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ABSTRACT (DUTCH) 

Stap één in het verduurzamen van het bouwproces is het hebben van een duurzaam 

ontwerp. Dit doctoraatsonderzoek tracht het ontwerpproces te optimaliseren door het 

bestuderen van bestaande en het ontwikkelen van vernieuwende wiskundige 

ontwerptechnieken. De basisalgoritmen die hiervoor gebruikt worden zijn grotendeels 

gebaseerd op vorm- en topologie-optimalisatiemethoden. In dit werk worden de 

algoritmes theoretisch uitgewerkt, maar ook hun toepassingen en voordelen ten opzichte 

van de klassieke ontwerpmethoden in een bouwkundig ontwerpproces worden 

gedemonstreerd. Een waaier aan onontgonnen architecturale mogelijkheden wordt 

hierdoor geopend. Hierbij wordt rekening gehouden met prille, maar veelbelovende, 

productiemethoden die opkomen in de bouwsector, zoals 3D (beton)printen.  

Het ontwerp van gebouwschilonderdelen en -systemen is een proces waar vele 

verschillende aspecten (structurele prestaties, bouwfysische eigenschappen, 

duurzaamheid, etc.) aan te pas komen. De gebouwschil vormt namelijk de fysieke 

scheiding tussen de binnen- en buitenomgeving. In vele gevallen worden deze 

vakspecifieke disciplines nog te veel afzonderlijk beschouwd. Hierbij worden bijvoorbeeld 

de structurele prestaties geoptimaliseerd, en worden de thermische eisen pas in tweede 

fase bekeken. Een benadering waarbij deze aspecten tijdens het ontwerp gelijktijdig 

zouden worden geoptimaliseerd, zou een grote meerwaarde kunnen betekenen. Dit zou 

de snelheid van het ontwerpproces en tegelijkertijd de efficiëntie van het onderdeel 

kunnen verhogen.  

In een eerste onderzoeksluik wordt het belang van zo’n multidisciplinaire aanpak bij het 

ontwerp van gebouwschilonderdelen onderzocht. Het doel is een aantal casestudies te 

verzamelen waar een gelijktijdige structurele en thermische optimalisatie het ontwerp 

vooruit kunnen helpen. Binnen dit thema wordt het bestaande denkkader deels 

doorbroken, en de creatieve mogelijkheden binnen het ontwerp worden verkend. 

Bestaande algoritmes worden geëxploreerd en vernieuwende (gecombineerde) algoritmes 



 

 

worden ontwikkeld. Iedere casestudie bouwt ook verder op de bevindingen, maar ook op 

de beperkingen van de vorige. 

Een eerste casestudie die in deze thesis uitvoerig wordt besproken, bestudeert de invloed 

die topologie-optimalisatietechnieken kunnen hebben op het ontwerp van isolerend 

metselwerk. Structurele topologieoptimalisatie is de meest algemene vorm van structurele 

optimalisatie waarbij een wiskundig algoritme kan bepalen waar (binnen een vooraf-

gedefinieerd ontwerpdomein) beter wel, en waar beter geen, materiaal geplaatst wordt. 

Binnen deze casestudie, wordt de invloed van de vorm van de interne holtes in de 

snelbouwstenen geanalyseerd en topologie-optimalisatie wordt gebruikt om nieuwe 

vormen op een autonome wijze te ontdekken. Bestaande algoritmes worden uitgebreid, 

aangepast, en samengevoegd, en een nieuwe gecombineerde ontwerpmethodiek wordt 

op punt gezet. Het resultaat van deze eerste studie is een reeks geoptimaliseerde 

bouwstenen met verbeterde structurele én thermische prestaties. De ontwikkelde tools 

maken het ook mogelijk om af te wijken van de traditionele ontwerpmethodiek, waar de 

nadruk vaak ligt op een reeks individuele disciplinaire simulaties en/of optimalisaties. In 

de voorgestelde nieuwe methode, worden de optimale vormen bepaald met de grootst 

mogelijke ontwerpvrijheid, en aan de hand van duidelijk gedefinieerde randvoorwaarden 

en doelstellingen. 

Naast de vele voordelen die de voorgestelde methodiek met zich meebrengt, zijn er ook 

een aantal beperkingen die komen boven drijven. Een probleem dat zich kenbaar maakt, 

is dat bepaalde parameters, zoals de materiaal-specifieke interpolatiecurves, een grote 

invloed hebben op het resultaat. Zo’n interpolatiecurve legt het verband vast tussen de 

ontwerpvariabelen van het optimalisatieprobleem (de densiteit van de FE-mesh 

elementen) en materiaalkarakteristieken, zoals de elasticiteitsmodulus en de thermische 

geleiding van het materiaal. In bepaalde situaties wordt bijvoorbeeld geen oplossing 

gevonden of is het resultaat niet duidelijk af te lezen. De ontwerpvariabelen zijn dan vaak 

niet geconvergeerd naar een zwart-wit topologie (en bevat dus veel grijswaarden). Een 

correcte interpretatie van dit resultaat (en hoe die kan worden omgezet in een fysisch 

object) is dan zeer moeilijk. 



 

 

Een tweede casestudie gaat daarom dieper in op deze problematiek en tracht om de 

correcte fysische relatie tussen de interpolatiecurves te vinden en ervoor te zorgen dat 

convergentie van het probleem beter wordt afgedwongen. De ‘penalisatie’-parameters 

worden zodanig gekozen dat er geen tussenliggende waarden (grijswaarden) kunnen 

worden bekomen. Ter compensatie wordt het gebruik van een extra materiaal toegankelijk 

gemaakt om het optimalisatieprobleem extra vrijheid te kunnen bieden. Een multi-

materialen topologieoptimalisatie script wordt uitgewerkt waarbij opnieuw de structurele 

en thermische prestaties gezamenlijk worden opgenomen. In de casestudie die hieraan is 

gelinkt, wordt vervolgens een console voor metselwerk met thermische onderbreking 

geoptimaliseerd. Het doel is om voor gelijke gewichtsbelasting van de console, het 

warmteverlies doorheen de console en het staalverbruik van de console te beperken. Het 

resultaat is een console die zowel economisch als energetisch aantrekkelijk is. Thermische 

onderbrekingen worden door het algoritme zelf voorzien, en de meest optimale locatie 

ervan wordt aangeduid. Een parameterstudie toont ook de invloed van de verschillende 

materiaalkarakteristieken, en parameters. 

Een tweede luik binnen dit doctoraatsonderzoek probeert de technologie die goed gekend 

is onder de verzamelterm: ‘3D printing’ te koppelen aan de ontwerp-optimalisatiemethoden 

die eerder werden besproken. Een duidelijke link die vaak gelegd wordt, is dat topologie-

optimalisatietechnieken vaak zeer complexe eindresultaten produceren. En door die 

complexiteit zijn de traditionele productiemethoden niet meer in staat om de 

geoptimaliseerde structuren en objecten op een duurzame manier te maken.  Het gebruik 

van topologie-optimalisatie is dus pas sinds de opkomst van de 3D-print technologie 

interessant geworden. Een ander aspect, waar in dit werk aanvullend op gefocust wordt, 

is dat de interpolatiecurves van een topologieoptimalisatie probleem rechtstreeks 

gekoppeld kunnen worden aan de invulpatronen van de 3D-print techniek. Variabele 

dichtheden (de ontwerpvariabelen van het optimalisatieprobleem) kunnen namelijk met 

grote eenvoud fysisch gerealiseerd worden door de 3D printer. Dit kan door ofwel het 

invulpatroon of de dichtheid ervan aan te passen.  



 

 

In dit doctoraatswerk wordt een methodiek opgesteld om invulpatronen te karakteriseren 

en een derde casestudie illustreert de werking en functionaliteit ervan indien die 

gekoppeld worden met een multidisciplinaire topologie-optimalisatiestudie. De structurele 

en thermische prestaties van een driehoekig invulpatroon worden aan de hand van inverse 

homogenisatie-technieken bepaald, en de resultaten worden gebruikt voor het bepalen 

van de optimale materiaalverdeling. De casestudie waarop deze strategie is toegepast is 

een te printen structureel element van een dakconstructie. De volledige convergentie van 

het eindresultaat (de zwart-wit oplossing) is niet langer een noodzaak, omdat een 

realiseerbare link beschikbaar is tussen de verkregen materiaalverdeling en de fysische 

interpretatie ervan. Het resultaat is een complexe mengeling van verschillende 

invulpatronen en optimale dichtheden. 

Een moeilijkheid binnen de karakterisering van de invulpatronen situeert zich in het 

bepalen van de invloed van thermische straling en convectie. In de vorige hoofdstukken 

werd enkel warmteoverdracht door geleiding bestudeerd omdat de isolerende delen van 

het ontwerp steeds bestonden uit een geslotencellig isolatiemateriaal waar de invloed van 

straling en convectie kon worden verwaarloosd. Echter, in het geval van 3D-geprinte 

invulpatronen, is het de stilstaande lucht in de holtes van de geprinte structuur die zorgt 

voor de isolerende werking. Wanneer die holtes groter worden of in hun geheel 

verdwijnen, dan zal een warmtestroming kunnen ontstaan die niet kan worden 

verwaarloosd. De verkregen methodiek houdt hier dus rekening mee en de invloed ervan 

op het ontwerp wordt kenbaar gemaakt via verschillende voorbeelden en casestudies. 

3D printen kan met kunststof, maar er kan ook met andere materialen geprint worden. Tot 

nu toe gingen we ervan uit dat de 3D-print techniek, die traditioneel gebruik maakt van 

kunststof als printmateriaal, ook op extra grote schaal kan worden toegepast. Hoewel 

hiervan verschillende voorbeelden te vinden zijn, zijn het huidig marktaandeel en de 

toekomstperspectieven van de methode beperkt. Effectiever blijkt het 3D printen met 

cement-gebaseerde materialen zoals beton en mortel. Verwacht wordt dat deze techniek 

van 3D printen in de toekomst steeds interessanter zal worden naarmate ook voor andere 

bouwactiviteiten de aanwezigheid van computergestuurde kranen en robotica zal 



 

 

toenemen. Dit komt omdat de stap dan kleiner wordt om mits aanpassing van deze 

systemen sturing mogelijk te maken van betonprinters (op de werf). 

De potentiële win-win situatie die ontstaat door 3D printen met beton en topologisch-

geoptimaliseerd betonstructuurontwerp te koppelen met elkaar, wordt aangetoond in een 

volgend hoofdstuk. In dit hoofdstuk wordt topologie-optimalisatie als tool gebruikt om de 

vorm en het ontwerp van een voorgespannen betonnen brug te optimaliseren. Enerzijds 

wordt het materiaalverbruik van de oorspronkelijke balkvorm gereduceerd tot het absolute 

minimum, en anderzijds wordt ook het traject en de positie van de naspanstreng 

geoptimaliseerd. De uitwerking van het specifieke algoritme voor deze optimalisatie werd 

weliswaar ontwikkeld aan Technion - Israel Institute of Technology, maar dit hoofdstuk 

beschrijft verder wel het volledig ontwerpproces, de structurele voorstudie, alle aspecten 

van de uitvoering, en ook een structurele validatie aan de hand van digitale beeldcorrelatie. 

De structurele prestaties van de geoptimaliseerde ligger worden vergeleken met een 

traditionele ligger en de verwachte materiaalwinst werd ingeschat op 20%. Hoewel het niet 

de allereerste 3D-geprinte betonconstructie was, is het wel de eerste demonstratie van 

hoe topologisch ontwerp in combinatie met 3D printen met beton het mogelijk maakt om 

efficiënte structuren te creëren. Dit laatste voorbeeld is dan ook het ideaal sluitstuk van 

deze thesis waar alle verschillende aspecten nog eens mooi samenkomen. 

 

 





 

 

ABSTRACT (ENGLISH) 

The construction industry is a massive industry that has a profoundly negative impact on 

our environment. An important step towards making the construction industry more 

sustainable is having a more sustainable design. This doctoral thesis tries to optimize the 

design process of construction-related components by studying existing and developing 

innovative mathematical design techniques. The basic algorithms used for this are based 

on shape and topology optimization methods. In this work, the developed frameworks are 

elaborated theoretically but also their applications and advantages over the classical 

design methods for construction-related components are demonstrated. A world of 

unexplored architectural designs opportunities is opened. Additionally, this research 

project also takes into account recent, but promising, production methods that are 

emerging in the construction sector, such as 3D (concrete) printing. 

The design of building envelope components is a process involving many different 

disciplines (structural performance, building physics, durability, etc.) as the building 

envelope forms the physical separator between the indoor and outdoor environment. In 

many cases, this broad range of disciplines is still considered too much individual. For 

example, first the structural performances are optimized, whereafter the thermal 

requirements are only considered in a second phase. An approach where all these aspects 

are optimized in parallel could be beneficial. This could not only increase the efficiency of 

these components but also the overall design speed. 

In a first part of this doctoral study, the importance of such a multidisciplinary framework 

for the design of building envelope components is investigated. The aim is to collect 

several case studies where a simultaneous structural and thermal optimization approach 

can benefit the design. Within this section, the existing framework is partly broken up, and 

the creative possibilities within the new framework are explored. Existing algorithms are 

investigated, and innovative (new and combined) algorithms are developed. Each case 

study also builds on what was discovered by the previous one, including its limitations. 



 

 

A first case study, discussed in detail in this thesis, examines the influence that topology 

optimization techniques can have on the design of insulating masonry blocks. Structural 

topology optimization is the most general form of structural optimization in which a 

mathematical algorithm can determine where (within a predefined design domain) material 

should (and should not) be placed. Within this case study, the influence of the shape of 

the internal cavities is analyzed and topology optimization is used to discover new shapes 

in an autonomous way. Existing algorithms are expanded, adapted and merged, and a 

new combined design methodology is constructed. The result of this first study is a series 

of optimized building blocks with improved thermal insulating performances. The 

developed tools also make it possible to deviate from the traditional design methodology, 

where the emphasis is often on a series of individual disciplinary simulations and/or 

optimizations. In the proposed new method, the optimal shapes are determined with the 

greatest possible design freedom and based on clearly defined preconditions and 

objectives. 

In addition to the many advantages of the proposed method, there are also a number of 

limitations that emerge. One problem that stands out, is that certain parameters, such as 

the material-specific interpolation curves, have a large influence on the final result. Such 

an interpolation curve links the design variables of the optimization problem (the densities 

of the FE-mesh) with the material characteristics, such as the elastic modulus and thermal 

conductivity of the material. In certain situations, for example, the convergence of the 

solution is not achieved, and the result cannot be interpreted clearly. Very often, 

intermediate values for the design variables remain present in the design and an accurate 

understanding of the results is then very difficult. 

A second case study therefore takes a closer look at this problem and tries to improve the 

physical relationship between the interpolation curves in order to better enforce the 

convergence of the problem. The penalization parameters are chosen so that no 

intermediate values can be obtained. To compensate, the use of an extra material is made 

accessible to offer the optimization problem extra freedom. A multi-material topology 

optimization script is developed, again incorporating the structural and thermal 



 

 

performances. In the case study associated with this, a console for masonry with thermal 

breaks is optimized. The aim is to limit the heat loss through the console and optimize the 

material consumption for equal loading conditions on the console. The result is a console 

that is economically and energetically attractive. Thermal breaks are introduced by the 

algorithm itself, and their most optimal location is predicted. A parameter study also shows 

the influence of the different material characteristics and parameters. 

A second part of this doctoral thesis aims to link the technology that is well known under 

the collective term: "3D printing", to the design optimization methods discussed earlier. A 

clear link that is often made, is that topology optimization techniques often have very 

complex end results. And because of that complexity, traditional production methods are 

no longer able to make these optimized structures and objects in a sustainable way. So, 

the use of topology optimization has only become interesting again since the emergence 

of 3D printing technology. Another aspect, which is additionally focused on in this work, 

is that the interpolation curves of a topology optimization problem can be directly linked 

to the infill patterns of 3D printing technology. Namely, the variable densities of the 

optimization problem can be physically realized by the 3D printer with great simplicity. 

This can be done by adjusting either the infill pattern or its density. In this doctoral work, 

a methodology is therefore developed to characterize 3D-printable infill patterns, and a 

third case study illustrates its application and functionality when coupled with a multi-

disciplinary topology optimization study. The structural and thermal performances of a 

triangular infill pattern are determined by numerical homogenization techniques, and the 

results are used to determine the optimized material distribution. The case study to which 

this strategy has been applied, is a printable structural element of a roof structure. The 

complete convergence of the final result (the black and white solution) is no longer a 

necessity, because a feasible link is available between the obtained density distribution 

and its physical interpretation. The result is a complex mix of different infill densities 

and/or patterns. 

A difficulty within the characterization of the infill patterns lies in the determination of the 

influence of thermal radiation and convection. In the previous chapters, only heat transfer 



 

 

by conduction was studied because the insulating parts of the design consisted of a known 

closed-cell insulating material where the influence of radiation and convection can be 

neglected. However, in the case of 3D printed infill patterns, it is the stagnant air in the 

cavities of the printed structure that provides the insulating effect. When those cavities get 

bigger or disappear altogether, a heat flow can arise that cannot be neglected. The method 

obtained takes this into account and its influence on the optimized design is demonstrated 

through various examples and case studies. 

3D printing can be done with plastic, but it is also possible to print with other materials. 

Until now, we assumed that the 3D printing technique, which traditionally uses plastic as 

a printing material, can also be applied on a large scale. Although several examples can 

be found, the current market share and the prospects of the method are limited. More 

effective is the 3D printing with cement-based materials such as concrete and mortar. It 

is expected that this technique of 3D printing will become increasingly interesting in the 

future as the presence of computer-controlled cranes and robotics will also increase for 

other construction activities. This is because by adapting these systems, the step to enable 

control of concrete printers (on site) is reduced. 

The potential win-win situation that arises by connecting 3D printing with concrete and 

topologically optimized concrete structures with each other is shown in a next chapter. In 

this chapter, topology optimization is used as a tool to optimize the shape and design of 

a prestressed concrete bridge. On the one hand, the material consumption of the original 

beam shape is reduced to the absolute minimum, and on the other hand, the trajectory 

and position of the post-tensioning strand is also optimized. Although the elaboration of 

the specific algorithm for this optimization was developed at Technion - Israel Institute of 

Technology, this chapter describes the complete design process, the structural 

preliminary study, all aspects of the implementation, as well as a structural validation based 

on digital image correlation. The structural performance of the optimized beam is 

compared with a traditional beam and the expected material gain was estimated at 20%. 

Although it was not the very first 3D printed concrete structure, it is the first demonstration 

of how topological design combined with 3D printing with concrete makes it possible to 



 

 

create efficient concrete structures. This last example is therefore an ideal closing example 

and serves as a good ending of this doctoral thesis. A final case study where all the 

different aspects discussed in this thesis come together nicely. 
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1.1 Context 

Three-dimensional (3D) printing is a technology that has received a lot of media attention 

in the past decade. It is a new and challenging technology that appeals to many and makes 

people dream about the future. 3D printing (3DP) is a type of ‘additive’ manufacturing 

(AM) that differs from other production methods (such as CNC and traditional assembly 

line production) because the complete product is built ‘from the ground up’, in a way so 

that, in theory, no excessive material is used; nothing goes to waste. Where traditional 

systems require more standardization, and force the use of linear elements in design, the 

additive process of 3DP has many advantages (and its possibilities seemed limitless for 

some time).  

Outside construction, many industries like automotive, medicine, and aerospace industry 

have already uncovered their full potential and found great applications that benefit from 

3DP [1,2]. For example, in the automotive industry, 3DP can be used to make molds and 

thermoforming tools, rapid manufacturing of grips, jigs, and fixtures. This replaces 

expensive and long lead-time CNC productions and are often cheaper and have a shorter 

production time [3,4]. For medical applications, 3D printers can be used to manufacture 

a variety of devices, including those with complex geometry and features that match a 

patient’s unique anatomy [5,6]. In the aerospace industry, on the other hand, 3DP is used 

for producing lighter parts while maintaining strength, addressing challenges like reducing 

an aircraft’s fuel consumption by reducing its overall weight [7,8]. Additionally, for both 

the automotive and aerospace industry, in-house prototyping helps to control intellectual 

property (IP) or prevent information leaks because more components can be produced 

on-site [9].  

For this PhD study, the fact that 3DP, and AM in general, can handle very complex 

geometries is the most interesting characteristic, because it is no longer the manufacturing 

process that determines the complexity of a product, but rather the product’s desired 

functionality and design, without having too many annoying manufacturing constraints. 

Hence, we see the rebirth of certain important design optimization methods. 
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One of the most popular conceptual design optimization methods that has come back into 

the spotlight, thanks to 3DP, is topology optimization (TO). It is a mathematical principle 

that has been around for quite some time [10] and allows for the exploration of design by 

finding an optimized material distribution for any system. Optimized topologies tend to 

have a high complexity which hindered its usage in the past. Typically, the resulting 

optimized designs were nearly impossible to manufacture with conventional technologies 

(like milling, or casting) or were only possible at disproportionately high costs. As such, 

since the emergence of 3DP, they have become interesting again.  

Today, many relatively easy to use and very accessible software packages have 

implemented a basic TO algorithm. One frequent implementation is called “minimum 

compliance optimization” and can be programmed in a very efficient manner [11]. TO with 

minimum compliance as objective, looks for a structure with the best balance of structural 

performances in term of stiffness and material consumption. In simple terms, the 

algorithm removes or displaces material within a certain design domain to make the design 

more efficient. A disadvantage of TO is that it only considers the predefined objective 

and/or its constraint functions. For example, a design that is optimized for stiffness has 

not necessarily a good stress distribution (or has no limitations on maximum allowable 

stresses). Additionally, an optimized result might behave unexpectedly under slightly 

different environmental conditions. As such, a real-world component that is mechanically 

optimized might be exposed to more than structural loads only. In such case, a multi-

disciplinary approach can be considered. 

