

3D Reconstruction of Persons and Objects Using Multiple Cameras with
Overlapping Views in the Presence of Occlusion

Maarten Slembrouck

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Engineering

Prof. Peter Veelaert, PhD - Prof. Wilfried Philips, PhD

Department of Telecommunications and Information Processing
Faculty of Engineering and Architecture, Ghent University

Supervisors

October 2021

Wettelijk depot: D/2021/10.500/78
NUR 958
ISBN 978-94-6355-530-2

Members of the Examination Board

Chair

Prof. Patrick De Baets, PhD, Ghent University

Other members entitled to vote

Prof. Em. Dirk De Clercq, PhD, Ghent University
Prof. Peter Lambert, PhD, Ghent University

Prof. Hiep Luong, PhD, Ghent University
Jürgen Slowack, PhD, Barco
Prof. Steven Verstockt, PhD, Ghent University

Supervisors

Prof. Peter Veelaert, PhD, Ghent University
Prof. Wilfried Philips, PhD, Ghent University

Acknowledgements

Needless to say, this work would not have been accomplished without
the help and support of family, friends and colleagues. Therefore, I want
to take a moment to express special thanks to several people.

I would like to thank my supervisors, prof. Peter Veelaert and prof. Wil-
fried Philips for giving me the opportunity to pursue my doctoral degree
in the Image Processing and Interpretation group. In particular, I want
to say thank you for reviewing the texts I have written. The criticism,
hard at times, certainly improved the quality of the work. I also want to
thank the jury members em. prof. Dirk De Clercq, prof. Peter Lambert,
prof. Hiep Luong, prof. Steven Verstockt and dr. ir. Jürgen Slowack to
take the time to read my dissertation and to provide valuable feedback.

A special thank you goes to my parents, Mieke Vanhollemeersch and
Johan Slembrouck, for giving me the opportunity to study engineering
in Ghent and to support me unconditionally in all my endeavours.

I also want to thank my (ex-)colleagues at TELIN. Without them, the
past years would not have been the same. Numerous lunch break dis-
cussions about silly subjects brightened up the work-life. Unfortunately,
social contact was significantly reduced during the Corona pandemic,
but I am confident that we will pick this up again.

I spent much time outside of work on ice rinks to be involved in my
true passion, Short Track. It is a welcome distraction from work at
Ghent University during the many training sessions and competitions.
Therefore, I thank all my friends that are involved in this beautiful sport.

And last but not least, I would like to thank my girlfriend, Fabienne
Coremans, to keep up with me during times when I kept rambling on
about several research problems, even though she has no reason to care
about them.

Ghent, October 7, 2021
Maarten Slembrouck

i

Table of Contents

Samenvatting vii

Abstract xi

List of Figures xiv

List of Tables xvii

Glossary xix

1 Introduction 1

1.1 Problem statement . 1
1.2 Background and related work 4

1.2.1 Volumetric shape reconstruction 4
1.2.2 3D human pose estimation 6

1.3 Applications . 8
1.4 System overview and outline 9
1.5 Contributions and publications 11

2 Camera Model and Multi-camera Calibration 15

2.1 Camera model . 16
2.1.1 Intrinsic parameters 17

I. Camera matrix 17
II. Lens distortion 17
III. Intrinsic camera calibration 20

2.1.2 Extrinsic parameters 22
I. Transformation matrix 22
II. Extrinsic camera calibration 23

2.2 Camera configurations . 25
2.2.1 Multi-camera setups 25
2.2.2 Turntable setups using a single camera 27

2.3 Camera coverage maps . 28
2.4 Sensitivity analysis of calibration accuracy 29

iii

TABLE OF CONTENTS

2.4.1 Zoom errors . 30
2.4.2 Pan/tilt errors . 31
2.4.3 Distance-related errors 31

2.5 Conclusion . 32

3 Silhouette Extraction 35

3.1 Colour segmentation . 36
3.2 Motion segmentation . 38
3.3 Neural network segmentation 42
3.4 Experiments and discussion 44

3.4.1 Experiment 1: indoor environment 46
3.4.2 Experiment 2: outdoor environment 47

3.5 Conclusion . 50

4 Volumetric Shape Reconstruction 53

4.1 Shape reconstruction from images 54
4.1.1 Single-sensor reconstruction 55
4.1.2 Multi-sensor reconstruction 56

4.2 Representation of 3D objects 57
4.2.1 Voxel-based representations 57
4.2.2 Volumetric mesh-based representations 59
4.2.3 Discussion: which representation fits best? 60

4.3 Shape-from-silhouettes . 61
4.3.1 Voxel-based shape-from-silhouettes 64
4.3.2 Mesh-based shape-from-silhouettes 67

4.4 Space carving . 69
4.5 Shape reconstruction experiments 72

4.5.1 Camera configuration 74
4.5.2 Voxel size . 74
4.5.3 Shape analysis: garment fitting 77

4.6 Conclusion . 78

5 Occlusion Handling 81

5.1 Occlusion . 81
5.1.1 Definition and problem statement 81
5.1.2 Occlusion coverage map 83

5.2 SfS with occlusion handling 84
5.2.1 Shape from incomplete silhouettes 85
5.2.2 SfS using occlusion masks 86
5.2.3 SfS using occlusion depth maps 88

5.3 Automatic occlusion detection and handling 91
5.3.1 Partitioning of the reconstruction space into cells . 91

iv

TABLE OF CONTENTS

5.3.2 Cell-based geometric reasoning 93
I. Evaluation metric 94
II. Extended silhouettes 95
III. Coverage, resemblance and consistency

score . 96
IV. Coverage vs. resemblance 98
V. The occlusion handling algorithm 99

5.3.3 Examples of how the method works 101
5.3.4 Cell-based approach for 3D reconstruction from

incomplete silhouettes (ACIVS 2017) 104
5.4 Experiments and results 106

5.4.1 Experiment 1: smart traffic analysis 107
5.4.2 Experiment 2: qualitative comparison of the 3D

reconstruction . 110
5.4.3 Experiment 3: real-world single person tracking . . 113

5.5 Conclusion . 115

6 3D Human Pose Estimation 117

6.1 Pose estimation from 3D shapes 118
6.2 Pose estimation in 2D images 120

6.2.1 Artificial neural network 120
6.2.2 Neural networks for pose estimation 120

I. Popular pose estimators 121
II. OpenPose: Realtime multi-person 2D pose

estimation 125
III. Alternative keypoint models 127

6.3 Triangulation . 129
I. Minimizing the reprojection error 130
II. Finding the midpoint 131

6.4 Cross-view pose correspondence 132
6.4.1 Pairwise correspondences 134
6.4.2 Clustering and triangulation 135
6.4.3 An example . 137

6.5 3D keypoint reconstruction 139
6.5.1 Occluded joints . 139
6.5.2 Typical pose estimation errors 140

I. Limb switch error 141
II. Double limb error 141
III. Misdetected limb error 142
IV. Frame drop 143

6.5.3 Error frequency . 143
6.5.4 Handling limb ambiguities 146

v

TABLE OF CONTENTS

6.6 Experimental results . 148
6.7 Conclusion . 153

7 Projects and Applications 155
7.1 Gait analysis (IRUNMAN) 156
7.2 Game controller and rehabilitation (IPLAY) 161
7.3 Expert recording (COSMO) 163
7.4 Assembly line analysis (Complexity) 165
7.5 Conclusion . 169

8 Conclusions 171

Appendices 175

A List of Publications 177
A.1 A1 publications . 177
A.2 Conference publications 178

B Events 181

Bibliography 183

vi

Samenvatting

Wanneer een camera zijn omgeving vastlegt, gaat de 3D-structuur ver-
loren tijdens het projectieproces op de beeldsensor. Bij computervisie
wordt onder andere onderzocht hoe computers de gecapteerde ongeving
op hoog niveau kunnen begrijpen op. Vaak is het herwinnen van een
begrip van deze 3D-structuren een essentiële stap om de ongeving correct
te interpreteren. Het observeren van de omgeving vanuit meerdere
gezichtspunten helpt om deze beter te begrijpen dan wanneer slechts
één gezichtspunt wordt gebruikt. Door de informatie in de beelden
van verschillende gezichtspunten te fuseren, is het mogelijk om een 3D-
reconstructie te maken van de objecten in de omgeving.

Vanuit meerdere camerabeelden kunnen 3D-modellen van objecten ge-
maakt worden en specifieke eigenschappen gemeten worden, zoals hun
volumeverdeling. Een typische use case is bijvoorbeeld het monitoren
van het groeiproces van een plant door op regelmatige tijdstippen deze
plant te reconstrueren om zo de invloed van zonlicht en meststoffen te
onderzoeken. Omdat computers steeds krachtiger worden, kunnen we
zelfs 3D-objecten reconstrueren in realtime. De volumetrische informatie
van objecten in de ongeving kan worden gebruikt voor het volgen van
de bewegingen van mensen in de ongeving of zelfs voor het analyseren
van verkeer.

Augmented en virtual reality (AR/VR) vormen een ander toepassingsge-
bied voor de technieken die voorgesteld worden in dit boek. Omdat dit
soort toepassingen sterk afhankelijk zijn van de bestaande 3D-omgeving.
Huidige oplossingen tracken niet volledige beweging van het lichaam van
een gebruiker, maar enkel van specifieke apparaten die worden gedragen
door de gebruiker, bv. headsets en handcontrollers. Het tracken van
het hele lichaam kan helpen om een meeslependere gebruikerservaring
te creëren. Zo’n applicatie vereist zowel volumetrische reconstructie en
schatting van de lichaamshouding.

In realistische omgevingen kunnen de camera’s vaak niet het volledig

vii

object of de volledige persoon vastleggen vanwege obstakels tussen de
locatie van het object of de persoon en de camera. Dit fenomeen wordt
occlusie genoemd. Occlusies zijn afhankelijk van het perspectief van
de camera. Wanneer een object in een bepaald aanzicht geoccludeerd is,
betekent dit niet noodzakelijkerwijs dit ook het geval is vanuit een ander
gezichtspunt. Occlusie gebeurt voornamelijk op drie manieren. Objec-
ten bewegen achter statische obstakels in de scène (statische occlusie),
bv. een persoon die achter een boom loopt, of door bewegende objecten
die een ander object tijdelijk verbergen (dynamische occlusie), bv. een
auto die voor een voetganger passeert, of doordat delen van het object
ander delen van hetzelfde object vebergen (zelfocclusie), bv. iemands
arm voor zijn romp.

State-of-the-art methoden gaan niet goed om met occlusie. De 3D-
reconstructie van een object ontbreekt in zo’n geval typisch delen die
niet zichtbaar zijn vanuit alle gezichtspunten. De meeste van deze 3D-
reconstructiemethoden gaan er immers van uit dat alle camera’s het
volledig object kunnen observeren. Bijvoorbeeld, wanneer een persoon
naast een tafel staat, kan de reconstructie een been missen omdat de
tafel het been in ten minste één aanzicht verbergt. Om de impact
van occlusie op de 3D-reconstructie te verminderen, is het essentieel
om voldoende gezichtspunten te hebben waarin dezelfde delen van het
object niet telkens worden geoccludeerd.

Om de uitdagingen bij het reconstrueren van 3D-geometrie vanuit beel-
den het hoofd te bieden, nemen toepassingen die een hoge nauwkeu-
righeid vereisen vaak hun toevlucht tot gespecialiseerde hardware of
een op maat gemaakte omgevingen die de problemen uit de weg gaan.
Typische voorbeelden zijn (meerdere) dieptesensoren, roterende tafels
of het gebruik van extreem veel cameras. Een dergelijke oplossing is
duur wanneer hoge resoluties vereist zijn en zijn niet in staat om een
volledige 3D-reconstructie in realtime te genereren (bv. dieptesensoren
creëren slechts 2.5D-reconstructies en draaitafels kunnen alleen statische
objecten reconstrueren). Bovendien is het soms onmogelijk (vanwege
de kosten) of onpraktisch om op te schalen, bv. verkeersmonitoring,
fabrieksbrede installaties, ... Die speciale sensoren laten toe om de
3D-structuur nauwkeuriger te reconstrueren met minder sensoren, maar
ondervinden nog steeds problemen met occlusie. Tegelijkertijd kunnen
camera’s ook worden gebruikt voor fotorealistische reconstructies of om
de omgeving beter te begrijpen.

We presenteren robuuste, krachtige algoritmen om nauwkeurige 3D-re-
constructies mogelijk te maken in uitdagende omstandigheden met ca-
meranetwerken waarbij de camera’s deels dezelfde omgeving zien, maar

viii

Samenvatting

vanuit verschillende gezichtspunten. We bieden een oplossing voor de
volledige pijplijn, van het capteren van beelden tot een fundamentele
analyse van het 3D-model en 3D-pose-inschatting van mensen in de
omgeving door 2D-poses te reconstrueren in 3D. Het inschatten van
menselijke poses kan helpen om de prestaties van een atleet in sport te
verbeteren of games te besturen zonder controllers. Sommige van deze
applicaties vereisen realtime verwerking. Daarom wordt ook rekening
gehouden met rekensnelheid in elke stap van de pijplijn.

We stellen een oplossing voor het occlusieprobleem door gebruik te ma-
ken van meerdere camera’s die rond de persoon of het object zijn geposi-
tioneerd. Door het aantal gezichtspunten te vergroten, verkleinen we de
kans dat deze objecten tegelijkertijd in meerdere camera’s worden geoc-
cludeerd. Deze strategie stelde ons in staat een algoritme te ontwikkelen
dat reconstructie kan uitvoeren terwijl occlusie kan worden afgehandeld
door te redeneren op een geometrische niveau.

Een traditionele techniek genaamd shape-from-silhouettes benadert een
3D-reconstructie op basis van de silhouetten van dat object vanuit meer-
dere gezichtspunten en vormt de basis van dit werk. Omdat we voor-
namelijk met bewegende objecten te maken hebben, gebruiken we vaak
voorgrond-/achtergrondsegmentatie om deze silhouetten te verkrijgen.
Camerakalibratie is ook vereist omdat de relaties tussen camera’s nauw-
keurig gekend moet zijn om 2D-beeldcoördinaten om te zetten naar 3D-
coördinaten. Om een object volumetrisch te reconstrueren, segmenteren
we eerst de projectie ervan in elk camerabeeld.

Om menselijke bewegingen in detail te analyseren, presenteren we ook
een raamwerk voor het schatten van lichaamshoudingen in 3D. Onze 3D-
pose-inschatting maakt gebruik van de output van 2D-pose-inschatters,
die gevoelig zijn aan verschillende fouten zoals het wisselen van ledema-
ten en onbetrouwbare detecties. Onze bijdrage is de robuuste 3D-fusie
van deze foutgevoelige geschatte 2D-poses. De resultaten laten zien dat
de reconstructie voldoende dicht bij op commerciële markergebaseerde
systemen ligt, die in dergelijke experimenten als de gouden standaard
worden gebruikt.

De belangrijkste bijdragen van dit werk zijn:

• een real-time 3D volumetrische reconstructiemethode op basis van
silhouetten;

• een real-time en betrouwbare 3D-pose-inschatter op basis van fout-
gevoelige 2D-poses;

ix

• een robuust algoritme voor het afhandelen van occlusie voor het
verbeteren van volumetrische reconstructie en 3D-pose-inschatting;

• de combinatie van volumetrische reconstructie en 3D-pose-inschat-
ting om het begrijpen van de omgeving te bevorderen;

• een end-to-end realtime pijplijn van afbeeldingen/video’s tot een
volledige 3D-reconstructie.

Het onderzoek resulteerde tijdens dit doctoraat in 7 peer-gereviewde
tijdschriftartikelen, waarvan één als eerste auteur. Bovendien werden 17
peer-gereviewde bijdragen gepresenteerd op internationale conferenties
over computervisie, 7 als eerste auteur en 10 als co-auteur (zie Appendix
A).

x

Abstract

When a camera captures its environment, the 3D structure is lost during
projection on the image sensor. Computer vision deals with how com-
puters can gain a high-level understanding from images or videos. Often,
regaining a sense of these 3D structures is an essential step towards scene
understanding. Observing the scene from multiple camera views helps
to understand a scene better compared to a single image. By fusing
the images from different camera views, it is possible to recreate the 3D
shapes of the objects in the scene.

Applications include, for example, creating 3D models of real-world
objects to measure specific properties such as volume distribution and
circumferences. For instance, by reconstructing a plant at fixed time
intervals, the plant’s growth process can be monitored to analyse the
impact of sunlight and fertiliser. Because computers become more and
more powerful, we can even reconstruct 3D object for every set of images
from different cameras. The volumetric information of such 3D recon-
structions can be used for tracking people’s movements in the scene or
even for analysing traffic.

Augmented and virtual reality (AR/VR) form another application field
for such a system because these type of applications depend heavily
on the 3D real-world environment. Current solutions do not track the
movement of the whole person, but only of specific devices worn or
carried by the person, e.g., headsets and hand controllers. Full-body
tracking can help to accomplish a more immersive user experience. Such
an application requires volumetric shape reconstruction and real-time
3D human pose estimation.

In real-world environments, the cameras often cannot capture the en-
tire objects/persons of interest due to obstacles between them and the
camera. This phenomenon is called occlusion. Occlusions are always
dependent on the camera’s perspective. When an object is occluded in
one view, it does not necessarily mean that it is occluded in the other

xi

view. Occlusion mainly happens in three ways. Objects of interest move
behind static obstacles in the scene (static occlusion), e.g., a person
walking behind a tree, moving objects hide the object of interest tem-
porarily (dynamic occlusion), e.g., a car crossing in front of a pedestrian,
or parts of the object hide parts of the same object (self-occlusion), e.g.,
a person’s arm in front of his torso.

State-of-the-art methods currently do not handle occlusion well. Typ-
ically, parts of the object that are not visible in one view are missing
from the reconstruction, even when they are visible in some other views.
Most of these 3D reconstruction methods assume that all cameras can
observe all objects in the scene. For example, when a person is standing
next to a table, the reconstruction may miss a leg because the table
occludes the leg in at least one view. To avoid the impact occlusions
can have on the 3D reconstruction, it is essential to have enough views
left in which each part of the object is not occluded.

To overcome the challenges in reconstructing 3D geometry from 2D
views, applications requiring high accuracy resort often to specialised
hardware or highly tailored environments. Typical examples are (multi-
ple) depth sensors, rotating tables or extremely dense camera networks.
Such a solution is expensive when high resolutions are required or cannot
offer a full 3D reconstruction in real-time (e.g.,depth sensors create
2.5D reconstructions, turntables can only reconstruct static objects).
Moreover, it is sometimes impossible (due to cost) or impractical to
scale up, e.g., traffic monitoring, factory-wide installations, etc. On the
other hand, dedicated sensors allow one to reconstruct the 3D structure
more accurately with fewer views but still suffer from occlusions. At the
same time, general-purpose cameras can also be used for photorealistic
reconstruction or to gain further understanding of the environment.

In this work, we present robust, high-performance algorithms to enable
accurate 3D reconstruction in challenging conditions using a network
of cameras with overlapping views. We offer a solution for the entire
pipeline of the solution from input images to a fundamental analysis
of the 3D model and 3D human pose estimation in the scene. We use
3D human pose estimation to assess an athlete’s performance in sports,
control immersive games and track workers in a factory. Some of these
applications require real-time processing. Therefore computation speed
is taken into account as well and essential in every part of the pipeline.

We propose a solution to the occlusion problem with multiple cameras
positioned around the person/object of interest. By increasing the num-
ber of viewpoints, we reduce the chance that these objects are occluded

xii

Abstract

simultaneously in multiple cameras. Furthermore, this strategy allowed
us to develop an algorithm that can perform 3D reconstructions while
handling occlusion through geometric reasoning.

A technique called shape-from-silhouettes approximates a 3D reconstruc-
tion from the silhouettes of the object as seen from multiple viewpoints
and forms the basis of this work. Since we mainly deal with moving ob-
jects, we often resort to foreground/background segmentation to obtain
these silhouettes, but when real-time processing is not required, neural
network segmentation often provides a reliable alternative. Camera
calibration is also necessary because the relations between cameras are
needed to map 2D image coordinates to the 3D world.

To further analyse human movement, we also present a 3D human pose
estimation framework. The 3D human pose estimation uses 2D poses
that are detected by 2D pose estimators, which are sensitive to several
errors such as mislabelled limbs, misdetected keypoints and occluded
keypoints. Our contribution is the robust 3D fusion of the often error-
prone 2D poses. Furthermore, the results show that the reconstruction
is close to marker-based systems, used as the gold standard in such
experiments.

The main contributions of this work are:

• a real-time 3D volumetric shape reconstruction method based on
silhouettes;

• a real-time and reliable 3D human pose estimation based on error-
prone 2D poses;

• a robust occlusion handling algorithm that improves volumetric
shape reconstruction and 3D human pose estimation;

• the combination of volumetric shape reconstruction and 3D human
pose estimation to improve scene understanding;

• an end-to-end real-time pipeline from images/videos to a full 3D
reconstruction.

The research during this PhD resulted in 7 peer-reviewed journal papers,
with one as the first author. Moreover, 17 peer-reviewed conference
papers were presented at international computer vision conferences, 7
as first author and 10 as co-author (see Appendix A).

xiii

List of Figures

1.1 Hudl Technique manual annotation example 2
1.2 Shape reconstruction at Sport Science Lab Jacques Rogge 3
1.3 System overview . 9

2.1 Pinhole camera model: perspective transformation 16
2.2 Light refraction in a converging lens 18
2.3 Image undistortion example 18
2.4 Different types of radial and tangential distortion 19
2.5 Recognition of the checkerboard pattern 21
2.6 Coordinate system transformations 23
2.7 POSIT algorithm results: intersection dataset of Ghent . 24
2.8 Multi-camera setups of different use cases 26
2.9 Reconstruction of static objects using a turntable 28
2.10 Illustration of a camera coverage map 28
2.11 Camera coverage map (traffic intersection in Ghent) . . . 29
2.12 Focal length error simulation 31
2.13 Pan/tilt error simulation 32

3.1 Different bayer patterns 36
3.2 Green key studio for reliable colour segmentation 37
3.3 RGB values vs HSV values for colour representation . . . 37
3.4 Foreground/background segmentation overview 38
3.5 YOLACT neural network segmentation 43
3.6 Visual segmentation results (indoor dataset) 47
3.7 Visual segmentation results (outdoor dataset) 49

4.1 Fixed voxel grid representation 58
4.2 Octree-based reconstruction 59
4.3 Volumetric mesh reconstruction 60
4.4 Synchronized silhouettes from a breakdancer 62
4.5 Voxel-based SfS of a breakdancer 62
4.6 Relation between pixel size and voxel size 63
4.7 Silhouette backprojection vs. voxel projection 64

xiv

LIST OF FIGURES

4.8 Projection test optimization 67
4.9 Intersection of cones . 69
4.10 Space carving: how to handle self occlusion 70
4.11 Visual hull vs. photo hull 70
4.12 Reconstruction of a breakdancer using space carving . . . 72
4.13 Volumetric shape reconstruction for different camera counts 73
4.14 Volumetric shape reconstruction of the body’s shape . . . 75
4.15 Visual comparison of the abdominal circumference 77

5.1 Illustration of how occlusion happens 82
5.2 3D reconstruction example using incomplete silhouettes . 83
5.3 Occlusion coverage map 84
5.4 Occluders in the Mol dataset 85
5.5 Occlusion masks in the Mol dataset 87
5.6 Camera coverage: occlusion masks vs. depth maps 88
5.7 Occlusion depth maps of the Mol dataset 89
5.8 Example of the self-learning occlusion map 90
5.9 Example of the space partitioning into cells in 2D 92
5.10 Illustration of coverage and resemblance 97
5.11 Typical iterative coverage and resemblance graph 97
5.12 Example of a car and stationary truck in 2D 100
5.13 Observed silhouettes of a 3D example 102
5.14 Proposed 3D reconstruction with occlusion handling . . . 103
5.15 Occlusion in traffic simulation 107
5.16 Typical traffic intersection simulation 109
5.17 Visualization of the simulated occluders 110
5.18 Shape reconstructions from the CVSSP-3D dataset 110
5.19 Shape reconstruction results with multiple occluders . . . 111
5.20 Sensitivity analysis of the reconstruction 112
5.21 Visualization of the output from the proposed method . . 114

6.1 Shape-based pose estimation in basketball free-throws . . 118
6.2 Temporal analysis of a basketball free throw 119
6.3 Visual BlazePose results (CPU) 124
6.4 OpenPose confidence score related to appearance size . . . 126
6.5 OpenPose keypoint models 127
6.6 Hand detection in the COSMO dataset 129
6.7 Reprojection-based triangulation with three views 130
6.8 Midpoint-based triangulation with three cameras 131
6.9 Midpoint between two almost parallel lines 132
6.10 Cross-view pose correspondence problem 133
6.11 Result of the cross-view pose correspondence 136

xv

LIST OF FIGURES

6.12 Graph representation of matched poses 138
6.14 Graph pruning example 138
6.15 Reconstruction of partly occluded keypoints 140
6.16 Example of a limb switch error 142
6.17 Example of double limbs 142
6.18 Examples of misdetected limbs 142
6.19 SSL-JR dataset: running movements 144
6.20 Error type frequencies in the SSL-JR dataset 145
6.21 Simultaneous error frequency in different views 147
6.22 Camera setup in the Sport Science Lab Jacques Rogge . . 148
6.23 Camera setup in Leuven 150
6.24 Typical result of the 3D positions of an ankle keypoint . . 151
6.25 Average positional error 151

7.1 Camera coverage map in gait analysis dataset (SSL-JR) . 157
7.2 Typical foreground/background segmentation results . . . 157
7.3 Results of 3D reconstruction 158
7.4 Spatio-temporal centroid tracking 159
7.5 Gait analysis based on 3D human pose estimation 161
7.6 Two games and one rehabilitation application (IPLAY) . . 162
7.7 Expert recording examples (COSMO) 163
7.8 Tracks and heatmap of the expert’s hand at Mariasteen . 164
7.9 Heatmap of the operator’s hands at CNHI 165
7.10 Complexity StarTT project: assembly line analysis 166
7.11 Clustered trajectories based on spatial dissimilarity 167
7.12 Occlusion removal to improve pose estimation 168

xvi

List of Tables

3.1 Different foreground/background segmentation methods . 40
3.2 Experimental segmentation results (indoor dataset) 46
3.3 Experimental segmentation results (outdoor dataset) . . . 48

4.1 Numerical analysis of voxel sizes 76
4.2 Numerical results of the waist and abdominal circumference 77

5.1 Most suitable cell in each iteration 101
5.2 Cell types and their meaning 104
5.3 Description of the comparison methods 106
5.4 Car reconstruction in the presence of occlusion 108
5.5 Results for an oncoming in a traffic simulation 109
5.6 Shape reconstruction results with multiple occluders . . . 111

6.1 Keypoints of the OpenPose models 128
6.2 Confidence scores of occluded keypoints 141
6.3 Possible combinations with two erroneous 2D-poses 148
6.4 Positional errors and standard deviation 152
6.5 Analysis of the accuracy of the camera calibration 152

7.1 Overview of features used in different applications 156
7.2 Numerical result of the gait analysis 160

xvii

Glossary

Camera calibration The mathematical representation which describes
how a 3D scene is captured by a camera.

Keypoint A point detected by the 2D pose estimator. Each keypoint
consists of a (x,y) coordinate and a confidence score. Most key-
points correspond to human joints.

Keypoint model The configuration in which the keypoints are con-
nected to each other to form a model such as the OpenPose models
MPI, COCO and BODY_25, both 2D and 3D.

Occlusion The phenomenon that a sensor cannot observe the object of
interest due to objects positioned in between the sensor and the
object of interest.

Pose A specific relative position in which a keypoint model appears in
an image or in the 3D world.

Pose estimation The process of recognising parts of a person in an
image to estimate how the body parts are relatively positioned
toward each other.

Silhouette The projection of an object on the image sensor (with loss
of texture). A silhouette in this work is usually represented as a
binary image where the projection of the shape is white and the
rest is black.

Shape reconstruction The process of generating a volume in 3D based
on 2D silhouettes from different camera calibrated camera views.

Voxel An elemental cuboid of fixed dimensions (width, length, height),
more or less the equivalent of a pixel in an image.

xix

Chapter 1

Introduction

1.1 Problem statement

Professional athletes strive to achieve the very best in their sport. When
sport-specific skills reach high levels, the margin to improve becomes
slimmer. Moreover, to maintain a competitive edge over opponents,
details are essential such as subtle differences in technique, which, for
instance, allow more efficient conversion of energy from the muscles to
the desired goal: faster, higher, stronger. Athletes with an efficient
running technique run faster and keep this up for longer. At the same
time, a javelin thrower benefits from an optimal throwing angle and
transfer from muscle strength to the speed of the javelin. Each sport has
its essential techniques, and coaches try to adapt an athlete’s technique
to find that edge over their opponents.

Nowadays, coaches often film their athletes to analyse their technique.
Hudl Technique [44], and Coach’s Eye [96] are mobile apps that facilitate
video analysis during training. Despite their ease of use, it is often
hard to understand the 3D body movement on the basis of a series of
2D images taken from the same viewpoint due to ambiguity of a pose
and possibly invisible parts of the body, as seen from the particular
camera perspective. Moreover, these apps do not provide automatic pose
estimation to aid the trainer in understanding the motion in consecutive
frames. The apps only provide a manual annotation tool to draw simple
shapes on frames separate to illustrate technical aspects as feedback for
their athletes. In Figure 1.1 the left and right legs are indicated using
the manual annotation tool to assess the skater’s position at the entry
of the bend. One can quickly scroll to the previous and next frames of a
video using the controls at the bottom of the screen, but the annotations

1

Problem statement

Figure 1.1: Hudl Technique: indicated lines are manually annotated to asses
skating technique at the entry of the bend.

are not updated automatically. Arm positions are also challenging to
analyse from this perspective due to the similar colour of the upper
body clothing and invisibility of the left arm. A number of building
blocks in this work can be used to automate the annotation process and
provide more objective assessments of the human movement.

To fully understand the scene in which an athlete executes a particu-
lar technical exercise, 3D reconstructions of the athlete and attributes
such as a badminton racket, a javelin or a ball are required. Single-
camera 3D reconstruction remains a challenging problem due to the
loss of depth information after projection. Therefore, 3D positions are
either obtained in combination with depth sensors or by using multiple
cameras. In general, depth cameras have a limited range and smaller
image resolutions than visible-light cameras. Moreover, depth cameras
do not produce a complete 3D reconstruction from a single point of view.
Multiple cameras which are positioned around, accurately track the 3D
motion of objects and humans. Several joints can be accurately tracked
using single-view pose estimators on images from different viewpoints
and reconstructing a 3D pose of the athlete. Such a pose is helpful to
assess biomechanical motion performed by the athlete (Figure 1.2).

A keypoint model is well defined for humans but it is limited to informa-
tion about the relative positions of body parts, which is very valuable,
but only tells part of the story. At the same time, such a keypoint

2

Introduction

Figure 1.2: Sport Science Lab Jacques Rogge: Shape reconstruction of an air
kick. The athlete is segmented in each image and reconstructed in 3D.

model does not consider volumetric information. Volumetric information
defines the space occupied by a person in the scene more accurately than
a keypoint model. It is therefore better to use it to assess whether or
not an athlete would be able to fit in between a gap created by other
players, for instance. Moreover, most rigid objects do not necessarily
contain articulated joints of a keypoint model, e.g., badminton rackets or
balls. In these cases, volumetric 3D reconstruction offers an alternative
way to analyse the motion of objects in general without the need for
a skeleton representation. The combination of pose reconstruction and
volumetric reconstruction creates a richer context to analyse the object’s
movement as each of these reconstructions have complementary benefits
and drawbacks.

A typical problem when working with images and videos is occlusion.
Occlusion is the phenomenon that occurs naturally when a sensor cannot
entirely observe its target within its sensing area. This phenomenon
occurs when an object is positioned in front of another object. Therefore,
the camera cannot observe the entire object behind the occluding object.
Occlusion manifests itself in different ways. The occluding object is
either moving in the scene (dynamic occlusion, e.g., a ball in front of a
player) or it remains at the same position (static occlusion, e.g., the pole
of the badminton). Another important distinction is between object-to-
object occlusion, e.g., a player in front of another player, or self-occlusion,
a part of an object is occluding another part of the same object, e.g.,
the crossed arms in front of a person’s upper body.

Occlusion increases complexity when assessing the pose and shape of an
object/person due to incomplete and incorrect data from the sensors.
The research reported in this thesis will show how multiple camera
observations may improve our understanding of the pose and shape of
such an occluded object by using geometric reasoning between camera
views. Therefore, the proposed method shows why a camera network
with overlapping views is beneficial for occlusion reasoning and is capable

3

Background and related work

of creating more reliable 3D reconstructions.

1.2 Background and related work

Other researchers have investigated solutions for the problem statement.
This section provides an overview of the state-of-the-art methods and
available alternatives to the proposed solution. Since shape reconstruc-
tion and 3D human pose estimation are two different problems that may
require different technologies, we discuss them separately.

1.2.1 Volumetric shape reconstruction

The surface of an object needs to be estimated to obtain volumetric
shape reconstruction. 3D information can either be sensed directly by
using depth sensors (e.g., stereo cameras as in [48, 101, 113, 94], time-
of-flight cameras [24], or micro-lens cameras [103]) or by observing 2D
silhouettes of the object from multiple viewpoints with general-purpose
RGB cameras.

Depth sensors may seem like the most logical choice as they provide
3D points directly. However, these sensors usually provide lower image
resolution, have limited range, and only measure so-called 2.5D because
they can only measure the closest point from the object to the sensor.
Avoiding this requires multiple depth sensors, but these sensors may
interfere with each other. Depth sensors use short light pulses to measure
the time-of-flight or structured light where a known pattern is projected
onto the object (either in visible light or infrared light). The distortion
of the pattern translates to a depth image. However, such specialised
sensors are not as widely adopted as general-purpose cameras, which are
already ubiquitous in many sites, including industrial environments and
traffic intersections. The depth measurements contain inaccuracies due
to noise, and the resolution of these sensors is still limited.

General-purpose cameras are widely available within an extensive
range of specifications. Image resolutions and maximum framerate can
be chosen depending on the use case. Such cameras are also non-intrusive
because they do not interfere with the scene or each other. In general,
visible light cameras can see further than depth cameras. The depth is
obtained using camera calibration in combination with object detections
(silhouettes).

Shape reconstruction from images of an object taken from different
viewpoints can be used to estimate the volumetric reconstruction of that

4

Introduction

object based on the backprojection of the silhouettes, as proposed by
the shape-from-silhouettes (visual hull) concept by Laurentini in 1994
[52]. The reconstructed shape is the intersection of the generalised
cones, each defined by the camera position and the silhouette from each
corresponding camera view.

Incomplete silhouettes deteriorate the estimated shape because shape-
from-silhouette algorithms assume perfect silhouettes. Three types of
errors are common: inaccurate silhouette boundaries, holes in the sil-
houettes, and parts of the silhouette are missing. Such incomplete
silhouettes may be due to errors in the segmentation algorithm, such
as foreground/background (FG/BG) segmentation, but their primary
cause is occlusion. If a static object is positioned between the camera
and the moving object, foreground/background segmentation cannot
segment parts of the silhouette of the moving object. However, occlusion
is very common in many real-life situations. In indoor as well as outdoor
environments, occlusion is often inevitable.

Occlusion handling has been studied before, and the existing ap-
proaches can be divided based on the prior knowledge and the number
of sensors. Xiang et al. [105] proposed a single-camera approach to
detect multiple occluded objects. They used 3D perspective to handle
various occlusion patterns between objects. Partial observations of the
known objects are used to determine their position and orientation.
However, such methods can only be applied to rigid objects with a known
appearance model.

Occlusion-proof 3D reconstruction methods use appearance models of
the object of interest and use part-based detection to recognise the partly
visible objects in the scene [28, 31, 61, 72, 73]. While these methods
work well for the reconstruction of known objects, they can only be
generalised to a broader range of objects if a dataset is available to
model all these different objects. Detecting all different possible objects
will also considerably slow down the reconstruction process.

The more general approaches do not use prior knowledge about the
objects in the scene. Favaro et al. proposed a method that considers
occluded regions in an image as blind spots in the camera view, even
if the occlusion was only temporarily [30]. Also, this method does not
care whether an object appears in front of an occluder.

Extended visual hulls are extensions of the standard shape-from-
silhouettes algorithm. Guan et al. proposed this concept in [37]. The
paper shows that extending silhouettes into regions suspected of occlud-
ing yields more accurate 3D reconstruction than ignoring the occluded

5

Background and related work

areas completely, as shown by Favaro [30]. However, occluded regions
are still treated as utterly devoid of information even when objects pass
in front of the occluding object. Díaz-Más et al. [22, 23] and Landabasso
et al. [51] relaxed the reconstruction process in such a way that one or
more of the cameras may have unreliable silhouette information, without
explicitly modelling in which cameras or in which parts of the scene
this occurs. Such an approach gives rise to reconstructed volumes that
are typically too large but include the original object. In [38], Haro et
al. extended this approach to estimate the number of unreliable cameras
locally rather than globally, using an a priori object model to reduce the
overestimation of the volume.

The shape reconstruction method proposed in this dissertation is similar
to extended visual hull methods because it also aims to reconstruct the
shape of arbitrary objects of unknown size and complexity in a way
that maximally agrees with the incomplete silhouettes. However, our
approach is computationally less demanding. We also create a model to
localise occluders in the scene. We achieve lower complexity by reasoning
on regions of connected voxels rather than individual voxels.

1.2.2 3D human pose estimation

Separately from the reconstruction of arbitrary objects, the reconstruc-
tion of specific key points of an object is also a valuable asset in scene
understanding. 3D positions of keypoints of the human body lead to
3D human pose estimations that can be used to understand a person’s
behaviour in the scene. The 3D pose can determine which action a
person is performing and serves human motion analysis.

Current experiments in the field of human motion analysis are often
performed with marker-based systems such as Qualisys [81], Vicon [65],
and OptiTrack [67]. The biggest drawback of these systems is the time
needed to equip a person with reflective markers. Moreover, markers
may fall off during the data capturing process, rendering that recording
useless. Besides this, such a system with markers cannot be deployed
in numerous applications such as virtual classrooms or athlete analysis
during competition.

Recent advances in markerless monocular pose detection enable new
applications that require semi-accurate tracking of body parts. Such
markerless systems provide the solution for the drawbacks of marker-
based systems mentioned above. Whereas marker-based systems claim
submillimeter accuracy for the markers, markerless systems only obtain

6

Introduction

an accuracy up to a few centimetres. The reason is that a pose estimator
does not always detect a keypoint (e.g., an ankle) at the anatomically
correct position. For optimal results, it is best if the subject wears tight
clothing to avoid that keypoints might not be visible. Even humans
would have a hard time locating the exact position of the joints from
the videos only.

Motion analysis often makes use of the changes in planar joint angles,
e.g., technical performance in sports or basic clinical gait analysis. For
this reason, a markerless system has its value even though it cannot
accurately measure rotations about the limbs axis. Markerless systems
have been around for a while now. Since the early 2000s, research
has been ongoing to locate keypoints in RGB videos. Most of these
approaches relied on shape-from-silhouettes and tried to match a de-
tailed kinematic model. Positional errors were typically larger than 100
mm [19, 18, 78, 79]. Later advances obtained 50 to 100 mm positional
errors on the joints [43, 45]. More recently, the shift to monocular pose
extraction enabled more flexible camera setups [27, 29]. However, the
reported positional errors of these systems are typically between 50 and
150 mm.

Additionally to obtaining better accuracy, we also aim to improve robust-
ness. Unlike the markerless human pose estimation methods mentioned
before, our solution uses the existing 2D pose estimator of OpenPose [16]
and triangulates the pose in 3D. Although these pose estimators produce
impressive results, they are not perfect. Typical problems related to the
use of a single camera are undetected keypoints, misdetected keypoints
due to occlusion of view-related ambiguity, and mislabeled keypoints
e.g., swapping of the left and right leg. We handle all three issues in this
work by fusing the information from multiple viewpoints and present a
robust system for a wide range of applications because of its flexibility
in the number of cameras and scalability. The proposed system can
accurately detect keypoints with positional errors between 25 and 50
mm. Such accuracy is lower than the state-of-the-art methods but is
accurate enough for numerous applications such as game controlling,
behaviour analysis and technical analysis in sports. The accuracy could
be further improved when the camera calibration becomes more accurate,
the camera resolution increases and the pose estimators detect keypoints
more reliable.

7

Applications

1.3 Applications

A network of cameras observes the scene from different viewpoints with
overlapping views to enable 3D reconstruction. On the one hand, we
estimate 3D poses to better understand human movement and behaviour.
On the other hand, we approximate volumetric shape reconstructions of
persons and objects. The combination of 3D human pose estimation
and volumetric shape reconstruction has numerous applications outside
sports, such as in entertainment, for rehabilitation, and in manufac-
turing industry. Depending on the applications, the required precision
differs between a few millimetre (AR/VR) and a few centimetres (sports,
immersive gaming, rehabilitation, manufacturing).

The entertainment business, for instance, may benefit from detailed
3D human pose estimation. VR applications today become even more
immersive for players if they can see the movements of their own body
through the head-mounted display (HMD). Nowadays, VR systems only
track specific devices worn by the player, such as the HMD and hand
controllers. Therefore, these systems ignore certain body parts, such
as the legs, which breaks the immersiveness of such a system. Another
application in the entertainment business are games with freedom of
movement. These games are not restricted to a limited number of
motions (e.g., a game controller with a few buttons) but interact with the
player more naturally and without a controller/wearable. The proposed
system is similar to the Xbox Kinect, but our system is not limited to
actions in front of one particular camera.

The work can also be used for the purpose of rehabilitation. Numerous
people need to rehabilitate after an accident or an injury. Part of
rehabilitation is the correct execution of specific exercises defined by a
physiotherapist. A physiotherapist cannot watch each patient executing
every single exercise. Moreover, the patient usually practices without
supervision. However, when a patient executes an exercise in the wrong
way, it may lead to new injuries or the straining of weak muscles and
joints, which prolongs the rehabilitation period. Therefore, a monitoring
system that automatically detects if exercises are performed correctly
has its merits.

Camera surveillance often uses a camera network, but to reduce the cost
these cameras rarely have overlapping views. In certain circumstances,
however, it is worth investing in a camera setup with overlapping views,
for instance, to reliably determine if there are multiple people in a space
specifically designed for a single person, e.g., a bank vault to monitor for
possible threats and security breaches. The surveillance system becomes

8

Introduction

2D pose estimation

3D human pose

estimation

volumetric shape

reconstruction

occlusion

handling

3D shapes

3D skeletons

camera

calibration

Ch2

Ch3

Ch6

silhouette extraction

2D pose estimation

silhouette extraction

2D pose estimation

silhouette extraction

2D pose estimation

Ch6

Ch5

Ch4

silhouette extraction

Figure 1.3: System overview: images are captured from cameras and two
separate reconstructions are calculated: 3D shapes and 3D poses which each
handle occlusions (chapters in this book indicated with ChX).

much more robust by using multiple cameras since the information from
different viewpoints can be aggregated.

