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Samenvatting

(Summary in Dutch)

In de afgelopen decennia is het aantal mensen met gehoorverlies wereldwijd ge-

stegen. Recreatieve of beroepsmatige blootstelling aan lawaai, veroudering en ge-

bruik van ototoxische geneesmiddelen zijn bekend als de belangrijkste oorzaken

van gehoorverlies. De nadelige gevolgen van niet-gediagnosticeerd of onbehan-

deld gehoorverlies hebben tot een groot aantal problemen geleid, b.v. sociaal isole-

ment en verminderde beroeps- of onderwijskansen. Eén van de redenen voor niet-

gediagnosticeerde of onbehandelde gehoorstoornissen houdt verband met onze

beperkte kennis over bepaalde gehoorstoornissen zoals cochleaire synaptopathie

(CS). CS verlaagt de temporele coderingsgetrouwheid van supra-liminaal geluid

als gevolg van een verminderd aantal gehoorzenuw (AN) vezels, die via de synaps

aan de binnenste haarcellen gehecht zijn. CS heeft echter geen invloed op de al-

gehele sensorische functie van het gehoor en daarom verwachten we dat patiënten

met CS over moeilijkheden bij het spraakverstaan kunnen klagen, terwijl hun au-

diometrische drempels binnen het normale bereik liggen. Aan de andere kant is

een directe kwantificering van neurale structuren alleen mogelijk in diermodellen

en post-mortem bij mensen, daarom is de kracht van diagnostische hulpmiddelen

voor CS bij levende mensen beperkt tot de kwaliteit van niet-invasieve en indirecte

methoden zoals auditief geëvoceerde potentialen (AEP’s). Op de hoofdhuid gere-

gistreerde AEP’s, b.v. de auditieve hersenstamrespons (ABR) en de omhullende-

volgende respons (EFR), worden niet alleen beı̈nvloed door CS, maar ook door

gehoorstoornissen zoals schade aan de buitenste haarcellen (OHC) Dit maakt het

moeilijk om een differentiële diagnose van verschillende subtypes van percep-

tief gehoorverlies (SNHL), op te stellen. Dit proefschrift beoogt een modelle-

ring en experimentele benaderingen te combineren om zo frequentie-specifieke en

geı̈ndividualiseerde SNHL-profielen te ontwikkelen. In dit opzicht gebruiken we

een numeriek model van de auditieve periferie, dat state-of-the-art kennis van dier-

fysiologie overbrugt naar menselijke toepassingen en dat een hulpmiddel biedt om

te simuleren hoe OHC-verlies en CS, afzonderlijk en gecombineerd, de generatie

van AEPs beı̈nvloedt. Op deze manier vormt de modelbenadering een aanvulling

op de experimentele AEP-metingen en vergemakkelijkt het de ontwikkeling van

sensitieve- en frequentie-specifieke methoden voor SNHL diagnose.

Op basis van dierstudies weten we dat de EFR als antwoord op een gemodu-

leerde stimulus een robuuste marker van CS biedt in de afwezigheid van OHC-

verlies. De magnitude van deze EFR hangt echter af van de stimuluskenmerken
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(bijv. omhullende, bandbreedte, ruis of toon, off-frequentie maskers) en de bijbe-

horende verspreiding basilair-membraan excitatie, en bemoeilijkt zo een frequentie-

specifieke CS-diagnose. Ook is het geweten dat de EFR magnitude beı̈nvloed

wordt door individuele factoren zoals geslacht of hoofdomvang. Om de behoefte

aan gevoeligere diagnostische methoden aan te pakken, stellen we in dit proef-

schrift een afgeleide-band EFR’s (DBEFR’s) methode voor waarbij de EFR afge-

leid wordt door de spectrale aftrekking van EFR’s als reactie op amplitudegemo-

duleerde witte-ruis met verschillende bandbreedtes. Op basis van modelsimula-

ties, stelden we vast dat de [2-6] kHz-bandbreedte het meest dominante cochleaire

frequentiegebied is voor de EFR-generatie. DBEFR’s die uit die bandbreedte wer-

den afgeleid, zijn dus frequentie-specifiek en bieden een relatieve maatstaf die de

interindividuele variabiliteit veroorzaakt door bronnen die geen betrekking heb-

ben op het gehoor, uitsluit. We vergeleken DBEFRs tussen jonge en oudere nor-

maalhorende proefpersonen, evenals tussen oudere leeftijdsgroepen (normaalho-

rend en slechthorend) om het effect van leeftijd en gehoordrempel op DBEFR-

magnitudes te bestuderen. In een tweede experiment werden DBEFR-magnitudes

van jonge, normaalhorende personen die klagen over gehoorproblemen in lawaaie-

rige omgevingen vergeleken met deze van de controlegroep. De resultaten toonden

een significante impact van leeftijd en verhoogde gehoordrempels op DBEFR-

magnitudes, terwijl zelf-gerapporteerde gehoorproblemen geen significant effect

op de DBEFR hadden. Tegelijkertijd bood het simuleren van het respectieve effect

van CS en OHC-schade op DBEFR’s een hulpmiddel om de bijdrage van verschil-

lende SNHL-bronnen tot de DBEFR-magnitude te ontwarren. De resultaten van de

model simulaties toonden aan dat de DBEFR-magnitude een frequentie-specifieke

diagnostische methode is voor CS in de afwezigheid van OHC-verlies. Ook zagen

we dat OHC-schade een kleine invloed op de DBEFR magnitude kan hebben. De

vermindering van de DBEFR-magnitude als gevolg van CS was echter groter dan

de impact van OHC-schade op de magnitude.

Eerder hadden modelsimulaties al aangetoond dat de grootte van de EFR mag-

nitude als antwoord op rechthoekig amplitudegemoduleerde (RAM) tonen een in-

dicator van CS is, en slechts marginaal beı̈nvloed wordt door OHC-verlies. Daarom

werden, met het doel op de ontwikkeling van gepersonaliseerde SNHL-profielen,

RAM-EFR’s gecombineerd met ABR-afgeleide markers om het individuele SNHL-

patroon te bepalen dat de beste match biedt tussen de gemeten en gesimuleerde

AEP’s. In het kader van dit proefschrift werd onderzocht welke van de meest ge-

bruikte technieken van OHC-schade kwantificering: audiogram, distortie-product

otoakoestische emissie (DPOAE) drempels of DP-grams, de beste methode biedt

om het cochleaire model te individualiseren. Ten tweede onderzochten we welke

ABR/RAM-EFR-markers er het meest geschikt zijn om individuele CS-profielen

van jonge normaalhorenden en oudere slechthorenden te voorspellen. Door mid-

del van een voorwaarts-achterwaartse classificatietechniek, voorspelden we eerst

CS-profielen van individuen op basis van een voorwaarste classificatie, waarna de

prestatie van de classificatie geëvalueerd werd op basis van achterwaardse clas-

sificatie. We vonden dat de RAM-EFR-magnitude de beste prestatie leverde bij

CS-voorspelling, zowel bij de audiogram en DPOAE-drempel gebaseerde indivi-
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dualisering van het cochleaire model. De nauwkeurigheid van de CS-voorspelling

was wel 15% hoger wanneer DPOAE-drempels werden gebruikt voor cochleair

model individualisering. Hoewel de RAM-EFR-methode veelbelovende resulta-

ten toonde bij SNHL-profilering van jonge en oudere luisteraars (met en zonder

gehoorstoornis), veranderde de omvang ervan niet significant bij jonge normaal-

horende volwassenen na recreatieve blootstelling aan lawaai. Bovendien werd

er geen verband waargenomen tussen spraakverstaan drempels en RAM-EFR-

magnitudes van dezelfde personen. Het is mogelijk dat de blootstellingsdosis voor

recreatief geluid in het huidige onderzoek niet hoog genoeg was om CS te veroor-

zaken, aangezien de werkelijke geluidsdosissen niet objectief werden geregistreerd

tijdens de muziekfestivals. Het is ook mogelijk dat de RAM-EFR-magnitude niet

gevoelig genoeg is om lawaai-geı̈nduceerde CS te detecteren bij normaalhorende

jongvolwassenen.

Dit proefschrift suggereert dat DBEFR-magnitudes die uit de [2-6] kHz band

afgeleid werden een frequentie-specifieke marker vormen voor CS in de afwezig-

heid van OHC-verlies. Op basis van deze resultaten verklaren we de verminderde

DBEFR-magnitudes van oudere normaalhorende luisteraars door leeftijdsgebon-

den CS, dat een gecompromitteerd vermogen om veranderingen in de omhullende

van geluid te coderen met zich meebrengt. Bovendien kan de ontwikkelde me-

thode voor de individualisering van SNHL-modellen op basis van RAM-EFR- en

DPOAE-drempels gegeneraliseerd worden naar andere experimentele proefopstel-

lingen en cohorten, aangezien de validatie van de methode op basis van RAM-

EFR’s uit een nieuw cohorte veelbelovende resultaten opleverde. Deze individu-

alisatie methode kan dus gebruikt worden als basis voor modelgebaseerde algo-

ritmen voor spraakverbetering die rekening houden met de individuele mate van

gehoorschade door CS- en OHC verlies. Deze modelgebaseerde methoden voor

gehoorherstel kunnen de weg effenen voor de volgende generatie hoorapparaatal-

goritmen die naar verwachting ten goede zullen komen aan personen van wie het

spraakverstaanbaarheid niet voldoende hersteld wordt op basis van geluidsverster-

king alleen, en aan de groep normaalhorenden met een verminderd spraakverstaan

die momenteel niet behandeld worden.





Summary

In the last decades, the number of people with hearing-loss has risen worldwide.

Recreational or occupational noise-exposure, aging and use of ototoxic drugs are

known to be the main causes of hearing-loss. The adverse consequences of undiag-

nosed or untreated hearing-loss have led to a multitude of problems, e.g. social iso-

lation and reduced vocational or educational opportunities. One of the reasons for

undiagnosed or untreated hearing loss is associated with our limited knowledge of

certain hearing deficits such as cochlear synaptopathy (CS). CS degrades temporal

envelope encoding fidelity of supra-threshold sound by compromising the audi-

tory nerve (AN) fibers that synapse onto inner-hair-cells, but it does not affect the

overall sensory function of the cochlea. Therefore, patients who complain about

difficulties in understanding speech, but who have audiometric thresholds within

the normal range, may suffer from CS. On the other hand, a direct assessment of

neural structures is only possible in animal models and post-mortem human stud-

ies, and hence the power of CS diagnostic tools in live humans is limited to the

quality of non-invasive and indirect methods, such as auditory evoked potentials

(AEPs). Scalp-recorded AEPs, e.g. auditory brainstem responses (ABRs) or en-

velope following responses (EFRs), are not merely affected by CS, but co-existing

hearing deficits such as outer-hair-cell (OHC) loss can also impact them, which

renders it difficult to establish a differential diagnosis of two important sensorineu-

ral hearing-loss (SNHL) sub-types, i.e. OHC-loss and CS. This dissertation aims

to combine modelling and experimental approaches to develop frequency-specific

individualized SNHL profiles. In this regard, we use a computational model of the

auditory periphery that bridges state-of-the-art knowledge of animal physiology to

human applications and that offers a tool to simulate how OHC-loss and CS, in

isolation and combination, affect the source generators of AEP-derived metrics. In

this way, the modelling approach complements experimental AEP measurement

methods and facilitates the development of novel frequency- and deficit-specific

diagnostic tools for SNHL.

Based on animal studies, the EFR strength to a modulated stimulus provides

a robust marker of CS in the absence of OHC-loss. However, its amplitude de-

pends on the stimulus characteristics (e.g. envelope, bandwidth, noise or tone,

off-frequency maskers) and the associated spread of basilar-membrane excitation

confounds a frequency-specific CS diagnosis. Moreover, the EFR magnitude is

influenced by subject-specific factors such as gender or head-size. To address

the need for more frequency-specific diagnostic metrics, we propose derived-band

EFRs (DBEFRs), which are constructed by spectral subtraction of EFRs in re-
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sponse to amplitude-modulated white-noise carriers of different bandwidths. Ben-

efiting from model simulations, we identified that the [2-6] kHz frequency region is

the most dominant cochlear frequency region for EFR generation. Thus, DBEFRs

derived from that stimulus bandwidth are frequency-specific and provide a relative

metric that rules out inter-subject variability caused by hearing-unrelated sources.

We compared extracted DBEFRs between young and older normal-hearing sub-

jects, as well as between elderly age-matched groups (older normal-hearing and

hearing-impaired) to study the effect of age and hearing-threshold on DBEFR

magnitudes, respectively. In another experiment, DBEFR magnitudes of young

normal-hearing listeners who complain about hearing difficulties in noisy environ-

ments were compared to those of a control-group. The results showed a significant

impact of age and elevated hearing thresholds on DBEFR magnitudes, whereas

self-reported hearing difficulties did not cause a significant difference. At the same

time, simulating the respective effect of OHC-damage and CS on DBEFR provided

a tool to disentangle the contribution of different SNHL sources to DBEFR magni-

tudes. Model simulations showed that the DBEFR magnitude offers a frequency-

specific diagnostic tool for CS in absence of OHC-loss, but that co-occurring OHC

deficits can also affect the response. However, the reduction of DBEFR magnitude

due to CS was greater than the impact of OHC-loss.

Previously, model simulations have shown that the magnitude of the EFR to

rectangularly amplitude-modulated (RAM) pure-tones is an indicator of CS, and

that it is only marginally affected by OHC-loss. Hence, with the aim of developing

personalized SNHL profiles, we recorded and simulated RAM-EFRs by combin-

ing them with ABR-derived metrics to determine the individual SNHL pattern that

provides the best match between recorded and simulated AEPs. Within the frame-

work of this dissertation, it was investigated which of the following commonly

used techniques of OHC-damage quantification: audiogram, distortion-product

otoacoustic emission (DPOAE) thresholds or DP-grams, provided the best method

to individualize the cochlear-model of young normal-hearing and older normal-

hearing/hearing-impaired listeners. We also investigated which ABR/RAM-EFR

markers, or combinations thereof, are best suited to predict individual CS profiles.

Proposing a forward-backward classification technique, we were able to predict

individualized CS profiles of the study participants using a forward classification

and then evaluate the prediction performance using the backward classification

approach. The results showed that the RAM-EFR magnitude yielded the best per-

formance in CS prediction, both for audiogram and DPOAE-threshold-based in-

dividualization of the cochlea. However, the accuracy of the CS prediction was

15% higher when DPOAE-thresholds were used for cochlear model individualiza-

tion. Although the RAM-EFR metric showed promising results in SNHL profiling

of young and older listeners (with and without hearing impairment), its magni-

tude did not change significantly in young normal-hearing adults after recreational

noise-exposure. Moreover, no relation was observed between speech reception

thresholds and RAM-EFR magnitudes of the same listeners. It is possible that

the recreational noise-exposure dose in the present study was not sufficiently high

to cause CS, since actual noise doses were not assessed during the attendance
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of experiment participants in the music festivals. Or there is the possibility that

the RAM-EFR magnitude was not sensitive enough to detect noise-induced CS in

normal-hearing young adults.

This thesis suggests that DBEFR magnitudes extracted from [2-6] kHz pro-

vide a frequency-specific marker of CS in the absence of OHC-loss. Hence, the

degraded DBEFR magnitudes of the older normal-hearing listeners can be ex-

plained by age-induced CS that yields compromised supra-threshold temporal en-

velope encoding. Additionally, the developed method for the individualization

of SNHL models based on RAM-EFR and DPOAE-thresholds is generalizable to

other recording setups and cohorts, since validation of the method using recorded

RAM-EFRs of a new cohort yielded promising results. Accordingly, the person-

alized SNHL profiles can be used as a basis for model-based speech enhancement

algorithms, which take into account the individual degree of CS and OHC-damage.

Model-based hearing restoration methods may pave the way for the next genera-

tion of hearing-aid algorithms which are expected to benefit individuals whose

speech intelligibility is not adequately restored on the basis of gain prescription

alone or who report degraded speech intelligibility without receiving treatment for

these complaints.
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Introduction

Hearing loss is the world’s fourth leading cause of disability and it is estimated

that 466 million people, i.e. 6.1% of the world population, are living with hearing

loss [1]. Defined by World Health Organization (WHO), a normal-hearing per-

son has hearing thresholds of 20 dB HL or better, in both ears. Thus, people who

fall outside this range, have hearing loss. WHO identified several risk-factors that

deteriorate the hearing ability of normal-hearing people: Over one billion young

people aged between 12 and 35 years, are at risk for hearing loss caused by recre-

ational exposure to loud sound. In addition, occupational noise-exposure, such

as that from machinery and explosions, contributes to 22% of workplace-related

health issues [2, 3]. Administration of some medications, such as Aminoglyco-

cides for treatment of drug-resistant tuberculosis (10-50% of the cases) [4], or

Cisplatin, as a therapeutic agent against cancer (75-100% of the cases) [5], were

reported to cause ototoxic hearing damage [6]. Accumulated noise-exposure and

side-effects of ototoxic drugs, may exacerbate the hearing problems of the elderly,

given that aging itself, has degenerative effects on the auditory system [1]. Ad-

ditionally, other factors such as genetic mutations, smoking, chronic disease and

obesity may further contribute to the hearing impairment [7, 8]. Although imple-

menting some preventive actions may reduce the adverse impact of the above-

mentioned hearing-loss risk-factors, providing effective therapeutic interventions

is of great importance. Leaving hearing loss untreated has a detrimental impact on

the quality of life, since impaired hearing can lead to communication difficulties

and gradual social isolation, reported by WHO.

However, providing a successful treatment entails powerful and objective di-
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agnostic tools that can differentiate sources of hearing pathologies. Given that any

portion of the auditory pathway can be targeted by various hearing-loss risk-factors

and that co-occurring hearing deficits may confound the interpretation of diagnos-

tic test results, it is crucial to develop metrics that precisely identify the underlying

causes of the hearing impairment.

1.1 Peripheral hearing disorders

In general, peripheral hearing disorders are categorized into two groups: conduc-

tive and sensorineural. Conductive hearing-loss is caused by damaged outer- or

middle-ear due to a reduced sound conduction to the inner ear. Cerumen im-

paction in the ear-canal, perforated eardrum, presence of fluid in the middle-ear

or immobility of its bones are among the well-known contributors to conductive

hearing-loss and are diagnosed via conducting otoscopy, tympanometry, air-bone

conduction audiometry, Rinne’s and Weber’s tests [1, 9, 10]. On the other hand,

sensorineural hearing-loss (SNHL) is the broad term that refers to the impaired

organ of Corti or stria vascularis (sensory loss) and/or loss or dysfunction of spi-

ral ganglion neurons (neural loss). The former is characterized by the elevated

hearing thresholds, as well as reduced frequency-selectivity due to the widening

of the auditory filters [11, 12], whereas the latter, which is called cochlear synap-

topathy (CS), degrades the sound encoding [13]. Accordingly, CS hinders speech

intelligibility in noise [14], but does not affect audiometric thresholds [13]. For

this reason, CS is also called a “hidden hearing loss” [15]. In animal models,

noise-induced SNHL can cause temporary threshold elevations due to reversible

damage to cochlear outer-hair-cells (OHCs), which can lead to irreversible AN de-

generation [16–19]. Apart from noise-induced SNHL, the use of ototoxic drugs

increases lipid peroxidation or calcium influx and leads to apoptosis of hair cells,

stria vascularis and AN fibers [20]. In addition to external contributors to SNHL,

aging is assumed to be the major driver of SNHL in the elderly, since stiffening

of the basilar membrane (BM), atrophy of the organ of Corti and AN in the basal

end of the cochlea, atrophy of the stria vascularis and loss of neural population are

natural causes of age-related hearing loss, known as presbycusis [21–23].

Contradictory to conductive peripheral hearing loss, establishing a robust dif-

ferential diagnosis of sensory and neural sources of SNHL in humans is not straight-

forward. First of all, conventional hearing assessment techniques, e.g. audiometry

and otoacoustic emissions (OAE), are not sensitive to CS [13]. Moreover, although

CS has been demonstrated in various animal models [13, 16–19], its confirmation

in humans requires post-mortem temporal bone analysis. Hence, developing non-

invasive and indirect diagnostic methods, which are specific to CS, is a prerequisite

for reaching a differential diagnosis of SNHL sub-types.
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1.2 Objective diagnostic measures of sensorineural

hearing deficits

Diagnosis of the OHC-loss component of SNHL, is routinely performed by mea-

suring audiometric thresholds across audible frequencies or OAEs. Since, audio-

metric thresholds are behavioural measures of OHC-loss, they could be affected

by ascending auditory processing stages. In contrast, OAEs are generated inside

the cochlea and inform about OHCs health, without including ascending auditory

pathways [24, 25]. However, their properties depend on the frequency-dependent

location along the cochlear partition they are generated from and on the nonlin-

ear characteristics of the OHC input-output function [26, 27]. A consequence of

this compressive input-output function is that in response to two simultaneously

presented pure-tones, the cochlea generates a third distortion product tone. The

presence of the distortion-product otoacoustic emission (DPOAE) can be used as a

localized predictor of the OHC-loss, near the frequency region of the f1 and f2 [28].

Different from OHC-loss, diagnosis of CS in live humans is not straightfor-

ward. Considering that CS targets the AN-fiber population, sound representation

might degrade at the cochlear nucleus (CN) and auditory brainstem stages of the

auditory pathway. Accordingly, elecrophysiological measurements, such as audi-

tory evoked potentials (AEPs), that target different auditory processing stages, can

be used in combination with psychoacoustic metrics to probe the auditory pathway

from cochlea to cortex and to characterize the contribution of hearing deficits at

ascending processing stages. The auditory brainstem response (ABR), a type of

AEP evoked by transient clicks, reflects synchronous firing rate of the AN-fibers

in the wave-I amplitude [29, 30]. In the context of AEPs, the envelope following

response (EFR) is a phase-locked response to the envelope of amplitude modulated

stimulus and reflects integrity of the temporal processing along the auditory path-

way [31, 32]. In addition, CS can affect the neural-coding of speech and degrade

speech intelligibility, particularly in noise [14].

AEP recordings have been studied in numerous animal models as a candidate

diagnostic tool for CS and ABR wave-I amplitude [16, 33, 34] and EFR magni-

tude [31, 32] were shown to be affected by CS in mice and guinea pigs. These

animal studies demonstrated that ABR wave-I amplitude, EFR strength and phase

locking value (PLV) degrade as a consequence of noise-induced or age-related

CS. Despite of these findings in animals, a direct translation of these measures for

human diagnosis of CS yielded a mixed success [35–37].

Although human post-mortem studies have confirmed the existence of aging

or noise-induced CS in humans [38–40], and findings of multiple human studies

are consistent with animal models, e.g. decreased EFR strength due to recreational

noise-exposure [41] or aging [42–44] and degraded ABR wave-I amplitude caused

by lifetime [45–47] or occupational [48] noise-exposure, numerous human stud-
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ies reported contradictory results. For example, no significant correlations were

found between noise-exposure history and ABR wave-I amplitude or EFR strength

or speech intelligibility in noise in [49–56]. Several factors may have contributed

in generating such inconsistencies between animal and human studies. These dis-

crepancies have been discussed in several studies, and are summarized as follows:

(1) Partial synaptic repair might have occurred in some humans after exposure

to noise, since a similar phenomenon was observed in guinea pigs [57, 58]. (2)

Humans are less sensitive to noise-induced CS than animal models [18, 59], or

higher noise levels are required to generate synaptic loss to human ears [37]. (3)

AEPs are more variable in humans due to inter-individual differences in head-size,

sex [60–62], cochlear duct length [62] and degree of awareness during the experi-

ment (awake humans vs. anesthetized animals). In particular, variability of ABR

wave-I amplitude in humans can be ascribed to the scalp electrodes, which are less

robust than sub-dermal electrodes used in animals [35, 50]. (4) Adopted methods

across different human studies for noise-exposure history estimation, as well as the

considered time-intervals for those methods are not identical (e.g. [46,48,49,54]).

(5) The lifelong noise-exposure dose is controlled precisely in control and target

groups of animal models, however this is not possible in human studies where

uncontrolled lifelong noise-exposures, specifically among control group individu-

als, might have confounded the interpretation of results [48]. (6) Degree of OHC

deficits differs even among the control group individuals, and hence might have

caused inconsistency across human study results, since OHC-loss decreases input

to IHC and also affects the ABR wave-I amplitude [63,64] or EFR magnitude [32].

To rule out subject-specific factors in AEP-based SNHL diagnosis, several

studies suggested the use of relative rather than absolute metrics: e.g., ABR wave-I

amplitude growth as a function of stimulus intensity [16], the slope of EFR mag-

nitude growth as a function of modulation depth [51, 65], ABR wave-I and V am-

plitude ratio [15,66,67] or latency difference [68–70]. Although it is assumed that

employing relative metrics may reduce the ambiguity related to individual vari-

ability emanated from sources other than CS, the specific impact of OHC-loss and

CS on AEPs, still remains unknown.

To overcome the above-mentioned disparities in human studies, and increase

the diagnostic power of AEPs in the presence of mixed pathologies (among others

OHC-loss and CS), multiple considerations need to be made. First of all, we need

to identify the respective impact of each subcomponent of SNHL on AEPs and

then develop stimuli that evoke AEPs that are specific to CS. Accordingly, derived

AEP metrics need to isolate and quantify the CS aspect of SNHL, while remain-

ing insensitive to OHC-loss, that may co-exist. At the same time it is desired that

AEP markers provide a frequency-specific measure of CS in humans. In this re-

gard, adopting auditory models which incorporate both sub-types of SNHL can

be a powerful tool in the design of CS-sensitive diagnostic methods, as they can
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simulate how different sub-types of SNHL interact and affect human AEP markers

of hearing.

1.3 Individualized models of the auditory periphery

Over the past decades, different types of auditory models have been developed to

study the functioning of normal and impaired auditory processing. Several models

can simulate frequency-dependent SNHL [71–77], and can in this way offer a tool

to investigate the impact of underlying hearing pathologies on AEP alterations

[73, 78].

In this regard, the biophysically-inspired computational model of the auditory

periphery, developed by Verhulst et al. [73], bridges knowledge from animal phys-

iology to human applications. At the same time, it incorporates the middle-ear

filtering, a nonlinear transmission-line (TL) model of the human cochlear me-

chanics [79, 80], a model of the IHC-AN complex [81], and a phenomenological

description of the ventral CN and inferior colliculus (IC) neurons [82]. It pro-

vides a way to study the respective output of the peripheral processing stages in

response to a given stimulus and applied SNHL profile, i.e. OHC-loss, CS, or

co-existing OHC-loss and CS. Reducing the mechanical gain in a CF-dependent

manner in the cochlear TL model yields wider cochlear filters with reduced gain

and simulates the effect of OHC-damage on BM processing. To introduce CS, the

population and types of AN fibers, that connect to each IHC, can be altered. Tak-

ing advantage of the developed model, the respective effect of CS and OHC-loss

on EFRs and ABRs can be investigated [44,64,83]. Previously, model simulations

suggested that OHC-loss reduces the ABR wave-I and V amplitudes. Simulating

OHC-loss, also yields longer ABR wave-V latencies and steeper wave-V latency

growth-functions, in line with several experimental studies (wave-V latency: [84],

wave-V latency growth: [85, 86]). The EFR magnitude to sinusoidally amplitude-

modulated pure-tones (SAM) increased due to OHC-loss, since OHC-damage re-

duces cochlear input to IHC-AN complex [63] and causes AN fibers to operate in a

more sensitive amplitude-modulation-coding region. Therefore, enhanced SAM-

EFR magnitudes are generated compared to an intact cochlea, in absence of CS.

Introducing CS to the model, yielded degraded ABR wave-I amplitudes and SAM-

EFR magnitudes, consistent with several studies (wave-I amplitude: [13, 16, 32],

EFR: [31, 41, 42, 87]).

Model simulations provide a detailed insight into how acoustic stimuli of AEPs

can be designed for differential diagnosis of SNHL. Benefiting from the modelling

approach [73], Vasilkov et al. proposed an EFR stimulation paradigm in [44], that

is sensitive to CS and maximally insensitive to possible co-existing OHC-loss.

The optimal stimulus was a rectangularly amplitude-modulated (RAM) pure-tone

with a 25% duty-cycle, that yielded stronger EFR magnitudes compared to the
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conventional SAM stimulus. Using model simulations, the authors showed that

the RAM stimulus yields stronger EFRs and more synchronized response of the

AN fibers, by virtue of its sharply rising envelope shape. Simulating the effect

of OHC-loss, marginally affected the RAM-EFR magnitude (compared to SAM-

EFR), since the steeply rising envelop of the stimulus, together with prolonged

inter-peak-intervals (25% duty-cycle), limited the impact of reduced cochlear am-

plification on the response. Introducing CS significantly degraded the magnitude

of RAM-EFR, in absence of OHC-loss [44]. Taken together, model simulation

combined with experimental validations in [44], support that the RAM stimulus

can provide an enhanced sensitivity to the CS aspect of SNHL, in listeners with

mixed SNHL sources.

Gaining advantage of such promising CS-sensitive metrics, together with our

progressive knowledge of the functional aspects of different SNHL sub-types,

stress the importance of developing personalized SNHL profiles using physiolog-

ical measures, that target different auditory processing stages. These profiles can

be incorporated within individualized models of the auditory periphery, which can

be used in the development of personalised audio-signal processing for hearing-

aids. Thus far, auditory profiling methods have been based on psychoacoustics

(e.g. [76,88–90]), to yield a measure that cannot directly explain the exact location

of the hearing deficit origin along the auditory pathway. With a view on hearing

restoration, it is necessary to pursue an AEP-based quantification of the SNHL

sub-types, as restoration will only be effective, when the functional consequences

of each sub-type are considered.

1.4 Objectives

This doctoral research will tackle some of the shortcomings of present diagnostic

tools for sensorineural hearing deficits in humans. Specifically, it aims to develop

an AEP-based objective diagnostic tool, that provides a differential diagnosis of

OHC-loss and CS sub-types of the SNHL, when these co-occur in the same sub-

ject. Using the state-of-the-art biophysically-inspired computational model of the

auditory periphery, this project determines the frequency sensitivity of EFRs to dif-

ferent types of acoustic stimuli and develops techniques to yield more frequency-

specific responses than those that presently exist. Additionally, the respective ef-

fect of OHC- and AN-damage on AEPs is studied in this thesis, since the adopted

model simulates the OHC-loss and CS sources of the SNHL, in isolation and com-

bination.