Multi-disciplinary design optimization (MDO) refers to the area of research concerned with 

the design of complex engineering systems governed by multiple (possibly interacting) 

physical phenomena. This type of optimization emerged in the 1980s following the 

success of the application of numerical optimization techniques to structural design in the 

1970s [12,13]. Aircraft design was one of the first inspiring applications of MDO. For 

example, Boeing’s ‘blended-wing-body’ aircraft concept considered aerodynamics, 

structural analysis, propulsion, control theory, and economics collectively in order to find 

the optimal shape of the wing’s body [14]. These days, MDO is used in many other 



Chapter 1: Introduction 

  4 

industries. However, the construction sector, which is the focus of this PhD research, 

appears to be lagging behind. These days, the design of building components is more 

about meeting technical requirements rather than finding optimal solutions. According to 

Alexandrov [15], “this translates to an emphasis on series of disciplinary simulations and 

individual disciplinary optimizations, with results reconciled among disciplines”. A product 

is designed by a multi-disciplinary team where each member knows his/her field. This 

means that a great amount of time is spent managing the design information and 

performing many costly design iterations. Hence, the success of the design solution 

heavily relies on the experience and communication qualities of the team. Furthermore, 

the growing complexity and size of modern engineering systems makes the use of 

traditional design methods increasingly challenging. 

Likewise, the adaptation of new technology in the construction industry is slow compared 

to other industries when it comes to 3D printing, or ‘automation in construction’ in general. 

Nevertheless, the concept of ‘Construction 4.0’ gradually begins to impose itself [16,17]. 

According to [18], the construction sector has three primary opportunities for increasing 

productivity. The first is an increased automation of traditional physical tasks on site. For 

example, robot-laying bricks and robotic assisted timber construction [19,20]. The second 

opportunity comes from the automation of production in factories, where 3D concrete 

printing plays an important role (see Chapter 5) [21,22]. A third opportunity centers 

around digitalization in general, influencing all aspects of the design phase, planning, and 

management procedures [23-25]. With respect to the latter, building information modeling 

(BIM) is an essential technological development that has shown great potential by 

providing systems that ease the way of handling data and, as such, boosting collaboration 

projects.  

Other significant advances in the field of digitalization in design are made on concepts like 

parametric modeling and computational design. Parametric modeling is basically an 

enhanced modeling process with the ability to change the shape of model geometry 

whenever this would be required, without needing manual adjustments. On the other hand, 

computational design stands for the merging between traditional design methods and 
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computational technologies. Computational design strives towards a more generative 

process where the output is no longer created by humans using drawing tools, but rather 

by auto-generated sets of instructions, variables, and parameters. In this regard, topology 

optimization can be seen as a subset of computational design.  

While these technologies may not be considered as disruptive as for example 3DP in the 

automotive industry, they are gaining widespread adoption [26]. For example, parametric 

modeling tools are currently implemented in most major BIM software packages (e.g. 

Tekla, Revit, ArchiCAD, Allplan) and as mentioned before, many commercial CAE software 

packages include some form of TO already.  But it is not because the tools are available, 

that they are being used. According to Ramanauskas [27]: “Most geometry in BIM models 

is still modelled fully manual, without wasting too much effort in defining parametric 

relationships (unless the software automatically manages to take some of that away from 

the user’s manual effort)”. And as stated by Saunders [28]: “Note that the quality of TO 

depends on the quality of the defined initial conditions - if assumptions or simplifications 

are made, then the analysis may be flawed.” However, these new tools (and mainly skills) 

will surely grow over time and their influence will further increase. Maybe they will not 

completely replace the existing classic design process, but they might very well enhance 

and enrich it.  

Additionally, the increased acceptance of computational design in construction projects 

can be linked to the rise of certain new production methods. Many of these innovative 

production methods offer new design freedom and open up unexplored architectural 

possibilities. 3D concrete printing (3DCP) is one of such recent (but challenging) 

production techniques. It uses robotic-controlled concrete extrusion processes in order 

to fabricate functional building and construction components. In contrast to traditional 

manufacturing, 3D objects are produced by stacking layers of concrete (or cementitious 

material) on top of each other in a layer-wise fashion [29]. Like all AM techniques, 3DCP 

is expected to enable the production of shape-complex and mass-customizable objects 

where the cost of production should not increase with complexity [22]. A nice bonus is 



Chapter 1: Introduction 

  6 

that it could potentially also reduce CO2 emissions and energy consumption by a large 

factor compared to a precast counterpart [30]. 

1.2 Problem definition 

First of all, when designing products for the construction industry, a typical design process 

is influenced by many factors. These can be cost, environmental impact, available 

materials, but also multi-physics aspects like heat transfer optimization, acoustics, and fire 

safety. Designing construction-related components is unavoidably a very “multi-

disciplinary” activity. Particularly, when considering the building envelope, being the 

physical separator between the interior and exterior of a building, many different aspects 

need to be considered. Finding ideal solutions for all design problems may require 

knowledge of both structural mechanics, thermal analysis, hygrothermal effects, durability, 

sustainability, fire safety, etc. Adding to this, the increasing demand for energy neutral 

housing and the growing technical requirements for these elements, a multi-physics 

approach can certainly be of great importance to the industry. As no well-defined 

framework or design strategy for multi-physics optimization is currently available, the aim 

of this doctoral research is to respond to this and aid the construction industry in the 

optimization of their products in a more efficient manner. The first scientific objective that 

tries to solve this problem is described in Section 1.3. Part A.  

A second problem that is addressed in this PhD thesis is the link between topology 

optimized design and existing production techniques for the construction industry. TO’s 

current ability for creating optimized, sustainable, and weight-efficient structures is largely 

underexploited. Firstly, it is very hard to produce these optimized structures with current 

and conventional manufacturing techniques. And secondly, because of the novelty of 3D 

concrete printing techniques, the process-specific limitations and constraints imposed by 

the manufacturing process are still mainly unclear. Designs that are optimized according 

to specific TO algorithms (in their current implementation) may behave unexpectedly or 

even suffer from damage because of the unforeseen consequences of the digital 
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fabrication process. A second scientific objective is defined to solve this aspect and is 

described in Section 1.3.1. Part B. 

1.3 Objectives 

The objective of this PhD project is twofold. Firstly, the aim is to improve the design 

process of construction-related components using a multi-disciplinary approach and take 

into consideration the most efficient production method. The ambition is to demonstrate 

the efficiency and effectiveness of newly developed optimization methods for problems 

that are complex and non-intuitive. Current optimization techniques will have to be 

analyzed, evaluated, and improved upon. Secondly, the synergy between highly optimized 

designs and additive manufacturing techniques for the fabrication of these complex 

shapes is investigated. While 3D concrete printing and topology optimized designs for the 

construction industry go hand in hand, the current challenges and opportunities for 

structural engineering of digitally fabricated concrete components are explored. 

Part A - Multi-physics topology optimization of building 
components 

First of all, there is the need to acquire critical reasoning with respect to the formulation 

of the complex design problems. This means investigating how to decompose a real-

world problem into its disciplinary models and reintegrate them into a general (perhaps 

simplified) optimization formulation. The appropriate objective functions, constraints and 

derivatives need to be defined, taken into account, the concept of ‘value-driven design’. 

This will require critical evaluation of multiple case studies and techniques to quantitatively 

assess the impact of each design criterion.  

This part is aimed at improving existing shape and topology optimization methods for 

building (envelope) components and taking into consideration some multi-disciplinary 

performance indicators (e.g. structural and thermal performances). The goal is to 

strengthen the global search for lighter and more sustainable building envelope design. 
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Part B – 3D-printed topology optimized concrete structures 

A second aspect of this PhD study focuses on bringing together two (e)merging 

technologies that show great potential for realizing structurally efficient building 

components: (i) Topology optimization for simulation-driven design; and (ii) 3D printing 

for the manufacturing of the resulting complex optimized shapes. 

However, as to date, most examples made by 3DCP experiments have been rectilinear, 

solid, and their design based on long-established and familiar shapes. It is clear that 

current 3DCP experiments focus on improving the manufacturing process, and not yet on 

the design. More often, design complexity is enforced by designers and architects for 

aesthetic reasons only, while the structural design opportunities envisioned by digital 

fabrication are somewhat being neglected. This is mainly attributed to the fact that 

appropriate tools to fully exploit them, also in terms of a commonly agreed ‘tailored’ design 

and code-regulation framework, may not yet be fully available. 

Automated design methods such as TO and other generative design techniques have been 

around for quite some time and can generate optimized designs in many applications. TO 

processes are very efficient on computational resources and have proven to deliver 

trustworthy results.  

1.4 Valorization 

The economical vision behind this research study is that it should trigger a “chain of 

improvements” in the construction industry. This is achieved by enhancing the design 

process of building components and materials, creating benefits, and stronger competitive 

positions to successive players in the market. The main potential or added value can be 

found with the manufacturer companies. Enhancing the design process means that the 

path to the final, optimized product is shorter. This implies spending less time developing 

the product (time is money), in cheaper ways, and consuming less raw material and 

energy. All of this is giving an advantage to the engineering design team. 
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Once an improved building component (such as a thermally optimized masonry block or 

a thermally efficient brickwork support bracket) is created, and it seems fit for application, 

it is to be expected that some of them can be produced in a more economical way: using 

less energy and consuming less material. For other building components, it may be more 

expensive or complex to produce them, but the final applicants may have other economic 

interests such as better labor efficiency in complex constructions. Logically, an 

engineering team would only design products with economic advantages. 

Secondly, the development of optimized construction methods and materials will also have 

a favorable effect on the actors in the building sector that apply these systems. Contractors 

will be able to purchase a better product, at a lower price, and/or needing fewer efforts to 

comply with the technical constraints of their projects. This delivers a benefit on several 

fields, like the use of energy, materials, labor, and machinery. 

It is expected that if one development is successful, this success will further stimulate the 

market to further create more building components and materials that have improved 

qualities. A kind of dynamism will be created. In consequence, the market for successful 

new products will interest entrepreneurs in the building industry, and be applicable, on a 

larger scale. This is what is meant by “a chain of improvements”.  

Imagine a building component that is designed by such multi-disciplinary approach: 

complying with all the technical requirements, producible with X% less energy, and using 

Y% less raw material. Apply to this, the effect of scale (due to its success), even if X and 

Y are small, the profitability of the company, and its competitive position can be 

substantial.  

The construction sector contributes to a significant part of the Gross National Product in 

Flanders and Belgium, by consequence, any small improvements will have a large effect. 

This novel approach will be beneficial to the whole sector and will increase its 

competitiveness in the international market. If the market players at these different levels 

would each of them strengthen their market position and become more competitive, this 

would finally lead to a boost in the whole economy. 
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In summary: using relatively few resources, a limited improvement in design (found at the 

beginning of the whole process) will lead to a chain of stronger positions for companies 

at different levels. This creates a leverage with benefits to a substantial part of the total 

economy, thus having a huge multiplier effect. 

1.5 Methodology and thesis outline 

This doctoral thesis contains in total 6 chapters (see also Figure 1.1). Each chapter will 

discuss one or more specific problems, chosen specifically to answer one of the research 

objectives from the previous section.  

The overall process of the flow of the research that is conducted mainly follows that of a 

case study approach. The advantage of using case studies is that it allows for the 

exploration and understanding of different aspects of a complex topic, without losing 

focus. Each case study can provide new and unexplored insights into a subject, while 

some will even open up new research directions that steer the PhD study in a certain 

direction. A disadvantage of the case study research approach is that it can potentially 

provide little basis for generalization of results towards wider application. Also, the 

researcher's own subjective feeling may influence the setup of the case study or choice 

of certain study parameters (researcher bias). A complete discussion on these aspects 

can be found in [31]. However, most disadvantages of the case study approach are 

developed with respect to social science research studies, where experiments are typically 

conducted by psychologist and performed to test specific hypotheses. Nevertheless, in 

the field of engineering, case studies have been particularly important in the generation 

of new ideas and theories. Furthermore, [32] states that “the case study approach has 

been proven reliable to capture the rich information for the purpose of the investigation”. 

Therefore, it is suggested as an important research strategy and method.  

To ensure that the problem statement of each case study is relevant and has solid 

academic grounding, each chapter starts with presenting the state-of-the-art knowledge 

and literature, whereafter, the theoretical framework is being developed. This theoretical 
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framework identifies the key concepts and theories that will be applied further on. This is 

described as the method or methodology of the chapter. In this work, extra attention is 

given to make sure the results are interpreted as objectively as possible. In addition, all 

necessary data is provided to make each case study reproducible, if this would be needed. 

Each chapter is always concluded by an exhaustive discussion and reflection of the 

findings. Taking these aspects into consideration, the methodology as used throughout 

this thesis should also allow for some preliminary generalization towards wider application 

and create a stronger basis for future research.  

The first and current chapter (Chapter 1) discusses the general context and scope of this 

PhD study. The broad context of topology optimization in relation to the construction 

industry is elaborated, along with a problem definition, objectives, and outline of this 

research study. 

Chapter 2 presents the relevant state-of-the-art of design optimization for the construction 

sector and discusses several distinct optimization methods and algorithms. The focus lies 

on density-based topology optimization, and an overview of some optimization strategies 

and examples is given. 

Chapter 3 gives the theoretical framework that is required for simultaneous structural and 

thermal topology optimization, and a multi-material topology optimization approach is 

developed. Both methodologies are explored, and their effectiveness is confirmed using 

case studies. Firstly, the optimization of a thermally efficient masonry block is presented. 

Secondly, an optimized design for an efficient brickwork support bracket is demonstrated. 

In Chapter 4, the link between topology optimization and additive manufacturing in the 

construction sector is discussed. These two (e)merging technologies truly stimulate one 

another and allow for the creation of new penalization schemes in topology optimization 

that are especially useful for the design of 3D-printable building components. 

Chapter 5 proudly presents a unique realization in the field of digital fabrication for the 

construction industry: a topologically optimized post-tensioned concrete girder designed 
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and produced during this PhD study. An overview of the complete design and production 

process is elaborated. 

Finally, Chapter 6 provides conclusions on the complete work and recommendations 

towards future related studies. It ends with a futuristic outlook on the (far) future of 

combined design optimization and digital fabrication. 
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2.1 Mathematical optimization 

Mathematical optimization is a process where the best possible value of some objective 

function is sought for by adjusting and finding the best input for the variables of the 

(design) problem. A general framework can be represented in the following way: 

Find x = 

1

2

 
n

x

x

...

x








for which f(x) has the lowest value 

(2.1) 

with 
( ) 0,   1

( ) 0,   1

j

j

g i ,...,m

h j ,...,n

 =
 = =

x

x
 

Where, x is the vector containing the design variables and f(x) is the objective function 

that is dependent on all design variables. Additionally, in this problem formulation, two 

sets of constraint functions, g(x) and h(x) can be defined which set conditions for the 

variables that are required to be satisfied. Although, this general framework may seem 

rather simplistic, many real-world and theoretical problems may be modeled with it. The 

key remaining question is: how the best values for these design variables x can be found? 

2.1.1 Evolution towards gradient-based optimization 
methods 

A huge diversity of different optimization methods and strategies exists [1,2]. The type of 

optimization method (the solver) greatly depends on the problem that needs to be solved 

and its efficiency can be measured as the time that is required to solve it. For many 

strategies, a trade-off exists between solution quality and effort; the higher the effort, the 

higher the solution quality can be. 

The simplest type of optimization solver must be the brute-force search algorithm [3]. It 

is a general problem-solving technique that consists of systematically enumerating all 

possible candidates for the solution and checking whether each candidate satisfies the 
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problem's statement(s). The main disadvantage of the brute-force technique is that for 

most real-world problems, the number of candidates is prohibitively large.  

Many alternatives to brute-force search have been explored [4]. From making early cutoffs 

of parts of the search space, to treating the design vector as living creatures that move 

around according to biological rules. In recent years, the latter, mostly, non-gradient-

based methods such as simulated annealing, particle swarm optimization and other 

genetic algorithms have become very popular. The reason for this is the many 

advancements that were made in computer-based modeling and the increased efficiency 

of modern analysis methods, allowing engineers and designers to rapidly simulate the 

performances of a design in a virtual environment. Using these so-called “heuristic” 

methods, the swift generation and evaluation of many design alternatives has been given 

good results.  

However, because of the complexity and size of many real-world engineering problems, 

the use of these methods can still be too computationally expensive (expressed in 

computation time and memory). Parallel computing can aid in overcoming this obstacle, 

but it cannot counter for computational inefficiency [5].  

Therefore, gradient-based optimization methods offer a respected alternative. With the use 

of direct computational optimization techniques and differentiable functions, design 

problems can be optimized using function derivatives and gradient information (sensitivity 

information). This means it uses the gradient of the functions to determine the most 

promising directions along which we should search for the best values of these design 

variables [6]. For problems with many variables, like topology optimization, gradient-

based methods are usually the most efficient. While non-gradient methods for topology 

optimization do exist, most of them were heavily criticized by many. In literature, a critical 

review by Sigmund [7] can be found that elaborates on this aspect. 
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2.1.2 MMA and GCMMA 

Structural optimization problems are often solved using a first-order method, where an 

initial design is updated in an iterative manner, based on gradients. The gradient-based 

optimization solvers that have been used almost exclusively in this work are two methods 

developed by Svanberg [8]: the method of moving asymptotes (MMA) and its successor, 

the globally convergent version of MMA (GCMMA). The methods represent a family of 

convex approximation methods suitable for structural optimization problems with many 

(10k and more) design variables. The standard form for nonlinear programming with MMA 

is represented in the following way: 

minimize 0 ( )f x  

(2.2) 

subject to 
( ) 0     = 1 2f , i , ,...,m

i

X






x

x
 

where
0 1 mf , f , , f  are given differentiable functions and 

 min max     1n

j j jX x x x , j ,...,n=    =x  where 
min

j
x and 

max

j
x are given real 

numbers which satisfy 
min max

j j
x x for all j. As described in [8] and with respect to the 

ordinary MMA approach: “In each iteration, the current iteration point x(k) is given. Then 

an approximating subproblem, in which the functions ( )if x are replaced by certain 

convex functions ( )( k )

i
f x , is generated. The choice of these approximating functions is 

based mainly on gradient information at the current iteration point, but also on some 

parameters 
( k )

j
u and 

( k )

j
l  (upper and lower asymptotes, the “moving asymptotes”) which 

are updated in each iteration based on information from previous iteration points. The 

subproblem is solved, and the unique optimal solution becomes the next iteration point 

x(k+1). Then a new subproblem is generated, etc.” 



Chapter 2: Optimization Methods & Algorithms 

  23 

2.2 Structural optimization methods 

Within the field of structural optimization, a distinction can be made between three groups 

of general optimization strategies: sizing, shape and topology optimization [6]. Sizing 

optimization is the simplest and best-known form of structural optimization. Here, the 

general design of the structure is already decided on, and the aim is to adjust the 

dimensions of the various structural components as such that an optimized result (most 

material-efficient or cost-effective structure) is obtained. In this case, the design variables 

are the dimensions of the elements (e.g., type of the HEA profile or the thickness of the 

beam’s flange) [9] (Figure 2.1a). 

In shape optimization, the general design is also available at the starting point of the 

optimization. However, now the control points of the structural components themselves 

can be changed by the optimization algorithm. For example, the start and end positions 

of the structural members can be moved in space, in an attempt to improve the system’s 

structural performance (e.g. an improved structural stiffness). Another specific application 

of shape optimization works by adjusting the control points of non-uniform rational B-

splines (NURBS) that may represent the boundaries of a structural shape (Figure 2.1b). 

By shifting these points, an optimized shape can be found [10], or stress concentrations 

at certain locations can be removed [11]. Like sizing optimization, shape optimization will 

not alter the structural design (i.e. the topology of a design) significantly, since it cannot 

introduce new members or add holes to the structure. The boundaries and general lay-

out were fixed beforehand.  

Topology optimization, on the other hand, solves the fundamental problem of distributing 

a limited amount of material in a predefined design space [12]. With this method, no prior 

knowledge of the structural lay-out is needed. Only the problem itself (objective and 

constraints functions) needs to be well-formulated. The method enables the exploration 

of new design concepts and is most useful at an early stage in a design process (Figure 

2.1c). 
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(a) (b) (c) 

Figure 2.1. Three groups of optimization methods, (a) sizing, (b) shape, and (c) topology 

optimization. 

 

Over the past three decades, different types of topology optimization have been studied: 

so-called continuum and ground-structure optimization. The term ground-structure 

optimization refers to the discrete formulation of the design space. The structural domain 

is discretized in a finite number of spatial nodes and a lattice-like structure is created.  

After the optimization process, only the most essential truss members are retained with 

respect to the prescribed loads and performance criteria (Figure 2.2a).  The origin of this 

type of optimization can be traced back to 1904 [13] when Michell derived the formulas 

for structures with minimal weight under a given stress. These structures were called 

Michell trusses and have maximum rigidity for the available volume. They were considered 

global optimum. The disadvantage of this method is that the computation time increases 

as the number of nodes increases. Because of this, its application is somewhat limited to 

the simpler problems. Nevertheless, advances in the field [14] revealed efficient 

approaches for solving truss layouts in large-scale applications, because the truss layout 

is a linear problem that can be solved efficiently using interior point methods, that scale 

very well. However, these methods fall outside the scope of this thesis. 

In continuum topology optimizations, the design domain is modeled as continuous spatial 

media whose motion and equilibrium are governed by balance laws and constitutive 

relations. The problem is most often solved by discretizing the design domain into finite 

elements and the material densities (micro-structure) of these elements are then treated 

as the problem variables (Figure 2.2b). Continuum topology optimization was first 
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introduced by Bendsøe and Sigmund [15] and has become a major tool for conceptual 

structural optimization. Applications are not limited to the field of structural mechanics, 

but also lend themselves for multi-physics optimization problems like heat transfer, 

dynamic, acoustic, electromagnetic, multi material, and fluid flow problems [16].  

 

 
(a) (b) 

Figure 2.2. Two types of topology optimization: (a) ground-structure (discrete) 

optimization and (b) continuum topology optimization. 