Monitoring workers in a factory can help to optimise specific processes.
For instance, common parts needed for an assembly process on a con-
veyor belt can be placed at easily reachable positions to avoid straining
the worker’s back. By understanding the behaviour of a worker and
the manipulation of objects, it is also possible to semi-automatically
generate a list of work instructions from an expert recording and hence
avoid the tedious task of generating these instructions. Factories use
these instructions to teach other workers to execute the same process.

1.4 System overview and outline

In this section, we explain the system and its challenges under various
real-world circumstances. Figure 1.3 above shows an overview of the
essential parts of the system and refers to the chapters in which we
explain the building blocks in more detail. On the left, we see several
cameras. Each of these cameras captures images that are processed in
two ways: silhouette extraction and 2D pose estimation. The volumetric
shape reconstruction (red) processes the resulting silhouettes, and the
3D human pose estimation processes the resulting poses (blue). Both
reconstructions benefit from occlusion handling (yellow). For each set
of frames from multiple cameras, we produce 3D shapes and 3D poses.

The camera setup needs to be calibrated, which means that we need
to know the position, orientation and intrinsic parameters (focal length,
centre of projection, …) of each camera. Both reconstruction processes
rely on camera calibration. In theory, we need to calibrate once for a

9

System overview and outline

fixed camera setup. However, temperature changes and external forces
may cause inconsistencies in the camera calibration and require recal-
ibration. Chapter 2 reviews multi-camera calibration and overviews
common camera parameters and their functions. It also guides us on how
to perform camera calibration for multiple cameras in a wide-baseline
setup.

For the volumetric reconstruction, the pixels belonging to people or
objects must be segmented in each image from different viewpoints.
In Chapter 3 we discuss how we extract silhouettes of the objects and
people using segmentation. We distinguish between colour segmentation
and foreground/background segmentation. The latter is often most
convenient since the focus is on moving objects/persons primarily. It is
often best suited in real-world environments due to the lack of distinctive
colours between background and foreground.

The silhouettes are backprojected in the 3D space using the camera
calibration. The backprojected silhouettes form generalised cones with
the camera position as their tops. The intersection of all these cones
represents an approximation of the person or object in 3D. In general,
the more views there are, the more precise the reconstruction becomes.
3D reconstruction is discussed in Chapter 4. We discuss different rep-
resentations of a 3D model and explain 3D reconstruction from a set
of calibrated camera images using silhouettes for the visual hull and
additional features such as colour for the photo hull.

Assuming no occlusion and perfect segmentation and detection, the
result of this system is a volumetric shape reconstruction which encap-
sulates the 3D pose. However, in real-world environments, occlusion
and segmentation errors will introduce errors and create challenges to
be tackled. Occlusion occurs when a camera cannot observe the entire
object of interest due to obstacles between the camera and the object
of interest. Different types of occlusion may occur: object-to-object
occlusion or self-occlusion. In the latter case, the object itself occludes
another part of the same object, e.g., an arm in front of a person’s
body. Occlusion, if handled poorly, leads to incomplete silhouettes
and incomplete 3D reconstruction. A similar problem arises when we
cannot segment an object due to similar foreground and background
pixels. Chapter 5 presents our approach to detect and handle occlusion
in detail. We explain geometric reasoning and show how to reconstruct
an object in 3D in the presence of occlusion.

For 3D human pose reconstruction, we match 2D poses in different
viewpoints and triangulate these corresponding 2D poses to estimate the

10

Introduction

3D pose while accounting for labelling and positional errors. Such pose
estimators need large amounts of training data and are object-specific.
In this investigation, we solely focus on human pose estimation, but
we could extend the same technique to other reliable non-human pose
detectors. A solution is presented for the cross-view pose correspondence
problem to reconstruct multiple people in the same scene. We discuss
the entire process in Chapter 6.

While reconstructing multiple objects simultaneously, another challenge
arises. Both volumetric and pose reconstruction underperform when 2D
silhouettes or 2D poses are matched incorrectly, leading to ghost shapes
that are not present and incorrect 3D points. 2D and 3D tracking of the
persons/objects partly solves this issue, but with limited camera views
and an increasing number of people, the challenge persists. Therefore,
it is essential to realise that the number of cameras required for a
particular use case depends on the reconstruction volume and the scene’s
complexity. More people generally means more required cameras and
this should be carefully analysed in detail for each case.

The number of cameras and camera specifications also has impact on two
other challenges: precision and computation speed. Depending on the
application, the results need to be precise (for instance, subtle motion of
the body during a physiological exercise) or computed in real-time. In a
live system, the cameras send their images to the computer in real-time,
which imposes a hard requirement on the bandwidth (usually using a
gigabit ethernet network). Image resolution, frame rate and the number
of cameras determine the required bandwidth. The bitstream should
never reach the maximum available bandwidth to avoid frame drops as
much as possible.

In Chapter 7 several applications are discussed in which our 3D recon-
struction algorithm has proven its usefulness. Examples are the static
reconstruction of objects, the dynamic reconstruction of sports persons
and workers. Each use case has its challenges.

We conclude this dissertation in Chapter 8 with a summary of the
obtained results.

1.5 Contributions and publications

Several research projects and collaborations with companies have made
use of the work reported in this doctoral dissertation. The main projects
were an FWO project, iRUNman, StarTT Complexity, imec.icon IPLAY
and imec.icon COSMO.

11

Contributions and publications

• An FWO project led to a multi-camera dataset, recorded in a hol-
iday home in Mol. We evaluated several trackers on this challeng-
ing dataset with limited overlap between camera views and real-
world occluders. Our detector based on shape-from-silhouettes
reconstruction produced the best results for all individual trackers
investigated. This resulted in two publications: a conference paper
[85] at ICDSC 2015 and a journal publication [68].

• The iRUNman project is a prestigious project that led to the
Sports Science Lab Jacques Rogge opening. In the biomechanics
lab, we installed a camera setup of 8 fixed cameras controlled
from two capture PCs and with an ability to record at 67 fps
at a resolution of 780x580. We used this system to capture people
while walking, running, playing basketball and playing badminton
for research in gait analysis and technical analysis in sports in co-
operation with the Department of Movement and Sport Sciences
of Ghent University.

• The StarTT project Complexity was a valorisation project for
manufacturing industry where we monitored workers at a conveyor
belt. We used five cameras in this project to capture the worker
and detect specific events, such as picking items from a large
storage rack. The trajectories of the person were captured and
used for anomaly detection and clustering. We were able to extract
how many times a certain pickup happened and if there were any
anomalies from this data. This research led to four conference
papers ([4], [108], [107] and [5]) and one journal paper [6].

• The imec.icon IPLAY project resulted in a fully integrated enter-
tainment unit with pressure sensors, LEDs in the floor and a wall
projection. We added four cameras to this system to track the 3D
pose of the player in order to manipulate games. There were two
applications in this project: gaming and rehabilitation. At the end
of the project, the demonstrator showcased that all components in
the system worked nicely together. The work in this project led to
two conference papers ([2] and [90]) and one journal paper ([36]).

• The imec.icon COSMO project investigates the semi-automatic
generation of work instructions for line work. An expert demon-
strates a series of instructions captured by cameras and micro-
phones. We track the worker and extract events from his move-
ments to identify the instructions. Voice recognition in co-operation

12

Introduction

with object detection on the video enriches the instruction infor-
mation.

In total, the work reported in this dissertation contributed to the publi-
cation of 7 peer-reviewed international journal articles, of which one as
a first author, and 17 international conference papers, 7 of which as the
first author. For a complete list of publications, we refer to Appendix
A. Aspects of this work were demonstrated at several notable events
such as iMinds the Conference 2016, Sports Innovation Congress 2017
and ITF Future Summits in 2019. We also participated in a valorisation
trajectory during the iMinds iBoot 2015. See Appendix B for more
information about these events.

13

Chapter 2

Camera Model and
Multi-camera Calibration

We reconstruct 3D models based on 2D images captured from different
viewpoints in this work. It is crucial to know where these cameras are
positioned and how they are rotated in relation to each other and the
world coordinate system. More specifically, a camera captures a 2D
projection of the 3D scene with a loss of implicit depth information. In
order to attempt to reverse the projection process (backprojection), we
need to understand precisely how images are formed on the sensor.

The imaging process of a camera can be defined by two sets of param-
eters: the intrinsic parameters and the extrinsic parameters. Intrinsic
parameters are those that are specific to the internal workings of the
camera. These parameters describe how the light travels inside the
camera (from lens to image sensor). The extrinsic parameters describe
the position and orientation of a camera in the 3D space to a world
coordinate system.

Camera calibration represents the process of estimating the camera pa-
rameters mentioned above. In that way, it is possible to relate all
cameras to a shared world coordinate system so that pixels from different
camera images can be used to reconstruct the 3D scene. Therefore,
camera calibration is an essential step towards 3D reconstruction from
multiple viewpoints. Errors in the calibration lead to inferior 3D recon-
struction. Significant errors may even render the reconstruction useless.

This chapter is structured as follows. Section 2.1 explains a camera
model which is widely used. We explain the different intrinsic and
extrinsic parameters of this model and how calibration processes are used

15

Camera model

XC

YC

ZC

X

u

(u0,v0)

u

v

image plane

f

mx

my{

{

X

Y
Z

World coordinate system

Camera coordinate system

intrinsic parameters

extrinsic parameters

OC

O

optic
al a

xis

Figure 2.1: The pinhole camera model. The perspective transformation of 3D
point X in the world coordinate system to the 2D point u on the image plane
depending on the intrinsic and extrinsic camera parameters.

to estimate them using methods from literature. We also demonstrate
how camera coverage maps can be used as a tool to visualise which
part of the scene is covered by how many cameras in Section 2.3. This
tool can help decide where additional cameras should be positioned to
increase camera coverage in certain areas. In Section 2.4 we perform
several experiments to show the impact of common errors in the camera
calibration on the image formation process. Finally, our conclusions
about camera calibration are presented in Section 2.5.

2.1 Camera model

A broadly used model to represent a camera mathematically is the
pinhole camera model that has been around from before the 20th century.
In this model, a scene view is formed by transforming 3D points with
homogeneous coordinates X =

[
X Y Z 1

]T
in the world coordinate

system to homogeneous 2D image points u =
[
su sv s

]T
using a per-

spective transformation. The perspective projection can be represented
as a matrix P , so that we can express the mapping of X to u as

u = PX. (2.1)

The matrix P decomposes as

P = A[R|t], (2.2)

in which A is the camera matrix related to the intrinsic camera pa-
rameters and [R|t] defines transformation between the world coordinate
system OXY Z and the camera coordinate system OCXCYCZC , which
is related to the extrinsic camera parameters. Figure 2.1 visualises

16

Camera Model and Multi-camera Calibration

this projection process. The following section will discuss the intrinsic
parameters and extrinsic parameters in more detail.

2.1.1 Intrinsic parameters

I. Camera matrix

The intrinsic camera parameters fit nicely together in the camera matrix
A and describes how to transform 3D coordinates to pixel units:

A =

αx σ u0
0 αy v0
0 0 1

 . (2.3)

This camera matrix contains five parameters. The parameters αx = fmx

and αy = fmy represent focal length in terms of pixels, where mx and
my are the scale factors relating pixels to distance and f is the focal

length. The principle point
[
u0 v0

]T
tends to be in the middle of the

image sensor in case the lens is mounted centrally and parallel to the
image plane. The principle point corresponds to the point where the
optical axis (ZC) intersects with the image plane. The parameter σ
represents the skew coefficient, which is non-zero if the sensor is not
parallel with the imaging plane.

Real cameras use lenses to capture enough light in a short amount of
time. The choice of a lens depends on the desired field of view. Action
cameras often have fisheye lenses to capture more of the surroundings,
while telescopic lenses have a narrow field of view to capture an image
from a far distance. Lenses make the imaging process a bit more complex
due to possible lens distortion. Therefore, this distortion needs to be
modelled to find where a 3D point projects on the image sensor. In
Figure 2.2 we see how a converging lens refracts incoming light and
forms an image of the red object on the image plane. Note that multiple
light beams starting from the same point end up in the same place on
the image plane. This figure also illustrates how a lens helps to focus
more light on one pixel than a pinhole camera.

II. Lens distortion

Since most lenses are not perfect, the image will not perfectly correspond
to a perspective projection of the 3D scene because lens distortion will
add a non-linear transformation to the imaging process. In Figure 2.3

17

Camera model

converging lens

focal point

focal length

image plane

principle axis

X

u

F

Figure 2.2: Light refraction in a converging lens. The light rays reflecting on
X are focused on the point u on the image plane. Light rays perpendicular to
the lens (as if they originate from infinity) are refracted by the lens in a way
that they pass through the focal point of the lens. Light rays having different
direction, but also reflecting at X are all focused on u because of the converging
lens.

A

B

C

(a) Original image

Â

B

Ĉ

^

(b) Undistorted image

Figure 2.3: Undistortion process on an image from the traffic intersection
dataset in Ghent. In (a), straight lines do not appear straight due to lens
distortion. Therefore, points A, B and C are not collinear. After the
undistortion process, the three points are collinear in (b).

the red line in the left image is a straight line in 3D. However, due to lens
distortion, it appears as if it is curved. In order to relate pixels to the
3D world, this phenomenon needs to be modelled. The Brown-Conrady
model is often used to model distortion [13] so that an image can be
undistorted. In the right image, we see the result of this undistortion
process. The curved lines convert to straight lines.

Two types of distortion are handled in the model: radial distortion and
tangential distortion. Examples of radial distortion are shown in Figure
2.4a (barrel distortion) and 2.4b (pincushion distortion). In the case of
barrel distortion, image magnification decreases with distance from the
optical axis (usually near the centre of the image). The apparent effect
is that of an image that has been mapped around a sphere (or barrel). In
the case of pincushion distortion, image magnification increases with the

18

Camera Model and Multi-camera Calibration

(a) Barrel (b) Pincushion (c) Tangential

Figure 2.4: Different types of radial and tangential distortion. The black dot
represents the optical centre. All lines in the images represent how straight lines
which are parallel to the image sensor are distorted.

distance from the optical axis. Lines that do not pass through the optical
centre of the images are bowed inwards, like a pincushion. Tangential
distortion occurs when the image plane and the lens are not parallel (lens
misalignment). The effect of tangential distortion is shown in Figure 2.4c.
We see that the lines become more curved further away from the optical
centre.

In the remainder of this section, we explain the mathematics to undistort
a point based on the Brown-Conrady model, after which we briefly
discuss the calibration process. We consider five distortion coefficients:
k1, k2 and k3 to model radial distortion and p1 and p2 to model tangential
distortion, which suffices for common camera lenses.

To convert a point captured by a camera to its corresponding undistorted
position, we first normalize the image coordinates because all distortions
discussed above are functions of the distance to the optical centre. The
point

[
u v

]T
represents the undistorted point and

[
u′ v′

]T
the corre-

sponding normalized point:

[
u′

v′

]
=

[
u−u0

αx
v−v0
αy

]
.

The most common form of lens distortion is radial distortion. Radial
distortion occurs when light rays bend more near the edges of a lens
than they do at the optical centre of the lens. Radial distortion converts
points

[
u′ v′

]T
to

[
u′r v′r

]T
:

[
u′r
v′r

]
= (1 + k1r

2 + k2r
4 + k3r

6 + . . .)

[
u′

v′

]
, (2.4)

19

Camera model

where r =
√
u′2 + v′2. If k1 > 0, the lens has positive radial distortion

(barrel distortion). If k1 < 0, it has negative radial distortion (pin-
cushion distortion). 3 parameters usually suffice to model the radial
distortion accurately.

Tangential distortion is modelled with two distortion coefficients: p1 and
p2. Using the same notation as with radial distortion we may express
pure tangential distortion as follows:

[
u′t
v′t

]
=

[
u′ + 2p1u

′v′ + p2(r
2 + 2u′2)

v′ + 2p2u
′v′ + p1(r

2 + 2v′2)

]
. (2.5)

III. Intrinsic camera calibration

The estimation of the intrinsic parameters is usually performed by wav-
ing a planar surface with known feature points around in front of each
camera. The camera calibration parameters cannot be estimated cor-
rectly from a single image due to the large number of parameters that
need to be estimated. Completely different cameras and lenses can
generate the same image. For example, the image of a calibration board
captured by a zoom lens from far away may look the same as an image
of a calibration board close to the camera with a lens having a short
focal length. Therefore, multiple positions and orientations of the same
board are required to estimate the set of camera calibration parameters
for the used camera. A sufficient number of sufficiently independent
observations is needed to estimate all camera parameters discussed in
the previous section and properly constrain the optimisation to yield
a well-defined answer. Otherwise, the routine may converge to some
(local) minimum.

Checkerboard patterns are often used as planar calibration patterns
because simple computer vision algorithms accurately and automatically
detect the inner corners of such a pattern. Figure 2.5 shows that for a
M × N checkerboard, there are (M − 1)(N − 1) of such corner points
detected. The coloured horizontal lines in the image belong to the same
camera row on the checkerboard. These lines appear curved, which
points to radial distortion.

20

Camera Model and Multi-camera Calibration

Figure 2.5: Recognition of the checkerboard pattern. Each inner corner of the
checkerboard pattern is detected automatically. The lines represent predefined
connections between the feature points. These detected points are used to
calibrate a camera intrinsically. Typically, between 20 and 50 images with
differently oriented checkerboard patterns are required for a reliable calibration.

The general intrinsic camera calibration algorithm consists of multiple
steps, and most implementations are based on the papers of [42] and
[112]. The calibration process is summarised in [98] as follows:

1. Print a pattern and attach it to a planar surface.
2. Take a few images of the model plane under different orientations

by moving either the plane or the camera. Typically, between 20
and 50 checkerboard frames are used for calibration.

3. Detect the feature points in the images (e.g., checkerboard cor-
ners);

4. Estimate the five intrinsic parameters and all the extrinsic param-
eters using the closed-form solution as described in [11];

5. Estimate the distortion coefficients on the image using Equations
2.4 and 2.5

6. Calculate the m homographies between the known checkerboard
layout and its projections in the n images (using least-squares on
the overdetermined system).

7. Calculate the expected position of all m points in each of the n
images using the estimated homography and distortion coefficients.

8. Calculate the total reprojection error as the sum of the distances
between all m× n observed points and their expected position.

9. Iteratively refine the distortion coefficients and intrinsic param-
eters using the Levenberg-Marquardt algorithm to minimise the
total reprojection error (steps 5-8).

In this work, we have created a calibration tool in which the calibration
process is fully automated for the user from step 3 onwards. As such,
the intrinsic calibration of a single camera takes less than 30 seconds.

21

Camera model

2.1.2 Extrinsic parameters

This section will discuss the transformation matrix, which contains the
extrinsic parameters. We also discuss how these parameters can be
estimated using the extrinsic camera calibration methods. Extrinsic
camera calibration is an essential step towards 3D reconstruction from
multiple cameras because it defines the transformation from the world
coordinate system to the camera coordinate systems. It is possible to
relate 3D points to 2D image points from different cameras. The reverse
process, called backprojecton, is when a pixel maps to a 3D line on which
the corresponding 3D point is located. Backprojection forms the basis
for 3D reconstruction from multiple cameras and will be discussed in
more detail in Chapter 4.

I. Transformation matrix

The transformation matrix, which maps world coordinates (Xw) onto
camera coordinates (Xc), consists of two parts: the rotation matrix and
the translation vector. The rotation matrix R is an orthogonal matrix
which expresses how the camera is rotated with respect to the world
coordinate system. The translation vector t expresses the offset from
the origin of the world coordinate system to the origin of the camera
coordinate system. Therefore, the transformation matrix [R|t] expresses
how the world coordinate system transforms to the camera coordinate
system:

Xc = [R|t]Xw (2.6)

Xc

Yc
Zc

 =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

Xw

Yw
Zw

1

 . (2.7)

The transformation from one coordinate system to another is well defined
in mathematics. The rotations can be expressed as matrix multipli-
cations of rotations around a number of the main axes X, Y or Z,
respectively θx, θy and θz. Figure 2.6 illustrates how the transformation
matrix can be decomposed into four different parts: a translation of the
coordinate system and three rotations: roll, pitch and yaw. The order
of rotations and the choice of which axis to rotate around can be chosen.

22

Camera Model and Multi-camera Calibration

X

Y
Z

ZC

XC

YC

YC

XC

ZCtx

ty

tz

yaw

X

Y
Z

YC

XC

ZC

roll

θx X

Y
Z

YC

XC

ZC

pitchθy

ZC

X

Y
Z

YC

XC

ZC

θz

intermediate rotations roll -> pitch -> yaw

t

Figure 2.6: Transforming between the world coordinate system and the camera
coordinate system. The separate rotations are shown by roll, pitch and yaw. The
translation is represented vector t = (tx, ty, tz).

II. Extrinsic camera calibration

The extrinsic camera parameters can be estimated using an extrinsic
camera calibration process. We consider methods that can be used to
calibrate multiple cameras simultaneously, e.g., stereo or point calibra-
tion and methods where each camera is separately calibrated in relation
to a shared world coordinate system, e.g., using a 3D calibration object.

Often, extrinsic camera calibration is, just like intrinsic calibration, per-
formed utilising a planar calibration pattern. For stereo cameras, it is
convenient to wave a planar calibration pattern in front of both cameras
at the same time [12]. However, when the cameras are further apart,
e.g., wide-baseline camera setups, it is no longer possible or practical to
orientate the planar calibration patterns so that the feature points are
visible by both cameras, let alone to find enough different independent
board orientations. However, as long as there is enough pairwise overlap,
cameras can be calibrated in pairs.

Alternatively, multi-camera calibration can also be performed by moving
around one point that multiple cameras can easily track simultaneously.
[95] proposed a method using a slightly adapted laser pointer so that the
light shines in all directions and uses bundle adjustment to optimise the
measurements. [34] on the other hand, presented calibration techniques
based on spheres of which both the centre and surface were used to esti-
mate the extrinsic camera parameters. Another method proposed in the
same work was to use the centreline of a person to estimate the extrinsic
camera parameters. However, all these calibration methods calibrate the
cameras up to a scaling factor. An extra alignment step helps transform
the calibration to a world coordinate system with physical units e.g.,
mm and place the origin of the coordinate system to the desired location.
All methods mentioned in this paragraph have been explored during this

23

Camera model

Figure 2.7: Example of the POSIT algorithm on the traffic intersection dataset
of Ghent. The centres of the red circles correspond with the annotated positions.
The white circles indicate the position of these points using the estimated camera
parameters. Ideally, the centres of both circles are the same.

PhD but are often not practical to use if surrounding light cannot be
controlled. Therefore, the detection of a point light source or spherical
lamp becomes inaccurate.

A practical method requires minimal manual work to calibrate cameras
by using a calibration object. Several keypoints are defined, of which
the world coordinates are known. A minimum of 4 non-coplanar points
are needed to calibrate one camera, and the image locations of these
points are usually indicated manually. Since each camera is basically
calibrated independently, recalibration requires little work if only a
subset of cameras was repositioned, e.g., when someone accidentally
touches a camera or when a camera is moved to a different location.

We use an algorithm called POSIT, proposed by Dementhon and Davis
[21] to perform extrinsic calibration. The method can detect and match
four or more non-coplanar feature points of an object in the image, of
which their absolute geometry on the object is known. The method
combines two algorithms. The first algorithm, POS (Pose from Or-
thography and Scaling), approximates the perspective projection with
a scaled orthographic projection and finds the rotation matrix and the
translation vector of the object by solving a linear system. The second
algorithm, POSIT (POS with ITerations), uses its iteration loop, the
approximated pose found by POS, to compute better scaled orthographic
projections of the feature points. It applies POS to these projections
instead of the original image projections. POSIT converges to accurate

24

Camera Model and Multi-camera Calibration

pose measurements in a few iterations.

Figure 2.7 shows an example of the output from our multi-camera cali-
bration program. In this situation, we used seven non-coplanar points.
The centres of the red circles correspond with the positions that the
user indicates. The little white circles represent the projections of the
model point using the estimated camera parameters. In case of a good
calibration, the white dots should coincide with the centre of the cor-
responding red circle. Reasons for inaccurate calibration are errors
in intrinsic parameters (such as distortion coefficients, focal length or
centre of projection), inaccurate measurements of the model points in
the world coordinate system or poorly marked positions of the model
points in the camera images by the user. In the example, the white dots
lie inside the red circles. However, the bottom-most white dot is very
close to the circle’s edge. In this particular case, the reason is the rather
large distance between the marked points combined with an inaccurate
intrinsic calibration.

2.2 Camera configurations

Shape-from-silhouettes will be explained in more detail in Chapter 4.
Two crucial criteria need to be met to apply this method: first, all
silhouettes must originate from the same object, and second, we must
know the view relations. There are two popular approaches to meet
these criteria: capture an object from multiple views simultaneously in a
calibrated camera setup (so that the object’s silhouettes are projections
of the same 3D object) or use a turntable to capture an object from
multiple viewing directions. The latter approach is used to reconstruct
static objects because the reconstruction of a moving object complicates
this process significantly. In this section, we discuss both multi-camera
setups and turntable setups in more detail.

2.2.1 Multi-camera setups

Most of the use cases in this work are about reconstructing moving
objects or people in a scene. Therefore, we most often used multiple
cameras that capture images simultaneously from different viewing an-
gles to reconstruct the 3D shapes of the objects in the scene. Several
parameters are essential when designing a multi-camera setup: the num-
ber of cameras, their position and orientation, the expected frame rate,
and the image resolution. Usually, a trade-off exists between the image

25

Camera configurations

(a) COSMO Mariasteen (b) COSMO CNHi

Figure 2.8: Different multi-camera setups from two use cases in this work
related to the COSMO project. Cameras are indicated with circles on the
overview pictures.

resolution and the frame rate. The bandwidth is often limited, even
when the images are stored locally on the camera for offline processing.

The optimal position and orientation of cameras depending on the ob-
jects in the scene. Since the goal is to reconstruct moving objects,
these optimal positions will be different for each different position of the
objects in the scene. Therefore a camera setup is inherently suboptimal.
Thus, the selection of optimal camera configurations (camera locations,
orientations, etc.) for multi-camera networks remains an unsolved prob-
lem [58].

However, some rules of thumb should be considered while designing
a multi-camera network for the 3D reconstruction applications in this
work. Points need to be observed from different camera views to recon-
struct their 3D position. Therefore, the first rule is that the field of view
(FOV) of different cameras should overlap to some extent. This overlap
is easily achieved when all cameras are placed next to each other and
oriented to the scene. However, maximal overlap is usually not optimal.
For some applications, the cameras are positioned in such a way that
they observe the scene from different viewing angles. The reason is
twofold: cameras in such a configuration are less likely to suffer from
occlusions simultaneously, and the maximal distance between objects in
the scene and cameras is limited, which causes fewer errors in computer
vision techniques. Distant objects appear smaller, show less details and
are harder to recognise compared to close-by objects. It is essential to
have cameras at different positions in the scene to avoid a systematic
error dependent on the distance between the object and the cameras to
cope with this effect.

In general, cameras are mounted outside of the reconstruction volume at
different heights. The reconstruction volume is defined as the part of the

26

Camera Model and Multi-camera Calibration

scene where we will reconstruct the objects. Two camera setups from
real-world use cases in the COSMO project are shown in Figure 2.8. In
both cases, GoPro cameras were used to avoid wiring in these temporary
setups. The reconstruction volume is significantly larger for the use case
at CNHi compared to the use case at Mariasteen. Therefore, we used
5 cameras at Mariasteen and 11 cameras at CNHi. At Mariasteen all
five cameras observe the complete working space of the operator, which
is not the case at CNHi. The shape of the reconstruction volume and
narrow spacing limited the options for mounting cameras so that the
entire scene was visible. Only the three top view cameras can capture
the entire scene, while the other cameras are restricted to a smaller part
of the scene. Therefore this dataset is challenging in multiple aspects.
The overview cameras are used for reconstructing the operator, while
the other cameras are used for event detection.

2.2.2 Turntable setups using a single camera

In Figure 2.9 we illustrate how a turntable can be used to reconstruct a
static object. The object is placed in the middle of the turntable. The
camera captures an image of the object at different turntable positions
(indicated by the dashes on the outer circle). In the example, we choose
45◦ as a step between each turntable position. The process generates
seven additional views with a single camera. Smaller steps mean more
silhouettes and, in general, a more precise reconstruction. A turntable
can, therefore, generate more views than a fixed camera setup and esti-
mate a more accurate 3D reconstruction. However, the quality depends
on the correspondence between the calibrated camera settings and the
exact positions of the turntable.

A turntable setup is considerably cheaper than a multi-camera setup
because a single camera can generate multiple virtual views. However,
the technique is only valid for static objects in specific situations: the
camera must capture the object from multiple positions relative to the
object, either using a turntable or moving the camera itself around the
object. The use case of a turntable is different from that of a multi-
camera setup, which is more flexible and more expensive. We have used
a turntable in a project to reconstruct seedlings and plants. We refer
the the dissertation of Simon Donné [25] for more information.

27

Camera coverage maps

(a) Turntable setup (b) Extra virtual views (c) Seedling reconstruction

Figure 2.9: Reconstruction of static objects using a turntable combined with
a single camera. The different positions of the turntable create views from
different angles that can be used together to reconstruct a static object in detail.
In this case, we capture an image every 45◦. As an application, we reconstructed
seedlings using this method for growth analysis.

Figure 2.10: Camera coverage visualization based on camera calibration and
field of views. In this example, there is limited overlap between the two camera
views, blue region: no camera coverage, green region: camera coverage by one
camera, red region: camera coverage by two cameras.

2.3 Camera coverage maps

To obtain accurate 3D reconstruction, it is important that the cameras
are well-spread in the scene so that the objects in the scene can be
observed from multiple different viewpoints. A camera coverage map
is a tool to analyse the field of view of each camera and the camera
overlap. It can be used to analyse the number of cameras that cover
certain areas and hence help to decide where extra cameras should be
installed to improve the camera coverage in these areas. In Figure 2.10
we show an example of a coverage map.

In Figure 2.11, the coverage map is shown for a traffic intersection
dataset in Ghent. The area observed by all cameras is rather small.
Also, the camera coverage maps does not take into account that objects

28

Camera Model and Multi-camera Calibration

8 cams

7 cams

6 cams

5 cams

4 cams

3 cams

2 cams

1 cam

0 cams

Figure 2.11: Camera coverage map of the traffic intersection dataset in Ghent
using eight cameras. The colours represent how many cameras can theoretically
observe each position on the ground plane.

such as walls from buildings limit the area that a camera can observe.
Such objects create occlusion, which is one of the main focusses of this
work. Knowing what a camera can and cannot see will prove to be the
key to handling occlusion properly. We refer to Chapter 5 for a thorough
analysis of occlusion. In that chapter, the concept of camera coverage
maps is also extended to include occluders. As such, the actual camera
coverage can be modelled more precisely and possible areas with limited
coverage can be identified more reliably.

2.4 Sensitivity analysis of calibration accuracy

Poor camera calibration poses a challenge to 3D reconstruction. When
the 3D world does not map correctly to the image, the reverse task of
3D reconstruction produces inaccurate result.

This section will illustrate the impact of inaccurate camera calibration
and show how these errors manifest themselves. We have explained how
a 3D point projects on an image sensor using a perspective transforma-
tion. By adapting the projection matrix in realistic ways, we can analyse
the impact of such changes. To illustrate this we will project a 3D model

29

Sensitivity analysis of calibration accuracy

positioned 3 m in front of the camera on the camera sensor and consider
the projected surface (silhouette). We compare the silhouette obtained
with the initial (ground truth) and adapted projection matrix in terms
of overlap. The intersection over union (IoU) forms an excellent measure
to assess the impact of common errors made by the camera calibration
and the effect on shape reconstruction.

Cameras in a multi-camera network can either be static or dynamic
(PTZ). Static camera calibration is most convenient. The errors are
usually smaller because we calibrate these cameras offline with reliable
methods before they are operational, and the calibration remains fixed
as long as the circumstances do not change drastically. Temperature
changes may cause parameters in a camera to change. Unfortunately,
cameras are sometimes moved by accident. In both cases, recalibration
may be required.

PTZ cameras can change their viewing direction: pan, tilt and zoom.
Pan and tilt are related to the transformation matrix (extrinsic pa-
rameters) while zooming impacts the intrinsic camera matrix. Most
PTZ cameras report their motor values so that the pan, tilt and zoom
positions are known, but we noticed that these values might be different
from the actual positions. Also, the camera may not report the motor
values fast enough to obtain reliable values for each frame, and the
correct information can be delayed. In this section, we investigate the
impact of errors caused by pan, tilt and zoom.

2.4.1 Zoom errors

We consider a PTZ Optics 30x NDI|HX camera that was used in one of
our projects. This PTZ camera maps 16,000 motor values on 30x optical
zoom. We noticed little issues with the zoom accuracy. However, while
the camera is zooming, a delay exists between the reported values and
the actual values. We illustrate the impact of these zooming differences.
In this experiment, we simulate a camera with a focal length of 1000
px, and we compare the projected silhouette using the intersection over
union for a range of 990-1110 px. In Figure 2.12 the results are shown,
and we see that the IoU drops drastically both when the focal length is
too large or too low. However, when the camera calibration is performed
with enough checkerboard patterns (∼ 100), the focal distance is usually
accurate within 10 pixels [98], which corresponds to an IoU of more than
95%. Comparable results can be expected from a delay in PTZ motor
values depending on the zoom speed.

30

Camera Model and Multi-camera Calibration

(a) IoU visualisation

990.0 992.5 995.0 997.5 1000.0 1002.5 1005.0 1007.5 1010.0
94

95

96

97

98

99

100

IoU for deviations in focal lengths

Focal length

Io
U

 (
%

)

(b) IoU values for different zoom factors

Figure 2.12: Simulation of a focal length error using intersection over union
(IoU). Purple indicates the intersection of both silhouettes, yellow and green
(ground truth) are part of one of the silhouettes only.

Another issue with zooming was observed during experiments. We
noticed that the camera tilts down at large zoom levels. The lens moves
away from the camera’s centre of gravity and causes an imbalance in
the camera. The motor values of the cameras do not report this offset.
However, we cannot solve this type of error by adapting the zoom factor
but need adjustments in the pan and tilt angles.

2.4.2 Pan/tilt errors

The pan and tilt angles define the orientation of the camera (assuming
zero roll). This section will show how errors in pan and tilt angles
manifest themselves in the camera projection. We consider errors be-
tween −0.5◦ and 0.5◦ for both pan and tilt angles and visualise the error
as a heat map in Figure 2.13. The errors in the pan direction cause
relatively larger errors compared to the tilt direction. This is caused by
the shape of the silhouette. Vertical edges of the silhouette’s contour
are more prominent. If the person were positioned horizontally, the tilt
errors would be relatively larger than the pan errors. Both errors are
significant, even when the error is just 0.1◦.

2.4.3 Distance-related errors

Note that the impact of zoom, pan and tilt errors also depend on the
object’s distance to the camera. The further away an object is positioned
from the camera, the larger the error introduced by pan and tilt errors.

31

Conclusion

(a) (∆pan,∆tilt) = (−0.5
◦,−0.5

◦)

-0.50 -0.38 -0.25 -0.12 0.00 0.12 0.25 0.38 0.50
pan offset

0.50

0.38

0.25

0.12

0.00

-0.12

-0.25

-0.38

-0.50

til
t o

ffs
et

0.66 0.71 0.75 0.79 0.81 0.79 0.75 0.71 0.66

0.67 0.73 0.78 0.83 0.85 0.83 0.78 0.73 0.67

0.68 0.74 0.81 0.87 0.90 0.87 0.81 0.74 0.68

0.68 0.75 0.82 0.90 0.95 0.90 0.82 0.75 0.68

0.69 0.75 0.83 0.91 1.00 0.91 0.83 0.75 0.69

0.68 0.75 0.82 0.90 0.95 0.90 0.82 0.75 0.68

0.68 0.74 0.81 0.86 0.90 0.86 0.80 0.74 0.68

0.67 0.73 0.78 0.83 0.85 0.83 0.78 0.73 0.67

0.66 0.71 0.75 0.79 0.81 0.79 0.75 0.70 0.66

IoU for deviations in pan and tilt angles

(b) IoU error range [-0.5,0.5] for pan and tilt

Figure 2.13: Simulation of pan/tilt error using intersection over union (IoU).
Purple indicates the intersection of both silhouettes, yellow and green (ground
truth) are part of one of the silhouettes only.

The impact of zoom errors, on the other hand, is more prominent when
the object is close to the camera. The simple experiments in Section
2.4.1 and 2.4.2 show that camera calibration is essential to achieve a
reliable result. They also show how we can model these errors given a
particular multi-camera setup.

2.5 Conclusion

This chapter explained the different camera parameters and how to
estimate them using camera images of calibration objects. The intrinsic
calibration is performed using a planar pattern, such as a checkerboard
in front of the cameras. The extrinsic camera parameters are estimated
based on the projections of a known calibration object using the POSIT
algorithm. A fully calibrated camera setup can aid to create a camera
coverage map to analyse how many cameras cover each area. Camera
calibration is an important step towards reliable 3D reconstruction. The
experiments show that camera calibration is sensitive to zoom, pan and
tilt errors and depends on the particular camera configuration.

The main contributions made in this chapter are the following:

• the use of the POSIT algorithm as a camera calibration tool for
extrinsic camera parameters;

• the creation of camera coverage maps based on a calibrated multi-
camera setup;

32

Camera Model and Multi-camera Calibration

• the development of a software program to calibrate cameras intrin-
sically and extrinsically for a multi-camera setup, both online and
offline.

Some of the work in this chapter is described in some publications:

• J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips. Extrinsic cali-
bration of camera networks based on pedestrians. Sensors, 16(5),
2016. ISSN 1424-8220

• J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips. Extrinsic cali-
bration of camera networks using a sphere. Sensors, 15(8):18985–
19005, 2015. ISSN 1424-8220

• D. Van Hamme, M. Slembrouck, D. Van Haerenborgh, D. Van
Cauwelaert, P. Veelaert, and W. Philips. Parameter-unaware auto-
calibration for occupancy mapping. In Proceedings of the 7th inter-
national Conference on Distributed Smart Cameras (ICDSC’13),
pages 49–54. IEEE, 2013. ISBN 9781479921669

33

Chapter 3

Silhouette Extraction

We try to understand the scene in front of the multi-camera setup by
reconstructing objects in the scene. To do so, we need to localize these
objects in the different camera images. We represent these objects in
the images as silhouettes of the objects in the scenes. Together with
the multi-camera calibration, we use these silhouettes to reconstruct
the objects in 3D. The most qualitative volumetric reconstruction is
obtained when both the calibration and the silhouettes are accurate and
precise. Silhouettes can be either too small, e.g., part of an object that
is not detected, or too large, e.g., objects in the vicinity, are mistakenly
considered to belong to another object.

Silhouettes are obtained using image segmentation, which is the process
of partitioning a digital image into multiple segments (sets of pixels).
The goal of segmentation is to simplify and change the representation of
an image into something more meaningful and easier to analyse. More
precisely, image segmentation is the process of assigning a label to every
pixel in an image such that pixels with the same label share specific
characteristics. In our case, each pixel is either labelled as part of the
silhouette (foreground label) or not (background label), which can be
represented as a binary image.

We focus on three different image segmentation methods in this chapter,
each having its own application field: colour segmentation, motion seg-
mentation and neural network segmentation. In Section 3.4, we discuss
which method is best in which circumstances.

In Chapter 5 the problem of incomplete silhouettes will be discussed
in more detail, but for now, we focus on extracting the visible part of
objects as accurately as possible.

35

Colour segmentation

(a)
BGGR

(b)
RGBG

(c)
GRGB

(d)
RGGB

Figure 3.1: Bayer patterns: BGGR, RGBG, GRBG and GRBG

3.1 Colour segmentation

Before we can segment colour pixels from images, it is essential to know
how colour is represented in digital images. Such images are composed of
three channels: one for the red light, one for the green light and one for
the blue light. Each pixel (u, v), therefore, has three values expressing
the amount of red, green and blue light needed to reproduce its colour.
A broad spectrum of colours can be reproduced in this way. We will not
go into further detail as it is not relevant for this work.

Cameras capture these colour values by directing the incoming light
through a red (R), green (G) or blue (B) filter and measuring the amount
of light that hits the sensor at each location for each pixel. In reality,
the camera sensor usually does not measure the amount of light for each
channel per pixel but uses a so-called Bayer pattern where R, G and B
filters are alternated in specific patterns (see Figure 3.1), presented in [7].
The bayer patterns are 50% green, 25% red and 25% blue. The green
photosensors are the luminance-sensitive elements, and the red and blue
ones are the chrominance-sensitive elements. There are twice as many
green elements as red or blue to mimic the physiology of the human eye.
Only red, green, or blue light is measured at each pixel location on the
image sensor. A debayering process interpolates the missing values so
that for each pixel value, an R, G and B value is obtained.

A typical use case where colour segmentation can be used is when either
the background or the object itself has a distinctive colour. For instance,
a weatherman is recorded in front of a green screen (green key recording)
so that the green colour can be removed and he can be overlayed on the
weather map, as shown in Figure 3.2.

However, filtering a colour is not as straightforward as one may think.
Colour is rarely constant over the entire image, and there are lighter and
darker shades that should be included. For instance, as illustrated in
Figure 3.2 and 3.3, in front of a green screen there may be multiple shades
of green in the background. A number of these pixels are extracted and
enlarged in Figure 3.3. The difference is rather substantial. The green

36

Silhouette Extraction

Figure 3.2: A typical use case where colour segmentation can be used to
extract the weatherman.

21,125,54

36,116,57 18,79,38

26,108,46

88,77,63 166,50,46

28,37,40 127,105,93

96,176,116 99,197,79

98,212,125 95,194,108

24,72,88 1,184,96

15,68,127138,77,40

RGB

HSV

RGB

HSV

Figure 3.3: Different RGB values and corresponding HSV values in the
background and foreground of Figure 3.2. Four pixels were manually picked
from different parts of the background. The other four pixels are part of the
hair, skin, suit and tie of the weatherman.

component is larger than the red and blue values, but some of the pixels
in the foreground also have strong responses in the green channel.

Therefore, other colour spaces are often considered for colour segmenta-
tion. The HSV colour space represents colours in three new channels:
hue, saturation and value. HSV separates the luminance (saturation
and value) from the chrominance (hue). One of the advantages of
such a colour space is robustness against light changes, mainly affecting
the intensity channel. In Figure 3.3 all green values can be effectively
separated from the foreground value by using the 95-99 range in the hue
channel. Note that we have mapped both RGB and HSV values to 8 bit
per channel for simplicity.

Colour segmentation works best when the colour ranges of the fore-
ground and background do not overlap. Unfortunately, the technique
is often not suitable in real-world environments since the background
rarely consists of a colour range that does not exist in the foreground.
Since we are interested in moving objects/persons, motion segmentation
techniques can be used. These methods do not require a uniform and

37

Motion segmentation

pre-processing

background modelling

foreground detection

post-processing

background

model

video frames

fgbg frames

Figure 3.4: Foreground/background segmentation overview. Typical fore-
ground/background segmentation methods use a background model which is
compared to new images and adapted accordingly. Pre-processing and post-
processing operations reduce noise in the generated masks.

constant background because these methods model the background for
each pixel individually and update these models when light conditions
are changing.