Benefiting from the model simulations and combining them with recorded hu-

man AEPs, this doctoral research identifies which of the thus far developed AEP-

derived metrics (ABRs and EFRs) and physiological measurements are most suit-

able to build individualized auditory periphery models and develop personalized
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SNHL profiles. In this regard, machine-learning techniques are proposed to tackle

the issue of validating the predicted individualized CS profiles of human-subjects.

What makes this approach unique is the AEP-based CS profiling of the human-

listeners in presence of OHC-loss, that can be used in the future development of in-

dividualized hearing-aid algorithms to compensate for degraded sound-processing

as a consequence of both OHC-loss and CS.

Since noise-exposure is one of the driving causes of CS and leads to a degraded

speech perception, this thesis examines the effect of recreational noise-exposure

on the AEP-based CS-markers and investigates how speech intelligibility relates

to those measures.

1.5 Outline of the thesis

This dissertation is structured into three main parts and comprises five chapters,

followed by the Discussion section:

The first part (Chapters 2 and 3) aims to develop frequency-specific EFR mark-

ers and determines their sensitivity to the OHC-loss and CS aspects of SNHL.

Specifically, Chapter 2 introduces frequency-specific EFRs to five broadband stim-

uli with different low-cutoff frequencies and explores the tonotopy of those EFRs

using model simulations. Model outcomes are compared to recorded EFRs to same

stimuli. Chapter 3 builds on the findings in Chapter 2 and introduces derived-band

EFRs (DBEFRs) by further limiting the frequency-content of EFRs developed in

the previous chapter and then studies their sensitivity to CS, with or without co-

existing OHC-loss, using model simulations. The model findings are compared

with recorded EFRs from two independent experiments by taking into account

the respective impact of age, elevated hearing thresholds and self-reported hearing

difficulties of study participants in presence of normal audiograms.

The second part (Chapters 4 and 5) describes how simulated and recorded

physiological measurements can be used to personalize auditory processing mod-

els to include individual AN- and OHC-damage patterns. Given that impaired

functionality of these cochlear/neural elements affects AEP-derived metrics dif-

ferently, the approach taken in Chapter 4 relies on the quality of recorded AEPs by

combining them with a measure specific to OHC-damage, i.e. either audiogram

or DPOAE. To this end, a machine-learning approach is developed to estimate

the cochlear-gain-loss (CGL) parameters of the cochlear model using measured

DPOAE thresholds, while audiogram-based CGL parameters are extracted follow-

ing the method proposed in [64]. In this way, CGL parameters are hard-coded in

the model for each individual, after which various AEP-derived metrics, e.g. EFR

magnitudes, ABR amplitudes and latnecies, are simulated for different degrees

of AN-damage. Then, a forward-backward classification technique is introduced

to determine which AEP metric, or combination thereof, best predicts the sim-
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ulated individualized CS profiles. The method is implemented for either of the

cochlear model individualization methods and respective limitations are discussed

by considering the obtained prediction errors. To further study cochlear model in-

dividualization methods, Chapter 5 takes DP-grams of the same listeners recorded

in six different primary levels and estimates respective CGL parameters by im-

plementing a similar machine-learning method introduced in Chapter 4. Then, it

simulates individualized DP-grams, compares them with those obtained from the

measurements and calculates the respective prediction errors. Considering the pre-

diction errors of audiograms and DPOAE thresholds in Chapter 4, together with

those of DP-grams measured in six levels, it determines the most suitable metric

for cochlear model individualization, by taking into account limitations associated

with the model.

The third part of this dissertation (Chapter 6) investigates the consequences of

recreational noise-exposure on AEPs, audiometric thresholds and speech intelli-

gibility. In particular, Chapter 6 studies the variability of those metrics in young

normal-hearing listeners, after attending music events. RAM and SAM-EFR mag-

nitudes, ABR wave-I and -V amplitudes, speech reception threshold (SRT) values

in quiet and noise were recorded one day before (baseline session) and one, three

and five days after attending festival. These metrics are compared across the ses-

sions to identify probable effects of the exposure to loud sound on the potential

biomarkers of CS.

The last chapter draws conclusion on the three above-mentioned topics and

provides the future perspectives based on the major findings of this doctoral re-

search.

In total, this thesis reports on three experiments. In the first experiment (Chap-

ter 3), two groups were recruited: a young normal-hearing control group and a

young normal-hearing group with self-reported hearing difficulties in the presence

of background noise. AEPs of these groups were used (1) to determine the fre-

quency sensitivity of EFRs to different broadband amplitude modulated stimuli in

Chapter 2 and (2) to explore the effect of self-reported hearing difficulties on the

recorded AEPs in Chapter 3 (first experiment). The second experiment (the sec-

ond experiment of Chapter 3, first experiment of Chapter 4 and Chapter 5) includes

data from young and older normal hearing, as well as older hearing-impaired sub-

jects to investigate the effect of age and hearing impairment on the EFRs. Their

data was used to test the derived-band EFR metric (Chapter 3) and to build individ-

ualized SNHL models (Chapters 4 and 5). Lastly, the third experiment considers

young normal-hearing subjects, who attended multi-day music festivals. In this

group, we explore the effect of loud sound exposure on the potential biomarkers of

CS, by comparing their recordings before and after attending the music festivals

(Chapter 6). Moreover, the first recording session of this cohort (measured one day

before attending the music event), was used in Chapter 4 to validate the proposed
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method for CS-profiling.

Lastly, It is worthwhile to mention that the framework of this thesis is partially

structured based on the published papers, and hence brief overlaps can be noticed

within the chapters.
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This chapter explores the frequency specificity of envelope following responses

(EFRs) in diagnosing supra-threshold hearing deficits. First, EFRs were recorded

to sinusoidally amplitude-modulated band-pass filtered white noise carriers with

different bandwidths in two participant groups: young normal-hearing control

group and a group with self-reported hearing difficulties in noisy listening envi-

ronments. Then, by adopting a biophysically-inspired model of the human au-

ditory periphery, the origin of EFR variability to similar stimuli with different

carrier bandwidths and modulation frequencies was studied. This study showed

that despite the broadband cochlear excitation, the broadband EFR mostly reflects

summed amplitude modulation coding strength in frequency channels above 2

kHz. Hence, frequency-specific information regarding the supra-threshold sound
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amplitude modulation coding (e.g. derived-band EFRs) can be extracted from

EFRs to stimuli with frequency content of higher than 2 kHz.

2.1 Introduction

Threshold audiometry at frequencies between 250-8000Hz does not quantify the

possible supra-threshold hearing deficits in listeners with normal hearing thresh-

olds. One of the possible sources of supra-threshold hearing deficits is loss of audi-

tory nerve (AN) fibers (i.e. cochlear synaptopathy) as a result of noise-exposure or

aging. Cochlear synaptopathy (CS) leaves the outer-hair-cells (OHCs) intact and

does not affect the audiometric thresholds [13]. Recently, auditory evoked poten-

tials (AEPs) such as auditory brainstem responses (ABRs) and envelope following

responses (EFRs) have been proposed to quantify these supra-threshold hearing

deficits. EFRs reflect the phase-locking strength to the modulated sounds [31] and

are sensitive to CS in animals [32]. Hence, EFR could be a more robust metric

to measure the synchrony of AN fibers to the modulated stimulus [31]. However,

EFRs are confounded by stimulus and subject-specific factors [60, 91], as well as

the spread of the basilar membrane (BM) excitation [41]. To evaluate the diag-

nostic power and tonotopy of frequency-specific EFRs in humans, we investigated

which cochlear frequency regions contribute to the scalp-recorded population re-

sponse. We took an experimental approach in which we adopted, (i) white-noise

carriers of various bandwidths with different low cut-off frequencies, (ii) stimuli

with a high modulation frequency (MF; 120 Hz) to avoid cortical contributions to

the response and (iii) a stimulus level of 70-dB-SPL to encompass the contribution

of a range of low and high-threshold AN fibers to the EFR. We recorded EFRs in

groups with normal audiograms, but with or without self-reported hearing difficul-

ties in noisy environments. The former group might be representative of the target

synaptopathy expected group without hearing thresholds deficits.

To further investigate the origin of the experimental EFRs differences to noise

carriers of different bandwidths, we adopted a model-based approach [73]. The

model offers a promising way to further explore the influence of different stimuli

characteristics on the frequency sensitivity along the different processing stages

of the auditory periphery (i.e. cochlea, AN and brainstem). Given that previous

studies have shown that increasing the MF of a broadband noise, increases the be-

havioral AM detection thresholds [92] and decreases the EFR amplitudes [93], we

focused on investigating the effect of different modulation frequencies in encoding

the stimulus envelope in BM velocity and AN spike rates.

First, the experimental stimuli and the participated groups are described. After

which, Sections 2.2 and 2.3 detail the implemented methods and show compar-

isons between experimental and simulated EFRs. Finally, the discussion states

possible reasons for the lack of AM-coding in the experimental data at lower fre-



CHAPTER 2 13

quencies and makes suggestions to improve the broadband EFRs frequency sensi-

tivity based on the model simulations.

2.2 Methods

EFRs were recorded to five filtered white-noise carriers in [0.25-22], [0.5-22], [1-

22], [2-22] and [4-22] kHz frequency bands and were 100% modulated with a

120 Hz pure-tone. The widest stimulus was presented at 70-dB-SPL and the other

bandwidth stimuli had lower level to maintain a similar spectral level in all fil-

tered stimuli. The stimulus epochs were 1.25-sec long and repeated 370 times.

EFRs were recorded with a 64-channel Biosemi EEG system. Details of the ex-

perimental setup were described elsewhere [94]. Sixteen normal-hearing (NH)

subjects aged 18-30 years (24.21±4.10 years, six females) and nine NH subjects

with self-reported hearing difficulties in noisy environments (NHSR), aged 23-49

(33.78±8.57 years, three females) participated in the experiment. All participants

had hearing thresholds below 25 dB-HL, except for one participant who had 30

dB-HL loss at 250 Hz. The best audiometric ear at 4 kHz was chosen for the

monaural stimulation. During the recording, subjects were seated in a comfort-

able chair in an acoustically and electrically shielded sound booth watching silent

movies with subtitles to stay awake. All participants were informed about the ex-

perimental procedure according to the ethical procedure at Ghent University and

an informed consent was received.

2.2.1 Experimental data analysis

For each condition, the responses from the Cz-channel were filtered between 60

and 600 Hz with an 800th order Blackman window-based band-pass FIR filter in

MATLAB, using the filtfilt function. Then, the signals were epoched in 1-s long

blocks starting 0.25s after the stimulus onset to focus on the steady state part of

the response. A baseline correction was applied by subtracting the average of

each epoch, before averaging across trials. Thirty epochs with the highest peak-

to-trough absolute values were removed to drop the noisiest epochs. In this way,

an equal number of epochs were averaged for all conditions and subjects. We

adopted a bootstrapping method to identify the EFR strength and signal-to-noise

ratio in the frequency domain [95]. First the Fast Fourier-Transform (FFT) of

each epoch was computed. Then, an averaged FFT over 340 epochs, randomly

drawn with replacement out of total epochs was calculated. This procedure was

repeated 200 times and resulted in a nearly Gaussian distribution of mean spectra

of the responses. The absolute value of the mean of 200 averaged epochs, yielded

the EFRs in the frequency domain. Secondly, the same procedure was followed

with 1000 (of which half were phase-flipped) repeated averages to estimate the
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Figure 2.1: Recorded EFR magnitudes in NH (circles) and NHSR (squares) listeners. The

corresponding group-means are shown with left-pointing triangles. Simulated EFRs for a

normal-hearing model are shown by black diamonds.

noise-floor. Finally, the subtraction between the absolute values of the signal and

noise-floor averages resulted in the stimulus-driven EFR spectrum. To calculate

the EFR strength, we included the fundamental MF and any visible harmonics.

Only two harmonics were visible in our data, we hence considered the magnitude

of the fundamental frequency of the modulator (i.e. f0=120 Hz) and two following

harmonics:

EFR =

2
∑

i=0

|Magnitudefi | (2.1)

More detailed implementation steps in this regard can be found in Chapter 3, Sec-

tion 3.3.

2.2.2 Modelling approach

We simulated EFRs using a biophysically-inspired model of the human auditory

periphery [73]. The same stimuli as were adopted in the experiment, were pre-

sented to the model, but with a total duration of 600 ms. The last 400 ms of the

simulated responses were used for the EFR calculation. Further analysis steps

were identical to the experimental data analysis. Given that the stimulus carrier

was noise, it was presented 100 times to the model with different seeds of the ran-

dom generator. Before calculating the EFR, the simulated responses at the inferior

colliculus (IC) stage of the model, were averaged over 100 stimulus presentations.

The modelling approach, brings the benefit of allowing a frequency-specific inves-
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tigation of the sources contributing to the EFRs to modulated broadband stimuli,

at both the BM and AN processing levels. To this end, we explored the root-

mean-square (RMS) and modulation strength of the response at each simulated

characteristic frequency (CF) channel. We calculated the modulation strength at

both BM and AN levels in the time domain by averaging the BM-velocity and AN

spike-rates across all cycles for each epoch. For a MF of 120 Hz, each epoch en-

compasses 48 cycles, and taking into account the 100 repetitions of the stimulus

representation, the half of the peak-to-peak amplitude of the 4800 averages were

defined as the modulation strength of each CF channel. We followed the same

procedure to calculate the modulation strength for the AN simulations to keep a

fair comparison with the BM simulations.

2.3 Results

2.3.1 EFR magnitudes evoked by broadband stimuli

Figure 2.1, shows the EFR magnitudes for the different stimulus conditions and

groups (i.e., NH and NHSR). Even though the data points for each condition show

individual variabilities, the group-means were constant across conditions for stim-

uli of low cut-off frequencies up to 2 kHz. A decrement was observed for the

last condition with the stimulus bandwidth of [4-22] kHz. The normal-hearing

model-predicted EFRs (diamonds in Figure 2.1), revealed the same trend as the

experimental group-means across conditions. The NHSR group-mean EFRs of the

participants were lower than the EFRs of the NH participants in each condition, but

the only significant EFR differences between the two groups were observed at [2-

22] and [4-22] kHz conditions (EFR[2−22]: t(19)=3.36, p=0.003 and EFR[4−22]:

t(19)=2.76, p=0.012). This finding is consistent with the idea that NHSR listeners

may suffer from supra-threshold hearing deficits.

2.3.2 CF contributions to the EFR

To explore the origin of the frequency-dependent behavior of the EFRs, we studied

the contribution of different CF channels for the different recording conditions to

population responses at BM and AN levels of the model. Figure 2.2 shows the

simulated excitation patterns and modulation responses of the BM-velocity (Fig-

ure 2.2a and 2.2b) and AN-responses (Figure 2.2c and 2.2d) to the experimental

conditions. The excitation pattern shows increased velocity at CF channels corre-

sponding to those contained in the stimulus frequency, while the BM modulation-

response, shows a sloping response starting one octave below the excited CF chan-

nels, and a constant behavior at CF channels above the 4 kHz. A similar pattern

can be observed at the AN level, where a sharp increase in spike rate is observed

for frequencies contained in the stimulus in the excitation pattern. A sloping spike
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Figure 2.2: Simulated excitation patterns and modulation responses of the BM (a and b)

and AN (c and d) processing levels of the model calculated for each CF channel to the

experimental stimuli.

rate increment in the modulation-response was again observed when evaluating the

modulated response. Since the EFR is a population response across the CF chan-

nels, the overlapping modulation response for the first three conditions, explains

the equal group-means observed in the experimental data in Figure 2.1.

To investigate the absence of AM-coding at low CFs for 120 Hz modulator, we

further evaluated the effect of MF and CF contributions to the modulated response

in the broadest bandwidth condition, i.e., [0.25-22] kHz. First, a time-domain

visualization from two CF channels is shown in Figure 2.3, for MFs of 20 and

120 Hz. CF channels of 500 and 4000 Hz are shown and are evaluated for their

AM content at the BM-velocity (Figure 2.3a) and AN spike-rate (Figure 2.3b).

Both responses to non-modulated and modulated broadband stimuli are shown

and the response from CF=500 Hz reveals no noticeable difference between non-

modulated and 120 Hz modulated noise at both BM and AN processing levels.

However, at the CF=4000 Hz the effect of MF can be observed. A more direct

comparison of the modulation strength at two CF channels was made in Figure 2.3c

and d at BM and AN levels, where the 4800 averaged cycles at 120 Hz MF and

8×100=800 averaged cycles at 20 Hz MF are shown. These figures reveal the lack

of modulation response at 120 Hz MF in low CF channel (500 Hz) at both BM and

AN levels, which are in agreement with Figure 2.2b and d, where no modulation

response can be seen at low CFs.
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Figure 2.3: One hundred averaged simulated time-domain epochs in response to broadband

stimuli modulated with different MFs in two CF channels at the (a) BM and (b) AN levels

of the model. Panels (c) and (d) show the averaged cycles across each epoch at BM and AN

levels.

2.4 Discussion

The simulation results in response to broadband stimuli confirmed that there is a

reduced contribution from lower CF channels and higher modulation frequencies

(120 Hz) at the AN level to the EFR. To study the impact of MF and different

cochlea CF regions sensitivity to the EFR, Figure 2.4 compares the excitation pat-

tern and modulation response of BM-velocity and AN-spike rates in response to

a range of modulation frequencies between 20 and 120 Hz. Although there is an

approximately equal excitation pattern in all MFs at both BM and AN levels (Fig-

ure 2.4a and 2.4c), the modulation responses show different behavior for different

MFs. For a specific MF, the modulation response at BM and AN increases from

the apical end to the base. Decreasing the MF, enhances the modulation response

at all CFs, especially at the basal end and at the BM level (Figure 2.4b). Even

though the AN level largely reflects the response from the cochlea, we observe

that the sloping and increasing modulation response saturates for higher CFs to a

fixed MF (Figure 2.4d). Therefore, in spite of an increased modulation response

at BM level with decreasing MF, especially at higher CFs, the saturation mech-
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Figure 2.4: Excitation patterns and modulation responses at BM (a and b) and AN (c and

d) levels for different MFs of the broadest bandwidth condition, i.e., [0.25-22] kHz.

anism at the AN level (due to saturating AN fibers) moves the EFR frequency

sensitivity to the lower CFs. Considering a specific MF, at every CF channel asso-

ciated with the stimulus frequency content, two side-bands are produced. Hence,

one of the possible reasons for the enhanced modulated response of lower MFs at

BM, could be the wider filters at higher CFs, where more side-bands of the noise-

carrier fall inside the cochlear filters and increase the energy of the modulation

response. In this context, increasing the MF moves the side-bands further away

from the carrier component and decreases the modulation response within a single

CF channel [96].

Based on the model simulations, we conclude that the equal magnitude EFRs

for the first three experimental conditions is a consequence of small differences of

the curve area of under MF=120 Hz AN modulation response and the saturation

which occurs at about 4 kHz and higher CFs (Figure 2.4d). The decrement in

the EFR for [4-22] kHz experimental condition is caused by the more significant

difference between areas under the curves with the previous, broader conditions.

The model study suggests that for broadband noise stimuli, modulation frequencies

lower than 120 Hz can provide a better tonotopic-sensitive EFRs for lower CFs.

However, there is a possibility of contribution from higher auditory processing

levels to be involved in the response.
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This chapter aims to improve frequency specificity of the envelope following re-

sponse (EFR) by introducing a derived-band EFR (DBEFR) technique and inves-

tigate the effect of lifetime noise-exposure, age and outer-hair-cell (OHC) damage

on DBEFR magnitudes. Additionally, a modelling approach is adopted to val-

idate the frequency-specificity of the DBEFR and test how different aspects of

sensorineural hearing-loss affect peripheral generators. The combined analysis

of model simulations and experimental data proposes that (i) DBEFR extracted

from the [2-6]-kHz frequency band is a sensitive and frequency-specific measure

of synaptopathy in humans, (ii) older listeners consistently have reduced DBEFR

magnitudes in comparison to young normal-hearing listeners, in correspondence

to how age-induced synaptopathy affects EFRs and compromises temporal enve-

lope encoding, (iii) to a lesser degree, OHC-damage affects the DBEFR magnitude

1SK: running the experiment (1), model simulations, analysis, conceptualization, writing the orig-

inal draft, review and editing, MG: running the experiment (2) VV: conceptualization, review and

editing, SV: supervision, conceptualization, review and editing, funding acquisition.
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(based on model simulations). Hence the DBEFR metric should ideally be com-

bined with a sensitive marker of OHC-damage to offer a differential diagnosis of

synaptopathy in listeners with impaired audiograms.

3.1 Introduction

Struggling to understand speech in noisy environments is a prevalent complaint

of the ageing population, even when they have normal audiometric thresholds.

Although hearing thresholds are informative about the sensory function of the

cochlea, they are insensitive to auditory-nerve (AN) fiber loss, which is the first

sign of permanent hearing damage [13, 97] and related to supra-threshold hear-

ing [87]. Recent animal studies have shown that ageing, ototoxicity and overexpo-

sure to noise can lead to an irreversible loss of AN synapses, i.e. cochlear synap-

topathy (CS), and delayed degeneration of cochlear neurons, while leaving the

cochlear sensory hair cells intact [13, 16–19, 57]. Even when the noise-exposure

dose only causes a temporary threshold shift [13], noise-induced AN fibers de-

generation can progress through the lifespan and yield an increased sensitivity

of the ear to age-induced hearing dysfunction [98]. Additionally, reduced num-

bers of spiral ganglion cells in post-mortem histology of human temporal bones

with preserved sensory cells, confirmed the existence of age-related CS in hu-

mans [38–40]. Thus, noise-exposure and ageing are important causes of CS, a

deficit which compromises the temporal coding fidelity of supra-threshold sound

as a result of a reduced number of afferent AN synapses innervating the inner-hair-

cell (IHC) [41, 87].

Since the discovery of CS, several attempts have been made to associate changes

in indirect and non-invasive measures of auditory function, such as scalp-recorded

auditory evoked potentials (AEPs), to the histologically quantified degree of AN

fibers loss in animals. For example, auditory brainstem responses (ABRs), evoked

by transient stimuli and reflecting the synchronized onset responses of AN fibers

[61] showed a decreased supra-threshold wave-I amplitude after synaptopathy due

to noise-exposure [13, 17, 19], despite recovered normal distortion product otoa-

coustic emission (DPOAE) and ABR thresholds. The number of AN fibers can

also be quantified using envelope following responses (EFRs), which capture how

well AN fibers can phase-lock to the stimulus envelope [99]. The EFR can be

extracted from scalp-electrodes in response to a sinusoidally amplitude modulated

(SAM) pure-tone stimulus [87], and has been proposed as an AEP-based measure

of CS [31, 32].

Despite the strong relation between AEP markers and CS in animal studies,

the indirect nature of AEP recordings hinders a clear and direct interpretation of

response strength in terms of CS. First of all, a mixture of sources contribute to

scalp potentials, some of which are electrical activity induced by subject-specific
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factors and unrelated to the sound-driven response (e.g. head size, age, sex, ge-

ometry of the generators and physiological noise level [35, 60, 87, 91]). Other

sources relate to the sound-driven response but depend on outer-hair-cell (OHC)

health [85] or cochlear tonotopy [61]. Lastly, the scalp-recorded AEP is strongly

influenced by stimulus characteristics and the corresponding spread of basilar-

membrane (BM) excitation, which can confound a frequency-specific diagnosis of

CS [41, 73, 87, 100]. To address these issues, several studies have proposed differ-

ential/relative AEP-based metrics: the EFR amplitude slope as a function of mod-

ulation depth [41,51,87], ABR wave-V latency changes in different levels of back-

ground noise [101], or the combined use of noise-floor corrected EFRs with ABRs

to segregate mixed hearing pathologies and normalize inter-individual variabili-

ties [83]. Secondly, a number of techniques have been proposed to confine ABR

generation to specific frequency bands: the use of simultaneous off-frequency

masking paradigms, i.e. the derived-band ABR [61, 102], tone-burst ABRs [103]

and notched noise paradigms [104]. Lastly, asynchrony of low-spontaneous rate

(LSR) AN fibers to the transient stimulus [105] may limit the use of the ABR

wave-I amplitude to capture all aspects of CS, as noise-induced CS might prefer-

entially affect LSR AN fibers [16].

This study proposes the use of a relative derived-band EFR method (DBEFR),

to confine the EFR to a specific frequency band. To construct DBEFRs, we changed

the bandwidth of the stimulus on the low-frequency side rather than using off-

frequency masking methods. In this way, a consecutive subtraction of responses to

stimuli with various bandwidths will remove the contribution of the off-frequency

channels caused by the stimulation paradigm and at the same time, it will yield a

relative measure of supra-threshold sound encoding. We further hypothesize that

the relative metric design of the DBEFR reduces the impact of subject-specific

factors and increases its sensitivity to individual sensorineural hearing deficits.

DBEFR magnitudes were extracted from individuals in four groups to study their

applicability to diagnose sensorineural hearing deficits: (1) a young normal-hearing

control group, (2) a group with self-reported hearing difficulties in noisy envi-

ronments, (3) a group of older listeners with normal audiograms and (4) an age-

matched group with sloping high-frequency audiograms. We assumed that the

second group might be affected by CS due to noise overexposure or ageing and

that the third group might be affected by age-induced CS, without co-occuring

OHC damage. Aside from collecting DBEFRs, we assessed individual OHC func-

tion using audiometric and DPOAE thresholds. In line with animal studies of

age-related and noise-induced synaptopathy, we expect that the DBEFR will be

reduced in all but the control group.

Because a direct assessment of the individual degree of OHC- and AN-damage

is presently experimentally impossible, we complemented our experimental work

with a modelling approach to better understand the relationship between sen-
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Figure 3.1: Measured audiograms in the first (left) and second (right) experiments. Markers

indicate the audiometric threshold at 4 kHz. The dashed line is the averaged audiometric

threshold at each group and the yellow shading corresponds to the standard deviation.

sorineural pathologies and their effect on the peripheral generators of the DBEFR.

Models can study how AN fiber and sensory hair-cell damage impact the EFR gen-

erators to understand their respective roles for DBEFR generation [64,73,106]. We

adopt a biophysically inspired model of the human auditory periphery calibrated

for ABR and EFR simulation [73] and considered the simulations together with

the data to interpret the implications of our findings for DBEFR-based hearing

diagnostics.

3.2 Materials and methods

Two experiments were conducted at two recording locations. In the first exper-

iment (Ghent University), normal-hearing (NH) and listeners with self-reported

hearing difficulties (NHSR) participated. In the second experiment (Oldenburg

University), a total of 43 participants were recruited in three groups: a young NH

control group (yNH), an older NH group (oNH) and an older group with sloping

high-frequency audiogram (oHI). Ethical approvals were obtained from Ghent and

Oldenburg Universities and all participants were informed about the experimental

procedures and signed an informed consent before the experiment.

3.2.1 Participants

Sixteen NH listeners with ages between 18 and 30 (NH: 24.21±4.10 years, five

females) and 9 NH subjects with self-reported hearing difficulties (NHSR) with
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ages between 23 to 49 (NHSR: 33.78±8.57 years, three females) participated in

the first experiment. The NHSR participants were recruited using a flyer asking

whether they had speech understanding difficulties in the presence of background

noise, while not presently being treated for hearing disorders. Measurements were

conducted in two sessions per subject, with a maximum sound exposure time of

90 minutes per session. The participants filled out a questionnaire, in which they

were asked how often (yearly, monthly, weekly or daily) they had been playing a

musical instrument in a band, attended festivals, concerts or discotheques and used

noisy tools during their lifetime. Moreover, the total number of noise-exposed

sessions, their duration and estimated noise loudness (a score between 1 to 5) were

also assessed [107]. Audiograms were measured with an Interacoustics Clinical

Computer Audiometer (AC5) at ten standard frequencies between 0.25 and 8 kHz.

The second experiment was conducted with three participant groups com-

posed of: 15 young normal-hearing (yNH: 24.53±2.26 years, eight female), 16

old normal-hearing (oNH: 64.25±1.88 years, eight female) and 12 old hearing-

impaired (oHI: 65.33±1.87 years, seven female) participants. All yNH partici-

pants had pure-tone thresholds below 20 dB-HL at all measured frequencies be-

tween 0.125 and 10 kHz (Auritec AT900, Hamburg, Germany audiometer). In

both experiments, the audiometrically better ear was chosen for the experiment

and stimuli were presented monaurally while participants were seated in a com-

fortable chair in an acoustically and electrically shielded sound booth, watching

silent movies with subtitles to stay awake. Figure 3.1 shows audiograms of the

subjects in all groups.

From here on, △ stands for the NH group in the first experiment, � for NHSR

group, ♦ for yNH in the second experiment, © for oNH and ⊳ for oHI group.

3.2.2 Distortion Product Otoacoustic Emissions (DPOAEs)

In the first experiment, DPOAEs were recorded to ten primary-level pairs, (L1,

L2), at nine primary-frequency pairs: f2 =[546, 780, 1002, 1476, 1998, 3012,

3996, 6006, 8003] and f1 = f2/1.2. L2 ranged from 20 to 65 dB-SPL in 5 dB

steps and L1 = 0.4L2 + 39 dB, according to the scissors paradigm [108]. The

nine primary frequency pairs were chosen to have complete stimulus periods of

the primaries in each pair. For each frequency and level pair, 45 repetitions were

generated in MATLAB 2016b and an ER-10X extended-bandwidth Etymotic Re-

search probe system was used to deliver the two pure tones via a loudspeaker/mi-

crophone probe inserted in the ear-canal using a silicone eartip. The response was

recorded and digitized using a Fireface UCX external sound card (RME). The pure

tones were calibrated separately using a B&K artificial ear and B&K sound level

meter at each primary frequency, separately. The time-domain ear-canal record-

ings were converted to pressure using the microphone sensitivity (50 mV
Pa ) and
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pre-amplifier gain (40 dB). Then, I/O functions were calculated for the measured

primary-frequency pairs by defining the LDP as the averaged spectrum magnitude

at the 2f1-f2 cubic distortion frequency, multiplied by 2
N
√
2

, where N is the number

of samples at each f2 response. Finally, a linear function, i.e. LDP = aL2 + b,

was fit to the bootstrapped data-points and the crossing point with LDP=0 Pa was

defined as the DPOAE threshold at the measured f2 frequency. DPOAEs in the

second experiment were acquired using a custom-made software [109], which im-

plements a primary frequency sweep method at a fixed f2/f1 of 1.2 [110]. The

primary frequencies were swept across an 1/3 octave range around the f2 = 4 kHz

geometric mean with a duration of 2s/octave. Primary levels were chosen ac-

cording to the scissors paradigm [108]. DPOAE threshold at each frequency was

calculated by fitting a linear function to the bootstrapped data-points and was ex-

trapolated to cross LDP=0 Pa. Additional details on the experimental procedure

can be found in [64].