2.3 Continuum topology optimization 

Within the field of continuum topology optimization, most often the density of each 

element in the finite-element discretized domain is used to construct the vector of 

variables. This element density is often referred to as 
ex , (or 

e ) and is generally 

continuously variable between 0 and 1. As such,
ex  [0,1].  A value of 0 means the 

material is absent (void), and a value of 1 means the material at this location is fully present 

(solid). Furthermore, each variable influences the physical material properties that are 

associated with the element. E.g. for mechanical problems this could mean that the value 

of 
ex  influences the Young’s modulus 

eE  of the element, and for heat transfer problems,  

ex  could relay to the thermal conductivity 
e  of the element. For correct interpretation 

of intermediate values of 
ex , interpolations schemes are needed and developed [17]. 
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The SIMP method (or Solid Isotropic Microstructures with Penalization) is the most well-

known method for this to date. The method was proposed by Bendsøe in 1989 [18] and 

uses a simple power law function. Then, the Young’s modulus of an element could be 

defined as 0p

e e
E x E= , where p is the penalization factor, usually set to 3 and 0

E is the 

base material’s Young’s modulus (stiffness). The SIMP method states that under fairly 

simple restrictions on p, any stiffness used in the SIMP model can be realized as the 

stiffness of a small microstructure made of voids and an amount of base material. 

Additionally, the SIMP model is isotropic with a Young’s modulus varying with
ex  and a 

constant Poisson ratio, independent of 
ex  (Figure 2.3). Other penalization models that 

are sometimes used are the RAMP model (for dynamic situations) and the SINH model. 

For more information on this aspect, see Chapter 4 of this PhD study. 

Solving the topology optimization problem is equivalent to finding the optimal values for 

the vector of design variables. In most cases, the use of proper interpolation schemes will 

 

 

Figure 2.3. (a) SIMP interpolation curves for varying values of p, illustrating the 

relationship between relative stiffness (Ee /E0) versus the density of an element (xe) , and 

(b) Microstructures of material and void realizing the material properties of the SIMP 

model with p = 3 and a base material with Poisson’s ratio ν = 1/3 (adopted from [17]). 
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make sure that the final material distribution is a black (
ex = 1) and white (

ex = 0) 

rasterized shape with sharp boundaries. As discussed previously, one way of finding the 

optimal value for the density vector would be to examine all possible combinations and 

analyzing them for efficiency. When only considering black and white elements (these are 

also called ISE elements (Isotropic Solid or Empty elements), the number of combinations 

that can be made is 2N, where N is the number of elements that make up the discretized 

design domain. Taking into account that a typical finite element mesh consists of more 

than 10.000 elements, it goes without saying that this method is not very practicable. As 

such, for topology optimization problems, gradient information is used almost exclusively 

to find an optimized material distribution in an efficient manner. Also, a schematic of all 

steps required in such process is shown in Figure 2.4. In Section 2.4 a general overview 

of a classic topology optimization implementation is presented.  

 

 

Figure 2.4. General scheme of a classic topology optimization process using the SIMP 

method (using sensitivity filtering). 
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2.4 Compliance minimization 

2.4.1 Problem formulation 

The most ‘simple’ form of topology optimization can be formulated as a procedure where 

the influence of the external loads and the associated deformations on the structure, (also 

defined as the compliance of a structure), is to be minimized. This is equivalent to 

maximizing the stiffness. Of course, the stiffest design is a structure where the complete 

design domain is filled with material. Therefore, a volume constraint is imposed in addition 

to this objective function. In literature, this is also called ‘Compliance minimization with a 

volume constraint’. Mathematically, the compliance of a structure is equivalent to the total 

elastic strain energy, and the complete problem formulation can be written as:  

 

minimize compliance: 
T( )C =x F U  

(2.3) 
subject to: max( ) 1 0V / V − x  

  = KU F  

 0 1 x  

where ( )C x  is the compliance, F is the global load vector, and U is the vector containing 

the elastic displacements.  = KU F represents the balance equation for mechanical 

systems where K  is the global stiffness matrix. x  is of course the vector containing all 

design variables 
ex  (the density of each element), and ( )V x  and 

maxV  are respectively 

the material volume of the structure and the maximum allowable volume of the system.  

2.4.2 Modified SIMP interpolation 

In Section 2.3, it was mentioned that a power law function can be used to map the element 

densities to the Young’s modulus and that this can be written as: 0p

e e
E x E= . However, 
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in order to prevent the stiffness matrix from becoming singular when 
ex = 0, a small 

modification should be made. This modified SIMP formulation [20] reads as follows: 

void solid void

p

e e e
E ( x ) E x ( E - E )= +  (2.4) 

where 
solidE is the stiffness of the base material and 

voidE is a very small value attributed 

to eliminate the predefined singularity problem. 

2.4.3 Sensitivity analysis 

In order to formulate the MMA subproblem and create the approximating functions 

( )( k )

i
f x as described in Section 2.1.1, the partial derivatives of all used functions 

(objective and constraint functions) with respect to the design variables
ex  are needed. 

This process is also called the sensitivity analysis of our system and is performed using 

either approximate, numerical methods, or exact analytical methods. 

As described by Holmberg [19]: “this traditional minimum compliance formulation has 

gained its popularity much because K depends linearly on x.”  In addition, “ ( )C x is a so-

called self-adjoint function, which makes it computationally very efficient because no 

additional linear system needs to be calculated to obtain the gradients.” As such, for cases 

where the loads are design-independent, the sensitivities of the objective function ( )C x  

are found using the adjoint method and the derived equation is presented in Eq. (2.5). 

Also, the sensitivities of the material volume ( )V x  (for finite elements with a volume of 

1) are given.  

( ) ( )
( ) ( )

e e

C
x

x x
=

 
−

 
x x

x
K

U U  

(2.5) 

( )
1

e

V

x


=


x

 

See Appendix 1, for the calculus behind this derivation. A complete review of adjoint 

methods for sensitivity analysis in numerical codes can be found in [21]. 



Chapter 2: Optimization Methods & Algorithms 

  30 

2.4.4 Filtering 

The use of filters has proven to be beneficial during topology optimization for several 

reasons. One possible problem is the appearance of alternating solid and void elements 

(checkerboard patterns) which can create structures that have an artificially high stiffness 

(Figure 2.5). Alternatively, filters can also be used to impose a minimum length-scale 

control (constraining the minimum feature size). 

 

 

Figure 2.5. The appearance of the checkerboard pattern in TO problems when no 

sensitivity or density filter is used. 

 

Throughout this PhD study, most often a density filter [22] is used in order to avoid the 

formation of checkerboard patterns. The original densities are transformed as follows: 

1

e

e

e ei i

i Nei

i N

x H x
H 



= 
 

(2.6) 

In this equation, Ne is the set of elements i for which the center-to-center distance (e, i) 

to element e is smaller than the filter radius rmin, and Hei is a weight factor defined as: 

minmax (0 ( ))
ei

H ,r e,i= −  (2.7) 

When applying a density filter, the sensitivities of the objective function and the constraint 

functions have to be adjusted. The determined sensitivities are still relevant. However, the 

variable 
ex is replaced with 

ex . Additionally, the sensitivities with respect to the design 

variables 
kx  are obtained by means of the chain rule [22]: 
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1

k k

e

e

ke

e N e Nk e k ei e

i N

x
H

dx dx dx H dx

  
 



  
= =  

 
(2.8) 

where the function ψ can represent either the original objective function or constraint 

functions. 

2.4.5 Example 

In the example below, the well-known MBB problem [23] and its optimized shape are 

presented (Figure 2.6) to illustrate the functionality of the TO algorithm that was elaborated 

in Section 2.4.1. The MBB problem is a classic benchmark problem for TO, consisting of 

a simply supported beam, loaded with a vertical force centered on its top boundary. The 

problem originates from a real-world design challenge disclosed by a West German 

aerospace manufacturer, Messerschmitt-Bolkow-Blohm, hence the name MBB. A more 

detailed description of this problem is given in a textbook by Bendsøe and Sigmund [12]. 

In this study it is only used as a first demonstration of the capabilities of TO. 

 

 
 (a) 

 
 (b) 

Figure 2.6. (a) MBB-beam design problem and (b) its topology optimized design, having 

a material reduction of 65% with respect to the solid design domain. 
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2.5 Extensions 

Compliance-based topology optimization is the most iconic and well-established form of 

TO. However, in literature many other and more advanced implementations have been 

developed. In this section, a few alternatives are briefly presented to give a general 

overview of the capabilities of TO for construction related applications. For more detailed 

information on these alternative implementations, the reader is referred to the referenced 

publications. 

The first extension provides a method to optimize the natural frequencies of a design (also 

see [24,25], the second approach takes into account von Mises stresses (also see [26,27], 

and the third extension elaborates on the differences between TO using small deformation 

theory and large deformation theory (also see [28]). With respect to the latter, also the 

influence of topology optimization with variable loads and/or multiple load combinations 

and -scenarios is reviewed and linked to different approaches to perform a multi-objective 

TO. Finally, a preview of topology optimization in 3D is also presented (also see [29]). 

2.5.1 Natural frequency TO 

Free vibration occurs when a mechanical system is set in motion with an initial input and 

can vibrate freely. A mechanical system will then vibrate according to one or more of its 

natural frequencies. In addition to compliance-based TO, the optimization of natural 

frequencies and free vibrations has been studied by many. Its purpose is to ensure that 

the natural frequencies will not be similar to the occurring and forced frequencies of the 

structure. In most cases, we would want the fundamental frequencies to be far off so that 

no resonant frequency could potentially harm the structure. 

Some studies have also shown that structures with high fundamental frequencies are 

relatively stiff for many different load cases. Thus, topology optimization with the aim of 

maximizing the fundamental frequencies has been giving good results for static design 

problems as well. Figure 2.7 presents two examples for which the first natural frequency 

was maximized.  
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(a) (b) (c) (d) 

Figure 2.7. Topology optimization where the 1st natural frequency is being maximized. 

Figures (a) and (c) present the design problems and boundary conditions, and (b) and 

(d) show the optimized structures respectively. 

2.5.2 Stress-based TO 

Another important implementation is stress optimization in TO. Stress optimization is one 

of the key factors for structural design in construction, especially when fatigue plays a vital 

role in the design. As mentioned before, when a design is optimized towards minimum 

compliance, this does not necessarily mean that a good stress distribution is obtained. In 

addition, the maximum allowable stress may have been exceeded in some locations. 

Especially, when a design has a lot of sharp boundaries or predefined regions of voids, a 

different implementation should be considered. In such situations, the topology 

optimization problem is better optimized with stress constraints or a formulation that takes 

stress as a parameter in the objective. Figure 2.8 illustrates the difference between a 

compliance-based optimization and a stress-based optimization in case of a L-bracket 

design. In this example, the design domain is characterized by a right angle, which causes 

peak stress concentrations at this discontinuity. This design problem is the classic 

benchmark study for this type of problems [30]. In the result where the von Mises stresses 

were minimized (Figure 2.8b), it can be seen that the peak stress is lower due the design 
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having a rounded corner at the discontinuity instead of a right angle. However, the 

deflection is somewhat larger. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2.8. The difference between (a) compliance-based and (b) stress-based 

optimization for the L-bracket benchmark study. Figures (c) and (d) show the relative 

differences in deformations and peak stress concentrations in the right-angled corner for 

equal loads and identical material reduction. 

 

2.5.3 TO based on large deformation theory 

So far, all TO algorithms assumed small deformation theory. This means that the 

deformation of the structure under its loads is neglected. In normal situations this does 

not form any problem, as these optimized designs general perform well for any magnitude 

of the load. However, in a small number of design problems, it might be beneficial to 

include large deformation theory. In large deformation theory the deformation caused by 
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the load is taken into account, and a geometrically nonlinear finite element analysis should 

be included in the optimization formulation. Figure 2.9a and b demonstrate the differences 

between TO with small and large deformation theory. In the latter, a different design was 

found that takes into account the deformation of the structure under its load.  

At first sight, this optimized solution does not look very optimal, as the structural element 

at the beam’s end is subjected to bending stress. However, when looking at the actual 

deformation of this design under its design load, as shown in Figure 2.9c, it immediately 

becomes clear. The structural element is not subjected to any bending stress, but rather 

is in pure tension. An important aspect here is that the resulting topology is only optimized 

for the considered design load (direction, size, type, position, etc…). For example, a small 

change in the magnitude or direction of this load could create a weak link in this structure. 

As such, the resulting topology is only optimized for the considered design load. A general 

overview on how to use topology optimization in the light of variable loads and/or multiple 

load combinations and scenarios is presented in the next section. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.9. Difference between TO that assumes (a) small deformation theory and (b) large 

deformation theory. (c) presents the deformed state of the optimized structure that 

considers large deformation theory. 
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2.5.4 TO with multiple load conditions 

As explained in [12], the framework described for minimum compliance design for a single 

load case can be generalized quite easily to a situation where it is influenced by multiple 

load conditions. I.e., the original framework is transformed from the minimization of a 

single compliance function to the minimization of a weighted average of the compliances 

for each of the load cases. Beforehand, a complete list of all possible load combinations 

and scenarios is defined, and these are then combined into the list of load cases. The 

main solution strategy includes the weighted-sum method. In such formulation, the (in 

theory) multi-objective optimization approach (optimizing for all load cases separately) is 

converted into a single-objective optimization function (also referred to as the ‘weighted-

sum multi-objective’ in this work). Similarly, when using the MMA algorithm, the 

sensitivity of the weighted-average function of the compliances becomes the weighted 

average of the sensitivities of each of the individual compliance functions. Finally, it can 

also be remarked that the inclusion of extra load cases is computationally cheap since the 

stiffness matrix can be factorized [12]. 

2.5.5 Multi-objective TO 

The weighted-sum multi-objective optimization approach is one of the most widely used 

methods in multi-objective TO mainly due to its simplicity. Nonetheless, the work of [31] 

states that it can be difficult to generate a good set of points that are uniformly distributed 

on the Pareto front using such formulation. The problem is that the linear weighted sum 

method only works for problems with convex Pareto fronts. In the referenced work, a 

simple example is presented where two objective functions are combined into one for a 

given set of w1 + w2 = 1, and the composite function F is minimized (Figure 2.10). For 

any given set (w1,w2), a (dashed) line has a gradient (1, – w1 /w2) that will become tangent 

to the Pareto front when moving downward to the left, and that touching point is the 

minimum of F. However, at the nonconvex segment, if the aim is point C, the weighted 

sum method will usually lead to either point A or point B, depending on the values of w1 

(since w2 = 1 – w1). 
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Figure 2.10 Weighted-sum method for two objectives f1 and f 2 and w1 and w2. 

Illustration adopted from [31]. 

 

Furthermore, proper scaling and normalization operations of the objective functions are 

required so that the ranges/values of each objective should be comparable.  Otherwise, 

the weight coefficients are not well distributed and can thus lead to biased sampling on 

the Pareto front. Nevertheless, the limitation discussed above is not specific to TO, but 

was elaborated from a broad mathematical standpoint. Excellent examples of multi-

objective TO under multiple loads can be found in the work of Hongwei et al. [32], Peng 

et al. [33], and Stanford and Ifju [34] who optimized respectively a hybrid electric vehicle 

frame, an aluminum-alloy-bus body component, and a flexible wing skeleton for micro 

and small unmanned air vehicles. In all studies, the authors reported no problems using 

the weighted-sum multi-objective approach and were able to produce valid Pareto-optimal 

results by modifying the weights assigned to the individual objectives. 

In contrast, a recent review paper by Marler and Arora [35] discusses other methods to 

overcome the limitations of the weighted-sum multi-objective, derived from the need to 

assign a relative importance to each criterion. A posteriori articulation of preferences and 

a generate-first-choose-later approach are presented. The normalized ‘Normal Constraint’ 

method [36] belongs to this second group, and according to its authors it can produce 

evenly spaced Pareto frontiers [37], which are independent of the scale of the individual 
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objectives. Nevertheless, this recent review paper claims that thus far, there is little to no 

application of these methods in SIMP topology optimization.  

Because a more detailed study of these alternative approaches was out of the scope of 

this work, the weighted-sum multi-objective approach was applied throughout this work.  

2.5.6 Three-dimensional TO 

Our world has three physical dimensions. However, all examples presented so far are flat, 

two-dimensional. One could argue that any real-world application would benefit from 3D 

optimization. However, while this is true, very often new TO algorithms are being 

developed in 2D only. Mainly because, when deemed functional, the extrapolation to the 

third dimension is not that complicated. 

In order to demonstrate 3D topology optimization, the MBB design problem from 

Section 2.4.5 is extrapolated into the third dimension. Figure 2.11 presents the final 

distribution of material where the objective was to maximize the beam’s stiffness with a 

constraint on the maximum amount of material used. The colors visualize the von Mises 

stresses. The result of Figure 2.11 was generated using the commercial software package 

Abaqus. 

 

 

 

Figure 2.11. Three-dimensional topology optimization for the MBB design problem (colors 

showing the normalized von Mises stresses). 
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2.6 Reliability of results 

2.6.1 Non-uniqueness, local minima 

Many of the case studies investigated in this work make use of the SIMP method. In that 

respect it is important to know whether the results are reliable. SIMP is very often said to 

be largely heuristic and therefore it is only a question of luck that the correct solution is 

found. Nevertheless, the theoretical convergence of the SIMP method has been explored 

by many. For instance, when the SIMP method is reduced to the setting of the well-known 

variable thickness sheet design problem, the minimum compliance problem and the 

complete problem statement is a convex-concave saddle point problem that lends itself 

to a complete FE convergence analysis [38]. Also, Rozvany [39] said “SIMP is a 

reasonably rigorously derived gradient method for topology optimization, which usually 

gives a solution near the correct global optimum if the problem is originally convex (e.g. 

in compliance problems), and the penalty factor p is increased gradually from unity”. 

Finally, SIMP has also been verified quantitatively by showing numerical convergence to 

Michell topologies for topology optimization [39]. 

Still, it is accurate to say that many real-world engineering problems in topology 

optimization are non-convex. Therefore, such problems can always have multiple local 

optima and non-unique optimal solutions. An example of the latter is de design of a 

structure in uni-axial compression or tension. In such a case, a structure consisting of 

one tick bar is equally as good as a structure containing many thin bars when the overall 

area of both structures is the same.  

In contrast, studies by Rietz [40], Martinez [41], and Stolpe & Svanberg [42], found and 

demonstrated that SIMP-based methods require relatively few iterations and therefore are 

very suitable for a combination of a wide range of design constraints, multiple load 

conditions, multi-physics problems, and extremely large (often 3D) systems. 

To conclude, using SIMP, a global optimum can often not be guaranteed, but usually, it 

gives a solution near or close to the global optimum.  
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Additionally, a critical review on the usefulness of non-gradient approaches in topology 

optimization by Sigmund can be found in [43], and a comparison between two of the most 

used methods for numerical topology optimization, namely SIMP and ESO is discussed 

in. The two Forum Discussion papers clearly promote the use of SIMP-based approaches, 

and even heavily criticize the other methods. For example, in the paper by Sigmund, it is 

argued that non-gradient approaches are hopelessly inefficient for problems with many 

variables such as topology optimization. It is also demonstrated that even for extremely 

coarse meshes a state-of-the-art non-gradient topology optimization does not even 

provide global optima. 

2.6.2 TO in the construction industry 

A second aspect that needs some discussion is the reliability of TO when used as a design 

tool in the construction industry. While in theory the optimized solution from a topology 

optimization study can be expected to improve the traditional design, very often certain 

assumptions are made to simplify the original design problem. As such, the response of 

the optimized shape or structure to the real-world boundary and load conditions might 

deviate substantially from the predicted mathematically calculated benefit. 

Especially the application of TO in the construction industry might be subjected to many 

limitations. For example, the need of design for the Serviceability Limit State (SLS) and 

Ultimate Limit State (ULS) having in mind different load cases, different safety factors, and 

failure modes is very relevant, but not always considered in literature. In order to 

compensate for this, often post-numerical analyses are performed to verify the results and 

estimate the errors these simplifications introduced.  

Additionally, the influence of different material properties can have a major influence on 

the optimized material distribution. For example, a design problem that will be made from 

concrete can and should look completely different when compared to a design made from 

steel. The importance of stress optimization for heterogeneous and non-isotropic 
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construction materials (such as concrete) should be a main point of attention but is often 

disregarded because of the increased computational cost and complexity of its 

implementation. 

An excellent review paper on the state-of-the-art of TO for concrete construction can be 

found in [44]. The paper extracted over 200 research pieces from digital scientific literature 

databases and narrowed them down to 60+ relevant to the topic of TO in concrete 

construction. The paper outlines the relevant theoretical frameworks that currently exist 

and provides a general background on the different TO approaches with respect to 

concrete structural optimization. Furthermore, after extensive quantitative as well as 

qualitative review of the existing implementations and applications, the research gaps and 

a future vison on the topic are given. 

As a supplementary note, also in this work many simplifications were made in the 

formulation of the numerous case studies. Special attention was given to clearly motivate 

the reasons for these assumptions and to discuss the impact of the respective limitations. 
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3.1 Introduction 

Up to this point in the PhD thesis, the topology optimization examples that were presented 

where mostly ‘single physics’ problems situated in the field of structural optimization. I.e. 

stiffness-based mechanical TO with a constraint on the volume fraction, and/or with stress 

constraints. Nevertheless, an increasing interested in multi-physics problems can be 

observed. Early examples of TO applied to multi-physics problems can be found in [1]. In 

recent years, topology design methods have also been expanded to for example electro-

magnetic problems, coupled problems, fluid problems, and wave propagation problems. 

[2-4]. Various challenges in applying topology optimization to multi-physics problems 

were defined by Sigmund in [5].  

The term ‘multi-physics’, as used in this work, refers to using simulations that involve 

multiple physical models or multiple simultaneous physical phenomena. In this chapter, 

‘multi-physics’ means: the simultaneous (but uncoupled) optimization of mechanical and 

heat transfer performances. This stands in contrast to some alternative definitions found 

in literature where the term is defined in a narrower sense as coupled or interacting 

physical studies.  

This chapter focuses on improving existing topology optimization (TO) implementations 

in order to allow for the design of improved building envelope components. Also, a 

verification and several validations of the developed frameworks are presented and 

demonstrated by studying a number of case studies.  

Because this chapter mainly deals with the optimization of problems in the conceptual 

design stage, some simplifications are made to reduce the complexity of the original 

problem formulation. E.g., in this chapter, the only mechanical performance indicator that 

is measured, is the stiffness (inverse of compliance). For the thermal performance, only 

conductive heat transfer is studied. Additionally, all analyses are performed in a steady-

state condition. The motivation and legitimacy of these simplifications is given at the start 

of each of the case studies. 
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This chapter starts with an elaboration of the theoretical frameworks, followed by a first 

case study that presents the design of a thermally efficient masonry building block (Section 

3.4.1). A second case study presents the optimization of an energy-efficient brickwork 

support bracket (Section 3.4.2).  