3.2 Motion segmentation

Motion segmentation is often referred to as foreground/background seg-
mentation. Its purpose is to separate a moving object (foreground)
from the more or less static objects (background) in a scene. Motion
segmentation methods model the appearance of the background through
learning based on examples. After the learning phase, an algorithm
classifies pixels as foreground or background by comparing them with
the model. We visualise the data flow in figure 3.4. The pre- and post-
processing steps represent simple operations on the images to improve
detection, such as smoothing and morphological filters to reduce noise.
Two image features are commonly used to model a background: colour
and edges.

38

Silhouette Extraction

Background models based on colour perform well in indoor environments
as long as the appearance of the foreground object is dissimilar enough
from the background objects. Typical issues arise with dark hair in
front of a dark-coloured wall or light coloured clothing in front of a
light-coloured wall. Such methods typically perform less accurate when
the light in the scene changes. While light can be controlled to a certain
extent indoors, outdoor environments pose extra challenges, especially
in cloudy weather or capturing data over a long time.

Edges are more stable than colours during light changes and are often
used to track movement in outdoor scenes. These methods learn the lo-
cation of static edges in the scene. After the learning process, edges that
do not correspond to the learned static edges are treated as foreground
objects. However, since only the edges are tracked, a filling algorithm is
needed to created actual silhouettes.

Multiple criteria are important for our application: processing speed,
precision and recall. Processing speed is vital because frames should
be processed in real-time (minimum 25 fps). Precision is essential so
that the pixels classified as part of a silhouette are part of the object’s
projection. Even more critical is the recall. When a method fails to
detect parts of the moving object, the silhouettes become incomplete,
which will cause missing parts in the 3D shape reconstruction if handled
poorly.

Occluders also cause incomplete silhouettes in part of the scene, but their
nature is different from the incompleteness that comes from erroneous
foreground/background segmentation. When an occlusion occurs, the
errors may not be present for all objects in the same image location and,
therefore, may not have a common characteristic that can be modelled
statistically. In Chapter 5 we go into more detail on how to solve recon-
structions from incomplete silhouettes, but first, we focus on detecting
the parts of the moving objects that are visible by the camera as well as
possible.

We have used multiple motion segmentation algorithms in this work.
Table 3.1 summarizes the ones that were used most frequently. To
understand the difference between these methods, we give more context
in the following paragraphs.

The C-EFIC method proposed by Allebosch et al. [1] uses both colour
information and edges to model the background. The method performs
well and outperforms most methods in challenging circumstances such
as low-light videos and varying illumination in general, which typically
occurs in outdoor scenes. However, the method is less suitable for real-

39

Motion segmentation

Name Ref Description

C-EFIC [1] Colour and edge-based adaptive back-
ground model with interior classification

ViBe [3] Sample-based adaptive background model
with random characteristics

Kim [49] Static background model using fixed
colour threshold

SuBSENSE [92] Local sensitivity using a adaptive back-
ground model

MoG Zivkovic [114] Adaptive mixture of Gaussians as back-
ground model

Petrovic [33] Short-term and long-term adaptive back-
ground model

Table 3.1: Different foreground/background segmentation methods used in this
work. These methods represent different approaches: static background model
(Kim), single dynamic background model (C-EFIC, ViBE, SuBSENSE, MoG
Zivkovic) and a combination of a short-term and long-term background model
(Petrovic).

time processing. They report a processing speed of ±16 fps for a 320x240
video with C++ code running on an E5 Quad Core. We typically use
780x580 resolution with a minimum of 4 camera streams that need to
be processed. Therefore, this method is only used in applications that
are not time-critical. We used this method primarily to analyse a traffic
intersection based on a 2-hour video recording with 11 cameras.

ViBe is a foreground/background segmentation method that stores the
background model in RGB value samples [3]. ViBe does not have a
dedicated learning period but randomly replaces old samples with new
samples in the pixel’s neighbourhood to keep the values of the back-
ground up-to-date. The method can handle small camera movements
using the neighbourhood of a pixel instead of the pixel’s location. Pixel
values that do not correspond to any of the model’s samples at the
corresponding pixel location are classified as foreground. The method
is suitable for indoor and outdoor scenes and has been patented. For
our application, however, ViBe seems to be less suitable. Often, parts
of the silhouette are missing, and the level of noise is bothersome in 3D
reconstruction.

The method of Kim et al. [49] is not the most complicated nor the most
suitable for a wide range of applications. However, it performs well in
indoor scenes with constant illumination, where recordings are typically

40

Silhouette Extraction

just a few seconds long and when it is possible to record an empty scene
to build a reliable background model. It is a standard method that learns
the background from several frames without motion, and the background
is not updated afterwards. The mean and standard deviation of the
luminance and the colour (hue) are determined for each pixel. Multiple
thresholds on the luminance decide whether a pixel belongs to one of
four classes: (a) reliable background, (b) suspicious background, (c) sus-
picious foreground of (d) reliable foreground. The suspicious foreground
pixels are also compared with the mean and standard deviation of the
hue to detect shadows and change the class from (c) to (b) instead. The
method works especially well with low-noise cameras such as the Allied
Vision Technology ethernet cameras we often use. The expected frame
rate is 30 fps for a 1024×768 RGB stream on a PC with a Pentium IV
3.2 GHz CPU, 1 GB memory.

SuBSENSE [92] once was at the top of the best performing motion
segmentation benchmarks, such as CD.net 2014 [32]. SuBSENSE is a
universal pixel-level segmentation method that relies on spatio-temporal
binary features and colour information to detect changes. Such a model
allows camouflaged foreground objects to be detected more easily while
most illumination variations are ignored. SuBSENSE uses pixel-level
feedback loops to adjust its internal parameters dynamically. The ex-
pected frame rate on a third-generation Intel i5 CPU at 3.3 GHz is
between 45 and 90 fps, depending on whether the feedback loop is used.

One of the older FG/BG methods is one based on Gaussian Mixture
Models (GMM). This method models the different background colours as
a mixture of Gaussian distributions. The proposed method by Zivkovic
[114] is particularly useful because it is both adaptive and detects shad-
ows. Shadows are often mistakenly detected as part of the foreground
because the lack of light significantly changes the colour of these pixels.
Thanks to a shadow detector, these pixels can be removed from the
silhouettes. This method is helpful in indoor scenes with slight changes
in the background. It can also handle displacement of a static object as
those objects are learned into the background after some time. When
a person stands still for too long, he becomes parts of the background
model and is no longer detected as foreground. The processing time is
around 49 fps for 720×480 images on a PC with Core i7 3.4 GHz, which
makes it suitable for real-time applications.

The method of Grünwedel and Petrovic [33] is computationally cheap
and has low memory requirements. They combined an autoregressive
moving average filter with two background models having different adap-
tation speeds. The first model, having a lower adaptation speed, models

41

Neural network segmentation

long-term background and detects foreground objects by finding areas
in the current frame, which significantly differ from the proposed back-
ground model. With a higher adaptation speed, the second model repre-
sents the short-term background and is responsible for finding regions in
the scene with a high foreground object activity. The final foreground
detection is built by combining the outputs from these building blocks.
The foreground obtained by the long-term modelling block is verified
by the output of the short-term modelling block, i.e. only the objects
exhibiting significant motion are detected as natural foreground objects.

Some applications require tailor-made solutions. For the IPLAY project,
we investigated whether it was possible to segment the silhouette of a
person standing in front of a projection screen [2]. The contents of
the projection screen were known. Using colour-tone mapping from the
colours sent to the screen and the appearance of those colours on the
cameras that captured it, we could model the background. The method
proved effective, but only in controlled circumstances. A change in
ambient light, for instance, required a recalibration of the colour-tone
mapping. The process ran too slow for real-time processing (around 10
fps), although it was not optimised to increase computation speed. Even
under these strictly controlled circumstances, foreground/background
segmentation remains challenging. Later in the project, we discarded
foreground/background segmentation and focussed on pose extractors
instead because this approach handles the player’s pose directly and pose
extractors are less sensitive to variations in ambient light or changes in
background pixels. Pose extractors are slower than foreground/back-
ground segmentation methods, but by parallelising the computations
on multiple GPUs, the total computation speed remains real-time (see
Chapter 6).

3.3 Neural network segmentation

Although motion segmentation methods produce reliable silhouettes,
they are usually not applicable when the object is standing still for a
long time or when the background is changing too much, which might
be the case in outdoor scenes due to illumination changes.

Neural network segmentation methods are advanced object detectors
that may also segment detected objects into meaningful parts. This
segmentation corresponds to the silhouettes that we are investigating in
this chapter. The processing speed of such methods depends mainly on
the available GPU and the complexity of the neural network. However,

42

Silhouette Extraction

Figure 3.5: YOLACT neural network segmentation on an image from
the traffic intersection dataset in Ghent. Multiple objects are detected and
segmented such as a vehicles, bicycles and persons. The person with the purple
label near the centre of the image is detected but not segmented. The quality of
the segmentation is correlated to the size of the object in the image.

they require more resources than the traditional methods discussed in
the previous sections. Therefore, it might not always be feasible to use
them in a real-time setting without a powerful GPU. Also, these methods
only work for object classes that were part of the training set, which may
be a problem if we are interested in fewer everyday objects. An example
of neural network segmentation can be seen in Figure 3.5.

Object segmentation is challenging because it needs to detect an object
correctly and also segment it precisely. Such methods combine object
detection in the form of bounding boxes and semantic segmentation to
classify each pixel within a detected bounding box. Object detection
networks such as Faster R-CNN [77] use a region proposal network
(RPN) in the first phase to detect meaningful parts in the image, after
which each of these regions is further investigated.

Mask R-CNN [41] extends Faster R-CNN by adding a branch for predict-
ing an object mask in parallel with the existing branch for bounding box
recognition. The mask branch is a small, fully connected network (FCN)
applied to each ROI, predicting a segmentation mask in a pixel-to-pixel
manner.

Mask R-CNN is still seen as a baseline method for further research.
More recent advances were able to improve both the mask segmentation

43

Experiments and discussion

further and lower the computation time. YOLACT [10] for instance,
processes frames at least 2.5 times faster than mask R-CNN but with
decreased precision. Such results allow real-time usage, which is essential
for our application.

YOLACT breaks instance segmentation into two parallel subtasks: (1)
generating a set of prototype masks and (2) predicting per-instance mask
coefficients. Then they produce instance masks by linearly combining
the prototypes with the mask coefficients. Because this process does not
depend on repooling, this approach produces very high-quality masks
and exhibits temporal stability for free.

Even more recent is BlendMask [17], which claims improved mask predic-
tion by effectively combining instance-level information with semantic
information with lower level fine-granularity. Their main contribution
is a blender module that draws inspiration from both top-down and
bottom-up instance segmentation approaches. Their light-weight ver-
sion achieves 25 fps on a single 1080Ti GPU.

We compare Mask R-CNN, YOLACT and BlendMask against more
conventional silhouette extractors in the next section.

3.4 Experiments and discussion

This section discusses how we decide which silhouette extractor to use.
There are two essential factors for this decision: the processing speed
and the quality of the produced silhouettes. Processing speeds are only
necessary when real-time processing is demanded. For offline processing,
computation speed is less of an issue. The quality of the produced
silhouettes, on the other hand, is always critical.

For the 3D reconstruction application, the detected silhouettes must
contain the entire visible area of the objects. When the silhouettes are
consistently too oversized in all camera views, the 3D reconstruction will
also be too large and lack finer details on the object’s surface. Silhouettes
that are too small or contain holes result in 3D shapes where part of the
object is not reconstructed. Therefore, the silhouettes must be detected
as precisely as possible.

An experiment was conducted with several silhouette extractors to assess
both the computation speed and the quality of the silhouettes. The
experiment was performed on two different datasets: one indoor dataset
of a runner in a lab and one outdoor dataset with cars, cyclists and
pedestrians on an intersection.

44

Silhouette Extraction

Gound truth silhouettes were manually produced by segmenting the
moving object in the frames and converting these frames to binary
images for both datasets. The different methods were executed on the
same computer with an Intel Core i7 CPU 960 @ 3.2 GHz x 4 with 23.5
GB of RAM and an RTX 2070 GPU to make a fair comparison between
the different methods. The reported speeds are for processing one video
at a time. The CPU-based methods use a single core so that processing
multiple frames in parallel does not impact the speed too much for less
than four parallel streams.

Let vg(x, y) represent the value of the silhouette on position (x, y) of the
binary image. If 1, pixel (x, y) belongs to the silhouette, if 0, it does
not. Let vm(x, y) represent the value of a silhouette product by method
m. There are four important measures that can be calculated per pixel
between a ground truth silhouette and a silhouette produces by one of
the methods:

• TN: true negative if vg(x, y) = 0 and vm(x, y) = 0;

• FN: false negative if vg(x, y) = 1 and vm(x, y) = 0;

• TP: true positive if vg(x, y) = 1 and vm(x, y) = 1;

• FP: false positive if vg(x, y) = 0 and vm(x, y) = 1.

These measures are evaluated for each pixel in the ground truth. By
taking the sum over all pixels, we calculate the recall (Re) and the
precision (Pr). Note that high recall values indicate that the silhouettes
contain limited holes and high precision values indicate that of there are
limited excess pixels detected as being part of a silhouette compared to
the ground truth:

Re =
TP

TP + FN
, (3.1)

Pr =
TP

TP + FP
. (3.2)

Both recall and precision are important. The F1-score expresses the
trade-off between the two in a single number:

F1-score =
2 Re Pr
Re + Pr

(3.3)

However, in Chapter 5, precision becomes more critical because the
incomplete parts (low recall) are compensated for by the occlusion han-
dling process.

45

Experiments and discussion

Method FPS Re Pr F1

C-EFIC [1] 2 .90 .96 .93
ViBe [3] 107 .93 .81 .86
YOLACT [10] 33 .90 .93 .91
Petrovic [33] 53 .87 .96 .91
SuBSENSE [92] 3 .92 .95 .93
Kim [49] 144 .80 .88 .84
MoG Zivkovic [114] 40 .96 .93 .94

Table 3.2: FPS and F1-scores for segmentation results on the SSL-JR dataset.
MoG Zivkovic achieves the highest F1-score while reaching 40 fps. C-EFIC and
SuBSENSE perform almost as good, but only run at 2-3 fps which is too slow
for real-time applications.

3.4.1 Experiment 1: indoor environment

The first experiment is performed on an indoor dataset where a person
runs from one side to the other side in the Sports Science Lab Jacques
Rogge using eight ethernet cameras (type AVT Manta) at 67 fps with
a resolution of each 780x580 pixels. In Table 3.2 and Figure 3.6, we see
the results using this dataset. Apart from C-EFIC and SuBSENSE, all
methods can run in real-time. However, there are significant differences
in precision and recall between the methods. MoG Zivkovic performs
best in terms of recall and F1-score. Petrovic and C-EFIC perform
best in terms of precision, but the low recall will cause missing parts
in the 3D reconstruction. MoG Zivkovic is an overall good choice for
silhouette extraction in an indoor environment, and with 40 fps on a
single processor core, it is possible to keep it real-time, even if there are
four or more camera feeds to be processed.

Note that the tables show results for a single camera view. Our 3D
reconstruction technique aims to reduce errors in the provided silhou-
ettes by combining multiple views. Whether or not that is possible will
also depend on the correlation between the errors from different views.
If the same part of an object is not segmented in the silhouettes of
multiple views, the part will be reconstructed with fewer details or not
at all. Therefore a camera network should be designed such that errors
are as uncorrelated as possible, for instance by making sure that the
background colour is not the same in all views. In this particular case,
the shadow’s colour on the runner’s shirt is similar to the blue colour
of the floor. Some methods, such as Kim cannot segment the person
correctly. Therefore, it is advised to make sure that background is not

46

Silhouette Extraction

(a) Input image (b) Ground truth (c) C-EFIC

(d) ViBe (e) YOLACT (f) Petrovic

(g) SuBSENSE (h) Kim (i) MoG Zivkovic

Figure 3.6: Visual segmentation results of the indoor experiment on the
SSL-JR dataset using the different methods. These images confirm that MoG
Zovkovic, C-EFIC and SuBSENSE segment the person most reliably. The
shadows on the runner’s shirt cause most issues because the colour is similar
to the ground floor.

the same in all camera views, unless the colour range does not overlap
with the colour range of the test subject, e.g., a green key studio.

3.4.2 Experiment 2: outdoor environment

The second experiment was conducted on a dataset of a traffic inter-
section in Ghent. The video footage was recorded over a timespan of
2 hours with 11 GoPro cameras. The main challenges are varying light
conditions and objects that are not moving for a long time, such as
parked cars or pedestrian waiting for a bus. The resolution of each of
the video streams is 1280x720 pixels. Therefore, the processing times are
slower than those for the indoor experiment. There are also more objects
in the scene. Table 3.3 and Figure 3.7 show the results for the quality

47

Experiments and discussion

Method FPS Re Pr F1

C-EFIC [1] 1 .93 .84 .88
ViBe [3] 43 .54 .54 .54
YOLACT [10] 7 .95 .70 .81
Petrovic [33] 23 .19 .52 .27
SuBSENSE [92] 2 .68 .74 .71
Kim [49] 57 .09 .96 .17
MoG Zivkovic [114] 14 .26 .79 .39

Table 3.3: FPS and F1-scores for results on the traffic intersection dataset.
The results are significantly worse compared to the indoor experiment due to
typical lighting changes. C-EFIC performs the best on this dataset because of
the edge-based approach. Edges are less sensitive to lighting changes. The best
performing real-time method is ViBe.

of the produced silhouettes. We used a video sequence of 10.5 minutes
long and manually segmented ground truth every 30 seconds to measure
the quality. There are significant illumination changes during the video
due to the sun appearing and disappearing behind clouds. There are
pedestrians, cyclists and vehicles moving around the entire sequence.

The best-performing methods are C-EFIC and YOLACT. Unfortunately,
the implementation of both methods is currently too slow to be used in
real-time because they run only at 1 and 7 fps respectively, and we
need to run these algorithms on multiple images from different views
simultaneously to create a real-time reconstruction. An important note
to make about YOLACT is that this method also detects the separate
objects while the other methods produce combined silhouette images
only. Distinguishing objects from each other has many benefits. The
single-object silhouettes can produce more accurate 3D reconstructions
of an object as long as the cross-view corresponding silhouettes can be
determined.

YOLACT does not distinguish between moving object and static objects.
Therefore all objects can be detected, as opposed to motion-based seg-
mentation methods. If we are only interested in moving object, these
static objects can be removed using object trackers. If the position of
objects is more important than the exact shape of the objects, YOLACT
may be the best choice to map all different objects in the scene frame by
frame, even if some of these objects have been stationary for some time.

Unfortunately, YOLACT is not reliable to detect all road users. The
method is trained to detect persons, bicycles, cars, trucks and buses.
Other objects will not be detected unless they are added to the training

48

Silhouette Extraction

(a) Input image (b) Ground truth (c) C-EFIC

(d) ViBe (e) YOLACT (f) Petrovic

(g) SuBSENSE (h) Kim (i) MoG Zivkovic

Figure 3.7: Visual results of the outdoor experiment using the different
methods. The errors are significantly larger than for indoor scenes. Small
objects are often not detected and large object are often not completely segmented.
Most methods create holes in the objects (ViBe, Petrovic) are suffer from severe
noise (Kim). C-EFIC’s segmentation is clearly the best, showing only little
mistakes.

data. It is important to take these missing objects into account, for
instance, in the case of obstacle avoidance. When YOLACT does not
recognise an obstacle, such as a dog crossing a street, it can create
dangerous situations.

The faster algorithms cannot segment the objects in a reliable way.
Therefore, we are currently restricted to analyse traffic offline using one
of the slower methods such as C-EFIC, SuBSENSE or YOLACT. From
this analysis, we may conclude that 3D reconstruction of objects in an
outdoor environment is not trivial. Not only the silhouette segmentation,
but also the camera calibration is not accurate enough to create a
reliable reconstruction. However, traffic remains an interesting use case
because of many occlusions that naturally occur in such environment.
If computers become even more powerful and segmentation methods
improve further, our techniques may also be applied in these situations.
In Chapter 5, we show a simulation of what can be achieved under these
circumstances.

49

Conclusion

3.5 Conclusion

This chapter discussed several different approaches to detect silhouettes
in images based on motion, colour, or object classification. There is a
wide range of methods, each tailored to specific use cases. Therefore, it
is important to decide which method to use in each particular situation.

The indoor environment is often easier due to fewer illumination changes
and more control over what is happening in the scene than the outdoor
environment. We conducted an experiment that shows significant differ-
ences between both cases.

For the 3D reconstruction, it is crucial to segment the silhouettes of an
object both entirely and precisely. Therefore both recall and precision
are essential parameters. Both should be as high as possible. Therefore,
our decision of which method to use is usually based on the F1-score,
which is the harmonic mean of recall and precision.

In the experiments, we noticed that all methods performed rather well in
an indoor environment, with MoG Zivkovic producing the best-segmented
silhouettes followed closely by C-EFIC. In the outdoor environment,
however, some methods proved to be useless while others could still
detect the moving object decently. We noticed that C-EFIC produces
the most qualitative silhouettes with YOLACT (neural network segmen-
tation) as second best for outdoor environments. The complex scenes
with significant illumination changes due to the sun disappearing behind
clouds make it hard for less sophisticated algorithms to produce reliable
results. While motion segmentation algorithms can detect objects of
arbitrary shape, YOLACT can only detect objects that belong to classes
that are present in the training data. When using YOLACT, it is crucial
to consider this because it could lead to dangerous situations.

The results in the outdoor dataset show that object segmentation is
not reliable in real-time segmentation methods. Combined with larger
errors in the camera calibration, it seems that 3D reconstruction in
these circumstances still poses a big challenge, and a real-time traffic
reconstruction based on silhouette information with limited computation
resources is not yet possible.

The main contributions made in this chapter are the following:

• an overview of three different ways to segment objects in an images
based on colour segmentation, motion segmentation and neural
network segmentation;

50

Silhouette Extraction

• testing and comparing different silhouette extraction techniques in
different circumstances;

• an application to execute and compare different silhouette extrac-
tion methods to process videos.

Some of the work related to this chapter is described in these publica-
tions:

• G. Allebosch, M. Slembrouck, S. Roegiers, H. Luong, P. Veelaert,
and W. Philips. Foreground background segmentation in front of
changing footage on a video screen. In Proceedings of Advanced
concepts for intelligent vision systems (ACIVS’18), volume 11182,
pages 175–187. Springer International Publishing, 2018. ISBN
9783030014483

• K. Bauters, H. Van Landeghem, D. Van Haerenborgh, M. Slem-
brouck, D. Van Cauwelaert, P. Veelaert, and W. Philips. Multi-
camera complexity assessment system for assembly line work sta-
tions. In Proceedings of the European Concurrent Engineering
Conference (ECEC’13), page 5, 2013

51

Chapter 4

Volumetric Shape
Reconstruction

When it comes to finding out the spatio-temporal relationship between
an object and its surroundings, it is usually required to estimate its 3D
shape in the 3D world. This information can be directly used in AR/VR
applications or for motion analysis. For instance, when monitoring a
worker at a conveyor belt over time and reconstructing his/her 3D shape,
it is possible to determine analytics about the distance travelled, the
number of times the worker needs to bend his/her knees or reach out
for some object on a shelf. The worker’s task can then be optimised for
ergonomics and assembly time reduction.

Volumetric shape reconstruction can be performed with multiple tech-
niques. Most popular approaches involve stereo pairs, depth sensors
(time-of-flight cameras or LiDARs) or wide-baseline cameras. While
stereo pairs and depth sensors can create accurate shape reconstructions,
they do not offer full 3D reconstructions because the object is only
observed from a single direction. We refer to 2.5D instead of 3D in these
situations. The output can be represented as a depth map containing
the distance to the closest object for each position on the depth sensor.

Multiple (single-view) depth sensors can mitigate the lack of 3D recon-
struction, but such extension is not always possible or straightforward
due to interference between sensors. In this work, we use RGB cameras,
which are relatively cheap compared to other sensors. A stereo pair
consists of two RGB cameras mounted next to each other and looking in
the same direction. The disparity created by the slightly different views
can be exploited to create a 2.5D reconstruction. However, since the
viewing direction is almost identical, occlusion in one camera will also

53

Shape reconstruction from images

be present in the other camera view of the stereo pair. It is better to view
the scene from multiple directions to solve the occlusion problem. For
the same number of cameras, wide-baseline camera setups offer double
the number of views than stereo pairs. Alternative approaches will be
discussed in the next section to support our choice for wide-baseline
camera setups.

It is essential to keep in mind that the goal of the desired 3D reconstruc-
tion is twofold: determine the volumes that are occupied by the objects
in the scenes, and perform further analysis on each of these objects,
e.g., interaction between objects, tracking of objects, and shape analysis.
Applications will be discussed in more detail in Chapter 7.

In this chapter we will explain how we combine camera calibration
(Chapter 2) and silhouettes (Chapter 3) to reconstruct a 3D shape. First,
we overview multiple shape reconstruction techniques based on different
sensors. The second part of this chapter discusses 3D representations.
The third part gives an in-depth analysis of a particular technique called
shape-from-silhouettes [52]. In the last part, we discuss how such recon-
struction can be further refined by using the silhouettes and the colour
values of the pixels inside this silhouette (space carving [50, 18]).

4.1 Shape reconstruction from images

3D shape recovery from images is ill-posed, i.e., there may be multiple
shapes that are consistent with the same set of images. Therefore,
reconstruction methods must either choose one particular shape from
the space of all consistent shapes or reconstruct the all encompassing
volume by which all camera-consistent shapes are bound. For the first
approach, a smooth surface is favoured over an irregular surface because
smooth surfaces are often more realistic. However, a drawback of this
type of approach is that it typically penalises discontinuities and sharp
edges, which are very common in natural scenes. The second approach
poses no constraints on a reconstructed shape and can handle a broader
range of different shapes. However, these shapes are often larger than
shapes reconstructed from the first approach, in particular when only a
few cameras are used.

In literature, multiple techniques have been proposed to reconstruct
shapes from input images. This section provides an overview, and we
discuss each method regarding suitability for the applications. Note that
we mainly consider moving arbitrarily-shaped objects and are interested
in their surface geometry. Typical objects in this work are cars and

54

Volumetric Shape Reconstruction

humans. For a more in-depth analysis on how to reconstruct a person’s
skeleton in 3D, we refer to Chapter 6.

Methods for shape reconstruction can be classified in different ways. One
such division is the number of viewpoints that are used. Single viewpoint
solutions are most applicable but usually less reliable, and the problem
is even more ill-posed than if there are multiple views available.

4.1.1 Single-sensor reconstruction

Reconstruction methods based on data from a single sensor can only pro-
duce 2.5D reconstructions (depth-sensing) because the scene is viewed
from a single viewpoint. A full 3D reconstruction is impossible without
prior knowledge of the object. One of many possible reconstruction
methods from a single view is the shape from shading [76]. This method
observes shade variations in the image of the object and estimates the
object’s surface from these clues. Such a method only works in controlled
circumstances with a single light source and objects coated in the same
material. Alternatively, structured light can be used. The technique
uses a projector (light source) which casts a specific pattern on the
object, and a camera observes the deformation of this pattern by the
object. Since the projected pattern and the observed pattern are known,
it is possible to reconstruct the shape on which the pattern is projected.
The first version of the Microsoft Kinect used structured light to generate
a 2.5D representation of the objects in front of the sensor.

We also consider a stereo pair as a single viewpoint sensor because both
cameras more or less observe the scene from the same viewing direction
despite a particular parallax between the two sensors. Stereo cameras
can be used for 2.5D reconstruction and perform well in general when
the object to reconstruct has rich features which can be detected and
matched between the two camera views [53]. However, real-time pro-
cessing is not always guaranteed due to the computationally expensive
matching algorithms which transform stereo images into depth maps.

Time-of-flight (ToF) techniques are also valuable for shape reconstruc-
tion. Both ToF cameras and LiDARs use light pulses and measure the
time for the pulse to travel to the object and return to the sensor. These
depth measurements can be used to create a depth map. The functional
difference between LiDAR and other forms of ToF is that LiDAR uses
pulsed lasers to build a point cloud, which is then used to construct a
3D map or image. ToF applications create depth maps based on light
detection, usually through a standard RGB camera. The advantage of

55

Shape reconstruction from images

ToF over LiDAR is that ToF requires less specialised equipment so that
it can be used with smaller and less expensive devices.

Unlike the previously mentioned single-sensor reconstruction approaches,
the structure from motion technique does not technically use a single
viewpoint [97]. The method uses a single camera, but this camera moves
around in space, hence creating multiple virtual viewpoints and the
camera position from each viewpoint is estimated from the images. The
method can convert the observed images into a 3D reconstruction using
point correspondences between different virtual camera views. Such a
method has numerous applications in AR, i.e., placing an augmented ob-
ject on a surface in a realistic fashion. However, when objects other than
the camera are moving around in the observed environments, structure
from motion runs into its inherent limitations because the point corre-
spondences are no longer static. Since we primarily aim to reconstruct
moving objects, this method has not been explored further.

To conclude, the main drawbacks of single-sensor reconstruction are the
constraints imposed on the environment (shape from shading, structured
light), the limitation to 2.5D reconstruction (stereo cameras, ToF cam-
eras, LiDARs) and the inferior results when applied to moving objects
(structure-from-motion). Because of these shortcomings, we will further
investigate multi-sensor approaches.

4.1.2 Multi-sensor reconstruction

One obvious approach to mitigate the shortcoming of 2.5D reconstruc-
tion is to deploy multiple sensors with different viewpoints. Such a
multi-sensor approach is not always feasible due to interference between
sensors, e.g., structured light or the high cost of such a system, e.g.,
multiple LiDARs. For instance, one attempt has been made to reduce
interference by inducing motion blur using a simple offset wave vibration
motor [14]. Each sensor, therefore, only detected its own pattern sharply
because both the projection of the structured light pattern and the
camera are affected in the same way by the motor. In contrast, patterns
of other cameras are perceived as blurry.

Multi-sensor approaches are capable of creating a full 3D reconstruction.
Another advantage is that larger areas can be covered by adding more
sensors. However, some sensors are not suitable for larger areas because
of their limited range. For instance, ToF cameras only work reliably
up to a few meters. RGB cameras do not have these limitations. Light
reaches the sensor, even if it comes from far away. Therefore, the number

56

Volumetric Shape Reconstruction

of RGB cameras needed to cover a large area is smaller compared to the
number of ToF cameras to cover the same area, which makes an RGB
camera setup relatively cheaper.

RGB cameras are used in this PhD, mainly due to their broad avail-
ability. We preferred to use several cameras positioned around the
reconstruction volume with partly overlapping views instead of multiple
stereo camera pairs for two different reasons. First, the processing speed
of a stereo camera is slower compared to other multi-camera approaches
due to stereo matching, which is computationally expensive. Second,
when occlusion occurs, both cameras will not be able to capture the
entire object because their viewpoint is almost identical. Having more
different viewpoints enables more accurate 3D reconstructions because
the occlusion can be appropriately handled, and this is the main focus
of this work. For the same number of cameras in multiple stereo setups,
only half of the viewpoints are possible compared to the proposed camera
setup.

There are two common approaches for multi-camera setups with over-
lapping views to solve the 3D reconstruction: shape-from-silhouettes
and space carving. The two methods differ in complexity because, with
shape-from-silhouettes, only the silhouettes of an object are considered
and reprojected into 3D space. In contrast, for space carving, colours
from different views are also considered. In the remainder of this chapter,
we will first discuss different ways to represent 3D objects because this
choice impacts the implementation choices of shape-from-silhouettes.
Space carving is also discussed at the end of this chapter.

4.2 Representation of 3D objects

Two significant choices can be made when it comes to representing
3D objects, similar to the representation of 2D images: voxel-based
representations, which are similar to the pixel representation of images,
and volumetric mesh-based representations, which are similar to vector
images in 2D. In the following section we will discuss both in more detail.

4.2.1 Voxel-based representations

Voxel-based representations are discrete representations of a shape, sim-
ilar to how silhouettes in an image are represented by pixels. A voxel
is the smallest volumetric entity in such a representation. The most
straightforward way to subdivide a reconstruction volume, is by using

57

Representation of 3D objects

(a) object (b) large voxel size (c) small voxel size

Figure 4.1: Fixed voxel grid representation (one slice in 3D). (a) The input,
(b) and (c) are the voxelized reconstructions represented in grey (occupied) and
white (unoccupied). A smaller voxel size can capture details more precisely.

equally-sized voxels. Each voxel is defined by its width sw, length sl and
height sh and its position (sx, sy, sz) on the voxel grid. Voxels do not
overlap. Therefore, the voxel grid is also defined by the voxel’s dimen-
sions. The number of voxels to represent a particular volume is inversely
proportional to the chosen dimensions of a voxel. Smaller voxels allow
finer detail but require more memory. The memory requirement should
not exceed the computers available memory.

A voxel-based 3D reconstruction is defined as the set of voxels that
are occupied in the voxel grid. Voxels that are not part of the 3D
reconstruction are unoccupied. Figure 4.1 shows the representation of
one slice of the reconstruction of an arbitrary shape. A voxel coloured
in white represents one that is unoccupied (the voxel is not part of
the reconstruction). A voxel coloured in grey means that the voxel is
occupied and, therefore, part of the reconstruction. The smaller the
voxel size, the more precise the reconstruction becomes. Discretisation
will be discussed in Section 4.3.

As mentioned before, fixed voxel grid representations may require a large
amount of memory. Therefore, another representation is often used:
octrees. Octrees can be seen as hierarchical multi-scale voxels. The
reconstruction process is simple. An octree reconstruction initialises
with a node that represents the entire reconstruction volume. In each
iteration, nodes that are not completely occupied or unoccupied are
further divided into eight nodes, half of the size in each direction com-
pared to the parent node, whereas unoccupied nodes are discarded. This
iterative procedure continues until all remaining nodes are occupied or
when the desired minimum voxel size is reached. Figure 4.2 represents
the octree iteration of a single slice in de 3D space where octrees are split

58

Volumetric Shape Reconstruction

(a) iteration 1 (b) iteration 2 (c) iteration 3 (d) iteration 4

Figure 4.2: Octree-based reconstruction: only nodes that are not entirely
occupied are divided in the next iteration. Gray octrees are occupied, white
octrees are unoccupied. The result is a representation of on object with fewer
entities of different size, which is more memory-efficient compared to a voxel-
based representation.

in 4 in each iteration. The result of an octree-based representation is
one where the building blocks may not all have the same size anymore.

Comparing Figure 4.1 and 4.2b learns us that instead of 16x16 = 256
small voxels that need to be checked, in this case 272 nodes are eval-
uated and subdivided (4, 16, 56, 196 per octree level). If there is
more unoccupied space, the difference between the octree-based method
and the standard voxel-based method becomes larger. The object is
represented with 110 nodes with octrees instead of 159 fixed-size voxels.
The reconstructed volume is identical for both an octree-based or voxel-
based representation when the minimum voxel grid is equal to the fixed-
sized voxel grid.

4.2.2 Volumetric mesh-based representations

Volumetric mesh-based representations consist of vertices and faces. A
3D simplex is a tetrahedron, a 3D volume with four vertices and four
faces, of which each face is a triangle. Therefore, the union of different
tetrahedrons can also represent a 3D reconstruction. If only the surface
of a 3D object is represented, the reconstruction can be limited to a set
of 3D triangles. Figure 4.3 shows an example of a bunny volumetric
mesh with different numbers of vertices and faces (level of detail) to
describe the same model. The most detailed representation has low
errors but is less suitable for analysis. However, a significantly higher
number of tetrahedrons need to be evaluated compared to a model with
fewer vertices and faces.

Meshes can represent 3D objects very accurately and more smoothly
compared to voxel-based representations because the vertices and faces

59

Representation of 3D objects

Figure 4.3: Volumetric mesh reconstruction at different quantization levels
(Source: cathyatseneca.gitbooks.io). A mesh reconstruction can be very detailed
because the vertices of such a model are not limited to lie on a fixed grid. Mesh
models are typically scalable and widely used in virtual environments such as
AR/VR applications.

are not bound to a predefined grid. However, the calculation of accurate
meshes is time-consuming. In order to perform real-time mesh recon-
structions, some optimisations are used, which usually have an impact
on the mesh accuracy due to significant quantisation errors.

Note that there are also algorithms available to convert a fixed voxel-size
representation to a mesh-based representation e.g., using the marching-
cubes algorithm [59] in a single pass. However, such a conversion only
approximates the best possible mesh of that object because the vertices
of a mesh obtained with the marching-cubes algorithm do not necessarily
lie on the surface of the reconstructed object.

4.2.3 Discussion: which representation fits best?

Each of the representation discussed above has its advantages and disad-
vantages. While voxel-based representations may require a large amount
of memory, these representations are more suitable for further analysis,
such as interior/exterior testing and volume overlap detection (e.g., pre-
venting collisions). Voxel-based reconstruction is a massively parallel
operation that allows multi-threading. Octree-based representations
are especially suitable when the available memory is limited. However,

60

Volumetric Shape Reconstruction

they require additional calculations due to their hierarchical complexity
compared to voxel-based reconstructions.

Meshes can represent a surface in more detail, and the surface points
are not restricted to that of a predefined voxel grid. Mesh models can
also easily be scaled, making them suitable for AR/VR and with minor
artefacts compared to scaled versions of a voxel-based representation.
Meshes also require significantly less memory to be stored because the
number of vertices and faces are usually much lower than the number
of voxels. However, mesh-based representations require much more
calculations to test if a point lies inside or outside the object, compared
to a simple occupancy lookup in the voxel-based representation.

Since in this work we are mostly interested in fast reconstruction and
further analysis where interior/exterior testing is essential, we resort to
voxel-based reconstructions rather than photorealistic representations of
the objects.

4.3 Shape-from-silhouettes

Shape-from-silhouettes is a concept introduced by Laurentini in 1994
[52]. The method describes how the backprojection of 2D silhouettes
from a certain object can be used to obtain an approximated 3D shape
of that object (Figure 4.4 and 4.5). The technique allows the recon-
struction of arbitrary objects with a limited number of cameras placed
around them. Laurentini presented his work for image sets only (spatial
reconstruction). Due to the increase of computing power, it is now
possible to apply the same technique in a fraction of a second, enabling
application in the spatio-temporal domain with moving objects such as
runners and cars in traffic. An important condition is that all frames
from different cameras need to be synchronised.

We will now define the method more formally. First, we start with the
difference between the shape-from-silhouettes and the visual hull. For an
object S ⊂ R3, the visual hull depends on the object S and the viewing
set V = {V1, . . . ,VN}, where each of the N viewpoints Vj corresponds
to a camera position (j indicates the index of a camera), more specifically
the camera centre.

Definition 1. The visual hull VH(S,V) of an object S relative to a
viewing set V is a region of R3 such that, for each point P ∈ VH(S,V)
the half-line starting at Vj and passing through P contains at least one
point of S for each viewpoint Vj ∈ V. (Definition from [52]).

61

Shape-from-silhouettes

Figure 4.4: A number of synchronized silhouettes from 8 calibrated cameras
(CVSSP dataset [93]). The segmentation is very reliable because the breakdancer
was captured in a green key studio.

Figure 4.5: Voxel-based shape-from-silhouettes reconstruction. This result is
generated by using the input silhouettes in Figure 4.4. The voxel size is 10 mm,
which shows considerable detail, e.g., near the hands of the person.

Hence the visual hull is a geometric object that depends on the shape
and position of the 3D object and the camera centres Vj . In computer
vision, we usually do not know the geometry of the 3D object. Each
camera can only observe a projection of the object (the silhouette, see
Chapter 3). These silhouettes may not be equal to the projection of the
3D object due to errors in de segmentation or occlusion. In the most
general form, a silhouette is a region of the 2D image plane. We define
a more practical definition of shape-from-silhouettes as follows.

Definition 2. The shape-from-silhouettes SfS(I,V) of the observed sil-
houettes Ij from a set of viewpoints V, is the set of all points P ∈ R3

such that, for each viewpoint Vj ∈ V, the projection of P on the image
plane of camera j, Pj is part of silhouette Ij.

Note that both the image resolutions and the reconstruction volume are
quantised and cause inaccuracies in the reconstruction. Smaller voxel

62

Volumetric Shape Reconstruction

u

v

p
2

c

p
1

d2

d1

Figure 4.6: Relation between pixel size and voxel size. Maximum precision
depends on the distance d2 between the backprojected lines CP1 and CP2 at
distance d1. An appropriate voxel size has the same magnitude as the distance
d2.

sizes correspond to more detailed voxel reconstructions, but the image
resolution limits the detail. The minimum voxel size depends on the
image resolution and the distance between the camera and the object. A
suitable voxel size can be determined by measuring the distance between
the backprojected pixel centres of two neighbouring pixels at the desired
distance (location of the object) in front of the camera. This distance
mainly depends on the focal length of the camera and the lens distortion.
Figure 4.6 illustrates this the relation between two pixel p1 and p2 and
the distance between them (d2) at distance d1 in front of the camera.
The cuboid shows the size of a voxel where each side is d2 long. The
smallest size used for a voxel reconstruction should not be smaller than
half the size of this cuboid in each dimension, related to the Nyquist
Theorem for sampling.

The goal of shape-from-silhouettes is to obtain a shape, which equals
VH(S,V). However, the use of silhouettes introduces an additional
challenge to accurately reconstruct the 3D object because each silhouette
is prone to errors. Errors may be due to bad silhouette detections.
However, in many cases, they are due to other objects blocking the view
of the object of interest, either partially or completely, from a viewpoint
Vj , the so-called occluders. As mentioned above, the 2D image plane is
quantised into pixels, so a silhouette becomes a finite set of pixels, which
approximates the real silhouette. However, these quantization errors are
relatively small for high-resolution images.

In this chapter, we focus on 3D reconstruction under the assumption
that the silhouettes are more or less complete (no occlusion, silhouette
F1-score of 90% or above, see Section 3.4). We refer to Chapter 5 for
our solution for incomplete silhouettes where occlusion is appropriately

63

Shape-from-silhouettes

backprojection

2D to 3D

(a) backprojection of pixels

projection

3D to 2D

(b) voxel’s projection

Figure 4.7: Voxel-based reconstruction using (a) silhouette backprojection or
(b) voxel projection. Intersecting voxels and pixels are coloured.

handled.

In the remainder of this chapter, we will discuss several choices and
properties of the shape-from-silhouettes algorithm in terms of imple-
mentation and data structures of state-of-the-art methods.

In Section 4.2 we discussed voxel-based and mesh-based representations
of 3D objects. This section will discuss two families of algorithms: one
to generate a voxel-based 3D reconstruction and another one to generate
a mesh-based 3D reconstruction. Note that we are looking to perform
the shape-from-silhouettes process in real-time. Therefore, the choices
we make are influenced by processing time, especially when there are
different ways to obtain similar results.

4.3.1 Voxel-based shape-from-silhouettes

Voxel-based shape-from-silhouettes is a simple and straightforward ap-
proach to approximate a 3D object from a set of observed silhouettes
and their corresponding camera calibration. There are two strategies to
reconstruct the shape of an object based on silhouettes using voxels.

1. SfS based on silhouette backprojection
Initialise a counter to 0 for each voxel. Backproject the silhouettes
and increment the counter for all voxels inside the reprojected
silhouette. The final reconstruction equals the set of voxels for
which its counter is equal to the number of cameras.

2. SfS based on voxel projection
Visit all voxels in the reconstruction volume and calculate the
voxel’s projection on each of the image planes. The final recon-
struction is the voxel set, for which the voxels’ projection overlaps
with the silhouette in all camera views.

