optimization. Next, the hardware architecture

and control configuration co-design optimization is performed on a linear time-

invariant (LTI) mechanical synchronization model, of which some parts have al-

ready been covered in the previous chapters. The co-design results of this case are

compared with existing controller tuning methods, and the smoothness properties

of the objective function are discussed.

Additionally, the flexibility of the presented co-design methodology is demon-

strated by applying it to a linear parameter-varying (LPV) composite plate model

with the integration of external toolboxes to incorporate a H∞ robust control de-

sign.

126 Hardware and Control Co-Design

6.1 Co-Design Optimization Properties

The general mathematical formulation of the resulting hardware and control co-

design optimization problem can be stated as:

min
Zact,Zsen,BΥ,Rtuning

FV (Zact,Zsen,BΥ,Rtuning)

subject to [Zact,Zsen,BΥ] ∈ Z

0 ≤ Zact ≤ p

0 ≤ Zsen ≤ q

0 ≤ BΥ ≤ 1

LBtuning ≤ Rtuning ≤ UBtuning

NonlinConstrF (Zact,Zsen,BΥ,Rtuning) = c ≤ 0,

(6.1)

with FV the fitness value (calculated using the non-linear objective function), p the

number of possible actuator types, q the number of possible sensor types, LBtuning

and UBtuning the lower and upper bounds on the controller tuning parameters, and

NonlinConstrF the non-linear constraint function.

6.1.1 Objective Function

An optimization problem always comes with an ’objective function’ to specify the

optimization goal (as introduced in Section 2.2 on page 21). Using this objective

function, a ’fitness value’ (FV) is calculated that quantifies the performance of the

system for a specific set of design parameters. The proposed optimization method-

ology presented in this PhD dissertation allows a great freedom in determining the

fitness value. For example, the methodology can handle discontinuous objective

functions in which multiple objectives can be taken into account simultaneously,

such as reference tracking, vibration levels, settling times, energy consumption,

etc. This is done by calculating a weighted average according to their importance.

Additionally, external toolboxes can be used in the objective function to determine

the fitness value, such as MATLAB® Simulink for the graphical programming of

control loops or external toolboxes like LCToolbox [202] to apply a H∞ frame-

work and perform robust controller design with frequency-domain criteria.

6.1.2 Design Parameters

As previously mentioned, the design parameters for the co-design optimization

methodology presented in this PhD dissertation consist of the actuator selection

integers Zact, sensor selection integers Zsen, control architecture binaries BΥ, and

the controller tuning parameters Rtuning. The actuator placement binaries Bact and

sensor placement binaries Bsen change according to the actuator selection integers

6.1 Co-Design Optimization Properties 127

Zact and sensor selection integers Zsen, respectively, and therefore do not directly

belong to the design parameters.

The co-design optimization algorithm must deal with binary numbers, integer

values, and real numbers, resulting in a mixed-integer optimization problem. This

also implies that the objective function is discontinuous and, therefore, non-smooth

and non-convex. One reason for this behavior is because the actuator selection inte-

gers determine the presence or absence of actuators, which has a non-linear impact

on the calculated fitness value. A schematic overview of the design parameters is

depicted in Table 6.1.

Table 6.1: Overview of the design parameters, with p and q being the num-
ber of possible actuator and sensor types, respectively

Design Parameters Type Grouped in

Actuator selection integer ∈ Z
+| ≤ p Zact

Sensor selection integer ∈ Z
+| ≤ q Zsen

Control architecture binaries binary ∈ B BΥ

Controller tuning parameters real ∈ R Rtuning

6.1.3 Constraints

Various constraints apply in the co-design optimization problem. Integer con-

straints are implemented on the actuator selection integers Zact, sensor selection

integers Zsen, and control architecture binaries BΥ, forcing these design parame-

ters to attain integer values. In addition, the hardware selection integer values Zact

and Zsen are also limited according to the number of possible actuator and sensor

types, denoted as p and q, respectively. The upper bound on the control architec-

ture binaries BΥ is equal to one, and the controller tuning parameters are real value

types. Upper bounds are also defined for these controller tuning parameters to limit

the design space. If an optimized controller tuning parameter is very close to its

upper bound, this may indicate that the result could be improved if that parameter

reaches a larger value than the corresponding upper bound. If this is the case and a

larger value is feasible, it is recommended to perform the optimization again with

an increased upper bound on that design parameter.

An example of a non-linear constraint is that the optimization algorithm should

ensure that the individual’s implementation cost ’CostTotalActual’ does not exceed

a predefined constraint on the maximum total implementation cost ’CostTotalMax-

imum.’ This is done in a so-called ’non-linear constraint function’ by calculating

the current individual’s implementation cost ’CostTotalActual’ based in the current

design parameters and assigning the value in a vector c as:

c = CostTotalActual − CostTotalMaximum, (6.2)

while the Genetic Algorithm ensures that c ≤ 0. Additionally, other generally

applicable non-linear constraints on, for example, the maximum actuator effort or

128 Hardware and Control Co-Design

tolerances on mechanical motion aspects can simultaneously be taken into account

by defining additional values in the c vector based on the active design parameters

and the corresponding system response. This allows the efficient programming of

one or more non-linear constraints. As with the objective function, there is a great

freedom in applying different software packages and toolboxes to determine the

values in c.

6.2 Genetic Algorithm Implementation

As discussed in Section 3.4 on page 44, a Genetic Algorithm (GA) is the preferred

optimization algorithm to perform the hardware and control co-design methodol-

ogy presented in this PhD. A Genetic Algorithm allows the implementation of a

non-linear objective function with (mixed-integer) constraints provided in a non-

linear constraint function. In this way, the optimal hardware and control parame-

ters can be determined for a maximum total implementation cost. By executing the

Genetic Algorithm for several different maximum implementation costs, a Pareto

front can be established that graphically shows the maximum achievable perfor-

mance of the system as a function of the total implementation cost (see Section 3.5

on page 58).

Fig. 6.1 shows a detailed overview of a Genetic Algorithm workflow utilized

in the hardware and control co-design optimization problem. The algorithm starts

with the specification of an initial population consisting of a number of individuals

equal to the population size (iPop). Each individual consists of a specific combina-

tion of design parameters. Increasing the population size enables the Genetic Algo-

rithm to search more points in one generation. However, the larger the population

size, the longer the Genetic Algorithm takes to compute each generation. Based on

the many optimization runs for the cases studied, it appears that a population size

of 300-500 individuals is appropriate for the type of co-design optimization prob-

lems described in this PhD. The design parameters are denoted as B, Z, and R for

binary, integer and real numbers, respectively. The initial population is generated

using a creation function that defines random variables for every individual (within

the predefined bounds for every design parameter).

Additionally, an ’initial population matrix’ (IPM) can be defined to include

individuals with specific design parameters directly in the initial population. Each

IPM row corresponds to an individual combination of design parameters. If the

number of rows in the IPM is smaller than the population size, the remainder of

the initial population is completed with randomly generated individuals. Using an

IPM has the advantage that a large and varied initial search space can be applied.

However, it is important that the IPM contains feasible individuals. This way, the

Genetic Algorithm will not ’lose’ time in calculating the fitness values of infeasible

situations and will immediately proceed to apply the objective function to feasible

initial individuals.

6.2 Genetic Algorithm Implementation 129

After the initial population is established, it becomes the active population for

the first generation of the Genetic Algorithm. Next, the fitness value for each indi-

vidual is determined based on the non-linear objective function. At the same time,

a non-linear constraint function is used to check that no constraints are violated. If

this is the case, the fitness value is increased so that individuals with a constraint

violation have little to no chance to proceed to the next generation.

After determining the fitness value of each individual, the stopping criteria are

checked. These stopping criteria are listed hereafter. The Genetic Algorithm is

terminated if a maximum total calculation time ’Maximum time’ is exceeded, a

maximum number of generations is reached, or the average change in the best fit-

ness value over ’Maximum stall generations’ is less than or equal to the ’Function

tolerance’ value. The value for ’Maximum stall generations’ is typically 50, while

an appropriate ’Function tolerance’ value depends on the fitness values of the op-

timized solutions. If one of the stopping criteria is met, the optimal solution is

defined as the individual in the current generation with the lowest fitness value.

If no stopping criteria are met, a selection of ’parents’ is made from the ac-

tive population. This is done by making a stochastic choice of individuals from

the active population in which the fitness value determines the probability of the

choice. Individuals with lower fitness values have more chance to be chosen as

parents. From these parents, the children for the next generation are created us-

ing three ’reproduction functions’: ’elite selection,’ ’crossover,’ and ’mutation.’

’Elite count’ indicates how many individuals go directly and unchanged to the next

generation through elite selection. This value should always be lower than the

population size and is usually around 10-20 individuals for this type of optimiza-

tion problems [203]. After elite selection, the rest of the children are determined

via crossover and mutation. A crossover child is formed by randomly combining

variables from two parent individuals. In this regard, the child’s i-th design pa-

rameter is always determined from the parents’ i-th design parameters. Thus, no

crossover can occur between design parameters with different data types (binary,

integer, or real) [204]. A mutation child is created by randomly making changes

in the variables of a parent individual based on a uniformly distributed random

number and with respect to the corresponding lower and upper bounds on the de-

sign parameters [205]. The ’crossover fraction’ value specifies the fraction of the

remaining children determined via crossover (and not via mutation). For optimiza-

tion problems with a discontinuous objective function, it is recommended to set the

crossover fraction relatively low [206]. In this way, a relatively large amount of mu-

tation occurs when determining the children, resulting in a broad search space for

subsequent generations, preventing the optimization algorithm from prematurely

ending up in a local minimum. An appropriate ’crossover fraction’ value is 40%
for co-design optimization problems described in this PhD. Refer to [151] for more

in-depth information on the technical operation of a Genetic Algorithm.

1
3
0

H
ard

w
are

an
d

C
o
n
tro

l
C

o
-D

esig
n

Creation function
 = random binary valuesℤ = random integer valuesℝ = random real values

 IPM

Initial populationℤ ℝℤ(1) (1) ℝ(1)ℤ(2) ℝ(2)ℤ(3) ℝ(3)

k=0ℤ(4) ℝ(4)

ℤ(iPop)ℝ(iPop)

Fitness value
calculation

 objective function
 constraint function

IPM
iPop
iSel
k
FV

= initial population matrix
= population size
= selection size
= number of generations
= fitness value

Children become the subsequent
generation’s active population

Selection
 Probability

Are stopping
criteria met?

~

~

~

~

yes

k = k+1

no

 (2)

 (3)

 (4)

 (iPop)

..
.

..
.

..
.

Active population

Optimal solution
(with lowest FV)

 (iSel)..
.

..
.

..
.

Children

..
.

..
.

..
.

Parentsℤ ℝℤ ℝ
ℤ(iSel) ℝ(iSel)

ℤ ℝ

..
.

..
.

..
.

..
.

FV

FV(1)

FV(2)

FV(3)

FV(4)

FV(iPop)

Elite
selection

Reproduction

Crossover

Mutation

ℤ ℝℤ(1) (1) ℝ(1)ℤ(2) ℝ(2)ℤ(3) ℝ(3)ℤ(4) ℝ(4)

ℤ(iPop) ℝ(iPop)

ℤ ℝ
 (2)

 (3)

 (4)

 (iPop)

ℤ ℝℤ’(1) ’(1) ℝ’(1)ℤ’(2) ℝ’(2)ℤ’(3) ℝ’(3)ℤ’(4) ℝ’(4)

ℤ’(iPop) ℝ’(iPop)

 ’(2) ’(3) ’(4)

 ’(iPop)

..
.

..
.

..
.

Figure 6.1: Detailed overview of the workflow for a Genetic Algorithm. Binary, integer and real numbers are presented using
the symbols B, Z, and R, respectively. Operations in which a form of randomness applies are indicated with a
dice symbol.

6.3 LTI Case: Mechanical Synchronization Setup 131

6.3 LTI Case: Mechanical Synchronization Setup

This section explains how to apply the hardware and control co-design optimization

algorithm to a mechanical synchronization model, introduced in 3.6.4 on page 64

and used as an example throughout the previous chapters.

6.3.1 Objective Function

Before calculating the closed-loop system response in the non-linear objective

function NonlinObjF , the actuator and sensor selection integers are compared

with the open-loop analysis results (see Section 4.3.1). If the open-loop analysis

results show that the related hardware architecture leads to an infeasible situation,

the closed-loop response is not calculated, and the individual gets a very high fit-

ness value of 1012. In this way, no calculation time is wasted on calculating prede-

termined infeasible situations.

Conversely, if it turns out from the open-loop analysis that the current individ-

ual does have a feasible hardware architecture, the closed-loop state-space method-

ology (see Chapter 5) is applied in the objective function to efficiently determine

the closed-loop response of the system based on the related design parameters.

As mentioned earlier, many fitness function criteria can be applied simultaneously

to perform a multi-objective optimization. For this mechanical synchronization

case, the simulations are run with a total simulation time Tm = 30s, sample time

Ts = 0.01s, and a corresponding total number of samples K = Tm

Ts
= 3000. The

fitness value to be minimized is a weighted sum consisting of three parts, calculated

using (6.3) below.

FV =w1

(

K
∑

k=1

(r(k)− θload(k))
2

)

+ ...

w2

√

√

√

√

1

K

K
∑

k=1

∣

∣

∣
θ̈1

∣

∣

∣

2

+

√

√

√

√

1

K

K
∑

k=1

∣

∣

∣
θ̈2

∣

∣

∣

2

+

√

√

√

√

1

K

K
∑

k=1

∣

∣

∣
θ̈load

∣

∣

∣

2

+ ...

w3

(

K
∑

k=1

(θload(k)− θ1(k))
2 +

K
∑

k=1

(θload(k)− θ2(k))
2

)

,

with w1 = 30 = weight on load inertia trajectory tracking

w2 = 20 = weight on acceleration reduction

w3 = 2 = weight on inertia synchronization

(6.3)

The first and most important objective is to have an optimal reference trajec-

tory r(k) position tracking θload of the load inertia (see Fig. 3.13(a) on page 67).

For this, the ISE (Integral of Square Error) performance index evaluates the central

132 Hardware and Control Co-Design

load reference tracking [207], as can be seen in the first part of (6.3). The second

objective is to reduce undesired variations in inertia accelerations, as this unwanted

behavior reduces the life span of the system. Therefore, the accelerations θ̈1, θ̈2,

and θ̈load on all inertias are penalized by adding the RMS (Root Mean Square)

value of these accelerations to the second part of the fitness value calculation. Fur-

thermore, the synchronization between the inertias themselves is also considered

by applying the ISE error performance index.

6.3.2 Design Parameters

The design parameters to be optimized by the Genetic Algorithm for this appli-

cation are two actuator selection integers (iact,1 and iact,2), two sensor selection

integers (isen,1 and isen,2), seven control architecture binaries (ba,dec, bb,dis, bb,dec,
bb,dis, ba,sc, bb,sc, and bb,ff), and 32 real numbers for the controller tuning param-

eters (grouped in Rtuning). These add up to 43 design parameters in total.

For this mechanical synchronization case, the actuator selection integers, sen-

sor selection integers, control architecture binaries, and controller tuning param-

eters were detailed earlier in this work in Sections 4.2.1, 4.2.1, 5.1.4, and 5.2.1,

respectively.

6.3.3 Constraints

Even if the controller parameter optimization is not considered, there are already

18432 different possible combinations for the hardware selection integers and con-

trol architecture binaries, each with a corresponding cost. It would certainly not

be efficient to determine the optimal control parameters for each possible system

composition. Therefore, the optimal system composition is only determined for

a limited number of maximum total system costs CostTotalMaximum, rang-

ing from 6, 67% to 100% with intervals of 6, 67%. A cost of 100% corresponds

to the most expensive solution. In this way, 15 Pareto points are determined.

The Genetic Algorithm is applied for every Pareto point, with a maximum to-

tal system cost CostTotalMaximum defined in the non-linear constraint func-

tion NonlinConstrF . In this function, the total cost of the current individual

CostTotalActual is calculated and compared to the maximum implementation

cost CostTotalMaximum (see (6.2)).

When calculating the response of the closed-loop state-space system, the ac-

tuator output saturation is taken into account by limiting the associated actuator

input signals (see Chapter 5). The maximum actuator output umax,act... depends

on the corresponding active actuator type. Next to a constraint on the maximum

implementation cost, a constraint is imposed in the non-linear constraint func-

tion NonlinConstrF to prevent the actuator from showing unstable behavior by

switching too fast between its output saturation. Fig. 6.2 shows the displacement

and actuator effort response for a situation in which the actuator output shows this

6.3 LTI Case: Mechanical Synchronization Setup 133

Figure 6.2: Time-domain displacement response (a) and actuator effort re-
sponse (b) for an example in which the actuators show unstable
behavior of rapidly switching between their maximum actuator
output limits (from approximately 5 to 18 seconds)

unwanted unstable switching between its maximum output limits from approxi-

mately 5 to 18 seconds. The actuators switch so quickly between their saturation

limits that the responses are not plotted as lines but instead appear as areas. Based

on prior knowledge of the reference trajectory, a stable controller should not direct

the actuator according to its minimum saturation within 10 seconds of simulation

time. Therefore, a constraint is imposed that prevents the actuator effort response

from reaching its negative saturation value before 10 seconds have passed in the

response simulation. The effect of the constraint is that none of the obtained opti-

mization results exhibit this unstable behavior (see Appendix B).

As explained in Subsection 6.1.3, the constraints are applied in the non-linear

constraint function NonlinConstrF by ensuring that the values of a vector c are

less than or equal to zero. Equation (6.4) shows how the constraints mentioned

above can be programmed in the non-linear constraint function NonlinConstrF .

c ≤0, with

c =

CostTotalActual − CostTotalMaximum
−min (uact1(1 : 1000))− 0.95 · umax,act1

−min (uact2(1 : 1000))− 0.95 · umax,act2

(6.4)

134 Hardware and Control Co-Design

Next to these constraints, there are also upper and lower bound constraints on

all design parameters. Table 6.2 shows an overview of these design parameters

with the corresponding lower bound and upper bound constraints.

Table 6.2: Enumeration of the design parameters for the mechanical syn-
chronization case with corresponding upper bound (UB) and
lower bound (LB) constraints

Design Design

parameter LB UB parameter LB UB

iact,1 0 3 iact,2 0 3

isen,1 0 2 isen,2 0 2

ba,dec 0 1 bb,dec 0 1

ba,dis 0 1 bb,dis 0 1

ba,sc 0 1 bb,sc 0 1

bb,ff 0 1

Kp,a,1 0 20 Kp,b,1 0 20

Ti,a,1 0 1 Ti,b,1 0 5

Td,a,1 0 1 Td,b,1 0 1

Kp,a,2 0 20 Kp,b,2 0 20

Ti,a,2 0 1 Ti,b,2 0 5

Td,a,2 0 1 Td,b,2 0 1

Kp,a,1−2 0 20 Kp,b,1−2 0 20

Ti,a,1−2 0 1 Ti,b,1−2 0 1

Td,a,1−2 0 1 Td,b,1−2 0 1

Kp,a,2−1 0 20 Kp,b,2−1 0 20

Ti,a,2−1 0 1 Ti,b,2−1 0 1

Td,a,2−1 0 1 Td,b,2−1 0 1

Kp,a,sc 0 20 Kp,b,sc 0 20

Ti,a,sc 0 1 Ti,b,sc 0 1

Td,a,sc 0 1 Td,b,sc 0 1

Kff,b,1 0 20 Kff,b,2 0 20

6.3 LTI Case: Mechanical Synchronization Setup 135

6.3.4 Genetic Algorithm Implementation

A Genetic Algorithm is applied to define the optimal values for the design parame-

ters according to the non-linear fitness function and non-linear constraints. A math-

ematical formulation of this optimization problem is specified in (6.1). An ’initial

population matrix’ (IPM) can be provided to incorporate a large initial search space

in the Pareto point optimizations. This initial population matrix indicates the start-

ing values of the initial population and should contain individuals with feasible

design parameters. To define the IPM for this mechanical synchronization case, a

Genetic Algorithm is applied on the controller tuning parameters for 225 different,

but fixed combinations of hardware selection integers (Zact and Zsen) and control

architecture binaries (BΥ). For every combination, a Genetic Algorithm is applied

to only optimize the controller tuning parameters with 250 seconds of calculation

time. This calculation time is too short to find an optimal solution, but it is suffi-

cient to provide a feasible combination of design parameters. Subsequently, these

feasible individuals are used in the initial population matrix of the Genetic Algo-

rithm for the hardware and control co-design. Fig. 6.3 shows an overview of the

cost and fitness values for each individual in the initial population matrix (IPM),

while a vertical zoom can be seen in Fig. 6.4. Note that there are no individuals

present in the initial population matrix (IPM) with a cost below 20% because no

feasible systems can be established for these costs.

The key settings for the Genetic Algorithm applied to the Pareto point opti-

mizations are shown in Table 6.3. The maximum number of iterations is set to

‘infinite.’ In this way, no maximum number of iterations is given to the Genetic

Algorithm as stopping criteria. The function tolerance is chosen relatively small

with the purpose that the Genetic Algorithm would not conclude too quickly that a

solution is found. The crossover fraction is set to have a high mutation level when

determining a new generation of possible solutions. This is desirable to keep the

search field large and not to end up at a local minimum. The total Pareto optimiza-

tion took 7.3 hours of calculation and was performed on an Intel® Xeon® CPU @

3.10 GHz with 64 GB of RAM.

Table 6.3: Genetic Algorithm settings for one single Pareto point optimiza-
tion for the mechanical synchronization case

Description Value Unit

Population size 500 individuals

Maximum calculation time 3600 seconds

Maximum number of generations infinite generations

Function tolerance 10−10 /

Maximum stall generations 100 generations

Crossover fraction 40 %
Elite count 20 individuals

136 Hardware and Control Co-Design

Figure 6.3: Overview of the cost and fitness values for the individuals in the
initial population matrix (IPM) for the mechanical synchroniza-
tion case

Figure 6.4: Zoom of the cost and fitness values for the individuals in the ini-
tial population matrix (IPM) for the mechanical synchronization
case

6.3 LTI Case: Mechanical Synchronization Setup 137

6.3.5 Optimization Results

Tables 6.4 and 6.5 depict the optimization results for every point in the Pareto

front. Figures 6.5 and 6.6 show an overview and a vertical zoom of the resulting

Pareto front together with the individuals in the initial population matrix. The time-

domain displacement and control effort output responses for every Pareto point can

be found in Appendix B.