3.2 Simultaneous structural and thermal topology 
optimization 

This section presents a scheme for simultaneous structural and thermal topology 

optimization. While traditional structural TO problems optimize the stiffness of the design 

domain for a given fraction of material (as discussed in Section 2.4), in this chapter, the 

thermal performance of the design becomes the objective of the optimization formulation.   

In the studies that will follow, the aim is to minimize the thermal transmittance (also U-

value) through the design domain, with a constraint on the design’s stiffness, and a 

limitation on the maximum material volume fraction that can be used. Therefore, an 

adjustment of the original problem formulation (minimum compliance) must be made. 

Analogous to minimizing the structural compliance, we can minimize the thermal 

compliance. This will result in finding an optimal thermal conductor. Conversely, by 

maximizing the thermal compliance, the thermal transmittance is minimized. Although the 

term compliance is not very often used in engineering in general, it has gained in 

popularity due to its numerical efficiency in topology optimization problems (i.e., due to 

its self-adjoint property, no additional FE calculation is required to obtain the gradients). 

As TO with respect to steady-state heat transfer is very similar to that of static mechanical 

problems, an analogy can be made with the structural problem formulation. For the 

structural analysis, the state equation is given in Eq. (3.1) and the structural compliance 

(Cs) in formulated in Eq. (3.2): 

s =K U F  (3.1) 

s sC = T
U K U  (3.2) 
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where Ks is the global stiffness matrix, U is the global displacement vector (mm), and F 

the vector with the mechanical loads (newton). Very similar in form, the state equation for 

the thermal problem is defined as:  

t =K T Q  (3.3) 

In this equation, Kt is the global thermal conductivity matrix, T is the vector containing 

the nodal temperatures (Kelvin), and Q contains the thermal loads (Watt). Mathematically, 

the formulation of the finite element solver is identical, and the computation of the thermal 

compliance follows the same principle. The difference between the two analyses is that 

the thermal problem takes up less storage and will be faster to solve because it requires 

only one degree of freedom per node (θk), instead of two (uk, vk) or three in 3D. The 

compliance of the structure is a measure of work done by the load and is equivalent to 

the structure’s internal energy (Joules). In the case of a linear elastic mechanical system, 

the compliance of a structure follows the strain energy equation, thus, ½ × stress × strain 

× volume = Nm (Newton-meter or Joule). For thermal problems, the basic requirement 

for heat transfer is the presence of a temperature difference. The units on the rate of heat 

transfer are Joule/second, also known as a Watt. 

The mathematical formulation of such multi-physics approach reads as follows: 

maximize: 
0

t t t ,

1

( ) ( )
N

e e e e e

e

C x
=

= =T T
x T K T θ k θ   

subject to: s s max( ) / 1 0C C − x        

 max( ) / 1 0V V − x  (3.4) 

with: 
0

s s s,

1

( ) ( )
N

e e e e e

e

C E x
=

= =T T
x U K U u k u   

 0 1 x   

where Cs(x) and Ct(x) represent the structural (s) and thermal (t) compliance 

respectively, and V(x) is the material volume that linearly depends on x. Cs max and Vmax 
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represent the maximum value of the corresponding functions Cs and V, and ue [8 (or 12) 

× 1] and θe [4 × 1] are the element displacements and element temperatures vector. 

Likewise, 
0

t ,ek and 
0

s,ek  stand for the element stiffness and element conductivity matrix 

for an element (size: 1 × 1 × 1 mm) with unit Young’s modulus and unit thermal 

conductivity, x is the vector of design variables (i.e. the element densities), and N is the 

number of elements (e) used to discretize the design domain. 

As discussed before, the variables of the design domain (xe) are linked to the material 

properties of the elements. In the following studies, the modified SIMP method (Section 

2.4.2) is used to map the variables to both the Young’s modulus (Ee) in MPa and the 

element thermal conductivity (λe) in W/mK. This mapping of densities is performed using 

the following equations: 

void solid void( ) ( )sp

e e e
E x E x E E= + −   0,1

e
x   (3.5) 

t

void solid void( ) ( )
p

e e e
x x   = + −   0,1

e
x   (3.6) 

where Esolid is the Young’s modulus of the solid material and Evoid is the Young’s modulus 

of the voids. Very similar, λsolid and λvoid contain the values for material thermal 

conductivity. ps is the penalization parameters of the structural interpolation function, and 

pt is the thermal penalization parameter. 

The sensitivities of the objective function Cs and Ct with respect to the element densities 

xe are found using the adjoint method (Section 2.4.3 and Appendix 1) and presented in 

Eq. (3.7) and Eq. (3.8). The sensitivity of the material volume V is given in Eq. (3.9), 

where ve is the element volume. 

t( 1) 0t

t solid min t,( )
p

e e e e

e

C
p x E E

x

−
= − −


Tθ k θ  (3.7) 

s( 1) 0s

s solid min s,( )
p

e e e e

e

C
p x

x
 −

= − −


T
u k u  (3.8) 
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e

e

V
v

x


=


 (3.9) 

Additionally, a sensitivity filter was used. The filtering of sensitivities follows the methods 

described in Section 2.4.4 and the globally convergent version of MMA (GCMMA) is used 

to solve the minimization (and maximization) problem and update the design variables In 

addition, the maximum external move limit is set to 0.2, which is generally assumed to 

protect the over correction of design variables. 

3.3 Multi-material topology optimization 

In this section, a scheme for multi-material TO optimization is elaborated on. Previously, 

the finite element density was controlled by a variable with the following bounds: A 

minimum value of 0 and a maximum of 1. A value of 0 meant that the element was inactive 

or considered a void, while a density value of 1 meant that the element existed (solid). In 

order to implement a two-material approach, an additional element variable is added to 

the formulation. The goal is to allow the optimization algorithm to choose between two 

different types of solid material. The different materials are referred to as material 1 with 

material properties E1 and λ1, and material 2 with material properties E2 and λ2. In the 

following implementation, material 1 always has a lower thermal conductivity, meaning it 

is a good thermal insulator. However, this comes at the cost of its stiffness. Material 2 is 

the stiffer material but has a higher thermal conductivity (a good conductor of heat). In 

order to incorporate this two-material approach, Eq. (3.5) and Eq. (3.6) from the previous 

subsection are modified by replacing Esolid and λsolid with the following: 

solid 2 1(1 )
e e

E y E y E= + −  (3.10) 

solid 2 1(1 )
e e

y y  = + −  (3.11) 

In these equations,  T

1 2, ,..., Ny y y=y  is a newly added vector of design variables 

which behave similar as the first one  T

1 2, ,..., Nx x x=x . While the original vector of 
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design variables x is still in control of the presence of the voids, the second density 

variable y is controlling the presence of one material over the other. The material 

properties of an element with an intermediate value (in ye ) are determined by the weighted 

average of material 1 and 2.  

Of course, this adjustment influences the interpolation functions. As such, also a 

modification of the sensitivities is needed. Eq. (3.12) gives the sensitivities of Cs with 

respect to the variables xe, while Eq. (3.13) gives the sensitivities with respect to ye. 

( 1) 0s

2 1 0 s,[( (1 ) ) ]p

e e e e e e

e

C
px y E y E E

x

−
= − + − −


T

u k u  (3.12) 

0s

2 1 0 s,( )p

e e e e

e

C
x E E E

y


= − − −


T

u k u  (3.13) 

A similar derivation can be made to calculate the partial derivatives of the thermal 

compliance Ct. Additionally, these equations should also be modified according to Eq. 

(2.7) to allow the filtering of the densities (as discussed in Section 2.4.4). 

3.4 Case studies 

3.4.1 Case 1: Thermally efficient masonry block 

Traditional masonry blocks (or fired-clay bricks) were among the first artificial materials 

produced by men for building purposes [6]. They are considered easy to produce, 

resistant, and durable [7]. Most commonly, they are rectangular in shape and used to 

build in traditional masonry style with layers of staggered blocks, collectively known as 

brickwork. In Northern Europe, they became popular in the early Middle Ages because 

many places lacked indigenous sources of rock. The use of fired-clay bricks allowed these 

regions to develop specific styles of architecture, known as brick Gothic and Renaissance 

[8]. At that time, most bricks were solid and relatively small in size. Today, hollow bricks 

are used in many projects. Hollow clay bricks are vertically perforated bricks having the 

advantages being lighter and more efficient. They are used because they have better 
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strength characteristics and are economically more interesting. Additionally, they provide 

better thermal and acoustic insulation [9]. 

Insulating masonry building blocks exist in a variety of configurations. Some have 

multicores, others have interlocking parts. According to Lourenço and Vasconcelos [10], 

the design of an insulated perforated masonry block is defined based on three main 

parameters: (i) the structural behavior (associated to requirements of the construction 

system), (ii) its thermal performance, and (iii) ergonomics. The structural behavior is 

primarily defined by the compressive strength of the block, measured both perpendicular 

and parallel to the mortar bed. Other mechanical parameters such as shear, flexural 

strength, and robustness of the blocks exposed to combined vertical and horizontal in-

plane loadings are also important but can somewhat be ignored at a preliminary design 

stage. The thermal performances take the major role in the design of insulated masonry 

blocks. The geometry and arrangement of the internal cells heavily influence the thermal 

conductivity. Large perforations and insulated voids reduce the heat transfer through the 

block, but also make it weaker. Therefore, it is crucial to find the best possible material 

arrangement taking into account the minimal structural requirements. For fired-clay 

blocks, further geometric requirements can be found in Eurocode (EC) 6 which discusses 

the recommended percentage of holes, the thickness of the webs and shells [11]. Finally, 

concerning ergonomics, attention must be given to the ease of use of the masonry blocks, 

like i.e. limiting the maximum size of the blocks or having a center hole for easy manually 

handling. 

The book ‘Eco-efficient Masonry Bricks and Blocks’ by F. Pacheco et al. [12] provides the 

starting point for this case study. In this work, an up-to-date state-of-the-art review about 

eco-efficiency of masonry units, their design, performance and durability is given. Pore 

forming techniques such as the insertion of organic material in fired clay bricks serve a 

possible solution to increase the thermal resistance. Cellular concrete is another widely 

used building component that has more or less the same effect. Another study in this 

book focused on the improvement of the general shape of blocks in order to improve their 

equivalent (and homogenized) thermal conductivity, clearly a TO problem. 
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In this case study, the thermal efficiency of a masonry block will be improved by finding 

an optimized cross-sectional material distribution, independent from material properties. 

This concept is also addressed by Bruggi and Taliercio in [13]. In order to optimize the 

cross-sectional area, topology optimization techniques are used. TO is considered the 

most suited method in contrast to traditional optimization methods that use parametric 

studies, as the optimized shape of an element is sought after based on clearly defined 

objectives, and boundary conditions, and without prejudice of the designer. In this case, 

the algorithm that was presented in Section 3.2 is adopted.  

An essential aspect of the design problem is that the steel bracket is fully surrounded by 

insulation material. Therefore, thermal conduction is the dominant form of heat transfer 

and allows for the mathematical problem to disregard other, more complex, heat transfer 

mechanisms such as convection and radiation. In the end, a simple model is achieved, 

but where the physics are still described accurately. 

First, the study parameters are formulated, whereafter the results of various topology 

optimized designs are presented. Secondly, their structural and thermal performances are 

analyzed to allow for good comparison. For this, a post-numerical nonlinear FE study was 

performed. This section ends with some general thoughts on three-dimensional 

optimization for fired-clay bricks, and some further improvements that would allow the 

algorithm to be used for the design of single-leaf masonry walls with sufficient thermal 

performances. 

3.4.1.1 Study parameters 

A reference block (Figure 3.1a) is chosen to better allow for the comparison of the 

resulting geometries. The design of this block is inspired by an eco-friendly ceramic 

masonry block by Wienerberger (Thermobrick 15N R+) [14]. Its dimensions are 300 mm 

long, 140 mm wide, and 190 mm high and the ratio between the net and the gross volume 

is exactly 50%. These dimensions and volume ratio are then adopted to construct the 

design domain of the optimization problem (Figure 3.1b). The TO problem is studied in 

two dimensions. This means that only the horizontal cross-sectional area (300 × 140 mm) 
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is optimized. The mesh has a size of 600 × 280 elements, but only the gray area of this 

design is the layout that can be optimized. The elements on the boundary of the block 

(8 mm wide) have a fixed density of xe = 1. Ergonomics are considered by enforcing the 

appearance of a central void. This white region (a rectangular zone of approximately 80 

by 34 mm) has a fixed density, where xe is always 0.  

 

     

(a)  (b) 

Figure 3.1. (a) Geometry of the reference masonry block (cross-sectional view) and (b) 

the design domain of the optimization problem (the gray area is to be optimized). 

 

As explained in Section 3.2, the primary objective is the minimization of the thermal 

compliance. Luckily, the thermal compliance is proportional to the thermal transmittance. 

In this study, the conductive heat transfer is considered in the Y direction (up-down).  

Finally, also a minimum member size (internal web thickness) is imposed by adjusting the 

filter value of the density filter (cfr. Section 2.4.4) 

When the thermal compliance is the only objective considered, and no structural 

constraints are active, no useful results can be obtained. The optimization algorithm 

struggles to converge, and the material is positioned in random strips (Zebra striping) in 

the design domain (Figure 3.2a). This can be explained by the fact that mathematically, all 

solutions with horizontal organizations of the two material phases are equal. Hence, there 

is no singular optimum that can be found. This problem is partially resolved by activating 

the fixed densities to the sides and center of the block (Figure 3.2b), however, no 

meaningful optimization is established.  
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Therefore, in this study, also the in-plane structural compliance of the block (parallel to 

the mortar bed) is constrained and by doing so, the lateral stiffnesses of the blocks are 

optimized at the same time. This makes it possible to include European code requirements 

concerning minimal strength values and make it possible to manufacture them using 

existing extrusion processes. According to Eurocode 6 the minimum value for the direct 

mean compressive strength in the X and Y-direction (parallel to the mortar bed) are 

respectively 2.0 N/mm2 and 5.0 N/mm2 [15]. These conditions are considered by 

measuring the structural compliances under two different load cases, each having two 

counteracting uniform loads (px and py) on the boundary of the design domain (Figure 

3.3). 

 

 
(a) (b) 

Figure 3.2. Preliminary results of the first case study without structural constraints. (a) 

‘Zebra striping’ problem, (b) resulting topology when the fixed densities at the 

boundaries and at the centre are activated. 

 

 

Figure 3.3. Design domain with the interacting uniform loads px and py. 
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Before the first set of optimized blocks is presented the influence of the penalization value, 

the filter value, the geometric restrictions, and the external loadings are investigated. 

Figure 3.4 shows some of the obtained results.  

First, it is found that the penalization value is best to be taken around p = 3, as this value 

gives the best convergence of the optimization process. Additionally, this value is also 

large enough so that the solutions do not have any remaining intermediate densities. 

Secondly, in order to prevent the appearance of small internal webs (as in Figure 3.4a and 

3.4b), the filter value is set to 6 which (more or less) means that six elements are needed 

to go from an element with a density of 1 to an element with a density of 0. As such, when 

used alongside the mesh containing 600 × 280 elements, the minimum member thickness 

is equal to 3 mm. After a sufficient number of iterations, this value is again reduced to 1 

in order to retrieve a clean (sharp) geometrical boundary.  

The solutions in Figure 3.4c and 3.4d show the results when the design is loaded by a 

series of concentrated loads instead of uniform loads (thus, a concentrated load every few 

nodes). Although the influence seems interesting, it diminishes when the solid boundary 

is activated.  

Finally, in Figure 3.4e and 3.4f, the ergonomic constraints are activated by enforcing the 

appearance of a central void and includes the minimum length-scale control of the webs. 

The relative difference between these two figures is caused by different requirements for 

the lateral stiffnesses. Figure 3.4f shows a design where the horizontal stiffness (in the X-

direction) has been given an increased importance. 

3.4.1.2 Post-numerical analysis 

In order to verify the performances of the different designs, and because the values of the 

structural and thermal compliances are too vague, a post-numerical analysis is performed 

that better estimates the structural and thermal performances with respect to the code 

requirements. For this, some additional numerical analyses are performed. The applied 

method for each analysis is described below. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 3.4. Examples of topological optimized rectangular masonry blocks to illustrate the 

influences of the penalization value, the filter value, geometric restrictions, and external 

loading. 

 

3.4.1.2.1 The structural performances 

An identical loading situation (as elaborated above) is used for the post analysis. However, 

now a more realistic material model is assumed. Typical masonry blocks are built from 

fired clay. This material can be regarded as heterogeneous and anisotropic. When 

combining it with the presence of mortar or grouted joints, the structural behavior is not 

straightforward [16]. Besides direct compressive failure, the failure of masonry blocks is 

characterized by spalling, buckling, separation of the shells, and vertical splitting and 

crushing of the webs [12]. An in-depth study regarding the importance of all these distinct 

phenomena and specific failure modes lies outside the scope of this PhD. On the other 
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hand, the structural performance must be studied to some degree of detail. To enable the 

analysis of the structural efficiency, a nonlinear material model is adopted from the work 

of Bolhassani et al. [17]. In this study, the heterogeneous and anisotropic properties of 

masonry block units are simulated by using an Abaqus-compatible concrete damage 

plasticity model. The used model and its essential values are given in Figure 3.5. Here, 

tu [MPa] is the ultimate tensile strength of the material, and c0 and cu are the initial 

and ultimate compressive strength respectively. Using this model, the nonlinear response 

of a masonry unit can be studied. The direct compressive strength is thus defined as the 

maximum reaction force divided by the gross area of the masonry block. This strength is 

calculated both in the X and Y-direction, respectively x and y (kN). 

 

 

Figure 3.5. Parameters of the used material model for uniaxial loading in tension and 

compression. Values adopted from [17]. 

 

3.4.1.2.2 The thermal performances 

To determine the thermal performances of the different blocks, the equivalent thermal 

conductivity is calculated. The law of heat conduction, also known as Fourier’s law, states 

that "the time rate of heat transfer through a material is proportional to the negative 

gradient in the temperature and to the area, at right angles to that gradient, through which 

the heat flows”. In differential form this is written as: 
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q T= −   (3.14) 

where, q is the heat flux expressed in W/m²,  is the material conductivity in W/mK, and ∇T is the temperature gradient in K/m. 

In this study, we focus on measuring the equivalent thermal conductivity of the structure. 

For this, we integrate the above differential equation over the total surface (A). In steady-

state heat conduction, and assuming isotropic thermal conductivity, the heat flow (Q) 

between the two boundaries at constant temperature is then given by the following 

formula: 

T
Q A

x
 

= −


 (3.14) 

Using this equation, we can easily determine the equivalent thermal conductivity  . This 

lambda can be interpreted as the material conductivity of the block as if the complex 

internal structure was replaced by a homogenous material. 

For the calculations in this study, the -value of the solid material is set to 0.28 W/mK 

(fired-clay) and the -value of the voids is set to 0.040 W/mK (mineral wool).  

Finally, an example of the FE-mesh is presented in Figure 3.6. The mesh seed is 2 mm, 

and a quad-dominated advancing-front meshing algorithm was used. 

 

 

Figure 3.6. Example of the FE mesh as used in the post-numerical analyses. 



Chapter 3: Multi-Physics Topology Optimization 

  62 

3.4.1.3 Results 

The first set of results shows the influence of the load distribution between the load in the 

X and Y-direction. The optimized geometries are presented in Figure 3.7. The masonry 

block positioned in the middle (Figure 3.7c) is optimized with an X-Y load ratio equal to 

one, whereas Figure 3.7a and 3.7b shows the resulting geometries for a block with a 

higher X-Y load ratio. In contrast, Figure 3.7d and 3.7e have a lower X-Y load ratio. The 

values of thermal and structural performances based on the numerical study are given in 

Table. 3.1 and are compared to the values of the reference block. For all load ratio’s, the 

equivalent thermal conductivity and direct compressive strength is given. Numbers typed 

in bold have a relatively better value in comparison to the reference block. The values 

perpendicular to the cross-sectional plane (Z-axis) are not shown in the table as they are 

the same for all solutions because the total net area is identical (buckling of the internal 

webs is not considered). The equivalent thermal conductivity in the Z-direction is 0.140 

W/mK, and the direct compressive strength in the Z-direction is 10.5 MPa. 

 

Table 3.1. Comparison of the structural and thermal performances of the optimized blocks 

to the reference block. Results from the first set of results (as presented in Figure 3.7). 

 

Figure px / py 
x  

(W/mK) 

y  

(W/mK) 

x  

(MPa) 

y  

(MPa) 

3.1a Ref. block 0.121 0.127 4.4 2.1 

3.7a 4 0.144 0.102 5.0 1.7 

3.7b 2 0.137 0.113 3.9 1.8 

3.7c 1 0.127 0.125 2.9 2.6 

3.7d 1/2 0.120 0.131 2.9 2.9 

3.7e 1/4 0.112 0.137 1.9 3.1 
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Table 3.2. Comparison of the structural and thermal performances of the optimized blocks 

and the reference block. Results from the second set of results (presented in Figure 3.8). 

Figure 
Reduction of 

initial stiffness 

x  

(W/mK) 

y  

(W/mK) 

x 

(MPa) 

y 

(MPa) 

3.1a Ref. block 0.121 0.127 4.4 2.1 

3.8a 1 0.136 0.116 4.5 2.5 

3.8b 2 0.139 0.099 3.7 1.7 

3.8c 4 0.129 0.099 2.1 1.7 

3.8d 10000 0.130 0.086 1.8 1.1 

 

The first aspect that can be observed is that when the load ratio is increased, the thermal 

performances in the Y-direction improve, as well as having better structural performances 

in the X-direction. Nevertheless, improving the performances in one direction, negatively 

influences the performances in the other direction. This means that the requirements for 

the lateral compressive strengths along with the thermal conductivity in the Y direction 

are the main important parameters in this study and should be closely checked with code 

regulations. 