64

Volumetric Shape Reconstruction

Data: camera calibration (N cameras), silhouettes Ij , the set of all
voxels in the reconstruction volume S

Data: voxel-based shape-from-silhouettes reconstruction Ω
Procedure:
nv = 0 for all v ∈ S

for j ← 1 to N do
T = findcontours(Ij)
foreach contour t in T do

foreach v in Π−1
j (t) do

nv = nv + 1
end

end

end
Ω =

⋃
v for all v ∈ S where nv = N

Algorithm 4.1: SfS based on silhouette backprojection. Each contour t of
each silhouette Ij per camera j is backprojected. The set of voxels contained by
the intersection of all backprojections forms the voxel reconstruction Ω.

Figure 4.7a shows how a pixel is backprojected and indicates all voxels
with which the backprojection intersects. In Figure 4.7b, we project a
voxel onto the image plane and indicate which pixels cover its projection.
The voxel grid size was adapted for visualisation purposes, so it is clear
that a voxel’s projection covers multiple pixels, and the backprojection
of a pixel covers multiple voxels.

Both algorithms can be expressed in a few lines of code with different
implementations. However, we chose to illustrate how the algorithm
works by not over-optimising.

Algorithm 4.1 shows the first approach. In essence, the borders of each of
the silhouettes Ij is searched. This process has complexity O(IwIh) with
IwIh the total number of pixels in the image. Each of these contours t is
backprojected: Π−1

j (t). Such a backprojection forms a generalised cone,
having the viewpoint Vj as a top and its surface defined by the contour
points t. The count nv of all voxels v ∈ S which also lie inside this
generalised cone are incremented by 1. After evaluating all silhouettes
from all views, the union of voxels v ∈ S where nv = N represents the
voxel-based visual hull Ω.

Algorithm 4.2 loops over all voxels v in the reconstruction volume and
increments a when the projection of voxel vj lies inside silhouette Ij
for each view. If a = N , the voxel projects inside the silhouette in each
camera. Therefore, the voxel becomes part of the reconstruction Ω. This

65

Shape-from-silhouettes

Data: camera calibration (N cameras), silhouettes Ij , the set of all
voxels in the reconstruction volume S

Result: voxel-based shape-from-silhouettes reconstruction Ω
Procedure:
Ω = ∅
foreach v ∈ S do
a = 0
for j ← 1 to N do

if vj ⊂ Ij then
a = a+ 1

end

end
if a = N then

Ω = v ∪ Ω
end

end

Algorithm 4.2: SfS based on voxel projection. Each voxel v in the reconstruc-
tion volume S is projected onto the image j and compared with the silhouette
Ij. If the voxel projects inside each silhouette, the voxel is occupied. The set
of occupied voxels forms the voxel reconstruction Ω.

algorithm has complexity O(Nv) where Nv the total number of voxels
in the reconstruction volume.

Both algorithms produce the same voxel-based reconstruction. However,
there are many reasons why the second algorithm is used in this work.
First, the computation time does not depend on the size and complexity
of the silhouettes but has a constant computation time because every
voxel is visited exactly once. Since we mainly work on live applications,
it is essential to optimise this computation time. We found that using a
look-up table for the voxel projections is faster than recalculating these
projections over and over again. In theory, the same can be done for
the first approach, but to store all voxels inside a pixel’s backprojection
requires a significant amount of memory because the number of voxels
inside a pixel’s backprojection (approach a) is much larger than the
number of pixels inside a voxel’s projection (approach b).

The voxel’s projection is a convex polygon with at most six vertices.
For all pixels inside this convex polygon, we should verify if they are
part of the silhouette Ij (full voxel projection test). However, if the
voxel’s projection overlaps with a few pixels only (small voxel size), we
noticed that it suffices only to check if the voxel’s centre projects inside
the silhouette Ij (= single pixel projection test)). Suppose a voxel’s

66

Volumetric Shape Reconstruction

X

Y

Z

u

v

X

xi

(a)

xi

A B C D E F G H I J

1

2

3

4

5

6

(b)

xi

A B C D E F G H I J

1

2

3

4

5

6

(c)

Figure 4.8: Projection test optimization: instead of testing the entire grey
area of the projected voxel, only the projected centre xi needs to be checked.
White pixels represent the silhouette.

projection covers a large number of pixels. In that case, this optimisation
should not be used, and another criterion can be chosen to avoid checking
all pixels inside the convex polygon of a voxel, e.g., only its vertices. The
criterion may also allow a pixel to not fully overlap with a voxel to avoid
the reconstructed object becoming too large. Figure 4.8 illustrates a
good (b) and bad example (c) of when this optimization is useful. For the
first approach, a comparable optimisation can be thought of as having
the number of voxels in a pixel backprojection equal to the line through
the voxel volume. That, however, requires a small voxel size, and this
optimisation can only be used at that voxel size (or even smaller, which is
not efficient). Otherwise, some voxels would not be marked as occupied
and holes in the reconstruction would be created. See Section 4.5.2 for
numerical results about this optimization.

4.3.2 Mesh-based shape-from-silhouettes

An alternative approach to voxel-based reconstruction is calculating
the intersection points of reprojected silhouette borders. The camera
position defines the corresponding generalised cones, and the silhouette
border defines the shape of this polygon (Figure 4.9). These intersections
can be represented as a mesh. These mesh-based solutions are not bound
to a discretised voxel grid. Therefore, mesh-based solutions can deliver
more precise shape reconstructions compared to voxel-based approaches.
However, current methods have not obtained the same processing speed
compared to voxel-based approaches, making it unsuited for real-time
applications.

Researchers have been investigating mesh-based reconstructions for a
while now. In 2001, Matusik et al. reported 15 fps on a 2x933MHz
Pentium III PC, where each camera image is first processed on a separate

67

Shape-from-silhouettes

600 MHz Athlon desktop PC [62], which can be considered near real-time.
However, back then, they could only obtain this processing speed with
input images at a reduced resolution of only 320×240 pixels and only for
four camera views. In order to maintain a relatively constant frame rate,
the input silhouettes are simplified with a coarser polygonal approxima-
tion. This approximation omits the biggest advantage of mesh-based
reconstruction by giving up even more precision after the resolution was
already reduced. On a modern computer, this algorithm would most
likely run even faster. However, increasing the number of cameras and
the image resolution may again drop the gain in computation time.

Sablatnig et al. [26] proposed an approach to reduce the time required
to build a shape reconstruction by reducing the number of input views
by taking into account object features to ensure a certain level of model
accuracy. Note that his method was developed for turntable setups. The
method compares subsequent silhouettes from different turntable posi-
tions and picks those silhouettes that are significantly different according
to a threshold value. The paper presents an algorithm for next-view
planning with a minimal number of different views.

Yemez et al. [111] also presented a system for a mesh-based approach
with high-resolution shape and texture. All aspects of such a system are
discussed, from the camera calibration to the generation of a triangular
mesh. Although the result of this approach is a mesh, the algorithm
itself uses an octree-based approach, and therefore, the surface points
are impacted by quantisation. This issue is solved using the marching-
cubes algorithm and an interpolation algorithm to create a smoother
surface. The visual result for static objects look promising, but nothing
is mentioned about computation time. Since only static objects are
being reconstructed, the method most likely cannot process images in
real-time.

Miline [66] developed a modified marching-cubes method that can quickly
compute an object’s volume from its visual hull by using multiple views
of the object. In this method, the first step is the voxelisation of
the volume containing the target object. Then, the marching-cubes
algorithm is used to approximate the surface passing through the exte-
rior voxels. Finally, the positional accuracy of the surface is improved
using a binary search. Miline claimed that by applying the marching-
cubes algorithm to a low-resolution voxel-based model (instead of a high-
resolution model), better results could be achieved in a shorter time.
The binary search can further improve the marching-cubes model with
a minimal computational expense.

68

Volumetric Shape Reconstruction

Figure 4.9: Intersection of backprojected general cones reconstruction [63].

More recently, Phothong et al. [74] proposed an algorithm in 2017 that
uses the direct intersection of multiple sets of the generalised cones. The
surface points are triangulated according to the topological relationship
of the obtained points and the polygons corresponding to each of the
points. This topology is exploited using strategies similar to octrees.
The main advantages of the proposed method are that all 3D points
are precisely located on the silhouettes of 2D images. However, the
processing speed is limited to 0.5-1.3 seconds for 16 camera views on a
computer with a 1.90 GHz CPU and 4 GB of RAM.

Although the mesh-based reconstruction methods may generate more
precise 3D reconstructions, the calculations are more complex and re-
quire more computation time than voxel-based approaches. Moreover,
voxel-based approaches consist of many processes that can be executed
in parallel.

4.4 Space carving

An alternative approach to the shape-from-silhouettes technique is called
space carving [50, 18]. This method considers the colour of the object to
create the photo hull of an object. A photo hull is different from a visual
hull because its volume is equal to or smaller than a visual hull and all
voxels in a photo hull are photo-consistent. The technique relies on the
fact that if a point is part of the object’s surface, the colour of that
point should be similar in all camera views, observing this point. Photo-
inconsistent voxels can hence be removed. We note that this assumption
only holds true for Lambertian reflectance where similar colours can be
observed from different viewpoints.

69

Space carving

C3

C1 C2

C4

P

Figure 4.10: Point P lies in the direct line of sight of cameras C2, C3, C4

whereas another part of the grey object of interest is occluding the line of sight
of camera C1, therefore, camera C1 should not be taken into account for photo-
consistency as the observed part of the object might have a different colour than
point P in camera C1.

C3

C1 C2

C4 C3

C1 C2

C4

real

object

visuall

hull

C3

C1 C

C4

photo

hull

Figure 4.11: Visual hull vs. photo hull. The colour consistency helps to carve
inside the visual hull and hence create a smaller shape, which is still larger than
the object.

The technique is much more complex than shape-from-silhouettes. It
uses colour information. An analysis is needed to check the visibility
of that point to decide on the so-called photo-consistency of a point’s
appearance in different images. Figure 4.10 illustrates the self-occlusion
problem. Camera C1 is unable to observe point P because part of the
object of interest prevents direct line of sight. Therefore, the colour
of the corresponding pixel on the image sensor of camera C1 might
be different from that of point P and camera C1 should not be used
in assessing photo-consistency of the voxel at location P . Due to the
inclusion of photo-consistency, it becomes possible to carve away voxels
inside the visual hull of the object.

Figure 4.11 shows how the colour is used to make the reconstructed
object smaller than the visual hull. A smaller volume means that this
shape is closer to the object’s actual shape if the colour matching is

70

Volumetric Shape Reconstruction

Data: camera calibration (N cameras), colour input images
Data: voxel-based photo hull reconstruction V∗
Procedure:
Step 1: Initialize V to shape-from-silhouettes.

Step 2: Repeat the following steps for unchecked voxels v ∈ Surface(V)
until a non-photo-consistent voxel is found:

a. Project v to all photographs in Visiblej(v). Let col1, . . . , colj
be the pixel colours to which v projects and let ζ1, . . . , ζj be the optical
rays connecting v to the corresponding optical centres.

b. Determine the photo-consistency of v using
consistK(col1, ..., colj , ζ1, . . . , ζj).

Step 3: If no non-photo-consistent voxel is found, set V∗ = V
and terminate. Otherwise, set V = V − v and repeat Step 2.

Algorithm 4.3: Space carving algorithm. Starting from the shape-from-
silhouettes, this method removes photo-inconsistent voxels from the reconstruc-
tion. A voxel is photo-inconsistent if the colours inside its projection in the
images are not similar, at least not for the cameras that can observe the voxel.
The check consists of a visibility check and a colour-consistency check.

performed correctly. An analysis of shape reconstructions closer to the
actual shape will produce more reliable results in general.

Algorithm 4.3 shows how the photo hull can be obtained. An important
step to understanding the complexity of the algorithm is the function
Visiblej(v) which determines for a camera j if a voxel v is in its direct
line of sight. More specifically, there is no (self-)occlusion. Cameras for
which the optical ray ζj to a voxel v passes through other occupied voxels,
are excluded from V (e.g., camera C1 in Figure 4.10). The number of
operations to find these voxels depends on the size of the reconstruction
volume and the number of cameras. For the K cameras of which the
voxel can be observed, the colour is compared to determine if the voxel’s
colour is photo-consistent in all camera views.

The consistK function is used to compare colours. It represents an
algorithm that takes as input at least K ≤ N colours col1, . . . , colK ,
K vectors ζ1, . . . , ζK , and the light source positions and decides whether
it is possible for a single surface point to reflect light of colour colj
in direction ζi, simultaneously for all j = 1, . . . ,K. Note that such a
comparison can only be performed reliably when the light sources can

71

Shape reconstruction experiments

Figure 4.12: Reconstruction of a breakdancer using space carving. Each
surface voxel is coloured with photo-consistent colour.

be modelled (controlled indoor environments). We refer to Chapter 3
for suitable colour spaces.

Figure 4.12 shows an example of a breakdancer captured with eight
cameras in a green screen studio to facilitate the segmentation. The
texture of the breakdancer has been added to the reconstructed model
the generate a photorealistic result. We have not explored this method
further because of its increased computation time compared to the stan-
dard shape-from-silhouettes implementation.

4.5 Shape reconstruction experiments

This section shows several experiments related to volumetric shape recon-
struction. A voxel-based volumetric shape reconstruction depends on a
number of variables: the position of the cameras, the number of cameras,
the complexity of the shape and the voxel size. For a static object of
which the shape is more or less known, an ideal camera configuration
could be theoretically achieved. However, since the orientation of the
object impacts the optimal camera configuration directly, we do not
optimize for particular poses and use the rules of thumb that were
explained in Section 2.2.

72

Volumetric Shape Reconstruction

(a) 2 cams (b) 3 cams

(c) 4 cams (d) 5 cams

(e) 6 cams (f) 7 cams

Figure 4.13: The volumetric shape reconstruction of the body’s shape using 2
to 7 cameras. In general, the reconstructions is more precise with more cameras
but that is only true when the camera positions remain the same which is not
the case in this experiment.

73

Shape reconstruction experiments

We simulate the results by using a 3D model of a person and projecting
the model on each of the camera views to create the silhouettes. Using
these silhouettes and the known camera positions, we can use the shape-
from-silhouettes algorithm to reconstruct the person again in 3D, and
hence, we can compare the volumetric shape reconstruction with the
model to determine the accuracy.

4.5.1 Camera configuration

This experiment also shows the impact of the number of cameras on the
3D reconstruction. The person is standing in a starfish pose and the
cameras are placed on a circle with 3 m radius around the person, 80
cm from the ground plane and equidistant from each other in case of an
odd number of cameras. To avoid that cameras are placed opposite of
each other, the angles for half of the cameras in an even setup is shifted
with π

N
for half of the cameras. The number of cameras varies between

2 and 7. A top view camera was also considered but because the arms
occlude the sides of the person, the top view camera was not a useful
addition to improve the reconstruction, so we will not further consider
it.

Figure 4.13 shows the impact on the reconstruction of the number of
cameras in the camera configuration. A clear excess of voxels can be
seen when only 2 of 3 views are used. The more cameras, the tighter the
3D reconstruction becomes around the actual model. In general, more
cameras improve the reconstruction but also increase the cost of such a
system. It is best to determine the impact of extra cameras compared
to the gain they bring. At a certain point only marginal gain (or none at
all) is reached. In that case, it makes little sense to increase the number
of cameras further.

4.5.2 Voxel size

Figure 4.14 shows visually how the shape reconstruction is influenced
by the voxel size. We consider two different projection test during the
reconstruction. In the top row, the voxel is projected (FVPT = full voxel
projection test) on the image sensor of each cameras, which corresponds
to the pixels in the image of the convex hull of the projected vertices
of the voxel. A voxel is occupied when at least one pixel is part of the
voxel’s projection in each view. The bottom row shows the results if
only the the single pixel corresponding to the voxel centre’s projection

74

Volumetric Shape Reconstruction

(a) 50 mm (FVPT) (b) 20 mm (FVPT) (c) 10 mm (FVPT) (d) 5 mm (FVPT)

(e) 50 mm (SPPT) (f) 20 mm (SPPT) (g) 10 mm (SPPT) (h) 5 mm (SPPT)

Figure 4.14: The figures show the volumetric shape reconstruction of the
body’s shape using five cameras and a voxel size between 5 and 50 mm. A voxel
size of 50 mm is not adequate for a detailed reconstruction of a person. The
top row show the results of the full voxel projection test (FVPT) and the bottom
row show the results of the single pixel projection test (SPPT).

is evaluated (SPPT = single pixel projection test). In general, small
voxel sizes lead to a detail reconstruction than large voxel sizes.

The full voxel evaluation approach results in a thicker reconstruction,
while the optimized reconstruction tends to be slimmer. When voxel
sizes become smaller, the apparent differences between both methods
disappear. It is important to note that the optimization should not be
used when the voxel size is comparable to the order of magnitude of the
shape. For instance, the wrists are missing in the reconstruction of 5 cm
because that is about the size of the wrist in this model.

We provide a numerical analysis in Table 4.1. To compare the estimated
shape with the ground truth (a mesh model), we converted the mesh
model to a voxel representation having the same voxel size. Voxel-to-
voxel comparison was done where a label is assigned to each voxel: TP
(true positive), FP (false positive), TN (true negative) and FN (false
negative). The number of voxels in each class are used to calculate the
precision (TP

TP+FP), recall (TP
TP+FN) and F1 score (TP

TP+
FN+FP

2

).

For the full voxel projection implementation, recall is about 100%, and
precision increases with decreasing voxel size. The optimised version

75

Shape reconstruction experiments

voxel size precision recall F1 fps
50 mm (full) 67.09% 100.00% 80.31% 11.1
50 mm (opt) 96.61% 58.76% 73.08% 530
20 mm (full) 72.64% 100.00% 84.15% 1.6
20 mm (opt) 94.80% 87.42% 90.96% 297
10 mm (full) 76.92% 100.00% 86.95% 0.23
10 mm (opt) 91.54% 96.12% 93.77% 42
5 mm (full) 80.03% 100.00% 88.91% 0.02
5 mm (opt) 88.49% 99.13% 93.51% 6.2

Table 4.1: Numerical analysis of voxel sizes between 5 mm and 50 mm in
terms of precision, recall, F1-score and frame rate. Small voxel sizes mean
slower reconstructions but better reconstruction in terms of F1-score. We reach
higher frame rates by using the optimized projection test. However, this test
also has an impact on the precision and recall. It should only be used with voxel
sizes lower or equal than 20 mm.

shows a different trend. Recall increases, and precision decreases with
decreasing voxel size. This behaviour can be explained because mainly
the voxels at the border are missing from the reconstruction. However,
due to the excess property of a shape-from-silhouettes, these surface
voxels are likely not part of the actual object. Therefore, these effects
impact both recall and precision. In the last column, we also show
the frame rate of each implementation (using 4 CPUs). The optimised
projection test increases the frame rate significantly. For real-time
applications, such optimisation is required. Note that we use a look-up
table (LUT) of all the projections to speed up the reconstruction process.
The LUTs increase the processing speed by roughly 30%. However, they
require a significant amount of memory. Too much, in fact, for the 5
mm voxel size reconstruction on our system. A LUT is also used for the
optimised implementation, but the memory requirement is significantly
lower because only a single point needs to be stored per voxel per camera.

Also other metrics are important: reducing the voxel size by half in each
direction requires eight times more calculations. Also, note that the
frame rate depends on the size of the reconstruction volume. For this
experiment, the size of this reconstruction volume was 2 m × 2 m × 2
m.

76

Volumetric Shape Reconstruction

num length error
cams (mm) (mm)

2 cams 1075 140
3 cams 965 30
4 cams 925 -10
5 cams 944 9
6 cams 925 -10
7 cams 923 -12

(a) waist circumference
(ground truth: 935 mm)

num length error
cams (mm) (mm)

2 cams 839 130
3 cams 756 47
4 cams 727 18
5 cams 720 11
6 cams 708 -1
7 cams 709 1

(b) abdominal circumference
(ground truth: 709 mm)

Table 4.2: Numerical results of the waist and abdominal circumference of a
person using between 2 and 7 cameras.

1400 1600 1800 2000 2200 2400

x

1600

2600

1800

2000

2200

2400

y

Ground truth

(a) Ground truth

1400 1600 1800 2000 2200 2400 2600

x

1600

1800

2000

2200

2400

y

Shape-based

(b) 5 cams

Figure 4.15: Visual comparison of the abdominal circumference. Using
5 cameras we can accurately reconstruct a person’s waist and measure the
circumference. The extra shapes on the left and right of the waist are parts of
the hands that are also reconstructed. They are ignored in the analysis.

4.5.3 Shape analysis: garment fitting

The 3D reconstruction can directly be used for analysis. One of many
application is to measure a person’s size for garment fitting. We focus
on the abdominal and waist circumference, but other sizes could also be
measured. The person from the experiments above was reconstructed
using a voxel size of 1 cm.

Each circumference is measured by analysing a slice. The outer voxels
of that slice are considered as the surface voxels (skin) of the person.
The quantisation error that comes with the voxelized 3D reconstruction
is handled by estimating the voxel contour with a spline. Figure 4.15
shows the result of the abdominal circumference. The shapes are similar.

77

Conclusion

The shapes on the left and right side represent the fingers. They lay in
the same slice but are not considered in the analysis of the waist.

Table 4.2 shows the numerical results of the analysis. We notice that
for this particular analysis 4 or 5 cameras are sufficient to estimate the
circumferences accurately with an expected error of 1 cm.

4.6 Conclusion

This chapter explained how 3D shape reconstruction could be performed
from silhouette images in a calibrated camera setup. We assumed more
or less complete silhouettes e.g., the reconstructed object is the inter-
section of all backprojected silhouettes. Under controlled circumstances,
we can reliably reconstruct the objects in front of the cameras.

In Chapter 5 we will discuss the shape from incomplete silhouettes
reconstruction. The incompleteness of the silhouettes may have to cause:
poor silhouette extraction or occlusion. We will extend the shape-from-
silhouettes reconstruction to generate reliable reconstruction based on
incomplete silhouettes.

The presented shape reconstruction offers volumetric information of
objects and humans. Some analysis can be performed on these shapes
such as the garment fitting application. However, to analyse a person’s
pose in more detail, skeletal information is more suitable, which will be
investigated in Chapter 6.

The main contributions made in this chapter are the following:

• real-time implementation of shape-from-silhouettes;

• development of a complete framework to calculate reconstructed
object from input images given the camera calibration;

• analysis of important parameters in a voxel-based reconstruction:
camera configuration and voxel size;

• basic analysis on the reconstructed voxel-based volumetric shape
reconstruction.

Some of the work in this chapter is described in these publications:

• K. Bauters, J. Cottyn, D. Claeys, M. Slembrouck, P. Veelaert,
and H. van Landeghem. Automated work cycle classification and
performance measurement for manual work stations. Robotics and
computer-aided manufacturing, 51, 2018. ISSN 0736-5845

78

Volumetric Shape Reconstruction

• M. Slembrouck, D. Van Cauwelaert, P. Veelaert, and W. Philips.
Shapes-from-silhouettes based 3d reconstruction for athlete evalu-
ation during exercising. In Abstracts of Science and Engineering
Conference on Sports Innovations (SECSI’16), page 2, 2016

• J. Li, M. Slembrouck, F. Deboeverie, A. M. Bernardos, J. A. Be-
sada, P. Veelaert, H. Aghajan, W. Philips, and J. R Casar. A
hybrid pose tracking approach for handheld augmented reality.
In Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC’15), pages 7–12. ACM, 2015. ISBN 978-
1-4503-3681-9

• J. Li, B. Goossens, M. Slembrouck, F. Deboeverie, P. Veelaert,
H. Aghajan, W. Philips, and J. R Casar. Demo: a new 360-degree
immersive game controller. In Proceedings of the 9th International
Conference on Distributed Smart Cameras (ICDSC’15), pages 201–
202. ACM, 2015. ISBN 978-1-4503-3681-9

• X. Xie, D. Van Cauwelaert, M. Slembrouck, K. Bauters, J. Cottyn,
D. Van Haerenborgh, H. Aghajan, P. Veelaert, and W. Philips. Ab-
normal work cycle detection based on dissimilarity measurement
of trajectories. In Proceedings of the 9th International Conference
on Distributed Smart Cameras (ICDSC’15), page 6. ACM, 2015.
ISBN 978-1-4503-3681-9

• X. Xie, J. De Vylder, D. Van Cauwelaert, P. Veelaert, W. Philips,
H. Aghajan, M. Slembrouck, D. Van Haerenborgh, H. Van Lan-
deghem, K. Bauters, J. Cottyn, and H. Vervaeke. Average track
estimation of moving objects using ransac and dtw. In Proceedings
of the 8th International Conference on Distributed Smart Cameras
(ICDSC’14), page 6. ACM, 2014. ISBN 978-1-4503-2925-5

• K. Bauters, H. Van Landeghem, M. Slembrouck, D. Van Cauwe-
laert, and D. Van Haerenborgh. An automated work cycle clas-
sification and disturbance detection tool for assembly line work
stations. In Proceedings of the International Conference on In-
formatics in Control, Automation and Robotics (ICINCO’14), vol-
ume 2, page 7, 2014. ISBN 9789897580406

• K. Bauters, H. Van Landeghem, D. Van Haerenborgh, M. Slem-
brouck, D. Van Cauwelaert, P. Veelaert, and W. Philips. Multi-
camera complexity assessment system for assembly line work sta-
tions. In Proceedings of the European Concurrent Engineering
Conference (ECEC’13), page 5, 2013

79

Chapter 5

Occlusion Handling

Occlusion presents a challenge for detecting objects in real-world environ-
ments. This phenomenon causes cameras to capture incomplete scene
data and leads to errors in the analysis if this is not considered. Standard
shape-from-silhouette methods assume no occlusion and generate inad-
equate 3D reconstructions. This chapter discusses how we solved the
occlusion problem in a multi-camera network having overlapping views
by extending the standard shape-from-silhouettes algorithm. First, we
define occlusion, after which we give an overview of the solutions in
literature to arrive at our proposed solution and experiments.

5.1 Occlusion

5.1.1 Definition and problem statement

Occlusion occurs when a camera cannot fully observe an object due to
obstacles being present in the direct line of sight between the camera
and the object. When an object is only partially visible, we call the phe-
nomenon “partial occlusion”. Occlusion leads to tracking loss and errors
in a 3D reconstruction when the occlusion is not handled appropriately.
Figure 5.1 illustrates an example of partial occlusion. In this case, we
want to reconstruct the person in the scene. An obstacle prevents camera
C1 from observing the lower part of the person, while camera C2 observes
the entire person because the obstacle is positioned behind the person
from its perspective. The overlapping area between the backprojected
observed silhouettes does not include the entire person (= inferior 3D
reconstruction).

81

Occlusion

C1 C2

Figure 5.1: This figure illustrates how occlusion happens. The person is
partially occluded in camera C1 by the obstacle, while camera C2 can observe
the entire person since the obstacle is positioned behind the person from its
perspective.

Occlusion is not the only reason why a camera may not observe an object
completely. Real-world cameras have limited fields of view. Everything
outside their field of view is also unobservable by that camera and limits
the camera coverage. In a sense, the area outside the camera view can
also be handled as static occlusion. As long as the camera does not move,
the area out of view remains constant. The reasoning process can use
the knowledge about occlusion from each camera to better understand
the scene.

Scene understanding is vital to handle occlusion correctly. The goal
of the 3D reconstruction process is to generate a reconstruction that
is as small as possible while still including the complete object. By
considering the locations of the occluders and the incomplete silhouettes,
we can obtain this goal. Given enough cameras, the reconstruction can
still become detailed enough for further analysis. For instance, in the
example of Figure 5.2, the proposed reconstruction can reconstruct the
complete person, even when three of the eight views are occluded.

We choose to reconstruct moving objects in the scene rather than only
detect their position to offer more information to such a system. We
find typical applications in traffic where different brands and sizes of
vehicles exist. Moreover, their appearance may significantly change
when attributes are added, such as trailers or bike racks. Even if a
system can recognize a specific type of car, we risk underestimating the
actual size of the vehicle. Our volumetric reconstruction algorithm uses
no prior knowledge to reconstruct the object in the scene and handle
both dynamic and static occlusion. A full 3D reconstruction can help
to assess safety margins between objects better.

82

Occlusion Handling

(a) input silhouettes from 8 cameras

(b) shape-from-silhouettes (c) proposed

Figure 5.2: 3D reconstruction example of eight silhouettes, three of which are
incomplete. In (b) the shape-from-silhouettes (SfS) which misses a large part
of the reconstruction (occluded region) and in (c) our proposed reconstruction
based on the same silhouettes. Different colours represent different clusters of
voxels that have been recovered.

5.1.2 Occlusion coverage map

This section describes an extension of the camera coverage maps from
Section 2.3. The extension involves the impact of occluders on the
camera coverage of the scene. Because occlusions considerably limit
the actual camera coverage, this phenomenon should be considered. As
an illustration, we show the occlusion coverage map and the camera
coverage map next to each other from the indoor tracking in Mol in
Figure 5.3.

We can create occlusion coverage maps when the cameras are calibrated,
and the locations and shapes of the occluders are known. By incorporat-
ing occluders in the coverage map, the number of cameras observing a
particular area may decrease. The only way to increase camera coverage
in particular areas is by moving cameras to other positions in the scene
or increasing the number of cameras. Occlusion inevitably decreases the
actual camera coverage. These coverage maps show that occlusion can-

83

SfS with occlusion handling

(a) camera coverage map (b) occlusion coverage map

Figure 5.3: Coverage map and occlusion coverage map in the Mol camera
setup. The occluders’ presence reduces the real camera coverage significantly.
Both coverage maps are taken at height Z = 0.

not be ignored and must be handled appropriately. The assumption that
a camera can observe everything in the camera coverage map (Figure
5.3a) is not correct.

5.2 SfS with occlusion handling

Depending on the application, occlusion is modelled in different ways.
For object detection, for instance, the occurrence of occlusion increases
the intra-class variations of an object’s appearance significantly. For
example, a people detector that wants to cope with occlusion should not
only detect a person that is in view entirely but also when a person is
only partly visible. Therefore, the person’s appearance in the training
data of such a detector will show substantial variations in appearance
at the risk of increasing the number of false positives. A solution to this
problem is to resort to part-based detection to determine the presence of
a specific part of an object in the scene rather than the entire object. For
instance, Li et al. [54] uses an AND-OR structure to handle occlusion.
It organizes object parts into consistently visible parts and optional part
clusters, and then represents an object with the consistently visible parts
(i.e.,AND) and one of the optional part clusters (i.e., OR).

For applications in 3D reconstruction, occlusion manifests in incomplete
silhouettes that originate from one of the methods presented in Chapter
3. In the case of static occluders, the moving object/person cannot
be completely observed if they are located behind an occluder from the
perspective of a camera, leading to incomplete silhouettes. By combining
occlusion information with incomplete silhouettes, objects can still be

84

Occlusion Handling

Figure 5.4: Mol dataset: four cameras observe the living area. People walk
around in this area. A number of occluders are present such as the coffee table,
kitchen table and part of the kitchen cabinets.

reconstructed completely. The key is to know which areas in an image
correspond to occluded region. There are two ways to model occlusion:
with occlusion masks or with occlusion depth maps. We will discuss this
in more detail when we review different approaches to handle occlusion.

In Chapter 3 we explained the standard shape-from-silhouettes algo-
rithm. This algorithm cannot cope with incomplete silhouettes because
the method assumes that all cameras can observe the entire object. This
section will explain three approaches from literature that can cope with
occlusion to some extent. We compare these methods to our proposed
method in the experiments section (see Section 5.4).

To illustrate the different approaches, we consider a dataset recorded in
Mol where four cameras observe the living area (Figure 5.4). The coffee
table, kitchen table, and part of the kitchen cabinets may cause partial
occlusion when people walk around in the scene.

5.2.1 Shape from incomplete silhouettes

Shape from incomplete silhouettes by Snow et al. [91] is a method
that relaxes the condition for a voxel to be part of the reconstruction.
The method requires the intersection of at least N − e backprojected
silhouettes to allow a reconstruction, where e is the number of acceptable
misses among the N camera views. If e ≥ 1, single misses will not
remove object parts from the reconstruction in this approach. However,
the resulting shape is larger than the visual hull for requiring fewer
intersections of visual cones. A drawback of this approach is that larger
hulls are reconstructed even if the silhouettes are consistent. Moreover,
the parameter e is best kept low to avoid large excesses.

Landabaso et al. provides a similar solution [51]. However, the criteria
for classifying voxels as part of the shape happens by minimizing the
probability of voxel miss-classification. This method reconstructs the vi-
sual hull with standard SfS in the first step. The method reconstructs the

85

SfS with occlusion handling

volume with the lowest classification error in silhouette-based systems for
those voxels that project consistently to all the camera views. A decision
on the voxels not forming part of the visual hull is taken in a second step
by minimizing the error probability on each voxel independently. The
projection of the computed visual hull is compared to the set of original
silhouettes to calculate the error probability.

The biggest drawback of these methods is that they assume that the
probability for misses in the silhouettes, either due to erroneous fore-
ground/background segmentation or occlusion, is the same in all images
from different cameras. Occluders cause incompleteness in the silhou-
ettes locally, and foreground/background segmentation errors are more
likely to happen in some regions of the images due to the similarity of
the moving object and the background. Another problem is that these
methods do not exploit the fact that occluders typically cause larger
areas in a silhouette to be incomplete, which is different from the errors
expected from noise in foreground/background segmentation.

5.2.2 SfS using occlusion masks

Guan et al. [37] presented an attempt to handle occlusion in a shape-
from-silhouettes-based algorithm by modelling occlusions. Guan used oc-
clusion masks to model pixel-based information per camera. In essence,
an occlusion mask is a binary image of the same size as a camera image,
indicating the pixels that may be occluded in a view. Figure 5.5 shows
the occlusion masks of the dataset recorded in Mol. We see that the
couch, kitchen table, coffee table and kitchen cabinet are indicated as
occluded regions in the images because a person can walk behind these
objects from the camera’s perspective. Objects placed against the wall
are not part of the occlusion mask because they cannot appear behind
them. Hence, they cause no occlusion. Therefore, an occluder may be
part of an occlusion mask in one view but not necessarily in another
view. Examples of such objects are the kitchen cabinet and one of the
couches. We chose to model the occluding regions manually with simple
polygonal shapes. The occluders can also be segmented on a pixel level,
but that requires more time.

The extension of the standard shape-from-silhouettes algorithms with
occlusion masks is relatively straightforward. Guan treats the occluded
areas as special areas in the cameras, which means that these regions
are not consulted in the reconstruction process. Therefore, the process
prevents that the lack of silhouette pixels in these special regions may
remove parts of the object.

86

Occlusion Handling

Figure 5.5: Occlusion masks of the dataset recorded in Mol. White means
that a pixel may be occluded, black means that there is no static occluder at that
location. For simplicity the occluders were modelled using polygonal shapes.

Specifically, the evaluation process to accept a voxel v in the shape
reconstruction process is slightly adapted. A voxel’s projection no longer
needs to be part of the silhouette in each view. That is now only the
case for the views where the voxel’s projection lies outside the special
areas. A voxel should at least be part of some silhouettes to be kept
in the reconstruction. This rule prevents that the static occluders are
reconstructed as well.

The biggest drawback of a binary representation for occlusion is that it
cannot handle the difference between the area in front and behind the
occluder appropriately. Occluders situated behind an object become less
relevant than when this occluder is in front of this object. Silhouettes
detected in specials regions of a camera indicate that a person stands
in front of the occluder. However, we need to be careful to treat such
a case appropriately. If multiple people are in the scene, one in front
of the occluder and one behind the occluder, we cannot simply assume
that the silhouette inside the special region is complete.

The occlusion masks can be created manually using photo editor soft-
ware. Alternatively, the occlusion maps could be learned automatically
over a period of time, for instance, by using the method presented in
[37]. This method introduces the concept of effective boundaries to find
occluders in the image. The problem is again that when a person can
appear in front and behind an occluder, the occlusion mask will not
be generated correctly and the reconstruction based on these erroneous
masks will fail.

The main drawback with occlusion masks remains that they do not
model depth information appropriately. Depth information is crucial to
assess occlusion, and therefore we introduced the use of occlusion depth
maps. Moreover, the camera coverage for the reconstruction algorithm
is increased because the voxels in front of an occluder will be evaluated
as opposed to occlusion masks where the entire line of sight of the special
areas decreases the camera coverage.

87

SfS with occlusion handling

(a) no occlusion (b) using masks (c) using depth maps

Figure 5.6: We show the camera coverage map without occlusion in (a). The
camera coverage map is drastically reduced by adding the black occluder in
(b) and (c). Occlusion masks (b) artificially reduce the camera coverage even
further by not using regions in front of the occluders. The occlusion depth maps
in (c) obtain the correct camera coverage.

5.2.3 SfS using occlusion depth maps

We solve the lack of 3D information in the occlusion masks by introduc-
ing occlusion depth maps [85]. In Figure 5.6 we illustrate that the camera
coverage significantly increases in multiple areas when using occlusion
depth maps instead of occlusion masks.

Like occlusion masks, the dimensions of each occlusion depth map mv,i

is equal to the resolution of the observed images of the camera. However,
for each pixel, the closest distance is calculated to an occluder along the
line of sight. The range is therefore [0,+∞[.

Figure 5.7 shows an example of these depth maps on the dataset recorded
in Mol. Unlike the binary decision in the occlusion masks, occlusion
depth maps hold information about the precise location of the occluders
in the scene and can therefore distinguish between areas in front an
behind the occluder. Moreover, it is possible to determine which voxels
can be observed by each camera using these occlusion depth maps. Once
the calibration is known, it is possible to model occluders in 3D and
generate the occlusion depth maps automatically for all views. There is
no drawback of modelling occluders, even in views where they will never
be occluded, unlike in occlusion masks. What is important, however, is
to note that such an occlusion depth map needs to be updated if it also
wants to handle dynamic occlusion.

We adapted the standard shape-from-silhouettes concept to include the

88

Occlusion Handling

Figure 5.7: Occlusion depth map of the dataset recorded in Mol. Depth map
values are represented from green (close-by) to blue (far away). Black means
that no relevant occlusion is present for the reconstruction at hand (e.g., the
object of interest will not be occluded by static objects in that part of the scene.

information of the occlusion depth maps. First, we determined by which
cameras each voxel can be observed. Only the part of the silhouettes
that corresponds to the observable area of each camera are evaluated.
The distance dv,j between each voxel and each camera is calculated. Let
mv,j be the corresponding depth map value for the projected voxel v on
camera j. If dv,j ≥ mv,j , the corresponding silhouette of this camera at
that position is not used. In contrast, if dv,j < mv,j the silhouette is
used, and we check if the voxel’s projection is part of the silhouette or
not. To reduce computation time, a list of projections was generated per
voxel that is used during the reconstruction. Since the occlusion depth
maps and camera setup remained static, these projections remained the
same as well.

The occlusion depth maps tell which n cameras effectively observe each
voxel in the scene, with 0 ≤ n ≤ N . The reconstruction process only
evaluates these n cameras. Only when the voxel’s projections are all
consistent, meaning all voxel’s projections are part of the silhouette of
these cameras, the voxel is part of the reconstruction. Depending on the
camera configuration and the number and size of occluders in the scene,
n may be small for specific areas in the reconstruction space. To prevent
objects from being reconstructed in these areas with camera coverage,
we introduce the minimum required camera consistency cmin. Only if
n ≥ cmin and the voxel’s projection is part of the silhouette in all views,
a voxel is part of the reconstruction. We choose a suitable value for the
minimum required camera consistency based on the occlusions in the
scene, e.g., by using the occlusion coverage map (see Section 5.1.2).

The occlusion depth maps may be generated manually, but we also
looked into auto-generating these maps in [84]. The method learns
a voxel-based occlusion map, which can be converted to an occlusion
depth map. For each voxel in the reconstruction space, the method
learns which cameras can observe it. For the method to work, a person
needs to walk around in the scene. Figure 5.8 shows a result of this

89

SfS with occlusion handling

Figure 5.8: Example of the self-learning map method at Campus Schoon-
meersen. A person walks around in the scene and the pile of boxes in the
middle of the room cause all cameras to observe an occluded view of the person
at some point. After circling twice around the boxes, the occlusion map is
built. The occlusion maps are shown at the bottom of the figure. Red areas are
occluded for that particular camera while green areas are visible. Gray areas
are not yet observed, white areas are out of view.

self-learning process.

To decide if there is occlusion, we made some assumptions. One of these
assumptions is that there needs to be a consensus about the occupation
of a voxel in the space. This consensus is only possible if a minimum
number of cameras agree that a voxel at a particular position is occupied.
Suppose three cameras are agreeing there is an object at a particular
position in space, but the fourth camera does not detect anything there.
In that case, there might be an occluder positioned between this object
and the cameras. However, it is not clear how many cameras need
to agree about this visibility. Moreover, the shape-from-silhouettes
algorithm carves away parts from the reconstruction space just because
a camera does not observe certain voxels. It doesn’t necessarily mean
that an occluder is present.

Since it is hard to decide whether a voxel is occluded for a specific
camera, we count votes for both cases: occluded and non-occluded.
If a person’s reconstruction occupies a voxel, this voxel is deemed to
be observable. In this way, only the truly occluded regions remained.
The only requirement for this method to work is that a single person
walks around in the scene to make occluded regions observable. This
method provided a way of creating occlusion depth maps completely
automatically. The biggest drawback is that only static occlusion is
modelled and the method remained sensitive to errors in the silhouettes
outside the occluded regions of a camera.

90

Occlusion Handling

5.3 Automatic occlusion detection and handling

The previous section explained how occlusion masks or occlusion depth
maps model occlusion. We will now propose an occlusion detection algo-
rithm that automatically determines where the occluders are positioned
in the scene and automatically creates the occlusion depth maps purely
based on observations. The big advantage of our approach is that such
a system can handle both dynamic and static occlusion. This method
requires more than four camera views to keep the excess volume limited.
In the remainder of this chapter, we explain the different steps of this
method and present the results.

At the core of the method is the partitioning of the reconstruction space
in cells, i.e. regions with a uniform camera and silhouette coverage
properties. These cells are clusters of voxels and have the advantage that
reasoning per voxel is not needed, reducing the number of computations
considerably. Since all voxels in such a cell have uniform camera and
silhouette coverage properties, we determine if an entire cell should be
part of the reconstruction or not. An iterative process is proposed,
which incrementally adds cells to the temporal reconstruction based on
their potential to explain the observed silhouettes from different cameras.
Two versions of the algorithm were published: one at the ACIVS 2017
conference in Antwerp [88] and the other as a journal paper in the
Integrated Computer-Aided Engineering by IOS Press [89]. The main
difference between the two methods is the criterion that decides in what
order cells are added to the reconstruction. The first approach uses
counting functions to rank the cells, while the second method calculates
the actual benefit of adding each of the remaining cells and ranks them
accordingly. We will focus on the former method. In section 5.3.4 we
will explain the differences with the 2019 publication.