The results show that very high fitness values are obtained for the first four

Pareto points. This indicates that there is insufficient reference tracking and that

these Pareto points do not yield a viable solution. Therefore, it can be concluded

that a minimum cost of 26.6% should be implemented in order to obtain a mini-

mum working condition. The fitness values and the time-domain responses of the

various Pareto points (see Appendix B) show that the performance systematically

improves as more cost is allowed. Each of these Pareto points represents an opti-

mized situation depending on the implementation cost, for which the Pareto front

provides a valuable understanding of the trade-off between the maximum achiev-

able performance and the implementation cost. It will be up to the design engineer

to make a final decision on which Pareto point is most appropriate for the specific

application. However, without further information, Pareto point 8 with an associ-

ated cost of 43.2% and a fitness value of 29.05 seems the most interesting because

the fitness value improves relatively little when more cost is allowed while reduc-

ing the implementation cost indicates a significant reduction in performance.

1
3
8

H
ard

w
are

an
d

C
o
n
tro

l
C

o
-D

esig
n

Table 6.4: Pareto front results (rounded) for the mechanical synchronization application

Hardware selection integers and Controller tuning

control architecture binaries parameters

P
a

re
to

p
o

in
t

C
o

st
[%

]

F
it

n
es

s
v
a

lu
e
[
]

A
ct

u
a

to
r

1
se

le
ct

io
n

in
te

g
er

(i
a
ct
,1

)

A
ct

u
a

to
r

2
se

le
ct

io
n

in
te

g
er

(i
a
ct
,2

)

S
en

so
r

1
se

le
ct

io
n

in
te

g
er

(i
se
n
,1

)

S
en

so
r

2
se

le
ct

io
n

in
te

g
er

(i
se
n
,2

)

C
a

sc
a

d
e

le
v
el
a

d
ec

en
tr

a
li

ze
d

co
n

tr
o

l
(b

a
,d
ec

)

C
a

sc
a

d
e

le
v
el
a

d
is

tr
ib

u
te

d
co

n
tr

o
l

(b
a
,d
is

)

C
a

sc
a

d
e

le
v
el
b

d
ec

en
tr

a
li

ze
d

co
n

tr
o

l
(b

b,
d
ec

)

C
a

sc
a

d
e

le
v
el
b

d
is

tr
ib

u
te

d
co

n
tr

o
l

(b
b,
d
is

)

C
a

sc
a

d
e

le
v
el
a

sy
n

ch
ro

n
iz

in
g

co
n

tr
o

l
(b

a
,s
c
)

C
a

sc
a

d
e

le
v
el
b

sy
n

ch
ro

n
iz

in
g

co
n

tr
o

l
(b

b,
sc

)

C
a

sc
a

d
e

le
v
el
b

fe
ed

fo
rw

a
rd

co
n

tr
o

l
(b

b,
f
f
)

[K
p
,a
,1
T
i,
a
,1
T
d
,a
,1

]

[K
p
,a
,2
T
i,
a
,2
T
d
,a
,2

]

[K
p
,a
,1
−
2
T
i,
a
,1
−
2
T
d
,a
,1
−
2
]

[K
p
,a
,2
−
1
T
i,
a
,2
−
1
T
d
,a
,2
−
1
]

[K
p
,b
,1
T
i,
b,
1
T
d
,b
,1

]

[K
p
,b
,2
T
i,
b,
2
T
d
,b
,2

]

[K
p
,b
,1
−
2
T
i,
b,
1
−
2
T
d
,b
,1
−
2
]

[K
p
,b
,2
−
1
T
i,
b,
2
−
1
T
d
,b
,2
−
1
]

[K
p
,a
,s
c
T
i,
a
,s
c
T
d
,a
,s
c
]

[K
p
,b
,s
c
T
i,
b,
sc
T
d
,b
,s
c
]

[K
f
f
,b
,1
K

f
f
,b
,2

]

1 0 9e8 0 0 0 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦
2 8.8 3e8 1 0 1 0 ◦ ◦ • ◦ ◦ ◦ ◦
3 20 2e7 2 0 1 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦
4 25.3 5e5 1 2 0 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦
5 26.6 76.40 1 2 0 1 ◦ ◦ • ◦ ◦ ◦ ◦
6 28.8 65.41 1 2 0 1 ◦ ◦ • • ◦ ◦ ◦
7 39.7 45.37 2 2 0 1 • • ◦ ◦ ◦ ◦ ◦ see Table 6.5

8 43.2 29.05 2 2 0 1 • • • • ◦ ◦ ◦
9 59.7 28.42 2 2 0 1 • • • • • • ◦
10 49.9 26.73 3 3 0 1 • • • • ◦ ◦ ◦
11 86.4 26.56 3 3 0 1 • • • • • • ◦
12 90.7 26.33 3 3 0 1 • • • • • • •
13 97.3 26.30 3 3 1 1 • • • • • • •
14 100 24.72 3 3 1 2 • • • • • • •

6
.3

L
T

I
C

ase:
M

ech
an

ical
S

y
n
ch

ro
n
izatio

n
S

etu
p

1
3
9

Table 6.5: Pareto front results (rounded) for the mechanical synchronization application. Inactive controllers are indicated
with ’◦’.

S
ee

T
ab

le
6

.4

Controller tuning parameters

[K
p
,a
,1
T
i,
a
,1
T
d
,a
,1

]

[K
p
,a
,2
T
i,
a
,2
T
d
,a
,2

]

[K
p
,a
,1
−
2
T
i,
a
,1
−
2
T
d
,a
,1
−
2
]

[K
p
,a
,2
−
1
T
i,
a
,2
−
1
T
d
,a
,2
−
1
]

[K
p
,b
,1
T
i,
b,
1
T
d
,b
,1

]

[K
p
,b
,2
T
i,
b,
2
T
d
,b
,2

]

[K
p
,b
,1
−
2
T
i,
b,
1
−
2
T
d
,b
,1
−
2
]

[K
p
,b
,2
−
1
T
i,
b,
2
−
1
T
d
,b
,2
−
1
]

[K
p
,a
,s
c
T
i,
a
,s
c
T
d
,a
,s
c
]

[K
p
,b
,s
c
T
i,
b,
sc
T
d
,b
,s
c
]

[K
f
f
,b
,1
K

f
f
,b
,2

]

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ [20 1 1] [0 5 0] ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ [1 0 0.3] [20 1 0.9] ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ [0.1 0 0] [20 1 0.4] [0.4 0.1 0] [20 1 0.3] ◦ ◦ ◦

[1.3 0.1 0.6] [19 1 0] [19 0 1] [0.1 1 0.5] ◦ ◦ ◦ ◦ ◦ ◦ ◦
[0.2 0.06 0] [11 0.3 0] [0.1 1 0.1] [16 0.1 0] [0.2 0.4 0] [6 2 0.1] [0 0.8 0.1] [1 0.4 0.1] ◦ ◦ ◦
[0.04 0 0.3] [11 0 0] [0.1 1 0.1] [15 0 0] [3.6 2 0] [7 2 0.1] [0 1 0] [0 0 0.9] [0.1 0.1 0.1] [0 0 0.9] ◦
[0.01 0.9 1] [11 0 0] [0.08 0 0] [20 0.2 0] [15 0 0] [7 2 0.1] [0 0.3 0] [0 0.3 1] ◦ ◦ ◦
[0.1 0.3 1] [11 0.1 0] [0 0.5 0.8] [20 0 0] [0.1 0.4 0] [8 2 0.1] [0 1 0.9] [0.5 0.1 0] [0.2 0.1 0.1] [0 0 1] ◦

[4.7 0.1 0.1] [11 0 0] [2.8 1 0] [20 0.4 0] [0 0 0.1] [7 2 0] [0.1 1 0.7] [0 0.2 0.1] [0.3 0.01 0] [0 0 1] [0 0.1]

[11 0.1 0] [1 0 0] [11.6 0 0] [0 0.3 0.4] [4.1 1 0] [11 5 0.1] [8.8 4 0] [0.2 0 0.1] [0.5 0 0] [10 0 0] [0.1 0.1]

[12.1 0 0] [1 1 0.3] [19.9 0 0] [0.1 0.3 0] [5 1 0] [0 2 0] [0.1 4.5 1] [4.7 0.9 0] [0 0.8 0.1] [5 1 0.1] [0.1 0.1]

140 Hardware and Control Co-Design

Figure 6.5: Overview of the resulting Pareto front (blue) for the mechanical
synchronization case optimization with initial population matrix
(IPM) (red)

Figure 6.6: Vertical zoom of the resulting Pareto front (blue) for the me-
chanical synchronization case optimization with initial popula-
tion matrix (IPM) (red)

6.3 LTI Case: Mechanical Synchronization Setup 141

6.3.6 Comparison to Existing Controller Tuning Methods

The optimized controller values are compared to existing controller tuning meth-

ods to validate the effectiveness of the controller tuning optimization as part of the

presented co-design methodology. Keep in mind that these existing controller tun-

ing methods do not include the determination of the hardware components nor the

controller architecture aspects.

Linear-Quadratic Regulator

First, an existing linear-quadratic regulator (LQR) method is applied to obtain the

controller tuning parameters. In an LQR control design, relative weights are given

to the states and input variables by adjusting the diagonal matrix Q and R val-

ues, respectively. In turn, these values define the relative weights on the reference

tracking and the actuator output. Based on these values, a cost function minimiza-

tion routine determines the values of the feedback matrices [56]. Thus, the LQR

controller design comes down to adjusting the weights of the Q and R matrices

according to the desired system behavior. Still, finding suitable weights for this

LQR method turns out to be another difficulty. The most straightforward choice

is to take identity matrices I for the Q and R matrices. ’Bryson’s rule’ describes

a different approach to determine these weights as the inverse of the square of the

maximum permissible error value for the corresponding state or input [181]:

Qi,i =
1

maximum acceptable value of (errorstates)2
, i ∈ 1, 2, ..., n

Q =

Q1,1 0 · · · 0
0 Q2,2 · · · 0

0 0
. . .

...

0 0 · · · Qn,n

,

(6.5)

Rj,j =
1

maximum acceptable value of (errorinputs)2
, j ∈ 1, 2, ..., l

R =

R1,1 0 · · · 0
0 R2,2 · · · 0

0 0
. . .

...

0 0 · · · Rl,l

,

(6.6)

with n being the number of states and l being the number of inputs.

142 Hardware and Control Co-Design

Also, trial and error can be applied to improve the output response. For this

mechanical synchronization case, the LQR control uses an integrator to eliminate

the steady-state error. For this purpose, an extra state is added to the system to

compute the integral of the error signal. For details on LQR control design with

integral action, see [52, 159, 163, 208].

The control loop design for applying this LQR control method to the mechan-

ical synchronization model is shown in Figure 6.8. For the weights of the Q and

R matrices, identity matrices I , Bryson’s rule, and trial and error were used and

tested on the model with different types of actuators while taking into account

their limitations. The results of this LQR control design are shown in Table 6.6.

A comparison of these LQR results with the optimized Pareto front is depicted in

Figure 6.7. The results show that none of the applied LQR methods yield a perfor-

mance that is as good as the optimized Pareto points using the presented co-design

methodology.

Figure 6.7: Comparison of the optimized Pareto front using the presented
co-design methodology and the results of applying an LQR
method to obtain the controller tuning parameters

6
.3

L
T

I
C

ase:
M

ech
an

ical
S

y
n
ch

ro
n
izatio

n
S

etu
p

1
4
3

A
pro

+
+

1/s

1/s

C
pro

x
pro

x
pro

y

u
1

B
pro

D
pro

+ +
�

x
pro

x
pro

�

A
obs

+
+

+

 L
obs

1/s C
obs

B
obs

Dist

D
obs

- -

+

^^

-

+-K
i

K

-

+

u
2

Ref

x̂

Figure 6.8: Control loop design for the application of an LQR control method with the mechanical synchronization process
matrices in light blue, state observer matrices in dark blue, disturbance in dark green, reference trajectories in
light green, actuator output saturation in yellow, state feedback matrix K in red, and integral feedback matrix Ki

in red

144 Hardware and Control Co-Design

Table 6.6: Results for the LQR control design applied to the mechanical
synchronization model

[iact,1... [isen,1... Weights on Q and Fitness Cost

iact,2] isen,2] R matrices value [] [%]

[1 1] [1 1]
Q = I7 108 32.3
R = I2

[1 1] [1 1]
Q =

[

1

0.12
1

0.12
1

0.12
1

0.052
1

0.052
1

0.052
1

0.012

]

9 · 107 32.3

R =

[

1

52
1

52

]

[1 1] [1 1]
Q =

[

1 1 1 1 1 1 107
]

8.5 · 107 32.3
R = [0.01 0.01]

[2 2] [1 1]
Q = I7 47077 48.3
R = I2

[2 2] [1 1]
Q =

[

1

0.12
1

0.12
1

0.12
1

0.052
1

0.052
1

0.052
1

0.012

]

2606 48.3

R =

[

1

52
1

52

]

[2 2] [1 1]
Q =

[

1 1 1 1 1 1 106
]

93.35 48.3
R = [0.001 0.001]

[3 3] [1 1]
Q = I7 47077 74.9
R = I2

[3 3] [1 1]
Q =

[

1 1 1 1 1 1 107
]

2752 74.9

R =

[

1

52
1

52

]

[3 3] [1 1]
Q =

[

1 1 1 1 1 1 107
]

84.44 74.9
R = [0.001 0.001]

6.3 LTI Case: Mechanical Synchronization Setup 145

PID Autotuning

The obtained results of the co-design methodology are also compared with an in-

ternal MATLAB® Simulink autotuning procedure. For this purpose, the control

scheme was established within MATLAB® Simulink, in which an autotuning can

be performed on the PID blocks. However, this turned out to be impossible when

the complete control architecture (see Fig. 5.8 on page 96) was active due to in-

ternal linearization errors within MATLAB®. Therefore, only the cascade level

a and b decentralized PID controllers were kept (see Fig. 6.9) on which an auto-

tuning procedure was performed, suggesting PID controller values with a perfect

balance between aggressiveness and robustness. The autotuning results were tested

on hardware configurations with actuators of type one, two, and three. The results

are shown in Table 6.7, and the resulting time-domain responses for these configu-

rations can be seen in Fig. 6.10, 6.11, and 6.12. In Fig. 6.10, it can be observed that

the three inertias’ rotational displacements strongly drift away from the desired ref-

erence trajectory, and thus no viable situation is obtained. Fig. 6.11 and 6.12 show

a much better reference tracking by the inertias, but by comparing the resulting fit-

ness values, it is shown that none of the ’conventional’ controller tuning methods

achieve the performance of the optimized controller tuning parameters from the

co-design methodology.

Table 6.7: Results after applying the MATLAB® Simulink PID autotuning
procedure to the mechanical synchronization model

[i
a
ct
,1
i a

ct
,2
]

[i
se
n
,1
i s
en

,2
]

[K
p
,a
,1
T
i,
a
,1
T
d
,a
,1
]

[K
p
,a
,2
T
i,
a
,2
T
d
,a
,2
]

[K
p
,b
,1
T
i,
b,
1
T
d
,b
,1
]

[K
p
,b
,2
T
i,
b,
2
T
d
,b
,2
]

F
it

n
es

s
v
a
lu

e
[]

C
o
st
[%

]

[1 1] [1 1]

[5.6 0.3 0.1] [19.1 0.3 -139] [1.7 0.3 0.6] [0 0.4 0]

108 32.3

[2 2] [1 1] 4912 48.3

[3 3] [1 1] 1986 74.9

1
4
6

H
ard

w
are

an
d

C
o
n
tro

l
C

o
-D

esig
n

A
pro

+
+

1/s C
pro

x
pro

x
pro

y

e
a,1

u
1

B
pro

D
pro

e
a,2

+ +

PID
a,1

PID
a,2

�

x
pro

x
pro

�

A
obs

+
+

+

 L
obs

1/s C
obs

B
obs

Dist

D
obs

- -

+

^^

x̂

x̂

-

-

+

+

e
b,1

e
b,2

PID
b,1

PID
b,2

-

-

+

+
u
2

Ref
1

Ref
2

x̂

Figure 6.9: Control scheme used for the MATLAB® Simulink autotuning procedure with the mechanical synchronization
process matrices in light blue, state observer matrices in dark blue, disturbance in dark green, reference trajecto-
ries in light green, actuator output saturation in yellow, and PID controllers in red

6.3 LTI Case: Mechanical Synchronization Setup 147

Figure 6.10: Time-domain response of the inertia displacement (top)
and actuator effort (bottom) after applying the MATLAB®

Simulink PID autotuning procedure with actuators of type 1.
The rotational displacements strongly drift away from the de-
sired reference trajectory.

Figure 6.11: Time-domain response of the inertia displacement (top)
and actuator effort (bottom) after applying the MATLAB®

Simulink PID autotuning procedure with actuators of type 2.
The rotational displacement of the inertias show poor refer-
ence tracking.

148 Hardware and Control Co-Design

Figure 6.12: Time-domain response of the inertia displacement (top)
and actuator effort (bottom) after applying the MATLAB®

Simulink PID autotuning procedure with actuators of type 3.
The rotational displacement of the inertias show mediocre ref-
erence tracking.

6.3 LTI Case: Mechanical Synchronization Setup 149

6.3.7 Objective Function Surface Plots

A surface plot can be established to validate the obtained optimization results. For

this purpose, a ’mesh’ is created around an optimization result where two design

parameters (called ’mesh variables’) change in a specific area around the obtained

optimization point with predefined intervals. The optimization routine has cor-

rectly determined the optimal solution if none of these surrounding points show a

better fitness value. Additionally, the smoothness of the objective function can also

be checked in this way (see 2.2 on page 21). Table 6.8 shows the various settings

for the surface plots that are mentioned hereafter.

Table 6.8: Overview of the settings for the different surface plots for the
mechanical synchronization case optimization results

Pareto Mesh Mesh variable Z-axis Figure

point variables limits limits reference

10
Kp,a,2 [0 25]

[26 50] Fig. 6.13
Kp,a,2−1 [0 40]

10
Kp,b,2 [0 15]

[26 100] Fig. 6.14
Kp,b,1 [0 30]

14
Kb,ff,2 [0 20]

[0 107] Fig. 6.15
Kb,ff,1 [0 20]

Fig. 6.13 shows the surface plot for the optimized Pareto point 10 with mesh

variables Kp,a,2 and Kp,a,2−1. From the surface plot results, it can be seen that the

optimization algorithm successfully determined the optimal point for these two de-

sign parameters within the intended range, since no point in the mesh has a better

fitness value than the optimization result from the presented co-design methodol-

ogy. Additionally, it can be seen in Fig. 6.14 that the objective function exhibits

non-convex behavior (even for ’continuous’ design parameters Kp,b,2 and Kp,b,1

for which there is no integer constraint). The objective function is not only non-

convex, but it also exhibits non-smooth behavior, as can be seen on the surface plot

of design parameters Kb,ff,2 and Kb,ff,1 in Fig. 6.15. In this way, it is validated

that the presented co-design methodology can find the optimal solution for non-

smooth objective functions. This justifies the choice of a Genetic Algorithm as the

optimization algorithm used for this type of optimization problem.

150 Hardware and Control Co-Design

Figure 6.13: Angle view (a) and top view (b) on the objective function sur-
face plot with mesh variables Kp,a,2 and Kp,a,2−1 for z-axis
limits [26 50]. The dashed line in (a) and the white point in (b)
represent the optimization result for Pareto point 10.

6.3 LTI Case: Mechanical Synchronization Setup 151

Figure 6.14: Angle view (a) and top view (b) on the objective function sur-
face plot with mesh variables Kp,b,2 and Kp,b,1 for z-axis lim-
its [26 100]. The dashed line in (a) and the white point in (b)
represent the optimization result for Pareto point 10.

152 Hardware and Control Co-Design

Figure 6.15: Angle view (a) and top view (b) on the objective function sur-
face plot with mesh variables Kb,ff,2 and Kb,ff,1 for z-axis
limits [0 13 · 107].

6.4 LPV Case: Composite Plate 153

6.4 LPV Case: Composite Plate

The proposed co-design methodology is applied to the active vibration control

of a composite plate for which the controller design is performed using the Lin-

ear Control Toolbox (LCToolbox) [202] to obtain a robust H∞ controller based

on frequency domain criteria. This application demonstrates the flexibility of the

proposed co-design methodology in this PhD dissertation because this application

incorporates a linear parameter-varying (LPV) state-space model. This applica-

tion also demonstrates that external toolboxes can be used within the non-linear

objective and constraint functions of the proposed co-design methodology. The

main objective is to obtain a Pareto front that shows the optimal selection of col-

located actuator/sensor pairs and their corresponding fitness values for the active

vibration control of a composite plate with an H∞ LPV control design. For this

purpose, the general co-design workflow (see Fig. 3.1 on page 40) is used in which

some steps are not relevant for this case. Fig. 6.16 shows the workflow for the

co-design methodology applied to this linear parameter-varying (LPV) composite

plate model.

Possible sensor
locations and types?

Possible actuator
locations and types?