3.2.3 Envelope Following Responses (EFRs)

The EFR stimuli in the first experiment were five filtered white noise carriers,

which were 100% modulated with a 120-Hz sinusoid. To generate them, the white

noise was filtered between the following frequency regions: [0.25-22], [0.5-22],

[1-22], [2-22] and [4-22] kHz, using a 1024th order FIR band-pass filter designed

by the Blackman-window method. In each frequency band, a stimulus with a

duration of 1.25 s was generated in MATLAB 2016b, windowed with a 1.25%

cosine-tapered window and delivered monaurally over ER-2 earphones, connected

to a Fireface UCX external sound card (RME) and a TDT-HB7 headphone driver.

A uniformly-distributed random silence jitter was applied between consecutive

epochs (200 ms±20 ms) of the 370 stimulus presentations. Stimuli with vari-

ous bandwidths were calibrated to have the same spectral magnitude, i.e. the

widest bandwidth stimulus was presented at 70-dB-SPL, while narrower band-

width stimuli had lower sound pressure levels to preserve an equal spectral level

in all conditions. The calibration was performed using a B&K sound-level-meter

type 2606. Figure 3.2a illustrates the designed stimuli in the frequency domain.

Scalp-recorded potentials were obtained with a 64-Channel Biosemi EEG record-

ing system and a custom-built trigger-box using a sampling frequency of 16384

Hz. The electrodes were placed according to the 10-20 standard, using highly con-

ductive gel (Signa gel). The Common Mode Sense (CMS) and Driven Right Leg

(DRL) electrodes were placed on top of the head. Six external channels were used

as well, i.e. two earlobe electrodes as reference and the remaining electrodes were

placed on the forehead and cheeks to record electrical activity induced by horizon-

tal and vertical eye movements. All channels were re-referenced to the average of

the two earlobe electrodes.
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Figure 3.2: Spectra of the 120-Hz modulated stimuli and derived bands. (a) Designed stim-

ulus spectra in different frequency bands and specified cut-off frequencies of the bandpass

filter. (b) Derived bands from the EFRs recorded to the stimuli shown in (a) obtained by

spectral subtraction.

In the second experiment, four EFR stimuli with white noise carriers were

band-pass filtered using the same filter as in the first experiment in [0.3-16], [0.7-

16], [2.8-16] and [5.6-16] kHz frequency regions. The precise lower cut-off fre-

quencies employed in the band-pass filtering were 0.5√
2

, 0.5
√
2, 4√

2
and 4

√
2 kHz,

respectively. Stimuli were 95% modulated with a 120-Hz pure tone and presented

at 70 dB-SPL using the same configuration as the first experiment. The stimuli

had a duration of 400 ms, were 2.5% ramped with a tapered-cosine window and

presented 1000 times using a uniformly distributed random inter-stimulus silence

jitter of 100 ms±10 ms. The calibration was performed in the same way as for

the first experiment, but using B&K sound level meter type 2610. A 64-channel

Biosemi EEG system was adopted to record the responses using EEG caps with

equidistant electrode spacing. The CMS and DRL electrodes were located on the

fronto-central midline and on the tip of the nose of the participants, respectively.

3.3 EFR analysis

Acquired EFRs were first filtered with an 800th order Blackman window-based

FIR filter between 60 and 600 Hz, using the filtfilt function of MATLAB to avoid

time delays and phase shifts. Signals were broken into 1-s long epochs relative to

the trigger onset, from 0.25 to 1.25s in the first and into 0.3-s long epochs, from

0.1 to 0.4 s in the second experiment. Baseline correction was applied before the

epochs were averaged across trials. 30 and 100 epochs were rejected on the basis of

the highest peak-to-trough values in the first and second experiment, respectively.

Since the firing patterns of neurons are influenced by factors such as instantaneous

external inputs, previous firing patterns and the general state of the system, the

interpretation of the raw EFR spectrum resulting from the Fast Fourier Transform

(FFT) of the averaged epochs is challenging. Synaptic delays and axon conduc-

tion limitations cause a 1
f behaviour in EEG (Chapter 10 in [111]) and it is crucial

to suppress this noise-floor to analyse the stimulus-driven spectrum. The boot-
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strapping approach proposed in [95] was employed to estimate the 1
f noise-floor

component. First, 340 epochs were drawn randomly with replacement, among

the 340 epochs (900 epochs in the second experiment). Then, the FFT of these

epochs were averaged. This procedure was repeated N1=200 times (N2=400 for

the second experiment), resulting in a nearly Gaussian distribution of raw, aver-

aged spectra. The average value of this distribution yielded the frequency domain

representation of the EFRs. Afterwards, the same procedure with M1=1000 repe-

titions (M2=1200 for the second experiment) and phase-flipped (180◦) odd epochs

was followed to estimate the spectral noise-floor as a function of frequency. The

idea behind this approach is that the time-locked response is suppressed if the aver-

aging is repeated sufficiently across phase-inverted epochs. Finally, the averaged

absolute values of the estimated noise-floors were subtracted from the averaged

absolute values of the EFR spectra amplitudes (EFRraw) to obtain the stimulus-

driven EFR spectrum (EFRSpec):

EFRraw(f) =
2

np

∣

∣

∣

∑N

i=1 FFT(Xi)
∣

∣

∣

Np

(3.1)

Noisefloor(f) =
2

np

∣

∣

∣

∑M

j=1 FFT([−1]jXj)
∣

∣

∣

Mp

(3.2)

EFRSpec(f) = EFRraw(f)−Noisefloor(f) (3.3)

X represents the epochs vector, N the number of bootstrap repetitions, M the

number of repetitions to estimate the noise-floor, p the experiment number (i.e.

one or two) and n equals the number of FFT-points (n1=16384 and n2=8192).

Figure 3.3 represents EFRraw, Noisefloor and EFRSpec spectra of subject No.

8 from NH group in the first experiment. All EFRSpec peak values which were

four standard deviations above the noise-floor (EFRSpecSD) for frequencies corre-

sponding to the modulation frequency (120 Hz) and its following two harmonics

(240 and 360 Hz) were added to yield EFR magnitude of the corresponding con-

dition.

EFRPtN =

2
∑

k=0

EFRSpecSD(fk), fk = 120× (k + 1) (3.4)

To construct DBEFRs, the calculated EFRPtN for each narrower-band condition

was subtracted from the following wider-band condition using:

DBEFRPtN = (EFRPtN)wide − (EFRPtN)narrow (3.5)
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Figure 3.3: Spectrum of the EFRraw(f) (in blue), Noisefloor(f) (in red) and EFRSpec(f)
(in black) calculated for subject No. 8 from the first experiment. EFR spectra were evoked

by the stimulus with the broadest bandwidth, i.e. [0.25-22] kHz. Peaks at the stimulus

modulation frequency, and two harmonics (i.e. f0 = 120Hz, f1 = 240Hz and f2 = 360Hz)

are clearly visible above the noise-floor.

Derived frequency bands from EFRs to the first experimental stimuli are shown

schematically in Figure 3.2b.

3.4 Questionnaire analysis

The completed questionnaires from the participants in the first experiment were

used to estimate the individual life-time noise-exposure dose. To this end, the col-

lected individual data related to the frequency and duration of experienced noise-

exposure were converted to a number of sessions per year multiplied by the dura-

tion and the personal estimated noise loudness scores, i.e. a number between 1 and

5. We followed the procedures as described in [107]. The scores were separately

calculated for questionnaire categories: (i) playing musical instrument in a band,

(ii) attending festivals, concerts and discotheques and (iii) using noisy tools. Out-

comes were normalized across NH and NHSR groups participants by the highest

reported dose, i.e. 30600, 18480 and 26000 hours in each category, respectively.
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Figure 3.4: Modeling approach. The block-diagram shows different levels of the auditory

pathway modelled in the employed biophysical model of the auditory periphery [73]. The

top-right graph indicates the simulated distribution of different types of AN fibers across CF.

The table shows simulated CS profiles and the graph on the bottom right depicts simulated

different degrees of cochlear-gain-loss. The corresponding simulated thresholds at 8 kHz

are indicated by the legend.

3.5 Model simulations

A biophysical model of the human auditory periphery [73], schematically shown in

Figure 3.4, was adopted to simulate the experimental conditions and to investigate

the effect of different aspects of sensorineural hearing deficits on the EFRPtN and

DBEFRPtN magnitudes. The original implementation of the model is described

in [73] and can be downloaded from “https://github.com/HearingTechnology/ Ver-

hulstetal2018Model”. The parameters which determine the weights between the

population AN, cochlear nucleus (CN) and inferior colliculus (IC) responses were

adjusted along with the AN innervation patterns across characteristic frequency

(CF) channels for the purpose of this study.

3.5.1 Auditory nerve-fiber distribution

The original model implementation introduced the same number of synapses be-

tween IHCs and AN fibers for all simulated CFs, whereas human and rhesus mon-

key innervation patterns show a bell-shaped pattern across CF. To make the model

more realistic, the averaged synaptic counts of four control rhesus monkeys (seven

ears) and nine frequencies [18] were mapped to corresponding fractional distances

of the human cochlea using the monkey place-frequency map [112]. Fractional
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distances from the base of cochlea, di, were calculated according to the measured

frequency points (fRMi ):

fRMi
[in Hz] = 360(102.1(1−di) − 0.85), i = 1, 2, ..., 9 (3.6)

The obtained dis were substituted into the analogous Greenwood map equation for

humans, yielding the corresponding frequency points (fHi
):

fHi
[in Hz] = 165.4(102.1(1−di) − 0.88), i = 1, 2, ..., 9 (3.7)

To calibrate the model with the applied AN-pattern, a 70 dB-nHL click-train

containing both stimulus polarities was presented at a rate of 11 Hz. To perform

this calibration, simulated ABR wave amplitudes were matched to the experimen-

tal data on the basis of 55 averages. Specifically, the M1 = 4.6729× 10−14,

M3 = 5.6885× 10−14 and M5 = 14.641× 10−14 parameters were adjusted on

the basis of average NH ABR wave-I, III and V reference-data from [113], i.e.

wI = 0.15µVp, wIII = 0.17µVp and wV = 0.61µVpp.

Using the synapse counts from rhesus monkey and the mapped frequency

points for the human cochlea (fHi ), a smoothing spline curve was fit to estimate

the number of synapses across all frequency channels in the model. Finally, to

simulate different AN fiber types, i.e. high spontaneous-rate (HSR), medium

spontaneous-rate (MSR) and LSR fibers, and their properties, the obtained popu-

lation distribution was multiplied by the corresponding AN type proportion factor

C, i.e. CHSR = 0.60, CMSR = 0.25 and CLSR = 0.15 (cat data in [114]), before

responses were summed at each simulated CF and fed to the CN model. The sim-

ulated frequency-specific AN fibers distribution is shown on the top-right column

of Figure 3.4.

3.5.2 Stimuli

The model stimuli were matched to the experimental conditions and had a dura-

tion of 600 and 400 ms for the first and second experiment, respectively. Twenty

stimulus repetitions with different white noise iterations were applied to the model

and simulations were averaged before the EFRPtN was calculated using the same

procedure as in Eq. 3.4. The amplitudes of the model stimuli were set based on

the broadest condition, i.e. 0.25 to 22 kHz for the first experiment and 0.3 to 16

kHz for the second experiment to yield an input of 70 dB-SPL. The narrower band

stimuli were calibrated relative to the broadest condition, such that they had the

same spectral level as the broadband condition, but with a different SPL.
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3.5.3 Simulating sensorineural hearing loss

In the employed cochlear transmission-line model, pole-trajectory of the BM ad-

mittance can be determined as a function of stimulus intensity to model the com-

pressive BM-response growth, and in a CF-dependent manner to account for hu-

man cochlear frequency tuning [115]. Accordingly, OHC-damage was simulated

by changing the CF-dependent mechanical gain of the cochlea by moving poles of

the BM admittance function to yield a filter gain reduction corresponding to a de-

sired dB-HL-loss, which also yielded wider cochlear filters. The inset in Figure 3.4

shows the simulated cochlear-gain-loss profiles. In the context of CS, different de-

grees of AN-damage were modelled by manipulating the number and types of

AN fibers. The simulated CS profiles and their corresponding AN fiber types are

shown in Figure 3.4. The table in Figure 3.4 shows the simulated CS profiles.

Model-related procedures are further detailed in [64, 73].

3.6 Results

3.6.1 EFR and dependence on stimulus frequency

Figure 3.5 shows individual and group-mean EFRPtN magnitudes to different fre-

quency bandwidths in the first (panel a) and second (panel b) experiments. De-

spite the within-group individual variability, experimental group-means revealed

approximately constant EFRPtN magnitudes to stimuli with frequencies below

2 kHz and reduced magnitudes to frequencies above 2 kHz and 2.8 kHz in the

first and second experiment, respectively. A paired-sample t-test with Bonferroni

correction was applied to compare EFRPtN magnitudes to stimuli with differ-

ent frequency bandwidths in each group. In the first experiment, a single signif-

icant difference was observed between the EFR[2−22] and EFR[4−22] conditions

in NH group (t(11)=7.02, p<0.000; specificed by # in Figure 3.5a), which dis-

appeared for the NHSR group (t(8)=3.13, p=0.014). In the second experiment, a

paired-sample t-test with Bonferroni correction gave a significant difference be-

tween EFR[2.8−16] and EFR[5.6−16] in yNH (t(12)=7.86, p<0.000; specified by

+ in Figure 3.5b) and oNH groups (t(12)=6.21, p<0.000; specificed by ++ in

Figure 3.5b), but not in the oHI group (t(9)=2.03, p=0.072). Simulated NH-EFRs

are shown in hexagons in Figure 3.5 and corroborate experimental findings by

showing a minor contribution of stimulus frequencies below 2 kHz on the EFR

generation.

3.6.2 Derived-Band Envelope Following Responses (DBEFRs)

DBEFRPtN magnitudes calculated using Eq. 3.5 are shown in Figure 3.6 for the

first (panel a) and second (panel b) experiment. A paired-sample t-test with Bon-
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Figure 3.5: EFRPtN magnitudes to 120-Hz modulated stimuli with different white-noise-

carrier bandwidths in the (a) first and (b) second experiment. Individual data-points are

depicted with open symbols. Respective standard deviations were obtained using a boot-

strapping procedure [95]. Filled symbols reflect the group-means and their corresponding

standard deviations. Simulated EFRs from a NH model were added in filled hexagons.

Significant effects of considered frequency-band on EFRPtN magnitudes are specified by:

(#) in the NH-group (first experiment), (+) in the yNH-group and (++) in the oNH-group

(second experiment). To enhance the visualization of differences, panel (a) was plotted

on narrower y-axis range, therefore the real values of lowered EFRPtN magnitudes are

specified next to the corresponding data-points.

ferroni correction comparing the DBEFRPtN magnitudes in each group revealed

only a significant difference between the [1-2] and [2-4] kHz conditions in the

NH group (t(11)=-6.05, p<0.000; specified by # in Figure 3.6a). In the second

experiment, paired-sample t-test showed significant difference between [0.3-0.7]

and [2.8-5.6]-kHz conditions only in yNH group (t(12)=-7.00, p<0.000; speci-

ficed by + in Figure 3.6b). In support of our experimental findings, simulated

NH-DBEFR magnitudes in both experiments (shown by hexagons in Figure 3.6a

and b) were equal for derived-bands below 2-kHz and increased for DBEFR[2−4]

(in the first experiment) and DBEFR[2.8−5.6] (in the second experiment). In line

with EFRPtN findings in Section 3.6.1, experimental and simulated DBEFRPtN

magnitudes in both experiments showed an increased contribution of the [2-6] kHz

derived frequency band to the EFR generation. Unlike the model simulations,

negative DBEFR magnitudes were observed in a few experimental cases. How-
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Figure 3.6: DBEFRPtN magnitudes derived using Eq. 3.5 for 120 Hz modulated stimuli

with different white-noise-carrier bandwidths in the (a) first and (b) second experiment.

DBEFRPtN for each frequency band was obtained from a wider and narrower width stim-

ulus. Standard deviations were calculated using a bootstrapping procedure. Simulated

DBEFRs are shown with stars, which were calculated by averaging the responses from 20

stimulus iterations. Group means and respective standard deviations are depicted using

filled symbols. Significant effects of considered frequency-band on NH-group in the first

experiment and yNH-group in the second experiment are specified by (#) and (+), respec-

tively. To enhance the visualization of differences, figures were plotted on narrower y-axis

range, therefore the real values of lowered DBEFRPtN magnitudes are specified next to

the corresponding data-points.

ever, the corresponding standard errors of the negative cases in DBEFR[2−4] and

DBEFR[2.8−5.6] conditions cross zero, and hence can be interpreted by the mea-

surement variability.

3.6.3 Possible origins of individual EFR differences

Previous studies have shown a dependency of the scalp-recorded AEP magnitude

to head size, sex and age [60, 83, 91]. Hence, the spread of data-points within dif-

ferent recorded test-groups and spectral bandwidths could be explained by subject-

specific factors unrelated to hearing or hearing-related factors associated with the

main factors for grouping: (i) self-reported hearing difficulties in noisy environ-

ments in the first experiment, (ii) age and (iii) elevated hearing thresholds in the
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second experiment.

Pooling together the NH and NHSR EFRPtN magnitudes, a regression analy-

sis was conducted to investigate the effect of age, 4 kHz threshold, head-size and

DPTH3000 on the EFR[2−22] (Figure 3.7, left column) and DBEFR[2−4] magni-

tude (Figure 3.8, left column). None of the regressions showed a relation between

tested variables, suggesting that other factors than those reported were responsible

for the individual variability among listeners. The regression analysis on EFRPtN

and DBEFRPtN magnitudes combined from all experimental groups in the sec-

ond experiment (Figure 3.7 and 3.8, right column) showed a meaningful correla-

tion of age, threshold, head-size and DPTH4000 with the EFR[2.8−16] magnitude.

However, extracting the DBEFR[2.8−5.6], reduced the correlation with age and

4-kHz threshold and suppressed any meaningful correlation with head-size and

DPTH4000. Moreover, excluding the oHI group from the correlation analysis, led

to a reduced and insignificant correlation coefficient (R=-0.377, p=0.090) between

4-kHz threshold and DBEFR[2.8−5.6]. These results suggest that the proposed

DBEFR metric is not affected by head-size. Moreover, individual variabilities

between the yNH and oNH groups in the second experiment might be related to

degraded temporal envelope-coding as a consequence of CS [41], given the in-

significant correlations of DBEFRs with the 4-kHz threshold, DPTH4000 and

head-size.

3.6.4 EFRPtN and DBEFRPtN magnitude variability across tested

groups

To investigate the separability of the recruited groups by means of their DBEFR

magnitudes, we analysed the group-mean differences in each experiment. In the

first experiment, an independent two-sample t-test comparison between the means

of stimulated frequency bandwidths in the NH and NHSR group (Figure 3.5a),

showed a significant difference only between the [2-22] and [4-22]-kHz condi-

tions (EFR[2−22]: t(19)=3.36, p=0.003 and EFR[4−22]: t(19)=2.76, p=0.012).

However, significant mean-differences disappeared between similar conditions in

the NH and NHSR groups after extracting DBEFR magnitudes in Figure 3.6a

(DBEFR[2−4]: t(19)=1.15, p=0.265). The insignificant difference across groups

and insignificant correlation coefficients of DBEFR[2−4] with subject-specific fac-

tors observed in Figure 3.8, might partly be explained by the different amounts of

experienced lifetime noise-exposure reported in the questionnaires and might point

to various degrees of noise-induced CS. Calculated noise scores in Figure 3.9

revealed a weak correlation with DBEFR[2−4] magnitudes (R=0.13, p<0.000).

However, certain cases appeared to be inconsistent with our noise-induced synap-

topathy hypothesis, i.e. (i) high noise scores in the NH group, e.g. subject No.

12 and (ii) low noise scores in the NHSR group, e.g. subject No. 1. We suggest
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Figure 3.7: Correlation analysis of EFR[2−22] (EFR[2.8−16]) with age, audiometric thresh-

old at 4 kHz, head-size and DPTH3000 (DPTH4000) in the first (left) and second (right)

experiments. Correlation between EFR magnitudes and all factors but age were reported

using the Pearson’s correlation coefficient. The Spearman’s correlation coefficient was cal-

culated to study the effect of age in the second experiment.

that the insignificant group-mean differences could be explained by (i) subject-

dependent unreliable discriminating factor between NH and NHSR group [116],

(ii) variability in answering lifetime noise-exposure dose in questionnares [48,

49], (iii) an insufficient number of samples or (iv) a limited sensitivity of the

DBEFRPtN metric to noise-induced CS.

In the second experiment, an independent two-sample t-test was applied to

investigate the effect of age between the yNH and oNH groups, and elevated high-

frequency thresholds between the oNH and oHI groups. This comparison showed

a significant effect of age on all frequency bandwidths and a significant effect of

hearing threshold on all frequency bands except for the [5.6-16] kHz band (t(21)
= -1.81, p = 0.084). The same comparison for the DBEFR magnitudes revealed

a significant effect of age and hearing threshold only in the [2.8-5.6]-kHz derived

band condition (t(24) = 3.03, p=0.004 and t(21) = -4.33, p = 0.002, respectively),

consistent with the correlation presented in Figure 3.8. Detailed t and p values of

independent two-sample t-tests, evaluating the effect of age and hearing thresholds
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Figure 3.8: Correlation analysis of DBEFR[2−4] (DBEFR[2.8−5.6]) with age, audiometric

threshold at 4 kHz, head-size and DPTH3000 (DPTH4000) in the first (left) and second

(right) experiments. Correlation between DBEFR magnitudes and all factors but age were

reported using the Pearson’s correlation coefficient. The Spearman’s correlation coefficient

was calculated to study the effect of age in the second experiment.

on EFR and DBEFR magnitudes, are listed in Table 3.1.

Our group-mean results combined with the correlation analysis in Section 3.6.3

suggests that the DBEFR metric removes inter-subject variability unrelated to

hearing between yNH and oNH groups, but leaves individual magnitude differ-

ences within a group meaningful, given the often non-overlapping standard de-

viations. Consequently, the significant group-mean difference between yNH and

oNH groups might reflect individual degrees of sensorineural hearing loss. To

investigate the diagnostic sensitivity, it is of course necessary to understand the

respective role of OHC deficits and CS on DBEFR magnitudes. Given that oHI

listeners may suffer from both OHC deficits and CS, it is important to study the

impact of OHC-damage and CS, both independently and concomitantly.
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Table 3.1: The results of a two-tailed t test show the effect of age and hearing threshold on

EFR and DBEFR magnitudes in the second experiment.

Metric
Frequency Bandwidth

[kHz]

Age Effect

yNH vs. oNH

Threshold Effect

oNH vs. oHI

EFR

[0.3-16]
t(24)=5.812

p<0.000

t(21)=-3.020

p=0.006

[0.7-16]
t(24)=6.632

p<0.000

t(21)=-2.175

p=0.041

[2.8-16]
t(24)=5.836

p<0.000

t(21)=-4.498

p<0.000

[5.6-16]
t(24)=4.734

p<0.000

t(21)=-1.811

p=0.084

DBEFR

[0.3-0.7]
t(24)=-1.35

p=0.191

t(21)=-0.61

p=0.541

[2.8-5.6]
t(24)=3.03

p=0.004

t(21)=-4.33

p=0.002

3.6.5 The EFR relationship to different aspects of sensorineu-

ral hearing-loss

Since OHC-damage and CS might both affect the EFR magnitude [42,83], we em-

ployed a computational model of the auditory periphery to simulate how different

degrees of CS affected the EFRPtN magnitude, both in presence and absence of

high-frequency sloping OHC-loss above 1 kHz (simulated high-frequency sloping

audiograms in Figure 3.4). The most sensitive regions of the cochlea responding

to a 120-Hz modulated broadband noise were identified to lie between the CFs of

2 and 6 kHz [117]. As a result, we only considered two EFR conditions of each ex-

periment, namely EFR[2−22] and EFR[4−22] in the first experiment (Figure 3.10a)

and EFR[2.8−16] and EFR[5.6−16] in the second experiment (Figure 3.10b). Model

simulations showed that CS, when no other hearing deficits co-occur, reduces the

EFR and DBEFR magnitudes. Applying sloping high-frequency OHC-damage

increased the DBEFR magnitudes in both experiments (Figure 3.10c and d). Ac-

cording to the simulations, the NH DBEFR magnitude reduced by 46% as a con-

sequence of removing 47% of the AN fibers (i.e., the 10-0-0 CS profile defined

in Figure 3.4), while the Slope20 OHC-damage (defined in Figure 3.4) increased

the NH DBEFR magnitude by 27%. Hence, the effect of OHC-damage on the

DBEFR magnitude is smaller than that of CS alone, however it is not negligible.

Therefore, the experimental range of individual EFR and DBEFR magnitudes can

be explained by different degrees of variation simulated by CS and OHC-damage.

Our simulations explained the experimental differences between yNH and oNH

groups on the basis of age-induced CS, not OHC-damage induced differences.
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Figure 3.9: Bar-plots of noise scores acquired from questionnaires of NH and NHSR groups,

classified in three categories, i.e. experience noise as a consequence of (i) playing a musical

instrument in a band, (ii) attending festivals or concerts and (iii) using noisy tools. Results

are shown normalised, where the score of 1 corresponds to 30600, 18480 and 26000 hours

of accumulated noise dose in the considered categories, respectively.

Furthermore, the simulations suggest that oNH and oHI listeners might both suf-

fer from CS. Results are less clear for the NHSR group where there is a strong

overlap with the NH group. However, the noise-scores from the questionnaires in

Figure 3.9, could ascribe some of the spread in DBEFR magnitudes within the NH

and NHSR groups to noise-induced CS, and to a lesser degree to OHC-damage

given that all had normal hearing thresholds.

It is worthwhile to note that EFR magnitudes in both experiments (Figure 3.10a

and b), decreased as a result of CS alone and increased by applying high-frequency

OHC-damage with a severity of less than 20 dB-HL at 8 kHz. However, higher

degrees of OHC-damage reduced the EFR magnitudes. We explain this non-

monotonic behaviour on the basis of the AN fiber discharge rate-level curve, where

increased simulated EFRPtN magnitudes (Figure 3.10 c and d) and amplitude-

modulated (AM) responses (Figure 3.11b) to supra-threshold stimuli (70 dB-SPL)

caused by OHC-damage, might stem from the extended dynamic range of the AN

fibers for less effective AN-driving levels (Figure 3c in [87]). Given that exper-

imental and simulated stimuli were calibrated to have equal spectral magnitudes
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Figure 3.10: Experimental EFRPtN and DBEFRPtN magnitudes (colored open symbols):

(a) EFRPtN to [2-22] and [4-22] kHz, (b) EFRPtN to [2.8-16] and [5.6-16] kHz and

(c) DBEFRPtN at [2-4] kHz and (d) DBEFRPtN at [2.8-5.6] kHz. Simulated EFRPtN

(a,b) and DBEFRPtN (c,d) magnitudes are shown in each panel using filled hexagons and

degrees of CS as indicated on the x-axis and CF-dependent patterns of OHC-damage as

given by the legend.

for all stimulus bandwidths, the narrowest bandwidth stimulus was presented at a

lower overall sound level than the 70 dB-SPL broadband stimulus. Thus, applying

more severe OHC-loss, lowered the AN discharge rate and envelope synchrony

strength (Figure 5 in [73]) and decreased the EFR magnitudes (Figure 7 in [73]).

However, DBEFR magnitudes increased monotonically for all simulated degrees

of OHC-damage (Figure 3.10c and d).

3.7 Discussion

3.7.1 Tonotopic sensitivity of the EFR generators

Despite the individual variability within groups, experimental group-mean EFRPtN

magnitudes to broadband stimuli with different bandwidths (Figure 3.5a), were
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equal at frequencies below 4 kHz and reduced in response to [4-22] kHz condi-

tion. In the second experiment (Figure 3.5b), the EFRs remained equal at frequen-

cies below 5.6 kHz and degraded when the [5.6-16] kHz band was added. Con-

sequently, equal DBEFRPtN magnitudes were obtained for frequencies below 2

kHz. Individual variability was best observed for the DBEFRPtN extracted from

the [2-4] kHz (first experiment, Figure 3.6a) and [2.8-5.6] kHz (second experi-

ment, Figure 3.6b) frequency bands. Simulated EFRs to the experimental stimuli

shown with hexagons in Figure 3.5 and 3.6, confirmed observed experimental

EFRPtN and DBEFRPtN frequency-dependent behaviour. In addition, the model

can be used to study which CF regions along the cochlea contributed strongly to

the population EFR response. To this end, we calculated the AM (Figure 3.11a)

and derived-band AM (DBAM) responses at each CF (Figure 3.11b) as follows:

AMAN(NCF ) =
1

n

2
∑

i=0

[2 |FFT(ANNCF
)|]fi ,

NCF = 1, 2, ..., 401, fi = 120× (i+ 1)

(3.8)

DBAMAN(NCF ) = |AMAN(wide)−AMAN(narrow)| (3.9)

ANNCF
is the AN-response at NCF channel and n = n1 as was defined in Eq. 3.1.

These simulations corroborate the experimentally-observed minor contribution of

low-frequency CF channels to the EFR generation.

In a previous modelling study [117], we investigated the tonotopic sensitivity

of EFRPtN to broadband stimuli and ascribed the poor low-frequency AM-coding

to a combination of the chosen modulation frequency (120 Hz) and the narrower

bandwidth of apical cochlear filters compared to the higher CF filters [118]. Model

simulations in response to the spectrally broadest condition, i.e. [0.25-22] kHz,

modulated with a range of lower modulation frequencies than 120 Hz, showed

that the saturation properties of AN fibers limited the modulation response at all

modulation frequencies at higher CFs, despite an enhanced modulated response at

the BM. This resulted in a degraded response at CFs above 4 kHz and shifted the

frequency sensitivity of AM-coding to the lower CFs at low modulation frequen-

cies. Since the brain response to modulation frequencies below 70 Hz may contain

cortical as well as brainstem contribution (Chapter 10 of [93,113]), employing low

modulation frequencies might render EFR-based CS diagnosis insensitive, even

though an improved frequency-sensitivity can be obtained from the apical regions

using these lower modulation frequencies. Therefore, the employed experimen-

tal modulation frequency, i.e. 120-Hz in combination with a broadband carrier,

might be able to establish a frequency-specific CS diagnosis at frequencies above

2 kHz. In this context, the proposed DBEFR method showed a notable contribu-

tion of the [2-4] kHz CF region to the EFR generation by showing a significantly
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Figure 3.11: Modulated responses calculated at each CF using Eq. 3.8 and 3.9 to different

experimental conditions for normal listeners and different sensorineural hearing losses at

the AN processing level of the model, (a) broadband and (b) derived-band. In both panels,

dotted lines show AM-responses to sloping 10 dB-HL OHC-loss at 8 kHz and lighter colors

indicate AM responses to certain degree of CS.

stronger DBEFRPtN magnitude compared to lower derived-band conditions in the

NH group.