5.3.1 Partitioning of the reconstruction space into cells

Let Ij be the silhouette of an object S with respect to camera j. We
denote the projection of a point P ∈ R3 on the image sensor of camera
j as Pj . For each point P ∈ R3 we define a membership function ψj(P)
as follows:

ψj(P) =

{
1 if Pj ∈ Ij
0 otherwise,

(5.1)

91

Automatic occlusion detection and handling

Unexplained silhouette part by SfS

Figure 5.9: Example of the space partitioning into cells in 2D with four
viewpoints in case a stationary truck is partially blocking the view of camera
3. The aim is to find those cells which are part of the car. Different cells with
membership count 2, 3 and 4 are coloured as these are the cells that have to be
evaluated. In some of the cells, we printed the cell’s membership vector ψ.

which indicates whether or not the projection of point P lies inside or
outside the silhouette of a particular camera j. For N cameras we define
the membership vector

ψ(P) = (ψ1(P), . . . , ψN (P)). (5.2)

That is, ψ(P) will be a binary vector of the form (. . . , 0, . . . , 1, . . .) that
indicates for which cameras the projection of P lies within the silhouette,
and for which cameras it is not. The membership vector (1, 1, . . . , 1)
represents the shape-from-silhouettes of S. The points outside the shape-
from-silhouettes are the points P for which at least one element of ψ(P)
is zero. When at least one of the silhouettes is incomplete, however,
some elements of ψ(P) may be zero even when P belong to S. We will
refer to the number of ones in the membership vector as the membership
count

∑N
i=1ψi. Figure 5.9 shows some of these membership vectors.

Now let P be any point in R3, then the cell A is defined as the set of
all points Q ∈ R3 for which there exists a continuous path from Q to P
such that ψ(P) = ψ(R) for all points R along the path. Thus, a cell
has the following properties:

1. all points in a cell share the same membership vector;
2. all points in a cell are simply connected;
3. a cell is maximal in the sense that it cannot be a subset of a larger

set that has the properties in (1) and (2).

92

Occlusion Handling

The above definition of a cell can easily be adapted for a 2D scene. Figure
5.9 illustrates the subdivision of 2D space into polygonal cells. In this
figure it is assumed that the car is moving and the truck is not. The
view of the car is partially blocked by a parked truck. The cells arise
from the backprojection of the silhouettes observed by each camera.

The shape-from-silhouettes is equivalent to the union of cells for which
the membership count equals N (see Theorem 2). Clearly, the shape-
from-silhouettes is a poor approximation of the visual hull when one or
more silhouettes are incomplete. Let us illustrate this with the example
in Figure 5.9. The tick lines in front of each camera represent the
silhouettes. Cameras V1, V2 and V4 can observe the entire car. The
truck occludes the front of the car in camera V3. The corresponding
shape-from-silhouettes reconstruction is the red area of the car having
a membership count of 4. This reconstruction is incomplete because
the front of the car is missing. To completely reconstruct the car, cell
D should also be part of the reconstructed shape. Cell D is seen from
cameras V1, V2 and V4, but not from V3. The interesting part is that
camera 1 will agree about this cell because it would explain the cyan part
of its silhouette. The way the algorithm will work is to add cells that
explain missing silhouette parts. The union of shape-from-silhouettes
and cell D is a shape that almost equals to the visual hull as if the
occluder had not been present.

The approximated shape that we want to find is the minimal union of
all the cells Ak, that contain at least one point of the visual hull, where
K is the set all cell indices k in the reconstruction space. We can write
this as:

⋃

k∈K

Ak,whereAk ∩VH(S,V) ̸= ∅. (5.3)

Note however that formula (5.3) does not provide a method for finding
the cells Ak, since we do not know VH(S,V). Hence, we need other
criteria to decide which Ak are part of this reconstructed shape.

5.3.2 Cell-based geometric reasoning

We know that the result should be a combination of cell Akk. The
first difficulty, however, is that it is not feasible to test all possible cell
combinations. Since the number of these combinations scales exponen-
tially in the number of cells (which easily exceeds 60 in a real-world
experiment with eight cameras), a strategy is needed to navigate the

93

Automatic occlusion detection and handling

search space quickly. Unfortunately, it is not possible to find the correct
cell combination from a single measurement. Therefore, we propose an
iterative approach that converges toward the correct shape.

A second challenge is that parts of a silhouette can be explained by
multiple cells. Reconsidering Figure 5.9, the missing cyan part in the
silhouette of camera V1 (given the shape-from-silhouettes reconstruction,
the red cell), can be explained by cells A, B, C, D and E. It also illustrates
that once a cell is added to the reconstruction (e.g., cell D), other cells
may become superfluous.

The iteration starts from a reconstruction that equals the shape-from-
silhouettes SfS(I,V). This as an logical starting point since this cell is
view-consistent: the projection of this cell is part of the silhouette in
each camera and, hence, part of the reconstruction. This initial shape
Y 0 is projected onto each of the camera views. We define define I(Y 0)j
as the projection of cell Y 0 on camera j. This projected shape is part
of the silhouette, so I(Y 0)j ∈ Ij . Some or all of the silhouettes may not
yet be covered by I(Y 0)j . The goal is to find a set of cells that explain
the remaining part of these silhouettes in a way that is as consistent as
possible in all camera views.

At each iteration a cell will be added. The iteration thus proceeds as
follows:

Y t = Y t−1 ∪Akm , (5.4)

where Akm indicates the cell which corresponds to the highest consis-
tency score at iteration t − 1. This consistency score is a measure to
indicates by how much the consistency improves in the silhouettes by
adding this cell. The consistency is improved when a cell projects inside
unexplained regions of silhouettes that have not yet been explained by
cells in the reconstruction. Consistency may also deteriorate by adding
unnecessary parts to some silhouettes. The consistency score will be
explained in the following section.

I. Evaluation metric

We will explain the choice for our consistency score by first looking at
the end goal. A method such as the one presented in this work needs
an objective evaluation to compare different solutions. Two shapes can
be compared by analysing their voxels. One of the shapes is used as
the reference shape, the other shape is compared with the reference
shape. Each voxel in the reconstruction space is classified in one of four
classes: TP (true positive), FP (false positive), FN (false negative) and

94

Occlusion Handling

TN (true negative). From these values, precision and recall is calculated.
This concept has previously been used in Section 4.5.2. The evaluation
of how well a shape resembles the reference shape is measured using the
Fβ-score.

Fβ = (1 + β2)
precision . recall

(β2precision) + recall
. (5.5)

The parameter β can be chosen depending on the application and bal-
ances the weights between precision or recall. The F1 score is the
harmonic mean of the precision and recall.

While we want to approximate the 3D shape of the object as closely as
possible as in Equation 5.3, in a real application, only the silhouettes
are available. Therefore, we do not compare reconstructions directly, but
their projections in the different views. Instead of comparing voxels, we
compare pixels and we aim to maximize the F -score. The reconstruction
method adds cells one by one such that the F -score in (5.5) increases
by an amount ∆F at each iteration. However, since ground truth is not
available (the silhouettes without occlusion), the exact ∆F cannot be
calculated precisely. Therefore, we propose a technique that estimates
∆F on extended silhouettes, which proves to work well.

II. Extended silhouettes

As our consistency score needs to reflect whether a cell explains part of a
silhouette that was not yet explained by earlier additions, the silhouette
we compare to should be a combination of the observed silhouette Ij ,
and the projection of the reconstructed volume at iteration t, I(Y t)j ,
rather than only the observed silhouette, because we know that the
incomplete silhouette are not a correct estimation of the silhouettes
without occlusion. We represent the extended silhouette at iteration
t of camera j with the newest addition of cell Akm as follows:

ItE,j = It−1
E,j ∪ I(Akm)j , (5.6)

where I0E,j = Ij , the observed silhouettes and I(Akm)j represents the

projection of cell Akm on camera j.

The consistency scores for the remaining cells in the search space need
to be recalculated each time a cell is accepted because the extended
silhouettes change. In fact, as the reconstruction Y t grows at every
iteration, the extended silhouettes ItE,j grow accordingly, and, therefore,

95

Automatic occlusion detection and handling

the consistency scores of the remaining cells may change. The iterative
adaptation of the silhouettes allows to find a maximum consistency score
and a clear stop criterion because the F -score will not increase any
further after some iterations.

III. Coverage, resemblance and consistency score

We will compare how well a cell fits the extended silhouettes using
scores inspired by recall and precision as in (5.5), as these describe
the properties of overlap and excess well. Since the comparison is not
against the ground truth, however, we will not use the terms recall and
precision not to confuse the reader. Instead, we will define coverage
and resemblance as the equivalent comparison metrics against extended
silhouettes.

From (5.6) we know that the extended silhouettes depend on the pre-
vious iteration step t − 1. Coverage and resemblance in this section
are calculated for candidate extensions of the current reconstruction. A
candidate extension is denoted as Ht,k = Y t−1 ∪Ak.

Coverage on camera j is defined as the fraction of the extended silhou-
ette that is covered by the projection of Ht,k denoted as I(Ht,k)j (Figure
5.10a):

covj(I
t
E,j , I(Ht,k)j) =

area(I(Ht,k)j ∩ ItE,j)

area(ItE,j)
. (5.7)

Resemblance on camera j is defined by the fraction between the area
of the projected shape I(Ht,k)j that is part of the extended silhouette
ItE,j , and the area of the projected shape I(Ht,k)j (Figure 5.10b):

resj(I
t
E,j , I(Ht,k)j) =

area(I(Ht,k)j ∩ ItE,j)

area(I(Ht,k)j)
. (5.8)

Figure 5.11 shows an example of the iterative progress of coverage and
resemblance for an occluded view and averaged over all camera views.
Even when the resemblance drops in iteration 4 for the occluded camera,
we see that the average resemblance still increases.

Based on Equation 5.5, we estimate an F-score per camera, where pre-
cision is estimated by resemblance and recall by coverage. Equations

96

Occlusion Handling

I(Ht,k)j

I(Ht,k)j

(a) coverage

I(Ht,k)j

I(Ht,k)j

(b) resemblance

Figure 5.10: Coverage (a) and resemblance (b) based on the projection of
a shape I(Ht,k)j and the extended silhouette ItE,j (equivalent of ground truth).
Each image represents the division of the area of the coloured areas, equivalent
to precision and recall.

1 2 3 4 5 6 7 8 9 10
iterations

0

20

40

60

80

100

p
e
rc

e
n
ta

g
e
 (

%
)

Iterative resemblance and coverage

coverage (occluded camera)
coverage (average)
resemblance (occluded camera)
resemblance (average)

Figure 5.11: Typical iterative coverage and resemblance graph of an occluded
camera view and the averaged coverage and resemblance over all views.

5.7 and 5.8 are used to determine the value λβ,j(ItE,j , I(Ht,k)j) for each
view:

λβ,j = (1 + β2)
resj . covj

(β2resj) + covj

, (5.9)

where we omit the parameters ItE,j and I(Ht,k)j for simplicity. The value
of β will be discussed in the next part.

For a scenario where N cameras are equally important to the reconstruc-
tion, we consider the estimated F-scores of the cell regarding the global
reconstruction as the average of all λβ,j-scores. The consistency score

97

Automatic occlusion detection and handling

Λβ(I
t
E , Ht,k) of candidate solution Ht,k is then

Λβ(I
t
E , Ht,k) =

1

N

N∑

j=1

λβ,j(I
t
E,j , I(Ht,k)j). (5.10)

Furthermore, we assume that the F-score of the 3D reconstruction as in
(5.5) is related to Λβ(I

t
E , Ht,k), where the latter is computed by taking

the average of estimated F-scores based on 2D silhouettes. We assume
that any increase of Λβ(I

t
E , Ht,k) is expected to increase F .

This consistency score is calculated at each iteration step for each cell
Ak in the search space by testing the corresponding candidate solution
Ht,k. If the consistency score Λβ(I

t
E , Ht,k) is larger than the current

consistency score Λβ(I
t
E , Y

t−1), the cell is kept in the search space. If
not, the cell is removed from the search space. This mechanism reduces
the search space at each iteration step.

The cell Akm with the highest consistency score is added to the current
reconstruction Y t = Y t−1∪Akm and also removed from the search space.

The stop criterion in this optimization process is straightforward. Once
no cell in the search space can improve the consistency score, the algo-
rithm terminates. Since the number of cells is finite, the algorithm will
always stop.

IV. Coverage vs. resemblance

Depending on the application, either coverage or resemblance may be
more important. For example, the reconstruction of a person working
closely together with a robot, should reconstruct all parts of the person
to ensure safety margins between the person and the robot. Therefore
the coverage is most important. In cluttered real-world scenes with many
spurious foreground detections, resemblance becomes more important to
avoid that cells are included in the reconstruction, which are barely part
of the object that is being reconstructed. The value of β controls the
balance between coverage and resemblance.

Typical values for β are between 0.5 and 10. If a system needs to be
calibrated, we propose to start with β equal to 1 and adapt β for a
typical scene until the subjective assessment of an operator in terms
of connectedness, convexity or any other measure is met. The optimal
value of β also depends on the quality of the camera calibration and
silhouette detector. A sensitivity analysis of parameter β is provided in
Section 5.4.2.

98

Occlusion Handling

Objective
Given N calibrated observed (incomplete) silhouettes. Find the subset
of cells that are part of the visual hull.

Algorithm
(i) Divide the reconstruction space into cells (Section 5.3.1)

(ii) Compute the reconstructed shape:
(a) Find all cells that project inside each silhouette of its

observing cameras:
Y 0 = {P ∈ R : ψj(P) = 1, ∀j}
K0 = {k : Ak ̸⊂ Y 0}

(b) Set I0E,j = Ij for all camera views j
(c) Iterative reconstruction (iteration t while Kt ̸= ∅):

km = argmax
k∈Kt

Λβ(I
t−1
E , Y t ∪Ak)

If Λβ(I
t−1
E , Y t−1 ∪Akm) > Λβ(I

t−1
E , Y t−1) :

Y t = Y t−1 ∪Akm

ItE,j = It−1
E,j ∪ I(Akm)j

Kt = Kt−1 \ {km}
Else:

stop
return Y t−1

Algorithm 5.1: The proposed shape reconstruction method from incomplete
silhouettes. We have omitted the pruning of unfit cells from the above algorithm
for simplicity. Note that the algorithm terminates when there are no incomplete
silhouettes.

V. The occlusion handling algorithm

Algorithm 5.1 shows the different steps of the proposed method as
explained in the previous sections. In a practical implementation, we
often reconstruct an object as a set of voxels, and we define a cell as a
set of voxels. However, the algorithm can also be implemented without
discretization to a voxel space.

Cameras have limited fields of view. Therefore parts of the scene may
lay outside of the FOV of a camera. Equations 5.7 and 5.8 only consider
the part of the scene which project inside the FOV of each camera. In
Section 5.4 some experiments are conducted where the object of interest

99

Automatic occlusion detection and handling

Figure 5.12: Example with one stationary truck, acting as a static occluder
for cameras 3.

is not inside the FOV of all cameras to illustrate this feature. Also the
initial reconstruction is different from the strict definition of SfS(I,V).
The initial shape becomes the union of all cells which project inside the
observed silhouettes, only considering the cameras for which the cell
projects inside the camera’s FOV.

In Equation 5.10, we assumed that all cameras are equally important.
In practical applications, camera calibration and silhouette extraction
using foreground/background segmentation are subject to inaccuracies
and noise. Cameras closer to the object of interest can usually observe
the object more accurately and the calibration of the camera may be
more reliable than cameras calibrated from a distance. Therefore, as an
extension, we propose the use of weights wj,k per camera j and per cell
Ak depending on the average distance between the camera and the cell.
Let dj,k be the average distance between the cell Ak and camera j. Then
we can normalize the weights as follows:

wj,k =
dj,k

N∑
j=1

dj,k

. (5.11)

Therefore, we can rewrite Equation 5.10 as:

Λβ(I
t
E , Ht,k) =

N∑

j=1

wj,kλβ,j(I
t
E,j , I(Ht,k)j). (5.12)

100

Occlusion Handling

it cell mc res1 res2 res3 res4 cov1 cov2 cov3 cov4 Λβ ?

0 Y 0 4 1.00 1.00 1.00 1.00 .60 .80 1.00 1.00 .871 A
1 Y 0 4 1.00 1.00 1.00 1.00 .60 .80 1.00 1.00 .871 -

A 3 1.00 .67 1.00 1.00 .61 .80 1.00 1.00 .858 R
B 3 1.00 1.00 .31 1.00 1.00 1.00 1.00 1.00 .922 A
C 3 1.00 1.00 1.00 .83 .60 1.00 1.00 1.00 .903 K
D 3 1.00 1.00 .83 1.00 .60 .80 1.00 1.00 .862 R
E 3 .71 1.00 1.00 1.00 .60 .80 1.00 1.00 .863 R
F 3 1.00 1.00 1.00 .83 .60 .80 1.00 1.00 .862 R
G 2 1.00 .67 .50 1.00 1.00 .80 1.00 1.00 .901 K
H 2 1.00 .80 .40 1.00 .90 .80 1.00 1.00 .872 K
I 2 1.00 1.00 .73 .90 .70 1.00 1.00 1.00 .913 K
J 2 1.00 1.00 .67 .83 .60 1.00 1.00 1.00 .881 K
K 2 .63 1.00 1.00 .63 .60 .80 1.00 1.00 .833 R

2a B 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 -
C 3 1.00 1.00 1.00 .83 1.00 1.00 1.00 1.00 .990 R
G 2 1.00 .75 .50 1.00 1.00 1.00 1.00 1.00 .943 R
H 2 1.00 .84 .62 1.00 1.00 1.00 1.00 1.00 .963 R
I 2 1.00 1.00 1.00 .90 1.00 1.00 1.00 1.00 .995 R
J 2 1.00 1.00 .87 .83 1.00 1.00 1.00 1.00 .983 R

2b B 3 1.00 1.00 .31 1.00 1.00 1.00 1.00 1.00 .922 -
C 3 1.00 1.00 1.00 .83 1.00 1.00 1.00 1.00 .990 ?
G 2 1.00 .67 .50 1.00 1.00 1.00 1.00 1.00 .936 ?
H 2 1.00 .80 .31 1.00 1.00 1.00 1.00 1.00 .911 ?
I 2 1.00 1.00 1.00 .90 1.00 1.00 1.00 1.00 .995 ?
J 2 1.00 1.00 .27 .83 1.00 1.00 1.00 1.00 .902 ?

Table 5.1: Example of the algorithm with a stationary truck as occluders
for camera 3, captured by four cameras and β = 2. At iteration 1 we list all
candidate cells, which form the search space. The last column indicates the cell’s
decision: keep (K), add (A) and reject (R). A cell is rejected if the consistency
score is lower than the previously accepted cell in the updated reconstruction.
The algorithm adds the cell with the highest consistency score at each iteration
as long as the consistency score increases. Iteration 2a shows the final iteration
of the algorithm when extended silhouettes are used. Iteration 2b is the second
iteration in case the observed silhouettes are used. Note that the stop criterion
is unclear in the latter case.

5.3.3 Examples of how the method works

Figure 5.12 shows an example of four cameras observing a red car. A
parked truck is partially occluding the car in camera view C3. We
illustrate how the proposed consistency score Λβ is used to the car
entirely despite the occluding view by listing all values in Table 5.1. The
algorithm initializes with cell Y 0, which corresponds to a consistency
score of 0.871. At the first iteration, the resemblance and coverage
are calculated based on the extended silhouettes Ij ∪ I(Y 0)j for each
camera j, which is basically Ij in the first iteration. The last column
indicates the cell’s decision: keep (K), add (A) or reject (R). In the
next iteration, cells A, D, E, F and K are already rejected because

101

Automatic occlusion detection and handling

Figure 5.13: The observed silhouettes from eight cameras are shown. The
silhouettes of C2, C5 and C7 are incomplete due to occlusion. The left foot, the
waist and the head are missing from the silhouettes in these occluded views.

their consistency score is lower than the current consistency score. The
highest consistency score, 0.922, corresponds to cell B. This cell is added
to the reconstruction, which is now Y 1 = Y 0 ∪B.

Possible candidates in iteration 2 are cells C, G, H, I and J. Notice that
in the table, we have iteration steps 2a and 2b. 2a uses the extended
silhouettes, whereas 2b uses the observed silhouettes (just for illustra-
tion). In 2a we clearly see that after updating the extended silhouettes,
we cannot find any cell that corresponds to a higher consistency score
than Y 0 ∪B. However, in the case of iteration 2b it is unclear when to
stop because the remaining candidate cells C, G, H, I and J produce a
higher consistency score.

This example showed that our method works in 2D. The concepts are
the same in 3D but the silhouettes are no longer 1D line segments, but
2D images. Figure 5.13 shows the input silhouettes of a 3D example.
We use eight camera views, in which the person is partly occluded in
the silhouettes of C2, C5 and C7. The aim is to reconstruct the person
without missing parts.

Figure 5.14 shows how the method recovers missing parts in the silhou-
ettes in each iteration. At iteration 0, Y 0 is reconstructed. Clearly, the
missing parts in the silhouettes are not reconstructed. We also see that
this reconstruction consists of two cells because they are not connected
due to the silhouette in C5.

For each iteration, we show four extended silhouettes, one view C1 with
complete silhouette and the three occluded views C2, C5 and C7. The
extended silhouette corresponds, in fact, to the non-zero pixels in each
shown silhouette. However, to visualize what is happening we introduce

102

Occlusion Handling

(a) iteration 0: I
0
E,1, I0E,2, I0E,5, I0E,7 and Y

0

(b) iteration 1: I
1
E,1, I1E,2, I1E,5, I1E,7 and Y

1

(c) iteration 2: I
2
E,1, I2E,2, I2E,5, I2E,7 and Y

2

(d) iteration 3: I
3
E,1, I3E,2, I3E,5, I3E,7 and Y

3

(e) iteration 4: I
4
E,1, I4E,2, I4E,5, I4E,7 and Y

4

Figure 5.14: Proposed 3D reconstruction with occlusion handling. For each
iteration (a) to (e), the extended silhouettes of C1, C2, C5 and C7 are shown.
The extended silhouettes ItE evolve into complete silhouettes. Legend: dark grey:
ItE,j \ Y t

j , light grey: ItE,j \ Ij, white: Ij ∩ ItE,j.

different shades. Light grey regions correspond to regions that represent
recovered parts (previously incomplete parts of the silhouette), these
regions correspond to ItE,j \ Ij . Dark grey regions correspond to regions
ItE,j \ Y t

j , which means that they are not yet part of the reconstruction,
but are part of the extended silhouettes (and also of Ij). The white
regions correspond to the set of pixels where Ij ∩ ItE,j .

At each iteration a part of the person is added to the reconstruction Yt,
more specifically, the head, the waist, the right foot and the left arm in
iteration 1, 2, 3 and 4, respectively. In the last iteration we see that the
silhouettes now look as if they where taken from unoccluded views.

103

Automatic occlusion detection and handling

Type Description

I unnecessary, but unharmful (part of input silhouette)
II unnecessary, but unharmful (part of detected occluded

area)
III adding cell better explains Ij
IV unnecessary, but may be part of previously detected

occluder
V unnecessary, and creates additional occluder

Table 5.2: Cell types and their meaning. Note that the cell type is specific to
the considered camera.

5.3.4 Cell-based approach for 3D reconstruction from in-
complete silhouettes (ACIVS 2017)

Before we continue to analyse the results, we want to discuss an al-
ternative method [88] that we developed before the publication of the
main method that was just explained. The difference in this method
is the mechanism that chooses the most fitting cell at each iteration.
Unlike calculating the estimated benefit of adding a particular cell to
the existing reconstruction, each cell is classified for each view in one of
the types presented in Table 5.2.

A cell’s type may be different for each camera view. For example, cell
Ak may be of type I for camera 1, but of type III for camera 2. Whether
a cell will be added to the reconstruction should depend on how the
cell is observed by each camera. To arrive at a ranking system, we
introduce type counting functions χX(Ak, Y t), one for each type, that
count how many of the N cameras classify the cell as being of type
X. The counting function not only depends on the cell Ak, but also on
the current shape approximation Y t, since Y t will change during the
reconstruction. For example, in a configuration of 4 cameras, if cell
Ak is classified as being of type III, III, I, II, respectively in camera
views 1 to 4, then χI(A

k, Y t) = 1, χII(A
k, Y t) = 1, χIII(A

k, Y t) = 2,
χIV(A

k, Y t) = 0, χV(A
k, Y t) = 0.

The same iterative process is used compared to the 2019 version. Only,
a simple mechanism is used to select the most appropriate cell Ak. This
selection is based on the current values of the counting functions. More

104

Occlusion Handling

Data: Original silhouettes Ij
Result: reconstructed object (Y)
Set Y 0 equal to the union of cells with membership count N , t = 0
Use the silhouettes to construct the list of all cells Φ that are not in Y 0

while χIII(A
k, Y t) > 0 for at least one cell in the list Φ do

compute the score vectors W(Ak, Y t)
sort the cells using a descending lexicographic order on W(A, Y t)
select the cell Ak that comes first in the sorted list
set Y t+1 = Y t ∪Ak, remove Ak from the list Φ and increment t by
one

end

Algorithm 5.2: Occlusion detection and handling algorithm. At each iteration,
all cells are ranked in descending lexicographic order of there scoring vectors
until there are no type III cells left.

precisely, for each cell we define the score vector

W(Ak, Y t) =
(
χIII(A

k, Y t), χI(A
k, Y t) + χII(A

k, Y t), χIV(A
k, Y t)

)
,

(5.13)
whose elements are simple linear combinations of the counting functions.

After computing the vector W(Ak, Y t) for all cells that are not part of
Y t, the cells are sorted using a descending lexicographic order on their
score vectors W(Ak, Y t). In front of the list will be the cells that have the
largest value for χIII(A

k, Y t). These are cells that match the silhouette
Ij of many cameras, but are not yet part of the current reconstruction Y t.
When two cells have the same value for χIII(A

k, Y t) a further distinction
is made based on the value of χI(A

k, Y t) + χII(A
k, Y t). Thus, cells

whose projection is already covered by the projection of Y t for one or
more camera views, will have a larger priority in the list. Finally, when
there is still a draw between cells, χIV(A

k, Y t) is used in order to give
preference to cells whose projection is at least partially covered by I(Y t)j
in one of the cameras.

The reconstruction is now straightforward. After sorting the cells, the
cell Ak that is in front of the list is added to Y t, and the score vectors
W(Ak, Y t+1) are recomputed for all cells that are not in Y t+1. This
process is repeated as long as there are cells for which χIII(A

k, Y t) > 0.
Algorithm 5.2 shows the pseudocode of this algorithm.

This approach performs slightly worse than our main approach that uses
coverage and resemblances measures because the actual benefit of adding

105

Experiments and results

Method Description

Laurentini’94 [52] Standard shape-from-silhouettes:
Shape-from-silhouettes algorithm, not taking into
account the possibility of occlusion.

Guan’06 [37] Occlusion mask reconstruction:
OR-operation between occlusion mask and silhouettes.

Landabaso’08 [51] Shape from inconsistent silhouettes:
Shape-from-silhouettes which keeps all voxels
projecting within the silhouettes of at least
N − e views, e = number of occluders

Table 5.3: Description of the comparison methods.

a cell to the reconstruction is not taken into account here. However, the
results of this method are still better than other approaches in literature.

5.4 Experiments and results

We present three experiments that were conducted to show the potential
of our method. We compare against four classes of methods from liter-
ature that use different approaches (Table 5.3). We simulated Guan’06
[37] by using perfect occlusion masks because we lack the source code of
the actual method. The real performance of this method will most likely
be worse than the reported results because the occlusion mask that are
automatically generated will not be perfect. Also, Guan’06, learns a
static occlusion mask over time and, therefore, fails in the case that a
moving object can both appear in front as well as behind a static object
because depth is not taken into account. Landabaso’08 [51] represents
the set of methods where a parameter e is available and allows that
N−e cameras may disagree that a part is reconstructed. This parameter
needs to be chosen carefully, depending on the actual camera coverage
in the scene. We report two results for this method, one where e equals
the number of occluders in the scene to allow a full reconstruction and
one extra camera to increase precision at the cost of full reconstruction
because the camera coverage is not the same everywhere in the scene.
The approach explained in the previous section, Slembrouck’17 [88] will
also be used to compare when relevant. The reconstructed shapes are
evaluated at the level of voxels against the ground truth, which is the
shape-from-silhouettes where the occluders have been removed. For
that reason we resorted to simulation to evaluate the methods in the
first and second experiment. In the third experiment we analyse results
differently.

106

Occlusion Handling

(a) model (b) ground truth

(c) Laurentini’94 (d) Landabaso’08

(e) Guan’06 (f) proposed

Figure 5.15: The simulation consists of a car moving from left to right,
captured by 7 cameras. The blue truck on the opposite side of the road is static
and occludes the car in the 3 upper most cameras on the right, depending on
the location of the car. Different colours in the proposed algorithm indicate
different cells.

5.4.1 Experiment 1: smart traffic analysis

The first experiment concerns smart traffic. We must, however, recall
the outdoor experiments from Chapter 3 based on the traffic intersection
dataset in Ghent, where we saw that the real-time silhouette extraction
methods performed poorly. However, an offline analysis with a precise
3D reconstruction of the scene still has its merits, e.g., for a detailed risk
analysis of the traffic at an intersection.

This experiment aims to make detailed reconstructions of vehicles in
traffic situations to generate reliable shapes of vehicles on the road. The
silhouettes of moving cars are obtained by projecting the 3D models on
the different virtual camera sensors and taking into account occluded
parts. In the real world, this segmentation can be obtained through
FGBG segmentation or using neural network segmentation, such as
YOLACT (see Chapter 3). The cameras are mounted on street and
traffic lights to create a realistic setting.

107

Experiments and results

method precision recall F1-score

Automatic methods
Laurentini’94 1.000 .396 .567
Landabaso’08 (e = 2) .817 .904 .859
Landabaso’08 (e = 3) .561 1.000 .718
proposed .947 .922 .934
Semi-supervised method
Guan’06 .945 1.000 .972

Table 5.4: Results for a car going straight, occluded by a parked truck. The
proposed method performs almost as well as the supervised method of Guan’06
in terms of precision, recall and F1-score. Other methods are less accurate.
We show the results of Landabaso with both e = 2 and e = 3 to show the 100%
recall when e equals the number of occluders.

Figure 5.15 shows the first situation. A stationary truck is blocking
the view on a red car in multiple camera views. The red car at the
bottom drives straight from left to right. Laurentini’94 is unable to
reconstruct the complete car (in the example, only 30% of the car is
reconstructed). When the car is completely next to the truck, because
of occlusion, not a single voxel is reconstructed. Landabaso’08 performs
better because more voxels are found. However, that result includes
many voxels that are not part of the car. Our cell-based approach
achieves scores comparable to Guan’06 without using prior knowledge
about the scene.

Table 5.4 shows that Guan’06 achieves the highest F1-score followed by
our proposed algorithm. The precision of Laurentini’94 is almost 100%,
but its recall is considerably less. Whereas with Landabaso’08, the recall
is above 90%, but the precision is lower. In Figure 5.15, we see that the
proposed reconstruction is much more accurate than the reconstructions
produced by the Landabaso’08 and Laurentini’94 and comparable to
Guan’06. The ground truth in this context is the visual hull of the model
in Figure 5.15a when the truck is not present. However, it is important to
note that the method of Guan’06 requires external knowledge about the
occluders in the scene. The results of Slembrouck’17 are not available in
this experiment because that version cannot handle the limited camera
coverage correctly.

108

Occlusion Handling

Figure 5.16: Typical traffic situation where both the blue truck and the blue
car want to turn to their left. The car is unable to see the oncoming traffic due
to the truck. One extra camera is mounted on the traffic lights (yellow pole).

method precision recall F1-score

Automatic methods
Laurentini’94 1.000 .093 .171
Landabaso’08 (e = 2) .744 .837 .788
Landabaso’08 (e = 3) .486 1.000 .654
proposed .900 .952 .925
Semi-supervised method
Guan’06 .918 .998 .957

Table 5.5: Results for an oncoming car with a truck in the middle of the road
in front of a car, trying to cross the street in terms of precision, recall and F1-
score. Again, the results of the proposed method are close to the semi-supervised
method of Guan’06.

The second situation is a common one in traffic (Figure 5.16). The blue
car wants to turn left at the intersection. The truck also wants to turn
left from the opposite direction. Since the truck is blocking the view of
the oncoming traffic from the blue car’s perspective, the blue car has to
wait to cross safely. To ensure a safe crossings, we use a multi-camera
network to reconstruct the vehicles in the scene.

The proposed algorithm detects oncoming traffic and can evaluate if the
crossing is safe or not, even if the truck in the middle of the road is
blocking some camera views to observe the oncoming traffic. One extra
camera on top of the traffic lights increases camera coverage. Table 5.5

109

Experiments and results

Figure 5.17: Visualization of the simulated occluders. Each camera has one
possible occluder (green) which can be either turned on or off. Two examples
are shown The eight cameras are places facing the same area. All cameras are
mounted at approximately 2.2m from the ground plane.

Figure 5.18: Some examples from the reconstruction of the CVSSP-3D dataset
[93] at 40 mm voxel size. In the experiments we use 20 mm.

shows again that our methods performs almost as well as Guan’06.

Given the difficulty of automatically or manually labelling occluders in
dynamic traffic scenes on which Guan’06 relies, the good performance of
the proposed method is a significant result. Even with severe occlusion,
the algorithm manages to obtain a reliable reconstruction, as long as the
object of interest can be partially observed from multiple viewpoints.

5.4.2 Experiment 2: qualitative comparison of the 3D
reconstruction

The second experiment uses the JP sequences (breakdancer) from the
CVSSP-3D dataset [93]. Each of these sequences consists of a synchro-
nized stream of images from 8 cameras, which are placed around the
subject at 2.2m high about every 45 degrees (see Figure 5.17). A total of
six sequences is available. Each sequence is between 10 and 20 seconds
long. In this experiment, we will simulate the presence of occluding
objects and compare them with the ground truth, which is the output of
the standard shape-from-silhouettes without occlusion (see Figure 5.18).
Each frameset has equal weights on the evaluation. Therefore, displayed
values are averages over each sequence. Reconstructions are performed
at a cubic voxel size of 20 mm.

110

Occlusion Handling

Number of occluders
Method 0 1 2 3 4 5 6 7
Laurentini’94 1.00 0.48 0.38 0.36 0.31 0.26 0.24 0.23
Guan’06 1.00 0.99 0.98 0.96 0.93 0.88 0.77 0.51
Landabaso’08 1.00 0.95 0.86 0.77 0.63 0.43 0.20 0.04
Slembrouck’17 1.00 0.99 0.97 0.94 0.90 0.81 0.64 0.30
β = 3 1.00 0.99 0.97 0.94 0.91 0.85 0.68 0.39
optimal β 1.00 0.99 0.97 0.94 0.91 0.85 0.69 0.39

Table 5.6: Results in the case of multiple occluders in the scene. The occluders
are placed as shown in Figure 5.17. The presence of each occluder creates an
incomplete silhouette of the person. The best results are obtained by Guan’06,
but this supervised method uses prior knowledge (occlusion masks where the
occluders are nicely segmented). The proposed method performs best of all
unsupervised methods. We show two results for our method: β = 3 and the
optimal β per number of occluder based on the sensitivity analysis in Figure
5.20.

0 1 2 3 4 5 6 7

Number of occluders

0

20

40

60

80

100

F
1
-s

c
o
re

 (
%

)

F1-score of breakdance sequences

Laurentini'94

Guan'06

Landabasso'08

Slembrouck'17

beta = 3

optimal beta

Figure 5.19: Visual representation of the data in Table 5.6. The proposed
methods performs best of all the unsupervised methods. We notice that the choice
for β-value has a marginal impact on the performance. The proposed method
performs slightly better than Slembrouck’17 because of its more sophisticated
cost criterion.

In this experiment, we simulate the presence of occluding objects by
recalculating the input images as if there would be an occluder present.
We defined an occluding object for each camera. This object is modelled
as a vertical column partially blocking the camera’s view (similar to

111

Experiments and results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 1000

Value of beta

0

20

40

60

80

100
F

1
-s

c
o

re
 (

%
)

7 occluders

6 occluders

5 occluders

4 occluders

3 occluders

2 occluders

1 occluder

100

Figure 5.20: Sensitivity analysis of the reconstruction of different β-values. β
becomes more important in case of severe occlusion, but the range that produces
suitable reconstructions is quite wide.

a spectator in front of the camera. For each number between 1 and
8 occluders we choose eight random combinations (the same for each
reconstruction method). For example, 2 occluders could block the view
of camera 3 and 5. Each occluder roughly occludes 17% of the total
image. We averaged the results over these combinations for each number
of occluders. Figure 5.17 visualizes the camera setup together with the
possible occluders.

In general, a lower value of β translates to a lower recall in the 3D
reconstruction. On the other hand, lower values of β produce results
with higher precision. Therefore the optimal value of β in terms of F1-
score is neither zero nor very large. A suitable value for β should be
empirically decided based on some training data during the setup of the
system.

Table 5.6 and Figure 5.19 show the results for all methods, averaged
over all sequences. Only the F1-score is shown, but for Guan’06, Land-
abaso’08 and the proposed method, the recall is close or equal to 100%.
Only Laurentini’94 does not obtain a high recall value because occluded
parts are not reconstructed. On the other hand, the precision of Lauren-
tini’94 is 100%. The last column represents the results of the proposed
method.

In Figure 5.20 we provide a sensitivity analysis to assess the impact β
on the reconstruction for a different number of occluders. The figure

112

Occlusion Handling

shows that the F1-score is large for a wide range of β, especially when
the number of occluders in the scene is low. This optimal range of β
decreases with an increasing amount of occlusion. Note that the scale
in the X axis of the graph does not increase linearly near the end of the
graph. In this setup, β = 3 seems a good choice.

5.4.3 Experiment 3: real-world single person tracking

For the third experiment, we use the setup shown at the left in Figure
5.21a. It is a staged setup of an office environment. This setup has
seven cameras mounted around the scene at about 3.5 meters high with
a table, two chairs, an L-profile panel and a display introducing natural
occlusion. The goal is to track the position of a person in the room.
The plot in Figure 5.21c shows that the proposed method can track the
person very well in the room. Note that the measured trajectories are not
smoothed in any way. Although the recordings were made in a lab, the
conditions were not optimal, especially for the foreground/background
segmentation step because the colours of the clothes of the tracked
person were similar to colours in the background, not unlike many real-
world environments. A classical tracking algorithm suffers from tracking
loss if the person is completely occluded for at least one of the cameras.
Partial occlusion introduces inaccurate positions because the position is
then calculated on a limited number of voxels.

Both the proposed method and Landabaso’08 produce a person location
in every frame from the moment the person enters the region of interest
until he leaves again (whole track: 505 frames). On the other hand,
Laurentini’94 only outputs positions on 175 frames, which represents
only 34.65% of the frames due to the lack of occlusion handling. The
results of our method shows that occlusion handling improves the track-
ing results significantly. We also compared against Guan’06 because
that was the nearest competitor in the other experiments. We see that
the track of this method is much less smooth than the one produced by
our method. There are two reasons for that. Guan’06 is more sensitive
to erroneous foreground/background segmentation because it assumes
complete silhouettes outside the known occluded regions (special regions)
in each image. When a silhouette is still incomplete outside these spe-
cial regions because of erroneous foreground/background segmentation,
the shape reconstruction consists of fewer voxels and shows a rougher
trajectory.

113

Experiments and results

(a) office setup

100 200 300 400 500 600 700
0

10000

20000

30000

40000

50000

Laurentini'94
Guan'06
Landabaso'08
proposed

Total number of voxels

v
o
x
e
l
c
o
u
n
t

frameid

(b) voxel count

200 100 0 100 200 300 400

200

100

0

100

200

300

400

y
 c

o
o
rd

in
a
te

Person's trajectory

Laurentini'94
Guan'06
Landabaso'08
proposed

x coordinate

(c) trajectory

Figure 5.21: Visualization of the output from the proposed method, Guan’06,
Laurentini’94 and Landabaso’08 in an office environment having multiple large
occluders in the scene. The trajectories of the proposed method and Landabaso
are the smoothest and most complete trajectories.

Figure 5.21b shows the number of voxels that are part of the 3D re-
construction in each frame. We saw that Landabaso’08 produced com-
parable tracking results, but the number of voxels varies significantly,
which means the reconstructed shape of the person is less accurate. The
reason why this is not visible in the tracking results is because the
excess occurs in all directions in the 3D reconstruction and averages
out when calculating the centroid of the reconstructed shape. When the
reconstructed shape of the person needs to be analysed, this behaviour is
unwanted, particularly when an accurate proximity detection is needed
(e.g., cooperation between man and machine). In contrast, we see that
the voxel count of the proposed method is much more stable.

114

Occlusion Handling

5.5 Conclusion

This chapter explained different ways to represent occlusion and extend
the standard visual hull algorithm effectively. Next to the manual
assignment of occlusion in the form of masks or depth maps, we also
presented an occlusion algorithm that automatically detects occluded
parts and handles this correctly to complete a 3D reconstruction.

We presented an algorithm for shape-from-silhouettes that can cope with
incomplete silhouettes. We showed that our algorithm performs well un-
der different complexity levels of occlusion and without prior knowledge
of the occluders. The algorithm automatically detects the occluded parts
in the camera views and uses this information to reconstruct the object
of interest, including the incomplete parts.

The algorithm succeeds in reconstructing the entire object of interest,
and the reconstruction closely resembles the visual hull (i.e., the mathe-
matical shape of an object based on the camera views as if there were no
occlusion). As illustrated in the results section, our algorithm improves
the state of the art for reconstruction as well as the tracking of a moving
object in a scene with occlusion in an automated fashion.

The main contributions made in this chapter are the following:

• an extension of the standard shape-from-silhouettes algorithm with
occlusion depth maps to handle static occluders where the occlud-
ers can be modelled per camera;

• a cell-based reconstruction method that can handle incomplete
silhouettes originating from occlusion or silhouette segmentation
errors.

Some of the work in this chapter is described in these publications:

• M. Slembrouck, D. Van Cauwelaert, D. Van Hamme, D. Van Haeren-
borgh, P. Van Hese, P. Veelaert, and W. Philips. Self-learning
voxel-based multi-camera occlusion maps for 3d reconstruction. In
Proceedings of the International Conference on Computer Vision
Theory and Applications (VISAPP’14), page 8. SCITEPRESS, 2014

• M. Slembrouck, D. Van Cauwelaert, P. Veelaert, and W. Philips.
Shape-from-silhouettes algorithm with built-in occlusion detection
and removal. In Proceedings of the International Conference on
Computer Vision Theory and Applications (VISAPP’15). SCITE-
PRESS, 2015

115

Conclusion

• M. Slembrouck, J. Niño Castañeda, G. Allebosch, D. Van Cauwe-
laert, P. Veelaert, and W. Philips. High performance multi-camera
tracking using shapes-from-silhouettes and occlusion removal. In
Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC), pages 44–49. ACM, 2015. ISBN 978-
1-4503-3681-9

• J. Niño Castañeda, A. Frias Velazquez, B. B. Nyan, M. Slembrouck,
J. Guan, G. Debard, B. Vanrumste, T. Tuytelaars, and W. Philips.
Scalable semi-automatic annotation for multi-camera person track-
ing. IEEE Transactions on image processing, 25(5):2259–2274,
2016. ISSN 1057-7149

• M. Slembrouck, J. Niño Castañeda, G. Allebosch, D. Van Cauwe-
laert, P. Veelaert, and W. Philips. High performance multi-camera
tracking using shapes-from-silhouettes and occlusion removal. In
Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC), pages 44–49. ACM, 2015. ISBN 978-
1-4503-3681-9

• M. Slembrouck, P. Veelaert, D. Van Hamme, D. Van Cauwelaert,
and W. Philips. Cell-based approach for 3d reconstruction from
incomplete silhouettes. In Proceedings of Advanced Concepts for
Intelligent Vision Systems (ACIVS’17). Springer, 2017

• M. Slembrouck, P. Veelaert, D. Van Cauwelaert, D. Van Hamme,
and W. Philips. Cell-based shape reconstruction from incomplete
silhouettes. Integrated Computer-Aided Engineering, 26(3):257–
271, 2019. ISSN 1069-2509

116

Chapter 6

3D Human Pose Estimation

The 3D reconstruction explained in the previous chapters already allows
several analyses, such as an approximated calculation of the centre of
mass, the volume and the occupied space. For a reliable biomechanical
analysis of human body poses and human motion analysis we also want
to reconstruct the person’s pose in 3D. Typical application domains are
gaming, rehabilitation, sports, and general behaviour analysis.