SS
LPV

SS
OL

Genetic Algorithm optimization

User-defined criteria

H
∞
 framework

Fitness value γ

Pareto front

Graphical representation

Trade-off
cost performance

Figure 6.16: Workflow for the co-design methodology applied to an LPV
composite plate model

154 Hardware and Control Co-Design

Figure 6.17: Overview of the simplified composite plate model with force
disturbances d1, d2, d3, and d4 and possible locations for the
collocated actuator/sensor pairs (from [210])

6.4.1 Model Properties

The setup consists of a composite plate of dimensions [503mm x 400mm x 2.5mm]

composed of unidirectional carbon fiber laminates with a symmetric lay-up of

[−45◦45◦0◦90◦]s [209]. The plate is equipped with nine M2814-P1 macro-fiber

composite (MFC) actuators of dimensions [28mm x 14mm x 0.3mm] and nine

accelerometers. Force disturbances d1, d2, d3, and d4 act on the plate at four

locations, as shown in Fig. 6.17. Since the weights of the accelerometers (ap-

proximately 5 grams per unit) are negligible compared to the actuator weights, the

mechanical influence of the sensors on the model dynamics is neglected.

The state-space model is depicted as:

[

q̇
q̈

]

=

[

0 I
−M−1K −M−1C

] [

q
q̇

]

+

[

0
−M−1Θ

]

u+

[

0
−M−1L

]

w

=A

[

q
q̇

]

+Buu+Bww,

(6.7)

with displacement q, mass matrix M , damping matrix C, spring matrix K, piezo-

electric coupling matrix Θ, disturbance localization matrix L, force disturbances

w, and input voltages u. The acceleration output y is defined as:

y =
[

0 C
]

A

[

q
q̇

]

+
[

0 C
] [

Bu Bw

]

[

u
w

]

=C

[

q
q̇

]

+D

[

u
w

]

.

(6.8)

This state-space model is a linear time-invariant (LTI) system. An artificial linear

parameter-varying (LPV) system is constructed by parameterizing the system ma-

trix A with α as the artificially generated scheduling parameter with values in the

interval [0.05, 0.1] resulting in A(α(t)) = A+αA. More details on this model can

be found in earlier work [210, 211].

6.4 LPV Case: Composite Plate 155

W
U

z
u

w

1

z
u

u
1

u
l

l

z
1

z
l

W
D

GK

Figure 6.18: Control configuration for the disturbance rejection control de-
sign problem with l actuators and sensors

6.4.2 Objective Function

The control objective is to accomplish the force disturbance rejection for the com-

posite plate active vibration control. The corresponding control configuration is

shown in Fig. 6.18, with w = [d1, d2, d3, d4]
T representing the force disturbances

and WD and WU being the static loop-shaping weights for the disturbance channel

D and the input sensitivity channel U , respectively. The H∞ control design frame-

work is used to obtain a full-order dynamic output feedback LPV controller K to

minimize the closed-loop specification’s cost function, as defined in (6.9).

minimize:

∣

∣

∣

∣

∣

∣

∣

∣

[

WDD
WUU

]∣

∣

∣

∣

∣

∣

∣

∣

∞

(6.9)

The weights are selected as static gains, being WD = 0.32I and WU =
10−2.25I to reduce the vibrations at each performance channel and limit the ac-

tuator effort [183]. The LCToolbox is used to solve the control design problem and

obtain a controller for a specific selection of active collocated actuator/sensor pairs.

A ’γ’ value quantifies the closed-loop performance [183], with lower γ values rep-

resenting better closed-loop performances. This γ value is used as the fitness value

throughout this application.

6.4.3 Design Parameters

As mentioned earlier, the actuators and sensors are applied in collocated pairs.

There are nine possible locations for these actuator/sensor pairs, resulting in nine

hardware placement binaries bact/sen defining the presence or absence of the cor-

responding actuator/sensor pair. No different types of sensors or actuators are pos-

sible. The controller design follows from the LCToolbox calculations based on the

active actuator/sensor pairs, so no controller tuning parameters need to be explicitly

defined in the co-design optimization methodology.

156 Hardware and Control Co-Design

6.4.4 Constraints

Integer constraints with boundaries [0 1] apply to each hardware placement binary.

The Pareto front is established by determining the optimal selection of the active

actuator/sensor pairs for each possible number of hardware placement binaries (=

[1-9]). Therefore, for each Pareto point optimization, an additional constraint ap-

plies that ensures that the current number of actuator/sensor pairs is equal to the

number of actuator/sensor pairs of the corresponding Pareto point.

6.4.5 Exhaustive Search

The nine binary design parameters result in 512 possible combinations, and for

each possible combination, the control design is calculated during an exhaustive

search approach. These exhaustive search results are depicted in Fig. 6.19 and

took 107 minutes of total calculation time. All optimization calculations on the

composite plate case were performed on the same Intel® Xeon® CPU @ 3.10 GHz

with 64 GB of RAM.

Figure 6.19: Exhaustive search results for the composite plate optimization

6.4 LPV Case: Composite Plate 157

6.4.6 Genetic Algorithm Implementation and Results

Optimal Selection of Five Actuator/Sensor Pairs

First, a Genetic Algorithm (GA) is used to determine the optimal selection of five

collocated actuator/sensor pairs. From the exhaustive search, it can be concluded

that the optimal γ value for five actuator/sensor pairs is equal to 145.02. Since

the GA optimization is non-deterministic by nature, the optimization procedure is

repeated five times with the same settings and starting conditions to check the re-

sult distribution. Table 6.9 depicts the GA settings for these composite plate GA

optimizations, while the optimization results are shown in Table 6.10. The results

show the optimized location selection of five actuator/sensor pairs for the consec-

utive GA optimizations, together with the corresponding fitness values and total

calculation times. The results show that the optimal solution was found in three

out of five optimizations. For the two non-optimal solutions, the GA apparently

got stuck in a local minimum close to the global minimum.

Table 6.9: Genetic Algorithm settings for the composite plate application

Description Value Unit

Population size 30 individuals

Maximum calculation time 600 seconds

Maximum number of generations infinite generations

Function tolerance 10−5 /

Maximum stall generations 10 generations

Crossover fraction 90 %
Elite count 4 individuals

Table 6.10: Composite plate GA optimization results for the optimal selec-
tion of five collocated actuator/sensor pairs. The optimizations
for which the optimal solution is found are indicated in green,
optimizations resulting in sub-optimal solutions are indicated in
red.

Optimization Optimized actuator/sensor Fitness Total calculation

algorithm pair selection value [γ] time [min]

Exhaustive search 1,3,4,6,9 145.02 107

GA 1 1,3,4,6,9 145.02 3.54

GA 2 1,3,4,6,9 145.02 6.60

GA 3 1,4,5,6,9 146.47 5.05

GA 4 1,4,6,8,9 147.28 7.02

GA 5 1,3,4,6,9 145.02 7.01

158 Hardware and Control Co-Design

Pareto Front Optimization

Next, a GA optimization is performed that defines the optimal selection for one to

nine possible actuator/sensor pairs to establish a Pareto front. This optimization

process is repeated three times to check the result distribution. Table 6.11 depicts

the optimization results. The rows represent the various individual Pareto point

optimizations involving the selection of the locations for a fixed number of actu-

ator/sensor pairs. The columns represent the results of the different optimization

algorithms, being the exhaustive search and the three consecutive Genetic Algo-

rithms (GA). The resulting selection of locations for the actuator/sensor pairs is

indicated, together with the corresponding fitness value. GA optimizations for

which the optimal location of the actuator/sensor pairs was found are indicated in

green. A graphical representation of these results is given in Fig. 6.20.

Table 6.11: Composite plate optimization results for the Pareto front opti-
mizations. The optimizations for which the optimal solution
is found are indicated in green, optimizations resulting in sub-
optimal solutions are indicated in red.

Optimization Exhaustive

algorithm search GA 1 GA 2 GA 3

1 act/sensor pair 4 4 4 4

(Fitness value [γ]) (234.70) (234.70) (234.70) (234.70)

2 act/sensor pairs 1,4 1,4 1,2 1,4

(Fitness value [γ]) (168.40) (168.40) (177,40) (168.40)

3 act/sensor pairs 1,4,6 1,4,6 1,4,6 1,4,6

(Fitness value [γ]) (155.88) (155.88) (155.88) (155.88)

4 act/sensor pairs 1,4,6,9 1,4,6,9 1,3,4,9 1,2,6,9

(Fitness value [γ]) (147.74) (147.74) (148,74) (153.20)

5 act/sensor pairs 1,3,4,6,9 1,3,4,5,9 1,3,4,6,9 1,3,6,8,9

(Fitness value [γ]) (145.02) (147,43) (145.02) (150.15)

6 act/sensor pairs 1,3,4,5,6,9 1,3,4,5,6,9 1,3,4,5,6,9 1,3,4,5,6,9

(Fitness value [γ]) (143.81) (143.81) (143.81) (143.81)

7 act/sensor pairs 1,3,4,5,6,7,9 1,2,3,4,6,7,9 1,3,4,5,6,7,9 1,2,3,4,5,6,9

(Fitness value [γ]) (143.22) (144,02) (143.22) (143.43)

8 act/sensor pairs 1,3,4,5,6,7,8,9 1,3,4,5,6,7,8,9 1,3,4,5,6,7,8,9 1,3,4,5,6,7,8,9

(Fitness value [γ]) (142.80) (142.80) (142.80) (142.80)

9 act/sensor pairs 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9

(Fitness value [γ]) (142.43) (142.43) (142.43) (142.43)

Total calculation
107 25.23 30.79 24.42

time [min]

6.4 LPV Case: Composite Plate 159

Figure 6.20: Pareto front results for the exhaustive search and the Genetic
Algorithm (GA) optimizations on the composite plate case

6.4.7 Case Conclusions

The exhaustive search results show that the γ values for all possible combinations

of five collocated actuator/sensor pairs range from 145.02 to 234.8. The GA opti-

mization results for selecting five actuator/sensor pairs show that the optimal solu-

tion was found in three out of five optimizations, with a considerably shorter calcu-

lation time compared to the exhaustive search approach. It can also be concluded

that the γ values for the sub-optimal solutions from the GA optimizations are very

close to the optimal solution. Considering the full range of possible fitness values,

the worst obtained result from the GA optimizations is only 2.5% worse than the

optimal result.

The Genetic Algorithm Pareto front optimizations show that the optimal se-

lection of actuator/sensor pairs was successfully performed for most Pareto points.

By combining multiple optimization results, the optimal Pareto front can be deter-

mined. Again, the non-optimal Pareto points are close to the optimal solutions.

This composite plate application shows that the proposed hardware architecture

and control configuration co-design methodology can cope with linear parameter-

varying (LPV) systems and H∞ control design using the LCToolbox. Further ex-

tensions on the co-design methodology are possible, but are not worked out in

this dissertation. For example, the previously static weights WD = 0.32I and

WU = 10−2.25I can also be defined as variable design parameters and can be opti-

mized based on time-domain system response criteria. In this way, criteria in both

160 Hardware and Control Co-Design

the time domain and the frequency domain can be considered in the co-design op-

timization methodology. Additionally, an extension can be introduced in which a

consideration of different types of actuators and sensors could be made. For this

purpose, actuator and sensor selection integers could be used, as described in Sec-

tion 4.2. An additional extension is to remove the restriction that the actuators and

sensors must be implemented in pairs.

6.5 Chapter Conclusions 161

6.5 Chapter Conclusions

This chapter explains how a Genetic Algorithm (GA) can be applied to execute

the presented hardware architecture and control configuration co-design method-

ology. A description of the objective function, design parameters, and constraints

concerning this optimization problem is given. The total calculation time can be

reduced by integrating specific prior knowledge from an open-loop analysis. It

can be concluded from the optimization results that a GA is able to determine the

optimal system composition with the maximum achievable performance depend-

ing on the intended implementation cost and other (non-linear) constraints. The

results are graphically represented in a Pareto front and can significantly help the

design engineer to obtain a better understanding of the trade-off between the opti-

mal achievable performance and the total implementation cost.

The hardware architecture and control configuration co-design optimization is

performed on a mechanical synchronization case of which some properties have al-

ready been covered in the previous chapters. The optimization results are compared

to existing linear-quadratic regulator (LQR) and PID autotuning methods, showing

that none of the existing controller tuning methods achieve the performance of the

presented optimization results. These optimization results are further validated by

checking that none of the configurations with surrounding design parameter val-

ues has better performance. For this purpose, the objective function surface plots

are established. These surface plots are also used to identify the smoothness of

the objective function, emphasizing that the objective function exhibits strong non-

smooth behavior for some design parameters (even without considering the design

parameters with integer constraints).

Finally, the flexibility of the presented co-design methodology is demonstrated

by applying it to a linear parameter-varying (LPV) composite plate model with the

integration of an external LCToolbox to incorporate a H∞ robust control design.

For this application, the optimal selection of collocated actuator/sensor pairs is per-

formed for various numbers of possible hardware components. The optimization

results are compared to an exhaustive search approach, showing that the optimal

solution is found in the majority of the optimization results with much shorter cal-

culation times. Moreover, sub-optimal optimization results are found to be close to

the optimal solutions.

162 Hardware and Control Co-Design

Chapter 7

Case: Active Car Suspension

Setup

In this chapter, the presented hardware architecture and control configuration co-

design methodology is applied to the state-space model of a physical downscaled

active car suspension lab setup. This setup is designed based on the widely avail-

able theoretical full-car active suspension model and mimics a car driving over a

road surface while active components in the suspension are used to increase the

driver’s comfort by counteracting unwanted vibrations. Kinematic and dynamic

analyses are performed to ensure that the system behavior matches a typical pas-

senger car.

The result of the co-design optimization methodology is a Pareto front that

graphically represents the trade-off between the maximum performance and the

total implementation cost. Additionally, the co-design results are validated with

measurements on the physical active car suspension setup, and the obtained con-

troller tuning parameters are compared with existing controller tuning methods.

7.1 Introduction on Active Suspension Systems

An automotive suspension system exists in many forms and designs but usually

consists of a mechanical linkage system with springs and dampers (often called

’shock absorbers’) that connect the wheels to the car and allow relative movement

between the two [212]. This suspension is designed to provide a desirable trade-

off between road handling and ride quality. A stiff suspension maintains good road

handling capabilities but causes the driver to perceive much of the unevenness in

the road surface. On the other hand, a soft suspension provides greater comfort for

the driver on uneven road surfaces, but good contact between the wheels and the

road surface cannot be guaranteed. This is crucial for road handling because all

the forces between the car and the road surface are transmitted through the wheels.

The vast majority of ordinary passenger cars use a passive suspension with a spring

164 Case: Active Car Suspension Setup

Spring

Damper

Chassis

Figure 7.1: Overview of a typical passenger car passive suspension system
with a spring (yellow) and a damper or shock absorber (blue)
(edited from [214])

that absorbs impacts and a damper (or shock absorber) that limits the spring move-

ments. Fig. 7.1 shows a spring-damper system of a typical passive car suspension.

For everyday use passenger cars, optimal ride comfort is the suspension system’s

principal goal. To further improve this ride comfort, active suspension systems can

be used in which the suspension is externally controlled to attenuate the vibration

of the vehicle body. Over the past decades, active suspension control technologies

have become an extensive research topic, hence these systems have a significant

influence on the subjective driver comfort impression [213]. A distinction is made

between semi-active (or adaptive) and active suspension systems.

7.1.1 Semi-Active and Adaptive Suspension Systems

Semi-active and adaptive systems can only change the damping coefficient of the

suspension and thus cannot inject energy directly into the system. Typically, adap-

tive systems allow for several predetermined damping coefficients for which the

damping values are adjusted according to the desired driving mode (e.g., comfort,

normal, sport). On the other hand, semi-active systems are equipped with com-

ponents having a much faster response time to respond in real-time to changing

7.1 Introduction on Active Suspension Systems 165

road conditions and car dynamics. The most basic and economical form of a semi-

active suspension is using a solenoid valve that can adjust the flow of the hydraulic

medium in the shock absorber, resulting in a change of the damping coefficient.

The first production car to be equipped with this type of suspension was the Toyota

Soarer in 1983 [215, 216].

A semi-active suspension can also be obtained by using magnetorheological

dampers. These dampers contain a fluid with metal particles that align according

to the magnetic field. The viscosity of the liquid depends on the alignment of the

particles, allowing the damping coefficient to be adjusted according to an elec-

tric current through an electromagnet. This system can present very fast reaction

times of a few milliseconds, allowing, for instance, to make a softer passing by

a single wheel over a bump in the road [217–219]. Magnetorheological dampers

were developed for production cars by ’General Motors’ and first applied under

the proprietary name ’MagneRide’ on a Cadillac car in 2002 [220]. To this day,

MagneRide technology continues to be applied in cars from manufacturers such

as Chevrolet, Ferrari, Lamborghini, Range Rover, Audi, and Ford. In addition to

automotive suspensions, magnetorheological fluids are also used in, for instance,

prosthetic limbs [221] and stabilization systems for helicopter rotor blades [222].

7.1.2 Active Suspension Systems

With active suspensions, actuators are added that can effectively apply a force to

certain suspension elements so that the displacement of each wheel can be con-

trolled separately. These actuators can be fully hydraulic [223], whereby the ve-

hicle body can be raised or lowered in a matter of seconds, improving the aerody-

namic performance at high speeds. Probably the most well-known example of this

hydraulic suspension is the Citroën DS, developed by Paul Magès in 1954 [224]. A

more modern variant is an electronically controlled hydraulic system. In that case,

sensors monitor the body movement while hydraulic servos provide counter forces

during driving maneuvers. The Williams Grand Prix Engineering team equipped

their F1 cars with such an active car suspension system in 1992. This turned out

to be so profitable that the team won 10 races in that season’s Grand Prix, after

which the ’Fédération Internationale de l’Automobile’ (FIA) banned the technol-

ogy [225]. A variation of this system was introduced by Mercedes-Benz in 1999

in high-segment production cars as an ’Active Body Control.’ This feature uses

high-pressure hydraulic servos controlled to actively lean into curves and is still

available today [226, 227].

Active car suspensions can also be implemented electromechanically, in which

each wheel is equipped with electric motors. This form of active suspension pro-

vides an extremely fast response and also allows energy to be recovered by us-

ing the motors as generators. These electric systems exhibit better performance

than the slower and more energy-consuming hydraulic systems. The ’Univer-

sity of Texas Center for Electromechanics’ patented an electronically controlled

166 Case: Active Car Suspension Setup

active suspension system in 1999 that was later used in military vehicles [228].

This system exceeded all performance specifications in terms of absorbed power to

the vehicle operator, stability, and handling [229]. The ’Bose Corporation’ (most

known for their audio products) made a proof of concept in 2004 of a passen-

ger car equipped with an impressive electromechanical car suspension [230]. Due

to its high cost and weight, the system was not implemented in production cars.

The technology was sold to the company ’ClearMotion’ that further developed this

technology into a finished and implementable product [214]. The company even

claims to greatly reduce motion sickness in cars [231]. Since 2017, Audi has sup-

plied their A8 models with an advanced active suspension system, see Fig. 7.2.

This active suspension is controlled via inputs from the forward-facing camera that

’reads’ the road surface, transmitting signals to the control to raise or lower the

suspension accordingly to cope with the road surface. The system has the capa-

bility of generating 16 kN per second and alters the suspension every 15 millisec-

onds [232, 233].

Figure 7.2: Overview of an Audi A8 active suspension system with the ac-
tive spring-damper systems highlighted in yellow (edited from
[233])

7.2 Active Car Suspension Lab Setup 167

7.2 Active Car Suspension Lab Setup

7.2.1 Setup Properties

In the scope of this PhD, a setup representing a downscaled active car suspension

is built, as shown in Fig. 7.3. This lab setup mimics the behavior of a car driv-

ing on a road surface in which active suspension components can counteract on

vibrations of a central platform representing a car body. The actuators consist of

servomotors from which a rotational torque is converted to a linear force through an

electromechanical cylinder. The test setup allows the examination of a wide variety

of hardware architectures and control configurations. It is important to emphasize

that the primary goal of this setup is not to improve the current state-of-the-art

in active car suspension systems but rather to validate the presented model-based

co-design methodology with measurements on a physical setup.

Linear slider
for vertical
guidance

Rear-right
spring-damper-actuator
system

Front-right
spring-damper-actuator
system

Rear-left
spring-damper-actuator

system

Front-left
spring-damper-actuator

system

Linear slider
for vertical

guidance

Figure 7.3: Picture of the physical full-car active suspension lab setup. The
locations of the sliders and the spring-damper-actuator systems
are indicated in accordance with the diagram in Fig. 7.4. The
linear slider systems for vertical guidance also have an actuator,
but these are not connected to use the lab setup as an active car
suspension. The springs are not present in this picture, but were
mounted to perform the mentioned tests.

168 Case: Active Car Suspension Setup

A theoretical full-car suspension model is widely available [234–237]. How-

ever, building a full-car setup based solely on this full-car suspension model is

very hard as the system has a lot of degrees of freedom. Therefore, a novel active

car suspension lab setup was built in order to successfully emulate a full-car ac-

tive suspension. A diagram of this lab setup is shown in Fig. 7.4 and consists of

a central, hexagonal platform with mass ms supported in four places by a spring

K, a damper B, and an actuator system with applied forces f in parallel. The

spring-damper systems correspond to a classic car suspension, while the actuators

represent an active component to counteract the unwanted vibrations of the central

platform. The subscripts fr, fl, rr, and rl represent the wheel location, being

front-right, front-left, rear-right, and rear-left, respectively. As a result, the lab

setup can be labeled as a parallel robot, extensively studied in [238–240].

flf
fls

K
fls

B

frf
frs

K
frs

B

frs
z

rlf
rls

K
rls

B

rls
z

rrs
z

a

b

Y

Z

sm

θ

z

z
s,fl

rrf rrs
K

rrs
B

Figure 7.4: Full-car active suspension lab setup diagram

A kinematic study was performed to guarantee that the lab setup will have

enough degrees of freedom to accurately emulate an active car suspension. The

lower side of the spring, damper, and actuator rods cannot translate. This has

as an effect that when the central mass is pitching along the Y-axis, the spring,

damper, and actuator rods should be able to tilt from their initial vertical position.