3.7.2 Diagnostic Applications

The measured DBEFR magnitudes are individually separable and above the noise-

floor even for HI listeners, whose group-mean was significantly above the noise-

floor. In addition, the DBEFR offers a frequency-specific metric to assess supra-

threshold temporal coding of the population of AN fibers and brainstem neurons

in the [2-6] kHz region. Despite these promising results, the diagnostic sensitivity

of DBEFRs also has limitations. The proposed DBEFR magnitude is sensitive to

CS alone, when no other coexisting hearing deficits occur and is hence applicable

for use in ageing listeners with normal audiograms and those with self-reported

hearing difficulties or prone to noise-exposure. According to the model simu-
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lations, OHC-damage affected DBEFR magnitudes to a lesser degree than CS,

which makes the metric also suitable for CS diagnosis of listeners with audiomet-

ric thresholds lower than 20 dB-HL (Figure 3.10). The metric hence needs to be

complemented with another supra-threshold metric, specifically sensitive to OHC-

damage to allow a separation of the CS and OHC aspect of sensorineural hearing

damage from the recorded DBEFRs of listeners with impaired audiograms.

Lastly, the employed high modulation frequency, i.e. 120 Hz, suppresses cor-

tical contributions to the EFRPtN magnitudes, but also degrades AM-coding from

lower CFs and thereby limits the tonotopic sensitivity of the EFRPtN to frequen-

cies above 2 kHz. Consequently, apical-end supra-threshold hearing deficits would

not be reflected in the proposed DBEFRPtN metric even for stimuli which contain

frequencies below 2 kHz. These results are consistent with the source generators

of derived-band ABRs (DBABR), which reduce in amplitude for frequency bands

below 2 kHz [61]. This predominant basal origin of the ABR also confines the po-

tential of ABR/DBABR-based CS diagnosis to basal cochlear regions (e.g. wave-I

amplitude).

3.8 Conclusion

We proposed the use of a relative DBEFRPtN metric to render the EFRPtN

frequency-specific and rule out subject-specific factors unrelated to hearing to ap-

ply it in the study of identifying the origins of sensorineural hearing deficits and

clarifying their role in supra-threshold temporal envelope-encoding. DBEFRPtN

magnitudes from two experiments were analysed and compared to model sim-

ulations to conclude that the frequency-sensitivity of DBEFRPtN magnitudes to

broadband stimuli is limited to the [2-6] kHz bandwidth. Secondly, we showed that

the DBEFR metric eliminates inter-subject variability caused by hearing-unrelated

sources. Model simulations (Figure 3.10) explained the significant difference be-

tween yNH and oNH listeners on the basis of CS, which could result from age-

induced CS as identified from human post-mortem studies [38–40]. Supported by

model predictions (Figure 3.10d), the significant difference between age-matched

oNH and oHI groups was explained by OHC-damage and coexisting CS as a con-

sequence of ageing. Accordingly, profound OHC-damage may confound DBEFR-

based clinical applications of CS diagnosis. Despite this limitation in the differ-

ential diagnosis of CS and OHC deficits on the basis of the DBEFR magnitude,

the proposed metric can be used to diagnose CS in a frequency-specific manner

in listeners with thresholds below 20 dB-HL. Moreover, it provides an objective

marker of supra-threshold temporal envelope coding, which can be used to study

its role in sound perception studies. Lastly, our results clearly demonstrate that

older listeners with or without impaired audiograms suffer from degraded tempo-

ral envelope-coding at frequencies above 2 kHz.
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4.1 Introduction

Auditory Evoked Potentials (AEPs) are widely adopted as markers of sensorineu-

ral hearing-loss (SNHL) in clinical and research settings. In research animals,

auditory brainstem response (ABR) or envelope-following response (EFR) ampli-

tudes can be used to quantify auditory-nerve (AN) fiber damage, i.e. cochlear

synaptopathy (CS), [13, 16, 31, 34]. However, applying the same AEP markers for

CS diagnosis in humans has yielded mixed success, since AEP amplitudes can be

affected by (i) other coexisting SNHL aspects such as outer-hair-cell (OHC) dam-

age [42,61,64,85,94,119,120] and (ii) subject-specific factors such as age, gender,

and head-size [60, 91, 121]. Moreover, the sensitivity of AEPs to different degrees

of OHC-loss and CS is unclear, and a direct quantification of AN fiber damage

through histopathology is impossible in live humans [87]. These problems hin-

der the study of the specific impact of OHC-damage and CS on recorded AEPs,

and render an AEP-based quantification of AN fiber damage difficult in listeners

with mixed hearing pathologies. However, this last step is crucial when developing

personalized models of auditory processing for use within numerical closed-loop

hearing restoration systems.

Even though several auditory models incorporate sources of SNHL (e.g. [71–

77,122]), methods to individualize the AN-damage pattern on the basis of recorded

AEP metrics are non-existent. Here, we investigate the potential of common AEP

markers to individualize the frequency-specific AN-damage profile of personal-

ized auditory models with or without other co-occurring aspects of SNHL. Specif-

ically, we present a combined experimental-modelling method in which (i) individ-

ual cochlear-gain-loss (CGL) parameters are extracted from either the audiogram

or distortion-product otoacoustic emissions (DPOAEs), and (ii) a feature set of

recorded AEP metrics is compared to simulated AEP metrics to derive periphery

models with different CS profiles. Using a classifier that was trained on simu-

lated AEPs for different SNHL profiles, we selected the individual AN profile,

that best explained the recorded AEP features from a test subject. We tested this

method on 35 participants, which were separated into groups of young normal-

hearing (yNH), older normal-hearing (oNH) and older hearing-impaired (oHI) lis-

teners [123]. Validation of our method to predict individual AN-damage profile

from recorded AEPs was performed on data from a new cohort.

Before we describe the classification method in detail, we summarize which

AEP markers are promising to include. Among the hitherto proposed AEP-derived

metrics of AN-damage, the ABR wave-I is known to degrade as a consequence

of CS in subjects with intact sensory hair cells [13, 32], however this metric is

highly variable in humans [35, 46] when the contribution of between-subject vari-

ability sources such as head-size or tissue resistance are not considered [50]. Even

though we can assume that any hearing deficit reflecting on the ABR wave-I would
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travel through the auditory pathway to reflect on the ABR wave-V as well, home-

ostatic gain changes between AN fibers and inferior colliculus (IC) may affect the

wave-V amplitude [15,124–126], and hence its diagnostic power for CS diagnosis.

Another AEP marker, the EFR amplitude, which reflects the strength of a phase-

locked AEP response to an amplitude-modulated (AM) stimulus, was shown to

degrade as a consequence of CS in mice histological studies [31,32] and as a con-

sequence of age in human listeners [44, 127]. EFRs offer a more robust measure

of the AN-fiber population than the ABR wave-I, when recorded in the same an-

imals [31, 32, 35]. However, similar to the ABR wave-V, EFR generators have

latencies associated with IC processing [93], thus differences in central auditory

processing may reflect on the EFR magnitude to mask individual synaptopathy

differences [124, 125, 128, 129]. To address these issues, relative EFR and ABR

metrics were proposed in several studies to cancel out subject-specific factors and

isolate the CS component of SNHL in listeners with coexisting OHC-loss: ABR

wave-I amplitude growth as a function of stimulus intensity [16], ABR wave-I

and V latency difference [68–70], the wave-V and I amplitude ratio [15, 66, 67],

EFR amplitude slope as a function of modulation depth [51, 65], the derived-band

EFR [94], or the combined use of the ABR wave-V and EFR [83]. While these

relative metrics are promising, it is not known how OHC-loss and CS differentially

impact AEPs. Recent modelling approaches have shown promise to design EFR

stimuli which are maximally sensitive to CS in the presence of OHC damage [44],

but conclusive histopathological evidence is to date not available. To make use

of the listed metrics to build personalized hearing profiles for a broad population

with various SNHL etiologies, two requirements need to be fulfilled. We need

to (i) use AEP markers that are maximally sensitive to the CS aspect of SNHL

and (ii) combine them with a sensitive marker of OHC deficits to individualize the

OHC-damage and CS aspects of SNHL. We thus considered various AEP markers

(a total of 13) encompassing spectral magnitudes, time-domain peaks, latencies

and relative metrics, and combinations thereof, to identify which markers best pre-

dict the simulated individualized CS profiles and can be used for reliable auditory

profiling.

4.2 Experimental design

ABR, EFR and OHC-damage markers were derived from recordings of two exper-

imental setups in different locations. These recordings were used for development

and validation of the proposed method.
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4.2.1 Participants

The dataset that was used to develop the auditory profiling method included record-

ings from a total of 43 subjects. They were recruited into three groups: 15 young

normal-hearing (yNH: 24.53±2.26 years, 8 female), 16 older normal-hearing (oNH:

64.25±1.88 years, 8 female) and 12 older hearing-impaired (oHI: 65.33±1.87

years, 7 female) groups. Two oNH subjects were omitted from our study due

to non-identifiable ABR waveforms. The hearing thresholds of the participants

were assessed at 12 standard audiometric frequencies between 0.125 and 10 kHz

(Auritec AT900, Hamburg, Germany audiometer). AEP stimuli were presented

monaurally to the ear with the best 4 kHz threshold. Audiometric thresholds were

below 20 dB-HL at all measured frequencies in the yNH group and below 25

dB-HL for frequencies up to 4 kHz in the oNH group. The oHI listeners had

sloping high-frequency audiograms with 4-kHz thresholds above 25 dB-HL (Fig-

ure 4.1a). The AEP recordings were conducted in an electrically and acoustically

shielded booth, while subjects were sitting in a comfortable chair and watching

silent movies.

The second experiment, which was used to validate our method on a new co-

hort, had 19 yNH subjects, aged between 18 and 25 years (21.6±2.27 years, 12

female). Volunteers with a history of hearing pathology or ear surgery were ex-

cluded based on a recruitment questionnaire. Audiograms were measured in a

double-wall sound-attenuating booth, using an Interacoustics Equinox Interacous-

tics audiometer. All participants had audiometric thresholds below 25 dB-HL

within the measured frequency range, i.e. [0.125-10] kHz, and the best ear was

determined on the basis of their audiogram and tympanogram. The experiment

protocol included AEP measurements with a maximum duration of 3 hours and

we only considered one AEP metric for validation purposes in the present study.

AEP recordings were conducted in a quiet room while subjects were seated in a

comfortable chair and watching muted movies. To minimize the noise intrusion

level, both ears were covered with earmuffs and all electrical devices other than

the measurement equipment (Intelligent Hearing Systems) were turned off and

unplugged.

Participants of both experiments were informed about the experimental proce-

dure according to the ethical guidelines at Oldenburg University (first experiment)

or Ghent University Hospital (UZ-Gent, second experiment) and were paid for

their participation. A written informed consent was obtained from all participants.

4.2.2 Distortion Product Otoacoustic Emission (DPOAE)

In the first experiment, DPOAEs were acquired and analyzed using a custom-

made MATLAB software [109]. Stimuli were delivered through ER-2 earphones

coupled to the ER-10B+ microphone system (Etymotic Research) using a pri-
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Figure 4.1: (a) Audiograms and (b) DPOAE thresholds (DPTHs) of the participants in the

first experiment.

mary frequency sweeping procedure at a fixed f2/f1 ratio of 1.2. The imple-

mented DPOAE paradigm, continuously swept the primary frequencies with a

rate of 2s/octave within a 1/3 octave range around the geometric mean of f2 ∈
{0.8, 1, 2, 4} kHz [110]. The L2 primary levels ranged between 30-60 dB-SPL for

the yNH and oNH groups, using a 6-dB step. The level range was different for

the oHI group: 30-72 dB-SPL. L1 levels were determined according to the scis-

sors paradigm [108]. For a given f2 primary frequency, the DP-component (LDP)

growth function was plotted as a function of L2 and a cubic curve was fit to the

LDP data-points using a bootstrapping procedure to include the standard deviation

of the individual LDP data-points in the fit [64]. The L2 level at which the cubic

curve crossed -25 dB-SPL was determined for each bootstrap average to yield the

DPOAE threshold (DPTH) and its standard deviation at a given f2 [130]. Derived

experimental DPTHs of the yNH, oNH and oHI groups are shown in Fig 4.1b.

DPOAEs were not available for the subjects of the validation experiment.

4.2.3 EEG measurements

ABR and EFR stimuli were generated in MATLAB and were digitized with a

sampling rate of 48 kHz for the first dataset. Afterwards, they were delivered

monaurally through a Fireface UCX external sound-card (RME) and a TDT-HB7

headphone driver connected to a shielded ER-2 earphone. The electroencephalo-

gram (EEG) signals were recorded with a sampling frequency of 16384 Hz via

a 64-channel Biosemi EEG system using an equidistantly-spaced electrode cap.

All active electrodes were placed in the cap using highly conductive gel. The
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common-mode-sense (CMS) and driven-right-leg (DRL) electrodes were attached

to the fronto-central midline and the tip of the nose, respectively. A comprehensive

explanation of the experimental configuration can be found in [42].

AEPs of the validation experiment were recorded using the SmartEP continu-

ous acquisition module (SEPCAM) of the Universal Smart Box (Intelligent Hear-

ing System, Miami, FL, United States). EFR stimuli were generated in MATLAB

using a sampling rate of 20-kHz and stored in a “.wav” format. These files were

loaded in SEPCAM and converted to the “.stm”, SEPCAM compatible format.

AEP stimuli were presented monaurally through a shielded ER-2 earphone (Et-

ymotic Research) and AEPs were recorded at a sampling frequency of 10 kHz

via Ambu Neuroline 720 snap electrodes connected to vertex, nasion and both ear-

lobes. The electrodes were placed after a skin preparation procedure using NuPrep

gel. The skin-electrode impedance was kept below 3 kΩ during the recordings.

4.2.3.1 EFR stimuli

We recorded EFRs in response to a 400-ms-long stimuli consisting of a 4-kHz

pure-tone carrier and a 120-Hz rectangular-wave modulator with 25% duty cycle

(i.e. the RAM25 in [44]). The stimulus waveform is visualized in the inset of Fig-

ure 4.2b and we considered a modulation depth of 95%. Stimuli were presented

1000 times (500 times in either positive or negative polarity) and had a root-mean-

square (RMS) of 68.18 dB-SPL. The calibration of the stimulus was performed to

have the same peak-to-peak amplitude as a 70-dB-SPL sinusoidal amplitude mod-

ulated (SAM) 4-kHz pure-tone. The Cz channel recording was re-referenced to

the average of the ear-lobe electrodes and 400-ms epochs were extracted relative

to the stimulus onset. The mean-amplitude of each epoch was subtracted to correct

for the baseline-drift. See [44] for further details on the frequency-domain boot-

strapping and noise-floor estimation method. The noise-floor corrected spectral

magnitudes (Mfk ) at the modulation frequency f1 = 120 Hz and four harmonics,

i.e. f2 to f5, were summed up to yield the EFR.

RAM-EFR =
5

∑

k=1

Mfk , fk = 120× k (4.1)

Figure 4.2a depicts a typical NH RAM-EFR spectrum and corresponding noise-

floor. The arrows show the derived peak-to-noise-floor magnitudes at the modula-

tion frequency and following harmonics. The energy of EFR peak is reduced for

the oHI subject, shown in the panel (b).

The RAM-stimulus in the second experiment (i.e. the validation database)

was a 100% rectangularly amplitude-modulated 4-kHz pure-tone with a modula-

tion frequency of 110 Hz (25% duty cycle). The 500-ms stimulus was presented

1000 times with alternating polarity (500 each) and had a 70 dB-SPL level. The
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Figure 4.2: Comparison of exemplary NH and HI RAM-EFRs and ABRs. (a) RAM-EFR of

a yNH subject (yNH15) and the corresponding noise-floor (NF). Arrows specified by Mf ,

show the peak-to-noisefloor magnitudes at the modulation frequency, i.e., 120 Hz, and the

following harmonics. (b) RAM-EFR of an oHI subject (oHI) and the corresponding NF. (c)

ABR of a yNH subject (yNH15). Arrows show the extracted wave-I and V amplitudes and

latencies. (d) ABR of an oHI subject (oHI12).

acquired AEPs were initially saved in “.EEG.F” format on SEPCAM and were af-

terwards converted to “.mat” format using the custom-made “sepcam2mat” MAT-

LAB function for offline analysis. EFRs recorded from the vertex electrode were

re-referenced to the ipsilateral earlobe electrode and were filtered between 30 and

1500 Hz using an 800th order Blackman-window based finite-impulse-response

(FIR) filter. Epoching was applied to the steady state part of the response, i.e.

100 to 500 ms of the response relative to the stimulus onset. The baseline drift

was corrected by subtracting the mean of each epoch, afterwards 200 epochs with

the highest peak-to-trough values were rejected. The amplitudes of the remained

epochs did not exceed 100 µV. A frequency-domain bootstrapping approach was

adopted to estimate the noise-floor and to remove it from the averaged trials using

the method proposed in [95]. To this end, we calculated the Fast Fourier-Transform
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(FFT) of 800 epochs to generate 400 mean spectra by randomly sampling the 800

epochs with replacement (keeping an equal number of polarities in the draw). Av-

eraging the resampled spectra yielded the i-th mean-EFR spectrum (EFRrawi
):

EFRrawi
=

2

n
|Xi| , i = 1, ..., 400 (4.2)

where, Xi stands for the i-th averaged resampled spectra and n is the number

of FFT points (n=10000). To calculate the spectral noise-floor, we repeated the

resampling procedure 1500 times, but used phase-flipped odd epochs:

NFj =
2

n
|Yj | , j = 1, ..., 1500 (4.3)

In Eq. 4.3, Yj is the j-th averaged resampled spectra with phase-flipped odd epochs.

Lastly, we subtracted the NF mean (NF), from each of the 400 bootstrapped mean-

EFRs (EFRrawi
) to derive 400 NF-corrected EFR spectra:

EFRSpeci = EFRrawi
−NF, i = 1, 2, ..., 400 (4.4)

The peaks of the EFRrawi
at the modulation frequency of stimulus (f1=110

Hz), and the next three harmonics were identified if they were above the NF. We

defined the RAM-EFRi by summing the magnitudes of the identified peaks for

each EFRSpeci . The RAM-EFR metric mean and variability was defined by the

mean and standard deviation of RAM-EFRi over 400 samples.

4.2.3.2 Auditory Brainstem Responses

ABRs were recorded to 80-µs-long alternating polarity clicks presented at 70

and 100 dB-peSPL. Stimuli were presented through the setup explained in [131]

and repeated 3000 times with a rate of 10 Hz using a uniformly distributed ran-

dom inter-stimulus interval of 100 ms±10 ms. Cz-channel recordings were re-

referenced to the contra-lateral earlobe electrode and filtered between [100-1500]

Hz. 25 ms-long epochs, i.e. -5 to 20-ms relative to the stimulus onset, were ex-

tracted and corresponding mean values were subtracted to perform a baseline cor-

rection. Then, each positive polarity epoch was averaged with the following neg-

ative epoch and 100 paired-averages with the highest peak-to-trough values were

rejected. The remaining pair-averaged epochs had amplitudes below 25 µV. To

include ABR variability in our analysis and to estimate the ABR noise-floor, we

applied the bootstrapping approach of [95], in the time domain. 2000 and 4500

epochs were drawn for the signal and noise-floor estimation, respectively. Half

of the noise-floor-estimation epochs (i.e. 2250 pair-averaged drawn epochs with

replacement) were multiplied by -1, before final averaging. Finally, the estimated

noise-floor mean was subtracted from the 2000 averaged epochs to yield mean
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Table 4.1: Extracted AEP-metrics definitions and corresponding standard deviations. In

the last column, σ represents the standard deviation. σboot is the standard deviation of the

bootstrapped metric.

Metric Symbol Definition Measure of Variability

rectangular-wave
RAM-EFR Eq.4.1 σboot(RAM−EFR)amplitude-modulated EFR

ABR-70 wave-I amplitude w-I70 w-I70(peak)−w-I70(trough−after)

ABR-100 wave-I amplitude w-I100 w-I100(peak)−w-I100(trough−after) σboot(peak−to−trough)

ABR-70 wave-V amplitude w-V70 w-V70(peak)−w-V70(trough−after)

ABR-100 wave-V amplitude w-V100 w-V100(peak)−w-V100(trough−after)

ABR-70 wave-I latency w-Ilat70 w-I70(peak)latency

ABR-100 wave-I latency w-Ilat100 w-I100(peak)latency σboot(latency)

ABR-70 wave-V latency w-Vlat70 w-V70(peak)latency

ABR-100 wave-V latency w-Vlat100 w-V100(peak)latency

ABR wave-I amplitude growth w-I-growth
w−I100−w−I70

100−70
1
N

√

σ
2
boot(w−I100)

+ σ
2
boot(w−I70)

ABR wave-V amplitude growth w-V-growth
w-V100−w-V70

100−70
1
N

√

σ
2
boot(w-V100)

+ σ
2
boot(w-V70)

ABR wave-I latency growth w-Ilat-growth
|w-Ilat100−w-Ilat70|

100−70
1
N

√

σ
2
boot(w-Ilat100)

+ σ
2
boot(w-Ilat70)

ABR wave-V latency growth w-Vlat-growth
|w-Vlat100−w-Vlat70|

100−70
1
N

√

σ
2
boot(w-Vlat100)

+ σ
2
boot(w-Vlat70)

noie-floor-corrected ABR waveforms. ABR wave-I and -V peak and trough am-

plitudes and corresponding latencies were determined by visual inspection from

the mean ABR waveform and were confirmed by an audiologist. Figure 4.2 (pan-

els c and d) compares ABR waveforms of a yNH and oHI subject from the cohort

and indicates the identified ABR peaks and latencies. To extract peak latencies and

amplitudes from the bootstrapped data, wave maxima and minima were detected in

1, 1.8, 0.5 and 1.5 ms intervals around the wave-I70, wave-V70, wave-I100, wave-

V100 peaks and troughs identified from the mean ABR waveform. The interval

ranges were determined based on visual inspection. ABR wave-I and V latencies

were shifted by 1.16 ms to compensate for the delay introduced by the sound-

delivery system.

We used a total of 13 ABR and EFR markers in the development phase and one

EFR marker in the validation phase. Table 4.1 details the definition of each met-

ric and lists the corresponding abbreviations used in this paper. The last column

defines the variability metric associated with each marker, which were obtained

from the earlier described bootstrapping procedure. To determine the measure-

ment variability of ABR growth-slopes, we applied error propagation to account

for the standard deviations of two different measures from the same listener, e.g.,

ABR-70 and ABR-100. In this case, the bootstrapped metrics were drawn from

the 95% confidence interval of a normal distribution characterized by the mean of

the metric and its bootstrapped standard deviation. The bootstrapping technique

described in this section, provided a tool to estimate the variability of AEP-derived

metrics and to incorporate them in the proposed classification approach. Obtained

standard deviations from bootstrapping can be used to measure the CS-profiling

prediction robustness of the study participants.
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4.3 Individualized auditory periphery model

To simulate individualized SNHL profiles that would match the histopathology of

the study participants, we used a computational model of the auditory periphery

[73, 132]. In the first step, we personalized the cochlear model parameters on the

basis of OHC markers of SNHL (audiogram or DPTH). Afterwards, we simulated

AEPs for different degrees of CS and compared the simulations to the recordings

to develop and test our auditory profiling method. Figure 4.3 schematizes the

auditory model individualization.

4.3.1 Cochlear Model Individualization

Measured audiograms and DPTHs were used independently to determine the indi-

vidual CGL parameters (in dB-HL) of the cochlear transmission-line (TL) model,

shown in pink in Figure 4.3. In our approach, CGL determines the double-pole

of the cochlear admittance through the gain and tuning of the cochlear filters [79].

We thus model the consequence of OHC-damage or presbycusis without specif-

ically accounting for damage of the stereocilia or sensory cells. From here on,

mAudTH and sAudTH refer to measured and simulated audiometric thresholds,

respectively. Likewise, mDPTH and sDPTH stand for measured and simulated

DPOAE thresholds.

4.3.1.1 Audiogram-based cochlear filter pole-setting

Here, we translated the frequency-specific audiometric dB-HL (Figure 4.1a) into

cochlear filter gain loss. These values were translated into double-pole values of

the cochlear admittance function across CF (see [64]). Specifically, at a CF corre-

sponding to a measured audiometric frequency (CF = faud), the power spectrum

of the NH basilar membrane (BM) impulse response, HNH(faud), served as refer-

ence before the gain loss was applied. Among a range of cochlear filter pole-values

in [0.036,0.302], the pole-value, α∗
A(faud), that causes a relative gain-loss equal

to mAudTH(faud), was assigned. Thereby, the CGL at CF =faud is given by:

CGL(faud) = HNH(faud)−Hα∗

A
(faud) (4.5)

where Hα∗

A
(faud) equals the power spectrum of the BM impulse response at CF =

faud with a pole value of α∗
A that causes a CGL equal to mAudTH(faud). This

procedure was repeated for all CF channels corresponding to measured audiomet-

ric frequencies and individualized cochlear filter pole-functions were obtained by

interpolating the pole-values across CF [64]. We employed the predicted pole

functions to simulate individual audiograms and to evaluate the prediction error.

To this end, individualized AN excitation patterns (ANEP) were simulated in re-

sponse to 500-ms pure-tones presented at audiogram frequencies (faud) using 62
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Figure 4.3: Auditory model individualization. The block-diagram on the left depicts the

different stages of the employed auditory periphery model [73]. Experimentally measured

audiometric thresholds were inserted to the transmission-line cochlear model to adjust BM

admittance function poles. The box on top-right corner, shows the non-uniform AN popu-

lation distribution across the CF for simulated different degrees of CS profiles. The profile

without CS is shown in dark brown (indicated with N) and higher degrees of CS are shown

according to the color-map.

intensity levels (L) between -5 and 55 dB-SPL. We defined ANEP as the RMS of

the AN firing rate at each CF ∈ faud and determined on-CF peaks of the presented

level series as ANEP(faud,L). We simulated NH ANEPs using NH pole-function

at the threshold of audibility in a frequency-specific manner (LNH(faud)), i.e. the

zero-phon curve of the equal-loudness-contour (ISO 226:1987). From this refer-

ence NH curve, we calculated the simulated audiometric thresholds (sAudTH) of

the experiment participants as follows:

Lmin(faud) = argmin
L∈[−5,55]

[|ANEP(faud,LNH(faud)) −ANEP(faud,L)|] (4.6)

sAudTH(faud) = Lmin(faud)− LNH(faud) (4.7)

Figure 4.4a shows grand-averaged mAudTHs and sAUDTHs across the yNH,

oNH and oHI groups. Additionally, Figure 4.4c, compares the sAudTH (dashed

lines) and mAudTH (solid lines) of an example yNH and oHI subject. Note that

simulating CGLs greater than 35 dB-HL is impossible in our cochlear model,

which has a maximal applicable cochlear mechanical gain of 35 dB. In the last

step, we estimated the absolute prediction error as follows:

erraudio(faudio) = |mAudTH(faud)− sAudTH(faud)| (4.8)
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Figure 4.4: A comparison between the measured and simulated AudTHs and DPTHs. The

average (solid) and standard deviation (shaded area) of the measured (grey) and simulated

(red) AudTHs and DPTHs are shown in panel (a) and (b), respectively. A comparison

between sAudTH and mAudTH of a yNH and oHI listener is shown in panel (c). Panel

(d) compares the sDPTH (dotted) and mDPTH (solid) of the same yNH and oHI listeners.

Frequency-specific group-averaged absolute prediction errors of AudTH and DPTH are

shown in panels (e) and (f), respectively (yNH: blue, oNH: black, oHI: orange).

Figure 4.4e compares the mean absolute errors on a group-level basis. The

elevated error of the oHI group at high frequencies is due to the model limitation

in simulating gain-losses greater than 35 dB-HL.

4.3.1.2 DPTH-based cochlear filter pole-setting

Implementing DPTH-based cochlear model individualization was complicated by

the fewer DPTHs we had available, i.e. four frequencies, compared to 12 AudTHs.

Hence, a simple interpolation to determine poles between the measured frequen-

cies, yielded large prediction errors. Additionally, the longitudinal filter coupling

and associated gain propagation along the cochlear partition complicated matters.

To tackle these issues, we trained a machine-learning algorithm to map DPTHs

via cochlear travelling waves to corresponding cochlear filter pole-functions across

CF. Once trained, we need only a few measured DPTHs to make a relatively ac-

curate prediction of individual pole values. Figure 4.5 illustrates the complete
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procedure.

First, we constructed the training data (Figure 4.5a) using 26 sets of random

cochlear filter pole-functions. Each set contained 1001 CF-dependent poles and

random pole-values lay between 0.036 and 0.302, covering the pole-values asso-

ciated with both NH and HI profiles. Additionally, three reference pole-functions

were included as part of the training: NHpoles (NH poles), flatmin with across-CF

poles of 0.036 (maximally intact cochlea) and flatmax, with across-CF poles of

0.302 (35 dB-HL across CF). We employed the generated pole-functions and sim-

ulated DP amplitudes (sLDP: the magnitude of 2f1−f2) to train the mapping func-

tion. The considered f2 primary frequencies, i.e. 0.8, 1, 2 and 4 kHz (f1 = f2/1.2)

corresponded to the recordings we had available and L2 levels (-10 to 70 dB-SPL,

with a step of 5-dB). We simulated DPOAE input-output (I/O) functions at each

f2 frequency and determined the sDPTH as the L2 level at which the sLDP growth

function crossed the LDP of -10 dB-SPL. We chose a -10 dB-SPL threshold for our

simulations, given that the conventional experimental -25 dB-SPL crossing point

yielded inconclusive sDPTH, in particular for pole values associated with greater

CGLs. sDPTH values for 26 sets of pole-functions at four primary frequencies

were fed into the neural network after normalization (sDPTHnorm, Figure 4.5b)

to train it to map frequency-specific sDPTHnorm values (input) to CF-dependent

pole-functions (output).