The second set of results (Figure 3.8) shows the optimized topologies of masonry blocks 

for which the structural stiffness in the Y-direction is gradually reduced while minimizing 

the thermal transmittance across the Y-direction. The idea is that a pareto front can be 

obtained, and that based on the exact requirements of the lateral compressive strength, 

the most optimal solution can then be selected. For this parametric study, the resulting 

topology of Figure 3.8a (which is a slight variation of (Figure 3.7b) forms the starting point 

of the subsequent parametric study. Figure 3.8b and 3.8c show the resulting geometries 

for which the values of the lateral stiffness in the Y-direction were decreased by 

respectively a factor 2 and 4, and Figure 3.8d shows the optimized topology when (almost) 

no lateral stiffness is required at all. Table 3.2 gives the values of thermal and structural 
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performances of these geometries in comparison to the values of the reference block. 

Again, numbers that are presented in bold have a relative better value in comparison to 

the reference block. 

As can be observed, when considering the minimum values presented by Eurocode 8 

(see Section 3.4.1.1) the lateral stiffness in the X-direction of the block in Figure 3.8c is 

still sufficiently strong. Hence, this layout could prove to be a good design for novel 

thermally efficient masonry blocks. 

3.4.2 Case 2: Thermally efficient brickwork support 
bracket 

In this second case study, a brickwork support bracket is studied (Figure 3.9). The design 

of such bracket is a relevant multi-physics design problem as these are typically made 

from stainless steel and when poorly designed can reduce the thermal performance of the 

whole building envelope. The goal of the topology optimization approach is to minimize 

the heat loss through cold bridging and thus improve the energy efficiency of the bracket. 

For this, the short cantilever beam problem is used as the design domain of choice. This 

is another classical benchmark 2D-problem used in many structural topology optimization 

studies, where one side of a square design domain is fixed and a vertical load acts on the 

opposite side. Like in the previous study, not only the structural performances are 

optimized, but also the thermal performances. However, now a different theoretical 

framework is used, as presented in Section 3.2 and 3.3. A one-material TO study is 

presented at first; this study analyzes the influence of certain parameters of the structural 

and thermal interpolation functions used in the TO implementation and discusses the 

importance of using realistic values for intermediate densities, which can constitute part 

of the optimized solution. The second study then presents the two-material TO approach 

for multi-physics optimization and demonstrates its advantages in comparison to the 

previous approach. Finally, at the end, a real-world brickwork support bracket is optimized 

using the two-material approach and an optimized design is found. 
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Figure 3.9. A brickwork support bracket with improved heat transfer characteristics. 

Source: Adapted from [14]. 

 

In this case study, the heat flow through the design domain from left to right (Figure 3.10) 

is minimized by measuring the thermal compliance of the domain. Additionally, a 

constraint is put on the design’s minimum stiffness, and a limitation is set on the maximum 

material fraction to be used. An essential aspect of this design problem is that the 

stainless-steel bracket is fully surrounded by insulation material. Therefore, thermal 

conduction is the dominant form of heat transfer and allows for the mathematical problem 

to disregard other, more complex, heat transfer mechanisms such as convection and 

radiation. In the end, a simple model is attained, where all the physics are still accurately 

described. The design domain, the boundary conditions, and the external loadings for the 

problem discussed in this study are shown in Figure 3.10 and the mathematical 

formulation of the design problem was described in Eq. (3.4). As can be seen on this 

figure, the mechanical and thermal loads are distributed over 3 nodes at the right-hand 

side boundary, and a block of 4 × 4 elements is kept frozen: their density is always 1 and 

their material properties thus match those of the most rigid material (e.g. stainless steel). 
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Figure 3.10. The design domain, boundary conditions, and location of external loads for 

the optimization problem that is presented in case study 2: thermally efficient brickwork 

support bracket. 

 

3.4.2.1 Study parameters 

The units in this study are set with respect to the standard International System; lengths 

are in millimeter (mm), force units are newton (N), and the Young’s modulus is given in 

mega-Pascal (MPa), whereas the thermal load units are in Watt (W), the thermodynamic 

temperature is given in Kelvin (K), and the thermal conductivity of a material is 

programmed in Watts per millimeter-Kelvin (W/mmK). The in-plane dimensions of the 

design domain are 100 × 100 mm, and its thickness is 1 mm. Esolid and λsolid are 

normalized to unit values, meaning that the maximum material stiffness is 1 N/mm² and 

the lambda value of a solid element has a value of 1 W/mmK. Evoid and λvoid are varied 

but their initial value is taken as 1e-3. The total mechanical load (fv) is set to -1 N, and 

the total thermal load (q) is -1 W (meaning that heat is extracted from the domain). 

Normalizing these values simplifies the numerical calculation and its mathematical 

implementation without restraining functionality. The effective compliances can be 

calculated at any time using the analytical formulas in Eq. (3.14).  

2
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The effective compliance is thus proportional to the normalized values of Cs and Ct. 

Derived from this, a doubling of the load will increase the compliance with a factor of 4. 

On the other hand, a doubling of the material’s maximum E-modulus, the minimum 

thermal conductivity or thickness will cause a halving of the compliance. In theory, the 

compliance is also independent of the dimensions of the design domain, as long as the 

aspect ratio (proportional relationship between the domain’s width and height) does not 

change. Likewise, the number of elements that are used (mesh quality) does not influence 

this value when the filter radius (rmin) is mesh-independently defined. Here rmin is equal 

to 2; for a mesh containing 100 × 100 elements. Small numerical errors still remain but 

these are inherent to the finite element method. However, this error can be disregarded 

as long as the mesh of the design domain is not taken too coarse. 

Finally, the stopping criterion of the optimization process is defined by measuring the 

maximum change in design variables from one iteration to the next. The main loop is 

terminated if the change in design variables is less than 2%. 

3.4.2.2 Results 

3.4.2.2.1 Minimum compliance design 

To determine the constraint value of the structural compliance, a traditional minimum 

compliance design is generated first. The maximum volume of the design (Vmax) is set to 

20% and ps (structural penalization parameter) and pt (thermal penalization parameter) in 

Eq. (3.5) and Eq. (3.6) are set to 3 and 2 respectively. By doing so, an element with an 

intermediate density will have a relatively lower stiffness while retaining a relatively higher 

thermal conductivity and is therefore not desirable. This should stimulate black-and-white 

solutions. The used material properties are presented in Table 3.3.  

The resulting optimized design is shown in Figure 3.11. After 185 iterations, the value of 

the structural compliance (deformability) converges to 38.5 J (Joules) and the value for 

the thermal compliance (transmittance) is 8.1 J. 



Chapter 3: Multi-Physics Topology Optimization 

  69 

Table 3.3. Thermo-mechanical properties of the materials as used in the first numerical 

study of case study 2. 

solid void Esolid Evoid  

1 1e-3 1 1e-3 0.3 

 

 

Figure 3.11. Minimum structural compliance design for the short cantilever beam problem 

with a material reduction of 80%. 

 

3.4.2.2.2 Study 1 – Multi-Physics optimization 

Now that we have determined the constraint value of the structural compliance (38.5 J), 

the multi-physics algorithm can be applied. Of course, it can be expected that when the 

exact same value for Cs is used, no significant changes should occur. Indeed, almost the 

exact same optimized structure is found (Figure 3.12a). Running the multi-physics 

optimization algorithm renders a negligible 1%-increase in thermal performances, caused 

by the algorithm finding a slightly better local optimum. 

In order to improve the design’s thermal performances, the structural constraint value of 

38.5 J can be modified, or an increase of the maximum allowable volume fraction is 

required. Because the idea is to keep the same stiffness for the bracket, the latter option 

is chosen. The results are presented in Figure 3.12. The corresponding values of the 

optimized thermal compliances and their relative gains are shown in Table 3.4. 
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(a) 20% (b) 25% (c) 30% 

   
(d) 35% (e) 40% (f) 45% 

Figure 3.12. Maximum thermal compliance designs with ps / pt = 3 / 2, and for which the 

maximum allowable volume fraction is varied: (a) 20%, (b) 25%, (c) 30%, (d) 35%, (e) 

40%, and (f) 45%. 

 

Table 3.4 Values of Cs, Ct, and Vf attained from the first set of optimized solutions from 

Figures 3.11 and 3.12. 

Figure Cs Ct Gains Vf # iterations 

3.11 38.5 8.1 - 20% 185 

3.12a 38.5 8.1 +0% 20% 200 

3.12b 38.5 11.3 +40% 25% 192 

3.12c 38.5 13.7 +69% 30% 700 

3.12d 38.5 14.9 +84% 35% 807 

3.12e 38.5 16.1 +99% 40% 407 

3.12f 38.5 16.9 +109% 45% 336 

 

A material addition of only 5% results in a remarkable 40%-increase of the structure’s 

thermal performance. It can also be observed that the relative gains become smaller when 
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subsequent material is added (Figure 3.13). The maximum volume fraction in the studies 

that follow are limited to 30% and 40%. 

 

 

Figure 3.13. Relative gains for the structure’s thermal performance for increasing allowable 

volume fractions. 

 

As mentioned by Bendsøe and Sigmund in [18]: “It is crucial to recognize if a topology 

design study is supposed to lead to black-and-white designs or if composites can 

constitute part of the optimal solution.” Before, it was mentioned that using ps = 3 and pt 

= 2 for the thermal interpolation function would stimulate black-and-white solutions 

because the use of intermediate densities is non-optimal. In agreement, the preliminary 

study showed good convergence to such a binary structural layout. However, the physical 

relevance of ps = 3 and pt = 2 is not proven experimentally and is perhaps too 

disadvantageous in this multi-physics study. Maybe a composite material or 

microstructure could be created that has better intermediate-density properties. As of 

today, the correlation between the interpolation curves in multi-physics topology 

optimization has not been studied in detail. Subsequently, in the following parametric 

studies, the influence of the penalization parameter p and the bounds on the material 
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properties are analyzed. It is demonstrated that some values of pt do not always guarantee 

black-and-white solutions and that different values of Evoid and λvoid are influential.  

In the first parametric study, the parameters ps and pt are varied. These p-values influence 

the corresponding interpolation curve and they, at their turn, influence the optimal design 

solution. Six different variations are presented in Figure 3.14, and their values and 

performances are given in Table 3.5. 

 

   
(a) 3 / 2 (b) 3 / 3 (c) 3 / 4 

   
(d) 3 / 2 (e) 3 / 3 (f) 3 / 4 

Figure 3.14. Optimal topologies for parametric set 1: (a-c) Vf  = 30% and (d-f) Vf  = 40%. 

Also, ps / pt is indicated below the figure, and Evoid / void is set to 1e-3 / 1e-3 for all 

cases. 

 

It can be noticed that when ps is larger than pt (Figures 3.14a and 3.14d), no gray 

elements arise in the optimized solution. This is because elements with intermediate 

densities are not beneficial. Their structural performances are weak and their thermal 

performance worse. On the other hand, the solutions in Figures 3.14c and 3.14f show that 

gray elements can constitute part of the optimal solution. This can be explained by the 

fact that these intermediate densities are beneficial for the design’s performances. The 

gray elements have a low stiffness but offer good thermal insulating qualities, and hence 
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largely reduce the heat flow through the design at a low material cost. They create a 

thermal break in the design and reduce the heat extraction from the thermal load, while 

maintaining sufficient structural stiffness. While p = 4 may not be the most realistic 

interpolation parameter, they do provide intelligent and convincing design solutions. 

 

Table 3.5. Values of ps and pt as employed in the first parametric set of solutions and the 

function values.  

Figure ps / pt Evoid / void Ct Gains Vf 

3.14a 3 / 2 1e-3 / 1e-3 13.7 - 30% 

3.14b 3 / 3 1e-3 / 1e-3 17.7 +29% 30% 

3.14c 3 / 4 1e-3 / 1e-3 40.6 +196% 30% 

3.14d 3 / 2 1e-3 / 1e-3 16.1 - 40% 

3.14e 3 / 3 1e-3 / 1e-3 23.1 +43% 40% 

3.14f 3 / 4 1e-3 / 1e-3 57.0 +254% 40% 

 

In the second and third parametric sets, it is demonstrated that not only the penalization 

parameter p but also the maximum and minimum values of E and  impact the design 

solutions. In other words, the relative difference between the minimum and maximum 

values of the material properties is studied. In order to do this, only the minimum values 

are changed. In Figures 3.15 and 3.16, 12 different variations are investigated. Parametric 

set 2 shows the optimized solutions in which the values of Evoid and void are changed 

from 1e-3 / 1e-3 to 1e-6 / 1e-2 respectively. In parametric set 3, the values are changed 

to 1e-2 and 1e-6. 

Increasing the minimum value of the thermal conductivity (void) while decreasing the 

minimum value of the Young’s modulus (Evoid) makes the intermediate densities less 

effective. The gray elements are less stiff in relation to their thermal properties. 

Nevertheless, these intermediate densities are still included in the optimized solutions and 
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again form a thermal break (Figures 3.15c and 3.15f). Comparing the results of the 

optimized solutions with that of the first studied set, the thermal compliances are lower 

and the gains less prominent (Table 3.6). 

 

   
(a) 3 / 2 (b) 3 / 3 (c) 3 / 4 

   
(d) 3 / 2 (e) 3 / 3 (f) 3 / 4 

Figure 3.15. Optimized topologies for parametric set 2: (a-c) Vf  = 30% and (d-f) Vf  = 

40%. Also ps / pt is indicated below the figure, and Evoid / void is set to 1e-6 / 1e-2 for 

all cases. 

 

Table 3.6. Parameters and results from the second studied set of solutions. 

Figure ps / pt Evoid / void Ct Gains Vf 

3.15a 3 / 2 1e-6 / 1e-2 12.2 - 30% 

3.15b 3 / 3 1e-6 / 1e-2 15.0 +23% 30% 

3.15c 3 / 4 1e-6 / 1e-2 21.1 +73% 30% 

3.15d 3 / 2 1e-6 / 1e-2 13.6 - 40% 

3.15e 3 / 3 1e-6 / 1e-2 17.8 +31% 40% 

3.15f 3 / 4 1e-6 / 1e-2 27.7 +104% 40% 
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In contrast, the results in parametric set 3 (Figure 3.16) apparently have no intermediate 

densities. The minimum value of E provides enough stiffness for the algorithm to make 

use of the ‘void’ material and create small scissions and interlocking patterns in the design. 

Obviously, these disconnecting white regions create a superior thermal break and 

subsequently very high values of Ct are achieved (Table 3.7). The question remains how 

to interpret the results from such optimization studies. Gray elements create efficient 

thermal breaks, but can a material with these mixed properties be created? Interlocking 

black-and-white patterns also provide interesting structures to improve the design’s 

thermal characteristics but do not give much certitude that they can perform what was 

theoretically promised. As mentioned before, the true power of topology optimization is 

that it is able to produce optimized designs that do not depend on the designer’s a priori 

knowledge. However, in this case, a large number of questions still remain. Different 

parameters influence the design, and interpretation of intermediate elements is difficult. A 

multi-material approach is presented in the next paragraph to eliminate these concerns 

and ambiguities 

 

   
(a) 3 / 2 (b) 3 / 3 (c) 3 / 4 

   
(d) 3 / 2 (e) 3 / 3 (f) 3 / 4 

Figure 3.16. Optimized topologies for parametric set 3: (a-c) Vf  = 30% and (d-f) Vf  = 

40%. Also, ps / pt is indicated below the figure, and Evoid / void is set to 1e-2 / 1e-6 for 

all cases. 
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Table 3.7. Parameters and results from the third set of solutions. 

Figure ps / pt Evoid / void Ct Gains Vf 

3.16a 3 / 2 1e-2 / 1e-6 7683.6 - 30% 

3.16b 3 / 3 1e-2 / 1e-6 23944.6 +212% 30% 

3.16c 3 / 4 1e-2 / 1e-6 35889.7 +367% 30% 

3.16d 3 / 2 1e-2 / 1e-6 37119.7 - 40% 

3.16e 3 / 3 1e-2 / 1e-6 48000.5 +29% 40% 

3.16f 3 / 4 1e-2 / 1e-6 60279.2 +62% 40% 

 

3.4.2.2.3 Study 2 – Two-material optimization 

As demonstrated in study 1, a multi-physics topology optimization approach is easily 

influenced by even slight changes in the material parameters. Therefore, in this subsection 

another approach is proposed: once it is clear that intermediate densities could arise, a 

multi-material approach can be implemented, providing a more robust method to solve 

the problem. In this study, the two-material approach from Section 3.3 is implemented, 

thus a second vector of design variables is added to the optimization process. The goal is 

identical to the previous study. However, this approach should eliminate the appearance 

of gray elements and provide more practical design solutions. In the following study, the 

material properties of the ‘void’ material and the stiffest material (solid - material 2) are 

kept constant while the thermomechanical properties of the extra material (solid – material 

1) are varied (Table 3.8). 

The results of the study are shown in Figure 3.17. The black pixels or elements represent 

the presence of the stiffest material, with properties E2 and 2 (steel or aluminum). While 

the white pixels represent the soft material with Evoid and void (insulating material), the 

presence of the extra solid material 1 (E1 and 1) is illustrated by use of a color. The 

different colors represent different materials such as rubber, polyester, or polyamide. In 

all cases, material 1 has a lower stiffness than material 2, but has a lower thermal 
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conductivity. As before, the constraint on the structural compliance is limited to 38.5 J 

and the maximum volume fraction is 30% or 40%. This volume constraint only affects the 

first vector of design variables, the variables that control the relationship between the soft 

and the solid material (1 or 2). The ratio between material 1 and 2 is not controlled in any 

way by the algorithm. It can thus choose freely to use the material it deems most optimal. 

The difference in material properties between material 1 and 2 is based on real materials. 

As can be seen on Figure 3.17, three colors are used: red, green, and blue. The ‘red’ 

material is based on the material properties of linearized rubber versus steel; the ‘green’ 

material is based on the difference in properties of polyester versus steel; and the ‘blue’ 

color is created based on the difference in properties between polyamide and aluminum. 

Evoid and void are set to 1e-6, and the SIMP penalization parameters that are used are ps 

= 3 and pt = 2.  

 

Table 3.8. Thermo-mechanical properties of the multi-material optimization study 

 

The results of the multi-material study (Table 3.9) clearly show that for a volume fraction 

of 30% only the green and blue material is positioned to act as a thermal break. The other 

material (red) is too weak to be used as a thermal break and still satisfy the structural 

stiffness constraint. The optimized solutions with a volume fraction of 40% show similar 

results. Again, the green and blue materials are creating a thermal break. However, it must 

 E1 / E2 (N/mm²)  E1 / E2 (N/mm²) 

Red 100 / 210000 >>> 0.0005 / 1 

Green 2500 / 210000 >>> 0.0119 / 1 

Blue 1300 / 69000 >>> 0.0188 / 1 

 1 / 2 (W/mK)  1 / 2 (W/mmK) 

Red 0.15 / 50 >>> 0.003 / 1 

Green 0.20 / 50 >>> 0.004 / 1 

Blue 0.28 / 205 >>> 0.001 / 1 
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be mentioned that since aluminum has a much higher thermal conductivity than steel, it 

is more beneficial to use the extra material (in this case polyamide) and the gains are 

easier to achieve in comparison to the other examples. Therefore, the solutions of the 

blue designs cannot be compared 1 to 1 with those of the red and green designs. 

 

    
(a) (b) (c) 

    
(d) (e) (f) 

Figure 3.17. Optimized designs for the multi-material topology optimization study. The 

‘red’ material is based on the material properties of linearized rubber versus steel; the 

‘green’ material is based on the difference in properties of polyester versus steel; and the 

‘blue’ color is created based on the difference in properties between polyamide and 

aluminum. 

 

3.4.2.2.4 Study 3 – Optimized support bracket 

Following the numerical studies performed in previous subsections, this part discusses a 

more realistic case study example, namely, the optimization of the original brickwork 

support bracket as presented in Figure 3.10. The problem formulation is similar to that of 

the previous studies. However, now the boundary conditions and the loads are adopted 

more closely to the real product (Figure 3.19) and the material properties are also not 

normalized. 
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Table 3.9. Results of the optimization study 2 compared with the results from Table 3.4. 

 

According to Halfen, the design illustrated in Figure 3.9 is a relatively newly developed 

brickwork support bracket with improved heat transfer characteristics [19]. Also, the Halfen 

HK5 Anchor has a higher load capacity and requires less steel than its predecessor, while 

reducing the effect of thermal bridging. The maximum vertical mechanical load is 4 kN 

and is located 60 mm from the edge, introducing a bending moment. The thermal loads 

are also attached on the left edge of the design domain. The material properties for E and 

λ are presented in Table 3.10. In this study, the properties of the extra material are based 

on ABS plastic and the insulating material is mineral wool. The material thermal 

conductivities are presented in W/mK instead of W/mmK.  

 

Table 3.10. Thermomechanical properties of the materials as employed in the case study. 

Color Material E (N/mm²)  (W/mK) 

Black Steel 210,000 50 

Green ABS 3500 0.15 

White Mineral wool 0.01 0.044 

Figure E1 1 Ct Gains Vf 

3.12c - - 13.7 - 30% 

3.17a 0.0005 0.003 26.9 +96% 30% 

3.17b 0.0119 0.004 36.2 +164% 30% 

3.17c 0.0188 0.001 94.9 +593% 30% 

3.12e - - 16.1 - 40% 

3.17d 0.0005 0.003 29.0 +80% 40% 

3.17e 0.0119 0.004 43.2 +168% 40% 

3.17f 0.0188 0.001 188.3 +1070% 40% 
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Figure 3.18. The brickwork support bracket design from Halfen [19], and the interpreted 

design domain, loads, and boundary conditions. 

 

First, a minimum structural compliance design is generated with a maximum volume 

fraction constraint of 20% (Figure 3.19a) Secondly, a multi-physics optimization is 

performed that maximizes the thermal compliance (Figures 3.19b and 3.19c). And finally, 

a multi-material optimization is also performed (Figures 3.19d, 3.19e and 3.19f). The 

structural and thermal performances of all the different solutions are presented in 

Table 3.11. 

As expected, the thermal performance improves when more material is available. The last 

design has the highest and overall best score and is characterized by two ABS thermal 

breaks. In this design, the green zones fully disconnect the supports from the thermal 

loads which aids in the reduction of the heat flow. However, the cost of ABS relative to 

stainless steel is not incorporated in the optimization. Now, each material has the same 

cost function (volume). Nevertheless, the gains for all solutions are quite good in 

comparison to the initial design. In particular, the first optimized design already provides 

satisfying gains. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.19. Optimized designs for the brickwork support bracket using the different 

optimization strategies (white = mineral wool, black = steel, and green = ABS plastic). 