That is why these rods are attached to the base plate and the central mass ms with

ball couplings, providing rotational ability and fixed relative translation. Linear

sliders are provided on the two opposite sides of the central platform, preventing

the central mass from tipping over undesirably. As a result, the central platform

can translate along the Z-axis with a heave height z and rotate around the Y-axis

with an angular pitch rotation θ. This makes it possible to emulate a car driving

7.2 Active Car Suspension Lab Setup 169

straight forward on a road profile.

The parameters to represent a passenger car suspension model are obviously

not the same for every car, but typical values can be found in previous work

[65, 213, 234, 236, 241]. Additionally, the lab setup will not have the same di-

mensions of a regular passenger car. A geometrical downscaling factor of two is

used for the lab setup compared to a regular passenger car. For the lab setup to

have the same dynamics, its weight will not be half, but 23 = 8 times smaller than

a regular passenger car. This implies that the appropriate scaling laws must be

applied for some fundamental parameters [236, 242]. Table 7.1 depicts the down-

sizing of typical passenger car parameters to the lab setup parameters. Although

the lab setup parameters do not perfectly match the downsized values of a typi-

cal passenger car, they are close enough so that the lab setup will exhibit similar

dynamic characteristics to a typical mid-size passenger car.

Table 7.1: Downscaling typical passenger car parameters to lab setup pa-
rameters with a geometrical scaling factor 1:2

Downsized value Lab

from a typical setup

passenger car parameter

Mass inertia (Iyy) [kgm
2] 4000/25 = 125 104.45

Suspension stiffness (Ks) [N/m] 23000/2 = 11500 13000

Damping coefficient (Bs) [Ns/m] 6000/22 = 1500 1800

Dimension front-rear (a+ b) [m] 2.5/2 = 1.25 1

Body mass (ms) [kg] 1400/23 = 175 58.26

170 Case: Active Car Suspension Setup

7.2.2 State-Space Model Identification

The system has four inputs, namely the four actuator forces ufr, ufl, urr, and

url. These system inputs are used to apply both the road profile disturbances dfr,

dfl, drr, and drl (see Subsection 7.2.3) and the control effort signals ffr, ffl, frr,

and frl eliminating unwanted central platform vibrations. The applied feedback

control has no information on the road disturbance signals. The model inputs are

as follows:

u =

ufr
ufl
urr
url

=

dfr + ffr
dfl + ffl
drr + frr
drl + frl

. (7.1)

The model states x are the horizontal position z, speed ż, acceleration z̈, and pitch

angle θ of the central platform:

x =

z
ż
z̈
θ

, (7.2)

while the same system properties are used for the model output y for the identifi-

cation procedure:

y =

z
ż
z̈
θ

. (7.3)

As a result, the dimensions of the state-space system matrices are defined as A

[4×4], B [4×4], C [4×4], and D [4×4]. For the model identification, a multisine

excitation signal with measurement time Tm = 80 s and sample frequency Fs =
1000 Hz containing sine frequencies from 0.01 Hz to 490 Hz [202] is imposed on

the system inputs, while the system response is measured. A time delay of 0.1 s is

imposed between the front and rear actuators to obtain an angular pitch rotation θ
excitation. From the measured input and output signals, the model matrices values

are identified using the Prediction Error Minimization (PEM) method [243]. This

model identification procedure is graphically displayed in Fig. 7.5. The resulting

(rounded) matrix values are shown in Equations 7.4-7.7.

7.2 Active Car Suspension Lab Setup 171

System to be
identified

u
fr

u
fl

u
rr

u
rl

imposed
excitation

signals

measured
response
signals

z

z

z

.

..

PEM

A

B

C

D

= [...]
= [...]
= [...]
= [...]

θ

Figure 7.5: Graphical representation of the model identification procedure
using a Prediction Error Minimization (PEM) method to iden-
tify the system’s state-space matrix values based on the imposed
multisine excitation signals and the measured response signals

A =

−525.4 −286.7 31.40 20948
2773 4221 −462.6 −262133
27543 41914 −4603 −2603136
47.85 24.79 −2.672 −1831

(7.4)

B =

−62.87 54.67 35.99 −44.83
539.0 −511.8 −529.7 585.6
5704 −5429 −5352 5825
4.168 −4.047 −3.078 3.490

(7.5)

C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(7.6)

D =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(7.7)

172 Case: Active Car Suspension Setup

Fig. 7.6 depicts the Bode plot of the identification measurements using the

multisine signal and the Bode plot of the identified PEM state-space model. It is

important to emphasize that the model will not perfectly match the actual setup. For

example, it is known in advance that the dampers have a non-linear character. This

non-linear behavior (along with possibly other phenomena such as static friction)

is not explicitly modeled in the identified linear time-invariant (LTI) system.

Figure 7.6: Comparison of the bode plots of the identification measure-
ments (blue) and the identified PEM state-space system (red)
from system inputs u to platform velocity ż (left) and system
inputs u to platform acceleration z̈ (right)

7.2 Active Car Suspension Lab Setup 173

7.2.3 Road Profile

Road profile disturbance signals are applied to the actuators with the intention that

the central platform experiences the same forces as if it was driving over a real

road surface. According to the ISO 8608 norm [244], a road profile can be mathe-

matically composed based on the assumption that a given road has equal statistical

properties everywhere along a section to be classified. That is: the road surface

is a combination of a large number of longer and shorter periodic bumps with dif-

ferent amplitudes. Another input parameter for the road profile formulation is the

road roughness factor. This factor varies from 1 to 8, with 1 being a high-quality

(smooth) road surface like an asphalt layer. Conversely, a road roughness factor

of 8 represents a very poor road quality, as in roadway layers consisting of cob-

blestones [245, 246]. The road profile is defined as a displacement disturbance,

while the lab setup only allows force disturbance inputs. That is why the road dis-

placement zr is converted to a corresponding force disturbance d for the active car

suspension lab setup. This conversion is graphically represented in Fig. 7.7.

sK sB

um

sm

uK

z
u

z
s

z
s

z
r

d

sK sB

sm

Figure 7.7: Graphical representation of the conversion from a road displace-
ment zr from a traditional quarter car model to a force distur-
bance d for the quarter-car suspension lab setup

174 Case: Active Car Suspension Setup

Fig. 7.8(a) shows an ISO 8606 road profile for a car traveling at 72 km/h for

20 seconds on a road profile of 400 meters with a roughness factor 5. Fig. 7.8(b)

shows this displacement profile converted to an equivalent force profile, applicable

to the lab setup. These actuator force disturbances are appointed as dfr, dfl, drr,

and drl for the front-right, front-left, rear-right, and rear-left wheel, respectively.

Based on a speed of 72 km/h and a distance between the front and rear wheel axles

of 1 meter, there will be a time delay of 0.05 s between the applied front and rear

wheel force disturbances.

Figure 7.8: ISO 8608 road displacement profile with roughness factor 5 (a)
with corresponding actuator force disturbance (b)

7.3 Hardware and Control Co-Design 175

7.3 Hardware and Control Co-Design

7.3.1 Objective Function

The objective of the active car suspension setup is to achieve the best driver’s com-

fort. According to the ISO 2631 norm, the driver’s comfort is quantified as the

perceived acceleration levels in the three principal axes of translation (vertical,

longitudinal, and lateral) [247, 248]. The lab setup only allows translation along

the vertical Z-axis. That is why in this case, the control objective is to minimize

the Z-axis accelerations, maximizing the driver’s comfort. A ’fitness value’ (FV)

quantifies the performance according to the ISO 2631 norm by taking the rms of

the acceleration along the Z-axis:

FV =

√

√

√

√

1

k

k
∑

K=1

z̈2, (7.8)

with k the total number of samples, being Tm/Ts = 30s/0.001s = 30000.

7.3.2 Design Parameters

The design parameters for this co-design optimization problem consist of two ac-

tuator selection integers, two sensor selection binaries, two control architecture

binaries, and 12 controller tuning parameters.

The actuator selection integers iact,f and iact,r define which type of actuators

are applied to the front wheels f and the rear wheels r, respectively. Table 7.2

provides an overview of the different actuator types, with each actuator type corre-

sponding to an associated cost and maximum actuator output. The component cost

is chosen arbitrarily and will be different for each application. Therefore, this cost

is not expressed in a currency but in percentage terms relative to the most expensive

setup possible.

Table 7.2: Possible actuator selection integer iact,... values with correspond-
ing cost and maximum actuator output

Actuator selection Cost Maximum actuator

integer iact,... [%] output [Nm]

0 0 0

1 5.7 1

2 14.3 2

3 42.9 5

176 Case: Active Car Suspension Setup

The design-space for the feedback control architecture is shown in Fig. 7.9.

This design-space shows the attainable form of the feedback control when all ca-

pabilities regarding the control configuration optimization are active. The second

and fourth row of the C and D matrices of the identified model are omitted for

the co-design optimization procedure so that the model has the platform position

z and acceleration z̈ as outputs. PID controllers can be applied separately to the

front and rear wheels for both the displacement and acceleration feedback control.

The sensor selection binaries bsen,z and bsen,z̈ define the presence or absence of

a sensor on the central platform heave position z and acceleration z̈, respectively.

The cost for a displacement feedback sensor and an acceleration feedback sensor

is 1.4% and 4.3%, respectively. The control architecture binaries bCL,z and bCL,z̈

define the presence or absence of the PID controllers on the displacement and ac-

celeration feedback control, respectively. Both control loops have a cost of 2.1%.

The PID controller values Kp,..., Ti,..., and Td,... are also design parameters, with

the subscript referring to the corresponding controller. For example, Td,z̈,r is the Td

value of the acceleration feedback PID controller connected to the rear actuators.

7
.3

H
ard

w
are

an
d

C
o
n
tro

l
C

o
-D

esig
n

1
7
7

A

+
+

1/s

-b
sen,z
..

-b
sen,z

C
x z

z

x
B

D

+ +

PID
z,f
..

PID
z,r
..

PID
z,f

PID
z,r

�

��

u
fr

f
fr

u
fl

u
rr

u
rl

f
fl

f
rr

f
rl

d
fr

+

+

d
fl

+

+

d
rr

+

+

d
rl

+

+

+

+

+

+

Figure 7.9: Design-space for the feedback control architecture with the active car suspension model in blue, road profile force
disturbance signals in green, actuator output saturation in yellow, PID controllers in red, and sensor feedback in
orange

178 Case: Active Car Suspension Setup

7.3.3 Constraints

The number of possible actuator types determines the upper and lower bounds for

the actuator selection integers, see Table 7.3. For the binary design parameters, the

bounds are equal to zero and one. For the PID values, the most relaxed boundaries

are determined based on system stability margins. For example, for determining

the constraint on the upper bound of the acceleration feedback values Kp,z̈,f and

Kp,z̈,r, a phase margin φPM of 50◦ is suggested to obtain a sufficiently robust

control [36]. The Bode plot of the system input u to the platform acceleration

z̈ identification measurements is shown in Fig. 7.10. To obtain this phase margin

φPM of 50◦, a zero crossing of the magnitude plot must occur at a phase angle shift

of −180◦ + φPM = −180◦ + 50◦ = −130◦. The phase plot shows that a phase

angle shift of −130◦ occurs at ωPM50 = 19.5Hz (illustrated with a black vertical

line in Fig. 7.10). The gain at phase ωPM50 is 25.96 dB. Thus, the corresponding

gain factor is 10−25.96/20 = 0.05.

Figure 7.10: Bode plot of the identification measurements (blue) from sys-
tem inputs u to platform acceleration z̈. A vertical black line
indicates the frequency ωPM50 at which the phase plot attains
−130◦.

Table 7.3 provides an overview of the design parameters with corresponding

lower bound (LB) and upper bound (UB) constraints. Next to the design parameter

bounds, a non-linear maximum implementation cost constraint is implemented for

which the optimization algorithm ensures that the sum of the various components

does not exceed this maximum implementation cost. By subsequently performing

7.3 Hardware and Control Co-Design 179

this optimization for several different maximum implementation costs, the progres-

sion of the maximum achievable performance relative to the total implementation

cost can be determined.

Table 7.3: Design parameters with their corresponding lower bound (LB)
and upper bound (UB) constraints

Design parameter LB UB Design parameter LB UB

iact,f 0 3 iact,r 0 3

bsen,z 0 1 bsen,z̈ 0 1

bCL,z 0 1 bCL,z̈ 0 1

Kp,z,f 0 2 Kp,z,r 0 2

Ti,z,f 0 0.01 Ti,z,r 0 0.01

Td,z,f 0 0.01 Td,z,r 0 0.01

Kp,z̈,f 0 0.05 Kp,z̈,r 0 0.05

Ti,z̈,f 0 0.01 Ti,z̈,r 0 0.01

Td,z̈,f 0 0.01 Td,z̈,r 0 0.01

7.3.4 Genetic Algorithm Implementation

A Genetic Algorithm (GA) is deployed to optimize the 18 design parameters based

on the non-linear objective function and according to the mixed-integer and non-

linear constraints mentioned above. For this active car suspension application, the

optimization is performed repeatedly with a changing constraint on the maximum

cost varying from 0% to 100% in 14 equal steps. By allowing a higher maximum

implementation cost in successive optimizations, more expensive and better per-

forming parts can be used. In this way, the different points of the Pareto front are

determined. Table 7.4 depicts some of the key settings for the Genetic Algorithm.

The optimization took approximately 8 hours and 18 minutes on an Intel® Xeon®

CPU @ 3.10 GHz with 64 GB of RAM.

Table 7.4: Settings for the Genetic Algorithm applied to the active car sus-
pension model

Description Value Unit

Population size 200 individuals

Maximum calculation time 7200 seconds

Maximum number of generations infinite generations

Function tolerance 10−10 /

Maximum stall generations 10 generations

Crossover fraction 40 %
Elite count 20 individuals

180 Case: Active Car Suspension Setup

7.4 Results and Measurements

7.4.1 Model-Based Pareto Optimizations

Table 7.5 shows the results for every Pareto point optimization, while the resulting

Pareto front is graphically depicted in Fig. 7.11. These results provide a valu-

able understanding of the trade-off between the achievable performance and the

implementation cost. As more implementation costs are allowed, actuators with

higher torque outputs can be applied, resulting in better fitness values and, thus,

better system performances. Each point contains an optimized situation depending

on the implementation cost. It will be up to the design engineer to decide which

Pareto point is most appropriate for the specific application. However, Pareto point

4 seems to be the most interesting because the results show that only a relatively

small improvement in performance is obtained for Pareto points with a higher cost.

None of the optimized Pareto points contain a position feedback control. Thus,

these results show that applying a position feedback control gives no added value

to the intended objective. This is also why the last Pareto point does not have a

cost of 100%.

Figure 7.11: Pareto front representing the active car suspension model op-
timization results, showing the maximum achievable perfor-
mance related to the implementation cost

7
.4

R
esu

lts
an

d
M

easu
rem

en
ts

1
8
1

Table 7.5: Model-based Pareto front optimization results (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f , ... [bsen,z̈ , ... [bCL,z̈ , ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

0 0 85526 [0,0] [0,0] [0,0] ◦ ◦ ◦ ◦
1 12.7 58318 [0,1] [1,0] [1,0] [0.037 0.005 0.006] [0.040 0.006 0.009] ◦ ◦
2 18.7 36633 [1,1] [1,0] [1,0] [0.042 0.003 0.008] [0.048 0.001 0.009] ◦ ◦
3 27.6 26795 [1,2] [1,0] [1,0] [0.043 0.005 0.004] [0.036 0.007 0.007] ◦ ◦
4 36.6 17800 [2,2] [1,0] [1,0] [0.049 0.009 0.003] [0.049 0.007 0.008] ◦ ◦
5 66.4 16332 [3,2] [1,0] [1,0] [0.048 0.009 0.009] [0.043 0.004 0.007] ◦ ◦
6 96.3 14404 [3,3] [1,0] [1,0] [0.05 0 0.01] [0.05 0.01 0.01] ◦ ◦

182 Case: Active Car Suspension Setup

7.4.2 Validation Measurements

The results of the model-based Pareto optimizations are validated with measure-

ments on the physical lab setup. For each hardware and control combination of

Table 7.5, the system response to the same road disturbance signals is measured.

Appendix C details the differences between the model-based calculated re-

sponses and the actual measured responses for each Pareto point. Fig. 7.12 depicts

the platform acceleration z̈ measurements for every optimized Pareto point con-

figuration. The progression of the graphs clearly shows that the measured accel-

erations decrease as a higher maximum implementation cost is allowed. Fig. 7.13

depicts the difference in platform accelerations z̈ measurements between no active

actuation and the optimized active actuation from Pareto point 6. The figure shows

that the largest acceleration spike decreases from −566mm/s2 to −63mm/s2,

which is a reduction of 89%. This means that a significant increase in driver’s

comfort can be achieved using the optimized active car suspension, which is also

represented in the corresponding fitness values.

Figure 7.12: Measured platform acceleration z̈ for every optimized Pareto
point configuration

7.4 Results and Measurements 183

Figure 7.13: Comparison of the measured platform acceleration z̈ for no ac-
tive actuation (blue) and with optimized active actuation (red)
from Pareto point 6 for the same road disturbance signals

Fig. 7.14 shows a comparison of the calculated and measured front and rear

wheel actuator outputs uf and ur and platform acceleration signals z̈ for a part

of the time-domain response for Pareto point 6, demonstrating that the calculated

and measured responses match well. Table 7.6 shows the fitness values for the cal-

culated model-based optimization results and the corresponding validation mea-

surements. These validation measurement results are depicted together with the

model-based Pareto optimization results in Fig. 7.15. The calculated and mea-

sured fitness values show better agreement as the implementation cost rises and

more features are allowed. Although the individual measured fitness values for

configurations with smaller implementation costs do not match the model-based

calculated fitness values, the overall trend is similar to that of the calculated fitness

values. Therefore, conclusions on the hardware and control co-design based on

the model-based optimization values will still be valid on the physical setup. The

differences mentioned above can be attributed to modeling errors (e.g., friction or

non-linear system behavior) and inherent measurement noise levels in the actual

setup rather than limitations of the optimization algorithm.

184 Case: Active Car Suspension Setup

Figure 7.14: Comparison of the calculated (blue) and measured (red) time-
domain responses for the front wheel actuator output uf (a),
rear wheel actuator output ur (b), and platform acceleration
z̈ (c) for the validation measurement of Pareto point 6. The
actuator outputs u... consist of the road disturbance signals d...
and the control effort signals f....

Figure 7.15: Comparison of the Pareto front results (blue) from the model-
based co-design optimization methodology and the Pareto
point validation measurements on the physical lab setup (red)

7.4 Results and Measurements 185

Table 7.6: Fitness values for the model-based optimization results and the
corresponding validation measurements

Pareto Cost Model-based optimization Validation measurement

point [%] Fitness value [] Fitness value []

0 0 85526 156349

1 12.7 58318 100677

2 18.7 36633 46322

3 27.6 26795 33926

4 36.6 17800 20448

5 66.4 16332 17489

6 96.3 14404 15106

7.4.3 Comparison to Existing Controller Tuning Methods

The optimized controller values are compared to existing controller tuning meth-

ods to validate the optimized acceleration controller tuning parameters as part of

the control configuration optimization. First, the obtained controller tuning is com-

pared to an LQR feedback design. In an LQR control design, relative weights are

given to the state and input variables by adjusting the diagonal matrix Q and R

values, respectively. Based on these values, a cost function minimization routine

determines the values of the feedback matrices [56]. Thus, the LQR controller de-

sign comes down to adjusting the weights of the Q and R matrices according to the

desired system behavior. However, for this application, typical starting values of 1,

applying the Bryson method [60], or manual adjustments of the Q and R diagonal

matrices did not lead to a stable, feasible solution.

Furthermore, an existing controller tuning method is applied in which the P

and PI controller values are determined based on the intended phase margins of

the measured Bode plots [249]. This measured model is further denoted as G.

The controller tuning method was applied to obtain P acceleration controllers with

intended phase margins φPM equal to 30◦, 60◦, and 90◦. Fig. 7.16 shows the Bode

plot of the identification measurements for G in which the frequencies ωP,PM30,

ωP,PM60, and ωP,PM90 for phase margins of 30◦, 60◦, and 90◦ are shown with

black vertical lines. The corresponding Kp,P,PM30, Kp,P,PM60, and Kp,P,PM90

values are obtained by compensating for the difference in the magnitude ratio at

ωP,PM30, ωP,PM60, and ωP,PM90, respectively. After that, each P controller was

tested on the physical lab setup with different actuator types for a comparison with

the obtained Pareto points from the co-design optimization methodology. Table 7.7

shows the results for the existing P controller tuning method and the corresponding

validation measurements.

186 Case: Active Car Suspension Setup

Figure 7.16: Bode plot of the identification measurements from system in-
puts u to platform acceleration z̈ with frequencies ωPM30,
ωPM60, and ωPM90 shown in vertical black lines to define the
corresponding P controller values

The same approach is used to obtain PI acceleration controllers with phase mar-

gins φPM of 30◦, 60◦, and 90◦ at corresponding frequencies ωPI,PM30, ωPI,PM60,

and ωPI,PM90. A PI controller consists of a gain, a pole at the origin, and a

zero [52]. The pole will cause a phase delay of -90◦ at the frequency ωPI,PM

at which the magnitude plot |G(jωPI,PM)| crosses 0 dB. A zero causes a phase

angle shift of +90◦ for infinitely high frequencies, but it is more realistic to de-

sign the controller requiring a phase shift of +60◦ at frequency ωPI,PM . With this

knowledge, the corresponding frequency ωPI,PM can be determined as:

∠G(jωPI,PM)− 90◦ + 60◦ = −180◦ + φPM . (7.9)

7.4 Results and Measurements 187

Fig. 7.17 shows the Bode plot of the identification measurements in which the

frequencies ωPI,PM30, ωPI,PM60, and ωPI,PM90 for phase margins φPM of 30◦,

60◦, and 90◦ are shown with black vertical lines.