The architecture of the designed neural network is shown in Figure 4.5b, and

consists of an input-layer of four neurons, two hidden-layers of 150 neurons and

an output layer of 1001 neurons. A standard sigmoid activation function (i.e., be-

tween 0 and 1), was applied to the hidden layers. A customized sigmoid activation

function (between 0.036 to 0.302), was employed in the output layer to yield the

desired range of the cochlear model pole-functions. An ADAM optimizer with a

learning rate of 0.001 was applied to minimize the mean-square-error (MSE) of

the learning algorithm. The method was developed in Python using Keras library

and Tensorflow back-end.

The trained neural network was employed to predict individualized pole-functions

given DPTHs of the experimental cohort (Figure 4.5c). Prior to the prediction,

mDPTHs needed to be pre-processed to determine a suitable experimental range

of DPTHs for the mapping. Among the 41 subjects, six subjects (yNH: three,

oNH: two and oHI: one) without complete mDPTH values at all measured fre-

quencies were dropped. In each of the three recruited groups, the 99% confidence

interval around the frequency-specific group-means were specified and mDPTH

values that either exceeded or fell below of those intervals were set to extremum

values. Then, mDPTHs were mapped to the range of the sDPTH associated with

reference flatmin (sDPTHflatmin ) and flatmax (sDPTHflatmax ) pole-functions. Af-

terwards, mapped mDPTHs (mDPTHmap) were normalized (mDPTHnorm) and

were given to the trained neural network to predict personalized pole-functions. To
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assess the prediction error, the predicted pole-functions (Polespred in Figure 4.5c),

were used to simulate individualized sDPTHs that were compared to the individual

mDPTHs at f2 primary frequencies. mDPTHs and sDPTHs were referenced to the

simulated DPTHs of a model with NHpoles as follows:

sDPTHref(f2) = sDPTH(f2)− sDPTHNH(f2) (4.9)

mDPTHref(f2) = mDPTHmap(f2)− sDPTHNH(f2) (4.10)

sDPTHNH(f2) refers to the frequency-specific sDPTH values simulated using the

model with NHpoles. Obtained sDPTHref and mDPTHref from Eq. 4.9 and 4.10

were mapped back to the experimental range according to Eq. 4.11 and 4.12, and

corresponding grand-averages and standard deviations are shown in Figure 4.4b.

More specifically, Figure 4.4d compares measured and simulated DPTH-shifts for

a yNH and oHI subject.

sDPTHshift(f2) = sDPTHref(f2)
max[mDPTH(f2)]−min[mDPTH(f2)]

sDPTHflatmax
(f2)− sDPTHflatmin

(f2)
(4.11)

mDPTHshift(f2) = mDPTHref(f2)
max[mDPTH(f2))]−min[mDPTH(f2)]

sDPTHflatmax
(f2)− sDPTHflatmin

(f2)
(4.12)

Lastly, the prediction error was calculated as in Eq. 4.13. The absolute mean error

for each group is shown in Figure 4.4f.

errdpth(f2) = |mDPTHshift(f2)− sDPTHshift(f2)| (4.13)

The developed machine-learning approach can be used to personalize cochlear

model parameters based on an objective measure of OHC-damage (DPTH) and

predict individual CS profiles. CS-profiling can be compared for either the DPTH

or AudTH-based cochlear model individualization method, and when no DPTHs

are available the standard audiogram-based method can be adopted.

4.3.2 Simulating cochlear synaptopathy profiles

We employed the AudTH- and DPTH-based individualized CGL models to sim-

ulate EFRs and ABRs for different CS profiles. To introduce CS, the simulated

normal-hearing AN fiber population, (the N CS profile in Figure 4.3) was reduced

in a CF-specific manner. Five additional CS profiles were simulated by proportion-

ally lowering the number of different AN types, starting from low- and medium-

spontaneous-rate (LSR and MSR) fibers in profile A to the most severe AN-loss in
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Figure 4.5: Neural network-based cochlear model individualization using measured and

simulated DPTHs. (a) Random cochlear filter poles are generated and corresponding

DPTHs are simulated using TL model (sDPTH). (b) The normalized sDPTH (sDPTHnorm)

at four frequencies are introduced to the neural-network as input. The random pole val-

ues generated in (a) are served as training target for sDPTHnorm. (c) Measured DPTHs

(mDPTHs) are fed into the trained neural network after pre-processing and individualized

cochlear filter pole-functions are predicted.

E that only kept 7.69% of the high-spontaneous-rate (HSR) fiber population. The

table in Figure 4.3 details the AN-fiber numbers and types considered for each of

the six simulated CS profiles. IHC-related dysfunctions were not considered in this

study, given that low degrees of CS do not cause IHC-damage [13, 16, 31]. How-

ever, removing all AN fibers from an IHC in the model would functionally corre-

spond to IHC-damage. The CF dependence of the AN population was considered

in two steps: (1) Following the CF-dependent AN distribution observed in rhesus

monkey [18, 94], we applied a non-uniform NH AN-fiber population. (2) CF-

specific AN-damage profiles were simulated. The former was achieved by map-

ping the counted CF-dependent AN fibers population in the rhesus monkey [18]

to the human cochlea, using a distribution of NHSR = 68%, NMSR = 16% and

NLSR = 16% at each CF [114]. Then, sloping high-frequency AN-fiber loss was
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applied across CF with the assumption that CS starts from the higher frequencies

first [133]. We ran EFR/ABR simulations for different AN-fiber-damage profiles,

which were characterized by a sloping loss of between 1 and 8-kHz. Above 8 kHz,

we applied a frequency-independent loss.

For every subject we simulated AEPs for each CS profile, after which we per-

sonalized the cochlear models using either the AudTH-or DPTH-based method.

The stimuli adopted for these simulations were identical to those adopted experi-

mentally, but were digitized using a sampling rate of 100 kHz, rather than 48 kHz.

Simulated instantaneous firing rates from the AN, cochlear nucleus (CN) and IC

model stages, namely ABR wave-I, III and V, respectively, were added up to sim-

ulate EFRs (Figure 4.3). RAM-EFR magnitudes were calculated using Eq. 4.1.

To simulate ABRs, 80-µs clicks were presented to the model with a continuous

sequence of 50 repetitions of alternating polarities (100 in total) and a rate of 10

Hz. Sequential stimulus presentation was adopted to account for the adaptation

properties of AN-fibers. Individual ABR wave-I and V latencies and amplitudes

were extracted by averaging the peak-to-trough values of the response to the last,

i.e. 50th, positive and negative clicks. The simulated ABR wave-I and V laten-

cies were respectively shifted by one and three ms to match latencies of recorded

ABRs. These values were determined to match the measured yNH group-mean

ABR wave-I and V latencies (at 100 dB-peSPL) with the grand-average individu-

alized ABR simulations across the yNH group. Given that simulated ABR laten-

cies were not impacted by CS, the applied latency shifts will not confound the CS

prediction.

4.4 Individual synaptopathy profile predictions

In previous sections, cochlear model parameters of the subjects were determined

using either AudTH- or DPTH-based methods and 13 personalized AEP-derived

metrics were simulated for six CS profiles of each experiment participant. Here,

we develop a classification approach, forward-backward classification, to predict

the simulated CS profile that best matches recorded individual AEP metrics and

determine the AEP metric that gives the most accurate segregation of simulated

individualized CS profiles. This step was implemented separately for either of the

cochlear individualization methods. After excluding eight subjects from the cohort

(six without complete DPTHs and two with undetectable ABRs), we developed our

individual SNHL-profiling method on data from 35 subjects (yNH: 12, oNH: 12

and oHI: 11).

Before classification, we first normalized the 13 AEP metrics (Table 4.1) de-

rived from measured (M ) and simulated six CS profiles per individual (S). The

normalized S and M were calculated using Eq. 4.14 and 4.15.
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Snorm =
S − S̄

σS

(4.14)

S is the matrix of simulated AEP metrics and contains 210 rows (35 subjects with

six CS profiles) and 13 columns, the number of derived AEP metrics. S̄ and σS

refer to the mean and standard deviation of S, respectively.

Mnorm =
M − S̄

σS

(4.15)

In Eq. 4.15, M refers to the matrix of measured AEP metrics with a dimension of

35×13. We created 8191 feature-sets using all possible combinations of 13 metrics

(
∑13

i=1

(

13
i

)

= 8191). Metrics combination was performed separately for Mnorm

and Snorm. The number of metrics in each feature-set varied between one and 13.

From here on, F refers to the constructed 8191 feature-sets of AEP-derived met-

rics and Fi with i ∈ {1, ..., 13} indicates a subset of F that has
(

13
i

)

feature-sets

and each feature-set contains a combination of i metrics. In the following para-

graphs we explain the classification approach for an exemplary feature-set, fe,

selected from F. The train and test datasets required for classification were con-

structed by choosing fe of all participants from Snorm and Mnorm and we called

them Strain and Mtest, respectively. The proposed forward-backward classifica-

tion method, comprised of two identical k-nearest-neighbor (kNN: k=1, Euclidean

distance) classifiers. Classifier(1) in forward classification was trained by Strain
in six classes with known class labels from the model simulations (LS), i.e. the

six simulated CS profiles previously described in Figure 4.3. Then, individual CS

profiles were predicted by testing the trained classifier with the Mtest. Figure. 4.6a

visualizes the different steps in forward classification. In this step, the evaluation

of classification performance is unfeasible, since the actual CS degree of experi-

ment participants are unknown. To address this issue, we interchanged the train-

test datasets of the forward classification and implemented a second classification

approach, called backward classification to assess the performance of the classi-

fier(1) based on a second classifier (Figure 4.6b). In this regard, we took the output

of forward classification, i.e. the predicted CS degrees of experiment participants

(LM in Figure 4.6), and corresponding measured AEP metrics (Mtest) to train the

classifier(2) of Figure 4.6b. Afterwards, Strain, with known CS labels (LS) from

the simulated individualized CS profiles, was used to test the trained classifier(2).

The vector of predicted CS labels by classifier(2) (LSPred
) was compared to LS and

corresponding prediction accuracy (acc) was calculated as follows:

acc =

n
∑

q=1
[LS(q) == LSPred

(q)]

n
(4.16)
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Figure 4.6: The forward-backward classification method. (a) Forward classification: Clas-

sifier(1) is trained with individualized simulated AEP-derived metrics (Strain) for six CS

profiles (LS) and is tested with measured AEP-derived metrics (Mtest). The predicted labels

(LM) for the study participants are entered to block (b). The backward-classification in (b)

trains classifier(2) using measured AEP-derived metrics, i.e., Mtest, and labels predicted

by the forward classification i.e., LM. Classifier(2) is tested by Strain and corresponding

labels (LS) are used to assess the classifier performance.

where n is equal to 210 (35 subjects with six CS profiles). Thus, the backward clas-

sification offers the possibility to calculate the accuracy of predicted CS profiles

of study participants based on model simulations. We then repeated the forward-

backward classification over all possible combinations of the derived metrics, i.e.

8191 feature-sets, and calculated the prediction accuracy of each feature-set ac-

cording to Eq. 4.16. In this respect, the backward classification method gives the

insight that to which degree classifier(1) was accurate in predicting CS degrees

of experimental participants. Our classification approach makes use of combined

simulated and recorded data to predict CS-profiles and can test the accuracy of

these methods, even though a direct and actual validation of the CS histopathology

still remains hidden due to experimental difficulties.

4.5 Results

We applied forward-backward classification for each of the cochlear model indi-

vidualization methods (AudTH and DPTH) and calculated the prediction accuracy

of all feature-sets in F. For each cochlear profiling method, first, we determined
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the feature-set in each Fi (i ∈ {1, ..., 13}), that had the highest classification accu-

racy. Fi consisted of feature-sets with i AEP-derived metrics. Then, the prediction

variability was estimated using forward-backward classification by including the

standard deviations of selected feature-sets. Lastly, we report individually pre-

dicted CS profiles belonging to those feature-sets.

4.5.1 Combination of AEP-derived metrics

To determine the best combination of metrics for CS profiling, the forward-backward

classification was performed on the mean AEP-derived metrics of experiment par-

ticipants and corresponding classification accuracy was reported as accmean. Thus,

we calculated accmean values of the predictions for 8191 feature-sets in F and de-

termined the feature-set that yielded the highest accmean among all feature-sets

in Fi, with i combined metrics (i ∈ {1, ..., 13}). Accordingly, 13 feature-sets

were selected among 8191 in F. Table 4.2 and 4.3 list those feature-sets and corre-

sponding accmean values for AudTH and DPTH-based methods, respectively. The

RAM-EFR metric yielded the highest accmean values for both cochlear model in-

dividualization methods. The obtained 83.81% accmean of DPTH-based method,

was higher than that of the AudTH-based method (68.57%), suggesting that meth-

ods which assess OHC-damage more directly (i.e. DPTH vs. AudTH) yield a

better classification accuracy in predicting simulated individualized CS profiles.

4.5.2 Prediction variability

The impact of subject-specific factors and measurement noise reflect on inter- and

within-subject variability of the AEP recordings and can have an impact on the ac-

curacy of the classification method. To measure this effect, the forward-backward

classification was repeated, this time by extracting metrics from the bootstrapped

average trials, rather than from the mean of trials. This resulted in distributions

for each specific metric and each subject, with standard deviations as given by the

last column of Table 4.1. Then, 100 samples were randomly drawn from the dis-

tribution of each metric. Thus, for every feature-set in Table 4.2 and 4.3, the

corresponding metrics samples were combined to yield 100 variations of each

feature-set. Afterwards, the CS profile prediction was repeated 100 times with

each feature-set for each subject, and prediction accuracy was assessed in every

repetition. Lastly, the standard deviation of the calculated accuracies (accSD) was

determined over the 100 repetitions of each feature-set and listed in the last column

of Table 4.2 and 4.3.

For the best predictor metric (RAM-EFR), accSD values of 2.95% and 2.66%

were obtained for the AudTH- and DPTH-based methods, respectively. The low-

est accSD was obtained when combining the RAM-EFR with the w-Vlat100 metric

in both cochlear model individualization methods (AudTH: 1.73% and DPTH:
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Table 4.2: Combination of metrics with the highest mean accuracy (accmean) values in each

Fi, with i combined metrics. The standard deviation of obtained accuracies are shown in

accsd column. The reported results are based on AudTH-based cochlear model individual-

ization method.

Involved

Metrics

Involved

Subjects
Best Combination of Metrics

acc (%)

accmean accsd

1 35 RAM-EFR 68.57 2.95

2 35 RAM-EFR, w-Vlat100 64.76 1.73

3 35 RAM-EFR, w-Ilat100, w-I100 53.33 7.86

4 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100 51.90 9.28

5 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100, w-V70 52.86 8.69

6 35 RAM-EFR, w-Ilat100, w-I100, w-V70, w-I70, w-V-growth 51.43 6.97

7 35 RAM-EFR, w-Vlat-growth, w-V-growth, w-Vlat100, w-I70, w-V70, w-V100 45.24 6.79

8 35 RAM-EFR, w-Vlat-growth, w-V-growth, w-Vlat100, w-Vlat70, w-I70, w-V70,w-V100 45.24 6.59

9 35 RAM-EFR, w-V-growth, w-I-growth, w-Ilat100, w-Vlat100, w-I70, w-V70, w-I100, w-V100 36.19 7.11

10 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100 32.86 6.67

11 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100 27.62 6.49

12 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100, w-Ilat70 18.10 6.65

13 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100, w-Ilat70, w-Ilat100 17.14 6.75

Table 4.3: Combination of metrics with the highest mean accuracy (accmean) values in each

Fi, with i combined metrics. The standard deviation of obtained accuracies are shown in

accsd column. The reported results are based on DPTH-based cochlear model individual-

ization method.

Involved

Metrics

Involved

Subjects
Best Combination of Metrics

acc (%)

accmean accsd

1 35 RAM-EFR 83.81 2.66

2 35 RAM-EFR, w-Vlat100 58.57 1.34

3 35 RAM-EFR, w-Ilat100, w-I100 54.29 8.34

4 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100 61.90 8.22

5 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100, w-V70 58.10 8.90

6 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100, w-V70, w-I-growth 48.10 7.40

7 35 RAM-EFR, w-Vlat100, w-Ilat100, w-V100, w-V70, w-V-growth, w-I70 40.95 6.96

8 35 RAM-EFR, w-Vlat100, w-Ilat100, w-V100, w-V70, w-I-growth, w-I70, w-V100 35.71 7.12

9 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Ilat70, w-I70, w-V70, w-I100, w-V100 34.29 7.30

10 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Ilat70, w-Vlat70, w-Vlat100, w-I70, w-I100, w-V100 29.52 6.53

11 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Vlat70, w-Ilat100, w-Vlat100, w-I70, w-I100, w-V70, w-V100 17.14 6.13

12 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Ilat-growth, w-Ilat70, w-Vlat70, w-Vlat100, w-Ilat100, w-I70, w-V70, w-I100 16.67 2.63

13 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100, w-Ilat70, w-Ilat100 16.67 2.93

1.34%). However, the respective accmean values were considerably lower than

those of the RAM-EFR by itself, particularly in DPTH-based method. To assess

the performance of the RAM-EFR based CS profile prediction in sub-groups, we

show confusion tables in Figure 4.7 for AudTH- and DPTH-based cochlear model

individualization methods. The diagonals of each table reflect how often the clas-

sifier assigned a CS profile (LSPred
: predicted class) that matched with that of in

simulated individualized CS profiles (LS: true class). Off-diagonal values show

the number of instances that LSPred
and LS were not identical. Detailed prediction

accuracy values of each sub-group are summarized in the tables in Figure 4.7. The

highest and lowest prediction accuracy values relate to the yNH and oHI group,

respectively for both AudTH- and DPTH-based methods. Comparing the cochlear

model individualization methods, it is seen that the DPTH-based approach outper-

forms the AudTH-based method on both group- and sub-group levels.
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Figure 4.7: Confusion tables at subgroup and group-levels for both AudTH and DPTH-

based cochlear model individualization methods. The tables summarize the accuracy of

classifier(2) in Figure 4.6b for subgroups, as well as all groups together.

4.5.3 Cochlear synaptopathy profile prediction based on indi-

vidualized classifiers

Table 4.4 lists the predicted individual CS profiles from the RAM-EFR metric (best

prediction accuracy) for both AudTH- and DPTH-based cochlear individualization

methods. The reported profiles are the output of the forward classification step, i.e.

LM shown in Figure 4.6. Considering the AudTH and DPTH columns of Table 4.4,

lower degrees of AN-damage were predicted for the yNH group than for the oNH

and oHI groups. Additionally, the range of predicted CS profiles in the yNH group

shows that yNH listeners might also suffer from different degrees of CS. The oHI
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group, which was assumed to suffer from mixed OHC-damage and CS pathologies,

were predicted to have the highest degree of CS among the cohort.

Thus far, the reported individualized CS profiles for RAM-EFR were pre-

dicted by training a single classifier with simulated individualized CS profiles of

the whole experimental cohort. This has drawbacks for individual profiling in a

clinical context, because it would be ideal if the profiling could be performed us-

ing only recordings from the tested individual. Hence, to establish more accurate

predictions of the individual CS degrees, we took one step further and designed in-

dividualized classifiers, which were trained and tested with the RAM-EFR metric

of the same listener. If RAMs stands for the six simulated CS profiles of a nom-

inal subject and RAMm for the measured RAM-EFR metric, we first normalized

RAMs and RAMm values by the RAMs and σRAMs (mean and standard deviation

of RAMs). Then we trained and tested the classifier, with the same characteristics

as classifier(1) and (2), using normalized RAMs and RAMm values, respectively.

This procedure was repeated for all listeners in the cohort and for both AudTH and

DPTH-based cochlear model pole-setting methods. The predicted individualized

CS profiles were listed in Table 4.4 (columns: AudTHind and DPTHind). Con-

sidering either of the AudTH- or DPTH-based methods, designing individualized

classifiers revealed only minor differences in the predicted CS profiles of individ-

ual listeners compared to those predicted by a single classifier trained with simu-

lated individualized RAM-EFRs. However, the CS profiles reported in AudTHind

and DPTHind columns might be more reliable than the group-based predictions,

since the former were predicted by individualized classifiers that were trained on

the basis of personalized cochlear simulations.

To provide a demonstration of the implemented method, and to show to which

extent the model simulations imitate the experimental measurements, we compare

simulated and measured AEPs of a yNH subject in Figure 4.8. Panel (a) depicts

simulated RAM-EFR spectra for the different considered CS profiles. Based on

the experimental RAM-EFR (panel (d)) and forward classification, we predicted

that this subject had a “N” CS profile, i.e., no AN-damage. The CGL parameters

of the individualized model were adjusted based on DPTHs of the same yNH lis-

tener. Panels (b) and (c), depict the simulated personalized ABR waveforms for

the predicted “N” CS degree. Experimental ABR waveforms to 70 and 100 dB-

peSPL clicks are shown in panels (e) and (f), respectively. Details regarding the

value of extracted metrics from the measurements and simulations are provided in

a table at the bottom of the Figure 4.8. Even though our classifier did not consider

ABR metrics, the applied personalized OHC and AN profiles predicted w-Ilat100,

w-I70, w-V70 and w-I100 markers that fell within the standard deviation of the cor-

responding recorded values. The remaining simulated ABR metrics, i.e. w-Ilat70,

w-Vlat70, w-Vlat100 and w-V100, only minimally deviated the range of respec-

tive measurements, showing that our method accurately predicts AEP features to
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Table 4.4: Predicted individuals CS profiles obtained from AudTH and DPTH based

cochlear individualization methods, based on RAM-EFR metric. Columns AudTHind and

DPTHind, list the predicted CS profiles by designing individualized classifiers based on

RAM-EFR metric.

Group No. AudTH AudTHind DPTH DPTHind

1 C B B B

2 A A A B

5 N N N N

7 N N N N

yNH 8 N N N N

9 N N N N

10 N N N A

11 A B B B

12 N N N A

13 A A A A

14 N N N N

15 N N N N

1 D D C D

3 E E E E

4 D E D D

6 D D D D

oNH 7 C D D D

8 E E E E

9 N A N A

10 B B B B

11 C D D D

12 N N N N

13 E E E E

14 C D C C

1 E E E E

2 E D E D

3 E E E E

4 E E E E

5 E D E E

oHI 7 E D E E

8 E E E E

9 E E E E

10 E E E E

11 E E E E

12 E E E E

stimuli which were not included in the classifier.

4.5.4 Method validation

To validate the proposed method and its generalizability to other cohorts and other

measurement equipment, we applied the developed classifier in backward classi-

fication step to RAM-EFRs recorded in a second experiment. Figure 4.9 schema-

tizes the implementation of the validation method. Considering the different ex-

perimental setup and recording location of the second experiment, the measured

RAM-EFRs of both experiments were scaled between zero and one, prior to clas-

sification. Given that only yNH listeners participated in the second experiment,
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Measured value 0.1838±0.007 2.3800±0.241 6.347±0.128 1.5255±0.111 5.3097±0.123 0.1378±0.135 0.3747±0.158 0.2259±0.128 0.4036±0.132

Simulated

individualized value
0.1896 1.7500 5.9500 1.5500 5.7500 0.0727 0.3127 0.1469 0.5895

Figure 4.8: A comparison between simulated and measured AEPs for a yNH subject

(yNH15). This subject was predicted to have a normal (N) CS profile, i.e. without CS.

(a) Simulated RAM-EFR spectra for six CS profiles. The sum of the drawn arrows yields the

RAM-EFR magnitude metric. (b) Simulated ABR wave-I to 70 and 100 dB-peSPL clicks.

Waveforms were shifted by 1 ms to match the experimental data. (c) Simulated ABR wave-V

to 70 and 100 dB-peSPL clicks. Waveforms were shifted by 3ms to match the experimental

data. The specified arrows in (b) and (c) indicate the extracted metrics. (d) Measured RAM-

EFR of the same listener (yNH15). Shown arrows, indicate the peak-to-noisefloor values.

Akin to (a), the measured RAM-EFR metric was calculated by summing the of arrow am-

plitudes. (e) Measured ABR waveform to 70 dB-peSPL clicks. (f) Measured ABR waveform

to 100 dB-peSPL clicks. Arrows in (e) and (f), determine the extracted metrics. The shown

simulated waveforms were predicted based on the DPTH-based cochlear individualization

method. The table shows the exact value of EFR and ABR metrics derived from recordings

and predicted CS-profile, “N”, of the same listener.

we employed the smallest RAM-EFR magnitude recorded from oHI listeners (as

part of another study) recorded with the same setup as the second experiment to

scale the RAM-EFRs. The scaled RAM-EFRs of the first experiment were used to

train the classifier(1) in Figure 4.6 and afterwards, the trained classifier was tested

with the scaled RAM-EFRs of the second experiment. The predicted CS profiles

are illustrated as a bar-plot in Figure 4.9. 84.21% of the 19 yNH participants of

the second experiment were classified as N, i.e. without CS, and the rest were pre-

dicted to have mild CS. These predictions show that a classifier designed on our

cohort can be applied to other cohorts to predict individual CS degrees based on
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Figure 4.9: Implementation of the validation method. Measured RAM-EFRs (M) with pre-

dicted labels in Figure 4.6 (LM) are scaled between zero and one to train a kNN classifier.

The trained classifier is tested with scaled RAM-EFRs recorded from the second cohort com-

prised of yNH listeners. The bar-plot shows the predicted CS profiles for the second cohort

listeners. The CS profiles labels in the bar-plot are similar to those defined in Figure 4.3.

the RAM-EFR. In line with expectations, the classifier predicted that most yNH

subjects were synaptopathy free.

4.6 Discussion

By combining experimental ABR and EFR measurements with a modelling ap-

proach, we were able to develop a classifier that can assign one out of six CS

profiles to listeners with mixed SNHL pathologies. The classifier considered 8191

feature-sets, of which our forward-backward classification method identified that

the RAM-EFR metric yielded the best performance in both AudTH- and DPTH-

based cochlear individualization methods. We tested both a group and individ-

ually based method and showed that our method can generalize to other cohorts

and measurement setups. Taken together, we have high hopes that this method can

find its way to clinical hearing diagnostics, since a single AEP metric is required

to yield a CS-profile prediction, given the audiogram or at least four DPTHs.

4.6.1 Implications for RAM-EFR-based synaptopathy profiling

prediction

On the one hand, predicting the CS-degree from AEP metrics is controversial in

listeners with coexisting OHC deficits and on the other, validation of the predicted

CS profiles with temporal bone histology is impossible in humans. Without these

means, models of the human auditory periphery an AEP generators can provide a

tool to bridge this experimental gap. The similarity between predicted AEP degra-

dations for a known CS profile and experimental AEP degradations can be used
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to predict the CS profile of individuals. In a previous study, we tested the poten-

tial of the derived-band EFR as a CS predictor in NH listeners using a fuzzy c-

means clustering method, and validated our CS predictions using an another AEP-

derived metric (wave-V amplitude growth-slope) recorded from the same listener.

We evaluated the method based on the percent of subjects that were predicted and

validated to have the same CS profile, i.e. 61% [134]. However, the performance

of this method is easily impacted by the characteristics of the adopted predictor

and validation metrics, e.g. different generator sources, degree of sensitivity to

subtypes of SNHL and tonotopic susceptibility.

The interdisciplinary approach we took in this study tackled this validation

issue by proposing a forward-backward classification approach and applying the

trained classifier to AEPs from a new cohort to test its generalizability. Moreover,

we were able to determine the most accurate AEP-derived metric for CS-degree

prediction, given a range of 13 possible AEP-derived metrics. Among the con-

sidered AEP-based metrics and combinations thereof, we found that the RAM-

EFR magnitude showed the best performance in segregating simulated individual

CS profiles. At the same time, RAM-EFR metric was involved in all feature-

sets that yielded the highest accmean among feature-sets that had equal number

of combined metrics (Table 4.2 and 4.3). This finding is consistent with the out-

come of [32] and [44], showing that EFRs to SAM or RAM are sensitive to CS.

Moreover, the combined modelling and experimental study of [44] showed that the

adopted RAM-EFR marker (RAM with a 25% duty-cycle), is minimally impacted

by OHC-damage. The sharp envelope combined with the long silence intervals be-

tween stimulus peaks generates more synchronized AN-fiber responses compared

to conventional SAM stimulus to yield a stronger EFR with extended dynamic

range across subjects. Lastly, the RAM-EFR is a more sensitive marker of CS than

ABR [32]. Taken together, our results indicate that the RAM-EFR magnitude is an

appropriate AEP-based metric to predict individual CS-degree of listeners in the

presence of OHC-loss.

4.6.2 The effect of cochlear model individualization method on

predicting cochlear synaptopathy profiles

In this study, we determined the CGL model parameters using either measured au-

diometric or DPOAE thresholds, and assessed the classifier performance of each

method in the backward classification step. Comparing the resulting accmean val-

ues for each cochlear individualization method can inform which of the two meth-

ods yielded the most accurate AEP simulations for a given CS profile. The accmean

values of RAM-EFR metric showed that setting cochlear filter pole-functions on

the basis of measured DPTHs outperforms the AudTH method for all experimental

groups (Figure 4.7, Tables 4.2 and 4.3). This outcome is consistent with literature
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studies showing that OAEs are a more sensitive measure of noise-induced cochlear

dysfunction in humans [135–138]. Moreover, OAEs are not influenced by IHC/AN

damage [139], whereas behaviourally measured audiometric thresholds, partic-

ularly extended high-frequency thresholds, could be affected by extreme neural

degeneration [37, 140, 141]. Consequently, given the varied susceptibility of Au-

dTHs and DPOAEs to different aspects of SNHL, it was expected that we would

obtain non-identical predictions of CS profiles for a nominal subject (Table 4.4).

Comparing the AudTH and DPTH columns in Table 4.4, we found a mismatch be-

tween individually predicted CS profiles for 14.28% of subjects (yNH: two, oNH:

three). The mismatch degree increased to 20% (yNH: three, oNH: two and oHI:

two) when the individual CS profiles were predicted using personalized classifiers

(AudTHind and DPTHind columns).

It is noteworthy that the DPTH-based cochlear individualization was imple-

mented using DPTHs from only four frequencies (0.8 to 4 kHz), whereas the

AudTH-based method considered audiometric thresholds measured at 12 frequen-

cies (0.125 to 10 kHz). This difference may have resulted in less accurate CGL

model parameters for the DPTH-based method, despite a better performance of

forward-backward classification. In future implementations of this method, we

intend to incorporate more frequencies in the DPTH measurements, especially at

higher frequency regions. Employing DPgrams instead of DPTHs is another op-

tion, as these require a shorter measurement time. In both cases, we suggest to

include lower stimulus levels as well, given that noise-induced OHC deficits can

be identified earlier at lower stimulus levels [37].