 

Table 3.11. Structural and thermal performances of the optimized designs for the 

brickwork support brackets. 

Figure ps / pt Cs Ct gains Vf 

3.19a 3 / 2 3.06 3.90 - 20% 

3.19b 3 / 2 3.06 4.22 +8% 30% 

3.19c 3 / 2 3.06 4.29 +10% 40% 

3.19d 3 / 2 3.06 4.33 +11% 30% 

3.19e 3 / 2 3.06 4.38 +12% 40% 

3.19f 3 / 2 3.06 4.40 +13% 50% 
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3.4.2.2.5 Convergence plots 

In this subsection, the convergence of the objective and constraint functions are discussed 

(Figures 3.20 and 3.21). For this, the convergence plot (from the result in Figures 3.18e) 

was chosen as representative for most design solutions as they converged very similar 

for all results (often within 100 iterations). It is observed that the convergence of the 

structural compliance occurs quickly and is stable during subsequent iterations. Similarly, 

the convergence of the volume constraint is extremely swift. Concerning the thermal 

compliances, the convergence throughout all optimization studies is a bit more unstable 

with a sudden ramp arising when thermal breaks are created. The appearances of these 

thermal breaks in the solution are indicated a with vertical (red) dash line. In one 

exceptional case (Figures 3.21), it takes the optimization algorithm almost 300 iterations 

to converge. 

 

 

Figure 3.20. Convergence plot of the volume fraction, the structural, and the thermal 

compliance of the solution presented in Figure 3.17e. 
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Figure 3.21. Convergence plot of the volume fraction, the structural and the thermal 

compliance of the solution presented in Figure 3.17c. 

 

3.5 Discussion 

In this chapter, topology optimization was performed taking into account simultaneous 

structural and thermal analyses. The design of a thermally efficient masonry block and a 

brickwork support bracket were addressed. In both studies, the goal was to reduce 

localized thermal heat flow (cold bridging) while retaining sufficient stiffness. A number of 

problems related to multi-physics topology optimization were examined and the benefits 

of a two-material implementation were presented. The aim was to improve the robustness 

of such multi-physics optimization processes and provide a method to accurately 

determine beneficial design solutions.  
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3.5.1 Case 1: Thermally efficient masonry block 

In the first case study, it was shown that topology optimization can generate a large 

diversity of different material distributions, where the results are heavily influenced by the 

initial boundary conditions and study parameters. Attempts were made to explore new 

design ideas and open the existing mindset of thinking outside the box. Additionally, the 

subsequent analyses have shown that some distributions are more favorable than others. 

Therefore, studying the topology-optimized results could help to give a clue to why certain 

material distributions are preferred and others not so much.  

An advantage of the approach is that TO could potentially aid engineers and designers to 

understand better the underlaying mathematical physical problem and to see possible 

ways to optimize their design. A drawback of the approach was the need for post-

numerical validation. Unfortunately, this strengthens the current practice where TO is 

mainly used for the conceptual design phase. 

Additionally, this first case study has mainly focused on the two-dimensional TO of 

masonry blocks, where only the 2D cross-sectional area was considered. The idea behind 

this reasoning came from the fact that most existing masonry blocks are characterized as 

being two-dimensionally extruded perforated blocks. As such, it could be argued that a 

three-dimensional topology optimization approach would not provide the designer with 

any additional information. But this is too short sighted and forgets to take into account 

the fact that bricks are not made of linear elastic material. As such, buckling and spalling 

of the vertical webs is of major concern. Also, with regards to the rise of new production 

methods as discussed in the introduction section of this doctoral thesis, new 

manufacturing methods could transform the production process of these blocks, where 

the shape of a masonry block is no longer forced to be 2D-extruded. 

An exploration of an approach where a brick is optimized in three dimensions, is shown 

in Figure 3.22. For this example, the Abaqus FE solver and optimizer was used. In this 

preliminary study, a force-controlled loading was used, and the brick was optimized to 

structural loads only. Unfortunately, in this analysis no thermal objective was yet defined. 
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Also, nonlinear failure modes such as buckling and spalling of the vertical webs were yet 

not included., and no manufacturing constraints were considered. The result shows a 

shape-complex geometry that leaves room for further investigation. 

 

 

Figure 3.22. A three-dimensionally optimized masonry block cut in half. 

 

Comparative discussion  

To conclude this subsection, a comparative discussion is given to compare the results 

from this work with the findings found in the work of Bruggi & Taliercio. [13]. Both 

frameworks are very similar ([13] was also referred to at the start of the methodology 

section of this case study). However, the initial problem formulation is not completely 

identical (e.g., the use of different design domains, application of a distinct interpolation 

model…). In this final discussion, the similarities and differences are briefly presented.   

As also found in the study by Bruggi & Taliercio, maximizing only the thermal properties 

of the masonry blocks leads to unfeasible designs: “a bulky inner core, with negligible 

out-of-plane stiffness”. Similar findings could be observed in this study (see Figure 3.23). 

Furthermore, Bruggi & Taliercio also studied a conventional staggered design, and for the 

same value of the lateral compliances, an optimized layout was generated. They registered, 

a decrease in transmittance of about 5% for the optimized block. Comparing this value, to 

the optimization of performances in this case study, as also shown in Figure 3.7c and the 

reference block of Figure 3.1a, a slightly lower improvement was achieved here. A 2% 

increase of performances was obtained. Finally, both studies do agree on the fact that the, 
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(quoting Bruggi & Taliercio): “optimal material distributions obtained can be exploited to 

achieve the pre-design of new and non-standard types of blocks”. 

 

 

Figure 3.23. The design of masonry blocks with enhanced thermomechanical 

performances by Bruggi & Taliercio [13]: (a) a conventional staggered design, and (b) the 

optimized layout achieved for the same values of non-dimensional compliances. 

 

Another comparable follow-up study was performed by Ganobjak & Carstensen [20], 

made public after the publication of the study discussed in this work. This paper also 

presents a similar approach towards using topology optimization to improve the properties 

of bricks and blocks. However, here also the use of silica aerogel filling is discussed. 

Again, very similar results were obtained. Ganobjak & Carstensen additionally 

demonstrated that the optimized bricks with aerogel filling have a much smaller U-value 

regardless of the bricklaying direction. Thus, it was found that much thinner walls could 

be constructed with the same thermal behavior.  

3.5.2 Case 2: Thermally efficient brickwork support 
bracket 

In the second case study, the preliminary results showed that a small increase of the 

maximum allowable volume fraction could largely improve the thermal performance while 

retaining equal stiffness. A small additional cost of raw materials thus proved to be very 
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beneficial in these kind of design problems. Further on, the first parametric study revealed 

that a combined structural and thermal topology optimization approach can cause serious 

confusion regarding material characterization. The penalization parameters that are used 

to construct the interpolation curves for the thermal density-conductivity relation are hard 

to determine and when choosing improbable parameters, interesting design solutions 

could be overlooked. To solve this problem, a multi-material topology optimization 

approach was included which added an extra set of design variables. In this way, a new 

type of material could be added with predefined properties. Using this multi-material, 

multi-physics approach, innovative and new topological solutions could be found. 

Choosing the right materials remains important, but unlike the traditional approach, the 

design solutions are unambiguous, and a realistic optimum could be obtained. The final 

study then optimized a brickwork support bracket inspired by a design of Halfen and an 

improved design proposal was found that included two ABS thermal breaks.  

Future research could focus on experimenting with more than one additional material and 

try to include a cost function to incorporate the price variance of different materials. Also, 

the incorporation of nonlinear material models into the algorithm could become relevant 

and the fact that the design of construction-related components is often affected by, not 

one, but many different disciplines should be taken into consideration. For example, in 

addition to structural and thermal performances, other aspects such as acoustic, fire safety 

or durability and long-term serviceability could be added.  

Another important question that remains is to which extent multi-material optimized 

solutions can already be realized in practice. Certain issues could be the material strength, 

the strength of the bonding between different materials, and manufacturing constraints 

that limit the production of the highly complex shapes. Also, as discussed in [21], joining 

or bonding a material with another has a certain cost. How can this be implemented in the 

algorithms? A first idea for a joint optimization as part of the topology optimization has 

been presented in [22], but still, much more research will be required to - not only provide 

theoretical optimized solutions - but also realisable solutions.  
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One of many possible solutions to the bonding problem is elaborated on in the next 

chapter presenting a single variable-based multi-material structural optimization approach. 

 

3.6 References 

[1] M. P. Bendsøe and O. Sigmund, Topology Optimization - Theory, Methods, and 

Applications. Springer Berlin Heidelberg, 2004, doi: 10.1007/978-3-662-05086-6. 

[2] O. Sigmund, “Design of multiphysics actuators using topology optimization – Part 

I: One-material structures,” Computer Methods in Applied Mechanics and 

Engineering, vol. 190, no. 49–50, pp. 6577–6604, Oct. 2001, doi: 10.1016/s0045-

7825(01)00251-1. 

[3] K. Maute, “Topology Optimization of Coupled Multi-Physics Problems,” in Topology 

Optimization in Structural and Continuum Mechanics, Springer Vienna, 2014, pp. 

421–437. doi: 10.1007/978-3-7091-1643-2_18. 

[4] C. Lundgaard, Topology optimization for multiphysics problems. Lyngby: DTU 

Mechanical Engineering, 2018. ISBN: 978-87-7475-529-6 

[5] O. Sigmund, “Topology optimization in multiphysics problems,” presented at the 7th 

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization, Aug. 1998. doi: 10.2514/6.1998-4905. 

[6] N. Dalkılıç and A. Nabikoğlu, “Traditional manufacturing of clay brick used in the 

historical buildings of Diyarbakir (Turkey),” Frontiers of Architectural Research, vol. 

6, no. 3, pp. 346–359, Sep. 2017, doi: 10.1016/j.foar.2017.06.003. 

[7] Long-term Performance and Durability of Masonry Structures. Elsevier, 2019, doi: 

https://doi.org/10.1016/C2016-0-03710-5. 

[8] The use of fired-clay bricks allowed these regions to developed specific styles of 

architecture, known as brick Gothic and Renaissance 



Chapter 3: Multi-Physics Topology Optimization 

  89 

[9] P. B. Lourenço, G. Vasconcelos, P. Medeiros, and J. Gouveia, “Vertically perforated 

clay brick masonry for loadbearing and non-loadbearing masonry walls,” 

Construction and Building Materials, vol. 24, no. 11, pp. 2317–2330, Nov. 2010, 

doi: 10.1016/j.conbuildmat.2010.04.010.  

[10] P. B. Lourenço and G. Vasconcelos, “The design and mechanical performance of 

high-performance perforated fired masonry bricks,” in Eco-Efficient Masonry Bricks 

and Blocks, Elsevier, 2015, pp. 13–44, doi: 10.1016/B978-1-78242-305-8.00002-

4. 

[11] CEN. Eurocode 6: Design of masonry structures - Part 1-1: General rules for 

reinforced and unreinforced masonry structures. European standard EN 1996-1-

1:2006: Brussels: Comité Européen de Normalisation; 2006. 

[12] F. Pacheco-Torgal etal, “Eco-efficient masonry bricks and blocks,” Cambridge: 

Woodhead Pub., 2015. 

[13] M. Bruggi and A. Taliercio, “Design of masonry blocks with enhanced 

thermomechanical performances by topology optimization,” Construction and 

Building Materials, vol. 48, pp. 424–433, Nov. 2013, doi: 

10.1016/j.conbuildmat.2013.07.023. 

[14] Wienerberger, “Porotherm Thermobrick 15N - thermisch isolerende 

binnenmuursteen,” Thermobrick 15N, 09-Apr-2019. [Online]. Available: 

https://www.wienerberger.be/Binnenmuur/productzoeker/thermobrick-15n.html. 

[Accessed: 29-Jan-2021]. 

[15] CEN. Eurocode 8: Design of structures for earthquake resistance - Part 1: General 

rules, seismic actions and rules for buildings (+ AC:2009). European standard EN 

1998-1:2014: Brussels: Comité Européen de Normalisation; 2014. 

[16] A Hamid, M Bolhassani, A Turner, E Minaie, and F L Moon, “Mechanical properties 

of ungrouted and grouted concrete masonry assemblages,” 12th Canadian Masonry 



Chapter 3: Multi-Physics Topology Optimization 

  90 

Symposium Vancouver, British Columbia, June 2–5, 2013, doi: 

10.13140/RG.2.1.3529.7443. 

[17] M. Bolhassani, A. A. Hamid, A. C. W. Lau, and F. Moon, “Simplified micro modeling 

of partially grouted masonry assemblages,” Construction and Building Materials, 

vol. 83, pp. 159–173, May 2015, doi: 10.1016/j.conbuildmat.2015.03.021. 

[18] M. P. Bendsøe and O. Sigmund, “Material interpolation schemes in topology 

optimization,” Archive of Applied Mechanics (Ingenieur Archiv), vol. 69, no. 9–10, 

pp. 635–654, Nov. 1999, doi: 10.1007/s004190050248. 

[19] Halfen, “New brickwork support bracket with greatly improved thermal heat transfer 

characteristics,” HK5 - Brickwork Support. [Online]. Available: 

http://www.halfen.com/en/771/products/brickwork-support-systems/. [Accessed: 

29-Jan-2021]. 

[20]  M. Ganobjak and J. V. Carstensen, “Topology-optimized insulating facebrick with 

aerogel filling,” J. Phys.: Conf. Ser., vol. 1343, p. 012195, Nov. 2019, doi: 

10.1088/1742-6596/1343/1/012195. 

[21] C. López et al., “Model-based, multi-material topology optimization taking into 

account cost and manufacturability,” Struct Multidisc Optim, vol. 62, no. 6, pp. 

2951–2973, Jun. 2020, doi: 10.1007/s00158-020-02641-0. 

[22] P. Falkenberg, T. Franke, S. Fiebig, and T. Vietor, “Consideration of adhesive joints 

for a multi-material topology optimization approach,” 20th International Conference 

in Composite Materials, 2015. 

 



Chapter 4: Topology Optimization & Additive Manufacturing 

  91 

CHAPTER IV 
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4.1 Introduction 

Some developments on multi-physics topology optimization for building components 

were already presented in Chapter 3. First, a framework was proposed for the combined 

optimization of both mechanical and thermal aspects of a design. Secondly, a multi-

material TO study was presented. The idea of the multi-material approach was to eliminate 

uncertainties regarding the interpolation parameters. As such a strict number of materials 

could be selected beforehand and from which the optimization process could determine 

the most ideal material distribution. This chapter presents an additional framework and 

focuses on bringing together two (e)merging technologies that show great potential for 

realizing highly efficient building structures: (i) topology optimization for simulation-driven 

design and (ii) additive manufacturing to produce the resulting complex optimized shapes. 

For this, a dedicated link between the two is made. 

Instead of aiming towards black-and-white TO solutions, the idea here is to allow for 

intermediate densities to remain present in the optimized solution. The reason for this is 

that intermediate densities (with ‘in-between’ material properties) could prove to be 

beneficial when used in multi-physics design problems. The concept of using the full 

range of material densities is based upon the ability of 3D printing to carefully control two 

mutually exclusive aspects of a produced part: the exterior walls (or perimeter) and its 

infill. The infill is the material that occupies the internal part of the final product. Typically, 

the percentage of the infill can be modified from 0% (a hollow part) to 100% (totally solid 

part). By linking this infill density to the original vector of design variables of the TO 

problem, a complete physical representation of the density variables is made. 

Nevertheless, the exact multi-physics material properties should be determined with care.  

In this chapter, the opportunities for such density-based topology optimization with 3D-

printable infill structures are presented. A general framework is constructed, and its 

challenges with regards to the thermal material characterization are addressed. A 

preliminary design problem is optimized and demonstrates its potential. Also, some 

problems regarding the material characterization are addressed. A next section shows how 
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a new penalty scheme can be constructed by investigating the homogenized properties of 

the infill patterns, and a complete new set of interpolation functions is created based on 

the homogenized properties of a triangular pattern. This chapter ends with a topology 

optimization study, performed using the GCMMA algorithm, and shows the principle of 

using a weighted-sum dual objective. One part of the equation will aim to maximize 

stiffness, while the other attempts to minimize the thermal transmittance. A case study is 

presented to demonstrate the effectiveness of this novel multi-physics optimization 

strategy. Results show a series of optimized topologies with a trade-off between structural 

and thermal efficiency. 

4.2 General framework 

With the rise of 3D printing, a different approach can be taken where the design variables 

(the density of each element) are being linked to 3D-printed infill densities. 3D-printed 

infill patterns are often used to further reduce weight and material cost [1]. The strength 

and stiffness of an object is then linked to the infill pattern and its density. Some parts in 

a structure may benefit more from a high-density internal structure, while in other parts 

this would be a waste of resources. Additionally, some studies have shown that 3-

dimensional infill patterns affect thermal performances by encapsulating air [2], and in [3] 

this is being investigated to inspire and create new insulation materials. 

In contrast to the framework of the previous chapter, this study will start by analyzing the 

specific mechanical and thermal material properties of such infill patterns and use this 

information to produce the new interpolation schemes. In this way, a new kind of multi-

material optimization can be performed without additional cost of adding a new vector of 

design variables for each additional material. One requirement is of course that the 

interpolation schemes correspond to the physical properties of the infill pattern. In this 

work, a numerical homogenization approach therefore is used. 
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4.2.1 Conceptual exploration 

As discussed before, the basic principle behind topology optimization with continuous 

design variables is that the material densities can attain any value between zero and one: 

zero meaning void or empty space and one meaning that material is present. In order to 

achieve a zero-and-one design (also referred to as black-and-white or solid/empty 

topology), the material properties are being penalized for intermediate values. In this way, 

it is better for the design algorithm to remove the intermediate ‘gray’ elements in favor of 

a design with only 1’s and 0’s. A benefit of such resulting topology is that it is easy to 

extract the final design and allows for straightforward manufacturing. This idea of material 

penalization is not a purely mathematical practice to enforce these black-and-white 

topologies but originates from the physical relationship between material properties and 

density in composite materials [4]. For example, within a structural design problem and 

using the SIMP method, a p-value of at least 3 means that the interpolation scheme is in 

accordance with the Hashin Shtrikman (HS) bounds on material properties (as also 

discussed in [4]). However, at some points on the interpolation curve, the most optimal 

(stiffest) material properties are not yet reached. In accordance, other schemes have been 

suggested [5,6], such as RAMP (Rational Approximation of Material Properties) and SINH 

(named according to the hyperbolic sin function: ‘sinh’), where material properties 

correspond better with the actual behavior. Nevertheless, these were mainly constructed 

for mechanical problems only and are not valid for multi-physics problems. Additionally, 

in this chapter, the influence of heat transfer by convection and radiation in the infill 

patterns is investigated. 

The basic concept for the framework is as follows: the design variables are being linked 

to the different realizable densities of a 3D-printed infill pattern (see example in 

Figure 4.1). A high density represents a solid structure with high stiffness, and certain 

thermal properties (but mostly weak), whereas an intermediate density provides the 

structure with improved insulation qualities, because air gets trapped in the small internal 

voids of the infill pattern. On the other hand, when the infill pattern’s density approaches 

0, the air cavities become much larger as such that the heat flow by convection and 
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radiation becomes relevant. This decreases the thermal performances of the infill 

structure. A simplified interpolation scheme that shows this concept is presented is Figure 

4.2 and its equations in Eq. (4.1).  Here xe = 0.5 has the optimal thermal performances. 

It can be observed that the design variables clearly have three extreme (optimal) states. 

One state symbolizes free flowing air (where, xe = 0), another state represents the solid 

structure (xe = 1). Finally, a third extreme state is observed at xe = 0.5, which symbolizes 

a thermally efficient infill structure.  

 

  

Figure 4.1. Different 3D-printed infill densities (material percentage) for a grid pattern. 

Source: manufactur3dmag.com 
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The exact mathematical validity of this interpolation scheme is of course not yet 

determined. For this, the true material properties of the infill pattern should be analyzed 

in detail. Section 4.3 will present a method for doing so. Nevertheless, a first preliminary 
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design study is performed to better grasp the importance and opportunities of this 

alternative penalization scheme for multi-physics TO problems. 

 

 

Figure 4.2. Simplified formulation of an interpolation scheme for multi-physics topology 

optimization with 3D-printable infill structures (according to the proposed equations in 

Eq. (4.1)). 

4.2.2 Preliminary pilot study 

4.2.2.1 Study parameters 

This pilot study presents a 2D design domain, representing a fictitious roof structure for 

a – to be 3D-printed – polymer-based pavilion. The roof structure is supported on its 

edges and is loaded by a distributed vertical load on the top and bottom surface. The 

boundary conditions and mechanical loadings for this problem are shown in Figure 4.3a. 

Then, the design domain is optimized for maximum stiffness and minimal thermal 

transmittance. More correct, two objectives are used, the first objective minimized the 

structural compliance, while the second maximizes the thermal compliance.  

The design domain contains 120 x 1200 square unit elements (1 x 1 mm), the equality 

constraint for the volume fraction of the optimization procedure is set to 50%, and the 
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value of the density filter is set to 4.8 mm. The loads of the problem are normalized, as 

well as the material properties. This means that the solutions might not be mathematically 

exact. However, the primary goal of this first pilot study is to investigate the validity of the 

constructed interpolation schemes, as presented in Eq. (4.1). A more realistic formulation 

of the same problem is presented in Section 4.3 and a complete version of the problem 

formulation is given in Section 4.4.1. 

The optimized topology that only considers the first objective is presented in Figure 4.3b. 

A second optimized result is shown in Figure 4.3c that only considers the second 

objective. A beam with the smallest thermal transmittance (Umean) is created. The voids 

are presented in blue, the solid material in red and the intermediate (thermally efficient) 

material is displayed in green. As can be noted, the optimized solution in Figure 4.3b does 

not include any of this green, thermally efficient material. A very stiff frame-like structure 

is created. In contrast, the solution presented in Figure 4.3c only contains the thermally 

efficient material; a ‘green’ beam is created. In this example, the maximum material fraction 

was set to 50%. In other words, a maximum of 50% of the ‘red’ material can be used. 

However, because the thermally efficient material has a density of 0.5, for every element 

of solid material, two elements of ‘green’ material can be used. Hence a full beam of ‘green’ 

material is achievable.  