Figure 7.17: Bode plot of the identification measurements from system in-
puts u to platform acceleration z̈ with frequencies ωPM30,
ωPM60, and ωPM90 shown in vertical black lines to define the
corresponding PI controller values

Once frequency ωPI,PM is defined, Ti,P I,PM can be specified as:

∠(1 + Ti,P I,PMs)|ω=ωPI,PM
= 60◦, (7.10)

from which the value of Ti,P I,PM is found.

Finally, the value Kp,PI,PM is determined so that the combined magnitude

plot of the system and the PI controller intersects 0 dB at frequency ωPI,PM . The

obtained PI acceleration controllers were also tested on the physical lab setup with

different actuator types. Table 7.8 shows the results for the existing PI controller

tuning method and the corresponding validation measurements.

1
8
8

C
ase:

A
ctiv

e
C

ar
S

u
sp

en
sio

n
S

etu
p

Table 7.7: Existing P controller tuning and validation measurement results for different phase margins. The Fitness values
for unstable and unfeasible system configurations are denoted by ’/’.

Phase Margin (φPM) 30◦ 60◦ 90◦

∠G(jωP,PM) −150◦ −120◦ −90◦

ωP,PM [Hz] 38.28 15.8 8.76

|G(jωP,PM)| [dB] 15.2 28.38 35.16

Kp,P,PM 10−15.2/20 = 0.17 10−28.38/20 = 0.04 10−35.16/20 = 0.02
[iact,f , iact,r] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3]

Cost [%] 18.7 36.6 96.3 18.7 36.6 96.3 18.7 36.6 96.3

Fitness value (FV) / / / 56956 32431 27017 60260 48807 47749

Table 7.8: Existing PI controller tuning and validation measurement results for different phase margins

Phase Margin (φPM) 30◦ 60◦ 90◦

∠G(jωPI,PM) −120◦ −90◦ −60◦

ωPI,PM [Hz] 15.8 8.76 4.91

|G(jωPI,PM)| [dB] 28.38 35.16 40.61

Ti,P I,PM tan(60◦)/(15.8 · 2π) = 0.017 tan(60◦)/(8.76 · 2π) = 0.032 tan(60◦)/(4.91 · 2π) = 0.056

Kp,PI,PM 10−30.6/20 = 0.030 10−39.17/20 = 0.011 10−45.35/20 = 0.054
[iact,f , iact,r] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3] [1, 1] [2, 2] [3, 3]

Cost [%] 18.7 36.6 96.3 18.7 36.6 96.3 18.7 36.6 96.3

Fitness value (FV) 57396 35146 30643 61144 51611 51049 64982 59839 59761

7.4 Results and Measurements 189

The measured performances of these P and PI controller tuning methods are

depicted as black circles in Fig. 7.18. As shown in this figure, no classical con-

troller tuning method achieves the performance obtained with the optimized values

determined by the co-design methodology proposed in this PhD dissertation.

Figure 7.18: Comparison of the Pareto front results (blue) from the model-
based co-design optimization methodology, Pareto point vali-
dation measurements on the physical lab setup (red), and mea-
surements of existing controller tuning methods (black)

190 Case: Active Car Suspension Setup

7.5 Chapter Conclusions

In this chapter, the presented hardware architecture and control configuration co-

design optimization methodology is applied to a downscaled active car suspension

lab setup. First, an introduction to passive and (semi) active car suspensions is

given, and an explanation is provided of a lab setup that can simulate the behavior

of an active car suspension. Next, the active suspension setup dynamics were iden-

tified using a Prediction Error Minimization method to obtain a state-space system

representation. Actuator force disturbance signals were determined to mimic a sit-

uation in which a car is driving over an actual road profile. The active components

in the car suspension can be used to reduce the central platform vibrations so that

the driver’s comfort is increased.

With the proposed co-design methodology, the optimal type and location of ac-

tuators and sensors are determined simultaneously with the optimal control archi-

tecture and controller tuning parameters, exhibiting a profound level of co-design

that has not been addressed in the current literature. This novel co-design method-

ology uses a Genetic Algorithm implementation, of which the results are presented

in a Pareto front that graphically shows the interplay between the maximum achiev-

able performance and the implementation cost. The results also show that using a

position feedback loop has no positive effect on improving the driver’s comfort.

The optimization results can be of great value to a design engineer in understand-

ing how the maximum achievable performance varies as a function of the imple-

mentation cost.

The system configurations of the resulting Pareto points are validated on the

physical lab setup. These validation measurements show that the obtained model-

based trend in the Pareto front can also be observed in the corresponding measure-

ments. The differences in the obtained performances between the calculated and

the measured situations can be attributed to the inherent measurement noise lev-

els and modeling inaccuracies (e.g., friction or non-linear system behavior) rather

than to errors in the co-design optimization methodology. Additionally, existing

controller tuning methods were applied to the physical setup, with no existing

method achieving the performance obtained with the proposed co-design method-

ology. This demonstrates that the presented co-design methodology is capable of

determining the optimal controller tuning parameters.

Chapter 8

General Conclusions and Future

Work

8.1 General Conclusions

For complex systems, it is often difficult to estimate in advance what the exact

influence is on the system performance of, for example, different types of actuators

and sensors, their placement within the system, which control structure should be

applied, or how the controller tuning parameters should be configured. In this

work, a novel optimization workflow is presented to perform the optimal co-design

of the hardware architecture and control configuration for subsystems consisting

of multiple interacting subsystems. With the proposed co-design methodology, an

optimization workflow is established to determine the optimal type and location

of actuators and sensors simultaneously with the optimal control architecture and

controller tuning parameters.

An extensive literature review shows that the most comprehensive form of co-

design in current literature only considers the optimization of the hardware ar-

chitecture and controller tuning parameters. The ability to consider the control

architecture optimization and different hardware types is a substantial addition to

the current state-of-the-art in the hardware and control co-design. The proposed

methodology is applicable to a very broad range of systems. These include, for

example, mechatronic, electrical, thermal, or chemical system classes.

The co-design problem is converted to a mathematically optimizable formula-

tion, with the design parameters being the actuator selection integers Zact, sensor

selection integers Zsen, control architecture binaries BΥ, and the controller tuning

parameters Rtuning. This co-design problem results in a discontinuous, mixed-

integer optimization problem with non-linear objective functions and constraints.

Multiple objectives can be taken into account simultaneously, such as reference

tracking, vibration control, settling times, energy consumption, etc. The applicable

constraints may include but are not limited to the total implementation cost, maxi-

192 General Conclusions and Future Work

mum actuator effort, or mechanical motion tolerances. Due to the properties of this

optimization problem, only a few optimization algorithms are suitable, of which a

Genetic Algorithm (GA) is selected as the most appropriate one. A Genetic Algo-

rithm is a derivative-free evolutionary optimization algorithm that requires a rela-

tively large number of iterations, making it a computationally expensive process.

An additional disadvantage of using a Genetic Algorithm is its non-deterministic

character, meaning that achieving a global minimum cannot be fully guaranteed.

Although not guaranteed, an analysis of the objective function surface plots shows

that for the applications addressed in this work, a global minimum can be found

using a Genetic Algorithm with appropriate settings, as discussed in this work.

The Genetic Algorithm also proves to be very flexible in applying non-linear ob-

jective and constraint function evaluations. It is also important to emphasize that

the proposed co-design methodology is not solely dependent on using a Genetic

Algorithm. This means that in the future, the co-design workflow can also be ap-

plied with other novel optimization algorithms that can handle the same type of

problems.

The efficiency of the proposed co-design methodology is improved by applying

two developed enhancements. First, an open-loop analysis is applied to determine

infeasible hardware combinations in advance, and this information can be taken

into account while performing the actual optimization. It is shown that a consid-

erable time gain can be obtained when the open-loop analysis is applied. Sec-

ond, this work also discusses a method for establishing a state-space system of the

closed-loop system including the entire feedback control loop. This closed-loop

state-space methodology allows for a much faster calculation of the closed-loop

system response to external reference and disturbance signals. These two exten-

sions provide a significant reduction in the total computation time of the overall co-

design methodology. The outcome of this co-design methodology is represented

in a Pareto front, graphically depicting the trade-off between the conflicting ob-

jectives, being the maximum achievable performance and the total implementation

cost. The Pareto front results provide valuable insights for the design engineer into

the system design.

The cases that have been elaborated in this work illustrate the flexibility and

effectiveness of the proposed co-design methodology. The hardware and control

co-design is performed on an illustrative example of a mechanical synchronization

model, a composite plate application, and an active car suspension setup. The com-

posite plate application demonstrates that in addition to linear time-invariant (LTI)

state-space systems, also linear parameter-varying (LPV) and linear time-varying

(LTV) systems can be optimized. In addition, this case highlights that external

toolboxes can be used in the non-linear objective and constraint functions. The co-

design optimization results on the active car suspension model are validated on a

physical lab setup, showing that the results are also observed in measurements. The

results of the presented co-design methodology are also compared with existing

controller tuning methods. This shows that none of these existing methods lead to

8.2 Recommendations for Future Work 193

a better performance than the presented co-design methodology for the cases used

in this PhD. Additionally, the optimization results are validated by constructing a

surface plot of the objective function and checking that none of the surrounding fit-

ness values show a better performance than the optimization result. In this way, it

is validated that with proper settings, the Genetic algorithm is capable of attaining

the global minimum.

From these results, it can be concluded that using the presented methodology,

a design engineer is able to achieve the optimal system performance for a specific

cost through the ideal selection and design of the actuators, sensors, control ar-

chitectures, and controller tuning parameters. It is clear that this can significantly

help the design engineer to get a better understanding of the trade-off between opti-

mal achievable performance and implementation cost. For larger applications with

more design possibilities, it is impossible to determine the optimal combination of

design parameters without using optimization algorithms. For such applications,

the proposed methodology provides a solution to obtain the optimal hardware and

control co-design. Additionally, for systems that are already operational, this tool

can be a great added value to evaluate the potential for performance improvements

related to the optimization of the controller architecture and controller tuning pa-

rameters.

8.2 Recommendations for Future Work

It is possible to develop further enhancements to the current methodology:

• For instance, it should be possible to show that the proposed co-design

methodology is also applicable for other control strategies. In this work,

Proportional-Integral-Derivative (PID), linear-quadratic regulator (LQR),

and robust H∞ control are discussed, but other strategies, such as model

predictive control (MPC), fuzzy control, fractional order control, etc. could

be used. Additionally, the proposed methodology should also be able to

simultaneously consider different control strategies during the optimization.

By assigning a different cost to these control strategies, it would be possible

to make the right trade-off based on the cost and the achievable performance

of these different control strategies.

• In this work, the dynamic behavior of the actuators and sensors is neglected.

Although the influence on the system dynamics of the presence or absence

of actuators and sensors and non-linear actuator saturation is taken into ac-

count, it is assumed that an actuator can instantaneously achieve the desired

output and that a sensor instantaneously measures the corresponding prop-

erties. Extensions could be provided so that actuators and sensors exhibit

a particular dynamic input-output behavior. In turn, this behavior can be

described as a state-space system to be included in the closed-loop control

194 General Conclusions and Future Work

system. As a result, the number of states in the closed-loop state-space sys-

tem will increase, similar to the integrated PID controllers that also describe

a dynamic input-output relationship. By doing so, the optimization method-

ology could take into account different dynamic behavior for different types

of actuators and sensors. An extension could also be provided to incorporate

continuous, hardware-specific design parameters. An extension could also

be provided to incorporate continuous, hardware-specific design parameters

as opposed to only discrete hardware types.

• The open-loop analysis only exploits the observability and controllability

properties of the system to exclude infeasible hardware combinations. This

open-loop analysis can potentially be extended to include related conditions

such as stabilizability and detectability.

• The cost of different hardware types can be determined reasonably straight-

forward, but determining the cost of specific control architecture features

is less obvious. Therefore, tools could be developed to support the design

engineer in defining the cost of the individual control loops and strategies,

possibly incorporating the implementation effort or computational burden.

• Further research can then be done to achieve a more deterministic optimiza-

tion. However, this does not seem evident since the stochastic nature is in-

herent in using a Genetic Algorithm as an optimization algorithm.

• A final suggestion for future work is to model uncertainty. By incorporat-

ing an uncertainty analysis, it might be possible to obtain a resulting Pareto

front displaying specific limits of uncertainty based on variables that are un-

decided within a specific range. The impact of integrating these model un-

certainties on the required computation time is yet unknown.

Appendix A

Resulting SSCL Algorithms

This appendix shows the algorithms that depict the intermediate solutions of ap-

plying the closed-loop state-space SSCL methodology, seen in Section 5.3.

Algorithm 9 Iterative calculation as in algorithm 5, but with combined PID con-

trollers. The sparse matrices Spre,... remain constant throughout the iterative re-

sponse calculations and can be predetermined to simplify and accelerate the calcu-

lations.

1: Spre,1 = [0, 1, 0, 0; 0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 0, 0]
2: Spre,2 = [0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0; ...

0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0; ...
0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0; ...
0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0]

3: Spre,3 = [1, 0, 0, 0; 0, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 0; ...
0, 0, 1, 0; 0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 0, 0]

4: for k = 1 : Tm/Ts

Cascade levels a & b synchronizing controller inputs

5: eb,sc(k) = y(1, k)− y(2, k)
6: ea,sc(k) = x̂(1, k)− x̂(2, k)

...

196 Resulting SSCL Algorithms

Algorithm 10 (Continued from algorithm 9)
...

Combined equations on synchronizing controllers

7: PIDsc,u(:, k) = [PIDsc,x(1, k);PIDsc,x(3, k)] + ...
[cb,sc,0, 0; 0, ca,sc,0] ∗ [eb,sc(k); ea,sc(k)]

8: PIDsc,x(:, k + 1) = Spre,1 ∗ PIDsc,x(:, k) + ...
[cb,sc,1, 0; cb,sc,2, 0; ca,sc,1, 0; ca,sc,2, 0] ∗ [eb,sc(k); ea,sc(k)] + ...
[1, 0; 0, 0; 0, 1; 0, 0] ∗ PIDsc,u(:, k)
Cascade level b controller inputs

9: eb,1(k) = Ref1(k)− y(1, k)− PIDsc,u(2, k)
10: eb,2(k) = Ref2(k)− y(2, k) + PIDsc,u(2, k)

Cascade level b decentralized and distributed combined controller equations

11: PIDb,u(:, k) = [PIDb,x(1, k);PIDb,x(3, k);PIDb,x(5, k); ...
P IDb,x(7, k)]+[cb,1,0, 0; 0, cb,2,0; cb,1−2,0, 0; 0, cb,2−1,0]∗ [eb,1(k); ∗eb,2(k)]

12: PIDb,x(:, k + 1) = Spre,2 ∗ PIDb,x(:, k) + ...
[cb,1,1, 0; cb,1,2, 0; 0, cb,2,1; 0, cb,2,2; cb,1−2,1, 0; cb,1−2,2, 0; 0, cb,2−1,1; ...
0, cb,2−1,2] ∗ [eb,1(k); ∗eb,2(k)] + Spre,3 ∗ PIDb,u(:, k)
Cascade level a controller inputs

13: ea,1(k) = PIDb,u(1, k) + PIDb,u(3; k) + ...
Kff,b,1 ∗ (Ref1(k)−Ref1(k − 1)) /Ts − x̂(1, k)− PIDsc,u(1, k)

14: ea,2(k) = PIDb,u(2, k) + PIDb,u(4; k) + ...
Kff,b,2 ∗ (Ref2(k)−Ref2(k − 1)) /Ts − x̂(2, k) + PIDsc,u(1, k)
Cascade level a decentralized and distributed combined controller equations

15: PIDa,u(:, k) = [PIDa,x(1, k);PIDa,x(3, k);PIDa,x(5, k); ...
P IDa,x(7, k)]+[ca,1,0, 0; 0, ca,2,0; ca,1−2,0, 0; 0, ca,2−1,0]∗ [ea,1(k); ea,2(k)]

16: PIDa,x(:, k + 1) = Spre,2 ∗ PIDa,x(:, k) + ...
[ca,1,1, 0; ca,1,2, 0; 0, ca,2,1; 0, ca,2,2; ca,1−2,1, 0; ca,1−2,2, 0; 0, ca,22,1; ...
0, ca,2−1,2] ∗ [ea,1(k); ea,2(k)] + Spre,3 ∗ PIDa,u(:, k)
Process inputs

17: u(:, k) = [PIDa,u(1, k) + PIDa,u(4, k); ...
P IDa,u(2, k) + PIDa,u(3, k);Dist(k)]
Process and observer equations

18: x(:, k + 1) = Apro ∗ x(:, k) +Bpro ∗ u(:, k)
19: y(:, k + 1) = Cpro ∗ x(:, k) +Dpro ∗ u(:, k)
20: x̂(:, k + 1) = Aobs ∗ x̂(:, k) +Bobs ∗ u(:, k) + Lobs ∗ (y(:, k)− ŷ(:, k))
21: ŷ(:, k + 1) = Cobs ∗ x̂(:, k) +Dobs ∗ u(:, k)
22: end

197

Algorithm 11 Integrating intermediate solutions into the successive equations.

More specifically for this step in the methodology, integrating the controller in-

put equations directly into the controller equations.

1: Spre,1 = [0, 1, 0, 0; 0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 0, 0]
2: Spre,2 = [0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0; ...

0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0; ...
0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0; ...
0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0]

3: Spre,3 = [1, 0, 0, 0; 0, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 0; ...
0, 0, 1, 0; 0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 0, 0]

Iterative response calculation

4: for k = 1 : Tm/Ts

Combined equations on synchronizing controllers

5: PIDsc,u(:, k) = [1, 0, 0, 0; 0, 0, 1, 0] ∗ PIDsc,x(:, k) + ...
[cb,sc0 , 0; 0, ca,sc,0] ∗ [[y(1, k)− y(2, k); 0] + [0;x(10, k)− x(11, k)]]

6: PIDsc,x(:, k + 1) = Spre,1 ∗ PIDsc,x(:, k) + ...
[cb,sc,1, 0; cb,sc,2, 0; 0, ca,sc,1; 0, ca,sc,2] ∗ ...
[[y(1, k)− y(2, k); 0] + [0;x(10, k)− x(11, k)]] + ...
[1, 0; 0, 0; 0, 1; 0, 0] ∗ PIDsc,u(:, k)
Cascade level b decentralized and distributed combined controller equations

7: PIDb,u(k) = [PIDb,x(1, k);PIDb,x(3, k);PIDb,x(5, k); ...
P IDb,x(7, k)] + [cb,1,0, 0; 0, cb,2,0; cb,1−2,0, 0; 0, cb,2−1,0] ∗ ...
[[Ref1(k);Ref2(k)] + [−y(1, k);−y(2, k)] + [−1, 0; 1, 0] ∗ PIDsc,u(:, k)]

8: PIDb,x(:, k + 1) = Spre,2 ∗ PIDb,x(k) + ...
[cb,1,1, 0; cb,1,2, 0; 0, cb,2,1; 0, cb,2,2; cb,1−2,1, 0; cb,1−2,2, 0; ...
0, cb,2−1,1; 0, cb,2−1,2] ∗ [[Ref1(k);Ref2(k)] + [−y(1, k);−y(2, k)] + ...
[−1, 0; 1, 0] ∗ PIDsc,u(:, k)]] + Spre,3 ∗ PIDb,u(k)
Cascade level a decentralized and distributed combined controller equations

9: PIDa,u(k) = [PIDa,x(1, k);PIDa,x(3, k);PIDa,x(5, k); ...
P IDa,x(7, k)] + [ca,1,0, 0; 0, ca,2,0; ca,1−2,0, 0; 0, ca,2−1,0] ∗ ...
[[Kff,b,1 ∗ (Ref1(k)−Ref1(k − 1)) /Ts;Kff,b,2 ∗ ...
(Ref2(k)−Ref2(k − 1)) /Ts] + [1, 0, 0, 1; 0, 1, 1, 0] ∗ PIDb,u(k) + ...
[−x(10, k);−x(11, k)] + [0,−1; 0, 1] ∗ PIDsc,u(:, k)]

10: PIDa,x(:, k + 1) = Spre,2 ∗ PIDa,x(k) + [ca,1,1, 0; ca,1,2, 0; 0, ca,2,1; ...
0, ca,2,2; ca,1−2,1, 0; ca,1−2,2, 0; 0, ca,2−1,1; 0, ca,2−1,2] ∗ ...
[[Kff,b,1 ∗ (Ref1(k)−Ref1(k − 1)) /Ts; ...
Kff,b,2 ∗ (Ref2(k)−Ref2(k − 1)) /Ts] + ...
[1, 0, 0, 1; 0, 1, 1, 0] ∗ PIDb,u(k) + [−x(10, k);−x(11, k)] + ...
[0,−1; 0, 1] ∗ PIDsc,u(:, k)] + Spre,3 ∗ PIDa,u(k)
...

198 Resulting SSCL Algorithms

Algorithm 12 (Continued from Algorithm 11)
...

Process inputs

11: u(:, k) = [PIDa,u(1, k) + PIDa,u(4, k); ...
P IDa,u(2, k) + PIDa,u(3, k);Dist(k)]
Combined process and observer equations

12: x(:, k + 1) = [Apro, zeros(6, 6); zeros(6, 6), Aobs] ∗ x(:, k) + ...
[Bpro;Bobs] ∗ u(:, k) + [zeros(6, 3);Lobs] ∗ (y(1 : 3, k)− y(4 : 6, k))

13: y(:, k + 1) = [Cpro, zeros(3, 6); zeros(3, 6), Cobs] ∗ x(:, k) + ...
[Dpro;Dobs] ∗ u(:, k)

14: end

Algorithm 13 Integrating intermediate output calculations into the successive

equations. More specifically, integrating the controller output equations directly

into the controller state equations. The sparse matrices S... are too extensive to be

shown clearly, but they follow from the previous steps in the described methodol-

ogy. Instead, their dimensions are given Table A.1.

Iterative response calculation

1: for k = 1 : Tm/Ts

Controller equations

2: PIDsc,x(:, k+1) = Spre,1 ∗x(:, k)+Spre,2 ∗y(:, k)+Spre,3 ∗PIDsc,x(k)
3: PIDb,x(:, k + 1) = Spre,4 ∗ x(:, k) + Spre,5 ∗ y(:, k) + ...