In this chapter, we will first illustrate an attempt to reconstruct the 3D
pose of a basketball player from the volumetric shape during basketball
free-throws. Because recent advances in pose estimators in images offer
reliable pose estimators with which a person’s pose can be analysed in
detail, we abandoned this track and focused on the reconstruction of the
3D pose using 2D poses. These pose estimators are driven by a neural
network and are usually capable of detecting poses of multiple people in
a single image. We extend the single image pose analysis to multi-view
pose analyse to reconstruct 3D poses.

The 3D reconstructed pose is tracked over time to perform specific
application-dependent analysis. We tackle many problems such as the
cross-view pose correspondence problem and the problem that some
keypoints are not correctly detected (either occluded, poorly detected,
out of view or not detected by the pose estimator). In this chapter
we first discuss different neural networks capable of detecting keypoints
in 2D images. Second, we explain how we obtain 3D poses. Third,
we discuss how we solved the cross-view pose correspondence problem
to reconstruct multiple poses in the scene. Fourth, some experiments
illustrate qualitative results where we compare our technique against
marker-based systems, which are the golden standard for reconstructing
human poses.

117

Pose estimation from 3D shapes

Figure 6.1: System overview of the shape-based pose estimation in basketball
free-throws. The program visualizes the input images (left), 3D reconstruction
(center) and keypoint model (right).

6.1 Pose estimation from 3D shapes

Volumetric shapes from humans can be used to fit a 3D keypoint model
inside. However, such an approach relies on assumptions which are
only met in specific circumstances. As a starting point for this research
track, we decided to analyse basketball free-throws in cooperation with
the Department of Movement and Sport Sciences of Ghent University.

Basketball free-throws form an interesting use case, because the move-
ment is well-defined and numerous aspects of a human pose can be
analysed during the different phases of the free-throw. Each phase
requires the proper technique including the position of key body parts:
footwork, lower body, upper body, head, arm, hand [20].

Based on eight calibrated camera views, a reliable shape reconstruction
was created using the techniques from the previous chapters. Figure
6.1 shows the visualization of the program that was developed for this
use case with input images (left), the reconstruction (middle) and an
early attempt at extracting a pose of the lower body (right). This
basic keypoint model consists of eight keypoints: the foot tip, the ankle,
the knee and the hip from both side of the body. We extracted these
keypoints using the following constraints: each connection between the
skeleton’s keypoints has a fixed length and the keypoint is located in

118

3D Human Pose Estimation

Pose of basketball player

frameid

z
-c

o
o
rd

in
a
te

 (
m

m
)

centroid.z

left_ankle.z

left_foot_tip.z

left_knee.z

left_hip.z

ball.z

Figure 6.2: Temporal analysis of several keypoints of the simplified keypoint
model and the ball during a free throw.

the centre of the shape. We also assume that the player is facing the
hoop so that the left and right side of the player is easily identified. The
reconstruction starts from the foot tips and works its way up to the hip.

The pose estimation in Figure 6.2 temporarily tracks Z-coordinates (ver-
tical direction) of six points in time: the centroid, the left foot tip, the
left ankle, the left knee, left hip and the ball. The right leg was also
tracked but omitted from the graph for clarity because the movement is
symmetrical during this free-throw. The ball was tracked using colour
segmentation and volumetric shape reconstruction. The ball is lost
once it exits the reconstruction volume. However, the focus was on
the basketball player, rather than the ball.

Under these controlled circumstances where the movement is known, the
lower body tracking is reliable enough to analyse the motion. However,
for a complete analysis of the basketball free-throw, reliable upper body
tracking is also required and it was not possible to create this based
on the shape reconstruction only. That is mainly because the upper
body, the arms and the ball could not be easily separated in the 3D
reconstruction when the ball was close to the player’s body.

For more precise and reliable 3D human pose estimation, we explored
2D pose estimators. The big advantage of these estimators is that
they detect several keypoints that already form poses in 2D, which
is a completely different approach than fitting a 3D keypoint model

119

Pose estimation in 2D images

into a 3D shape. Pose estimators are also more reliable because each
detected keypoint can be used as an anchor point for the 3D pose. In
the remainder of this chapter, we therefore focus on 3D pose estimation
based on 2D pose estimators.

6.2 Pose estimation in 2D images

6.2.1 Artificial neural network

An artificial neural network (ANN) is a machine learning technique
consisting of simple interconnected processing units. Such an ANN is
designed to simulate the way the human brain analyses and processes
information. ANNs learn by example, and, in general, better results can
be expected when more training data is available. However, the training
data should not be overspecific to avoid over-fitting, which means that
the ANN learns particular oddities specific to the training data and
therefore performs significantly worse on unseen data.

We use pre-trained neural networks. Therefore, the focus is on the
outputs of these networks instead of efforts to improving the networks
themselves. More specifically, the detected image coordinates (key-
points) are used to estimate the 3D location of each of these keypoints
using multiple camera views, while handling possible erroneous positions
and labels.

6.2.2 Neural networks for pose estimation

In this work, we are interested in tracking keypoints from the human
body in 3D. Most of these keypoints represent joints such as the knee
joints and ankle joints. Unlike a mechanical joint, the position of most
joints in the human body are ill-defined because such a joint is encap-
sulated in different tissue layers (invisible to an RGB camera), and the
rotation centres are not positioned in fixed places (because the joints
are not perfect spheres). Therefore, these ANNs learn the keypoint’s
most likely position based on a large number of samples. The keypoints
are not detected in the exact anatomical position, but we noticed that
the detected positions are consistent in different frames. It means that
the same 3D keypoint is detected in consecutive frames. From the
experiments we noticed that an offset in position between the detected
keypoints and the position determined by maker-based systems exists.
However, the important thing is that the detected keypoints can be

120

3D Human Pose Estimation

followed reliably over time so that they move in the same way as the cor-
responding anatomical joint. From these consistently moving keypoints
it is possible to extract a person’s pose, which is the main objective of
this work. In the experiments section (see Section 6.6), we will show
that that is indeed the case.

The topic of multi-person pose estimation from a single camera view has
gained renewed attention thanks to the development of convolutional
neural networks. However, inferring the pose of multiple people in
images presents a unique set of challenges:

1. Each image contains an unknown number of people that can ap-
pear at any position or scale.

2. People may not be fully visible, or multiple people in an image
may occlude each other, making it hard to assign detected body
parts to the correct person.

3. Runtime complexity tends to grow with the number of people in
the image, making real-time performance a challenge.

In the remainder of this chapter, these challenges will be overcome to
create a real-time multi-person 3D pose estimation system.

I. Popular pose estimators

This section gives an overview of some of the more popular monocular
pose estimators used nowadays. The use case is a markerless human
posture recognition system that can be used for rehabilitation/athlete
performance measuring and game control. Each application aims to
track the a person’s pose precisely. In rehabilitation or athlete perfor-
mance, precision is critical, while the real-time processing component is
less important. For game control, real-time processing is essential, and
results may be slightly less precise.

The extraction of poses from single views is not trivial. First, each
image may contain an unknown number of people that can occur at any
position or scale. Second, interactions between people induce complex
spatial interference due to contact, occlusion, and limb articulation,
making the association of parts difficult. Third, runtime complexity
tends to grow with the number of people in the image, making real-time
performance a challenge.

The design and testing of a pose estimator take years to optimise. There-
fore, existing pose estimators are used in this work, and choices are made
based on processing speed, accuracy, and a number of relevant keypoints
that the pose estimator can detect. For instance, only a limited number

121

Pose estimation in 2D images

of pose estimators provide keypoints on the feet (important for track-
ing running motion). These pose estimators are OpenPose with the
BODY_25 keypoint model [16] and VNect [64]. We will discuss these
two first and mention alternatives afterwards.

OpenPose and VNect State-of-the-art pose estimation from a single
view consists of two main approaches which rely on detections of 2D
keypoints in the image. However, their focus may be different because
either 2D poses (OpenPose) or 3D poses (VNect) might be estimated
from these detections.

The first approach uses keypoint detections in 2D and creates a 2D
poses. OpenPose is one of the most popular 2D real-time multi-person
pose estimators at the moment [16, 15, 102] because not only the code
is opensource (under license for commercial use), but also the network
and trained weights are provided. Unlike other approaches, OpenPose
uses a bottom-up approach by first detecting keypoints of body parts
and consecutively assigning those to persons (more info can be found in
section II.).

The second approach estimates a 3D pose directly from a single image,
which in fact is also the aim of this chapter, but using multiple views to
solve the ambiguities which are typical for monocular solution. The lead-
ing method in that respect is VNect [64]. VNect claims comparable or
even better results than reconstruction from RGB-D data generated by
the Microsoft Kinect [82]. Although the detection are in 3D, this method
can still be used as input to the proposed pose estimation method by
using the corresponding 2D locations of the detected keypoints.

Other pose estimators Besides VNect and OpenPose, some other
pose estimator frameworks also exist. The applications we have in
mind require reasonable processing speed, which means that the pose
estimator should guarantee at least 15 fps.

DeepCut [75] and DeeperCut [46] are two pose estimators that perform
well. These two methods use bottom-up proposals for body parts but
require costly global inference to obtain joint association, which signifi-
cantly impacts the computational performance. Both extractors report
a minimum processing time of 230 seconds per frame, which is too slow
for real-time applications. The number of supported keypoints is also
limited to 14 keypoints. Therefore, it is impossible to track certain
aspects of the human pose, such as the pose of the feet or the head
orientation.

122

3D Human Pose Estimation

PoseFlow and AlphaPose by Shanghai Jiao Tong University [110] offer
similar performance like OpenPose when there only one pose per view
can be found. However, unlike OpenPose, the computation time linearly
increases with the number of people in an image, which creates issues in
real-time processing because a constant execution time per frame cannot
be guaranteed. The linear processing time for each detected person is
due to the top-down approach where a people detector first detects the
people in the image, and then the keypoints are searched within the
detected bounding box. Although many applications in this work target
single person reconstruction, there are often multiple people in view by
different cameras e.g., bystanders, controllers, etc.

The commercial system wrnchAI (by wrnch) [60] seems to outperform
OpenPose in terms of processing speed (about 2.5 times faster). The
overall performance of both wrnchAI and OpenPose is similar, although
OpenPose handles false positives better than wrnchAI. The GPU mem-
ory requirement is significantly lower for wrnchAI (1 GB) compared to
OpenPose (2.5 GB), which is an advantage when the network has to run
on less powerful devices like smartphones. There is no information to
be found on how wrnchAI exactly works.

In the Detectron2 framework [104], Keypoint R-CNN is included, which
is a variant of Mask R-CNN (see Chapter 3) to solve keypoint detection
tasks [41]. The method uses the COCO keypoint model which supports
18 keypoints. Keypoint R-CNN is available under the Apache 2 license
which allows it to be used for commercial use. However, the performance
is lower than that of OpenPose. Keypoint R-CNN might however be a
suitable candidate for commercial use cases where the extra keypoints
from OpenPose are not necessarily required.

Recently, BlazePose was presented in [8]. BlazePose uses a lightweight
CNN that runs at high frame rates on CPUs. Frame rates up to 50
fps are achieved on a 640x360 px image on an Intel Core i5 @ 4 x
3.5 GHz. Even on mobile phones, BlazePose reaches 30 fps (Pixel 2
phone). CPU-based approaches have a significant advantage over the
other heavy networks because they do not require expensive GPU cards.
Moreover, BlazePose detects 33 body keypoints which is the highest
number of keypoints at such frame rate. OpenPose is the absolute winner
in that respect with 25 body keypoints, 2 x 21 hand keypoints, and
70 face keypoints. However, the hand and face detections rely on the
body keypoints and cause a significant delay in processing speed, unlike
BlazePose, which simultaneously detects all keypoints. Unfortunately,
BlazePose is limited to a single person pose detection, and the reliability
is coupled to the relative size of the person in the image (Figure 6.3).

123

Pose estimation in 2D images

(a) correct pose (b) erroneous pose

Figure 6.3: Some results from BlazePose are shown. This CPU-powered real-
time pose reconstruction performs well as long as there is only one person in
view and the person can be clearly recognized. The method fails when either of
those requirements is not fulfilled as seen in (b).

When multiple people are present in the scene, BlazePose only detects
one (or none) and uses tracking to avoid switching between different
people in a video. The most significant issues arise when people are close
together because the keypoints from multiple people are mixed into a
single erroneous pose. Blazepose also makes mistakes when the person
cannot be easily recognised. For instance, in Figure 6.3b, Blazepose
detects a rather unlikely pose. For certain specific single-person use
cases, BlazePose might still be suitable.

Note that various companies provide frameworks to speed up training
and inference of pose estimation, in some cases providing pre-trained
pose estimation networks such as NVidia Human Pose estimation with
Deepstream SDK [80], Intel OpenVINO toolkit [71] and Xilinx Edge AI
Solution [109].

Choice for our application Since our application aims to track the
complete movement of the human body as precisely as possible, we must
track all body parts. Therefore, the number of supported keypoints
and their positions on the human body has a significant impact on our
decision. With the BODY_25 model in OpenPose, 25 keypoints are
supported, whereas VNect is more limited: only 17 keypoints. The
extra keypoints are located at the end of the feet, the neck, eyes and
ears. Thus, OpenPose detects the feet positions more accurately and
also facilitates measuring other relations in the pose. For instance, the
angle between the foot and the corresponding lower leg is important
for gait analysis, an experiment performed in collaboration with the
Department of Movement and Sport Sciences at Ghent University in the

124

3D Human Pose Estimation

Sport Science Laboratory Jacques Rogge (IRUNMAN project). Also,
we do not need the 3D estimation that VNect provides since we will
calculate the estimated 3D positions from multiple cameras, which allows
us to cope with occluded keypoints. OpenPose also processes data faster
than VNect, which is essential in real-time applications such as gaming.

II. OpenPose: Realtime multi-person 2D pose estimation

There is a reason why OpenPose [16] is the preferred pose estimator to
obtain real-time performance. In contrast to the top-down approaches
discussed above, OpenPose handles the multi-person 2D pose estimation
differently. OpenPose uses a bottom-up approach where the keypoints
are first detected, and in a second phase, these keypoints are assigned to
persons. Bottom-up approaches do not scale linearly with the number
of people in the image because the keypoints are detected in parallel
in the first phase, while top-down approaches first detect the different
people in the image and analyse each detection in a second phase. Fur-
thermore, bottom-up approaches are more robust against choices made
in early phases because the network searches for the different keypoints
independently. In contrast, the performance of a top-down approach
depends on whether or not a person has been detected, which often fails
when multiple people are in close proximity. Early attempts at bottom-
up approaches did not offer the gain in efficiency because the keypoint
association requires costly global inference [75, 46]. OpenPose simultane-
ously infers bottom-up representations of detection and association and
shows that global context is encoded sufficiently well to allow a greedy
pass to achieve high-quality results at a fraction of the computational
cost, resulting in a reliable real-time pose estimator.

We will not go into too much detail about the OpenPose framework be-
cause we treat it as a black box. However, we discuss some of its features
as a good practice guide. In general, neural network detectors perform
better when the object is significantly large in the image. OpenPose is
no exception to this. The network aims to find 25 keypoints for which
the person should take up a considerable part of the image. We aim to
make sure that the person’s size is at least 20% of the height of the image.
A person is best detected when fully seen in the image. When too close
to the cameras, some keypoints are out of view, which can impact the
detected pose. When too few keypoints are in view, OpenPose will not
even recognise this subset of keypoints.

A neural network is as strong as the training data. The OpenPose
network was trained on image rotation of ± 40 degrees. Therefore,

125

Pose estimation in 2D images

0 50 100 150 200 250 300 350 400

frameid

0.0

0.2

0.4

0.6

0.8

1.0

c
o
n
fi
d
e
n
c
e

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
v
e
 s

iz
e

OpenPose confidence score

Neck (confidence)

MidHup (confidence)

LSmallToe (confidence)

confidence (average)

relative size

(a) confidence scores / relative size (b) input images

Figure 6.4: OpenPose confidence scores in relation to relative size of a person.
A test subject runs towards the camera, starting from about 75 m away (fixed
zoom factor). In (a) we notice that the confidence scores of the main keypoints
are not impacted significantly. Detailed keypoints such as the left small toe
(LSmallToe) we notice an increase in confidence when the test subject appears
larger in the image. When the test subject is no longer completely in the field
of view of the camera, the confidence scores drop. In (b), we show the detected
poses, roughly every 15 m.

OpenPose is unable to detect a person that appears upside down in the
image. Sometimes, cameras are mounted upside down, or a ± 90 degrees
rotation because of practical reasons. An easy fix to make OpenPose
perform optimally is to rotate the image according to the main axis of
the person in the view: 90, 180 or 270 degrees and process the images
accordingly. This issue could be solved by retraining with people in
more orientations, but results in highly reduced accuracy. Rotating the
image is undoubtedly a better option. For the same reason, OpenPose
has difficulty recognising people in non-conventional positions, e.g., a
breakdancer doing a flip, because such poses were not part of the training
data.

For each keypoint, OpenPose reports a position and a confidence score.
These confidence scores originate from a confidence map highlighting
the likelihood of a keypoint appearing in a certain region. Hence, these
values are related to the reliability of a detected keypoint. We conducted
an experiment to analyse the relation between the size of the person
in the frame and the confidence scores. Figure 6.4 summarises the
experiment. In general, the confidence scores increases when the size
of the person becomes larger. However, detailed keypoints, such as the
LSmallToe increase significantly when the size of the person increases.

126

3D Human Pose Estimation

(a) MPI (b) COCO (c) BODY_25

Figure 6.5: Three available keypoint models in OpenPose in the IPLAY
Leuven dataset. The BODY_25 dataset offers the most keypoints.

The Neck keypoint is almost not impacted by size in terms of confidence.
The MidHip shows similar behaviour with the exception of the images
where the person is very large (and not fully visible in the image).
Intuitively it makes sense that the MidHip’s position is more confident
from a distance then when the person is closeby (large in the camera).
The size of the person is just one variable to analyse, there might be
other reasons why the score is low, such as occlusion (see Section 6.5.1)
and limb ambiguity (see Section 6.5.2).

OpenPose supports three keypoint models. In Table 6.1 we list all of
the keypoints from the different models in OpenPose that are currently
supported (also shown in Figure 6.5). The BODY_25 model supports
the most number of keypoints. The extra keypoints are mainly located
in the lower part of the body (feet) and includes an extra keypoint for
the MidHip, which is very useful in combination with the Neck keypoint
to determine the centreline of a person.

III. Alternative keypoint models

The proposed neural networks are not limited to the detection of a
person’s joints. Similar neural networks can also be trained to detect
hand keypoints or facial landmarks. The OpenPose framework, for
instance, supports 21 keypoints per hand (one for the hand palm and
4 additional keypoints for each finger) and 70 keypoints for the facial
landmarks. Note that the hand sizes and face size needs to be large
enough to detect these detailed keypoints. To facilitate hand detection,

127

Pose estimation in 2D images

Keypoint MPI COCO BODY_25

Head x (0)

Nose x (0) x (0)

Neck x (1) x (1) x (1)

RShoulder x (2) x (2) x (2)

RElbow x (3) x (3) x (3)

RWrist x (4) x (4) x (4)

LShoulder x (5) x (5) x (5)

LElbow x (6) x (6) x (6)

LWrist x (7) x (7) x (7)

MidHip x (8)

RHip x (8) x (8) x (9)

RKnee x (9) x (9) x (10)

RAnkle x (10) x (10) x (11)

LHip x (11) x (11) x (12)

LKnee x (12) x (12) x (13)

LAnkle x (13) x (13) x (14)

Chest x (14)

REye x (14) x (15)

LEye x (15) x (16)

REar x (16) x (17)

LEar x (17) x (18)

LBigToe x (19)

LSmallToe x (20)

LHeel x (21)

RBigToe x (22)

RSmallToe x (23)

RHeel x (24)

Table 6.1: Keypoints of the OpenPose models with keypoint IDs.

OpenPose uses regions of interest around the detected wrist keypoints
and detects the hand points only inside these regions of interest to reduce
computation time and make the detections more reliable. In this work,
hand detection was used to assess hand movements in more detail to
detect pick actions in the COSMO use case where a first aid kit is
assembled (see Figure 6.6). When the operator is holding a piece part,
fewer keypoints are found due to occlusion, which is a reliable indicator
to classify grab actions.

128

3D Human Pose Estimation

Figure 6.6: COSMO first aid kit assembly use case with hand detection.

6.3 Triangulation

Traditional cameras observe the 3D world by light ray projection on a 2D
plane. During this process, depth information is lost, which is why it is
hard to reconstruct a 3D scene from a single captured image accurately.
With multiple cameras with differing viewpoints, 3D reconstruction is
possible provided calibration data of the different cameras is available
[40].

The mathematical conversion of 2D points from multiple cameras into a
3D location is often referred to as triangulation. The idea is to estimate
the position of point r based on the 2D image positions ũj (Figure 6.7).
Due to inaccuracies in the camera calibration and the discretisation
of the image sensor, the different lines through each cj and ũj will
rarely intersect. Also, triangulation of a 3D point relies heavily on the
assumptions that the 2D point correspondences in multiple views belong
to the same 3D point. In this case, the 2D keypoints are labelled by
the pose estimator, and we know which 2D points should be combined.
However, misdetections and errors in the 2D measurement will still
impact the estimated 3D position of the corresponding point. Therefore,
outliers are best removed from the set of 2D points if possible.

In this section, we study the two main approaches in more detail. The
most common approach is to find a 3D point that minimises the sum
of the squared reprojection errors for all observations of a certain point.
Another approach is to minimise the Euclidean distance between lines
where the camera’s focal point and the corresponding observation point
defines each line. The latter approach searches the midpoint between
all these lines.

129

Triangulation

r?

u

v

u'

v'

ũ
1 ũ2

c2

c1

u"

v"

c3

ũ3

u
1 u2

u3

Figure 6.7: Triangulation example where we need to estimate the 3D position
of point r based on 2D points from multiple cameras. The reprojection errors
are indicated. Ideally, both uj and ũj would coincide.

I. Minimizing the reprojection error

Figure 6.7 illustrates the triangulation problem based on reprojection
errors. The projection matrix Pj determines the image location of a 3D
point on the image sensor of camera j (see Chapter 2). The unknown 3D
location of point r is observed by camera j as a point with homogeneous
pixel coordinates uj(r) = Pjr = [sxj(r), syj(r), s]

T . Due to noisy
observations however, each camera j observes this point at a slightly
different location ũj = [x̃j , ỹj , 1]. The Euclidean distance between uj(r)
and ũj is defined as the reprojection error for camera j [39] and can be
expressed as:

γj(r) ≜ ∥uj(r)− ũj∥ =
√
(xj(r)− x̃j)2 + (yj(r)− ỹj)2. (6.1)

Such an error can be calculated for every camera having an observation
ũj . As such, a vector is constructed which contains all reprojection
errors: γ(r) = [γ1(r), γ2(r), . . . , γN (r)]. For a certain set of observations
(x̃j , ỹj), the values in γ(r) change when the 3D location of r varies. The
goal is to find the point r for which a cost over all elements in γ(r) is
minimal. Often, the norm of the vector is used as a cost function. The
most common are the ℓ1 norm (sum of magnitude), ℓ2 norm (sum of
squares) and ℓ∞ norm (maximum) of image reprojection errors.

The ℓ2 and ℓ∞ norm are often used in the context of triangulation.
Although outliers have the most impact on the ℓ∞ norm compared to
the ℓ2 norm, the ℓ∞ is significantly simpler than the ℓ2 cost. Moreover,
ℓ∞ minimisation involves finding the minimum of a cost function with a
single local (and hence global) minimum on a convex parameter domain,
while the ℓ2 cost function has multiple minima.

130

3D Human Pose Estimation

r?

u

v

u'

v'

ũ
1 ũ2

c2

c1

d1

d2

u"

v"

c3

d3

ũ3

a1

a2 a3

Figure 6.8: Triangulation example where we need to estimate the 3D position
of point r based on 2D points from multiple cameras using the midpoint approach.
Ideally vectors ai and di would coincide.

II. Finding the midpoint

The previous approach minimises the reprojection error for each of the
camera views (2D measurement). At the same time, the problem can
also be solved in 3D by searching for the midpoint of the lines defined
by the camera positions and the corresponding estimates ũj (Figure 6.8)
[9]. The 3D world point r is the point for which the sum of the squared
distances between that point and each line is minimal (ℓ2 norm). Each
such a line is defined by the focal point cj of camera j and unit vector
dj which is defined by cj and ũj(r). In order to formulate the problem,
we also define the vector aj = r − cj .
The point to line distance (distance between r and the line ci + λdi,
with λ > 0) is then given by the ℓ2 norm of wj :

||wj ||2 =
√
wj ·wj where wj = dj × aj . (6.2)

We now determine the single 3D point r that minimizes the sum of
squared point to line distances

∑
j ||wj ||2. This minimum occurs where

the gradient is the zero vector (0):

∇

∑

j

||wj ||2

 = 0.

Expanding the gradient,
∑

j

(2dj(dj ·aj)− 2(dj ·dj)aj) = 0.

It follows that the coordinates of r satisfy a 3x3 linear system,

Mx = b, (6.3)

131

Cross-view pose correspondence

r?

u

v

ũ
1

c1

d1
c3

d2ũ2

u'

v'

Figure 6.9: Midpoint between two almost parallel lines are may lead to a
singular matrix M . Multiple camera views at sufficiently different viewpoints
solve this problem.

where the kth row (a 3-element row vector) of matrix M is defined as

Mk =
∑

j

(djkdj − (dj ·dj)ek)
T

with vector ek the respective unit basis vector, and

b =
∑

j

dj(cj ·dj)− cj(dj ·dj).

In rare circumstances, M may be singular, or the value of its determinant
may be close to zero (see Figure 6.9). For example, we could have a
system with only two cameras facing each other and a point close on
the line joining the two projection centres. Since this situation can be
easily avoided, we exclude it because we chose the camera setup to limit
the occurrences of this issue and usually, more than two cameras are
observing the same point.

6.4 Cross-view pose correspondence

The reconstruction of poses observed from different views is straightfor-
ward when only one pose is present in each view and all poses belong to
the same person. However, this constraint is rarely met in the real world.
Even in lab settings, cameras may observe multiple people, of which
some are visible in the background. Therefore, it is essential to find the
cross-view pose correspondences of the poses detected in the different
views. If poses from different people are triangulated, the resulting pose
is incorrect and forms a so-called ghost reconstruction.

However, matching 2D poses across multiple views is challenging. A
typical approach is to use the epipolar constraint to verify if two 2D
poses are projections of the same 3D pose for each pair of views [47].
Nevertheless, this approach may fail for the following reasons. First,

132

3D Human Pose Estimation

camera # 2D poses
C1 2
C2 3
C3 3
C4 2

C1

C2

C3

C4A

B

C

ROI

D

occluder

Figure 6.10: Cross-view pose correspondence problem: The table indicates
the number of detected poses in each view. Persons A, B and C are observed
by more than one camera, person D only by one camera. Persons C and D are
located outside the region on interest (ROI).

the detected 2D poses are often inaccurate due to heavy occlusion and
truncation, making geometric verification difficult. Second, matching
each pair of views may produce inconsistent correspondences, which
violate the cycle consistency constraint. That is, two corresponding
poses in two views may be matched to different people in another view.
Such inconsistency leads to incorrect multi-view reconstructions. Fi-
nally, different sets of people appear in different views, and the total
number of people is unknown, which brings additional difficulties to the
matching problem.

The correct correspondences are not trivial to find due to occlusion,
people out of view for particular camera views and inaccurate keypoint
detections. To illustrate the significant difficulties, let us consider a
simple camera network with four cameras in Figure 6.10, where the
neck keypoint of each pose is backprojected as a line. In total, there are
four people present in this example, indicated as big green circles A, B,
C and D. Looking at the observations (yellow circles) of the cameras, we
see that the cameras C1, C2, C3 and C4, respectively, observe 2, 3, 3
and 2 poses. Not all four persons are detected because poses are out of
view, e.g., person D for cameras C2, C3 and C4, or an occluder prevents
the observation, e.g., person A in camera C1.

Many line intersections can be observed in Figure 6.10, each of which
may correspond to a correctly or incorrectly triangulated point. In

133

Cross-view pose correspondence

general, when at least three cameras observe a person, a cluster of
intersection points will emerge near the actual 3D position of the person.
However, looking at the bottom left intersection, this not necessarily
means that a cluster always corresponds to a person. The example
shows that the people correspondence problem is not trivial. In essence,
the pose observations from the different views need to be matched with
each other. However, the number of people in the scene is unknown.

Now that the problem has been explained, we focus on the solution. In
literature, this particular correspondence problem is solved in two ways.
The most popular approach is using a 3D pictorial structure (3DPS)
model that implicitly solves the correspondence problem by reasoning
about all hypotheses in 3D that are geometrically compatible with 2D
detections. The other approach adds appearance models for the detected
people and matches people appearances in other views. Both approaches
have the aim to find clusters of pose detections from different views
to calculate the 3D pose. The latter approach claims to improve the
first approach because the appearance model drastically reduces the
number of good correspondences. However, when people have a similar
appearance, this approach may fail. Calculating appearance models also
adds computation time, and occlusions may introduce errors because a
person might only be partly visible, while the bounding box of two
detected persons may overlap. Moreover, the number of people in our
applications is limited.

3DPS-based approaches are computationally expensive due to the enor-
mous state space (different people each having 25 different keypoints
to match with an unknown number of people). This state space is
reduced by introducing a two-phase algorithm where the first phase aims
to couple poses from different views in a pairwise manner. In contrast,
the second phase handles the clustering and triangulation of poses in
more than two views.

6.4.1 Pairwise correspondences

The goal is to assign all 2D poses to the corresponding poses in the
scene and triangulate their position. The number of combinations can
be calculated as follows: from each view, we can choose one of the poses,
or none of the poses, leading to nj + 1 possibilities per view where nj
represents the number of poses in that view. The number of poses in a
combination varies between 0 and N . The total number of combinations
is then

∏N
j=1(nj + 1). However, a valid pose combination consists of

at least two poses to enable triangulation, which means that there are

134

3D Human Pose Estimation

N +1 combinations that are not valid: the combination having no poses

and N combination having only one pose. Although
(∏N

j=1(nj + 1)
)
−

(N + 1) is not necessarily a large number, we can avoid calculating
invalid combinations by representing the problem as a graph and using
graph theory to navigate the state space efficiently. The goal is to find
the combinations having the most corresponding poses. The Hungarian
algorithm may come to mind, but we do not know the number of people
in the scene beforehand. Only the minimum and the maximum number
of people can be determined based on the observations from each camera.
Therefore, another approach is used.

As a first step towards the triangulation of multiple poses in a scene,
pairwise correspondences are evaluated. A fully connected weighted
graph is constructed where each vertex represents a 2D pose. The
connections between vertices have a weight equal to the maximum repro-
jection error of the points in the pose after pairwise triangulation (see
section 6.3). However, to reduce computation time and avoid keypoint
ambiguity issues (see later), the evaluation is limited to two keypoints:
the midhip and the neck. Invalid connections are assigned a weight
of ∞. That includes connections between poses from the same view
and connection for which the lines do not intersect within the region of
interest. Typically, the reprojection errors are small when the points
are accurately detected and corresponding to the same 3D point. A
threshold is used to prune the connections with considerable weight.
The initial weights are discarded from the pruned graph.

6.4.2 Clustering and triangulation

The new graph is no longer fully connected and dramatically reduces the
state space compared to the original problem. The pose combinations
with the most views involved manifest as maximal cliques in this new
graph. These are the combinations that need to be found. The search
for cliques is NP-complete, but the clique size is limited. The brute
force search algorithm has running time O(nkk2), where n the number
of vertices is, and k is the size of the clique. The good news is that k is
equal to the number of cameras N , which is significantly lower than the
number of vertices in the graph.

At first, the maximal cliques of size N are searched. Once a valid
combination is chosen, the poses involved in that combination cannot
be part of another combination and, therefore, these connections are
pruned. It means that the number of edges between poses is further

135

Cross-view pose correspondence

Figure 6.11: Result of the cross-view pose correspondence in a camera setup
using four cameras. The two people on stage are correctly matched in the
different views. Note that the views of C00, C01 and C06 actually contain a
third person, however, this person is not reconstructed because he sits outside
our region of interest.

reduced after each iteration, and therefore the state space becomes
smaller and smaller. The cost of a maximal clique in the graph is
defined as the maximum triangulation of the midhip and neck keypoint
using all poses part of the maximal clique to guard the cycle consistency
constraint. Cycle inconsistency can be observed when the cost of such
a clique is significantly higher than the individual costs of the pairwise
matches in the clique (above the threshold used for pruning the weighted
graph).

136

3D Human Pose Estimation

6.4.3 An example

Let us consider the example in Figure 6.11. We see four cameras in
which the number of detected poses is 3, 3, 2 and 3, respectively. The
goal is to find the cross-view pose correspondences (the pink poses and
the green poses). The poses are represented in a graph in Figure 6.12.
The graph has a significant number of connections, mainly since the two
persons on stage are standing close together and, therefore, only a few
edges can be pruned based on a threshold of 50 px. A smaller threshold
may result in pruning valid edges. The value of 50 px is rather large
and should not be exceeded if two corresponding poses are triangulated
unless the camera calibration is of really poor quality.

In this graph, the maximal cliques are searched. A total of 16 different
maximal cliques can be found. Clearly, many of these maximal cliques
are in conflict with each other because they do not form a collection
of mutually disjoint sets. In order to find the valid combinations, we
calculate the cost for each maximal clique. The results are ranked in
ascending order in Figure 6.14c. Note that many maximal cliques have a
cost higher than 50 px, which indicates that these connections are cycle
inconsistent. Non-corresponding poses are combined in these cliques.
These connections are crossed out in Figure 6.14c.

The particular example shows that the maximal clique [s2, s4, s6, s9] has
the lowest cost. The algorithm chooses this clique and prunes all other
edges connected to s2, s4, s6 or s9 because these poses can no longer be
part of a combination with other poses. Figure 6.14a shows the pruned
graph, where [s2, s4, s6, s9] is indicated in green. The maximal clique
[s0, s5, s7, s8] remains valid and is therefore also accepted. There are no
maximal cliques of 4 left in Figure 6.14b. There is, however, a maximal
clique of three: [s1, s3, s10]. This maximal clique corresponds to the
person in the audience. For the sake of this example, no region of interest
was defined to illustrate that maximal cliques of valid poses are not
necessarily of equal size. Imposing a ROI mitigates intersections outside
this ROI by assigning a weight of ∞ to the corresponding connections.

137

Cross-view pose correspondence

C0
s1

s0

s2

C3
s9

s8

s10

C1
s4

s3

C2

s7

s6
s5

Figure 6.12: Graph that represents all possible matches between poses from
different views after pruning the connection where the reprojection error is too
large. In this graph the maximal cliques will be searched to find the correct
cross-view pose correspondences.

C0
s1

s0

s2

C3
s9

s8

s10

C1
s4

s3

C2

s7

s6
s5

(a) Iteration 1

C0
s1

s0

s2

C3
s9

s8

s10

C1
s4

s3

C2

s7

s6
s5

(b) Iteration 2

Clique Cost Clique Cost Clique Cost
[s2, s4, s6, s9] 5.78

✭
✭
✭
✭

✭
✭✭

[s2, s5, s6, s8] ✘
✘
✘70.14

✭
✭
✭

✭
✭

✭✭

[s0, s5, s6, s9] ✘
✘

✘✘104.30
[s0, s5, s7, s8] 12.40

✭
✭
✭
✭

✭
✭✭

[s0, s4, s7, s9] ✘
✘
✘75.89

✭
✭
✭

✭
✭

✭✭

[s2, s4, s6, s8] ✘
✘

✘✘124.62
[s0, s5, s6, s8] 37.12

✭
✭
✭
✭

✭
✭✭

[s2, s4, s7, s8] ✘
✘
✘80.57

✭
✭
✭

✭
✭

✭✭

[s2, s5, s7, s9] ✘
✘

✘✘137.97
[s2, s4, s7, s9] 46.91

✭
✭
✭
✭

✭
✭✭

[s0, s4, s7, s8] ✘
✘
✘89.07

✭
✭

✭
✭
✭
✭✭

[s0, s5, s7, s9] ✘
✘
✘✘147.13

✭
✭
✭
✭
✭
✭✭

[s2, s5, s7, s8] ✘
✘
✘53.56

✭
✭
✭

✭
✭
✭✭

[s2, s5, s6, s9] ✘
✘
✘91.96

✭
✭
✭
✭
✭
✭✭

[s0, s4, s6, s9] ✘
✘
✘57.46

✭
✭
✭

✭
✭
✭✭

[s0, s4, s6, s8] ✘
✘
✘✘103.52

(c) Clique costs

Figure 6.14: Pruning the graph. Maximal cliques are coloured and shown
in dashed lines. Combinations are ignored if the maximum reprojection error
exceeds 50 pixels.

138

3D Human Pose Estimation

6.5 3D keypoint reconstruction

3D point reconstructions have been discussed in detail in Section 6.3
where we assume that points are correctly labelled. However, some
difficulties may arise in practice, specifically when a pose estimator
estimates the 2D points. Points may be mislabelled, their location may
be poorly corresponding to their actual location, or some may not be
detected.

A pose estimator, such as OpenPose, provides a confidence score in the
range 0.0-1.0 for each of the detected keypoints. In general, the positions
of the keypoints are relatively accurate. However, when this confidence
score of a point is low (e.g., below 0.2), it is better to discard these points
during triangulation because their position is inaccurate and unreliable.
Another issue with the pose estimator is confusion between the left
and right side of a person’s body. Such confusions lead to mislabelled
keypoints which has a big impact on the triangulation process. In the
following sections, we discuss the errors in more detail.

6.5.1 Occluded joints

Pose estimators may not detect all keypoints due to occlusion, or worse,
detect occluded keypoints in the wrong place. Figure 6.15 shows a
recording from the Xiak dataset where the operator performs tasks at
a conveyor belt. The operator is partly occluded in three camera views:
C1, C3 and C4. We notice that OpenPose reports positions for some of
the occluded keypoints, such as the knees. These detections are often not
in the correct position and may cause issues in the reconstruction process.
However, OpenPose generates a confidence score for each keypoint and
that score is typically low for occluded keypoints (Table 6.2). The
confidence scores for the left and right knee keypoint in each view are
shown in the table below the figure. In general, the occluded views
report low scores (≤ 0.55) while the other views report higher scores
(≥ 0.7). It is safe to use a threshold of 0.3 in this dataset.

We see that missing keypoint detections and erroneous keypoint detec-
tions do not immediately cause inaccuracies in our proposed 3D human
pose estimation framework. Each keypoint is reconstructed indepen-
dently which means that the number of cameras can vary between two
and N . The 2D keypoints with a low confidence score are not considered
for triangulation. Note that at least two cameras need to observe each
keypoint to triangulate its position. This example illustrates that the
proposed system effectively handles occlusion in these situations. In

139

3D keypoint reconstruction

C1 C2

C3 C4

C5

Figure 6.15: In the Xiak dataset, a number of keypoints, such as the knees
are frequently detected in the 2D poses, despite being occluded in camera C1, C3
and C4. However, the 3D reconstruction is still triangulated correctly. Table
6.2 shows the confidence scores of the right and left knee for each view.

Section 7.4 we will show that we can combine the occlusion detection
from Chapter 5 to effectively remove the occluded keypoints, which is
more reliable than relying on a fixed confidence score threshold.

6.5.2 Typical pose estimation errors

In the specific case of multi-view 3D pose estimation, there are several
typical errors. On the one hand the pose estimator may introduce errors:
limb switch (I.), double limb (II.) and misdetected limb (III.). On the
other hand, the camera infrastructure may also cause errors in frame
drop (missing frames). We will discuss each error in detail and hint

140

3D Human Pose Estimation

Keypoint C1 C2 C3 C4 C5
RKnee 0.18 0.84 0.49 0.00 0.70
LKnee 0.21 0.88 0.53 0.06 0.86

Table 6.2: Confidence scores of the occluded and visible keypoints in Figure
6.15. The occluded keypoints in camera C1, C4 and C5 show low confidence
scores for the occluded knee keypoints and higher confidence scores for visible
keypoints.

towards a solution. In section 6.5.3 we will analyse the frequency of
each error in one of our datasets to indicate their importance.

I. Limb switch error

A limb switch error means that the identities of the left leg and the
right leg are switched. All the keypoints belonging to the left leg are
assigned to the corresponding keypoints on the right leg and vice versa.
OpenPose uses a frame by frame approach. It means that legs can be
switched from frame to frame. Limb switch errors often occur on a
lateral view of a person because the perspective transformation creates
ambiguity between the right and left leg. E.g., from a lateral view of
a running athlete, it is sometimes hard to tell which leg is in front and
which leg is in the back. Even for humans, it is hard to tell based
on a single frame in these cases. Figure 6.16 illustrates this issue in 3
consecutive frames where the second image confuses between the left and
right leg. Temporal 2D tracking of all keypoints may solve this problem.
In that case, swapping the left with the right leg measurements may fill
in the gaps in a track. However, we need to be careful not to solely rely
on 2D tracking because limb switching may track the left and right side
incorrectly for an extensive period. Therefore, we decided to solve the
limb switching problem in the triangulation process by testing different
hypotheses for limb switches from different views, for which there are
hints that the limb switch errors have occurred.

II. Double limb error

We define a double limb error as the error occurring when keypoints for
both the left and right leg are detected, but all are detected on the same
leg in the image, even though the other leg is also visible. Also, this
error occurs most often on a lateral view of a person. The misdetected
leg needs to be ignored in the reconstruction, and the predicted location
can be used instead.

141

3D keypoint reconstruction

Figure 6.16: Example of a limb switch error. 3 consecutive frames are
displayed where the left (green) leg is swapped with the right (red) leg.

Figure 6.17: Example of double limbs. 3 consecutive frames are displayed
where the second and third frame showcase the issue.

Figure 6.18: Examples of misdetected limbs. These errors often happen on
the image border where a person is only partially visible.