The beam’s deflection (δmax) and its U-value (Umean) are presented below the figures. The 

maximum and minimum values for the Young’s modulus were taken as 2400 MPa and 

2.4e-6 MPa and for lambda, values of 1 W/mK and 0.02 W/mK were adopted respectively. 

Because the solution in Figure 4.3b is the stiffest solution, and the beam in Figure 4.3c is 

the most thermally efficient solution, their values form the outer limits of the optimization 

problem. 

Figures 4.4a and 4.4b now present two solutions from the multi-physics optimization 

study with a weighted-sum multi-objective. The differences between these originate from 

a difference in the importance of each weighting factor (w) in the objective where w1 

influences the weight of the structural compliance, and w2 impacts the importance of the 

thermal compliance (Eq. 4.2). 
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The parameters f1 and f2 are additional scaling parameters that are used to normalize the 

original values (i.e., a scaling operation is performed) to make both compliances 

dimensionless. f1 and f2 are initially set to 30000. 

 

 
(a) 

 
(b) δmax = 0.93 mm / Umean = 1.64 W/m²K 

 
(c) δmax = 10.52 mm / Umean = 0.16 W/m²K 

Figure 4.3. (a) The design domain, boundary conditions, and external loadings for the 

preliminary TO study and its results for (b) maximum stiffness design and (c) most 

thermally efficient design. 

 

 

 
(a) δmax = 1.17 mm / Umean = 0.68 W/m²K 

 
(b) δmax = 1.86 mm / Umean = 0.27 W/m²K 

Figure 4.4. Results of the multi-physics topology optimization problem for the preliminary 

study. 
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Figure 4.4a clearly presents a topological solution that could not have been designed by 

any human designer. The resulting topology is a complex mix of the different types of 

density. A large portion of the beam is made from the ‘green’ material, strengthened by 

the ‘red’ material at the most vital locations. The result nicely demonstrates the benefit of 

a multi-physics topology optimization; a material distribution can be created that exactly 

finds the right trade-off in relation to the designer’s objective. In comparison with the 

stiffest design from Figure 4.3b, the beam has lost some of its stiffness (deflection: +26%), 

but its U-value has improved radically (-59%). The second solution (Figure 4.4b) was 

generated by applying a larger weight to the second term of the weight-sum objective. 

The weight factor of the thermal compliance was increased.  

An interpretation of how these resulting topologies influence the settings of the 3D-printed 

component is given in Figure 4.5. In this example, the open-source slicing software ‘Cura’ 

was used to transform the solution from Figure 4.4a into a printable structure with its 

associated infill density for the intermediate value of xe. 

 

 

Figure 4.5. Physical representation of the optimized solution presented in Figure 4.4a, 

sliced by the slicing software Cura. 
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4.2.2.2 Pareto set of optimized results 

The previous section stated: “the result nicely demonstrates the benefit of a multi-physics 

topology optimization; a material distribution can be created that exactly finds the right 

trade-off in relation to the designer’s objective”. However only two pareto-optimal 

solutions were shown. In this section, a complete set of pareto-optimal results is 

generated and discussed along with their position within the front. For this study, a set of 

eleven different weighting factors of the objectives functions were chosen, and the various 

results recorded. Equally spaced weighting factors were selected (Table 4.1). The first 

graph (Figure 4.6) shows the pareto front with respect to both objective functions and the 

second graph (Figure 4.7) presents the pareto solutions with respect to their maximum 

mid-beam (bottom) deflection and mean thermal transmittance. 

 

Table 4.1. Weighting factors and number of iterations that were needed as used in the 

multi-objective TO problem. 

Fig. 4.6 & 4.7 w1 w2 # iterations 

A 5 30 ND 

B 7.5 27.5 ND 

C 10 25 ND 

D 12.5 22.5 ND 

E 15 20 3691 

F 17.5 17.5 2485 

G 20 15 ND 

H 22.5 12.5 1691 

I 25 10 1211 

J 27.5 7.5 1823 

K 30 5 868 
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A first aspect that can be observed is that equally spaced weighting factors do not 

automatically generate equally spaced solutions on the pareto front (this problem was 

briefly discussed in Section 2.5.5). Nevertheless, a sufficiently dense population of the 

front is achieved in order to discuss the shape of the frontier. The shape of the Pareto 

front is found to be neither convex nor concave. An ‘S’ shaped form of the trade-off frontier 

is discovered. This means that, at either ends of the front, a large sacrifice is needed in 

one objective in order to improve the other objective only slightly. ‘S’ shaped trade-off 

frontiers usually offer some preferred points. For practical engineering considerations, a 

second graph (Figure 4.7) was constructed. The pareto front is now convex and some 

critical knee point solutions can be identified (i.e., a solution on the Pareto front that 

requires a large sacrifice in one objective to improve the other objective). The core idea 

is that by studying the pareto front, this might greatly help the user in his/her decision-

making process for choosing the final solution, as it provides the user with additional 

domain knowledge. For example, allowing for a small increase of the structure’s deflection, 

might be quite beneficial for improving its thermal transmittance. 

4.2.2.3 Extension 

The idea to optimize large-scale building components (such as the roof structure) can be 

further extended. Instead of optimizing just the roof element of a to-be 3D-printed pavilion, 

also the complete building envelope can be included in the design domain of the 

optimization procedure. An illustrative example of how such optimized design solution 

could look like, is presented in Figure 4.8. In this figure, the inner free volume is fixed, 

where no structural supports can be positioned, and the remainder of the domain can be 

optimized freely (above and around this fixed area). The potential problem could be 

formulated as follows: the volume fraction of the structure is to be minimized with respect 

to certain minimal requirements for the structural and thermal performances (as illustrated 

on the figure itself).  
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4.2.2.4 Conclusions 

With this general framework and the presented pilot study, the benefit of using 3D-printed 

infill patterns within TO is demonstrated. However, not much attention was spent on the 

development and verification of the implemented interpolation scheme. In fact, the 

equations for the scheme were probably too beneficial, hence their preference for 

converging towards only three optimal states. The following section will, therefore, show 

how the true and realistic material properties of such infill patterns can be determined. 

  

 

Figure 4.8. Multi-physics topology optimization of a dome structure presented as a purely 

conceptual design problem where the element density variables have  three optimal states. 

xe = 0 (void), xe = 0.5 (mesostructure), and xe = 1 (solid). 
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4.3 Accurate penalization scheme for 3D-printable 
structures 

4.3.1 Numerical homogenization of infill patterns 

This section will now present how the realistic material properties can be determined, and 

how new interpolation schemes can be constructed using numerical homogenization. For 

each material characteristic, a unique interpolation function is determined. A first relation 

is made between the design variables and their stiffness, Ee(xe). Secondly, a match is 

found for their thermal insulation quality, λe(xe). And finally, a link also exists between the 

density and its volume, where Ve (xe) mostly depends linearly on x. 

For this characterization, numerical homogenization techniques are used. Numerical 

homogenization is an efficient method to acquire the effective macroscopic properties of 

periodic composite materials. Only the unit cells (Figure 4.9) must be defined, and these 

are periodically repeated by the code into the 2D space. By assigning an extremely low 

Young’s modulus for the void regions, a single-phase cellular material can be represented. 

For this analysis, a MATLAB code from Andreassen and Andreasen [7] is used.  

The 3D-printed infill pattern that is chosen for this study is a pseudo-isotropic triangular 

pattern (Figure 4.10), meaning that their linear elastic properties are very close to uniform 

in all orientations. Patterns that share this property are honeycomb patterns, tri-hexagonal 

patterns, or the 3D gyroid pattern. With this model, both the structural as well as the 

thermal material properties are calculated and compared to the SIMP and RAMP model. 

Additionally, the Hashin Shtrikman (HS) bounds [8,9] are given as well. These bounds 

are well-known in the theory of composites, as they represent the extreme and effective 

properties of isotropic two-phase composites. In the limit when the properties of one of 

the phases (voids) are equal to zero (single-phase cellular material), the HS upper bounds 

are defined as 

0
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E x
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for Young’s moduli, and 

0

*

2

x

x





−

 (4.4) 

for the thermal conductivity. For the structural homogenization, this (single-phase) 

simplification can be made because the stiffness of the voids (air) is indeed (almost) zero. 

For the thermal interpolation model, the simplification of Eq. (4.4) is not justified as the 

material properties of the voids are not zero. Therefore, its extended version Eq. (4.5) 

should be used, which is mathematically equivalent to the two forms of the well-known 

Maxwell–Eucken model [8]. 
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In these equations, E* and λ* are the (effective) Young's modulus and thermal 

conductivity of the composite, and E0, λ0, and x are the Young's modulus, thermal 

conductivity, and volume fraction of the solid phase material respectively. Finally, λmin
 is 

the thermal conductivity of the void regions in the microstructures and is given the value 

of air at atmospheric pressure at 10°C (λmin = 0.025 W/mK).  

 

   

(a) (b) (c) 

Figure 4.9. Unit cell topologies with different infill densities (from left to right: 0.14, 0.28, 

0.40). The unit cell is finely discretized by a mesh of 420 x 420 elements. 
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(a) (b) (c) 

Figure 4.10. PLA bricks printed with different triangular infill densities created on an 

Ultimaker 3. From left to right: 0.18, 0.22, 0.33. 

 

4.3.2 Structural material properties 

Although the homogenized material properties can be deduced for any type of infill pattern 

or microstructure, the presented interpolation model was here determined for a triangular 

pattern made of PLA plastic. Some initial assumptions are given. The elasticity, or Young’s 

Modulus, of the PLA (E0) is set to 2500 MPa, while the voids (air) are set to a very low 

Young’s modulus of 0.001 MPa. The Poisson ratio (ν0) of the material is 1/3, and a plane 

stress relation is used. After the numerical analysis, the MATLAB code provides the user 

with a homogenized stiffness matrix from which the following material characteristics can 

be deduced: Ex, Ey, Gxy, νxy and νyx. Due to the pseudo-isotropy of the pattern, the 

Young’s moduli in both normal directions are approximately equal and a link exists with 

the shear modulus (G). Finally, simplifying νxy and νyx to ν0, the Young’s modulus of the 

homogenized material is calculated as the average of Ex, Ey, and 2 (1+ν0) Gxy. 

Figure 4.11 presents the results of the numerical homogenization study for a range of 

different element densities. They are presented as circles on the graph and compared to 

several experimental results (triangles). The size of the experimental samples is 50 × 50 

× 20 mm, and the samples were 3D printed in white PLA plastic on an Ultimaker 3. Each 

density was printed four times. Two samples were printed with a nozzle width of 0.4 mm 
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and another set was printed with a nozzle width of 0.8 mm. A uni-axial compression test 

was performed under displacement-controlled loading (speed: 5 mm/min). As can be 

seen in the graph, a good fit between both results exists. The HS upper bound is displayed 

by a dashed line, while the SIMP model (power law) function is shown by a dotted line. 

For use in the topology optimization study, the best fitting curve is obtained using a RAMP 

(Rational Approximation of Material Properties) model with a q-value of 2.6. The 

mathematical function used in the topology optimization study is therefore given by the 

following equation: 

0

void void( ) ( )
1 (1 )

e

e e

e

x
E x E E E

q x
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0

voidw:    0.001,  2500,  and 2.6E E q= = =  

 

 

Figure 4.11. Results of the experimental and numerical study compared to the RAMP and 

SIMP model, and the Hashin-Shtrikman upper bound for an isotropic material with 

Poisson ratio 1/3 mixed with void. 
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4.3.3 Thermal material properties 

The numerical homogenization for the calculation of the thermal conductivities is very 

analogous to that of the elastic problem, though it is enough to solve for a scalar field – 

the temperature. Since air becomes trapped in the internal voids, the infill pattern largely 

increases the material’s thermal insulation quality. Logically, the lower the element’s 

density, the lower its thermal conductivity will be. The thermal conductivity of the solid 

PLA (λ0) used in this study is 0.275 W/mK, while the thermal conductivity of the cavity 

air (λmin) is set to 0.025 W/mK. Figure 4.12 presents the results of the numerical 

homogenization study. As can be seen, the numerical data points are close to the HS 

upper bound, and the best fitting RAMP curve is found for a q-value of 0.9. 

 

 

Figure 4.12. Results of the numerical homogenization study compared to a RAMP model, 

a SIMP model, and the Hashin-Shtrikman upper bound for an isotropic material mixed 

with air cavities. 
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Because the MATLAB code by Andreassen and Andreasen only takes into account heat 

flow by conduction, the air inside the cavities is regarded as being completely stationary. 

This simplification is an inaccurate assumption. The thermal performances will be 

influenced by convection and radiation inside the air cavities. To cope with this problem, 

an additional analytical study is carried out conform EN ISO 10077-2 [10]. The cavities of 

the infill pattern are considered unventilated, and the emissivity of the PLA is set to 0.90. 

Because the simplified analytical equations for convection and radiation in EN ISO 10077-

2 are only valid for rectangular cavities, the triangular voids are considered as if they were 

rectangular (with identical area). This assumption is made to avoid additional and more 

complex fluid dynamics calculations. Also, a link is made between the infill pattern density 

and the nozzle width. Because the focus of this work is on large-scale 3D printing 

applications, the nozzle sizes that are included in this study are: 4 mm, 2 mm, and 0.8 

mm. For each of the nozzle sizes, the corresponding line distance is extracted from Cura 

(3D printing slicing software by Ultimaker), and the length of the square’s side is 

calculated. The line distance is extracted for every 5% increase of the infill density. Finally, 

the heat flow by conduction, convection and radiation in the air cavity were added up. The 

resulting interpolation schemes can be found on Figure 4.13. 

 

Results show that the heat flow is largely affected by the size of the cavity. The value of 

the equivalent thermal conductivity for lower densities has increased significantly. This is 

due to the fact that low density elements can create larger voids, where thermal convection 

reduces the thermal insulation quality. Additionally, three different results can be seen. 

These show the effect of the different nozzle sizes. Assuming the print width is equal to 

the nozzle width, the size of the cavity becomes larger when a larger nozzle is used. 

Consequently, a small nozzle will give better thermal properties as it can make smaller 

voids for the same density distribution. It can be noted that this convection problem can 

be avoided by filling the voids with additional insulation material. Although this might be 

achieved in certain cases, it brings difficulties to the manufacturing process, and is hard 

to achieve for large-scale components. 
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Figure 4.13. Adjusted material interpolation scheme for the thermal optimization problem, 

considering thermal convection and radiation in the cavities, versus the RAMP 

approximation of the numerical homogenization study. 

 

To transform the results to the optimization process, a mathematical function is mapped 

onto these results. The resulting interpolation schemes are all based on the same basic 

function, but with different parameters for A, B, and C. The element thermal conductivity 

is presented as follows: 

2 1 0

min minA B  + C ( ) ( )
e ee e e

x xx x   −  − = ++  

(4.6) 
0

minw:    0.025  and  0.275 = =  

The specific input for the parameters A, B, and C can be found in Table 4.2 and is 

constructed using the method of least squares. No physical experiments regarding the 

thermal properties were performed for this study. 
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Table 4.2. Input parameter set for the thermal interpolation model. 

Nozzle size (mm) A B C 

0.8 0.628 0.328 0.024 

2 0.787 0.136 0.078 

4 0.826 0.012 0.161 

 

Finally, it is worth mentioning that no results are presented for densities lower than 0.05, 

because the manufacturing of such low densities is deemed unrealistic, even for large-

scale purposes. In the limit, when xe goes to 0, the equivalent thermal conductivity 

depends on the size of the void that is being created.  Although this value can be 

determined using boundary tracing techniques [11], this concept is not applied in this 

study. As such, the maximum value for the thermal conductivity was 0.42 W/mK, and the 

lower variable bound is adjusted. 

4.4 Case study: 3D-printable roof structure 

4.4.1 Mathematical formulation 

In this case study, both the mechanical and thermal performances of a building roof 

component are studied. The goal is to improve the insulation quality of the roof structure, 

while still retaining adequate stiffness. A measure for the thermal performance is the 

thermal transmittance and is equal to the rate of heat transfer (in Watts) through one 

square meter of the structure, divided by the difference in temperature across the 

structure. As a result, the lower this value is, the better its insulation quality is. As a 

measure for the thermal transmittance, the thermal compliance is optimized. As for the 

mechanical performances, the idea is to minimize deflection to prevent problems with 

serviceability. This deflection is the degree to which a structural element is displaced 

under a certain load and can be linked to the structure’s global stiffness and its structural 
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compliance. To combine these two opposing objectives, a weighted-sum multi-objective 

is created with weighting factors that can give more importance to one or the other. 

However, because the nature and magnitude of these objective functions are not known, 

additional scaling parameters are used to normalize the original values (i.e. a scaling 

operation is performed to make both compliances dimensionless). Finally, the maximum 

volume fraction, which equals to the amount of printing material that can be used, is being 

constrained and leads to the following multi-physics problem formulation: 

min
x

 
1 2

1 2
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w w
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In this formulation, w1 and f1 are the weighing and scaling factors for the structural 

compliance Cs(x), and w2 and f2 are the parameters that allow manipulation of the thermal 

compliance Ct(x). V(x) is the material volume, that linearly depends on x, while Vmax 

represents the maximum volume fraction (set to 50%). ue [8 × 1] and θe [4 × 1] are the 

element displacement and element temperature vectors. Likewise, k0
se and k0

te stand for 

the element stiffness and element thermal conductivity matrices for an element with unit 

Young’s modulus (E0) and thermal conductivity (λ0). The vector of design variables is 

again symbolized by x, and N is the number of elements used to discretize the design 

domain.  
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4.4.2 Study parameters 

The problem that is studied here, is the design of a fictitious roof structure for a – to be 

3D-printed – polymer-based pavilion. This roof structure is shaped by several 6-meter-

long elements, supported at the ends, and loaded by a uniformly distributed load (top and 

bottom surfaces). The boundary conditions and mechanical loads are presented in 

Figure 4.14. As can be observed, only half of the domain is modeled due to symmetry. 

The domain is discretized using a structured grid of 600 × 120 square finite elements with 

a unit length of 5 mm. The thickness of the design domain is 100 mm. The magnitude of 

the external loads is q = 1.5 N/mm, acting in the -Y direction. This value was derived from 

a 300 kg/m² plane load, being distributed over both the top and bottom surfaces. 

Additionally, also thermal boundary conditions are applied to the top and bottom surfaces. 

The inner boundary has a temperature of 20°C, while the outer boundary has a 

temperature of 0°C. The temperature difference between the bottom (inner surface) and 

the top (outer surface) is thus 20 K. Furthermore, the filter radius rmin is set to 4.0 and 

the allowable volume fraction is 50%.  

 

 

Figure 4.14. Setup for the topology optimization study of a single span simply supported 

beam, subjected to uniformly distributed loads and a temperature difference of 20K 

between the top and bottom surface. Only the right symmetric half is presented. 
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The results are presented using a grayscale (0-1) colormap. The voids are displayed in 

white, and the solid material is shown as black. The intermediate densities thus represent 

the infill pattern that should be used. The mid-beam (bottom) deflections and the thermal 

transmittance (equivalent U-value) are also calculated to provide information about of the 

structure’s structural and thermal performance. For the calculation of the thermal 

transmittance, the exchange of thermal energy between the body’s surface and its 

surroundings is also considered. The values for the (inner and outer) heat transfer 

coefficients are hi = 7.7 W/(m²K) and ho = 25 W/(m²K). 

The first set of results of the topology optimization study is now presented (Figure 4.15). 

These results are created using the thermal interpolation function for a nozzle size of 2 

mm. The solutions are spread across two groups. The first group presents the optimized 

distribution of material in function of only one of the two sub-objectives. The first solution 

(Figure 4.15a) solves for maximum stiffness, while the second (Figure 4.15b) solves for 

maximum thermal efficiency.  

As can be observed, the optimized solution in Figure 4.15a does not include any 

intermediate densities. A very stiff frame-like structure is created with a maximum (mid-

beam) deflection of 16.4 mm. This results in an overly good deflection state of L/367, 

which is below the required limit: L/300. However, the U-value of the beam element is 

very high (0.43 W/m2K). In contrast, the solution presented in Figure 4.15b only contains 

one type of grayscale material. The reason for this is obvious: xe = 0.35 offers the lowest 

value for the equivalent thermal conductivity in the case ‘nozzle width = 2 mm’ 

(Figure 4.13). Would this study be conducted for the other nozzle sizes, the results would 

also converge to element densities that have the lowest value for the thermal conductivity 

(Nozzle 4 mm: xe = 0.45 and nozzle 0.8 mm: xe = 0.20). Although the U-value is now very 

good (0.19 W/m²K), this comes at the cost of a largely reduced stiffness; the mid-beam 

deflection now reads 92.0 mm (L/65). 
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(a) δmax = 16.4 mm (L/367) / Umean = 0.43 W/m²K 

 

(b) δmax = 92.0 mm (L/65) / Umean = 0.19 W/m²K 

Figure 4.15. Results of the topology optimization study: (a) minimum structural 

compliance design and (b) maximum thermal compliance design. 

 

The optimized results presented in Figure 4.15 are the most extreme solutions. They 

define the outer limits of the multi-physics (also multi-objective) optimization problem. 

The first solution gives the stiffest roof component, whereas the second provides the best 

thermal resistance. Increasing the thermal performance of the first solution will always 

decrease its stiffness, while increasing the stiffness of the second result will always 

decrease its thermal efficiency.  

The goal of the subsequent weighted-sum multi-objective optimization studies is to limit 

this performance deterioration and demonstrate the benefits of a multi-physics topology 

optimization study. An optimal trade-off is sought, while varying the importance of each 

of the sub-objectives. w1/f1 was fixed to 3000 in all results, while w2/f2 was set to 30000, 

20000, and 8000 respectively. Figure 4.16 presents the multi-physics optimization study 

with the weighted-sum objective. 

4.4.3 Optimized results 

Figure 4.16 shows the optimized solutions where both objectives are activated. The 

importance of the thermal objective is introduced, adding 0.8 mm to the beam’s deflection 

in Figure 4.16a. A mixed material lay-out distribution can be observed, where not only 

solid and void regions are created, but also intermediate material-density regions are 
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(a) δmax = 17.2 mm (L/349) / Umean = 0.27 W/m²K 

 

(b) δmax = 17.9 mm (L/336) / Umean = 0.25 W/m²K 

 

(c) δmax = 19.3 mm (L/311) / Umean = 0.24 W/m²K 

Figure 4.16. Results showing the pareto optimal solutions of the multi-physics (weighted-

sum multi-objective) topology optimization study. 