Spre,6 ∗ PIDb,x(k) + Spre,7 ∗ PIDsc,x(k) + ...
Spre,8 ∗Ref1(k) + Spre,9 ∗Ref2(k)

4: PIDa,x(:, k + 1) = Spre,10 ∗ x(:, k) + Spre,11 ∗ y(:, k) + ...
Spre,12 ∗ PIDa,x(k) + Spre,13 ∗ PIDb,x(k) + ...
Spre,14 ∗ PIDsc,x(k) + Spre,15 ∗ (Ref1(k)−Ref1(k − 1)) /Ts + ...
Spre,16 ∗ (Ref2(k)−Ref2(k − 1)) /Ts + ...
Spre,17 ∗Ref1(k) + Spre,18 ∗Ref2(k)
Process and observer equations

5: x(:, k + 1) = Spre,19 ∗ x(:, k) + Spre,20 ∗ y(:, k) + ...
Spre,21 ∗ PIDa,x(k) + Spre,22 ∗ PIDb,x(k) + Spre,23 ∗ PIDsc,x(k) + ...
Spre,24 ∗Dist(k) + Spre,26 ∗ (Ref1(k)−Ref1(k − 1)) /Ts + ...
Spre,27 ∗ (Ref2(k)−Ref2(k − 1)) /Ts + Spre,28 ∗Ref1(k) + ...
Spre,29 ∗Ref2(k) + [zeros(6, 3);Lobs] ∗ (y(1 : 3, k)− y(4 : 6, k))

6: y(:, k + 1) = Spre,30 ∗ x(:, k) + Spre,31 ∗ y(:, k) + ...
Spre,32 ∗ PIDa,x(k) + Spre,33 ∗ PIDb,x(k) + Spre,34 ∗ PIDsc,x(k) + ...
Spre,35 ∗Dist(k) + Spre,36 ∗ (Ref1(k)−Ref1(k − 1)) /Ts + ...
Spre,37 ∗ (Ref2(k)−Ref2(k − 1)) /Ts + ...
Spre,38 ∗Ref1(k) + Spre,39 ∗Ref2(k)

7: end

199

Table A.1: Dimensions for the predetermined sparse matrices Spre,... used
in Algorithm 13

Matrix Dimensions Matrix Dimensions Matrix Dimensions

Spre,1 [4× 12] Spre,2 [4× 6] Spre,3 [4× 4]
Spre,4 [8× 12] Spre,5 [8× 6] Spre,6 [8× 8]
Spre,7 [8× 4] Spre,8 [8× 1] Spre,9 [8× 1]
Spre,10 [8× 12] Spre,11 [8× 6] Spre,12 [8× 8]
Spre,13 [8× 8] Spre,14 [8× 4] Spre,15 [8× 1]
Spre,16 [8× 1] Spre,17 [8× 1] Spre,18 [8× 1]
Spre,19 [12× 12] Spre,20 [12× 6] Spre,21 [12× 8]
Spre,22 [12× 8] Spre,23 [12× 4] Spre,24 [12× 1]
Spre,25 [12× 1] Spre,26 [12× 1] Spre,27 [12× 1]
Spre,28 [12× 1] Spre,29 [6× 12] Spre,30 [6× 6]
Spre,31 [6× 8] Spre,32 [6× 8] Spre,33 [6× 4]
Spre,34 [6× 1] Spre,35 [6× 1] Spre,36 [6× 1]
Spre,37 [6× 1] Spre,38 [6× 1]

200 Resulting SSCL Algorithms

Appendix B

Mechanical Synchronization Case

Optimization Responses

This appendix shows the time-domain responses for all Pareto point optimization

results of the mechanical synchronization case (see 6.3.5 on page 137). The re-

sponses consist of the inertia displacement responses and the corresponding actua-

tor output effort.

202 Mechanical Synchronization Case Optimization Responses

Pareto point 1 Results

Table B.1: Results for Pareto point 1 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

1 0 9e8 [0 0] [0 0] [0 0 0 0 0 0 0] see Table 6.5

Figure B.1: Time-domain displacement response for Pareto point 1

Figure B.2: Time-domain actuator effort response for Pareto point 1

203

Pareto point 2 Results

Table B.2: Results for Pareto point 2 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

2 8.8 3e8 [1 0] [1 0] [0 0 1 0 0 0 0] see Table 6.5

Figure B.3: Time-domain displacement response for Pareto point 2

Figure B.4: Time-domain actuator effort response for Pareto point 2

204 Mechanical Synchronization Case Optimization Responses

Pareto point 3 Results

Table B.3: Results for Pareto point 3 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

3 20 2e7 [2 0] [1 0] [0 0 0 0 0 0 0] see Table 6.5

Figure B.5: Time-domain displacement response for Pareto point 3

Figure B.6: Time-domain actuator effort response for Pareto point 3

205

Pareto point 4 Results

Table B.4: Results for Pareto point 4 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

4 25.3 5e5 [1 2] [0 1] [0 0 0 0 0 0 0] see Table 6.5

Figure B.7: Time-domain displacement response for Pareto point 4

Figure B.8: Time-domain actuator effort response for Pareto point 4

206 Mechanical Synchronization Case Optimization Responses

Pareto point 5 Results

Table B.5: Results for Pareto point 5 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

5 26.6 76.40 [1 2] [0 1] [0 0 1 0 0 0 0] see Table 6.5

Figure B.9: Time-domain displacement response for Pareto point 5

Figure B.10: Time-domain actuator effort response for Pareto point 5

207

Pareto point 6 Results

Table B.6: Results for Pareto point 6 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

6 28.8 65.41 [1 2] [0 1] [0 0 1 1 0 0 0] see Table 6.5

Figure B.11: Time-domain displacement response for Pareto point 6

Figure B.12: Time-domain actuator effort response for Pareto point 6

208 Mechanical Synchronization Case Optimization Responses

Pareto point 7 Results

Table B.7: Results for Pareto point 7 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

7 39.7 45.37 [2 2] [0 1] [1 1 0 0 0 0 0] see Table 6.5

Figure B.13: Time-domain displacement response for Pareto point 7

Figure B.14: Time-domain actuator effort response for Pareto point 7

209

Pareto point 8 Results

Table B.8: Results for Pareto point 8 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

8 43.2 29.05 [2 2] [0 1] [1 1 1 1 0 0 0] see Table 6.5

Figure B.15: Time-domain displacement response for Pareto point 8

Figure B.16: Time-domain actuator effort response for Pareto point 8

210 Mechanical Synchronization Case Optimization Responses

Pareto point 9 Results

Table B.9: Results for Pareto point 9 (rounded) for the mechanical synchro-
nization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

9 59.7 28.42 [2 2] [0 1] [1 1 1 1 1 1 0] see Table 6.5

Figure B.17: Time-domain displacement response for Pareto point 9

Figure B.18: Time-domain actuator effort response for Pareto point 9

211

Pareto point 10 Results

Table B.10: Results for Pareto point 10 (rounded) for the mechanical syn-
chronization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

10 49.9 26.73 [3 3] [0 1] [1 1 1 1 0 0 0] see Table 6.5

Figure B.19: Time-domain displacement response for Pareto point 10

Figure B.20: Time-domain actuator effort response for Pareto point 10

212 Mechanical Synchronization Case Optimization Responses

Pareto point 11 Results

Table B.11: Results for Pareto point 11 (rounded) for the mechanical syn-
chronization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

11 86.4 26.56 [3 3] [0 1] [1 1 1 1 1 1 0] see Table 6.5

Figure B.21: Time-domain displacement response for Pareto point 11

Figure B.22: Time-domain actuator effort response for Pareto point 11

213

Pareto point 12 Results

Table B.12: Results for Pareto point 12 (rounded) for the mechanical syn-
chronization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

12 90.7 26.33 [3 3] [0 1] [1 1 1 1 1 1 1] see Table 6.5

Figure B.23: Time-domain displacement response for Pareto point 12

Figure B.24: Time-domain actuator effort response for Pareto point 12

214 Mechanical Synchronization Case Optimization Responses

Pareto point 13 Results

Table B.13: Results for Pareto point 13 (rounded) for the mechanical syn-
chronization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

13 97.3 26.30 [3 3] [1 1] [1 1 1 1 1 1 1] see Table 6.5

Figure B.25: Time-domain displacement response for Pareto point 13

Figure B.26: Time-domain actuator effort response for Pareto point 13

215

Pareto point 14 Results

Table B.14: Results for Pareto point 14 (rounded) for the mechanical syn-
chronization case

Hardware selection integers and Controller tuning

control architecture binaries parameters

Pareto Cost Fitness [iact,1... [isen,1... [ba,dec ba,dis bb,dec...
point [%] value [] iact,2] isen,2] bb,dis ba,sc bb,sc bb,ff] Rtuning

14 100 24.72 [3 3] [1 2] [1 1 1 1 1 1 1] see Table 6.5

Figure B.27: Time-domain displacement response for Pareto point 14

Figure B.28: Time-domain actuator effort response for Pareto point 14

216 Mechanical Synchronization Case Optimization Responses

Appendix C

Active Car Suspension Setup

Validation Measurements

Chapter 7 details how the hardware architecture and control configuration opti-

mization is performed on the model of an active car suspension setup. This ap-

pendix shows the validation measurements of each model-based result of the Pareto

optimizations applied to the physical setup.

2
1
8

A
ctiv

e
C

ar
S

u
sp

en
sio

n
S

etu
p

V
alid

atio
n

M
easu

rem
en

ts
Pareto Point 0 = no active car suspension

Table C.1: Pareto front optimization results for Pareto point 0 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

0 0 85526 [0 0] [0 0] [0 0] ◦ ◦ ◦ ◦

Figure C.1: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 0

2
1
9

Pareto Point 1

Table C.2: Pareto front optimization results for Pareto point 1 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

1 12.7 58318 [0 1] [1 0] [1 0] [0.037 0.005 0.006] [0.040 0.006 0.009] ◦ ◦

Figure C.2: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 1

2
2
0

A
ctiv

e
C

ar
S

u
sp

en
sio

n
S

etu
p

V
alid

atio
n

M
easu

rem
en

ts
Pareto Point 2

Table C.3: Pareto front optimization results for Pareto point 2 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

2 18.7 36633 [1 1] [1 0] [1 0] [0.042 0.003 0.008] [0.048 0.001 0.009] ◦ ◦

Figure C.3: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 2

2
2
1

Pareto Point 3

Table C.4: Pareto front optimization results for Pareto point 3 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

3 27.6 26795 [1 2] [1 0] [1 0] [0.043 0.005 0.004] [0.036 0.007 0.007] ◦ ◦

Figure C.4: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 3

2
2
2

A
ctiv

e
C

ar
S

u
sp

en
sio

n
S

etu
p

V
alid

atio
n

M
easu

rem
en

ts
Pareto Point 4

Table C.5: Pareto front optimization results for Pareto point 4 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

4 36.6 17800 [2 2] [1 0] [1 0] [0.049 0.09 0.003] [0.049 0.007 0.008] ◦ ◦

Figure C.5: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 4

2
2
3

Pareto Point 5

Table C.6: Pareto front optimization results for Pareto point 5 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

5 66.4 16332 [3 2] [1 0] [1 0] [0.048 0.009 0.009] [0.043 0.004 0.007] ◦ ◦

Figure C.6: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 5

2
2
4

A
ctiv

e
C

ar
S

u
sp

en
sio

n
S

etu
p

V
alid

atio
n

M
easu

rem
en

ts
Pareto Point 6

Table C.7: Pareto front optimization results for Pareto point 6 (rounded). Inactive controllers are indicated with ’◦’.

Pareto Cost Fitness [iact,f ... [bsen,z̈ ... [bCL,z̈ ... [Kp,z̈,f ... [Kp,z̈,r ... [Kp,z,f ... [Kp,z,r ...

point [%] value [] iact,r] bsen,z] bCL,z] Ti,z̈,f Td,z̈,f] Ti,z̈,r Td,z̈,r] Ti,z,f Td,z,f] Ti,z,r Td,z,r]

6 96.3 14404 [3 3] [1 0] [1 0] [0.05 0 0.01] [0.05 0.01 0.01] ◦ ◦

Figure C.7: Overview (left) and zoom (right) of the front and rear wheel actuator outputs uf and ur, and platform acceler-
ation z̈ for the calculated model-based response (red) and the response measured on the setup (blue) for Pareto
point 6

Bibliography

[1] R. E. Bellman, Adaptive Control Processes: A Guided Tour. London, UK:

Princeton University Press, 2015.

[2] R. Routledge, Discoveries and inventions of the nineteenth century. Lon-

don, UK: George Routlegde and Sons, 2018.

[3] Greelane, “James Hargreaves en de uitvind-

ing van de Spinning Jenny,” 2019. [On-

line]. Available: https://www.greelane.com/nl/geesteswetenschappen/

geschiedenis--cultuur/who-invented-the-spinning-jenny-4057900/

[4] E. A. Posselt, “The Jacquard machine analyzed and explained: with an ap-

pendix on the preparation of Jacquard cards,” Pennsylvania museum and

school of industrial art, Philadelphia, Tech. Rep., 1887.

[5] S. Beckert, Katoen. De opkomst van de moderne wereldeconomie. Ams-

terdam, The Netherlands: Hollands Diep, Overamstel Uitgevers, 2016.

[6] J. Osterhammel, Die Verwandlung der Welt. Eine Geschichte des 19.

Jahrhunderts. Munchen, Germany: Kosel, Krugzell, 2009.

[7] S. Meyer and D. A. Hounshell, From the American System to Mass Pro-

duction 1800-1932: The Development of Manufacturing Technology in the

United States. Baltimore, Maryland: Johns Hopkins University Press,

1986, vol. 27, no. 1.

[8] S. I. Museums, “Kelham Island Museum, Sheffield.” [Online]. Available:

http://www.simt.co.uk/kelham-island-museum

[9] H. Shipler Commercial Photographers; Shipler, “Ford Auto,” Utah;

Salt Lake County; Salt Lake City, 1910. [Online]. Available: https:

//collections.lib.utah.edu/ark:/87278/s66401f0

[10] W. Bolton, Programmable Logic Controllers, 6th ed. Oxford, UK: Newnes,

2015.

226 BIBLIOGRAPHY

[11] K. Schwab, The Fourth Industrial Revolution. London, UK: Crown, dec

2017.

[12] M. Moore, “What is Industry 4.0? Everything you need to know,”

TechRadar, pp. 1–8, nov 2019.

[13] K. J. Åström, H. Elmqvist, and S. E. Mattsson, “Evolution of Continuous-

Time Modeling and Simulation,” 12th European Simulation Multiconfer-

ence, ESM 98, pp. 1–10, 1998.

[14] P. Carreira, V. Amaral, and H. Vangheluwe, Foundations of Multi-Paradigm

Modelling for Cyber-Physical Systems. Cham, Switzerland: Springer Na-

ture Switzerland AG, 2020.

[15] K. Johan Åström and R. M. Murray, Feedback Systems: An Introduction for

Scientists and Engineers, 2nd ed. Oxfordshire, UK: Princeton University

Press, 2019.

[16] M. Dikmen and C. M. Burns, “Autonomous Driving in the Real World:

Experiences with Tesla Autopilot and Summon,” International Conference

on Automotive User Interfaces and Interactive Vehicular Applications, pp.

225–228, 2016.

[17] B. Brown, “The Social Life of Autonomous Cars,” Computer, vol. 50, no. 2,

pp. 92–96, 2017.

[18] N. L. Tenhundfeld, E. J. de Visser, A. J. Ries, V. S. Finomore, and C. C.

Tossell, “Trust and Distrust of Automated Parking in a Tesla Model X,”

Human Factors, vol. 62, no. 2, pp. 194–210, 2020.

[19] P. J. Mosterman and J. Zander, “Industry 4.0 as a Cyber-Physical System

study,” Software and Systems Modeling, vol. 15, no. 1, pp. 17–29, 2016.

[20] D. Lipika and C. Mashrur, Transportation cyber-physical systems, 1st ed.

Amsterdam, The Netherlands: Elsevier, 2018.

[21] K. Vanherpen, “A contract-based approach for multi-viewpoint consistency

in the concurrent design of cyber-physical systems,” Ph.D. dissertation, Uni-

versity of Antwerp, 2018.

[22] J. A. Estefan, “Survey of Model-Based Systems Engineering (MBSE)

Methodologies,” Tech. Rep., 2008.

[23] W. W. Royce, “Managing the Development of large Software Systems,” in

ICSE: Proceedings of the 9th international conference on Software Engi-

neering, Washington, DC, USA, 1970, pp. 1–9.

BIBLIOGRAPHY 227

[24] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 8th ed.

New York, NY, USA: McGraw-Hill Education, 2015.

[25] R. Aarenstrup, Managing Model-Based Design. Natick, Massachusetts,

United States: The MathWorks, Inc., 2015.

[26] B. W. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72, 1988.

[27] C. Larman and V. R. Basili, “Iterative and incremental development: A brief

history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[28] T. Dyba and T. Dingsoyr, “Empirical studies of agile software development:

A systematic review,” Information and Software Technology, vol. 50, no.

9-10, pp. 833–859, 2008.

[29] C.-Y. Chen and C.-C. Cheng, “Integrated design for a mechatronic feed

drive system of machine tools,” IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, AIM, vol. 1, pp. 588–593, 2005.

[30] D. Roy, L. Zhang, W. Chang, and S. Chakraborty, “Automated synthesis of

cyber-physical systems from joint controller/architecture specifications,” in

Forum on Specification and Design Languages (FDL). Bremen, Germany:

IEEE, 2016, pp. 1–8.

[31] J. A. Reyer and P. Y. Papalambros, “Optimal Design and Control of an Elec-

tric DC Motor,” ASME Design Engineering Technical Conferences, pp. 1–

12, 1999.

[32] M. Moradi, M. Naraghi, and A. Kamali Eigoli, “Optimal codesign of con-

troller and linear plants with input saturation: The sensitivity Lyapunov ap-

proach,” Optimal Control Applications and Methods, vol. 39, no. 2, pp. 622–

637, 2018.

[33] P. V. Chanekar, N. Chopra, and S. Azarm, “Co-design of linear systems

using Generalized Benders Decomposition,” Automatica, vol. 89, pp. 180–

193, 2018.

[34] H. Fathy, P. Papalambros, A. Ulsoy, and D. Hrovat, “Nested plant/controller

optimization with application to combined passive/active automotive sus-

pensions,” Proceedings of the 2003 American Control Conference, 2003.,

vol. 4, pp. 3375–3380, 2003.

[35] L. P. Diane, K. Katsuo, Y. P. Panos, and A. G. Ulsoy, “Co-Design of a

MEMS Actuator and its Controller Using Frequency Constraints,” Proceed-

ings of the ASME 2008 Dynamic Systems and Control Conference. ASME

2008 Dynamic Systems and Control Conference, Parts A and B., vol. 20-22,

pp. 801–807, 2008.

228 BIBLIOGRAPHY

[36] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control - Analy-

sis and Design, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2001.

[37] Flanders Make, “SBO Project Application: Robust and Optimal Control for

Systems of Interacting Subsystems,” 2015.

[38] E. Silvas, T. Hofman, N. Murgovski, L. F. P. Etman, and M. Steinbuch, “Re-

view of Optimization Strategies for System-Level Design in Hybrid Electric

Vehicles,” Ieee Transactions on Vehicular Technology, vol. 66, no. 1, pp.

57–70, 2017.

[39] T. Baeck, D. Fogel, and Z. Michalewicz, Evolutionary Computation 1: Ba-

sic Algorithms and Operators, 1st ed. Boca Raton, FL, USA: CRC Press,

2000.

[40] D. Simon and Cleveland State University, Evolutionary optimization algo-

rithms, 1st ed. Cleveland, OH, USA: John Wiley & Sons, 2013.

[41] M. Thone, M. Potters, and S. Baldi, “Control configurations in distillation

columns: A comparative study,” in 2016 European Control Conference,

ECC 2016, Aalborg, Denkmark, 2016, pp. 37–42.

[42] M. H. De Queiroz and J. E. Cury, “Modular control of composed systems,”

in Proceedings of the American Control Conference, vol. 6, Chicago, Illi-

nois, 2000, pp. 4051–4055.

[43] J. Dong, X. Yang, Q. Liu, Z. Wang, and T. Wang, “Design and implementa-

tion of CNC controllers using reconfigurable hardware,” in 2009 IEEE Inter-

national Conference on Control and Automation, ICCA 2009, Christchurch,

New Zealang, 2009, pp. 1481–1486.

[44] G. Yong, S. Yushan, M. Yufeng, and W. Lei, “Design of Semi Physical

Motion Simulation System of Underwater Robot,” in Proceedings of the

25th chinese control conference, Harbin, 2007, pp. 1601–1604.

[45] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., P. Glynn and

S. M. Robinson, Eds. New York, NY, USA: Springer, 1999.

[46] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic

algorithm for solving integer and mixed integer optimization problems,” Ap-

plied Mathematics and Computation, vol. 212, no. 2, pp. 505–518, 2009.

[47] J. Clausen, “Branch and Bound Algorithms - Principles and Examples,”

Department of Computer Science, University of Copenhagen, Copenhagen,

Denmark, Tech. Rep., 1999.

BIBLIOGRAPHY 229

[48] J. Reyer, “Combined Embodiment Design and Control Optimization: Ef-

fects of Cross-Disciplinary Coupling,” Ph.D. dissertation, University of

Michigan, 2000.

[49] H. K. Fathy, J. A. Reyer, P. Y. Papalambros, and A. G. Ulsoy, “On the cou-

pling between the plant and controller optimization problems,” Proceedings

of the American Control Conference, vol. 3, pp. 1864–1869, 2001.

[50] M. J. Smith, K. M. Grigoriadis, and R. E. Skelton, “Optimal Mix of Ac-

tive and Passive Control in Structures,” Journal of Guidance, Control, and

Dynamics, vol. 15, pp. 912–919, 1992.