III. Misdetected limb error

The third type of pose estimator errors is a container for all the other
detection-related errors. In general, these errors occur when a person
is only partially visible, e.g., on the image border or when a person is
partially occluded. Figure 6.18 shows three examples of misdetected
limbs: the left leg is mistaken for the right or vice versa when only one
leg is in view (first and second image) or the leg detected is completely
wrong (third image). These errors are hard to cope with because their
positions may be unreliable as well. Such errors are usually solved by
ignoring outliers in the triangulation process.

142

3D Human Pose Estimation

IV. Frame drop

The fourth type of errors is not related to pose estimators but to the
camera infrastructure itself. However, this type of error also has an
impact on the reconstruction result. We often use cameras with ethernet
connection to a processing pc or action cameras such as GoPros in places
where wires cannot easily be installed. Unfortunately we have to cope
with frame drops during the recording process, either due to network
issues of a receiver that is not fast enough or not configured properly.
The camera setup in Sport Science Lab Jacques Rogge can record 4
simultaneous video streams at 67 fps in each of the 2 capture PCs. The
cameras produce bayer images of 780x580 pixels (1 byte per pixel) which
are sent uncompressed of the network. Therefore, the network is almost
saturated as 0.97 Gbps of the available 1 Gbps is required. If a frame is
dropped over TCP there is basically no room to resend the frame and it
will arrive too late to store in the video container.

It is crucial to keep the different video streams synchronised while pro-
cessing the data. Therefore, the recording process needs to guarantee
that dropped frames will be handled correctly, either by inserting frames
to replace missing data or by logging timestamps for every received
frame. For instance, a GoPro camera adds empty frames in the video
when a frame was dropped. Empty frame detection or timestamps can
help to process a dataset without losing synchronisation. When a frame
is missing, we can either predict the pose in the missing frame based on
previous and next poses, or ignore that particular view completely.

6.5.3 Error frequency

We analysed part of the SSL-JR dataset (Figure 6.19). 13 sequences were
considered out of 33, which means 1318 synchronised frame sets from 7
cameras. Figure 6.20 shows the different kinds of errors in that part of
the dataset. Besides the keypoint detection errors, we also investigated
the amount of frame drop per camera. While annotating the different
errors, we noticed that several errors occur on the image border when
the person of interest is only partially visible. Roughly 50% of all pose-
related errors occur on the image border.

There is a significant imbalance between the errors produced by each
camera. We can explain this using a layout of the camera setup of
this particular dataset. The arrow in the camera setup in Figure 6.19
indicates the track of the running person in this dataset. Camera C4,
C5 and C7 have the best rear and frontal views of the person. Therefore,

143

3D keypoint reconstruction

C1

C2

C3

C4
C5

C6

C7

C3

C2

C1

C4 C5

C6

C7

Figure 6.19: Dataset of a runner recorded in the Sports Science Lab Jacques
Rogge (SSL-JR) in Ghent.

they have fewer issues with ambiguous limbs. Cameras C1, C2, C3 and
C6 capture the subject more from a lateral perspective where ambiguous
detections are common. Primarily camera C2 produces many errors
because the camera’s viewing direction is perpendicular to the running
direction. The camera is also further away from the person of interest
compared to camera C6. Note that the camera coverage map also shows
that out-of-view errors will need to be handled because the camera
coverage is not the same for all positions of the running person.

If only one camera produces an error, the erroneous keypoints can be
simply treated as outliers and can be ignored from the calculation. How-
ever, we noticed that errors might occur in different views at the same
time. A particular hard case to handle is when multiple cameras confuse
the left and right limbs. A valid 3D reconstruction can be calculated, but
the labels of these limbs may be switched in the reconstruction for that
particular frameset. We analysed how often an error occurs in different
camera views simultaneously. We define a frameset as the set of frames
captured simultaneously from different camera views. Figure 6.21 shows
the fraction of erroneous framesets: 38.09% frame sets experience an
error in a single view, 4.93% of framesets experience errors from two
views, 0.23% of framesets experienced errors in three views (all frame
drop issues). The total fraction of framesets that experience any error

144

3D Human Pose Estimation

dropped double misdetected limb
Camera frames limb limb switch

C1 1.593% 1.821% 0.531% 2.200%
C2 1.366% 7.815% 1.366% 9.256%
C3 1.897% 4.704% 0.759% 2.049%
C4 0.000% 0.000% 0.076% 0.000%
C5 1.745% 0.683% 0.759% 0.000%
C6 0.759% 4.259% 1.517% 1.593%
C7 0.759% 0.303% 0.379% 0.152%

(a) Error type frequency

C1 C2 C3 C4 C5 C6 C7

Camera

0

3.8

7.6

11.4

15.2

19.0

P
e
rc

e
n
ta

g
e
 o

f
fr

a
m

e
s
 (

%
)

Analysis of error type frequency in the SSL-JR dataset

Dropped frames

Double limb

Misdetected limb

Limb switch

(b) Bar graph error type frequency and camera setup

Figure 6.20: Analysis of error type frequency in the SSL-JR dataset. The
errors are view-dependent (see camera setup). Double limb errors and limb
switch errors occur most often.

is 43.25%, which indicates that these errors are significant. Therefore,
we should deal with them. Fortunately, the majority of these frame set
errors are single frame errors.

The errors are not entirely independent. The errors related to OpenPose
depend on the relative position of the athlete and the camera since lateral
views of the person increase ambiguity and double limb and misdetected
limb errors often occur when the athlete is captured near the image
border. Frame drop errors on the other hand seem more independent
at first but performing some joint probability calculation based on the

145

3D keypoint reconstruction

table in Figure 6.20a, we notice something different. Let us define pfd
as the independent probability that frame drop occurs in a camera. To
calculate the joint probability of a frame drop simultaneously occurring
in exactly k of N cameras, we can use the formula:

(
N

k

)
(pfd)

k(1− pfd)N−k. (6.4)

With an average probability pfd of 1.16% (see table in Figure 6.20a), we
calculate the expected frame drop for single, double and triple views
as 7.6%, 0.27% and 0.0052% respectively. Comparison with Figure
6.21 shows that the number of single frame drop errors is smaller than
expected (5.31%), while double and triple frame drop errors are larger
(1.06% and 0.23%). It means that single frame drop errors occur sig-
nificantly less than expected while double and triple errors occur more
often than expected. This indicates that the events are not entirely
independent. The reason is most likely that the recording tool is unable
to keep up with all the images being transferred over the network. In
that case it is more likely that the recordings fails for multiple cameras
at once.

The number of erroneous framesets is large because seven camera views
are involved in this dataset, each having a specific chance of producing
an error. This does not mean that a large set of cameras leads to a bad
3D reconstruction, but means that a reconstruction algorithm needs to
be aware of these errors and provide a suitable solution to handle them
appropriately.

6.5.4 Handling limb ambiguities

The data analysis in the previous section helped to develop a strategy
to handle these errors. On the one hand, we handle frame drops to
avoid using irrelevant measurements. On the other hand, we assess the
reliability of each detected pose based on several simple tests. We ignore
poses with too few keypoints (these often occur on the image border or do
not even correspond to a person, e.g., a camera tripod that is recognised
as a person). We also validate each keypoint of the keypoint model
in each view to detect sudden position changes using a simple spatio-
temporarily tracker. In the case of limb switching, the previous left leg
keypoints are closer to the current right leg keypoints and vice versa.
In case of a double limb error, the leg keypoints of one leg are wrongly
detected, which can be noticed by a 2D tracker. These error detections

146

3D Human Pose Estimation

Single Double Triple
0

5

10

15

20

25

30

35

40
Pe

rc
en

ta
ge

 o
f f

ra
m

es
 (%

)

Analysis of single, double and triple errors in SSL-JR dataset
Frame drop
Keypoint detection failure

error types misdetection frame drop total
single view errors 32.78% 5.31% 38.09%
double view errors 3.87% 1.06% 4.93%
triple view errors 0.00% 0.23% 0.23%

43.25%

Figure 6.21: Analysis of simultaneous error frequency in different camera
views. Single frame errors are common (about 38% of all frames), double
frame errors still account for 5%. Triple frame errors or more are uncommon.

feed a decision mechanism that tests some hypotheses (combinations of
adapted poses). The number of hypotheses to test may be large when
many cameras make errors simultaneously, but from Figure 6.21, we
see that simultaneous errors are rare. There was no noticeable drop in
computation speed in the performed experiments.

To clarify the mechanism, we give an example with four cameras where
C1 has a limb switch error when C3 has a double limb error. Let us
indicate Si as the detected pose, Si,LS as the pose corresponding to Si
where the left and right leg keypoints are swapped and Si,DLl,Si,DLr

as the poses corresponding to Si where the left and right leg keypoints
are removed respectively. When the 2D tracker successfully detects the
occurrence of these certain types of errors, six combinations will be
tested. The pose with the lowest maximum reprojection error will be
chosen as the current valid 3D pose (Table 6.3).

147

Experimental results

C1 C2 C3 C4

1 S1 S2 S3 S4
2 S1,LS S2 S3 S4
3 S1 S2 S3,DLl S4
4 S1 S2 S3,DLr S4
5 S1,LS S2 S3,DLl S4
6 S1,LS S2 S3,DLr S4

Table 6.3: Possible pose combinations in case of limb switch (C1) and double
limb error (C3). These combinations (hypotheses) are tested and the pose with
the lowest maximum reprojection error is selected.

Figure 6.22: Camera setup in the Sport Science Lab Jacques Rogge in Ghent
on the left with a red arrow indicating the running direction (SSL-JR dataset).
On the right we show four camera images with the estimated 3D pose (white).

6.6 Experimental results

Two experiments were conducted on two different locations which both
were recorded with RGB cameras and infrared cameras for generating
the ground truth. The marker-based camera systems (Qualisys and
Vicon) have a theoretical submillimetre precision for the marker po-
sitions. However, we should keep in mind that due to marker/soft
tissue movement, it is unlikely that submillimetre precision is reached
to calculate keypoint centre positions. Either way, these maker-based
systems are often used to measure keypoint positions in biomechanical
research. However, for many applications, submillimetre precision is not
needed. A precision of 1-2 cm is accurate enough to assess a person’s
macro-movement.

The first dataset was recorded at the Sports Science Laboratory Jacques
Rogge (SSL-JR) at Ghent University. The vision-based system consisted

148

3D Human Pose Estimation

of seven 4.5 MP cameras (Manta G-046C, AVT, Stadtroda, Germany).
A person ran in a straight line, always in the same direction at different
speeds ranging from 2.1 to 5.1 m/s (Figure 6.22). The camera images are
captured synchronously by two computers at 67 Hz. The running length
that can be captured is around 11 meters. The infrared-based motion
capture system consisted of ten 1.3 MP cameras (Oqus3+, Qualisys AB,
Göteborg, Sweden) operating at a frame rate of 250 Hz. The cameras
were fixed to the lab walls, uniformly distributed to measure 4 m of
the running length, with a distance to the centre of the volume ranging
from 3.5 to 7 m. In total, 88 Passive IR-reflective, 12 mm-sized spherical
markers were attached to the subject body and used for complete body
modelling in Visual 3D software (C-Motion Inc., Germantown, USA).
Joint centre coordinates of the ankles, knees and hips were exported
for comparison. The wand calibration of the setup showed a standard
deviation on measured distances of 0.4 mm.

The second dataset was recorded in Leuven, Belgium. Only three 4.5
MP cameras (Manta G-046C, AVT, Stadtroda, Germany) were used
operating at 50 Hz. The cameras were located closer to the person of
interest than the first dataset because the measuring volume was only
3 x 3 x 2 meters. The person in this dataset is executing stationary
movements such as squats and clocks (Figure 6.23). A fixed ten camera
Vicon system (Vicon MX T20, VICON Motion Systems Ltd., Oxford,
UK) supplemented with three additional portable Vicon Vero cameras
(Vicon Vero v1.3, VICON Motion Systems Ltd., Oxford, UK) were used.
All cameras were sampled at 100 Hz and had a measurement error of
1 mm. In addition, ground reaction forces were collected using two
AMTI OR 6 Series force plates sampled at 1000 Hz (Optima, Advanced
Mechanical Technology, Inc., Watertown, USA). These force plates were
used to determine initial ground contact during the side cut manoeuvre
and check the execution of the clock for the Vicon system. A researcher
placed 39 retro-reflective markers on the participant using palpation to
identify the correct attachment site. Markers were placed as shown in
Figure 6.23.

For the triangulation we used ℓ∞-norm optimization, but the difference
with the ℓ2 norm is limited because many outliers are already removed by
using the 2D trackers. We filtered the raw measurements in the spatio-
temporal domain with a Hanning window, of length 7 (0.1 seconds). For
offline processing, 3 frames from the past and 3 frames from the future
are used. This filtering slightly improves the results. Figure 6.24 shows
a typical graph produced by the proposed system after smoothing. We
see that the proposed system follows the marker-based positions rather

149

Experimental results

Figure 6.23: In the camera setup in Leuven, only three cameras were
used. However, the cameras are positioned much closer to the test subjects,
approximately 2.5 m. Therefore, a more accurate camera calibration was
possible.

accurately. We will evaluate results based on average errors and their
standard deviation.

Table 6.4 shows the accuracy averaged per dataset, while Figure 6.25
shows the distribution of these numbers. We may conclude that spatio-
temporal filtering improves the results by decreasing the standard devi-
ation and average positional error between 1 and 3 mm. For the second
dataset we notice an offset in positional errors for some joints. The
limited number of cameras and their relative position is most likely the
cause of the offset. Also, the cameras in this setup are not entirely evenly
distributed around the person of interest.

The accuracy of the keypoint positions depends on the accuracy of the
camera calibration and the pose estimator. Therefore we conducted an
extra experiment to figure out the impact of the camera calibration.
We measured eight ground truth positions in the reconstruction vol-
ume and determined their corresponding pixel coordinates. Using these
pixel coordinates, we triangulated the points to obtain 3D points and
compare them with the ground truth positions. We also measured the
reprojection error (the difference between the pixel coordinates and the
projection of the triangulated point). These results are shown in Table
6.5. The average 3D triangulation error in the SSL-JR dataset is 21.0
± 5.8 and 11.3 ± 4.7 in the IPLAY-Leuven dataset. It means that the
calibration errors account for about half of the positional errors. The
remaining error is the actual error from the triangulation of the points
detected by the pose estimator. The SSL-JR dataset error is larger
than the error in the IPLAY-Leuven dataset because the cameras are
further away from the test subject. Small angular calibration errors
correspond to larger errors further away from the camera, which is why

150

3D Human Pose Estimation

200 700 1600 2500 3350

280

300

320

340

360

(x,y)-position

marker-based
proposed

x (mm)

y
 (

m
m

)

700 750 800
100

200

300 marker-based
proposed

z
 (

m
m

)

z-coordinate

frameid

250

150

0 125 250

650

550

450

350

(x,y)-position

y
 (

m
m

)

x (mm)

marker-based
proposed

300

-125 375 350 400 450
45

85

115

z-coordinate

z
 (

m
m

)

frameid

marker-based
proposed

100

60

Figure 6.24: Typical result of the positions of an ankle keypoint (top row:
SSL-JR dataset, bottom row IPLAY-Leuven dataset). Note the different scales
in each of the graphs.

19

33

47

61

76

a
v
g
 (

m
m

)

Positional errors (SSL-JR) Positional errors (IPLAY)

a
n
k
le

_
l

a
n
k
le

_
r

k
n
e
e
_
l

k
n
e
e
_
r

h
ip

_
l

h
ip

_
r9

17

25

34

42

a
n
k
le

_
l

a
n
k
le

_
r

k
n
e
e
_
l

k
n
e
e
_
r

h
ip

_
l

h
ip

_
r

a
v
g
 (

m
m

)

Figure 6.25: Average positional error between the marker-based positions
and the estimated 3D position for all 33 sequences (SSL-JR) and 9 sequences
(IPLAY).

151

Experimental results

Unfiltered Filtered
keypoint avg stddev avg stddev

S ankle_l 42.1 23.7 40.6 21.3
S ankle_r 41.2 21.7 38.8 19.4
L knee_l 42.2 20.8 40.4 19.1
J knee_r 46.3 19.9 44.8 18.3
R hip_l 44.4 18.8 41.6 15.5

hip_r 50.7 15.2 49.2 12.5

I ankle_l 19.4 11.9 18.7 8.2
P ankle_r 16.7 9.6 15.9 6.6
L knee_l 30.3 10.6 29.8 7.9
A knee_r 32.6 12.4 32.1 10.0
Y hip_l 34.2 15.7 33.5 10.9

hip_r 26.1 14.7 25.1 11.0

Table 6.4: Positional errors and standard deviation averaged over 33 sequences
(SSL-JR dataset) and 9 sequences (IPLAY-Leuven dataset). All measurements
are in mm.

SSL-JR IPLAY
Reprojection error (px) 2.2 ± 0.5 1.2 ± 0.1
3D triangulation error (mm) 21.0 ± 5.8 11.3 ± 4.7

Table 6.5: Analysis of the accuracy of the camera calibration expressed in
reprojection error and triangulation error. These errors are significant and
account for about half of the errors in Table 6.4.

the positional errors are smaller in the IPLAY-Leuven dataset. Because
the subject is larger in the image, the pose estimator can detect the
keypoints more accurately.

152

3D Human Pose Estimation

6.7 Conclusion

This chapter presented a fast and reliable method to convert 2D poses
from multiple camera views into 3D poses. The proposed method can
handle occlusion and can reconstruct multiple poses from different peo-
ple in the scene. The proposed method copes with misdetected keypoints
and confusion between the left and right part of the person to extract
reliable 3D tracking data for 25 keypoints of the human body (Open-
Pose BODY_25 model). During our experiments, we found that the
positional error for the lower limbs is between 15.9 and 49.2 mm and
the standard deviation between 6.6 and 21.3 mm. We compared our
system to marker-based systems, which report submillimetre accuracy.
The accuracy of our method is not as precise as that of a marker-based
system with the used camera setup. However, our method is has three
strong benefits compared to marker-based systems. First, our solution is
much more flexible because it can be used in larger areas e.g., an athletics
track. Second, in contrast to a marker-based system, our solution also
works outdoors. Third, if pose estimators become more reliable, the
accuracy of our system will also increase.

The results from the setup in Leuven show that lower errors are possible
using cameras closer to the subject. The reason is twofold. On the
one hand, persons appear more prominent in the images, which means
more accurate detections by the pose estimator. On the other hand,
the cameras can be calibrated more accurately because the point cor-
respondences in the different cameras are also more accurate. More of
these cameras would, therefore, generate more accurate results. Also,
cameras producing images with higher resolution can increase accuracy
for the same reasons. With these improvements, athlete techniques can
be accurately measured.

Other typical application can be found in the entertainment industry.
Due to feedback from the system to the player, the player will react
on less accurate positions by moving a bit more to reach the goal loca-
tion in the game. Macro-movements should be detected correctly, and
that is no problem for the proposed method. Applications, where a
behaviour classification is more important than the exact pose are also
suitable candidates for the proposed system. Such applications are, for
instance, presenter analysis to record a presentation automatically. It
is essential to know where the people are and what they are doing in
these applications, but a millimetre-precision pose estimation is usually
unnecessary. Besides, the technology should often be non-intrusive, so
markerless systems are often preferred.

153

Conclusion

The main contributions made in this chapter are the following:

• reliable cross-view pose correspondence based on pairwise triangu-
lation and maximal clique searching in a graph;

• handling limb ambiguities by correcting the 2D poses and hence
produce reliable 3D poses, even with erroneous 2D poses;

• real-time 3D pose estimation using OpenPose pose estimator from
multiple cameras;

• handling occluded keypoints in some camera views.

Some of the work in this chapter is described in these publications:

• M. Slembrouck, H. Luong, J. Gerlo, K. Schütte, D. Van Cauwe-
laert, D. De Clercq, B. Vanwanseele, P. Veelaert, and W. Philips.
Multiview 3d markerless human pose estimation from OpenPose
skeletons. In Proceedings of Advanced Concepts for Intelligent Vi-
sion Systems (ACIVS’20), volume 12002, pages 166–178. Springer,
2020. ISBN 9783030406042

• B. B. Nyan, M. Slembrouck, P. Veelaert, and W. Philips. Dis-
tributed multi-class road user tracking in multi-camera network
for smart traffic applications. In Proceedings of Advanced Concepts
for Intelligent Vision Systems (ACIVS’20), volume 12002, pages
517–528. Springer, 2020. ISBN 9783030406042

154

Chapter 7

Projects and Applications

The work in this book has been applied to several use cases. Volumet-
ric shape reconstruction and 3D pose estimation are valuable ways to
understand what is happening in the scene. While volumetric shape
reconstruction defines the occupied space of an object, 3D pose esti-
mation offers a more detailed analysis of the different body parts of
a person. It can be used as input for behaviour analysis. Note that
both the volumetric shape reconstruction and the pose estimation are
usually only a part of a larger system. Therefore, it can be considered
as middleware for numerous applications.

Table 7.1 shows several applications of our proposed solutions. For each
application, we indicated which parts of this work were important. Some
applications avoid occlusions, such as gait analysis and game control.
Some applications do not necessarily require shape reconstruction, such
as game controlling and expert recordings. The applications centered
around assembly line analysis benefit from combining all three tech-
niques. Our methods perform best when the cameras are accurately
calibrated. Therefore, we will focus on applications where we can obtain
reasonable accuracy, typically in reconstruction volumes of up to 10 m
× 10 m × 3 m.

In this chapter, we will discuss some of these diverse applications and
their challenges. Each application requires a specific solution, and we
will explain how we meet the requirements. In the first part of this
chapter, we will discuss applications that require object reconstruction
and in the second part, applications on person reconstruction.

155

Gait analysis (IRUNMAN)

Application Section Shape 3D pose Occlusion
Gait analysis 7.1 x x
Gaming and rehabilitation 7.2 x
Expert recordings 7.4 x x
Assembly line analysis 7.4 x x x

Table 7.1: Overview of features used for different use cases in this work.

7.1 Gait analysis (IRUNMAN)

At Ghent University, the Department of Movement and Sports Sciences
conducts research in biomechanical movements of humans. We were
involved in the IRUNMAN project where the Sport Science Laboratory
- Jacques Rogge was shaped. This lab is used for innovative scientific
research in human movement and sports sciences and aims to translate
their findings into actual societal applications.

Often such a motion analysis is performed using marker-based systems
like Qualisys [81], OptiTrack [67] or Vicon [65]. These systems provide
accurate 3D skeletal data of the subjects. Still, they are often impractical
to use for tests with many different people because the task of instru-
menting a test subject with the necessary markers is time-consuming
(up to 30 min per test subject). A full skeletal reconstruction is not
required for some research tasks because the analysis may be restricted
to a particular part of the body or a macro analysis is sufficient. For
instance, a person’s step length and running speed can also be extracted
from a reliable shape reconstruction.

Therefore, a less intrusive method that offers basic analytical data surely
has its merits. We installed a camera network of eight cameras in the
Sport Science Lab Jacques Rogge to research which parameters of human
motion analysis can be extracted accurately from a shape reconstruction.
Each camera captures images with a resolution of 780x580 px at a
maximum framerate of 67 fps. The cameras observe an 8 m running
area and are calibrated both intrinsically and extrinsically.

In this particular dataset, we investigate if we can estimate typical
parameters that describe a person’s gait based on the multi-camera
system. Therefore the focus is on the lower limbs and, more specifically,
on the person’s feet. Important parameters to track are cycle times, step
lengths and speed.

Figure 7.1 shows the camera coverage map of the camera setup. The
arrow indicates the area and direction in which the test subject runs. In

156

Projects and Applications

Figure 7.1: Camera setup (floorplan) and camera coverage map at Sport
Science Lab Jacques Rogge. The number of cameras ranges from 0 (dark blue)
to 8 (red). This area of maximum camera coverage is limited to focus on a few
steps in the gait analysis. The arrow indicates the area and direction in which
the test subject runs.

Figure 7.2: Typical foreground/background segmentation results which are
used as silhouettes for the 3D reconstruction.

the camera coverage map, we see that not all cameras are observing the
entire run length. There is a trade-off between the zoom factor (higher
zoom factor means more detailed observations, but a reduction of the
field of view) and the coverage (larger field of view means that more
cameras can observe the same part of the reconstruction volume, but a
reduction of details in the observation) of each camera. In this particular
use case, we focused on the area covered by all cameras because this is
also where the ground truth was captured using the pressure plates and
the Qualisys system.

The video streams of the different cameras are captured by two dedicated
computers, each handling half of the cameras. The test subject is
segmented in each of the camera images to create silhouettes. Since

157

Gait analysis (IRUNMAN)

(a) standard SfS (b) proposed

v
o
x
e
l
c
o
u
n
t

frameid

proposed

standard SfS

(c) voxel count comparison between stan-
dard and proposed method

Figure 7.3: Results of 3D reconstruction of the standard and the proposed
reconstruction method. The rectangle indicates the frames where the test subject
is inside the zone of maximum camera coverage.

the background is predominantly static and the runner is moving, fore-
ground/background segmentation is used. In this particular case, we
chose to use the MoG algorithm of Zivkovic [114]. Figure 7.2 shows a
set of frames where the runner is segmented. We observe several errors in
these silhouettes: missing parts in the silhouette and background clutter.
The missing parts originate from similar colours in the appearance of
the test subject and the background e.g., the test subject’s dark pants
against the dark wall of the lab. In contrast, the background clutter
originates from other people in the background and the active infrared
Qualisys cameras (the cameras are sensitive to near-infrared light and
turn on after the background model was already generated).

The proposed shape from incomplete silhouette algorithm from Chapter
5 can also handle mistakes in the foreground/background segmentation.
A missing part in the foreground has the same effect as an occluder
between the camera and the test subject. Our method can generate a
more complete reconstruction based on these incomplete silhouettes by
using geometric reasoning. In Figure 7.3a we see the reconstruction of
the standard SfS method. A substantial number of voxels are missing
around the legs. In Figure 7.3b the reconstruction is shown from the
proposed method from the same angle. We see that some voxel clusters
(cells) are now also part of the reconstruction, such as part of the head
(hair) and the lower legs. The different colours in this image represent
different cells from the cell-based reconstruction (see Chapter 5).

The proposed reconstruction contains more voxels that are part of the
person, and therefore the analysis may become more reliable. Figure 7.3c

158

Projects and Applications

(a) centroid tracking

proposed

standard SfS

z
 (

m
m

)

frameid

(b) running movement

Figure 7.4: Spatio-temporal centroid tracking for gait analysis. The rectangle
again indicates the frames where the test subject is inside the zone of maximum
camera coverage.

shows the difference in voxel count in the reconstructed shape between
both methods during a run of the test subject. The red rectangle
corresponds to the maximum camera coverage (red zone in Figure 7.1).

The reconstruction is used to derive several metrics such as the centre
of mass, the step length, and the person’s height. Each of these mea-
surements can be calculated for each frame in the videos and therefore
offer a detailed spatio-temporal analysis of the test object’s movement.
Figure 7.4a shows a model of walking/running movement. The person’s
centroid makes a sinusoidal movement, a trend we also see in the plot of
the centroid of the reconstructed shape (unfiltered data points) in Figure
7.4b. From such an analysis, the number of steps can be extracted
and also the average step length. A sinusoidal function can be fit
with the data to cope with noise on the data points. The benefit of
using the proposed shape from incomplete silhouettes reconstruction is
limited because the centroid is the average position of all reconstructed
voxels and since the reconstructed person is not missing an arm or some
other body part that would cause asymmetry in the shape, the average
centroid position still corresponds to the expected trend. Moreover, the
shape-from-silhouttes has higher precision because it is very strict on
which voxels to include in its 3D reconstruction. We also notice that the
centroid from the proposed method is more noisy compared to the SfS’s
centroid.

Gait analysis is also an ideal use case for our 3D pose estimation method.
From the data shown in the graphs of Figure 7.5, we derived a number of
important parameters. Table 7.2 shows the numeric results of the impor-
tant gait analysis parameters to describe the walking/running movement

159

Gait analysis (IRUNMAN)

shape pose est. ground truth
Left cycle time 0.65 s 0.72 s 0.692 s
Left step length 0.73 m 0.76 m 0.729 m
Left step time 0.33 s 0.346 s
Left stance time 0.34 s 0.294 s
Left swing time 0.37 s 0.398 s
Right cycle time 0.65 s 0.70 s 0.692 s
Right step length 0.73 m 0.79 m 0.738 m
Right step time 0.37 s 0.346 s
Right stance time 0.31 s 0.300 s
Right swing time 0.38 s 0.392 s
Speed 2.12 m/s 2.11 m/s 2.136 m/s

Table 7.2: Numerical result of the gait analysis. Results are shown for the
shape reconstruction and the 3D human pose estimation. The analysis on the
volumetric shape reconstruction can accurately determine some metrics. The
results are less precise than the ground truth due to the limited voxel size of the
reconstruction (1 cm) and frame rate (67 fps). The 3D human pose estimation
can determine more metrics, but not all of them are as accurate as the floor
plate because it is unclear when the foot is standing still.

of the test subject. Note that the number of parameters that we derived
using the shape reconstruction was limited and the cycle time are is
derived from the centroid’s position, not from the reconstruction of the
feet because it is unclear when the feet touch the ground in the 3D
reconstruction. We did, however, measure the step lengths from the 3D
reconstruction (heel to heel).

The 3D human pose estimation has more detailed information and, there-
fore, we were able to estimate more parameters than using the volumetric
shape reconstruction. However, it is unclear from the keypoint positions
if a foot is decelerating, standing still, or accelerating. In the right graph
of Figure 7.5, the Y coordinate (the direction in which the runner moves),
is always slightly changing and the derivative function of the heel’s y-
coordinate are rarely 0. Therefore, the estimated swing and stance times
are not reliable (a fixed threshold of 30 mm/s was used).

We compare both methods with the gold standard of the marker-based
system that used the floor plate and Qualisys system to extract all
parameters accurately. The results are similar for most parameters.
Since the maximum frame rate of our system is only 67 fps, we cannot
reach 0.001 s time precision but rather 0.015 s. Apart from the lower
time accuracy, we see that both the shape reconstruction and 3D human
pose estimation are rather accurate to perform such an analysis. Note

160

Projects and Applications

660 680 700 720 740 760 780

200

400

600

800

1000

z
-c

o
o
rd

in
a
te

y
-c

o
o
rd

in
a
te

LAnkle.z

LHeel.z

RAnkle.z

RHeel.z

MidHip.z

660 680 700 720 740 760 780

frameidframeid

-2000

-1000

0

1000

LHeel.y

RHeel.y

LAnkle.y

RAnkle.y

d(LHeel.y)/dy

d(RHeel.y)/dy

Runner (y)Runner (z)

2000

Figure 7.5: Gait analysis based on 3D human pose estimation. We see
repetitive patterns from the different steps of the runner. Note that the midhip
is showing the expected sinusoidal shape.

that we only need calibrated cameras and no instrumentation of markers
on the test subjects to reach these results.

7.2 Game controller and rehabilitation (IPLAY)

Immersive games are becoming more popular, partly due to AR/VR
systems such as the Oculus Rift, HTC Vive and other AR/VR headsets.
Most commercial systems are limited to tracking the position of the
player’s head and hand positions. Therefore, the players’ legs and feet
are often not shown in games, or at least they will not correspond to the
actual position of the player’s legs and feet. This behaviour breaks the
immersive experience.

In the imec.icon project IPLAY, we researched the viability of a system
consisting of LED floor tiles with pressure sensors and a wall projection
for an immersive gaming experience. We used four cameras mounted
around the field of play to track the players, creating an accurate mark-
erless pose estimation system. The system ran in real-time at 20-25 fps
on a powerful computer with two Nvidia 2080TI GPUs. The dedicated
system streamed the reconstructed poses over a local area network to
the game engine.

Two gaming applications were developed, which are controlled by the
player’s movement without any controllers (Figure 7.6). The first game

161

Game controller and rehabilitation (IPLAY)

(a) Endless runner (b) JAMZ

(c) Rehabilitation use case

Figure 7.6: Two games and one rehabilitation application were developed by
DAE in Kortrijk using our 3D human pose estimation in the IPLAY project.
Teaser video: https://youtu.be/_6XeFguS7bI

.

was an endless running application where a person needed to avoid
virtual obstacles by dodging, jumping and crouching. The height of
the lifted knees determined the avatar’s speed in the game during the
stationary running motion. A second game, JAMZ, exploited the fea-
tures of the 3D tracking system even further by also using the person’s
hand positions during dancing movements. During the final event of
the imec.ICON project, the IPLAY system was tried by several visitors
and kept performing well. One of the biggest challenges during this
demonstration was the numerous spectators visible in one or two camera
views. However, the system still managed to determine which 2D poses
from different views corresponded to the player. The system made
no visible errors, which meant that the pose matching and keypoint
positions were reliable for this application.

The imec.icon IPLAY project also focused on rehabilitation. The same
system is used to assess if a patient is executing certain exercises cor-
rectly. Processing speed was less important for these applications, while

162

Projects and Applications

(a) Mariasteen (b) CNHi

Figure 7.7: Examples of expert recordings at Mariasteen (first aid kit) and
CNHi (central beam) for (semi)-automatic instruction extraction.

accuracy is more important than in gaming applications. We can achieve
higher accuracy by feeding images with higher resolution to the pose
estimator’s neural network at the cost of higher processing time. How-
ever, the few centimetre accuracies that we reached with our system (see
Section 6.6) was accurate enough to keep the same real-time performance
for the rehabilitation application.

7.3 Expert recording (COSMO)

Our 3D pose estimation has also been used for behaviour analysis. Man-
ufacturing companies use VR training to teach their employees how to
perform specific tasks before performing these tasks for real. Alterna-
tively, they support their employees with AR-based instructions during
these particular tasks. In general, the more experienced the employee is,
the less detailed these instructions need to be. In the COSMO project,
these aspects are researched in detail.

Generating work instructions for AR and VR training is time-consuming.
Our part in this project aims to (semi-)automatically generate these
work instructions based on an expert recording. In such a recording, an
expert shows how to perform a particular task. We capture the scene
using different cameras and a microphone. We track the operator in the
videos and reconstruct the expert’s 3D pose to detect actions and events
for the instruction generation.

Using speech recognition, the expert controls the recording and helps
to segment different instructions and specify the tools and other objects
involved in the task. In this project, we focus on two setups: one at
Mariasteen and one at CNHi (Figure 7.7). The two use cases come with
their challenges, which we will discuss in the following paragraph.

163

Expert recording (COSMO)

(a) Hand positions (b) Picking rack

Figure 7.8: Hand positions of the operator and the automatic extraction of
picking places using a heatmap of the hand locations in the first aid kit dataset
at Mariasteen (bin = 2.5 cm).

At Mariasteen, we focus on the assembly of a first aid kit. This use case
is simple, in the sense that the genre of instruction is limited to roughly
picking objects and placing them into the first aid kit, however we need
to monitor the precise handling of the expert. Therefore, we installed six
cameras around the expert to record his actions in detail. Detailed hand
motions are of utmost importance, so we use OpenPose to detect the 21
keypoints per hand to assess the operator’s action more precisely. By
reconstructing these hand keypoints in 3D, using the same technique as
the body poses, we can determine the location of specific picking spots
automatically (Figure 7.8). We also assign which objects are located in
each spot by using the speech recognition. Besides this, we also monitor
changes in the first aid kit to determine where each object needs to be
placed in the box and, hence, obtain the instruction set to assemble a
first kit according to the expert recording.

At CNHi, we focus on the assembly of the central beam of a pick thresher.
This assembly process is more complex compared to the first aid kit
at Mariasteen. The operational area is about 5.5 m × 2.5 m. The
expert executes more diverse actions such as sitting, drilling, walking,
picking, and placing. To capture this process in detail, we used 11
GoPro cameras mounted around the reconstruction space. Four of these
cameras are used to reconstruct the expert’s pose, and the other cameras
are used to detect events. We created a heatmap of the expert’s hands
to automatically find interesting areas where the expert executes most
manipulations (Figure 7.9). By monitoring the area around the expert’s
hands in the different images, we detect tools and other objects. Like the

164

Projects and Applications

5
0
0

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

1
0
0
00

1
0
0
0

2
0
0
0

3
0
0
0

Figure 7.9: Heatmap of the expert’s hands in the scene (topview) to automati-
cally determine the areas of interest (bin size = 10 cm). We choose the bin size
four times larger than in the use case of the first aid kit of Mariasteen because
the camera calibration is less accurate and the interesting regions in the scene
are much larger.

first aid kit, we also monitor the appearance changes on the central beam
to detect where operations took place. Despite the background noise in
the manufacturing hall of CNHi, we were able to record the expert’s
speech using a wireless microphone. The speech helps to determine
which actions are performed with which object.

7.4 Assembly line analysis (Complexity)

Generating work instructions based on an expert recording is only one
factory application where the proposed methods are helpful. When work-
ing with an assembly line, each work cycle needs to finish in time to avoid
delays. Therefore, optimising these individual tasks is crucial. During
the StarTT project Complexity in cooperation with Xiak (industrial
automation centre of expertise Kortrijk), we built a test setup where
five network cameras monitored the assembly area from different views
(Figure 7.10). This assembly area consists of a conveyor belt and a
storage rack. In each work cycle, the factory worker walks to the storage
rack to fetch the parts and assembles them at the conveyor belt. Each
camera recorded videos with a resolution of 1624 × 1234 px at 30 fps.
A capture PC saved and synchronised the different video streams.

Machinery and other objects in such an environment often occlude the
factory worker from a camera’s perspective. In this dataset, occlusions

165

Assembly line analysis (Complexity)

(a) C1 (b) C2 (c) C3

(d) C4 (e) C5 (f) 3D reconstruction

Figure 7.10: Complexity StarTT project: assembly line analysis. (a) to (e)
show typical input images of the cameras. In (f) the 3D reconstruction is shown.
Notice that the occluded lower limbs in (a) are also reconstructed.

often happen in three out of five views (first row in Figure 7.10). How-
ever, our proposed shape reconstruction algorithm can handle these
occlusions and create a volumetric shape reconstruction of the complete
person.

The research conducted on this dataset analysed different work cycles
executed based on the factory worker’s trajectories. We cluster the
work cycle trajectories to identify similar work cycles. For instance,
the factory worker sometimes forgot a part and returned to the storage
rack to fetch the correct parts. The number of data points in each
trajectory is different, and therefore, we used dynamic time warping to
compare trajectories. The temporal dissimilarity between trajectories
was based on best velocity matching. The clustering method used a
greedy clustering method using the dissimilarity measure to find patterns
of the trajectory.

By manually checking the videos of this dataset, we find that the factory
worker executed three different types of work cycles by visiting different
areas of the storage rack: visiting the left and then the right corner
of the storage rack; visiting just the left corner, and visiting just the
right corner. The greedy clustering algorithm identified three main

166

Projects and Applications

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Cluster 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Cluster 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Cluster 3

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Spatial abnormalities

Figure 7.11: Clustered trajectories based on spatial dissimilarity. These
results were published in the PhD of Xinzhe Xie [106].

spatial clusters of trajectories. Occasionally, the workers pick up the
tools and parts differently, for instance, visiting another area of the
work station, visiting the storage rack from the right to the left corner,
etc. These unusual executed work cycles lead to spatially abnormal
trajectories. By clustering the trajectories, we can find the factory
worker’s moving patterns and the abnormalities of visiting the storage
rack. This information is useful to optimise the work cycle.

A total of 124 trajectories were analysed, and different clusters were
found (Figure 7.11). The trajectories are shown in different colours and
assigned to three main work cycle clusters corresponding with 100, 13
and 4 trajectories separately, and 7 abnormalities. The main difference
between these three types of executed work cycle is how the factory
worker walked between the working station and the storage rack. The
abnormalities are, in fact, separate clusters which are dissimilar to any
other clusters in the dataset.

The results show that the trajectories are clustered into different pat-

167

Assembly line analysis (Complexity)

825 850 875 900 925 950 975 1000

frameid

500

250

0

250

500

750

1000

1250

1500

LKnee and RKnee
x

y

RKnee.x (w/o.h.)

RKnee.y (w/o.h.)
LKnee.x (w/o.h.)

LKnee.y (w/o.h.)
RKnee.x

RKnee.y
LKnee.x

LKnee.y

(a) Knee keypoint

825 850 875 900 925 950 975 1000

frameid

500

250

0

250

500

750

1000

1250

1500

x

LAnkle and RAnkle

RAnkle.x (w/o.h.)

RAnkle.y (w/o.h.)
LAnkle.x (w/o.h.)

LAnkle.y (w/o.h.)
RAnkle.x

RAnkle.y
LAnkle.x

LAnkle.y

y

(b) Ankle keypoint

x

225

2225

y

1187

813

z

967

639

(c) Without occlusion handling

x

225

2225

y

1187

813

z

967

639

(d) With occlusion handling

Figure 7.12: The shape reconstruction with occlusion handling is used to
detect occluded keypoints and remove them from the 2D poses. In this test the
operator is standing still. The stability of the triangulation in the occluded area
in front of the conveyor belt improved significantly in (a) and (b) (w/o.h. =
with occlusion handling). An example of the 3D reconstruction is shown in (c)
without occlusion handling and (d) with occlusion handling. (d) shows a more
realistic pose of the operator.

terns successfully, and abnormalities are detected both spatially unfit to
the prototypical routes and temporally different from other trajectories
in the same spatial cluster. We conducted this research in cooperation
with Xingzhe Xie and researchers from Xiak. The positional data ex-
tracted from the dataset was used in six publications [107, 108, 5, 4, 6].

This dataset provides an actual use case to test the reconstruction of the
person’s pose in the presence of occlusions. Occlusions are detected using
our proposed 3D reconstruction method. The detected keypoints of the
pose estimator in these occluded areas are removed. In this way, our
3D pose estimator can rely on visible points (not occluded) to generate
a more reliable reconstruction. The results are shown in Figure 7.12
for the area in front of the conveyor belt where 3 out of 5 views are

168

Projects and Applications

occluded. This application shows how the combination of 3D human
pose estimation and shape reconstruction with occlusion handling leads
to a reliable monitoring system for human pose estimation in occluded
environments.

7.5 Conclusion

This chapter gave an overview of some projects and applications of the
proposed techniques in this book. We note that the proposed techniques
functions as middleware for numerous applications. The game controller
and rehabilitation use case is an example of our 3D pose estimation,
added with an extra layer. In the expert recording use case, we noticed
that the 3D pose estimation is helpful to understand the operator’s
actions in the scene and extract work instructions by the manipulations
performed by the operator. The assembly analysis is a fine example of
a use case where the occlusion detection based on shape reconstruction
creates added value for the pose estimation by removing unreliable 2D
keypoint detections in occluded regions.

We performed a basic analysis on the obtained shapes and pose recon-
struction, but this analysis goes beyond the scope of this work. In
essence, that process has already partly happened because data produced
by this work has functioned as datasets for other researchers.

169

Chapter 8

Conclusions

Real-time 3D scene reconstruction becomes more and more important
with the rise of autonomous cars and immersive games for AR/VR.
Decades ago, 3D reconstruction from multiple camera views was only
possible for static object because it took a lot of time to process the
results. Nowadays, computers have become so powerful that the same
can often be applied in real time. These developments have enabled the
use of 3D reconstruction in a much broader field.

This manuscript focused on two aspects of 3D reconstruction: volumetric
shape reconstruction and 3D human pose estimation. Shape reconstruc-
tion is useful for the volumetric analysis of objects/people e.g., collision
avoidance between cars, the analysis of body shapes, etc. 3D human
pose estimation accurately tracks a small number of 3D points, which
enables pose analysis and as an extension, behaviour analysis. For a full
scene understanding, both reconstruction types are combined.