4.6.3 Method limitations

The proposed method for AEP-based CS-profiling, relies on the interactive use

of recordings and model simulations. Hence, shortcomings in either aspect could

have caused performance limitations of the method. The following sections sum-

marize a number of these limitations:

4.6.3.1 Experimental limitations

(1) ABRs in humans are recorded using vertex electrodes placed on the scalp,

which yields smaller and more variable wave-I amplitudes than when they are

recorded in animals using subdermal electrodes. The measured ABR w-I70 ampli-

tude in our measurement produced a mean standard deviation of 0.198 µV across

the cohort, which is fairly large with respect to the mean amplitude of 0.146 µV

(yNH: 0.1964±0.1436 µV, oNH: 0.1304±0.203 µV, oHI: 0.1071±0.243 µV).

Compared to w-I70, w-I100 amplitudes showed less variability, i.e. 0.2503±0.2056

µV. Variability of the w-I100 was considerably lower only for yNH group (0.350±
0.143 µV). Per subgroup, variability increased for older groups (oNH: 0.205±
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0.247 µV, oHI: 0.180±0.235 µV). Given these variabilities, adding the w-I100
metric to the second feature-set (RAM-EFR, w-Vlat100), suddenly increased the

accSD (Tables 4.2 and 4.3). (2) Although adopting relative ABR metrics, such as

growth-functions might factor out individual differences, the standard deviation

of the derived relative metric is influenced by the propagated error of the abso-

lute metric. (3) ABRs to clicks presented at 100 dB-peSPL should yield higher

wave-I and V amplitudes, than when the stimulus was presented at 80 dB-peSPL.

Nevertheless, the opposite was observed in a few subjects.

4.6.3.2 Model limitations

(1) The adopted computational model of the auditory periphery allows for OHC

deficit simulation on a CF-dependent basis, but not for CGLs above 35 dB, since

the maximum possible BM filter gain is 35 dB in the model [73]. This constraint

led to elevated absolute prediction errors for high-frequency audiometric thresh-

olds in the oNH and oHI (above 4 kHz) groups (Figure 4.4e). The increased abso-

lute errors were mainly observed for the audiometric threshold predictions, since

DPTHs were only measured for frequencies up to 4 kHz. Thus, the individualized

hard-coded OHC-loss component for the oHI group might lead to similar and less

accurate CS profile prediction for oHI participants with audiometric losses greater

than 35 dB-HL.

(2) In the adopted method, we hard-coded the CGL using the individual hearing

thresholds and related the remaining AEP alterations to CS. An alternative way

would be to run the model iteratively and simultaneously optimize both CGL and

CS profile parameters on the basis of the experimental data to obtain the best OHC-

loss and CS profiles. However, we did not further explore this route due to the high

computational cost of running the adopted TL cochlear model in an iterative opti-

mization procedure.

4.7 Conclusion

In this study, we proposed an integrated modelling and experimental approach

to build personalized auditory models and predict the AN-damage profile of lis-

teners with mixed SNHL profiles. To develop individualized cochlear models,

we implemented two different methods on the basis of measured AudTHs and

DPTHs. Next, we developed a classification-based approach to predict individual

CS profiles and determined which AEP metric (or combinations thereof) yielded

the highest prediction accuracy. Afterwards, we evaluated the implemented CGL

and CS-profile individualization methods on the development dataset, as well as

on a new cohort. Our study suggests that a DPTH-based cochlear model individ-

ualization approach combined with a RAM-EFR recording predicts individual CS
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profiles most accurately among the 8191 possible combinations of 13 AEP mark-

ers. Additionally, we tested the applicability of the proposed method by applying

the trained classifier to the recorded RAM-EFRs of a new cohort of yNH listeners.

The classifier predicted that these listeners mostly had mild forms of CS, which

supports that our method is generalizable to other recording setups and cohorts.

Training the classifier again on larger cohorts may further increase the generaliz-

ability of the method. We hope that this method, or variations thereof, can be used

in a clinical diagnostic context, as the number of needed AEP recordings to yield

an individual CS-profile is small (i.e. 10-15 minutes). Individualized models of

SNHL are an important step for the development of hearing aid algorithms that

compensate for both the OHC- and AN-damage aspects of SNHL.
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A comparison among DPOAE-based

cochlear model individualization

methods

Sarineh Keshishzadeh, Markus Garrett, Sarah Verhulst, Manfred

Mauermann

The content of this chapter is based on the recent results and has not been

published.1

This chapter adopts the machine-learning approach presented in Chapter 4 to

examine the applicability of the distortion product otoacoustic emissions (DPOAEs)

for developing individualized cochlear models. Here, we test whether individual-

ized cochlear models based on DPOAE measurements (DPOAE thresholds and

DP-grams) can predict the measured DPOAEs and audiograms of young and older

normal-hearing, as well as hearing-impaired listeners. The outcome of this study

shows that cochlear models individualized based on DP-grams measured at low

stimulus levels or DPOAE thresholds, yield the smallest prediction errors. These

promising results support the use of the developed DPOAE-based model individ-

ualization method in the future hearing-aid fitting algorithms.

1SK: model simulations, analysis, conceptualization, methodology, writing the original draft, re-

view and editing, MG: running the experiment, SV: supervision, conceptualization, review and editing,

funding acquisition, MM: analysis.
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5.1 Introduction

Individualized models of hearing-impaired auditory processing have been widely

adopted in the design of hearing-aid algorithms. The hitherto developed hearing-

aid fitting procedures are largely based on audiometric thresholds or psychoacous-

tic metrics (e.g. speech intelligibility and loudness perception) [90, 142–145], and

do not account for the cochlear synaptopathy (CS) aspect of the sensorineural

hearing-loss (SNHL). However, determining individual CS parameters is contro-

versial, as diagnostic metrics of CS are presently based on auditory evoked poten-

tials (AEPs). These AEP measures do not necessarily yield a frequency-specific

quantification of CS and might be affected by both outer-hair-cell (OHC) and au-

ditory nerve (AN) damage [13, 32, 42, 44, 94]. Hence, developing individualized

cochlear models, which precisely simulate how OHC-damage affects cochlear-

gain-loss (CGL) is a key requirement for making progress towards AEP-based

CS quantification. Specifically, incorporating such individualized cochlear models

within the biophysically-inspired auditory model framework that account for both

OHC-loss and AN-damage aspects of SNHL, will enable us to simulate how ei-

ther of the aspects affects AEP markers and conversely will enable to use recorded

AEPs to derive frequency-specific personalized SNHL profiles. These profiles can

be incorporated within the personalized auditory models that can be used as a ba-

sis to develop personalized SNHL profiles and use them as a basis for hearing

restoration algorithms.

Individual CGL parameters can be derived from audiograms measured within

the standard audiometric frequencies or at extended high-frequency regions, as

well as distortion product otoacoustic emissions (DPOAEs). While the audio-

gram reflects a behavioural response, DPOAE yields an objective metric that is

a byproduct of cochlear amplification and its amplitude is informative of OHC-

damage [146, 147]. In Chapter 4, the applicability of audiograms and DPOAE

thresholds (DPTHs) as candidate metrics for developing individualized SNHL pro-

files were assessed based on a classification approach. The corresponding DPTH-

based individualized cochlear models yielded a better accuracy in predicting CS

profiles of a cohort consisted of normal-hearing and hearing-impaired young and

older listeners [43]. However, an accurate estimation of the DPTH at a given

frequency, requires DPOAE amplitudes measured over a range of primary levels,

which is time-consuming. In addition, achieving an appropriate curve-fit that leads

to a robust estimation of the DPTHs is challenging.

In this chapter, the use of the DP-gram, as an alternative metric for DPTH is

evaluated in developing individualized cochlear models. DP-gram is characterized

by the amplitude of DPOAEs measured across a range of primary frequencies of

fixed level and provides a frequency-dependent objective measure of OHC-damage

within a more reasonable acquisition time than DPTHs. Therefore, this study aims
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to determine which of the individualized cochlear models (based on either DPTHs

or DP-grams), best predicts the corresponding metrics from the measurements,

and also estimates the behavioural audiograms of the study participants with an

acceptable error. In addition, we explore whether the primary level, at which DP-

grams are measured, plays a role in developing accurate individualized cochlear

models.

5.2 Experiment participants

The experimental cohort adopted in this study consists of 12 young normal-hearing

(yNH: 25.08±1.93), 12 older normal-hearing (oNH: 64.58 ±1.88) and 11 older

hearing-impaired (oHI: 65.27±1.95) listeners. Audiograms of the participants

were measured at 12 standard audiometric frequencies, between 0.125 and 10 kHz,

and the ear with the lower threshold at 4 kHz was chosen for DPOAE measure-

ments. The recruitment criterion of the experiment participants was based on au-

diometric thresholds. Audiometric threshold of the yNH group did not exceed 20

dB-HL at all measured frequencies. The oNH group had audiometric thresholds

below 25 dB-HL at frequencies below 4 kHz and oHI listeners were suffering from

sloping high-frequency hearing-loss with 4-kHz thresholds greater than 25 dB-HL.

Audiograms of the three experimental groups are shown in the first column of Fig-

ure 5.1 (a: yNH, b: oNH, c: oHI). Further details regarding the experimental

design can be found in Section 4.2.1 of Chapter 4.

5.3 DPOAE threshold and DP-gram extraction

To record DPOAEs, two pure-tones with f1 and f2 primary frequencies (using a

fixed ratio of f2/f1=1.2) were simultaneously presented to the ear through ER-

2 earphones coupled to the ER-10B+ microphone system (Etymotic Research).

During the stimulation, the primary f2 frequency was swept continuously [110]

with a rate of 2s/octave over a 1/3 octave range around the determined center fre-

quencies, i.e. 0.8, 1, 2 and 4 kHz [64]. The L2 primary level varied between

30 and 60 (for yNH and oNH listeners) or 72 (for oHI listeners) dB-SPL, with a

6-dB step, and L1 primary level was determined based on the scissors paradigm,

L1 = 0.4L2 + 39 [108]. For a given primary frequency and level, the distor-

tion product (DP) amplitude was calculated at 2f1 − f2 frequency (LDP ). To

extract DPTH at a given f2, a cubic function was fit to LDP values measured at

different L2 levels (i.e. DPOAE input-output (I/O) function at f2), and the L2

level at which the curve reaches to LDP of -25 dB SPL, was estimated as the

DPTH at f2 [64, 130]. Figure 5.2 shows an exemplar DPOAE I/O function mea-

sured at f2 = 0.8 kHz and illustrates the implemented method for extracting the
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Figure 5.1: Measured audiograms (first column: (a) yNH, (b) oNH, (c) oHI), DPOAE

thresholds (DPTHs: second column, (d) yNH, (e) oNH, (f) oHI) and DP-grams (third col-

umn: (g) yNH, (h) oNH, (i) oHI) of the experiment participants.

corresponding DPOAE threshold. This procedure was repeated for each f2, and

corresponding DPTHs were plotted as a function of f2 (the second column of Fig-

ure 5.1).

DP-grams are LDP s as a function of frequency (f2) for a given L2. For each

subject DP-grams were measured at six primary L2 levels. Measured DPgrams

at L2 = 60 dB-SPL are shown in the third column of Figure 5.1. The DPOAE

recording paradigms and analysis were performed using a custom-made MATLAB

program [109].

5.4 Estimating individualized cochlear-gain-loss pa-

rameters

Cochlear model individualization was implemented by predicting CF-dependent

CGL parameters, based on recorded DPOAEs of the study participants. To sim-

ulate CGL caused by OHC-damage, poles of the BM admittance function of the

transmission-line (TL) model [73, 79] were estimated using recorded DPTHs and



DPOAE-BASED COCHLEAR MODEL INDIVIDUALIZATION 77

24 30 36 42 48 54 60 66

L
2
  [dB SPL]

-25

-20

-15

-10

-5

0

5

10

L
D

P
 [

d
B

 S
P

L
]

DPTH

X

Figure 5.2: Measured DPOAE input-output function of a yNH subject at f2 = 0.8kHz. The

cubic curve-fit is shown in blue and the intersection with LDP = −25 dB SPL is specified

with red cross, which indicates the DP-threshold (DPTH) at 0.8 kHz.

DP-grams of six primary levels, independently. Each pole-function comprises of

1001 CF-channels and corresponding pole values (α∗ in [73]) range between 0.036

and 0.32, which determine the gain and width of each simulated cochlear filter at

low stimulation level. At each CF, α∗ follows a stimulus level-dependent trajec-

tory that accounts for the BM compression and wider cochlear filters with level

increment [79]. Therefore, considering a constant stimulation level, by increas-

ing α∗ value without changing the level-dependent pole-trajectory function, the

sensitivity of the cochlear model will reduce [64, 73]. Pole-function with con-

stant across-CF pole-values of 0.036 or 0.32, accounts for an intact (flatmin)

or completely damaged cochlea (flatmax: 35 dB-HL), respectively. To set CF-

dependent pole-values, a machine-learning approach similar to that described in

Section 4.3.1.2 of Chapter 4, was implemented. To construct the training data for

the neural network (NN), 26 random pole-functions with pole-values accounting

for both NH and HI cochleae (between 0.036 and 0.32) were generated. For each

pole-function, two pure-tones with the same characteristics as the experimental

stimuli were presented to the model, after which DP amplitude at 2f1 − f2 fre-

quency was calculated (sLDP ) to simulate DP-grams for all 26 pole-functions.

This process was repeated for all primary frequencies and levels adopted in the

experiment protocol. Accordingly, six DP-grams, each including sLDP values at

four f2 primary frequencies, were simulated for a given random pole-function. To

simulate DPTHs, DPOAE I/O functions were constructed for f2 frequencies in-

cluded in the recordings, and sLDP values corresponding to L2 levels between



78 CHAPTER 5

-10 and 70 dB-SPL (with a 5-dB step) were calculated. Corresponding DPTHs of

each simulated I/O growth-function was determined as the L2 level at which the

interpolated growth-function crossed the sLDP of -10 dB-SPL.

Simulated DP-grams and DPTHs (sDP-gram and sDPTH) for the 26 random

pole-functions were used to train seven different NNs with identical architectures

that invert the model: one for the DPTH-based method and six for DP-grams of

different levels (one for each level). The NNs were made up of one input-layer of

four neurons, two hidden-layers of 150 neurons (150 for each layer) and an output-

layer of 1001 neurons. While a standard Sigmoid activation function was applied

to the hidden-layers, in the output layer a customized Sigmoid activation function

was used to yield pole-values within the acceptable range of the cochlear model,

i.e. between 0.036 and 0.32. The NNs were trained independently to learn how to

map the given simulated DP-gram or DPTHs in the input layer to CF-dependent

pole-values in the output. In this way, trained NNs can be adopted to predict the

individualized pole-functions of the experimental cohort, given their measured DP-

grams or DPTHs (mDP-gram and mDPTH) recorded at four primary frequencies.

However, it was required to apply a pre-processing step to the recorded DPOAEs

prior to making the predictions of the corresponding pole-function. sDP-grams

for a flatmin profile in this study, overestimated the amplitudes of the recorded

DP-grams of the yNH listeners. In addition, a -10 dB-SPL threshold was cho-

sen for the simulations, since applying the -25 dB-SPL threshold (recorded I/O

functions), yielded inconclusive sDPTHs, in particular for pole-values associated

with greater CGLs. To bypass these limitations, measured DPOAE metrics were

mapped to the range of the lower and higher extremum of the corresponding simu-

lated DPOAE metrics. Later on, respective prediction errors were calculated based

on their difference relative to the simulated profile without OHC dysfunction. For

this purpose, first the outliers of the mDP-grams and mDPTHs were identified fol-

lowing the explanation provided in Section 4.3.1.2 of Chapter 4, after which the

recordings were mapped to the range of associated sDP-grams and sDPTHs of the

flatmin and flatmax profiles. Lastly, mapped mDP-grams and mDPTHs were

normalized with the mean and standard deviation of the training data (Z-scores)

and were fed into the trained NNs. The predicted individualized pole-functions in

the output of the NN were used to simulate the individualized DPOAE metrics,

sDPTH or sDP-gram, and evaluate the prediction errors.

5.5 Results

To determine which of the implemented cochlear individualization methods yielded

more accurate predictions of the individual OHC damage, in the following sec-

tions mDP-grams/mDPTHs are compared with sDP-grams/sDPTHs. Moreover, it

is tested that DPOAE-based cochlear model individualization methods how well
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Figure 5.3: Comparison between measured (solid lines) and simulated (dashed lines)

DPTHs/DP-grams. sDPTHshift and mDPTHshift values are compared across

the measured frequencies for an exemplar of (a) yNH, (c) oNH and (e) oHI subject.

sDPgramshift and mDPgramshift values in response to L2 = 30 (light) and 60 (dark)

dB SPL are shown for the same exemplar subjects: (b) yNH, (d) oNH and (f) oHI groups.

can predict the measured behavioural audiogram of the study participants.

5.5.1 DPTH and DP-gram prediction

To make a comparison between recorded and simulated DPOAEs, the type-1 error

was defined as the absolute difference between mDP-grams/mDPTHs and sDP-

grams/sDPTHs, which were simulated using individualized predicted pole-functions.

In the previous step, recorded DPOAE metrics were mapped to a comparable range

with the model simulations. In addition, model simulations overestimated DPOAE

metrics. Therefore, before estimating prediction errors, a few more steps were re-

quired to be considered. To keep the formulation of these steps simple, we will

refer to sDP for simulated DPOAE metrics, mDP for measured DPOAE metrics

and mDPmap for measured DPOAE metrics which were mapped to the range of

flatmin and flatmax profiles. In the first step, the sDP and mDP values were sub-

tracted from the corresponding DPOAE metrics simulated for a normal-hearing

profile (sDPNH).

mDPref = (−1)n(sDPNH −mDPmap) (5.1)
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Figure 5.4: Averaged (a) type-1 and (b) type-2 errors of the DPTH-based cochlear model

individualization across the yNH, oNH and oHI listeners. Two vertical dashed lines in

panel (b), specify the frequency region of the audiogram which matches with the primary

frequencies of the recorded DPTHs.

sDPref = (−1)n(sDPNH − sDP) (5.2)

In the above equations, if sDP and mDP stand for DPOAE thresholds, then n

equals to one, otherwise n = 0. The referenced mDP and sDP (mDPref and

sDPref ) amounts were mapped back to the range of measured DPOAE metrics as

follows:

sDPshift(f2) = sDPref(f2)
max[mDP(f2)]−min[mDP(f2)]

sDPflatmax
(f2)− sDPflatmin

(f2)
(5.3)

mDPshift(f2) = mDPref(f2)
max[mDP(f2))]−min[mDP(f2)]

sDPflatmax
(f2)− sDPflatmin

(f2)
(5.4)

Figure 5.3 makes a comparison between the calculated mDPshift and sDPshift.

In the first column (panels a, c and e), measured (solid line) and predicted (dashed
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Figure 5.5: Averaged type-1 and type-2 errors of (a,d) yNH, (b,e) oNH and (c,f) oHI lis-

teners for DP-gram based individualized cochlear models. In each panel, prediction errors

based on DP-grams measured at L2 levels between 30 (light colors) and 60 (dark colors)

dB SPL are presented. Two vertical dashed lines in panel d, e and f, specify the frequency

region of the audiogram which matches with the primary frequencies of the recorded DP-

grams.

line) DPTHs of one subject from each of the yNH, oNH and oHI groups are shown.

A similar comparison was made between mDPgramshift and sDPgramshift of

different primary levels (30 and 60 dB SPL) in the second column of Figure 5.3

(panels b, d and f).

To quantify the difference between simulated and measured DPOAE metrics,

the type-1 error was defined as the absolute frequency-specific difference between

sDPshift and mDPshift.

err1(f2) = |mDPshift(f2)− sDPshift(f2)| (5.5)

Figure 5.4a compares the DPTH prediction mean errors (type-1 error) across

the frequency and experiment groups. Type-1 errors of DP-gram prediction for

different stimulation levels are shown in the first row of Figure 5.5 and each panel

represents the respective averaged type-1 error of each group (a: yNH, b: oNH and

c: oHI). When comparing the type-1 errors of the DPTHs with those of DP-grams

(Figure 5.4a and Figure 5.5(a-c)), we conclude that cochlear models individualized
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by DP-grams measured with low primary levels and DPTHs performed equally

well. However, the prediction error increased when higher stimulation levels were

used in the DP-gram measurements. To further investigate this, type-1 errors of

each method were averaged over the four frequency points to provide an overview

of how type-1 error alters across the adopted methods and stimulation levels. Box-

plots of the type-1 error, averaged across the measured frequencies, are shown in

Figure 5.6a. The individual variation of the type-1 error across the methods is in-

dicated with thin lines. Pooling the type-1 errors of all groups together, a one-way

ANOVA test confirmed that the differences between type-1 errors of the DP-grams

measured in response to increasing primary levels are significant (F(5,204)=9.95,

p<0.000). Moreover, paired-sample t-test with Bonferroni correction showed that

the only significant difference between the type-1 error of the DPTH and DP-

grams was observed for L2 = 60 dB SPL (t(34)=-3.71, p<0.000). This confirms

that cochlear model individualized based on DP-grams measured at lower stimulus

levels performs equally well than the DPTH-based method.

5.5.2 Audiogram prediction

In the previous section, err1 was used to evaluate how well trained NNs with

sDPTH or sDP-gram predict the mDPTH or mDP-gram. Apart from DPOAE

measurement predictions, it is also of great interest to assess whether NNs trained

using DPOAE metrics, can predict the measured audiograms. This would offer an

additional and independent evaluation technique to assess the efficiency of the pro-

posed DPOAE-based cochlear model individualization method. For this purpose,

the audiometric thresholds were simulated by determining the stimulation intensity

that was required to minimize the energy difference between the AN excitation-

pattern (ANEP) of a considered participant and the ANEP of a NH-profile (LNH ,

Figure 5.7). In this regard, 500-ms pure-tones were presented to the model with the

same frequencies as of the measured audiograms (faud) and respective AN spike-

rates were simulated for a range of stimulus levels, L ∈ [−5, 55]. The ANEP to the

stimulus frequency was calculated by determining the root-mean-square (RMS) of

each CF channel. This procedure was implemented for the predicted individual-

ized pole-functions based on either of the DPTH or DP-gram methods. In addition,

the NH ANEP at the threshold of audibility (based on equal-loudness-contour: ISO

226:1987) was simulated using the NH pole-function, which served as a reference

to calculate the simulated audiometric thresholds (sAudTHDP) as follows:

Lmin(faud) = argmin
L∈[−5,55]

[|ANEPDP(faud,LNH (faud))
−ANEPDP(faud,L)

|] (5.6)

sAudTHDP(faud) = Lmin(faud)− LNH(faud) (5.7)
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Figure 5.6: Averaged (a) type-1 and (b) type-2 errors across the frequencies within the

[0.8-4] kHz. Corresponding errors of individuals are indicated by circles (yNH: blue, oNH:

white, oHI: orange) and respective variations across different cochlear individualization

methods are marked with thin lines.

In Eq. 5.6, ANEPDP refers to a simulated ANEP using a DPOAE-based (ei-

ther DPTH or DP-gram) individualized pole-function. Figure 5.7 depicts the au-

diogram prediction process of two subjects at 8 kHz, using their individualized

cochlear models based on DP-grams measured at L2 = 36 dB SPL: yNH in blue

and oNH in orange. Each circle in Figure 5.7, represents the peak of the AN

spike-rate RMS at CF=8 kHz, in response to 8-kHz pure-tones of different levels.

The lightest circle of each color indicates the lowest stimulus level. When con-

sidering the yNH subject (blue), the hearing threshold at 8 kHz was determined

by the difference between the stimulus level of the closest ANEP peak-value to

the threshold of audibility at 8 kHz (the black thick line), which is 12 dB SPL

(according to equal-loudness-contour). Thus, an audiometric threshold of 5-dB-

HL was estimated for the considered yNH subject at 8 kHz. Following the same
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Figure 5.7: AN excitation pattern (ANEP) peaks (circles) at CF=8 kHz for an exemplar of

yNH (blue) and oHI (orange) subject. The darker circles are associated with higher stimu-

lation levels and vice-versa. The thick black line is the indicator of threshold of audibility

at CF=8 kHz, i.e. 12 dB SPL.

method for the oHI subject (orange), an audiometric threshold of 31-dB-HL was

predicted. Following this procedure we predicted individual audiograms measured

at 12 frequencies based on DPOAE metrics of four frequencies.

To quantify the difference between measured and predicted audiograms, the

type-2 error was defined as the absolute difference between sAudTHDP and mea-

sured audiometric thresholds mAudTHDP of the study participants.

err2(faud) = |sAudTHDP(faud)−mAudTHDP(faud)| (5.8)

The group-mean of type-2 errors corresponding to DPTH and DP-gram based

cochlear individualization methods are shown in Figure 5.4b and the second row of

Figure 5.5 (panels c, d and e), respectively. Elevated high-frequency type-2 errors

were observed, especially for oNH and oHI groups in both DPTH and DP-gram

based individualized methods. This high-frequency error increment relates to the

model limitation in simulating CGLs higher than 35 dB HL, since the maximal

amount of the cochlear mechanical filter gain is 35 dB [73]. Consistent with the
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type-1 error, we observed lower type-2 errors when DP-grams were recorded to

lower primary levels. Given that DPOAEs were measured at four frequency points

(between 0.8 and 4 kHz), only audiometric thresholds between 0.75 and 4 kHz

frequency region were considered for further analysis of audiogram prediction er-

rors. This frequency region is specified by vertical dashed lines in Figure 5.4b and

the second row of Figure 5.5. In this context, Figure 5.6b illustrates the average

individual type-2 errors across the six frequencies within the range of 0.75 and 4

kHz. The alteration of the averaged type-2 error for each individual across differ-

ent methods are shown with thin lines. All subjects pooled together, a one-way

ANOVA test showed a significant effect of the stimulation level on type-2 error

of the DP-gram (F(5,204)=3.14, p=0.009). A paired-sample t-test with Bonferroni

correction showed that the type-2 error of DPTH was significantly different from

that of the DP-gram measured at all levels, except at L2 = 30 dB SPL (t(34)=-

1.43, p=0.16). This finding is consistent with that of the type-1 error, and indicates

that individualized cochlear models based on either DP-grams measured at low

stimulus levels or DPTHs yield the lowest type-1 errors. Moreover, they predict

individual audiograms with a smaller error (type-2) than DP-grams of higher stim-

ulus levels.

Lastly, to make an overall comparison between type-1 and type-2 errors, Fig-

ure 5.8, compares the type-1 and type-2 errors of the different implemented meth-

ods, as averages across frequency (between 0.75 and 4 kHz) and subject group.

The figure shows that the average type-2 errors are always higher (≈ 5 dB) than

the type-1 error, and that an accurate prediction of DPOAE measurements (smaller

type-1 errors), results in a more precise estimation of the individual audiogram

(smaller type-2 errors).

5.6 Discussion

In this chapter, DPOAE measurements, as an objective diagnostic tool for OHC-

damage, were evaluated to build individualized cochlear models. These mod-

els can then be used as pre-processors for hearing-aid or machine-hearing ap-

plications. In this regard, DPTHs and DP-grams measured at six primary lev-

els were adopted to estimate individualized poles of the BM admittance func-

tion using a machine-learning approach. Personalized CGL parameters, i.e. CF-

dependent pole-values of the BM admittance, were used to simulate individualized

DPTHs/DP-grams. These simulations were compared to the recordings that were

used to extract the CGL parameters (type1 error). In addition, DPTH and DP-gram

based individualized models were adopted to predict audiograms of the study par-

ticipants and their performance was compared (type-2 error). Considering these

two error-types, we determined which of the adopted DPOAE-based metrics is

more suitable for cochlear model individualization. Our analysis shows that DP-
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Figure 5.8: Comparison between the type-1 (purple) and type-2 (green) errors of different

cochlear individualization methods, which are averaged across the frequency and study

participants

grams measured at low primary levels, as well as the DPTHs, yielded the lowest

type-1 and type-2 errors. To understand the reason, the following two aspects

were considered: (1) At low stimulation levels, DPOAE amplitudes are maxi-

mally impacted by OHC amplification and corresponding losses. Near-threshold

stimulation levels may hence provide more reliable DPOAE measurements [108].

This may partly explain the relatively high type-1 and type-2 errors we observed

for some yNH subjects even at low stimulus levels, since their hearing thresholds

were below 20 dB HL at all frequencies. At the same time, the smaller prediction

errors of the HI listeners can be explained by their higher audiometric thresholds

within the frequency range of [0.8-4] kHz, which are closer to the low stimulus

levels. (2) The range of active pole values in the adopted cochlear TL model (i.e.

the α∗
A in [73]), was constrained based on the low stimulus levels (below 35 dB

SPL), since low stimulation intensities lead to sharper cochlear filters [73]. Conse-

quently, using DP-grams of higher stimulation levels to set the CF-dependent α∗
A

of the cochlear model, might have resulted in the higher prediction errors.

Regardless of the elevated high-frequency audiogram prediction errors caused

by the maximal gain limitation of the cochlear model (i.e. 35 dB), in all imple-

mented methods, type-2 errors were greater than the type-1 (Figure 5.8). The first

reason for the observed difference can be related to the fact that cochlear models,

which were individualized based on a DPOAE metric, i.e. an objective measure

of OHC-loss, were used to predict audiogram, which is a behaviourally measured

metric. Secondly, AN excitation patterns in response to pure-tones were used to

predict individualized audiometric thresholds. AN excitation patterns are affected

by the contribution of a large number of off-CF channels, and hence, compared

to DPOAE-based metrics (i.e. more localized response, type-1 error), yielded less
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accurate prediction of the audiometric thresholds.

The reader should be reminded that the compression slope of the cochlear

model I/O function was not individualized, which together with above mentioned

factors, could have contributed to generate additional prediction errors.