[51] R. Patil, Z. Filipi, and H. Fathy, “Computationally Efficient Combined De-

sign and Control Optimization using a Coupling Measure,” IFAC Proceed-

ings Volumes, vol. 43, no. 18, pp. 144–151, 2010.

[52] R. C. Dorf and R. H. Bishop, Modern Control Systems, 12th ed., M. J. Hor-

ton, A. Gilfillan, A. Dworkin, and S. Disanno, Eds. Upper Saddle River,

NJ, USA: Prentice-Hall, 2011.

[53] D. E. Rivera, “Internal model control: a comprehensive view,” Tempe, Ari-

zona, USA, 1999.

[54] S. Zhao, R. Cajo, R. D. Keyser, and C. M. Ionescu, “The potential of frac-

tional order distributed MPC applied to steam/water loop in large scale

ships,” Processes, vol. 8, no. 4, 2020.

[55] C. M. Ionescu, E. H. Dulf, M. Ghita, and C. I. Muresan, “Robust con-

troller design: Recent emerging concepts for control of mechatronic sys-

tems,” Journal of the Franklin Institute, vol. 357, no. 12, pp. 7818–7844,

2020.

[56] B. Wu, C. Liu, X. Song, and X. Wang, “Design and implementation of the

inverted pendulum optimal controller based on hybrid genetic algorithm,”

2015 International Conference on Automation, Mechanical Control and

Computational Engineering, pp. 1480–1486, 2015.

[57] C. Wongsathan and C. Sirima, “Application of GA to design LQR controller

for an inverted pendulum system,” 2008 IEEE International Conference on

Robotics and Biomimetics, ROBIO 2008, no. 2, pp. 951–954, 2008.

[58] M. Nagarkar and G. J. Vikhe Patil, “Optimization of the linear quadratic

regulator (LQR) control quarter car suspension system using genetic algo-

rithm,” Revista Ingenieria E Investigacion, vol. 36, no. 1, pp. 23–30, 2016.

[59] M. Haris, I.-U.-H. Shaikh, and H. Shoaib, “Genetic Algorithm Based LQR

Control Of Hovercraft,” in 2016 International Conference on Intelligent Sys-

tems Engineering (ICISE). Islamabad, Pakistan: IEEE, 2016, pp. 335–339.

230 BIBLIOGRAPHY

[60] I. Robandi, K. Nishimori, R. Nishimura, and N. Ishihara, “Optimal feedback

control design using genetic algorithm in multimachine power system,” In-

ternational Journal of Electrical Power and Energy Systems, vol. 23, no. 4,

pp. 263–271, 2001.

[61] H. Du, J. Lam, and K. Y. Sze, “Non-fragile output feedback Hinfinity vehicle

suspension control using genetic algorithm,” Engineering Applications of

Artificial Intelligence, vol. 16, no. 7-8, pp. 667–680, 2003.

[62] G. Duc, “Designing a Low Order Robust Controller for an Active Suspen-

sion System Thank LMI, Genetic Algorithm and Gradient Search,” Euro-

pean Journal of Control, vol. 9, no. 1, pp. 29–38, 2003.

[63] N. R. Raju and P. L. Reddy, “Optimal Tuning of Fractional Order PID

Controller for Automatic Voltage Regulator System through Genetic Algo-

rithm,” vol. 8, no. 3, pp. 922–927, 2016.

[64] M. P. Nagarkar, M. A. El-Gohary, Y. J. Bhalerao, G. J. Vikhe Patil, and R. N.

Zaware Patil, “Artificial neural network predication and validation of opti-

mum suspension parameters of a passive suspension system,” SN Applied

Sciences, vol. 1, no. 6, 2019.

[65] A. Baumal, J. McPhee, and P. Calamai, “Application of genetic algorithms

to the design optimization of an active vehicle suspension system,” Com-

puter Methods in Applied Mechanics and Engineering, vol. 163, no. 1-4,

pp. 87–94, 1998.

[66] Z. Affi, B. EL-Kribi, and L. Romdhane, “Advanced mechatronic design us-

ing a multi-objective genetic algorithm optimization of a motor-driven four-

bar system,” Mechatronics, vol. 17, no. 9, pp. 489–500, 2007.

[67] J. N. Martinez-Castelan and M. G. Villarreal-Cervantes, “Frontal-Sagittal

Dynamic Coupling in the Optimal Design of a Passive Bipedal Walker,”

IEEE Access, vol. 7, pp. 427–449, 2019.

[68] P. V. Chanekar, N. Chopra, and S. Azarm, “Optimal actuator placement for

linear systems with limited number of actuators,” Proceedings of the Amer-

ican Control Conference, pp. 334–339, 2017.

[69] M. Babazadeh, “Robust controllability assessment and optimal actuator

placement in dynamic networks,” Systems and Control Letters, vol. 133,

2019.

[70] R. Semaan, “Optimal sensor placement using machine learning,” Computers

& Fluids, vol. 159, pp. 167–176, 2017.

BIBLIOGRAPHY 231

[71] B. Rakhim, A. Zhakatayev, O. Adiyatov, and H. A. Varol, “Optimal Sen-

sor Placement of Variable Impedance Actuated Robots,” Proceedings of the

2019 IEEE/SICE International Symposium on System Integration, SII 2019,

pp. 141–146, 2019.

[72] A. Nandy, D. Chakraborty, and M. S. Shah, “Optimal Sensors/Actuators

Placement in Smart Structure Using Island Model Parallel Genetic Algo-

rithm,” International Journal of Computational Methods, vol. 16, no. 6,

2019.

[73] S. K. Ahmed, J. K. Peng, and D. J. Chmielewski, “Covariance-based hard-

ware selection-part III: Distributed parameter systems,” AIChE Journal,

vol. 58, no. 9, pp. 2705–2713, 2012.

[74] T.-H. Yan and R.-M. Lin, “General optimization of sizes or placement for

various sensors/actuators in structure testing and control,” Smart Mater.

Struct., vol. 15, no. 3, pp. 724–736, 2006.

[75] Y.-P. Yang and Y.-A. Chen, “Multiobjective optimization of hard disk sus-

pension assemblies: Part II - integrated structure and control design,” Com-

puters & Structures, vol. 59, no. 4, pp. 771–782, 1996.

[76] M. G. Villarreal-Cervantes, “Approximate and Widespread Pareto Solutions

in the Structure-Control Design of Mechatronic Systems,” Journal of Opti-

mization Theory and Applications, vol. 173, no. 2, pp. 628–657, 2017.

[77] J.-H. Park and H. Asada, “Concurrent design optimization of mechanical

structure and control for high speed robots,” American Control Conference,

pp. 2673–2679, 1993.

[78] A. Baheri and C. Vermillion, “Combined Plant and Controller Design Us-

ing Batch Bayesian Optimization: A Case Study in Airborne Wind Energy

Systems,” Journal of Dynamic Systems, Measurement and Control, Trans-

actions of the ASME, vol. 141, no. 9, 2019.

[79] Y. S. Wang and Y. Wang, “A gradient-based approach for optimal plant con-

troller co-design,” Proceedings of the American Control Conference, no.

July, pp. 3249–3254, 2015.

[80] J. Ma, S. L. Chen, C. S. Teo, A. Tay, A. Al Mamun, and K. K. Tan, “Param-

eter space optimization towards integrated mechatronic design for uncertain

systems with generalized feedback constraints,” Automatica, vol. 105, pp.

149–158, 2019.

[81] Q. Chen, T. Lin, and H. Ren, “Parameters optimization and control strat-

egy of power train systems in hybrid hydraulic excavators,” Mechatronics,

vol. 56, no. 668, pp. 16–25, 2018.

232 BIBLIOGRAPHY

[82] W. Yang, H. Yang, and S. Tang, “Optimization and control application of

sensor placement in aeroservoelastic of UAV,” Aerospace Science and Tech-

nology, vol. 85, pp. 61–74, 2019.

[83] F. Lin and V. Adetola, “Co-design of sparse output feedback and

row/column-sparse output matrix,” Proceedings of the American Control

Conference, pp. 4359–4364, 2017.

[84] X. Chen, “Joint Actuator-Sensor Design for Stochastic Linear Systems,”

Proceedings of the IEEE Conference on Decision and Control, vol. 2018,

no. December, pp. 6668–6673, 2019.

[85] I. Bruant and L. Proslier, “Optimal location and gains of sensors and ac-

tuators for feedback vibroacoustic control of plates,” Journal of Intelligent

Material Systems and Structures, vol. 16, no. 3, pp. 197–206, 2005.

[86] C. Y. Chang, S. Martı́nez, and J. Cortés, “Co-Optimization of Control

and Actuator Selection for Cyber-Physical Systems,” IFAC-PapersOnLine,

vol. 51, no. 23, pp. 118–123, 2018.

[87] B. Majid and S. Majeed, “Genetic Sensor Placement in Active Control of a

Robotic Arm,” Proceedings - International Conference on Developments in

eSystems Engineering, DeSE, vol. 06, pp. 279–284, 2017.

[88] R. Bernhard, E. Michael, R. Achim, and B. Richard, “The shuttle radar

topography mission - a new class of digital elevation models acquired by

spaceborne radar,” ISPRS journal of photogrammetry and remote sensing,

vol. 57, no. 4, pp. 241–262, 2003.

[89] D. Li, W. Liu, J. Jiang, and R. Xu, “Placement optimization of actuator and

sensor and decentralized adaptive fuzzy vibration control for large space

intelligent truss structure,” Science China Technological Sciences, vol. 54,

no. 4, pp. 853–861, 2011.

[90] B. Xu and J. S. Jiang, “Integrated optimization of structure and control for

piezoelectric intelligent trusses with uncertain placement of actuators and

sensors,” Computational Mechanics, vol. 33, no. 5, pp. 406–412, 2004.

[91] V. Bottega, A. Molter, O. A. A. Da Silveira, and J. S. O. Fonseca, “Simulta-

neous piezoelectric actuator and sensor placement optimization and control

design of manipulators with flexible links using SDRE method,” Mathemat-

ical Problems in Engineering, p. 362437, 2010.

[92] W. P. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-

triggered and self-triggered control,” Proceedings of the IEEE Conference

on Decision and Control, pp. 3270–3285, 2012.

BIBLIOGRAPHY 233

[93] X. M. Zhang, Q. L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and

C. Peng, “Networked control systems: A survey of trends and techniques,”

IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 1–17, 2020.

[94] L. U. Zibao and G. U. O. Ge, “Co-design of Controller and Communication

Sequences,” in 2016 Chinese Control and Decision Conference (CCDC),

Yinchuan, China, 2016, pp. 278–283.

[95] W. Chen and L. Qiu, “A channel/controller co-design approach for infinite-

horizon LQR problem with random input gains,” 2013 IEEE International

Conference on Information and Automation, ICIA 2013, pp. 844–849, 2013.

[96] S. M. Noorbakhsh and J. Ghaisari, “Event-Based Consensus Controller for

Linear Multi-Agent Systems Over Directed Communication Topologies: A

Co-Design Approach,” Asian Journal of Control, vol. 18, no. 5, pp. 1934–

1939, 2016.

[97] D. Ma, J. Han, D. Zhang, and Y. Liu, “Co-Design of Event Generator

and Dynamic Output Feedback Controller for LTI Systems,” Mathematical

Problems in Engineering, vol. 2015, pp. 7–14, 2015.

[98] D. Ye and S. Luo, “A co-design methodology for cyber-physical systems

under actuator fault and cyber attack,” Journal of the Franklin Institute, vol.

356, no. 4, pp. 1856–1879, 2019.

[99] T. Shi, T. Tang, and J. Bai, “Distributed event-triggered control co-design

for large-scale systems via static output feedback,” Journal of the Franklin

Institute, vol. 356, no. 17, pp. 10 393–10 404, 2019.

[100] E. Polak, Optimization: Algorithms and Consistent Approximations, 1st ed.

New York, NY, USA: Springer-Verlag, 1997.

[101] H. B. Curry, “The method of steepest descent for non-linear minimization

problems,” Quarterly of Applied Mathematics, vol. 2, no. 3, pp. 258–261,

1944.

[102] J. Huang, P. Hu, K. Wu, and M. Zeng, “Optimal time-jerk trajectory plan-

ning for industrial robots,” Mechanism and Machine Theory, vol. 121, pp.

530–544, 2018.

[103] R. Shankar, J. Marco, and F. Assadian, “The novel application of optimiza-

tion and charge blended energy management control for component down-

sizing within a plug-in hybrid electric vehicle,” Energies, vol. 5, no. 12, pp.

4892–4923, 2012.

[104] D. G. Li, Y. Zou, X. S. Hu, and F. C. Sun, “Optimal sizing and control

strategy design for heavy hybrid electric truck,” 2012 IEEE Vehicle Power

and Propulsion Conference, VPPC 2012, pp. 1100–1106, 2012.

234 BIBLIOGRAPHY

[105] N. Murgovski, L. Johannesson, J. Sjöberg, and B. Egardt, “Component siz-

ing of a plug-in hybrid electric powertrain via convex optimization,” Mecha-

tronics, vol. 22, no. 1, pp. 106–120, 2012.

[106] M. V. Klibanov, A. E. Kolesov, and D. L. Nguyen, “Convexification method

for an inverse scattering problem and its performance for experimental

backscatter data for buried targets,” SIAM Journal on Imaging Sciences,

vol. 12, no. 1, pp. 576–603, 2019.

[107] N. Van Oosterwyck, A. B. Yahya, A. Cuyt, and S. Derammelaere, “CAD

based trajectory optimization of PTP motions using chebyshev polynomi-

als,” IEEE/ASME International Conference on Advanced Intelligent Mecha-

tronics, AIM, vol. 2020-July, pp. 403–408, 2020.

[108] Frontline Systems, “Optimization Problem Types,” 2018. [Online].

Available: https://www.solver.com/nonsmooth-optimization

[109] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-

Free Optimization, mps-siam b ed. Philadelphia: SIAM, 2009.

[110] C. Audet and M. Kokkolaras, “Blackbox and derivative-free optimization:

theory, algorithms and applications,” Optimization and Engineering, vol. 17,

no. 1, pp. 1–2, 2016.

[111] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, “Direct

Multisearch for Multiobjective Optimization,” SIAM Journal on Optimiza-

tion, vol. 21, no. 3, pp. 1109–1140, 2011.

[112] W. Gao and S. K. Porandla, “Design optimization of a parallel hybrid elec-

tric powertrain,” in 2005 IEEE Vehicle Power and Propulsion Conference,

Chicago, IL, USA, 2005, p. 6.

[113] M. J. Powell, “On search directions for minimization algorithms,” Mathe-

matical Programming, vol. 4, no. 1, pp. 193–201, 1973.

[114] T. G. Kolda and V. J. Torczon, “On the convergence of asynchronous parallel

pattern search,” SIAM Journal on Optimization, vol. 14, no. 4, pp. 939–964,

2004.

[115] R. Hooke and T. A. Jeeves, “Direct Search Solution of Numerical and Sta-

tistical Problems,” Journal of the ACM (JACM), vol. 8, no. 2, pp. 212–229,

1961.

[116] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, Massachusetts:

Athena Scientific, 1976, vol. 9.

[117] S. J. Wright, “Coordinate descent algorithms,” Mathematical Programming,

vol. 151, no. 1, pp. 3–34, 2015.

BIBLIOGRAPHY 235

[118] I. Loshchilov, M. Schoenauer, and M. Sebag, “Adaptive coordinate descent,”

Genetic and Evolutionary Computation Conference, GECCO’11, pp. 885–

892, 2011.

[119] N. Hansen, “Adaptive encoding: how to render search coordinate system

invariant,” in International Conference on Parallel Problem Solving from

Nature, Berlin, Germany, 2008, pp. 205–214.

[120] J. Mockus, “On Bayesian Methods for Seeking the Extremum,” in Lecture

Notes in Computer Science (LNCS). Berlin, Germany: Springer Berlin

Heidelberg, 1974, pp. 400–404.

[121] ——, Bayesian Approach to Global Optimization. Dordrecht: Kluwer

Academic Publications, 1989, vol. 37, no. D.

[122] ——, “The application of Bayesian methods for seeking the extremum,” in

Towards Global Optimisation, L. Dixon and G. Szego, Eds. Amsterdam,

The Netherlands: North-Holland, 2014.

[123] Y. Koyama, I. Sato, D. Sakamoto, and T. Igarashi, “Sequential line search

for efficient visual design optimization by crowds,” ACM Transactions on

Graphics, vol. 36, no. 4, pp. 48:1–48:11, 2017.

[124] R. Martinez-Cantin, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet,

“A Bayesian exploration-exploitation approach for optimal online sensing

and planning with a visually guided mobile robot,” Autonomous Robots,

vol. 27, no. 2, pp. 93–103, 2009.

[125] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization

of machine learning algorithms,” Advances in Neural Information Process-

ing Systems, vol. 4, pp. 2951–2959, 2012.

[126] A. D. Bull, “Convergence rates of efficient global optimization algorithms,”

Journal of Machine Learning Research, vol. 12, pp. 2879–2904, 2011.

[127] R. Moriconi, M. P. Deisenroth, and K. S. Sesh Kumar, “High-dimensional

Bayesian optimization using low-dimensional feature spaces,” Machine

Learning, vol. 109, no. 9-10, pp. 1925–1943, 2020.

[128] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton, “High di-

mensional Bayesian optimization using dropout,” IJCAI International Joint

Conference on Artificial Intelligence, vol. 0, pp. 2096–2102, 2017.

[129] D. R. Jones, “Direct Global Optimization Algorithm,” Encyclopedia of Op-

timization, pp. 725–735, 2008.

[130] S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

236 BIBLIOGRAPHY

[131] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applica-

tions, 1st ed. Dordrecht, The Netherlands: Springer Netherlands, 1987.

[132] H.-M. Gutmann, “A radial basis function method for global optimization,”

Journal of Global Optimization, no. 3, pp. 201–227, 2001.

[133] Y. Wang and C. A. Shoemaker, “A General Stochastic Algorithmic Frame-

work for Minimizing Expensive Black Box Objective Functions Based on

Surrogate Models and Sensitivity Analysis,” arXiv: Machine Learning,

p. 31, 2014.

[134] H.-P. Schwefel, Evolution and Optimum Seeking. New York, NY, USA:

Wiley & Sons, 1995.

[135] H.-G. Beyer, The Theory of Evolution Strategies, 1st ed. Berlin, Germany:

Springer-Verlag Berlin Heidelberg, 2001.

[136] H.-P. Schwefel and H.-G. Beyer, “Evolution Strategies: A Comprehensive

Introduction,” Journal Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[137] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE Inter-

national Conference on Neural Networks, Perth, WA, Australia, 1995, pp.

1942–1948.

[138] M. Reza Bonyadi and Z. Michalewicz, “Particle Swarm Optimization for

Single Objective Continuous Space Problems: A Review,” Evolutionary

Computation (MIT), vol. 25, no. 1, pp. 1–54, 2017.

[139] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd ed. Luniver

Press, 2008.

[140] M. Dorigo, T. Stützle, and M. Birattari, “Ant Colony Optimization,” IEEE

Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[141] D. Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Opti-

mization,” Erciyes University, Kayseri, Tech. Rep., 2005.

[142] G. Tian, Y. Ren, Y. Feng, M. Zhou, H. Zhang, and J. Tan, “Modeling and

Planning for Dual-objective Selective Disassembly Using AND/OR Graph

and Discrete Artificial Bee Colony,” IEEE Transactions on Industrial Infor-

matics, vol. 3203, no. c, pp. 1–12, 2018.

[143] V. H. Dang, N. A. Vien, and T. C. Chung, “A covariance matrix adaptation

evolution strategy in reproducing kernel Hilbert space,” Genetic Program-

ming and Evolvable Machines, vol. 20, no. 4, pp. 479–501, 2019.

BIBLIOGRAPHY 237

[144] J. Sawicki, M. Łoś, M. Smołka, and J. Alvarez-Aramberri, “Using Covari-

ance Matrix Adaptation Evolutionary Strategy to boost the search accuracy

in hierarchic memetic computations,” Journal of Computational Science,

vol. 34, pp. 48–54, 2019.

[145] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-

objective optimization,” Evolutionary Computation, vol. 15, no. 1, pp. 1–28,

2007.

[146] G. Fujii, M. Takahashi, and Y. Akimoto, “CMA-ES-based structural topol-

ogy optimization using a level set boundary expression - Application to op-

tical and carpet cloaks,” Computer Methods in Applied Mechanics and En-

gineering, vol. 332, pp. 624–643, 2018.

[147] A. Conn, N. Gould, and P. Toint, “A Globally Convergent Augmented La-

grangian Barrier Algorithm for Optimization with General Inequality Con-

straints and Simple Bounds,” Mathematics of Computation, vol. 66, no. 217,

pp. 261–288, 1997.

[148] T. Singh, J. Swevers, and G. Pipeleers, “Concurrent H2 /Hinfinity feedback

control design with optimal sensor and actuator selection,” Proceedings -

2018 IEEE 15th International Workshop on Advanced Motion Control, AMC

2018, pp. 223–228, 2018.

[149] S. F. Hwang and R. S. He, “A hybrid real-parameter genetic algorithm for

function optimization,” Advanced Engineering Informatics, vol. 20, no. 1,

pp. 7–21, 2006.

[150] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through aug-

menting topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127,

2002.

[151] The MathWorks Inc., “MATLAB Global Optimization Toolbox User’s

Guide (Release 2018b),” Natick, MA, United States, p. 780, 2018.

[152] D. Kalyanmoy, “An efficient constraint handling method for genetic algo-

rithms,” Computer Methods in Applied Mechanics and Engineering, vol.

186, pp. 311–338, 2000.

[153] J. A. Reyer, H. K. Fathy, P. Y. Papalambros, and A. G. Ulsoy, “Comparison

of combined embodiment design and control optimization strategies using

optimality conditions,” Proceedings of the ASME Design Engineering Tech-

nical Conference, vol. 2, pp. 1023–1032, 2001.