To avoid that 3D reconstruction methods do not perform robustly in
real-world circumstances, phenomena like occlusion need to be handled
correctly as there is no guarantee that occlusion will not occur in most
applications. Standard 3D reconstruction techniques are often limited
in use because it is assumed that occlusion does not occur which breaks
consistency assumptions between views. Depending on the application,
it may not be much of an issue that one of the reconstructed objects
is missing some parts, but this will nevertheless have an impact on
the decisions that are based on the incomplete data. The methods
presented in this manuscript are designed to handle incomplete data
due to occlusion or erroneous segmented silhouettes and reconstruct a
complete shape based on incomplete data.

171

While many of the building blocks (Chapters of this work) are well
understood, there are still advancements to be made in each of them
that affect the blocks that follow. Neural network-based segmenta-
tion algorithms are now outperforming traditional colour segmentation
and foreground/background segmentation techniques, which in turn pro-
duce more reliable silhouettes for a silhouettes-based reconstruction al-
gorithm, especially in challenging circumstances e.g., outdoor environ-
ments. These methods are computationally more expensive, but due to
ever more powerful GPUs, some of these networks can already run in real
time. Also the field of camera calibration is still evolving, even though
the camera pinhole model is already decades old. The ever increasing
image resolutions for instance enable more complicated calibration pat-
terns to be used than with low resolution cameras.

The structure of this manuscript was organised to reflect the entire
workflow from camera images to 3D reconstruction. However, since
both volumetric shape reconstruction and 3D human pose estimation
are discussed, there are two stories to be told. To understand volumetric
shape reconstruction or 3D pose estimation the reader needs to be
familiar with perspective transformation from 3D world to image to
reverse this process in the 3D reconstruction (see Chapter 2). The
volumetric shape reconstruction is based on silhouette extraction as
discussed in Chapter 3, while the volumetric shape reconstruction itself
is explained in Chapter 4. The advanced occlusion handling is explained
in Chapter 5. 3D pose estimation is laid out in Chapter 6. Chapter
7 is of interest to both reconstruction methods as it goes deeper into
a number of applications in which both methods are useful and also
showcases a combination where occlusion detection based on volumetric
shape reconstruction helps to reconstruct human poses more reliable.

In the body of this manuscript, we have discussed a number of different
improvements to pre-existing literature and listed a number of contri-
butions to the scientific world. The main contributions of this work
are:

• a practical tool to calibrate multiple cameras using checkerboard
patterns and calibration objects, and to analyse a camera network
based on camera coverage;

• an analysis of different silhouette extraction techniques such as
colour segmentation, foreground/background segmentation and neu-
ral network segmentation;

• a real-time voxel-based implementation of shape-from-silhouettes;

172

Conclusions

• a reliable cross-view pose correspondence method based on max-
imal cliques combined with a method to handle common pose
estimator issues such as mislabelled limb keypoints;

• a complete end-to-end system to capture and process multiple
video feeds to reconstruct shapes from incomplete silhouettes;

• a cell-based reconstruction method that can handle incomplete
silhouettes originating from occlusion or silhouette segmentation
errors;

• the combination of volumetric shape reconstruction and 3D human
pose estimation to improve scene understanding;

• the valorization of the methods in several applications developed
during different projects in cooperation with a number of compa-
nies and academic partners.

In total, the research during this PhD resulted in 7 peer-reviewed journal
papers, of which 1 as first author. Moreover 17 peer-reviewed conference
papers were presented at international conferences, of which 7 as first
author and 10 as co-author (see Appendix A).

173

Appendices

175

Appendix A

List of Publications

A.1 A1 publications

1. M. Slembrouck, P. Veelaert, D. Van Cauwelaert, D. Van Hamme,
and W. Philips. Cell-based shape reconstruction from incomplete
silhouettes. Integrated Computer-Aided Engineering, 26(3):257–
271, 2019. ISSN 1069-2509

2. K. Bauters, J. Cottyn, D. Claeys, M. Slembrouck, P. Veelaert,
and H. van Landeghem. Automated work cycle classification and
performance measurement for manual work stations. Robotics and
computer-aided manufacturing, 51, 2018. ISSN 0736-5845

3. J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips. Extrinsic cali-
bration of camera networks based on pedestrians. Sensors, 16(5),
2016. ISSN 1424-8220

4. J. Li, M. Slembrouck, F. Deboeverie, A. M. Bernardos, J. A. Be-
sada, P. Veelaert, H. Aghajan, J. R. Casar, and W. Philips. Hand-
held pose tracking using vision-inertial sensors with occlusion han-
dling. Journal of Electronic Imaging, 25(4):14, 2016. ISSN 1017-
9909

5. J. Niño Castañeda, A. Frias Velazquez, B. B. Nyan, M. Slembrouck,
J. Guan, G. Debard, B. Vanrumste, T. Tuytelaars, and W. Philips.
Scalable semi-automatic annotation for multi-camera person track-
ing. IEEE Transactions on image processing, 25(5):2259–2274,
2016. ISSN 1057-7149

177

Conference publications

6. J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips. Extrinsic cali-
bration of camera networks using a sphere. Sensors, 15(8):18985–
19005, 2015. ISSN 1424-8220

7. B. B. Nyan, F. Deboeverie, M. Eldib, J. Guan, X. Xie, J. Niño
Castañeda, D. Van Haerenborgh, M. Slembrouck, S. Van de Velde,
H. Steendam, P. Veelaert, R. Kleihorst, H. Aghajan, and W. Philips.
Human mobility monitoring in very low resolution visual sensor
network. Sensors, 14(11):20800–20824, 2014. ISSN 1424-8220

A.2 Conference publications

1. M. Slembrouck, H. Luong, J. Gerlo, K. Schütte, D. Van Cauwe-
laert, D. De Clercq, B. Vanwanseele, P. Veelaert, and W. Philips.
Multiview 3d markerless human pose estimation from OpenPose
skeletons. In Proceedings of Advanced Concepts for Intelligent Vi-
sion Systems (ACIVS’20), volume 12002, pages 166–178. Springer,
2020. ISBN 9783030406042

2. B. B. Nyan, M. Slembrouck, P. Veelaert, and W. Philips. Dis-
tributed multi-class road user tracking in multi-camera network
for smart traffic applications. In Proceedings of Advanced Concepts
for Intelligent Vision Systems (ACIVS’20), volume 12002, pages
517–528. Springer, 2020. ISBN 9783030406042

3. G. Allebosch, M. Slembrouck, S. Roegiers, H. Luong, P. Veelaert,
and W. Philips. Foreground background segmentation in front of
changing footage on a video screen. In Proceedings of Advanced
concepts for intelligent vision systems (ACIVS’18), volume 11182,
pages 175–187. Springer International Publishing, 2018. ISBN
9783030014483

4. M. Slembrouck, P. Veelaert, D. Van Hamme, D. Van Cauwelaert,
and W. Philips. Cell-based approach for 3d reconstruction from
incomplete silhouettes. In Proceedings of Advanced Concepts for
Intelligent Vision Systems (ACIVS’17). Springer, 2017

5. M. Slembrouck, D. Van Cauwelaert, P. Veelaert, and W. Philips.
Shapes-from-silhouettes based 3d reconstruction for athlete evalu-
ation during exercising. In Abstracts of Science and Engineering
Conference on Sports Innovations (SECSI’16), page 2, 2016

178

List of Publications

6. J. Li, M. Slembrouck, F. Deboeverie, A. M. Bernardos, J. A. Be-
sada, P. Veelaert, H. Aghajan, W. Philips, and J. R Casar. A
hybrid pose tracking approach for handheld augmented reality.
In Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC’15), pages 7–12. ACM, 2015. ISBN 978-
1-4503-3681-9

7. J. Li, B. Goossens, M. Slembrouck, F. Deboeverie, P. Veelaert,
H. Aghajan, W. Philips, and J. R Casar. Demo: a new 360-degree
immersive game controller. In Proceedings of the 9th International
Conference on Distributed Smart Cameras (ICDSC’15), pages 201–
202. ACM, 2015. ISBN 978-1-4503-3681-9

8. X. Xie, D. Van Cauwelaert, M. Slembrouck, K. Bauters, J. Cottyn,
D. Van Haerenborgh, H. Aghajan, P. Veelaert, and W. Philips. Ab-
normal work cycle detection based on dissimilarity measurement
of trajectories. In Proceedings of the 9th International Conference
on Distributed Smart Cameras (ICDSC’15), page 6. ACM, 2015.
ISBN 978-1-4503-3681-9

9. M. Slembrouck, J. Niño Castañeda, G. Allebosch, D. Van Cauwe-
laert, P. Veelaert, and W. Philips. High performance multi-camera
tracking using shapes-from-silhouettes and occlusion removal. In
Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC), pages 44–49. ACM, 2015. ISBN 978-
1-4503-3681-9

10. M. Slembrouck, D. Van Cauwelaert, P. Veelaert, and W. Philips.
Shape-from-silhouettes algorithm with built-in occlusion detection
and removal. In Proceedings of the International Conference on
Computer Vision Theory and Applications (VISAPP’15). SCITE-
PRESS, 2015

11. X. Xie, J. De Vylder, D. Van Cauwelaert, P. Veelaert, W. Philips,
H. Aghajan, M. Slembrouck, D. Van Haerenborgh, H. Van Lan-
deghem, K. Bauters, J. Cottyn, and H. Vervaeke. Average track
estimation of moving objects using ransac and dtw. In Proceedings
of the 8th International Conference on Distributed Smart Cameras
(ICDSC’14), page 6. ACM, 2014. ISBN 978-1-4503-2925-5

12. K. Bauters, H. Van Landeghem, M. Slembrouck, D. Van Cauwe-
laert, and D. Van Haerenborgh. An automated work cycle clas-
sification and disturbance detection tool for assembly line work

179

Conference publications

stations. In Proceedings of the International Conference on In-
formatics in Control, Automation and Robotics (ICINCO’14), vol-
ume 2, page 7, 2014. ISBN 9789897580406

13. M. Slembrouck, D. Van Cauwelaert, D. Van Hamme, D. Van Haeren-
borgh, P. Van Hese, P. Veelaert, and W. Philips. Self-learning
voxel-based multi-camera occlusion maps for 3d reconstruction. In
Proceedings of the International Conference on Computer Vision
Theory and Applications (VISAPP’14), page 8. SCITEPRESS, 2014

14. P. Veelaert, M. Slembrouck, and D. Van Haerenborgh. Concur-
rency relations of digital planes. In Proceedings of the 17th IAPR
International Conference Discrete Geometry for Computer Im-
agery (DGCI’13), volume 7749, pages 347–359. Springer Berlin
Heidelberg, 2013. ISBN 9783642370663

15. K. Bauters, H. Van Landeghem, D. Van Haerenborgh, M. Slem-
brouck, D. Van Cauwelaert, P. Veelaert, and W. Philips. Multi-
camera complexity assessment system for assembly line work sta-
tions. In Proceedings of the European Concurrent Engineering
Conference (ECEC’13), page 5, 2013

16. D. Van Hamme, M. Slembrouck, D. Van Haerenborgh, D. Van
Cauwelaert, P. Veelaert, and W. Philips. Parameter-unaware auto-
calibration for occupancy mapping. In Proceedings of the 7th inter-
national Conference on Distributed Smart Cameras (ICDSC’13),
pages 49–54. IEEE, 2013. ISBN 9781479921669

17. M. Slembrouck, M. Heyvaert, D. Van Cauwelaert, D. Van Hamme,
P. Veelaert, and W. Philips. Time complexity of traditional vision
algorithms on a block-based image processor (BLIP). In Proceed-
ings of the Sixth international conference on distributed smart
cameras (ICDSC’2012), page 6. IEEE, 2012. ISBN 9781450317726

180

Appendix B

Events

Parts of this dissertation and some side projects were presented at several
events. In most cases, we built a live demonstration to engage the
visitors.

1. Boetiek Techniek 2012
Description: Science fair for young children to learn about technol-
ogy. David Van Hamme, Dimitri Van Cauwelaert and I created a
virtual ball game in which a thrown ball was tracked and caught by
a net. However, we used the virtual continuation of the trajectory
to knock over the virtual cones.
Date: 12 May 2012
Location: Ghent, Belgium

2. Art and D 2012
Description: Cooperation between researchers and artists, a pro-
gram by IBBT (now imec). In cooperation with Vadim Vosters, a
demo was created in which a person’s shadow was recorded and
showed in another place to create the sense of a remote presence.
It worked bidirectionally and created natural interactions.
Date: 7 November 2012
Location: ICC, Ghent, Belgium

3. Boetiek Techniek 2013
Description: Science fair for young children to learn about technol-
ogy. David Van Hamme, Dimitri Van Cauwelaert and I created a
virtual pong game where the bats could be controlled by hand on
a table.
Date: 18 May 2013
Location: Ghent, Belgium

181

4. iBoot 2015
Description: Valorisation program of iMinds (now imec) to re-
search the possibility to create a business around the technology
presented in this thesis together with Dimitri Van Cauwelaert.
Date: 26 April - 1 May 2015
Location: London, United Kingdom

5. iMinds the Conference 2016
Description: International conference of iMinds for companies and
research institutes. We developed a live demo to illustrate occlu-
sion in a multi-camera setup and use it to create 3D models of the
occluders in the scene.
Date: 28 April 2016
Location: Square Brussels Meeting Center, Brussels, Belgium

6. Sports Innovation Congress 2017
Description: Congress to watch and listen to the future of sports.
The IPLAY project was demonstrated at this event, and we showed
our markerless motion analysis in a separate boot.
Date: 17 October 2017
Location: Julien Saelens Sport Vlaanderen domain, Bruges, Bel-
gium

7. Future Summits 2019
Description: International conference of imec for companies and
research institutes. A live demo was developed to illustrate the
occlusion of the 3D joint and shape reconstruction in real-time.
Date: 14-15 May 2019
Location: Antwerp, Belgium

182

Bibliography

[1] G. Allebosch, D. Van Hamme, F. Deboeverie, P. Veelaert, and
W. Philips. C-EFIC: Color and edge based foreground background
segmentation with interior classification. In Communications in
Computer and Information Science, volume 598, pages 433–454.
Springer, 2016. ISBN 978-3-319-29971-6.

[2] G. Allebosch, M. Slembrouck, S. Roegiers, H. Luong, P. Veelaert,
and W. Philips. Foreground background segmentation in front of
changing footage on a video screen. In Proceedings of Advanced
concepts for intelligent vision systems (ACIVS’18), volume 11182,
pages 175–187. Springer International Publishing, 2018. ISBN
9783030014483.

[3] O. Barnich and M. Van Droogenbroeck. ViBe: A universal
background subtraction algorithm for video sequences. IEEE
Transactions on Image Processing, 20(6):1709–1724, June 2011.
doi:10.1109/TIP.2010.2101613.

[4] K. Bauters, H. Van Landeghem, D. Van Haerenborgh, M. Slem-
brouck, D. Van Cauwelaert, P. Veelaert, and W. Philips. Multi-
camera complexity assessment system for assembly line work
stations. In Proceedings of the European Concurrent Engineering
Conference (ECEC’13), page 5, 2013.

[5] K. Bauters, H. Van Landeghem, M. Slembrouck, D. Van Cauwe-
laert, and D. Van Haerenborgh. An automated work cycle
classification and disturbance detection tool for assembly line
work stations. In Proceedings of the International Conference on
Informatics in Control, Automation and Robotics (ICINCO’14),
volume 2, page 7, 2014. ISBN 9789897580406.

[6] K. Bauters, J. Cottyn, D. Claeys, M. Slembrouck, P. Veelaert,
and H. van Landeghem. Automated work cycle classification and

183

BIBLIOGRAPHY

performance measurement for manual work stations. Robotics and
computer-aided manufacturing, 51, 2018. ISSN 0736-5845.

[7] B. E. Bayer. Color imaging array, July 1976. US Patent 3,971,065.

[8] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang,
and M. Grundmann. Blazepose: On-device real-time body pose
tracking. arXiv preprint arXiv:2006.10204, 2020.

[9] P. A. Beardsley, A. Zisserman, and D. W. Murray. Sequential
updating of projective and affine structure from motion. Interna-
tional journal of computer vision, 23(3):235–259, 1997.

[10] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee. Yolact: real-time
instance segmentation. In Proceedings of the International Con-
ference on Computer Vision (ICCV’19), pages 9157–9166. IEEE,
2019.

[11] J.-Y. Bouguet et al. Visual methods for three-dimensional modeling.
Citeseer, 1999.

[12] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision
with the OpenCV library. O’Reilly Media, Inc., 2008.

[13] D. H. Brown. Decentering distortion of lenses. In Photogrammetric
Engineering, volume 32, pages 444––462, 1966.

[14] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges,
and D. Kim. Shake’n’sense: reducing interference for overlapping
structured light depth cameras. In Proceedings of the Conference
on Human Factors in Computing Systems (SIGCHI’12), pages
1933–1936, 2012.

[15] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person
2d pose estimation using part affinity fields. In Proceedings of the
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’17), 2017.

[16] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. Open-
Pose: realtime multi-person 2D pose estimation using Part Affinity
Fields. In arXiv preprint arXiv:1812.08008, 2018.

[17] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan.
Blendmask: Top-down meets bottom-up for instance segmenta-
tion. arXiv preprint arXiv:2001.00309, 2020.

184

BIBLIOGRAPHY

[18] K. Cheung, S. Baker, and T. Kanade. Shape-from-silhouette
of articulated objects and its use for human body kinematics
estimation and motion capture. In Proceedings of the Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’03). IEEE, 2003.

[19] K. Cheung, S. Baker, J. Hodgins, and T. Kanade. Markerless
human motion transfer. In Proceedings of the 2nd International
Symposium on 3D Data Processing Visualization and Transmission
(3DPVT’04), pages 373–378, Sep. 2004.

[20] W. Coste. Basketball Plays, Tricks and Gimmicks. Xlibris US,
2010. ISBN 9781453553411. URL https://books.google.be/books?
id=8qgvZ_ANWBYC.

[21] D. F. Dementhon and L. S. Davis. Model-based object pose in 25
lines of code. International Journal of Computer Vision, 15(1-2):
123–141, 1995.

[22] L. Díaz-Más, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
R. Medina-Carnicer. Shape from silhouette using dempster–shafer
theory. Pattern Recognition, 43(6):2119–2131, 2010.

[23] L. Díaz-Más, F. J. Madrid-Cuevas, R. Muñoz-Salinas,
A. Carmona-Poyato, and R. Medina-Carnicer. An octree-
based method for shape from inconsistent silhouettes. Pattern
Recognition, 45(9):3245–3255, 2012.

[24] P. Ding and Y. Song. Robust object tracking using color and depth
images with a depth based occlusion handling and recovery. In
Proceedings of the 12th International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD’15), pages 930–935. IEEE, 2015.

[25] S. Donné. From light rays to 3D models. PhD thesis, Ghent
University, 2018.

[26] O. Drbohlav, editor. Next view planning for shape from silhouette,
02 2003.

[27] Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankan-
halli, and W. Geng. Marker-less 3d human motion capture with
monocular image sequence and height-maps. In Proceedings of
the European Conference on Computer Vision (ECCV’16), pages
20–36. Springer, 2016.

185

BIBLIOGRAPHY

[28] G. Duan, H. Ai, and S. Lao. A structural filter approach to human
detection. In Proceedings of the European Conference on Computer
Vision (ECCV’10), pages 238–251. Springer, 2010.

[29] A. Elhayek, O. Kovalenko, P. Murthy, J. Malik, and D. Stricker.
Fully automatic multi-person human motion capture for vr ap-
plications. In Proceedings of the 15th International Conference
EuroVR (EuroVR’18), 2018.

[30] P. Favaro, A. Duci, Y. Ma, and S. Soatto. On exploiting occlusions
in multiple-view geometry. In Proceedings of the 9th International
Conference on Computer Vision (ICCV’03), pages 479–486. IEEE,
2003.

[31] R. B. Girshick, P. F. Felzenszwalb, and D. A. Mcallester. Object
detection with grammar models. In Advances in Neural Informa-
tion Processing Systems, pages 442–450, 2011.

[32] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar.
Changedetection.net: A new change detection benchmark dataset.
In Proceedings of the Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW’12), pages
1–8. IEEE, 2012.

[33] S. Grünwedel, N. Petrovic, L. Jovanov, J. Niño Castañeda,
A. Pizurica, and W. Philips. Efficient foreground detection for
real-time surveillance applications. Electronics Letters, 49(18):
1143–1144, 2013. ISSN 0013-5194.

[34] J. Guan. Calibration of camera networks : kalibratie van camer-
anetwerken. PhD thesis, Ghent University, 2017.

[35] J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips. Extrinsic
calibration of camera networks using a sphere. Sensors, 15(8):
18985–19005, 2015. ISSN 1424-8220.

[36] J. Guan, F. Deboeverie, M. Slembrouck, D. Van Haerenborgh,
D. Van Cauwelaert, P. Veelaert, and W. Philips. Extrinsic cali-
bration of camera networks based on pedestrians. Sensors, 16(5),
2016. ISSN 1424-8220.

[37] L. Guan, S. Sinha, J.-S. Franco, and M. Pollefeys. Visual hull
construction in the presence of partial occlusion. In Proceedings

186

BIBLIOGRAPHY

of the 3rd International Symposium on 3D Data Processing, Vi-
sualization, and Transmission (3DPVT’06), pages 413–420. IEEE
Computer Society, 2006. doi:10.1109/3DPVT.2006.138.

[38] G. Haro and M. Pardàs. Shape from incomplete silhouettes based
on the reprojection error. Image and Vision Computing, 28(9):
1354–1368, 2010.

[39] R. Hartley and F. Schaffalitzky. ℓ∞ minimization in geometric
reconstruction problems. In Proceedings of the Computer So-
ciety Conference on Computer Vision and Pattern Recognition
(CVPR’04), volume 1, pages I–I. IEEE, 2004.

[40] R. Hartley and P. Sturm. Triangulation. In V. Hlaváč and R. Šára,
editors, Computer Analysis of Images and Patterns, pages 190–197,
Berlin, Heidelberg, 1995. Springer. ISBN 978-3-540-44781-8.

[41] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
Proceedings of the International Conference on Computer Vision
(ICCV’17), pages 2961–2969. IEEE, 2017.

[42] J. Heikkilä and O. Silvén. A four-step camera calibration proce-
dure with implicit image correction. In Proceedings of Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’97), pages 1106–1112. IEEE, 1997.

[43] M. Hofmann and D. M. Gavrila. Multi-view 3d human pose esti-
mation combining single-frame recovery, temporal integration and
model adaptation. In Proceedings of the Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’09),
pages 2214–2221, June 2009.

[44] Hudl. Hudl technique - analyze athlete performance. https://www.
hudl.com/products/technique, 2021. Accessed 2021-01-27.

[45] F. Huo, E. Hendriks, P. Paclik, and A. H. J. Oomes. Markerless
human motion capture and pose recognition. In Proceedings of
the 10th Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS’09), pages 13–16, May 2009.

[46] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schieke. Deepercut: A deeper, stronger, and faster multi-person
pose estimation model. In European Conference on Computer
Vision (ECCV’16), 2016.

187

BIBLIOGRAPHY

[47] A. Kadkhodamohammadi and N. Padoy. A generalizable approach
for multi-view 3d human pose regression. Machine Vision and
Applications, 32(1):1–14, 2021.

[48] S. B. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense
multi-view stereo. In Proceedings of the Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’01),
volume 1, pages I–103. IEEE, 2001.

[49] H. Kim, R. Sakamoto, I. Kitahara, T. Toriyama, and K. Kogure.
Robust foreground segmentation from color video sequences using
background subtraction with multiple thresholds. In Proceedings
of the Korea-Japan Workshop on Pattern Recognition, pages 188–
193, 2006.

[50] K. N. Kutulakos and S. M. Seitz. A theory of shape by space
carving. International journal of Computer Vision, 38(3):199–218,
2000.

[51] J.-L. Landabaso, M. Pardàs, and J. R. Casas. Shape from inconsis-
tent silhouette. Computer Vision and Image Understanding, 112
(2):210–224, 2008.

[52] A. Laurentini. The visual hull concept for silhouette-based image
understanding. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(2):150–162, Feb 1994. ISSN 0162-8828.
doi:10.1109/34.273735.

[53] K. M. Lee and C.-C. J. Kuo. Shape reconstruction from photo-
metric stereo. In Proceedings of Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’92), pages
479–484, 1992. doi:10.1109/CVPR.1992.223147.

[54] B. Li, W. Hu, T. Wu, and S.-C. Zhu. Modeling occlusion by
discriminative and-or structures. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV’13), pages 2560–
2567. IEEE, 2013.

[55] J. Li, B. Goossens, M. Slembrouck, F. Deboeverie, P. Veelaert,
H. Aghajan, W. Philips, and J. R Casar. Demo: a new 360-degree
immersive game controller. In Proceedings of the 9th International
Conference on Distributed Smart Cameras (ICDSC’15), pages 201–
202. ACM, 2015. ISBN 978-1-4503-3681-9.

188

BIBLIOGRAPHY

[56] J. Li, M. Slembrouck, F. Deboeverie, A. M. Bernardos, J. A. Be-
sada, P. Veelaert, H. Aghajan, W. Philips, and J. R Casar. A
hybrid pose tracking approach for handheld augmented reality. In
Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC’15), pages 7–12. ACM, 2015. ISBN 978-
1-4503-3681-9.

[57] J. Li, M. Slembrouck, F. Deboeverie, A. M. Bernardos, J. A.
Besada, P. Veelaert, H. Aghajan, J. R. Casar, and W. Philips.
Handheld pose tracking using vision-inertial sensors with occlusion
handling. Journal of Electronic Imaging, 25(4):14, 2016. ISSN
1017-9909.

[58] J. Liu, S. Sridharan, C. Fookes, and T. Wark. Optimal camera
planning under versatile user constraints in multi-camera image
processing systems. IEEE Transactions on Image Processing, 23
(1):171–184, 2013.

[59] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM siggraph computer
graphics, 21(4):163–169, 1987.

[60] S. Mallick. Pose detection comparison : wrn-
chai vs OpenPose. https : / / www . learnopencv . com /
pose-detection-comparison-wrnchai-vs-openpose, 2019. Accessed
2020-12-09.

[61] M. Mathias, R. Benenson, R. Timofte, and L. Van Gool. Handling
occlusions with franken-classifiers. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV’13), pages 1505–
1512. IEEE, 2013.

[62] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual
hulls for real-time rendering. In Proceedings of the Eurographics
Workshop on Rendering Techniques (EGSR’01), pages 115–125.
Springer, 2001.

[63] N. F. Maunder and G. de Jager. Virtual View Synthesis using
Visual Hulls. PhD thesis, University of Cape Town, 2005.

[64] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P.
Seidel, W. Xu, D. Casas, and C. Theobalt. Vnect: Real-time 3d hu-
man pose estimation with a single rgb camera. ACM Transactions
on Graphics (TOG), 36(4):44, 2017. doi:10.1145/3072959.3073596.

189

BIBLIOGRAPHY

[65] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier.
A study of vicon system positioning performance. Sensors, 17:
1591, 07 2017. doi:10.3390/s17071591.

[66] P. S. Milne. Visual hulls for volume estimation: a fast marching
cubes based approach. PhD thesis, University of Cape Town, 2005.

[67] G. Nagymate and R. Kiss. Application of optitrack motion
capture systems in human movement analysis a systematic liter-
ature review. Recent Innovations in Mechatronics, 5, 07 2018.
doi:10.17667/riim.2018.1/13.

[68] J. Niño Castañeda, A. Frias Velazquez, B. B. Nyan, M. Slem-
brouck, J. Guan, G. Debard, B. Vanrumste, T. Tuytelaars, and
W. Philips. Scalable semi-automatic annotation for multi-camera
person tracking. IEEE Transactions on image processing, 25(5):
2259–2274, 2016. ISSN 1057-7149.

[69] B. B. Nyan, F. Deboeverie, M. Eldib, J. Guan, X. Xie, J. Niño
Castañeda, D. Van Haerenborgh, M. Slembrouck, S. Van de
Velde, H. Steendam, P. Veelaert, R. Kleihorst, H. Aghajan, and
W. Philips. Human mobility monitoring in very low resolution
visual sensor network. Sensors, 14(11):20800–20824, 2014. ISSN
1424-8220.

[70] B. B. Nyan, M. Slembrouck, P. Veelaert, and W. Philips. Dis-
tributed multi-class road user tracking in multi-camera network
for smart traffic applications. In Proceedings of Advanced Concepts
for Intelligent Vision Systems (ACIVS’20), volume 12002, pages
517–528. Springer, 2020. ISBN 9783030406042.

[71] OpenVINO. Openvino™ toolkit overview. https : / / docs .
openvinotoolkit.org/latest/index.html, 2021. Accessed 2021-09-
10.

[72] W. Ouyang and X. Wang. A discriminative deep model for
pedestrian detection with occlusion handling. In Proceedings
of the Conference on Computer Vision and Pattern Recognition
(CVPR’12), pages 3258–3265. IEEE, 2012.

[73] W. Ouyang, X. Zeng, and X. Wang. Partial occlusion handling in
pedestrian detection with a deep model. IEEE Transactions on
Circuits and Systems for Video Technology, 26(11):2123–2137, Nov
2016. doi:10.1109/TCSVT.2015.2501940.

190

BIBLIOGRAPHY

[74] W. Phothong, T.-C. Wu, J.-Y. Lai, D. W. Wang, C.-Y. Liao,
and J.-Y. Lee. Fast and accurate triangular model generation for
the shape-from-silhouette technique. Computer-Aided Design and
Applications, 14(4):436–449, 2017.

[75] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka,
P. Gehler, and B. Schiele. Deepcut: Joint subset partition and
labeling for multi person pose estimation. In Conference on Com-
puter Vision and Pattern Recognition (CVPR’16). IEEE, 2016.

[76] E. Prados and O. Faugeras. Shape from shading. In Handbook of
mathematical models in computer vision, pages 375–388. Springer,
2006.

[77] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Pro-
ceedings in Advances in Neural Information Processing Systems,
pages 91–99, 2015.

[78] B. Rosenhahn, U. G. Kersting, J. K. Smith, A. W. qnd Gurney,
T. Brox, and R. Klette. A system for marker-less human motion
estimation. In Proceedings of the joint Pattern Recognition Sym-
posium, pages 230–237, Berlin, Heidelberg, 2005. Springer. ISBN
978-3-540-31942-9.

[79] J. Saboune and F. Charpillet. Markerless human motion capture
for gait analysis. arXiv, 2005.

[80] A. Saharan. Creating a human pose estimation application with
NVIDIA DeepStream. https://developer.nvidia.com, 2020. Ac-
cessed 2021-09-10.

[81] D. Senior. Qualisys Track Manager: User Manual. National
Research Council Canada. Institute for Ocean Technology, 2004.
doi:10.4224/8896115.

[82] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In Proceedings of
the Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’11), pages 1297–1304. IEEE, 2011.

[83] M. Slembrouck, M. Heyvaert, D. Van Cauwelaert, D. Van Hamme,
P. Veelaert, and W. Philips. Time complexity of traditional vision

191

BIBLIOGRAPHY

algorithms on a block-based image processor (BLIP). In Proceed-
ings of the Sixth international conference on distributed smart
cameras (ICDSC’2012), page 6. IEEE, 2012. ISBN 9781450317726.

[84] M. Slembrouck, D. Van Cauwelaert, D. Van Hamme, D. Van
Haerenborgh, P. Van Hese, P. Veelaert, and W. Philips. Self-
learning voxel-based multi-camera occlusion maps for 3d recon-
struction. In Proceedings of the International Conference on
Computer Vision Theory and Applications (VISAPP’14), page 8.
SCITEPRESS, 2014.

[85] M. Slembrouck, J. Niño Castañeda, G. Allebosch, D. Van Cauwe-
laert, P. Veelaert, and W. Philips. High performance multi-camera
tracking using shapes-from-silhouettes and occlusion removal. In
Proceedings of the 9th International Conference on Distributed
Smart Cameras (ICDSC), pages 44–49. ACM, 2015. ISBN 978-1-
4503-3681-9.

[86] M. Slembrouck, D. Van Cauwelaert, P. Veelaert, and W. Philips.
Shape-from-silhouettes algorithm with built-in occlusion detection
and removal. In Proceedings of the International Conference on
Computer Vision Theory and Applications (VISAPP’15). SCITE-
PRESS, 2015.

[87] M. Slembrouck, D. Van Cauwelaert, P. Veelaert, and W. Philips.
Shapes-from-silhouettes based 3d reconstruction for athlete evalu-
ation during exercising. In Abstracts of Science and Engineering
Conference on Sports Innovations (SECSI’16), page 2, 2016.

[88] M. Slembrouck, P. Veelaert, D. Van Hamme, D. Van Cauwelaert,
and W. Philips. Cell-based approach for 3d reconstruction from
incomplete silhouettes. In Proceedings of Advanced Concepts for
Intelligent Vision Systems (ACIVS’17). Springer, 2017.

[89] M. Slembrouck, P. Veelaert, D. Van Cauwelaert, D. Van Hamme,
and W. Philips. Cell-based shape reconstruction from incomplete
silhouettes. Integrated Computer-Aided Engineering, 26(3):257–
271, 2019. ISSN 1069-2509.

[90] M. Slembrouck, H. Luong, J. Gerlo, K. Schütte, D. Van Cauwe-
laert, D. De Clercq, B. Vanwanseele, P. Veelaert, and W. Philips.
Multiview 3d markerless human pose estimation from OpenPose
skeletons. In Proceedings of Advanced Concepts for Intelligent Vi-
sion Systems (ACIVS’20), volume 12002, pages 166–178. Springer,
2020. ISBN 9783030406042.

192

BIBLIOGRAPHY

[91] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with
graph cuts. In Proceedings of Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’00), volume 1,
pages 345–352. IEEE, 2000.

[92] P. L. St-Charles, G. A. Bilodeau, and R. Bergevin. Subsense: A
universal change detection method with local adaptive sensitivity.
IEEE Transactions on Image Processing, 24(1):359–373, Jan 2015.
ISSN 1057-7149. doi:10.1109/TIP.2014.2378053.

[93] J. Starck and A. Hilton. Surface capture for performance-based
animation. IEEE Computer Graphics and Applications, 27(3):21–
31, 2007.

[94] J. Sun, Y. Li, S. B. Kang, and H.-Y. Shum. Symmetric stereo
matching for occlusion handling. In Proceedings of the Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 399–406. IEEE, 2005.

[95] T. Svoboda, D. Martinec, and T. Pajdla. A convenient multi-
camera self-calibration for virtual environments, 2005.

[96] TechSmith. Coach’s eye - sports video analysis app. https://www.
coachseye.com, 2021. Accessed 2021-01-27.

[97] S. Ullman. The interpretation of structure from motion. Proceed-
ings of the Royal Society of London. Series B. Biological Sciences,
203(1153):405–426, 1979.

[98] D. Van Hamme. Robust ego-localization using monocular visual
odometry. PhD thesis, Ghent University, 2016.

[99] D. Van Hamme, M. Slembrouck, D. Van Haerenborgh, D. Van
Cauwelaert, P. Veelaert, and W. Philips. Parameter-unaware auto-
calibration for occupancy mapping. In Proceedings of the 7th inter-
national Conference on Distributed Smart Cameras (ICDSC’13),
pages 49–54. IEEE, 2013. ISBN 9781479921669.

[100] P. Veelaert, M. Slembrouck, and D. Van Haerenborgh. Con-
currency relations of digital planes. In Proceedings of the 17th
IAPR International Conference Discrete Geometry for Computer
Imagery (DGCI’13), volume 7749, pages 347–359. Springer Berlin
Heidelberg, 2013. ISBN 9783642370663.

193

BIBLIOGRAPHY

[101] K. Wegner, O. Stankiewicz, and M. Domański. Occlusion handling
in depth estimation from multiview video. In Proceedings of
the International Conference on Signals and Electronic Systems
(ICSES’14), pages 1–4. IEEE, 2014.

[102] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolu-
tional pose machines. In Proceedings of the Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’16),
2016.

[103] S. Wu, G. Zhang, M. Zhu, T. Jiang, and F. Neri. Geometry based
three-dimensional image processing method for electronic cluster
eye. Integrated Computer-Aided Engineering, 25:1–16, 01 2018.
doi:10.3233/ICA-180564.

[104] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. De-
tectron2. https://github.com/facebookresearch/detectron2, 2019.
Accessed 2020-12-09.

[105] Y. Xiang and S. Savarese. Object detection by 3d aspectlets
and occlusion reasoning. In Proceedings of the International
Conference on Computer Vision Workshops (ICCVW’13), pages
530–537. IEEE, 2013. doi:10.1109/ICCVW.2013.75.

[106] X. Xie. Human and vehicle trajectory analysis. PhD thesis, Ghent
University, 2016.

[107] X. Xie, J. De Vylder, D. Van Cauwelaert, P. Veelaert, W. Philips,
H. Aghajan, M. Slembrouck, D. Van Haerenborgh, H. Van Lan-
deghem, K. Bauters, J. Cottyn, and H. Vervaeke. Average track
estimation of moving objects using ransac and dtw. In Proceedings
of the 8th International Conference on Distributed Smart Cameras
(ICDSC’14), page 6. ACM, 2014. ISBN 978-1-4503-2925-5.

[108] X. Xie, D. Van Cauwelaert, M. Slembrouck, K. Bauters, J. Cottyn,
D. Van Haerenborgh, H. Aghajan, P. Veelaert, and W. Philips. Ab-
normal work cycle detection based on dissimilarity measurement
of trajectories. In Proceedings of the 9th International Conference
on Distributed Smart Cameras (ICDSC’15), page 6. ACM, 2015.
ISBN 978-1-4503-3681-9.

[109] Xilinx. Xilinx edge AI solution. https://www.xilinx.com/
applications / industrial / analytics-machine-learning . html, 2019.
Accessed 2021-09-10.

194

BIBLIOGRAPHY

[110] Y. Xiu, J. Li, H. Wang, Y. Fang, and C. Lu. Pose Flow: Efficient
online pose tracking. In Proceedings of the British Machine Vision
Conference (BMVC’18), 2018.

[111] Y. Yemez and F. Schmitt. 3d reconstruction of real objects with
high resolution shape and texture. Image and Vision computing,
22(13):1137–1153, 2004.

[112] Z. Zhang. Flexible camera calibration by viewing a plane from
unknown orientations. In Proceedings of the 7th International
Conference on Computer Vision, volume 1, pages 666–673. IEEE,
1999. doi:10.1109/ICCV.1999.791289.

[113] C. L. Zitnick and T. Kanade. A cooperative algorithm for stereo
matching and occlusion detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(7):675–684, 2000.

[114] Z. Zivkovic. Improved adaptive gaussian mixture model for
background subtraction. In Proceedings of the 17th International
Conference on Pattern Recognition (ICPR’04), volume 2, pages
28–31 Vol.2, Aug 2004. doi:10.1109/ICPR.2004.1333992.

195

	Table of Contents
	Samenvatting
	Abstract
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Problem statement
	1.2 Background and related work
	1.2.1 Volumetric shape reconstruction
	1.2.2 3D human pose estimation

	1.3 Applications
	1.4 System overview and outline
	1.5 Contributions and publications

	2 Camera Model and Multi-camera Calibration
	2.1 Camera model
	2.1.1 Intrinsic parameters
	I. Camera matrix
	II. Lens distortion
	III. Intrinsic camera calibration

	2.1.2 Extrinsic parameters
	I. Transformation matrix
	II. Extrinsic camera calibration

	2.2 Camera configurations
	2.2.1 Multi-camera setups
	2.2.2 Turntable setups using a single camera

	2.3 Camera coverage maps
	2.4 Sensitivity analysis of calibration accuracy
	2.4.1 Zoom errors
	2.4.2 Pan/tilt errors
	2.4.3 Distance-related errors

	2.5 Conclusion

	3 Silhouette Extraction
	3.1 Colour segmentation
	3.2 Motion segmentation
	3.3 Neural network segmentation
	3.4 Experiments and discussion
	3.4.1 Experiment 1: indoor environment
	3.4.2 Experiment 2: outdoor environment

	3.5 Conclusion

	4 Volumetric Shape Reconstruction
	4.1 Shape reconstruction from images
	4.1.1 Single-sensor reconstruction
	4.1.2 Multi-sensor reconstruction

	4.2 Representation of 3D objects
	4.2.1 Voxel-based representations
	4.2.2 Volumetric mesh-based representations
	4.2.3 Discussion: which representation fits best?

	4.3 Shape-from-silhouettes
	4.3.1 Voxel-based shape-from-silhouettes
	4.3.2 Mesh-based shape-from-silhouettes

	4.4 Space carving
	4.5 Shape reconstruction experiments
	4.5.1 Camera configuration
	4.5.2 Voxel size
	4.5.3 Shape analysis: garment fitting

	4.6 Conclusion

	5 Occlusion Handling
	5.1 Occlusion
	5.1.1 Definition and problem statement
	5.1.2 Occlusion coverage map

	5.2 SfS with occlusion handling
	5.2.1 Shape from incomplete silhouettes
	5.2.2 SfS using occlusion masks
	5.2.3 SfS using occlusion depth maps

	5.3 Automatic occlusion detection and handling
	5.3.1 Partitioning of the reconstruction space into cells
	5.3.2 Cell-based geometric reasoning
	I. Evaluation metric
	II. Extended silhouettes
	III. Coverage, resemblance and consistency score
	IV. Coverage vs. resemblance
	V. The occlusion handling algorithm

	5.3.3 Examples of how the method works
	5.3.4 Cell-based approach for 3D reconstruction from incomplete silhouettes (ACIVS 2017)

	5.4 Experiments and results
	5.4.1 Experiment 1: smart traffic analysis
	5.4.2 Experiment 2: qualitative comparison of the 3D reconstruction
	5.4.3 Experiment 3: real-world single person tracking

	5.5 Conclusion

	6 3D Human Pose Estimation
	6.1 Pose estimation from 3D shapes
	6.2 Pose estimation in 2D images
	6.2.1 Artificial neural network
	6.2.2 Neural networks for pose estimation
	I. Popular pose estimators
	II. OpenPose: Realtime multi-person 2D pose estimation
	III. Alternative keypoint models

	6.3 Triangulation
	I. Minimizing the reprojection error
	II. Finding the midpoint

	6.4 Cross-view pose correspondence
	6.4.1 Pairwise correspondences
	6.4.2 Clustering and triangulation
	6.4.3 An example

	6.5 3D keypoint reconstruction
	6.5.1 Occluded joints
	6.5.2 Typical pose estimation errors
	I. Limb switch error
	II. Double limb error
	III. Misdetected limb error
	IV. Frame drop

	6.5.3 Error frequency
	6.5.4 Handling limb ambiguities

	6.6 Experimental results
	6.7 Conclusion

	7 Projects and Applications
	7.1 Gait analysis (IRUNMAN)
	7.2 Game controller and rehabilitation (IPLAY)
	7.3 Expert recording (COSMO)
	7.4 Assembly line analysis (Complexity)
	7.5 Conclusion

	8 Conclusions
	Appendices
	A List of Publications
	A.1 A1 publications
	A.2 Conference publications

	B Events

	Bibliography