Taken together, the results of this chapter suggest that within the framework

of this study, DP-grams recorded at low stimulation levels (DPgramlow) (below

36 dB SPL) perform as well as DPTH-based methods for building individual-

ized cochlear models. The NN trained with random CF-dependent pole-functions

and corresponding simulated DPTH or DPgramlow metrics, predict the measured

DPTH or DPgramlow with a reasonable error (below 5 dB/frequency). Addi-

tionally, the developed method can estimate individual audiograms (at frequencies

involved in DPOAE measurements) with an average error of less than 10 dB/fre-

quency. Considering the audiogram measurement resolution, i.e. 5 dB, the gener-

ated prediction error is acceptable and in this way, an additional independent test

supports the efficiency of the proposed method. Despite these promising results,

we suggest that conducting DPOAE measurements at more primary frequencies

in the future, as well as taking into account the compression slope of the cochlear

I/O function in the individualization process may lower the prediction errors. We

hope that considering these two aspects may further improve the functionality of

the personalized cochlear model predictions and can enhance the future individu-

alized hearing aid algorithms.
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This chapter reports and interprets the effect of recreational noise-exposure on the

potential biomarkers of cochlear synaptopathy (CS), e.g. envelope following re-

spones (EFRs), auditory brainstem responses (ABRs) and speech intelligibility. A

cohort of 18 young normal-hearing attended music festival during the summer of

2019. The baseline auditory status of the experiment participants was assessed one

day before, one, three and five days after attending the music festival. Changes in

biomarkers from the first session to the follow-up sessions were non-significant,

except for the speech audiometry, that showed a significant learning effect (perfor-

mance improvement). This can indicate the absence of noise-exposure-driven CS
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in the study cohort, or reflect that biomarkers were not sensitive enough to detect

mild CS.

6.1 Introduction

Noise-exposure in young adults mainly takes place during leisure time activities

such as watching movies, visiting nightclubs, attending music festivals or concerts,

and listening to personal music-players. In this population, concerts and music

festivals are the loudest activities [148–151]. Sound level measurements during

such events confirm that noise levels can exceed 100 dBA [152–155]. Despite

the potential risk of noise-induced hearing-loss (NIHL), the majority of young

adults do not wear hearing protection devices (HPDs) when attending concerts

(73.8%; [156]) or performances at music festivals (86%; [153]). After attending

these music venues, 36-86% of young adults experience hearing related symptoms

such as temporary hearing-loss, dullness or tinnitus [149, 151, 153].

The reduction of hearing sensitivity following noise-exposure has extensively

been investigated in animal and human studies [37]. The incidence of NIHL de-

pends on the noise characteristics: the intensity, frequency and duration of the ex-

posure [157]. NIHL can cause permanent threshold shifts (PTS) due to mechanical

damage of the cochlear hair cells or supporting cells and metabolic changes that

cause cell degeneration and cell death [158, 159]. The reduction of hearing sen-

sitivity after noise-exposure can also be reversible. Mechanical damage of outer-

hair-cell (OHC) stereocilia, reversible changes in supporting cells, or a swelling of

auditory nerve (AN) fiber terminals [158] can result in a temporary threshold shift

(TTS), which recovers within minutes or hours [160,161] to weeks [162,163]. Re-

search investigating the pathophysiology of TTS in rodents indicates that exces-

sive glutamate release excitotoxicity is the source of AN fiber terminal swelling

following noise-exposure [164, 165]. Recent studies have shown that TTS may

not be as benign as previously thought, since it can be accompanied by perma-

nent deficits at the synapse level where type-I AN fiber terminals connect to the

inner-hair-cells (IHCs). Over the past years, this synapse loss has been named

cochlear synaptopathy (CS) and has been linked to noise-exposure and aging in

mice [13, 16, 34]. Damage to the IHC synapses due to noise-exposure, as seen in

CS, can occur immediately after noise-exposure and can precede a slow degener-

ation of spiral ganglion cells [17]. CS could hence be a possible explanation for

the pathophysiology of hidden hearing loss, where normal audiometric thresholds

are accompanied by supra-threshold hearing deficits, such as decreased speech in-

telligibility in noise [87, 166]. Furthermore, it has been argued that this pathology

may play a role in the origin of symptoms, such as tinnitus or hyperacusis [15,97].

Animal and computational auditory modeling studies have attempted to define

biomarkers for diagnosing CS non-invasively and have shown the potential of audi-
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tory evoked potentials (AEPs). More specifically, the auditory brainstem response

(ABR) and envelope following response (EFR) are promising tests, given that

ABR- and EFR-based derived metrics relate directly to the number of histologically-

verified synapse counts in animal models [13, 31, 32, 125]. Suprathreshold ABRs

are generated by the synchronous firing of AN fibers and brainstem neurons in

response to the rapid onset of a brief stimulus [167]. In rodents with CS, a re-

duced amplitude of ABR wave-I or reduced wave I/V amplitude ratio was ob-

served, which captures the decreased integrity of the peripheral auditory nerve

[13, 16, 17, 33]. The EFR is elicited by continuous, amplitude-modulated signals

and the strength of the response to the stimulus envelope modulation frequency

reflects temporal coding precision in the subcortical neurons [93]. Animals or

models with CS showed reduced EFR-strength, which reflects a deficit in tem-

poral coding fidelity of the auditory system [31, 32, 73, 83, 87], even when hearing

sensitivity recovered or remained normal. Relating these AEP biomarkers to CS in

living humans is far more difficult. Comorbidity with OHC-loss and inter-subject

variability of AEP measures in humans, complicate the use of these methods.

Moreover, CS diagnosis through direct synapse counts is not possible in living hu-

mans and only few human temporal bone studies have been conducted in relation

to CS [38, 39]. Therefore, other methods are required to evaluate how AEP mark-

ers could relate to CS in living humans. Some studies were able to relate ABR and

EFR strength to noise-exposure history [48,54,168,169], aging [42,83,170] or tin-

nitus [15,171], but other studies could not confirm these findings [49,51,53,172].

Longitudinal studies in humans, where AEP-measurements are used to evaluate

auditory-nerve integrity before and after noise-exposure, are scarce. One study

reported unchanged compound action potential amplitudes in electrocochleogra-

phy, the analogue of ABR wave-I amplitude, in relation to recreational noise-

exposure [52].

By recruiting a cohort of young normal-hearing adults, this study rules out

age factors and focuses mainly on noise-induced CS, elicited by attending music

events. The effect of recreational noise-exposure on potential biomarkers of CS

and OHC-damage, as well as its probable consequences on speech intelligibility

are investigated. By adopting a test battery that includes pure tone audiometry

(PTA) at conventional and extended high frequencies (EHFs), speech audiometry

tests in quiet (SPiQ) and in noise (SPiN) and AEP measurements, we hypothesize

that speech intelligibility and AEP measurements may deteriorate due to noise-

exposure, even if PTA is not affected or recovered shortly after noise-exposure.

To this end, the variability of the above-mentioned metrics was analyzed one day

before and in a period of five days after attending a music festival. Moreover, the

relationship of speech intelligibility with AEP-derived metrics or PTA thresholds

were assessed.
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6.2 Methodology

PTA, ABR, EFR and speech intelligibility were used to evaluate short- and long-

term consequences of recreational noise-exposure on the hearing and speech per-

ception of a young normal-hearing cohort.

6.2.1 Participants

Young adults, aged 18 to 25 years, who planned to attend a music festival dur-

ing the summer of 2019 were recruited for this study. Volunteers completed a

recruiting questionnaire, which was used to exclude subjects with known hearing

pathologies, history of ear surgery or tinnitus. Study participation consisted of four

measurement sessions: one baseline measurement session (s1: session 1) between

1 to 3 days before the start of the festival and 3 follow-up sessions: 1 day, 3 days

and 5 days after the end of the music festival. Further on, these follow-up ses-

sions will respectively be referred to as session 2 (s2), session 3 (s3) and session 4

(s4). Subjects were asked not to expose themselves to noise other than that of the

festival during the follow-up period and not to use party drugs. Participants were

free to use HPDs. Twenty subjects participated in the first session, 8 males and 12

females (21.5±2.24 years). Of those subjects, the best ear was chosen as the test

ear, based on tympanometry and PTA. Of the 20 participants, two subjects with

incomplete sessions were dropped. At every test session, subjects completed a test

battery consisting of questionnaires, PTA, SPiQ and SPiN tests, and AEP mea-

surements. The test protocol had a duration of maximum three hours per session

(including breaks and information) and tests were conducted in the same order for

every subject and at every session.

This study was approved by the ethical committee of the Ghent University Hos-

pital (Belgium) and was performed following the statement of ethical principles of

the Declaration of Helsinki. All subjects were informed about the testing proce-

dures and signed an informed consent. Subjects received a financial compensation

for their participation.

6.2.2 Pure-tone audiometry

PTA thresholds were measured while subjects were seated in a double-walled

sound-attenuating measurement booth. At the baseline session, both ears were

tested to select the test ear. Audiometric thresholds were measured at conventional

octave frequencies 0.125, 0.25, 0.5, 1, 2, 4 and 8 kHz, half-octave frequencies of 3

and 6 kHz, and at EHFs of 10, 12.5, 14 and 16 kHz using the modified Hughson-

Westlake procedure. An Equinox Interacoustics audiometer was used and stimuli

were transmitted using Interacoustics TDH-39 headphones and Sennheiser HAD-

200 headphones for conventional frequencies and EHF, respectively. Figure 6.1
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Figure 6.1: First session audiograms. Individual audiograms measured in the first session

(s1: baseline measurement) are shown in thin grey lines. The thick black line represents the

grand-averaged audiogram in the first session.

shows the individual audiograms of the experimental cohort and the respective

group-mean, measured in session s1 (baseline measurement).

6.2.3 AEP measurements

AEP measurements were comprised of EFRs and ABRs. EFRs were evoked

by two stimulus types. Both stimuli consisted of a 4-kHz amplitude-modulated

tone and differed in their modulation waveform. Specifically, sinusoidal ampli-

tude modulation (SAM) was applied to the first pure-tone and rectangular ampli-

tude modulation (RAM) to the second (25% duty-cycle). The latter was adopted

from [44], as this stimulus was found to yield strong EFRs, which are sensitive to

detect CS in auditory model simulations. Both stimuli had a modulation frequency

of 110 Hz, a modulation depth of 100% and a duration of 500 ms. Stimuli were

presented 1000 times with a rate of 2 Hz at 70 dB SPL. ABRs were recorded to

5000 alternating polarity 80-µs clicks, presented at 80 dB peSPL.

At each session, AEP measurements were performed with the Universal Smart

Box (Intelligent Hearing Systems) using SEPCAM software. Subjects were seated

in a comfortable armchair in a quiet room and were watching a muted video during

the recordings. The skin preparation was performed using NuPrep gel and Ambu

Neuroline snap electrodes were placed on vertex, nasion and bilateral earlobes.

The electrodes impedance never exceeded 3 kΩ. All stimuli were presented using
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Figure 6.2: SRT values from different experiment conditions and sessions. (a) Low-pass

(LP) and high-pass (HP) speech-in-quiet (SPiQ) SRT values in dB-SPL. Smaller SPLs re-

flect better performance. (b) Broadband (BB), LP and HP speech-in-noise (SPiN) SRT

values in dB-SNR. Subjects that did not wear HPD during the festival, are specified by

black circles. More negative SRTs reflect better performance.

ER-2 probes (Etymotic Research). Both ears were covered with earmuffs to mini-

mize noise interaction and all inessential electrical devices were turned off during

the measurements. Subjects were instructed to lean their head back and to relax as

much as possible.

6.2.4 Speech intelligibility in quiet and in noise

At each session, SPiQ and SPiN tests were performed at the test ear using the

Flemish Matrix sentence test [173] in Apex 3 software [174]. Sentences were
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Figure 6.3: RAM- and SAM-EFR magnitudes derived from baseline (s1) and follow-up

sessions (s2 to s4). Thin red and blue lines, illustrate variation of individual RAM- and

SAM-EFRs across the sessions, respectively. Respective group-means are shown with thick

lines (RAM: red, SAM: blue) and subjects that did not wear HPD during the festival, are

specified by black circles.

presented in a relatively quiet room using a laptop connected to a Fireface UCX

soundcard (RME) and HDA-300 (Sennheiser) headphones.

At each session, five randomly chosen experimental test-lists were presented

in five conditions, presented in a random order. The five conditions consisted of

two conditions in quiet, where speech was filtered with a zero-phase 256th-order

FIR low-pass (LP) filter or with a zero-phase 1024th-order FIR high-pass (HP)

filter with cutoff values of 1500 and 1650 Hz, respectively. Three conditions were

presented in a speech-shaped noise with a fixed level of 70 dB SPL: a broadband

condition (BB) where no filtering was applied, a LP and a HP condition, where

speech, as well as, noise signals were filtered using the same filter cutoff values as

for LP and HP conditions in quiet, respectively. Due to the filtering, the SPL levels

of 0 dB-SNR LP and HP conditions were 70 and 53 dB SPL, respectively. During

the first session, two training lists were presented in the BB-in-noise condition to

minimize the known learning effect of this test [175]. For all test lists, subjects

were asked to repeat the five-word sentences in a closed, forced-choice setting (10

options for each word were given). Speech was presented in an adaptive procedure

using a staircase paradigm to determine the speech-reception threshold (SRT) with
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Figure 6.4: ABR wave-I (a) and -V (b) amplitudes derived from baseline (s1) and follow-up

sessions (s2 to s4). Thin lines in each panel indicate individual ABR wave-I (a) and -V (b)

variability across the sessions. Group-means are shown with thick lines and subjects that

did not wear HPD during the festival, are specified by black circles.

a minimal step size of 0.1 dB. The mean signal level or mean SNR of the six last

reversals was used as the SRT for the SPiQ and SPiN-tests, respectively. The SRT

values of different conditions and sessions are shown in Figure 6.2.

6.3 AEP Processing

The raw AEP signals were stored in “EEG.F” format and converted to “mat” for-

mat using the custom-made “sepcam2mat” function. Data analysis was performed

offline in MATLAB.

Recorded EFRs were bandpass filtered between 50 and 5000 Hz with an 800th

order FIR filter using “filtfilt” MATLAB function to remove the filter delay. Then,

400-ms epochs were extracted from the 100 to 500-ms time-interval, relative to

the stimulus onset and 200 epochs with the highest peak-to-trough values were

rejected to remove the noisy epochs. The remaining 800 epochs were averaged

and the corresponding spectrum magnitude was constructed using the Fast Fourier

Transform (FFT). Additionally, a bootstrapping approach was adopted in the fre-

quency domain to estimate the noise-floor and variability of the EFR. For a detailed

explanation of the bootstrapping procedure see [43]. EFR strength was defined as

the summation of the signal-to-noise spectral magnitude at fundamental frequency

(110 Hz) and the following three harmonics, i.e. 220, 330 and 440 Hz, if they were

above the noise-floor [44]. Extracted RAM- and SAM-EFR magnitudes from dif-

ferent sessions are shown in Figure 6.3.

Recorded ABR traces were bandpass filtered between 100 and 1500 Hz using
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Table 6.1: Paired-sample t-test t- and p-values. Reported results are based on the compari-

son of RAM-EFR, SAM-EFR, ABR wave-I and -V amplitudes and averaged PTA thresholds

over three frequency regions (extended high-frequency (EHF): 10-16 kHz, high-frequency

(HF): 2-8 kHz and low-frequency (LF): 0.125-1 kHz) between sessions. t- and p-values

relative to significant group-mean differences are shown in bold letters. No significant

group-mean differences were observed in this regard.

Compared

Sessions
RAM SAM wave-I wave-V

Mean-Audiogram

EHF LF HF

s1-s2
t(17)=0.05

p=0.98

t(17)=1.34

p=0.20

t(17)=-1.40

p=0.18

t(17)=-0.70

p=0.48

t(17)=-1.88

p=0.08

t(17)=-1.54

p=0.14

t(17)=-2.16

p=0.04

s1-s3
t(17)=-0.10

p=0.92

t(17)=-0.04

p=0.97

t(17)=0.49

p=0.63

t(17)=-0.85

p=0.41

t(17)=0.65

p=0.52

t(17)=-0.52

p=0.61

t(17)=0

p=1

s1-s4
t(17)=-1.20

p=0.28

t(17)=0.23

p=0.82

t(17)=-1.20

p=0.25

t(17)=-1.79

p=0.09

t(17)=0.21

p=0.84

t(17)=-1.10

p=0.28

t(17)=0.39

p=0.70

the same filter applied to EFRs. Twenty millisecond epochs were extracted rela-

tive to the stimulus onset and baseline correction was applied by subtracting the

mean-value of each epoch. Two hundred epochs, equal number of each polarity,

with the highest peak-to-trough values were rejected to remove the noisy epochs

and the remaining 4800 epochs were averaged [94]. ABR peaks and troughs were

identified manually and were confirmed by visual inspection of a second audiol-

ogist. The wave-I and V peak-to-trough values extracted from recordings of each

session were considered for the analysis (Figure 6.4).

6.4 Results

Audiograms, speech reception thresholds, ABR wave-I and V amplitudes, RAM-

and SAM-EFR magnitudes of 18 young normal-hearing subjects were extracted

from four measurement sessions performed before (one session) and after attend-

ing the festival. To assess the effect of recreational noise-exposure on the ex-

tracted metrics and to investigate the respective variabilites within one, three and

five days after the exposure, statistical Student t-test analysis was applied. We ex-

plored whether there are any statistically significant differences between metrics

recorded in different sessions.

Applied paired-sample t-test analysis with Bonferroni correction compared

RAM-EFR, SAM-EFR, ABR wave-I and -V amplitudes, audiogram and SRT met-

rics between each pair of the experimental sessions: s1-s2, s1-s3 and s1-s4. Con-

sidered session-pairs compare the short-term (s1-s2) and long-term (s1-s3 and s1-

s4) effects of noise-exposure on each metric. Given that five of the 18 partici-

pants (27.77%) did not use HPDs during attending the festivals, we considered

them separately in our statistical analysis, as well as mixed with the whole cohort.

However, the population of non-HPD users was not large enough to draw any con-
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Table 6.2: Paired-sample t-test t and p-values of subjects that did not use HPD during the

music event. Reported results are based on the comparison of RAM-EFR, SAM-EFR, ABR

wave-I and -V amplitudes and averaged PTA thresholds over three frequency regions (ex-

tended high-frequency (EHF): 10-16 kHz, high-frequency (HF): 2-8 kHz and low-frequency

(LF): 0.125-1 kHz) between sessions. t- and p-values relative to significant group-mean dif-

ferences are shown in bold letters. No significant group-mean differences were observed in

this regard.

Compared

Sessions
RAM SAM wave-I wave-V

Mean-Audiogram

EHF LF HF

s1-s2
t(4)=0.60

p=0.58

t(4)=1.08

p=0.34

t(4)=-0.62

p=0.57

t(4)=0.35

p=0.74

t(4)=-0.73

p=0.50

t(4)=-1.55

p=0.19

t(4)=-3.20

p=0.03

s1-s3
t(4)=0.24

p=0.82

t(4)=1.29

p=0.27

t(4)=-0.37

p=0.73

t(4)=0.48

p=0.66

t(4)=0.99

p=0.40

t(4)=-0.55

p=0.61

t(4)=0.37

p=0.73

s1-s4
t(4)=0.82

p=0.46

t(4)=1.18

p=0.30

t(4)=0.49

p=0.65

t(4)=-0.41

p=0.70

t(4)=-0.22

p=0.84

t(4)=-2.06

p=0.11

t(4)=-0.50

p=0.64

clusion. Besides the t-test analysis, Pearson correlation analysis was performed to

evaluate the relationship between speech intelligibility and audiometric thresholds

or AEP-derived metrics.

6.4.1 Variability of AEP-derived metrics and PTA thresholds

Paired-sample t-test analysis with Bonferroni correction, revealed no significant

difference between RAM-EFR, SAM-EFR, ABR wave-I and -V amplitudes in non

of the three above-mentioned paired-sessions (Table 6.1, Figure 6.3 and 6.4). Ob-

tained results for ABR wave-I are in line with Grinn et al. findings in [52], who

did not find ABR wave-I amplitude reductions in humans after attending a noisy

event. Excluding outliers or HPD-users did not affect group-mean differences

significantly. Table 6.1 details the t- and p-values of the paired-sample t-test, cor-

responding to each metric and experiment session. Results of similar analysis, but

implemented only on non-HPD users are shown in Table 6.2. Evaluation of the

audiogram variability between the sessions was performed on audiometric thresh-

olds averaged over three frequency regions: (i) extended high-frequency (EHF:

10-16 kHz), (ii) high-frequency (HF: 2-8 kHz) and (iii) low-frequency (LF: 0.125-

1 kHz). Akin to EFR and ABR metrics, insignificant differences were observed in

similar frequency regions of paired-sessions (Table 6.1: considering all subjects,

Table 6.2: non-HPD users). To make this comparison in a more frequency-specific

manner, we applied the t-test between audiometric thresholds of each frequency,

as well (Table 6.3). Panel (a) of Figure 6.5 illustrates group-mean audiograms of

each session. Averaged EHF audiograms of individuals and corresponding vari-

ability over the four sessions are shown in panel (b) of Figure 6.5. However, the

only significant difference was obtained at 10 kHz, between s1 and s2 sessions

(t(16)=-3.07, p=0.01).
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Table 6.4: Paired-sample t-test results of SRT comparison between sessions. t- and p-values

relative to significant group-mean differences are shown in bold letters.

Compared

Sessions
SPiQLP SPiQHP SPiNBB SPiNLP SPiNHP

s1-s2
t(17)=-1.65

p=0.12

t(17)=-0.58

p=0.57

t(17)=0.75

p=0.46

t(17)=1.58

p=0.13

t(17)=0.06

p=0.95

s1-s3
t(17) = 2.99

p = 0.01

t(17) = 6.12

p < 0.00

t(17)=2.00

p=0.06

t(17) = 3.62

p < 0.00

t(17) = 3.67

p < 0.00

s1-s4
t(17)=2.63

p=0.02

t(17)=2.75

p = 0.01

t(17) = 3.49

p < 0.00

t(17) = 7.82

p < 0.00

t(17) = 7.04

p < 0.00

Since the 10-kHz PTA thresholds of each non-HPD user increased by 5 dB-HL

from session s1 to s2, leaving out HPD users, the corresponding t-values could not

be determined. However, the other group-mean differences remained insignificant

between the compared sessions.

6.4.2 Speech reception threshold variation across the sessions

Different from AEP-derived metrics and audiometric thresholds, more significant

differences were observed between SRT values of respective conditions in differ-

ent sessions (Figure 6.2). However, the short-term effect of the noise-exposure

(between s1 and s2 sessions) was still absent in all speech audiometry conditions.

Corresponding paired-sample t-test t- and p-values are reported in Table 6.4 and

significant differences are specified in bold letters. On the contrary, group-mean

differences were improved significantly (decreased SRT values) between s1 and

s3, as well as between s1 and s4 sessions for all conditions, except for the BB

in noise (s1-s3: t(17)=2.00, p=0.06) and LP in quiet (s1-s4: t(17)=2.63, p=0.02)

conditions. Removing outliers did not affect group-mean differences (Table 6.5),

whereas excluding HPD-users led to non-significant results in all conditions and

paired sessions, except for the HP in quiet condition in s1-s3 paired session com-

parison (Table 6.6, t(4)=4.11, p=0.01).

Our findings contrast those of the study of Grinn et al. [52], where the noise

dose of an event was related to a reduction in SPiN intelligibility. Our study

showed a significant improvement in SRT-values in the follow-up sessions, which

could possibly be attributed to a learning effect. Figure 6.6 shows the declining

trend (improvement) of different conditions’ SRT-values across the sessions. Even

though we used two training lists to overcome the learning effect, as suggested in

the literature [175], significant improvements of SRT-values were observed across

the sessions. As a consequence of this learning effect, possible deteriorations in

speech intelligibility, shortly after noise-exposure could remain undetected.
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Figure 6.5: Variability of PTA thresholds across the sessions. (a) Comparison of grand-

averaged PTA thresholds in different sessions. (b) Variability of averaged EHF audiograms

across the sessions. Mean EHF audiomatric threshold of HPD- and non-HPD useres are

shown in purple and black, respectively. Corresponding individual variabilties are speci-

fied by thin gray lines. The thick black line, represents the group-mean of averaged EHF

audiometric thresholds.

6.4.3 Relationship between speech intelligibility and AEP-derived

metrics

With a focus on the recreational noise-exposure effect on peripheral hearing and

speech perception mechanisms, we explored if any relationship exists between

speech intelligibility SRT values and AEP-derived metrics or audiograms. In this

context, correlation analyses were performed (Pearson’s r- and p- values), to de-

termine the relation between SRT values of different conditions and EFR magni-

tudes, ABR markers and mean-audiometric thresholds of three frequency regions

(Tables 6.7 and 6.8). Due to the learning effect observed in the speech intelligibil-
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Table 6.5: Paired-sample t-test results of SRT comparison between sessions, after excluding

outliers. t- and p-values relative to significant group-mean differences are shown in bold

letters.

Compared

Sessions
SPiQLP SPiQHP SPiNBB SPiNLP SPiNHP

s1-s2
t(16)=-1.27

p=0.22

t(15)=0.54

p=0.59

t(16)=1.98

p=0.09

t(12)=-0.03

p=0.97

t(14)=1.66

p=0.12

s1-s3
t(16)=2.69

p=0.02

t(12) = 5.80

p < 0.00

t(17)=2.00

p=0.06

t(13) = 3.14

p < 0.00

t(16) = 2.78

p < 0.00

s1-s4
t(17)=2.63

p=0.02

t(16) = 2.78

p = 0.01

t(14) = 4.01

p < 0.00

t(14) = 7.12

p < 0.00

t(17) = 7.04

p < 0.00

Table 6.6: Paired-sample t-test results of SRT comparison between sessions (non-HPD

users). t- and p-values relative to significant group-mean differences are shown in bold

letters.

Compared

Sessions
SPiQLP SPiQHP SPiNBB SPiNLP SPiNHP

s1-s2
t(4)=0.14

p=0.89

t(4)=0.41

p=0.70

t(4)=-1.28

p=0.27

t(4)=0.38

p=0.72

t(4)=1.64

p=0.18

s1-s3
t(4)=3.27

p=0.03

t(4) = 4.11

p = 0.01

t(4)=-0.09

p=0.93

t(4)=0.83

p=0.45

t(4)=1.53

p=0.20

s1-s4
t(4)=1.05

p=0.35

t(4)=0.98

p=0.38

t(4)=0.41

p=0.70

t(4)=2.37

p=0.08

t(4)=3.67

p=0.02

ity test from the baseline session to the forth session (Figure 6.6), we only rely on

the correlation analysis results of the baseline session (s1). Although, according

to the paired-sample t-test analysis, SRT values did not change significantly be-

tween s1 and s2 sessions, the results of session s2 might still be affected by both

the learning effect and the noise-exposure dose.

Correlation analysis in the baseline session, yielded two significant correla-

tions. First, an unexpected positive correlation was observed between SAM-EFR

and SPiNHP, (r=0.61, p=0.01, n=18). After removing the outliers, this correla-

tion became even stronger (Figure 6.7a: r=0.69, p < 0.00, n = 17). This finding

is inconsistent with the negative correlation of SAM-EFR and SPiNHP reported

in [123]. Given that in the same session, RAM-EFR, an EFR-based metric gen-

erated by almost same generators as in SAM-EFR, did not correlate to SPiNHP

(Figure 6.7b), we suspected that the presence of variable minor degrees of OHC

dysfunction among the subjects could have resulted in a positive significant corre-

lation between SAM-EFR and SPiNHP. Underlying this reasoning is the model

simulations presented in [44], which showed that SAM-EFR is sensitive to OHC-

damage, whereas the RAM-EFR is minimally affected by OHC deficits. The ob-

tained positive correlation of SAM-EFR and SPiNHP in our study remained in the
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Figure 6.6: Individual variability of SRT values across the sessions in different conditions:

(a) low-pass (LP) in quiet, (b) high-pass (HP) in quiet, (c) broadband (BB) in noise, (d) LP

in noise and (e) HP in noise. Thin gray and black lines in each panel represent SRT-value

variablity of HPD and non-HPD users across the sessions, respectively. Pooled average

SRT values are shown with thick colored lines.

s2 follow-up session (r=0.68, p < 0.00, n=18), but disappeared after excluding

the outliers (r=0.28, p=0.36, n=16). The second, positive correlation was found

between the average audiometric thresholds of the HF region (2 to 8 kHz) and

SPiQHP in session s1 (r=0.67, p < 0.00, n=18; Table 6.8). However, this signif-

icant correlation vanished in the follow-up sessions. No significant correlations

were observed in session s1 between RAM-EFR magnitudes, ABR wave-I or V

amplitudes and either of the SRT-values in the different conditions.

6.5 Discussion

This study aimed to investigate the impact of recreational noise-exposure on poten-

tial biomarkers of CS in a group of 18 young normal-hearing subjects. In [176], we

showed that lifetime noise-exposure history of our study cohort (calculated based

on the questionnaires) does not correlate with either of the EFR, ABR, speech

perception and audiogram metrics. Our inclusion criteria, specifically normal au-

diometric thresholds and the absence of hearing related symptoms, eliminated ears

with OHC-dysfunction as much as possible. The assumption of a normal function-

ing cochlear amplifier facilitates interpretation of the other hearing-test results in
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Table 6.7: Results of the correlation analysis. Pearson’s r and p-values related to significant

correlation between speech intelligibility SRT values and RAM-EFR, SAM-EFR, ABR wave-

I and wave-V amplitudes are specified by bold letters.