[154] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,

1st ed. New York, NY, USA: Wiley & Sons, 2001.

238 BIBLIOGRAPHY

[155] Y. Censor, “Pareto optimality in multiobjective problems,” Applied Mathe-

matics and Optimization, no. 4, pp. 41–59, 1977.

[156] E. Goodarzi, M. Ziaei, and E. Z. Hosseinipour, Introduction to Optimiza-

tion Analysis in Hydrosystem Engineering. Cham, Switzerland: Springer

International Publishing, 2014.

[157] A. Jahan, K. Edwards, and M. Bahraminasab, Multi-criteria Decision Anal-

ysis, 2nd ed. Amsterdam: Elsevier, 2013.

[158] M. Verhaegen, “Identification of the deterministic part of MIMO state space

models given in innovations form from input-output data,” Automatica,

vol. 30, no. 1, pp. 61–74, 1994.

[159] B. Friedland, Control System Design: An Introduction to State-Space Meth-

ods. Mineola, New York: Dover Publications, Inc., 1986.

[160] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, “Control Systems Design,”

International Journal of Adaptive Control and Signal Processing, vol. 16,

no. 2, pp. 173–174, 2002.

[161] M. M. Share Pasand, “Luenberger-type cubic observers for state estimation

of linear systems,” International Journal of Adaptive Control and Signal

Processing, vol. 34, no. 9, pp. 1148–1161, 2020.

[162] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Journal of Fluids Engineering, Transactions of the ASME, vol. 82, no. 1, pp.

35–45, 1960.

[163] S. N. Nise, Control Systems Engineering, 6th ed. New York, USA: John

Wiley & Sons, 2011.

[164] J. Goos, “Modeling and identification of Linear Parameter-Varying sys-

tems,” Ph.D. dissertation, Vrije Universieit Brussel, 2016.

[165] J. S. Shamma and M. Athans, “Gain Scheduling: Potential Hazards and

Possible Remedies,” IEEE Control Systems, vol. 12, no. 3, pp. 101–107,

1992.

[166] G. J. Balas, “Linear, Parameter-Varying Control And Its Application To

Aerospace Systems,” Proceedings of the International Congress of the Aero-

nautical Sciences, pp. 1–9, 2002.

[167] J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Varying

Systems with Applications, 1st ed. New York, NY, USA: Springer-Verlag,

2012.

BIBLIOGRAPHY 239

[168] K. Havre and S. Skogestad, “Selection of Variables for Regulatory Control

Using Pole Vectors,” in Proc. IFAC symposium DYCOPS-5, vol. 31, no. 11,

Corfu, Greece, 1998, pp. 614–619.

[169] G. Mackiw, “A Note on the Equality of the Column and Row Rank of a

Matrix,” Mathematics Magazine, vol. 68, no. 4, p. 285, 1995.

[170] B. Anderson and J. Moore, Optimal Control: Linear Quadratic Methods.

Englewood Cliffs, NJ, USA: Prentice Hall, 1990.

[171] W. Li, G. Wei, D. W. Ho, and D. Ding, “A Weightedly Uniform Detectability

for Sensor Networks,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 29, no. 11, pp. 5790–5796, 2018.

[172] K. Hangos, J. Bokor, and G. Szederkenyi, Analysis and Control of Nonlinear

Process Systems, 1st ed. London, UK: Springer-Verlag, 2004.

[173] Y. Shen, W.-j. Cai, and S. Li, “Multivariable Process Control: Decentralized,

Decoupling, or Sparse?” Industrial and Engineering Chemistry Research,

vol. 49, no. 2, pp. 761–771, 2010.

[174] C. C. Wo and Z. Q. Min, “Coupling and decoupling control study on aircraft

(Airbus A320),” 2016 8th International Conference on Modelling, Identifi-

cation and Control (ICMIC), pp. 29–36, 2016.

[175] C. Yang, Q. Huang, and J. Han, “Decoupling control for spatial six-degree-

of-freedom electro-hydraulic parallel robot,” Robotics and Computer-

Integrated Manufacturing, vol. 28, no. 1, pp. 14–23, 2012.

[176] R. Scattolini, “Architectures for distributed and hierarchical Model Predic-

tive Control - A review,” Journal of Process Control, vol. 19, no. 5, pp.

723–731, 2009.

[177] P. Massioni and M. Verhaegen, “Distributed control for identical dynami-

cally coupled systems: A decomposition approach,” IEEE Transactions on

Automatic Control, vol. 54, no. 1, pp. 124–135, 2009.

[178] I. Tomi and G. D. Halikias, “Performance analysis of distributed control

configurations in LQR multi-agent system design,” in 2016 UKACC 11th

International Conference on Control (CONTROL), Belfast, UK, 2016, pp.

1–6.

[179] A. Maxim, D. Copot, R. De Keyser, and C. M. Ionescu, “An industrially rel-

evant formulation of a distributed model predictive control algorithm based

on minimal process information,” Journal of Process Control, vol. 68, pp.

240–253, 2018.

240 BIBLIOGRAPHY

[180] H. R. Dharmayanda, K. Taesam, J. L. Young, and S. Sangkyung, “Motion

stability of small scale helicopter using state feedback,” ICCAS 2007 - Inter-

national Conference on Control, Automation and Systems, pp. 1439–1444,

2007.

[181] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Esti-

mation and Control, 1st ed. London, UK: Taylor & Francis Inc., 1975.

[182] J.-L. Wu, “A Simultaneous Mixed LQR / Hinfinity Control Approach to

the Design of Reliable Active Suspension Controllers,” Asian Journal of

Control, vol. 19, no. 2, pp. 415–427, 2017.

[183] T. Singh, W. Decre, J. Swevers, and G. Pipeleers, “Concurrent design of

an active vibration feedback controller and actuator/sensor selection for a

composite plate,” in 6th Indian Control Conference (ICC). Hyderabad,

India: IEEE, 2019, pp. 146–151.

[184] X. Shao and D. Sun, “Development of a new robot controller architec-

ture with FPGA-based IC design for improved high-speed performance,” in

IEEE Transactions on Industrial Informatics, vol. 3, no. 4, 2007, pp. 312–

321.

[185] Beckhoff Automation, “Beckhoff TC3 Controller Toolbox Manual,” pp. 1–

180, 2019.

[186] Siemens AG, “Siemens SINAMICS S150, Function Diagram, Control Ver-

sion V2.6 SP1,” 2009.

[187] W. Bolton, Instrumentation and Control Systems, 2nd ed. Kidlington, Ox-

ford, UK: Elsevier, 2015.

[188] W. Chen, J. Liang, and T. Shi, “Speed Synchronous Control of Multiple Per-

manent Magnet Synchronous Motors Based on an Improved Cross-Coupling

Structure,” Energies, vol. 11, no. 2, pp. 282–298, 2018.

[189] M. Haemers, S. Derammelaere, and K. Stockman, “Co-design of controller

and setup configuration using Genetic Algorithm,” in IEEE International

Conference on Emerging Technologies and Factory Automation, ETFA, Li-

massol, Cyprus, 2017, pp. 1–5.

[190] B. W. Bequette, Process Control: Modeling, Design and Simulation, 1st ed.

London, UK: Pearson, 2002.

[191] A. Musbah, A. Ahmad, and P. Mahanti, “Simulation of Digital Control Sys-

tems,” Systems Analysis Modelling Simulation, vol. 42, no. 10, pp. 1419–

1428, 2002.

BIBLIOGRAPHY 241

[192] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I: Mod-

elling, State Space Analysis, Stability and Robustness, 1st ed. Berlin, Ger-

many: Springer-Verlag, 2005, vol. 48.

[193] J. Bay, Fundamentals of Linear State Space Systems, 1st ed. New York,

NY, USA: McGraw-Hill Science/Engineering/Math, 1999.

[194] C. Briat, Linear Parameter-Varying and Time-Delay Systems, ser. Advances

in Delays and Dynamics, S.-I. Niculescu, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2015, vol. 3.

[195] K. Aström and B. Wittenmark, Computer-controlled Systems: Theory and

Design, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2012.

[196] G. Franklin, D. Powell, and M. Workman, Digital Control of Dynamic Sys-

tems, 3rd ed. London, UK: Pearson Education, 1998.

[197] C. S. Burrus, Digital Signal Processing and Digital Filter Design, 1st ed.

New York, NY, USA: Wiley & Sons, 1987.

[198] B. M. Vinagre, Y. Q. Chen, and I. Petráš, “Two direct Tustin discretiza-

tion methods for fractional-order differentiator/integrator,” Journal of the

Franklin Institute, vol. 340, no. 5, pp. 349–362, 2003.

[199] G. P. Starr, Introduction to Applied Digital Controls, 1st ed. Cham, Switzer-

land: Springer International Publishing, 2020.

[200] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory

and Practice, 1st ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1983.

[201] P. Bogacki and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”

Applied Mathematics Letters, vol. 2, no. 4, pp. 321–325, 1989.

[202] M. Verbandt, L. Jacobs, D. Turk, T. Singh, J. Swevers, and G. Pipeleers,

“Linear Control Toolbox - supporting B-splines in LPV control,” Mecha-

tronics, vol. 52, pp. 78–89, 2018.

[203] I. Kucukkoc, A. D. Karaoglan, and R. Yaman, “Using response surface de-

sign to determine the optimal parameters of genetic algorithm and a case

study,” International Journal of Production Research, vol. 51, no. 17, pp.

5039–5054, 2013.

[204] K. Deep and M. Thakur, “A new crossover operator for real coded genetic

algorithms,” Applied Mathematics and Computation, vol. 188, no. 1, pp.

895–911, 2007.

[205] ——, “A new mutation operator for real coded genetic algorithms,” Applied

Mathematics and Computation, vol. 193, no. 1, pp. 211–230, 2007.

242 BIBLIOGRAPHY

[206] M. Gutowski, “Biology, Physics, Small Worlds and Genetic Algorithms,” in

Leading Edge Computer Science Research. Hauppauge, NY, USA: Nova

Science Publishers, Inc., 2005, no. January, pp. 165–218.

[207] M. Kishnani, S. Pareek, and R. Gupta, “Optimal tuning of DC motor via

simulated annealing,” 2014 International Conference on Advances in Engi-

neering & Technology Research (ICAETR - 2014), pp. 1–5, 2014.

[208] R. Murray, “LQR Control,” in Control and Dynamical Systems. Pasadena,

CA, USA: California Institute of Technology, 2006, ch. Lecture 2, p. 14.

[209] Z. Z. Dong, C. Faria, B. Pluymers, M. Hromčı́k, M. Šebek, and W. Desmet,

“Structure-preserving low-order modeling approach of laminated composite

plates integrated with macro-fiber composite transducers for dynamic appli-

cations,” Composite Structures, vol. 208, pp. 287–297, 2019.

[210] T. Singh, M. De Mauri, W. Decré, J. Swevers, and G. Pipeleers, “Feedback

control of linear systems with optimal sensor and actuator selection,” Jour-

nal of Vibration and Control, vol. July, 2020.

[211] Z. Dong, C. Faria, M. Hromčik, B. Pluymers, M. Šebek, and W. Desmet,

“Equivalent force modeling of macro fiber composite actuators integrated

into non-homogeneous composite plates for dynamic applications,” Smart

Materials and Structures, vol. 26, no. 9, 2017.

[212] J. N. Reza, Vehicle Dynamics: Theory and Application, 2nd ed. New York,

NY, USA: Springer-Verlag, 2014.

[213] H. Wang, G. I. Mustafa, and Y. Tian, “Model-free fractional-order sliding

mode control for an active vehicle suspension system,” Advances in Engi-

neering Software, vol. 115, no. August 2017, pp. 452–461, 2018.

[214] J. Glucker, “After 30 years, Bose-developed suspension tech will go into

production,” Motor Authority, 2018.

[215] J. Cross, “The design, development and applications of MagneRide suspen-

sion,” Autocar, 2014.

[216] H. Tsuka, J. Nakano, Y. Yokoya, A. Fukami, and Y. Hirano, “A new elec-

tronic controlled suspension using piezo-electric ceramics,” in IEEE Work-

shop on Electronic Applications in Transportation. Dearborn, MI, USA:

IEEE, 1990, pp. 50–57.

[217] H. Unuh, P. Muhamad, F. Yakub, M. A. Ismail, and Z. Tanasta, “Experimen-

tal validation to a prototype magnetorheological (MR) semi-active damper

for C-Class vehicle,” International Journal of Automotive and Mechanical

Engineering, vol. 16, no. 3, pp. 7034–7047, 2019.

BIBLIOGRAPHY 243

[218] J. Poynor, “Innovative Designs for Magneto-Rheological Dampers,” Vir-

ginia Polytechnic Institute and State University, Blacksburg, Virginia, Tech.

Rep., 2001.

[219] A. M. Aly and R. E. Christenson, “On the evaluation of the efficacy of

a smart damper: A new equivalent energy-based probabilistic approach,”

Smart Materials and Structures, vol. 17, no. 4, 2008.

[220] B. Kong, “For Cadillac and Corvette Fans: Exploring the History of GM’s

Magnetic Ride Control,” Motortrend, 2013.

[221] J. Carlson, W. Matthis, and J. Toscano, “Smart Prosthetics Based on MR

Fluids,” in Smart Structures and Materials 2001: Industrial and Commer-

cial Applications of Smart Structures Technologies, Newport Beach, CA,

United States, 2001.

[222] G. M. Kamath, N. M. Wereley, and M. R. Jolly, “Characterization of magne-

torheological helicopter lag dampers,” Journal of the American Helicopter

Society, vol. 44, no. 3, pp. 234–248, 1999.

[223] V. J. Moonjeli, “Analysis of Hydropneumatic Suspension,” Amal Jyothi Col-

lege of Engineering, Koovapally, Kanjirapally, Kerala, Tech. Rep., 2011.

[224] M. Bobbitt, Citroen DS: Design Icon. Veloce Publishing Ltd., 2005.

[225] K. Howard, “Active Suspension,” Motor Sport Magazine, dec 2001.

[226] G. Perlas, “How the Active Curve Tilting Feature of the S-Class Coupe

Works,” BenzInsider.com, 2014.

[227] J. Yao, Z. Li, M. Wang, F. Yao, and Z. Tang, “Automobile active tilt control

based on active suspension,” Advances in Mechanical Engineering, vol. 10,

no. 10, 2018.

[228] J. Beno, D. Bresie, A. Guenin, D. Weeks, and W. Weldon, “Constant force

suspension, near constant force suspension, and associated control algo-

rithms,” 1999.

[229] A. Bryant, J. Beno, and D. Weeks, “Benefits of electronically controlled ac-

tive electromechanical suspension systems (EMS) for mast mounted sensor

packages on large off-road vehicles,” SAE 2011 World Congress and Exhi-

bition, vol. 01, no. 0269, p. 17, 2011.

[230] M. Hanlon, “Bose Redefines Automobile Suspension Systems,” New Atlas,

sep 2004. [Online]. Available: https://newatlas.com/go/3259/

[231] T. Higgins and L. Randall, “Motion Sick? This Tech Company Thinks It

Might Have a Solution,” Wall Street Journal, 2020.

244 BIBLIOGRAPHY

[232] I. Adcock, “Not fat, just big boned: new Audi A8’s suspension and chassis

explained,” Car Magazine, 2017.

[233] V. Vijayenthiran, “Audi reveals new A8’s chassis technology,” Motor Au-

thority, 2017.

[234] A. Alenezi, “Active Suspension Control based on a Full-Vehicle Model,”

Journal of Electrical and Electronics Engineering (IOSR-JEEE), vol. 9,

no. 2, pp. 6–18, 2014.

[235] A. Kruczek and A. Stribrsky, “A full-car model for active suspension - Some

practical aspects,” in IEEE International Conference on Mechatronics. Is-

tanbul, Turkey: IEEE, 2004, pp. 41–45.

[236] R. Darus and Y. M. Sam, “Modeling and control active suspension system

for a full car model,” 5th International Colloquium on Signal Processing

and Its Applications, vol. 4, no. 7, pp. 13–18, 2009.

[237] S. Sharma, V. Pare, M. Chouksey, and B. Rawal, “Numerical Studies Using

Full Car Model for Combined Primary and Cabin Suspension,” Procedia

Technology, vol. 23, pp. 171–178, 2016.

[238] X.-J. Liu and J. Wang, Parallel Kinematics: Type, Kinematics, and Optimal

Design, 1st ed. Berlin, Germany: Springer-Verlag, 2014.

[239] J.-P. Merlet, Parallel Robots, 2nd ed. Amsterdam, The Netherlands:

Springer Netherlands, 2006.

[240] R. Ben-Horin, M. Shoham, and S. Djerassi, “Kinematics, dynamics and

construction of a planarly actuated parallel robot,” Robotics and Computer-

Integrated Manufacturing, vol. 14, no. 2, pp. 163–172, 1998.

[241] M. Moradi and A. Fekih, “Adaptive PID-Sliding-Mode Fault-Tolerant Con-

trol Approach for Vehicle Suspension Systems Subject to Actuator Faults,”

IEEE Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1041–1054,

2014.

[242] A. Ghosh, “Scaling Laws,” in Mechanics Over Micro and Nano Scales.

Springer, New York, NY, 2011, pp. 61–94.

[243] L. Ljung, Identification: Theory for the user, 2nd ed. Englewood Cliffs,

NJ, USA: Prentice-Hall, 1999.

[244] ISO:8608-2016, Mechanical vibration - Road surface profiles - Reporting

of measured data, 2nd ed. Vernier, Geneva, Switzerland: International

Organization for Standardization, 2016.

BIBLIOGRAPHY 245

[245] F. Tyan, Y.-F. Hong, S.-H. Tu, and W. S. Jeng, “Generation of random road

profiles,” Journal of Advanced Engineering, vol. 4, no. 2, pp. 151–156,

2009.

[246] M. Agostinacchio, D. Ciampa, and S. Olita, “The vibrations induced by sur-

face irregularities in road pavements - a Matlab approach,” European Trans-

port Research Review, vol. 6, no. 3, pp. 267–275, 2014.

[247] ISO:2631-2018, Mechanical vibration and shock - Evaluation of human ex-

posure to whole-body vibration - Part 5: Method for evaluation of vibration

containing multiple shocks, 2nd ed. Vernier, Geneva, Switzerland: Inter-

national Organization for Standardization, 2018.

[248] K. Strandemar, “On Objective Measures for Ride Comfort Evaluation,” De-

partment of Signals, Sensors and Systems, Stockholm, Sweden, Tech. Rep.,

2005.

[249] I. D. Diaz-Rodriguez and S. P. Bhattacharyya, “PI controller design in the

achievable gain-phase margin plane,” in 2016 IEEE 55th Conference on De-

cision and Control, CDC, Las Vegas, NV, USA, 2016, pp. 4919–4924.

	210510_PhD_MichielHaemers.pdf
	Preface
	Contents
	Summary
	Samenvatting
	List of Abbreviations
	List of Symbols
	Introduction
	Context
	Conventional Development Methodologies
	Motivation
	Research Questions
	Dissertation Outline
	Publications and Acknowledgment

	Background on Co-Design
	Multi-Domain Optimization
	Background on Optimizations
	Co-Design Strategies
	State-of-the-art and Applications
	Chapter Conclusions

	Multi-Domain Optimization Workflow
	Optimization Workflow Overview
	Optimization Objectives
	Optimization Algorithm Requirements
	Optimization Algorithm Selection
	Gradient-Based Optimization Approach
	Derivative-Free Optimization Approach
	Conclusions on the Optimization Algorithm Selection

	Pareto Front
	Background on State-Space Modeling
	Continuous LTI State-Space Modeling
	Continuous State-Space Observer Modeling
	Continuous LPV and LTV State-Space Modeling
	Illustrative LTI case: Mechanical Synchronization Setup

	Chapter Conclusions

	Hardware Architecture Optimization
	Actuator & Sensor Placement
	Actuator & Sensor Selection
	Mechanical Synchronization Setup

	Open-Loop Analysis
	Mechanical Synchronization Setup

	Chapter Conclusions

	Control Configuration Optimization
	Control Architecture Optimization
	Background on Control Architecture Topologies
	Decentralized/Distributed Control Architecture Features
	Implementation in Co-Design Methodology
	Mechanical Synchronization Setup

	Controller Tuning Optimization
	Mechanical Synchronization Setup

	Closed-Loop State-Space Methodology
	Background and Motivation
	Discrete State-Space Process and Observer Representation
	Discrete State-Space PID Representation
	Extensive Control Structure Possibilities
	SSCL Methodology Workflow
	Mechanical Synchronization Setup

	Chapter Conclusions

	Hardware and Control Co-Design
	Co-Design Optimization Properties
	Objective Function
	Design Parameters
	Constraints

	Genetic Algorithm Implementation
	LTI Case: Mechanical Synchronization Setup
	Objective Function
	Design Parameters
	Constraints
	Genetic Algorithm Implementation
	Optimization Results
	Comparison to Existing Controller Tuning Methods
	Objective Function Surface Plots

	LPV Case: Composite Plate
	Model Properties
	Objective Function
	Design Parameters
	Constraints
	Exhaustive Search
	Genetic Algorithm Implementation and Results
	Case Conclusions

	Chapter Conclusions

	Case: Active Car Suspension Setup
	Introduction on Active Suspension Systems
	Semi-Active and Adaptive Suspension Systems
	Active Suspension Systems

	Active Car Suspension Lab Setup
	Setup Properties
	State-Space Model Identification
	Road Profile

	Hardware and Control Co-Design
	Objective Function
	Design Parameters
	Constraints
	Genetic Algorithm Implementation

	Results and Measurements
	Model-Based Pareto Optimizations
	Validation Measurements
	Comparison to Existing Controller Tuning Methods

	Chapter Conclusions

	General Conclusions and Future Work
	General Conclusions
	Recommendations for Future Work

	Resulting SSCL Algorithms
	Mechanical Synchronization Case Optimization Responses
	Active Car Suspension Setup Validation Measurements

	Blank Page