Metric Session SPiQLP SPiQHP SPiNBB SPiNLP SPiNHP

RAM

s1
r=0.25

p=0.31

r=0.21

p=0.40

r=0.16

p=0.52

r=0.31

p=0.20

r=0.34

p=0.17

s2
r=-0.29

p=0.24

r=0.03

p=0.98

r=-0.04

p=0.86

r=0.23

p=0.36

r=-0.09

p=0.71

s3
r=0.44

p=0.07

r=0.32

p=0.20

r=0.29

p=0.24

r = 0.56

p = 0.01

r=0.10

p=0.68

s4
r=-0.04

p=0.88

r=-0.19

p=0.44

r=0.31

p=0.21

r=0.41

p=0.09

r=0.15

p=0.55

SAM

s1
r=0.15

p=0.54

r=0.23

p=0.36

r=0.11

p=0.67

r=0.40

p=0.10

r = 0.61

p < 0.00

s2
r=0.45

p=0.06

r=0.36

p=0.14

r=0.15

p=0.54

r=-0.08

p=0.74

r = 0.68

p < 0.00

s3
r = 0.64

p < 0.00

r = 0.50

p = 0.04

r = 0.52

p = 0.03

r=0.44

p=0.06

r=0.14

p=0.58

s4
r=-0.17

p=0.50

r=-0.25

p=0.32

r=-0.04

p=0.86

r=0.07

p=0.77

r=-0.02

p=0.92

wave-I

s1
r=-0.02

p=0.93

r=0.02

p=0.95

r=-0.15

p=0.54

r=0.16

p=0.51

r=0.12

p=0.63

s2
r=-0.15

p=0.54

r=-0.17

p=0.51

r=-0.08

p=0.74

r=-0.41

p=0.09

r=0.01

p=0.97

s3
r=0.11

p=0.67

r=0.40

p=0.10

r=0.32

p=0.19

r=0.04

p=0.86

r = 0.51

p = 0.03

s4
r=-0.08

p=0.73

r=0.27

p=0.27

r=0.13

p=0.60

r=0.08

p=0.74

r=0.03

p=0.90

wave-V

s1
r=0.38

p=0.12

r=-0.06

p=0.82

r=0.14

p=0.58

r = 0.57

p = 0.01

r=0.47

p=0.05

s2
r=-0.04

p=0.87

r=-0.10

p=0.68

r=0.20

p=0.42

r=0.23

p=0.36

r=-0.17

p=0.49

s3
r = 0.53

p = 0.02

r=0.27

p=0.28

r=0.30

p=0.22

r = 0.53

p = 0.02

r=-0.02

p=0.94

s4
r=-0.01

p=0.95

r=0.19

p=0.44

r=0.16

p=0.51

r=0.24

p=0.34

r=-0.01

p=0.95

the context of hidden hearing-loss or CS. However, individual variabilities due to

minor degrees of OHC-loss among the young normal-hearing listeners with audio-

metric thresholds within the normal range, should not be underestimated. Because

thus far, the only available potential biomarkers of CS are based on indirect AEP

measurements, and those are impacted by both CS and OHC-loss, and hence can-

not be used for differential diagnosis of CS.

In Section 6.1, we hypothesized that even if audiometric thresholds remain

unchanged or recover shortly after the recreational noise-exposure (TTS), metrics

derived from electrophysiological measurements, i.e. EFRs and ABRs, and SRT
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Table 6.8: Results of the correlation analysis. Pearson’s r and p-values related to significant

correlation between speech intelligibility SRT values and averaged PTA thresholds of three

frequency regions are specified by bold letters.

Metric Session SPiQLP SPiQHP SPiNBB SPiNLP SPiNHP

EHF

s1
r=-0.36

p=0.14

r=-0.05

p=0.83

r=0.15

p=0.56

r=-0.19

p=0.45

r=-0.04

p=0.87

s2
r=-0.33

p=0.18

r=-0.31

p=0.21

r=0.02

p=0.93

r=0.03

p=0.92

r=-0.26

p=0.29

s3
r=-0.18

p=0.49

r=-0.08

p=0.76

r=-0.15

p=0.57

r=-0.05

p=0.83

r=0.07

p=0.80

s4
r=-0.01

p=0.96

r=-0.13

p=0.62

r=-0.17

p=0.50

r=0.07

p=0.79

r=0.32

p=0.20

HF

s1
r=-0.19

p=0.44

r = 0.67

p < 0.00

r=0.27

p=0.27

r=0.10

p=0.68

r=0.42

p=0.08

s2
r=-0.24

p=0.34

r=0.21

p=0.39

r = 0.55

p = 0.02

r=0.38

p=0.12

r=-0.16

p=0.52

s3
r=-0.20

p=0.43

r=0.27

p=0.30

r=-0.34

p=0.18

r=0.21

p=0.42

r=0.14

p=0.60

s4
r=0.17

p=0.51

r=0.32

p=0.20

r=0.09

p=0.73

r=0.23

p=0.36

r=0.31

p=0.22

LF

s1
r=0.07

p=0.77

r=0.25

p=0.31

r=0.01

p=0.96

r=0.18

p=0.48

r=0.33

p=0.18

s2
r=0.30

p=0.23

r = 0.01

p = 0.97

r=0.33

p=0.17

r=0.29

p=0.24

r=0.26

p=0.30

s3
r=0.37

p=0.14

r=0.26

p=0.31

r=0.09

p=0.73

r=0.27

p=0.28

r=0.33

p=0.19

s4
r = 0.54

p = 0.02

r=0.17

p=0.51

r = 0.51

p = 0.04

r = 0.67

p < 0.00

r=0.44

p=0.08

values might be affected. Consistent with our hypothesis in a group-level analy-

sis, we did not observe any PTS at the tested frequencies (Figure 6.5). In the first

follow-up session (s2: one day after attending festival), an average TTS of +3.33

dB-HL was observed at 10-kHz compared to the baseline session, which recovered

within three days after attending the festival (according to the session s3 measure-

ment). Based on findings in [52,160,162], the greatest auditory-threshold recovery

occurs within two-to-four hours after the noise-exposure, and hence the possibility

of a recovered TTS in the present study population should be considered.

In contrast with our hypothesis, RAM- and SAM-EFR magnitudes, as well as

ABR wave-I and -V amplitudes group-means did not change between baseline ses-

sion and sessions s2 to s4. Moreover, SRT group-means did not differ significantly

one day after the noise-exposure at session s2, but improved when we compared

those between baseline session and sessions s3 or s4. Gradually improved SRT val-

ues from session s1 to s4 were explained by the learning effect that participants had

acquired after attending each experiment session. This fact also posed a limitation
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Figure 6.7: Correlation analysis: (a) correlation between SAM-EFR magnitude and

SPiNHP, (b) correlation between RAM-EFR magnitude and SPiNHP, (c) correlation be-

tween SAM-EFR magnitude and audiogram at 4 kHz, (d) correlation between RAM-EFR

magnitude and audiogram at 4 kHz. Data-points corresponding to subjects that did not

wear HPD during the festival, are specified by black circles

to our correlation analysis, since we intended to investigate the effect of the noise

dose of a music event on the relation between speech perception performance and

EFR, ABR or audiogram. Although insignificant differences were found between

SRT values of s1 and s2 sessions, the mixed effect of learning and noise-exposure

may still confound the interpretation of the results. Thereby, despite of considering

SRT values of all sessions in our correlation analysis (Table 6.7 and 6.8), we only

relied on the Pearson’s r- and p-values in the s1 session, where the results were

not mixed-up with learning effect, and hence we could not draw any conclusion

related to the effect of recreational noise-exposure on the relationship of SRT with

other metrics.

In session s1, the observed significant correlation between SAM-EFR and

SPiNHP is inconsistent with a recent study of Garrett et al. [123], where SAM-

EFR magnitudes negatively correlated with SPiNHP SRT values. To further ex-

plore the source of this discrepancy, we considered the effect of OHC-loss on

SAM-EFR metric, since a recent modelling and experimental study [44] showed
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that SAM-EFR is affected by both, OHC-loss and CS. To this end, we compared

the relationship of audiometric threshold at 4 kHz, the frequency which is in cor-

respondence with the carrier frequency of SAM stimulus, with SAM-EFR (see

Figure 6.7c) and SPiNHP. Correlation analysis revealed that the 4-kHz audiomet-

ric threshold significantly correlates with SAM-EFR magnitude (r=0.69, p < 0.00,

n=15) and SPiNHP (r=0.51, p=0.04, n=17). These findings suggest that the strong

correlation of SAM-EFR with SPiNHP could be explained by the sensitivity of

SAM-EFR to varying degrees of mild OHC-loss in the young normal-hearing co-

hort. In particular, obtained positive correlation coefficients indicate that increased

audiometric thresholds yielded enhanced SAM-EFR magnitudes. This finding is

consistent with model simulations in [44,83], where the authors showed that OHC-

damage degrades cochlear input to IHC-AN complex and causes AN fibers to op-

erate in a more sensitive amplitude modulation (AM)-coding region and generate

enhanced SAM-EFR magnitudes compared to an intact cochlea, in absence of CS.

In this context, OHC-damage affected RAM-EFRs differently, since the sharp-

rising stimulus envelope and short duty-cycle (25% duty cycle), limit the impact of

reduced cochlear amplification on the response [44]. In line with [44], our RAM-

EFR magnitudes in session s1, showed no significant correlation with audiometric

thresholds at 4 kHz (See Figure 6.7d: r=0.03, p=0.92, n=15). However, the in-

significant correlation of RAM-EFR with SPiNHP (Figure 6.7b: r=0.31, p=0.22,

n=17), is still in contrast with [123]. This discrepancy could arise from the tar-

get experimental group, since in [123], significant RAM-EFR and SRT correla-

tions were observed when young and older normal-hearing groups were pooled

together or when within the age controlled group (young normal-hearing), two

subjects with high DPOAE thresholds were excluded.

6.6 Conclusion

We found no relation between the variability of potential AEP biomarkers of CS

in normal-hearing young adults, after attending a music event. Baseline testing

results and corresponding shifts from session s1 to session s2 did not differ be-

tween subjects. Thus, no strong conclusions can be made regarding the presence

of noise-induced CS shortly after visiting a music festival in this cohort of young

normal-hearing subjects. Possibly, the recreational noise-exposure dose in the

present study was not sufficiently high to cause CS (76.2±7.82 dBA, ranged be-

tween 59.35 and 88.19 [176]). In addition, it is possible that employed biomarkers

for CS are not sensitive or specific enough to detect or to monitor CS in normal-

hearing young adults. The interpretation of speech intelligibility was complicated

by a possible learning effect. Additionally, inter-subject variability due to head-

size and sex [60] and intra-subject variability due to different degrees of awake-

ness [177] could have confounded the AEP-measurements.
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Future studies may provide more insight into distinguishing between the ab-

sence of CS in the study cohort and a lack of specificity in the CS biomarkers.

Hence, it is necessary to (1) further investigate inter-subject variability and test-

retest reliability of the CS biomarkers in a cohort of normal-hearing subjects, (2)

incorporate dosimetry and measure noise doses during the participation of subjects

in noisy events, (3) consider logging of HPD-use during a noisy event and (4) run

the hearing-tests immediately after the event. Finally, larger test groups will allow

us to compare different possibly confounding factors, such as the use of HPD.



7
Overall Discussion and Conclusion

The doctoral research presented in this dissertation addressed the growing concern

among the hearing research community regarding the availability of sensitive diag-

nostic tools that distinguish two sub-components of sensorineural hearing deficits,

i.e. outer-hair-cell (OHC) loss and cochlear synaptopathy (CS), particularly when

they co-exist. According to animal studies, CS targets auditory-nerve population

and degrades supra-threshold sound encoding, while it leaves hearing thresholds

unaffected. Additionally, CS precedes OHC-loss in the aging process [32, 34],

and thus it is expected that a large population of people who have normal audio-

metric thresholds but complain about understanding speech in presence of noise,

or those with impaired audiograms, may suffer from CS. With a perspective of

rehabilitation through hearing aids, a gain prescription alone is not expected to

enhance or restore the speech intelligibility of those people, which stresses the

need for personalized audio-processing algorithms that compensate for different

aspects of the hearing-loss. However, a deficit- and frequency- specific diagnostic

tool of sensorineural hearing-loss (SNHL), which is the vital prerequisite for de-

veloping such individualized hearing restoration methods, was missing. Although

a frequency-specific quantification of the OHC-loss aspect of SNHL is possible

through distortion product otoacoustic emission (DPOAE) measurements or au-

diograms, CS quantification is not straightforward in live humans. The main rea-

son that has thus far hindered the accomplishment of this task is the indirect nature

of the available diagnostic tools for humans. While a direct estimation of auditory

nerve (AN) damage (i.e. CS) in animal models is feasible through temporal bone

histopathology and immunostaining, implementation of such invasive and direct
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assessments is impossible in live humans. On the other hand, auditory evoked

potentials (AEPs) as candidate non-invasive markers for SNHL diagnosis, are af-

fected by both OHC-loss and CS, and hence their quality is compromised by the

presence of mixed hearing pathologies. Therefore, while we ought to rely on these

indirect and non-invasive measures for the SNHL diagnosis in humans, it is neces-

sary to strengthen their discriminating power to isolate CS, while being maximally

insensitive to possible co-existing OHC-damage.

Hitherto, animal studies have shown that the envelope following response (EFR)

to a modulated stimulus is a robust marker of CS in the absence of OHC-loss, and

respective changes due to CS are greater than that of the auditory brainstem re-

sponses (ABRs) [31, 32]. However, recent experimental studies on animal models

(e.g. Parthasarathy et al. in [32]) and model simulations in [44], have shown that

in addition to CS, co-occurring damage to OHCs can have an impact on EFR mag-

nitudes. Furthermore, the spread of the basilar membrane (BM) excitation due to

stimulation, confounds the frequency-specific diagnosis of the CS on the basis of

EFRs [41, 73, 87, 100]. According to the experimental and modelling findings in

Chapter 2 of this thesis, frequency sensitivity of the EFR to a broadband ampli-

tude modulated stimulus is limited to frequencies above 2 kHz due to degraded

amplitude-modulation (AM) coding at lower frequencies. In this regard, simu-

lated EFR magnitudes fell in line with recorded EFRs and remained unchanged in

response to broadband stimuli with lower cut-off frequencies below 2 kHz. Both

simulations and recordings showed considerably reduced responses to stimuli with

a bandwidth of [4-22] kHz. Model simulations exploring how different tonotopic

regions of the cochlear partition contribute to the EFR generation, ascribed the

lack of low-frequency AM-coding (below 2 kHz), to the relatively high modulation

frequency of the stimulus, i.e. 120 Hz. Even though lowering the stimulus modu-

lation frequency improved the AM-coding strength in both BM and AN stages of

the model at low characteristic frequency (CF) channels, it is not recommended.

Because the brain response to modulation frequencies below 70 Hz may involve

generators from auditory processing levels beyond the brainstem, EFRs to lower

modulation frequencies may be less sensitive to diagnose CS [117].

Having determined the sensitivity of EFRs to broadband stimuli, we aimed

to develop a frequency-specific EFR-based metric, since the contributed off-CF

channels to AM-coding can confound the frequency-specificity of the EFR as a

diagnostic tool for CS (Chapter 2, Figure 2.2). With this purpose, Chapter 3 in-

troduced the derived-band EFR (DBEFR), which is constructed by subsequent

subtraction of EFRs to broadband stimuli with various bandwidths, akin a pro-

cedure earlier adopted for ABRs [61]. The DBEFR offers a frequency-specific

metric in the [2-6] kHz frequency region (see Chapter 3 Figure 3.11) and mini-

mizes possible effects of subject-specific factors, because it is based on a relative

metric design. Experimentally, we found that DBEFR magnitudes extracted from
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the [2-6] kHz frequency region, significantly decreased as a consequence of age-

ing (Experiment 2: younger normal-hearing (yNH) versus older normal-hearing

(oNH)), elevated hearing thresholds (Experiment 2: oNH versus older hearing-

impaired (oHI)), but not due to self-reported hearing difficulties (Experiment 1:

NH versus self-reporteed hearing difficulties (NHSR)). To identify the sources of

this variability, CS and OHC-loss effects on DBEFR magnitudes were simulated.

Introducing CS to the model showed that DBEFR magnitudes extracted from the

[2-6] kHz region reduce in absence of OHC-loss and applying OHC-loss alone

increased the simulated DBEFR magnitudes. Even though CS had a much larger

impact on the DBEFR magnitude than OHC-damage, the effect of the latter com-

ponent was not negligible. The CS simulations were able to explain the signif-

icantly degraded DBEFR magnitudes of the oNH group. The suspected CS in

those listeners could be related to either age-induced CS or accumulated lifelong

noise-exposure, supported by human post-mortem studies [38–40,133]. However,

the significant difference between DBEFRs of oNH and oHI listeners were de-

scribed based on both OHC-loss and CS, since model simulations showed that

DBEFRs are affected by co-existing sources of SNHL. The DBEFR magnitude

group-mean difference between NH and NHSR groups was insignificant. More-

over, no relationship was observed between the DBEFR magnitudes of NHSR

group and respective noise-scores reported in individual questionnaires (Chapter 3,

Figure 3.9), which might have stemmed from the variability in reporting lifetime

noise-exposure dose [37, 48, 49].

Taken together, Chapter 3 showed that while DBEFR magnitudes extracted

from [2-6] kHz can offer a frequency-specific diagnostic tool for CS in the pres-

ence of normal audiometric thresholds, they are not CS-specific when OHC-loss

co-exists. A recent study by Vasilkov et al. [44], showed that the EFR to a rect-

angularly amplitude modulated (RAM) pure-tone, is a CS-specific metric, which

is minimally affected by OHC-damage. The RAM-EFR, by virtue of the sharply

rising stimulus envelope, yields a stronger EFR magnitude compared to that of

the DBEFR. Nevertheless, the general sensitivity of AEPs to OHC deficits, even

when this influence is very small (as in the RAM-EFR), may confound the accu-

rate AEP-based CS diagnosis. Thus, with a view on precise AEP-based auditory

profiling, it is necessary to combine AEPs with an another metric, which is explic-

itly sensitive to OHC-damage and at the same time frequency-specific. Thus far,

audiograms and DPOAEs have been widely used for frequency-specific quantifi-

cation of the OHC-damage in clinical applications and hence, when used together

with AEP-based CS metrics they may be able to isolate the CS degree. To make

this feasible, Chapter 4 took a model-based approach in combination with physi-

ological measurements to build personalized SNHL (OHC-damage and CS) pro-

files. Specifically, the method was implemented following two fundamental steps:

(1) perform a frequency-specific cochlear model individualization and (2) derive a
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frequency-specific AN-pattern that in combination with (1), matches the recorded

AEPs.

To develop individualized cochlear models, cochlear-gain-loss (CGL) param-

eters associated with OHC-damage were determined using either audiogram or

DPOAE measurements. While the former was implemented by translating frequency-

specific dB-HL into cochlear filter gain-loss, longitudinal cochlear filter coupling

and associated gain propagation along the cochlear partition complicated DPOAE-

based CGL parameters setting. To overcome this issue, a machine-learning ap-

proach was proposed that given the DPOAE thresholds/DP-grams recorded at

certain frequencies, predicts corresponding CGL parameters across the CF chan-

nels. Adopting the developed machine-learning approach, the potential of DPOAE

thresholds and DP-grams, as common objective metrics for diagnosis of OHC-

damage in clinical applications, were assessed (Chapter 5). Following a thorough

investigation, individualized cochlear models based on DP-grams measured at six

primary levels were compared to those based on DPOAE thresholds. This eval-

uation assessed to which extent DPOAE threshold/DP-gram-based individualized

cochleae were able to predict the measured (1) DPOAE thresholds/DP-gram and

(2) audiogram. We showed that DPOAE-threshold-based cochlear model indi-

vidualization performs equally well as the DP-gram method, when measured at

low primary levels. Both approaches yielded the smallest error in predicting the

respective DPOAE thresholds/DP-grams and audiogram, although audiogram pre-

diction errors were overall higher. The observed smaller prediction errors for lower

stimulation levels were consistent with the idea that DPOAEs measured at near-

threshold primary levels are better indicators of OHC-damage [108]. On the other

hand, the overall higher audiogram prediction errors were explained by consider-

ing the broadband characteristics of the AN excitation patterns used for predict-

ing audiograms versus more localized responses measured by DPOAEs. Because

DP-grams measured to low stimulation levels and DPOAE thresholds performed

equally well, the latter was chosen for the developing individualized SNHL mod-

els, since it provides a metric that is calculated by involving both near- and supra-

threshold stimulation levels. To compare DPOAE- and audiogram-based cochlear

individualization methods, personalized cochlear models with DPOAE-thresholds

(at four primary frequencies) and audiograms (at 12 frequencies) were adopted to

build individualized SNHL profiles.

Having the personalized cochlear models, we simulated AN-damage patterns

by altering the population and types of AN fibers, in the second step of the individ-

ualization procedure. Akin to the first step, this was implemented in a frequency-

dependent manner, since the AN distribution [18,94] and the applied AN-fiber loss

across the CF [133] were frequency-dependent.

To connect AEP measurements of study participants with simulated subject-

specific AN-damage profiles, a range of AEP-derived metrics (e.g. RAM-EFR
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strength, ABR amplitudes, latnecies and corresponding growth functions) were

simulated. Afterwards, a forward-backward classification method was proposed

to (i) determine which set of the AEP-derived metrics gives the highest accuracy

in predicting individual CS profiles, (ii) cross-validate the predicted individual-

ized CS profiles and (iii) specify which of the cochlear model individualization

methods, either audiogram or DPOAE-thresholds, is more accurate to predict per-

sonalized SNHL profiles. In practice, the forward-backward classification method

comprised two classifiers, of which the first was trained with individualized AEP-

derived metrics simulated for different CS profiles, in order to determine which of

the simulated CS profiles best matched the corresponding measured AEP-derived

metrics (forward classification). Given that direct AN-synapse counts are not ac-

cessible for humans, the second classifier (backward classification) served as a

validation tool. It was trained with the measured AEPs and CS-profile labels pre-

dicted by the first classifier in forward classification to predict the CS degree of

simulated individualized AEPs. In this way, the proposed classification approach

provided a tool to evaluate the accuracy of the adopted classifier in the forward

classification, assess the efficiency of various sets of the AEP-derived metrics, and

investigate the effect of different cochlear model individualization methods on au-

ditory profiling.

Despite the small number of available DPOAE thresholds (i.e. four frequency

points), setting the cochlear pole-functions based on DPOAE thresholds yielded

higher CS-profile prediction accuracy than the audiogram-based method that used

12 frequency points. Focusing on the cochlear model individualization methods,

this success could have stemmed from the notion that OAE is a more sensitive

metric to deficits related to the cochlear-damage [135–138] and is not influenced

by inner-hair-cell/AN damage [25], whereas the audiogram could have. Consider-

ing the accuracy of different AEP metrics in predicting individual CS profiles, the

RAM-EFR outperformed other metrics, in both cochlear individualization meth-

ods. For a given individualized cochlear model, when low and medium sponta-

neous rate (MSR and LSR) AN fibers were removed (profile A in Figure 4.3), the

magnitudes of simulated RAM-EFRs reduced by 15% compared to the normal-

hearing profile (i.e. without CS). Besides the deletion of MSRs and LSRs, re-

moving every 23% of the high spontaneous rate (HSR) AN fibers in profiles B

to E, caused an additional 10% magnitude reduction of the simulated RAM-EFR

magnitudes. In this regard, the proposed method yielded a 79.63% specificity in

predicting simulated individualized CS profiles using a backward classifier. Con-

sequently, the implemented method on yNH, oNH and oHI groups, suggested that

RAM-EFR metrics combined with DPOAE-thresholds may provide a frequency

and deficit-specific diagnostic tool to predict individualized SNHL profiles. Our

method predicted that the yNH listeners of our study either had normal AN-fiber

patterns across the CF or very mild degrees of CS, whereas higher degrees of CS
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were predicted for oNH group participants. The latter can be ascribed to age-

induced CS, which also confirms the findings in Chapter 3, where lower DBEFR

magnitudes of the same oNH listeners were explained by their degraded supra-

threshold envelope coding ability induced by age-related CS. In this regard, oHI

listeners were predicted to suffer from severe degrees of CS. However, it is note-

worthy that because of the limitation posed by the BM-filter gain in the model,

simulating CGLs above 35 dB-HL was impossible. Hence, predicted CS profiles

for individuals in the oHI group with audiometric losses greater than 35 dB HL,

were less reliable.

By designing personalized classifiers, the implementation of the individual-

ization process was further improved. Unlike the first implementation where we

trained a single classifier for all individuals, in the improved version, subject-

specific CS profiles were predicted using personalized classifiers, which were

trained with simulated individualized RAM-EFRs. Even though the predicted CS

profiles from either method did not differ considerably, it is expected that per-

sonalized classifiers might provide a better representation of the individualized

CS profiles. Moreover, the proposed individualization technique was validated by

applying the trained classifier (in the backward classification stage) to recorded

RAM-EFRs of a new cohort of young normal-hearing listeners. This validation

step used data that was not part of the training, and hence supports that the method

could be generalizable to other recording setups and cohorts [43]. However, train-

ing the classifier with recordings of a larger and more diverse population, may

provide more reliable prediction of individualized CS profiles. These promising

results suggest that the RAM-EFR metric is sensitive to age-induced CS and that

when combined with DPTH thresholds, can provide a reliable CS-specific measure

in presence of OHC-loss. In addition, a recent study on the same dataset [123],

showed that the RAM-EFR magnitude predicts the variation of speech-in-noise

intelligibility across yNH, oNH and oHI participants of the experimental cohort.

Furthermore, the sensitivity of the RAM-EFR magnitude to Kainic-acid (tested on

budgerigar), i.e. ototoxic CS, has been confirmed in [123].

To further study the potential of the RAM-EFR as an AEP-based metric for

CS diagnosis, its sensitivity to recreational noise-exposure was studied in Chap-

ter 6. However, no significant difference was observed in RAM-EFR magnitudes

of yNH listeners measured one day before attending a music festival and one,

three and five days after. Besides the RAM-EFR, other measured metrics, i.e.

the SAM-EFR magnitude, ABR wave-I and V amplitudes, standard and extended

high frequency audiometric thresholds, neither changed significantly across the

baseline and follow-up sessions. Albeit a 3.3 dB-HL threshold-shift at 10 kHz

audiometric thresholds was observed from the baseline to the first follow-up ses-

sion, this threshold-shift vanished in the third and forth follow-up sessions. These

findings comply with the notion that humans are less sensitive to noise-induced
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CS than animal models [18, 59]. Since, dosimetry was not performed during ex-

posure to loud music, exact exposed noise levels during the festivals were not at

hand. Hence, maybe the exposed noise actual levels (76.2±7.82 dBA [176]) were

not high enough to cause synaptic losses [37]. Despite the use of two training

lists in the speech intelligibility test conducted in the baseline session, significant

learning effect was observed on speech reception thresholds (SRTs) in noise and

quiet (i.e. lower SRT values) across the sessions [175]. It was of great interest

to explore the effect of festival-related noise-exposure on the relationship between

RAM-EFR strength and SRT values of the speech in quiet (SPiQ) and noise (SPiN)

tests, but the observed learning effect hindered such type of investigation. Bene-

fiting from the speech-test carried out in the baseline session, where the learning

effect could not cause any confound on SRT values, the relation between SRTs

and other measured metrics was studied. These analysis indicated a strong posi-

tive correlation between the high-pass SPiN condition and SAM-EFR magnitude,

whereas no significant correlation was observed between RAM-EFR magnitude

and the same speech intelligibility condition. These results are inconsistent with

results of [123]. Further investigation revealed that the sensitivity of SAM-EFR

metric to audiometric thresholds at 4 kHz, and at the same time the meaningful

and positive correlation of audiometric threshold at 4 kHz and high-pass SPiN

SRT values, have reflected on the significant correlation between SAM-EFR and

high-pass SPiN. Different to the SAM-EFR, the RAM-EFR did not correlate to

audiograms measured at 4 kHz, and confirmed that it is not affected by variable

degrees of OHC-loss reflected on the audiometric thresholds within the normal

range.

Limitations and future perspectives

The presented doctoral research in this thesis aimed to unravel the respective ef-

fect of SNHL sources on AEPs and develop objective diagnostic tools for CS, in

presence of OHC-loss. Auditory profiling not only predicted individualized AN-

damage patterns, but also for the first time provided individualized model of the

auditory periphery based on AEP metrics. These personalized auditory periphery

models can be used as a basis to develop hearing restoration algorithms after con-

sidering the impact of higher level auditory processing on AEPs, e.g. model-based

speech enhancement methods that account for CS, as well as OHC-damage aspect

of the SNHL. Nevertheless, there were some experimental and modelling limita-

tions that constrained the efficiency of the proposed methods within the framework

of this research. The following paragraphs address to those limitations and provide

perspectives for the future.

• In the adopted computational model of the auditory periphery, the maximum
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possible gain that can be applied to the BM filters to simulate CF-dependent

CGL, is 35 dB. This limitation restricts the CGL simulations and makes it

impossible to apply CGLs greater than 35 dB for listeners with audiometric

thresholds above 35 dB HL. This issue can be addressed in the future by

developing a BM filter-bank that provides gains higher than 35 dB, and at

the same time remains stable [178]. In this regard, considering the effect of

inner-hair-cell damage (100% loss of the AN fibers) may create additional

gain-loss to simulate the larger threshold shifts than 35 dB HL. Incorporating

the effect of IHC-damage in the model, will provide the extra benefit of

simulating presbycusis, that affects the OHCs gain and receptor potential

of IHCs. In this way, we will be able to compare the simulated sensory

and neural presbycusis models with those proposed by Schuknecht et al.

in [179].

• Using DPOAE thresholds measured at four primary frequencies, could have

compromised the accuracy of the frequency-specific cochlear model indi-

vidualization. Therefore, measuring them at more frequencies will provide

more accurate individualized frequency-specific models.

• In the cochlear model, pole values of the BM admittance function change

automatically as a function of stimulus level to simulate cochlear compres-

sion and level-dependent cochlear filter width. To develop the personalized

cochlear model, we adjusted these pole values across the CF to simulate the

effect of OHC-damage on cochlear filtering. Thus, by increasing pole val-

ues across the CF and leaving the level-dependent pole trajectory function

untouched, the same applied stimulation level caused a reduced cochlear

model output sensitivity, with a more linear I/O function. It is expected that

considering the compression slope, as well as the BM filter pole-functions in

the cochlear model individualization procedure, might improve the accuracy

of the future individualized models of the auditory periphery.

• The high computational cost of running the adopted transmission-line (TL)

cochlear model through the cochlear model individualization process, hin-

dered simultaneous implementation of CGL and AN-damage individualiza-

tion. However, executing cochlear model individualization process through

the recently developed convolutional neural-network (CNN) based imple-

mentation of the TL cochlear model [180], will offer a faster procedure.

• The insignificant effect of the recreational noise-exposure on the potential

biomarkers of CS observed in Chapter 6, could be related to the recruited

small population of yNH listeners. This prevented a statistical meaning-

ful comparison between measurements of hearing protection device (HPD)

users and those who did not use HPD. Recruiting larger test groups will
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provide the required statistical power to investigate the effect of such con-

founding factors.

• It is worthwhile to further investigate the RAM stimulus, since among the

hitherto studied AEP-based metrics, the RAM-EFR metric has shown to be

most affected by CS, and the least sensitive to OHC-loss. Hence, running

model simulation for carriers at lower and higher frequencies can provide

an insight into its sensitivity to SNHL sub-types at other frequencies and

offer an informative tool for quantifying supra-threshold envelope coding at

lower and higher frequencies than 4 kHz. In addition, conducting test-retest

measurements is a necessary step to assess the reliability and robustness of

the RAM-EFR metric, recorded to stimuli with different carrier frequen-

cies. The results of such measurements combined with the validation using

animal histopathology studies will play a significant role in future clinical

applications.
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