 

present. Most notable is that by allowing this small reduction in stiffness, the U-value of 

this beam element has become much better. For a 5% increase in deflection, the U-value 

has improved by 37%. This nicely exposes the benefits of a multi-physics topology 

optimization study, where a much more beneficial design can be found by analyzing not 

only one, but multiple criteria at the same time.  For the subsequent solutions, the 

importance of the thermal objective is gradually increased to further lower the U-value so 

that it meets the current minimal requirements according to existing engineering codes 

(equivalent U-value roof < 0.24 W/m2K). The result presented in Figure 4.16c finally hits 

the soft spot; a U-value of 0.24 W/m2K is reached and the mid-beam deflection arrives 

just below the required limit state of L/300. 

4.4.4 Physical interpretation 

Finally, there is one task remaining: the transformation of the mathematically optimized 

solution into a 3D-printable structure with different types of infill densities. Several 

strategies can be employed. However, we present a simple approach of which the 

methodology can be found in Figure 4.17. The process that is used, is called: image 

posterization; which entails a conversion of the continuous gradation of tone to several 
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regions of fewer tones. In this study, this is accomplished by decreasing the image's 

apparent bit depth (Figure 4.18a) and carried out because the slicing algorithm does not 

function with a continuous color gradation at this moment. However, such algorithms are 

in active development [12]. 

 

 

Figure 4.17. Schematic overview of the methodology that is used to transform the 

mathematical solution into a structure with different types of infill densities. Post-

processing: (a) image posterization and (b) infill pattern generation. 

4.4.5 Extension 

Originally, the concept of mapping infill to densities of the TO problem was inspired by 

experimenting with different infill patterns used in desktop 3D printing. Since air may 

become trapped in the internal voids, certain 3-dimensional patterns (such as cubic or 

tetrahedral patterns) largely increase the structure’s thermal properties. The lower the 

block’s density, the lower its thermal conductivity becomes. However, from a certain point, 

the voids become too large, and convection inside the voids decreases its thermal 

performance. However, the principle of mapping material properties to a range of physical 

feasible materials or microstructures can be useful in other 3D printing technologies as 

well. For example, in large-scale 3D concrete printing, commonly only one extrusion 

(a) 

(b) 
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nozzle is used to cast plain (or fiber-reinforced) concrete. When the technology would 

allow a second nozzle, an extra material (e.g. a thermally efficient substitute such as 

“foamcrete” [13]) could be added to the production process. 

Another approach would be to actively change the rheology properties of the concrete 

mixture inside of the main extrusion nozzle (Figure 4.18b). This idea touches the concept 

of a functionally graded concrete beam studied by Herrmann and Sobek [14] and is 

supported by advancements in active rheology control [15]. Such approach could really 

open up a whole new range of design opportunities for which the continuous density 

distribution could serve as a direct input for the TO optimization process. The specific 

requirements of the mixture could aim for a better assessment of the weight savings in 

concrete elements. The concept of a functionally graded concrete girder with weight 

optimization for a uniformly distributed load can be seen in Figure 4.19.  

 

 
(a) 

 
(b) 

Figure 4.18. a) Image posterization showing the conversion of the continuous gradation 

of tones to several regions of fewer tones, and b) Principle of functionally graded concrete 

showing different densities in one concrete element (adopted from [14]). 

 

 

Figure 4.19. Functionally graded concrete girder with weight optimization for a uniformly 

distributed load (adopted from [14]). 
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4.5 Discussion 

The goal of this chapter was to better tune multi-physics topology optimization with 

additive manufacturing processes and to stimulate topology-optimized design for 3D-

printable building structure. A novel multi-physics interpolation model was proposed that 

could link 3D-printing technology to density-based topology optimization. The structural 

and thermal material properties of a triangular infill pattern were analyzed and coupled to 

the mathematical design of the interpolation functions. Taking into account, among other 

things, thermal convection in the air cavities, a realistic penalization scheme was created. 

Subsequently, using this novel interpolation scheme, a roof component was optimized, 

and a design was generated with improved thermal and stiffness properties. Finally, the 

optimization study was able to generate several sets of optimized topologies with different 

trade-offs between structural integrity and thermal efficiency. This was realized by 

implementing a weighted-sum multi-objective. 

Future studies could analyze the influence of different infill patterns such as honeycomb 

structures or tri-hexagon patterns. Especially, the analysis of 3D-infill patterns such as 

cubic, tetrahedral, or gyroid patterns could proof to offer valuable benefits for multi-

physics topology optimization. Furthermore, this could strengthen the already existing and 

strong connection between topology-optimized design and additive manufacturing.  

Additionally, 3D concrete printing could offer solutions to enable a shift from “stepwise 

gradation” to a virtually seamless gradation pattern, and would enable the production of 

complex geometries, where relatively few adjustments must be made to comply with the 

manufacturing constraints. Therefore, multi-physics topology optimization looks very 

promising and could potentially revolutionize certain design methods for building 

engineering, especially in a world where digital design meets 3D-printing technology. 

 



Chapter 4: Topology Optimization & Additive Manufacturing 

  121 

4.6 References 

[1] L. Baich, G. Manogharan, and H. Marie, “Study of infill print design on production 

cost-time of 3D printed ABS parts,” IJRAPIDM, vol. 5, no. 3/4, p. 308, 2015, doi: 

10.1504/ijrapidm.2015.074809. 

[2] Y. Han, “Influence of 3D Printing Infill Patterns on the Effective Thermal Properties,” 

JPUR, vol. 6, no. 1, p. 89, 2016, doi: 10.5703/1288284316207. 

[3] L. Sanders, “3D Printing Ceramic Foam,” Wyss Institute, 14-Jul-2020. [Online]. 

Available: https://wyss.harvard.edu/media-post/3d-printing-ceramic-foam/. 

[Accessed: 29-Jan-2021]. 

[4] M. P. Bendsøe and O. Sigmund, “Material interpolation schemes in topology 

optimization,” Archive of Applied Mechanics (Ingenieur Archiv), vol. 69, no. 9–10, 

pp. 635–654, Nov. 1999, doi: 10.1007/s004190050248. 

[5] M. Stolpe and K. Svanberg, “An alternative interpolation scheme for minimum 

compliance topology optimization,” Struct Multidisc Optim, vol. 22, no. 2, pp. 116–

124, Sep. 2001, doi: 10.1007/s001580100129. 

[6] J. D. Deaton and R. V. Grandhi, “A survey of structural and multidisciplinary 

continuum topology optimization: post 2000,” Struct Multidisc Optim, vol. 49, no. 

1, pp. 1–38, Jul. 2013, doi: 10.1007/s00158-013-0956-z. 

[7] E. Andreassen and C. S. Andreasen, “How to determine composite material 

properties using numerical homogenization,” Computational Materials Science, vol. 

83, pp. 488–495, Feb. 2014, doi: 10.1016/j.commatsci.2013.09.006. 

[8] Z. Hashin and S. Shtrikman, “A Variational Approach to the Theory of the Effective 

Magnetic Permeability of Multiphase Materials,” Journal of Applied Physics, vol. 33, 

no. 10, pp. 3125–3131, Oct. 1962, doi: 10.1063/1.1728579. 

[9] S. Torquato, L. V. Gibiansky, M. J. Silva, and L. J. Gibson, “Effective mechanical 

and transport properties of cellular solids,” International Journal of Mechanical 



Chapter 4: Topology Optimization & Additive Manufacturing 

  122 

Sciences, vol. 40, no. 1, pp. 71–82, Jan. 1998, doi: 10.1016/s0020-

7403(97)00031-3. 

[10] International Organization for Standardization. (2012) ISO 10077-2: Thermal 

performance of windows, doors and shutters - Calculation of thermal transmittance 

- Part 2: Numerical method for frames. 

[11] Yi, G., Kim, N.H. Identifying boundaries of topology optimization results using basic 

parametric features. Struct Multidisc Optim 55, 1641–1654 (2017). 

https://doi.org/10.1007/s00158-016-1597-9 

[12] D. Li, W. Liao, N. Dai, G. Dong, Y. Tang, and Y. M. Xie, “Optimal design and 

modeling of gyroid-based functionally graded cellular structures for additive 

manufacturing,” Computer-Aided Design, vol. 104, pp. 87–99, Nov. 2018, doi: 

10.1016/j.cad.2018.06.003. 

[13] M. A. Othuman Mydin, “An Experimental Investigation on Thermal Conductivity of 

Lightweight Foamcrete for Thermal Insulation,” Jurnal Teknologi, vol. 63, no. 1, Jul. 

2013, doi: 10.11113/jt.v63.1368. 

[14] M. Herrmann and W. Sobek, “Functionally graded concrete: Numerical design 

methods and experimental tests of mass-optimized structural components,” 

Structural Concrete, vol. 18, no. 1, pp. 54–66, Feb. 2017, doi: 

10.1002/suco.201600011. 

[15] G. De Schutter and K. Lesage, “Active control of properties of concrete: a (p)review,” 

Mater Struct, vol. 51, no. 5, Sep. 2018, doi: 10.1617/s11527-018-1256-2. 

 

 



Chapter 5: Topology-Optimized Concrete Girder 

  123 

CHAPTER V 
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5.1 Introduction 

In this chapter, the link between topology optimization and 3D concrete printing is further 

elaborated on. The chapter starts with a general discussion on how TO can influence 

concrete structural design. For this, two conceptual applications are presented that 

demonstrate how the results from a TO study might directly influence the design and 

manufacturing process of a concrete component.  

The first example discusses the use of classical structural TO as a method to directly 

extract an optimized printing pattern and/or printing path. It incorporates previously 

discussed TO methods and their results, and links them with the technology of 3D 

concrete printing. The second example considers how stress-based TO can enhance the 

topology of the concrete structural element by introducing stress constraints and by taking 

into account the differences between the compressive and tensile strength of conventional 

concrete. A case study example presents an optimized concrete specimen that considers 

the strength asymmetry that is associated with concrete. Also, some limitations and 

challenges are revealed.  

Chapter 5 finally ends with the presentation of a topology-optimized concrete girder 

(Section 5.3) (Figure 5.1). The digital design and manufacturing of this concrete girder 

were carried out during the fourth year of this PhD study and it is fair to say that its 

realization made a relatively large impact in the field of 3D concrete printing (3DCP) (“In 

January/February 2021, thanks to the amount of citations, the paper was ranked in the top 

1% of the academic field of Engineering” – WoS). The realized concrete girder resembles 

a footbridge (at lab scale) and was the first physical demonstration on how topological 

design in combination with 3D concrete extrusion printing allows for the creation of 

efficient concrete structures with reduced use of materials. The project brought together 

two emerging technologies that show great potential for realizing highly efficient concrete 

structures: topology optimization (TO) for simulation-driven design and 3DCP for the 

manufacturing of the resulting optimized shapes. 
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This section includes all steps from the conceptual design phase, the manufacturing 

challenges (including printing setup, assembly and integration of reinforcement), to the 

verification of the structural performances. For the latter, digital image correlation 

techniques were used, and a comparison was made to the numerical model. Additionally, 

some recommendations on the opportunities and limitations are given. 

 

 

 

Figure 5.1. Topology-optimized concrete girder. 

 

5.2 Topology optimization as a design tool for 
concrete structural elements 

As discussed before, topology optimization has gained much popularity as a 

computational design tool for weight reduction of structural parts in automotive and 

aerospace applications [1] but has had only minor impact on the construction industry so 

far. Nevertheless, the negative environmental impact of concrete production clearly 

motivates the use of topology optimization for reducing material consumption in 

construction.  

Topology optimization for concrete is not new. Over the past decades, it was suggested 

as a method for generating optimal strut-and-tie models [2-5]; for distributing materials 

based on the different strengths in tension and compression [6-8]; and for simultaneous 
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optimization of concrete and rebars [9–12]. In a recent review paper in Cement and 

Concrete Research [13], a slab element was topologically optimized for a uniformly 

distributed load, and a formwork was 3D printed using particle bed fusion and 

subsequently cast with UHPFRC. In another case, the same research group performed a 

topological optimization study for a concrete canoe competition, also using a 3D printed 

formwork cast with UHPFRC [14].  

In the following subsections, the influence of general compliance-based TO on the design 

of concrete elements is briefly examined, where after the benefits of stress-based TO are 

explained. 

5.2.1 Compliance-based topology optimization 

At the start of this PhD project, TO algorithms were mainly being used for the automatic 

generation of strut-and-tie models for reinforced concrete design [2-5]. Strut-and-tie 

models can help with the dimensioning of steel reinforcements in so-called D-regions 

where Bernoulli theory is no longer appropriate. Strut-and-tie are designed to reduce load 

deformation response and in 1980, Schlaich stated that: “the stiffest truss model is the 

one that will produce the safest load-deformation response, because limiting truss 

deflection prevents large plastic deformations in the concrete. However, the engineering 

judgment required to obtain an accurate truss model was viewed as a drawback of the 

design approach” (citation from [4]). Now, maximizing stiffness correlates mathematically 

to minimizing the reinforcing steel’s elastic strain energy. In other word, performing a 

minimum compliance TO design was suggested to provide excellent strut-and-tie models. 

Experiments and nonlinear finite element modelling confirmed this benefit [4]. 

Nevertheless, and although better performing, the increase in complexity of the models 

and reinforcement layout remained a draw-back of the method. 

In contrast to using TO to find optimized strut-and-tie models, also the general shape of 

concrete elements can be optimized with it. To start, the TO results (or the optimized strut-

and-tie model) can serve as a direct input for the 3D printing path. Benefits can be 
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expected because the generated topology and the extracted print paths are in line with the 

principal elastic stress trajectories. Additionally, the complex pattern that is obtained from 

a TO study can also function as an internal skeleton. This skeleton can be produced from 

ultra-high-performance concrete (UHPC) [14], where the remainder of the design domain 

can be filled with a lower grade material. This material consisting of lower quality concrete 

would then make the whole design more cost efficient. Figure 5.2a illustrates such a 

conceptual 3DCP setup, and in Figure 5.2b a TO result is used to generate a strut-and-

tie model or an optimized printing path. 

 

 

(a) (b) 

Figure 5.2. Conceptual illustration of (a) 6-axis robotic arm used as a 3D concrete printer 

and (b) strut-and-tie model and printing path extracted from the TO result. 

5.2.2 Stress-based topology optimization 

A second potential benefit can be found when looking into stress-based topology 

optimization. As it is well known, concrete has a much higher compressive strength 

compared to its tensile strength. This results in a strength asymmetry that weakens the 

result of a traditionally compliance-based optimized design. Introducing a steel wire in the 

printing extrusion process [15] or having a fibre-reinforced material [16] can improve the 

tensile strength of the material, but it cannot fully eliminate this strength asymmetry. In 
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essence, the tensile and flexural tensile strength of the material will always be lower than 

the compressive strength.  

The topology-optimized structures are thus oversized in the compression zones and would 

crack or fail rather easily in the regions with high tensile stresses. By introducing stress 

constraints in the topology optimization algorithm [17-19], optimized shapes can be 

generated which are optimized with respect to this strength asymmetry.  

A first example is presented in Figure 5.3. Here, two results are shown that use stress 

constraints in the TO formulation. The result in Figure 5.3a shows the optimized material 

distribution for a material with equal compressive and tensile stresses. The result in 

Figure 5.3b gives the optimized topology for a compressive/tensile stress ratio of 2 (this 

moderate value for the compressive/tensile stress ratio is used for demonstration 

purposes only; true ratios for concrete would be much higher). It can be clearly observed 

that the bottom region of the second result is much wider than that of the first. The 

rationale behind this is that by having an increased amount of material at the bottom 

flange, more tensile action is allowed in this region. Finally, like the previous study, an 

improved concrete shape can be established by extracting the printing path from this 

optimized topology (Figure 5.3c). 

5.2.3 Case study: optimized unreinforced concrete beam 

To put some of these concepts into practice, an additional case study is presented. In 

function of a student competition in 2018, a small concrete specimen (span: 30 cm) was 

optimized using such stress-based TO approach. The 10th anniversary of the competition 

was celebrated with the theme "10". The goal of the competition therefore consisted of 

making the perfect concrete beam with a weight of 10 N and a failure load in bending of 

10 kN. The test pieces were weighed on the day of competition and experimentally verified 

using a three-point bending test.  

For the TO implementation, the Bresler-Pister criterium [20] was used as this yield surface 

presented superior results for high compressive/tensile stress ratios compared to a 
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Drucker-Prager yield criterion (Figure 5.4a). The maximum compressive strength was set 

to 60 MPa and the maximum tensile strength was set to 15 MPa. These values were based 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.3. TO with stress constraints using the Bresler-Pister criterium. (a) σc / σt  = 1, 

(b) σc / σt  = 2, and (c) showing the extracted printing path. 

 

 

on real properties of an available mix. The mathematical formulation was adopted from 

[17] but replaced the Drucker-Prager yield surface with the Bresler-Pister formulation 

[20]. The design domain was optimized in 2D using the globally convergent version of 

MMA (GCMMA) (Section 2.1.2). In post-production, the resulting topology was translated 

into a 3D design with the help of Fusion 360 and using Abaqus simulations. A few manual 

design iterations (investigating the influence of slight design modification) were performed 

to further improve the design (for example, the rounding radius of hard edges of the 3D 

design). 
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Compared to a traditional rectangular beam, the optimized specimen is expected (based 

on numerical calculations) to outperform the rectangular design by a factor of 2 in terms 

of strength versus weight (for the same weight of both specimens, a doubling of the failure 

load in bending is observed). Additional gains (up to a factor of 4) were predicted by using 

UHPC combined with the optimized topology. The resulting shape can be observed in 

Figure 5.4b and the experimental setup on the day of the competition is presented in 

Figure 5.4c. For one of the beams that was tested, the highest score amongst all groups 

was achieved. This specific beam had a weight of 9.8 N and a failure load in bending of 

10.3 kN. 

Although this small beam was not produced using 3D concrete printing technology. It is 

feasible that a larger-scale beam would be, as no other conventional methods would be 

able to produce such complex formwork in any economical way. 

 

(a) (b) (c) 

Figure 5.4. (a) Mohr–Coulomb (red) and Drucker-Prager (blue) yield criterion (source: 

[17]), (b) optimized concrete specimen using stress-based TO, and (c) an experimental 

3-point-bending test of the optimized specimen. 

5.2.4 Discussion 

Although compliance and stress-based topology optimization have shown to provide 

respectable insight when it comes to the design of concrete elements, its main application 

can be seen as a design tool for unreinforced concrete structures. For large functional 

structural concrete elements, such approach is not yet practical. Mainly, the lack of 

embedded tensile reinforcement in the optimization procedure hampers the applicability 
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of the methodology. In the case of the stress-based TO approach, the idea of using more 

material in the tensile zones also does not seem very efficient in the case of concrete 

structures, unless e.g. UHPC is used. A viable answer to this problem is presented in the 

next section. 

5.3 Topology-optimized 3D-printed concrete 
girder 

This section presents the design and manufacturing process of the topology-optimized 

concrete girder from Figure 5.1. This section combines many different aspects such as 

topology optimization, 3D concrete printing, and post-tensioning of concrete structures. 

In this introduction, the essential background is provided. 

5.3.1 Introduction 

The manufacturing of the topology-optimized girder is performed by 3D concrete printing. 

3D concrete printing is a special type of additive manufacturing that has become very 

popular throughout recent years. It is a new tool in the toolbox of architects and 

construction companies and offers a quick and cost-efficient way of building large-scale 

engineering structures [21-23]. As defined by Buswell et al. [24]: “3D concrete printing 

(3DCP) works by precisely placing, or solidifying, specific volumes of material in 

sequential layers by a computer-controlled positioning process.” Autonomous or semi-

autonomous 3D printers require minimal human surveillance, as such this could answer 

to the growing shortages of skilled workers [25]. Another outcome of the technique is that 

it disposes the need for conventional molding and allows for the creation of unique and 

complex shapes that were unattainable through conventional fabrication. By reducing the 

cost associated with nonstandard shapes, 3DCP gives virtual free rein to architects, 

designers and structural engineers enabling non-traditional design methods such as 

topology optimization [26-28].  
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However, as with any new technology, it also presents new challenges and complications 

[29]. A structural element that is well-designed according to traditional production 

methods and current standards may behave unexpectedly or even suffer damage as a 

result of the production process, i.e. 3DCP. The reason is mainly that the effect of the 

printing process itself on the final structural response as well as the effective macroscopic 

material properties are not fully explained today [24,30]. Consequently, the result from a 

topology optimization study might not perform as expected and fail to stand the test of 

time.  

An additional and quite significant challenge is the problem of providing tensile resistance 

to 3D printed concrete. Currently, there is a big knowledge-gap on how to properly 

reinforce 3D-printed elements, and this is potentially the reason why the recent project 

(illustrated in Figure 5.5) received such great interest in the field of 3DCP. 

 

 

Figure 5.5. Striatus 3D-printed concrete bridge before installment of the wooden finishing 

stairs. Image courtesy of Zaha Hadid Architects – Photograph by Tom van Mele [31]. 

 

Striatus is an arched segmented footbridge composed of 3D-printed concrete blocks [31]. 

The entire structure is held together through compression, needing no steel reinforcement 

and assembled without mortar. The 16 × 12-meter footbridge is the first of its kind, 
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combing traditional techniques of master builders with advanced computational design, 

engineering, and robotic manufacturing [31]. Furthermore, the structure can be 

dismantled and reassembled in a different location. 

Still, these kinds of structures (compression-only) also have their drawbacks. Especially, 

the risk of buckling under certain loads cannot be neglected. This is a major risk for all 

masonry structures, as they have little or no bending capacity other than that provided by 

the compression thrust. 

Nevertheless, other methods that aim to provide tensile resistance in 3DCP structures 

were studied by many. The simplest method used today is insertion of steel rebars and 

grouting operations (Figure 5.6a). A more advanced study was performed by [32] where 

a modular approach for steel reinforcing of 3D printed concrete is proposed using 

subsequent insertion of flexural steel and joining the various modules using high-strength 

epoxy resins. In [33], a new in-process method is presented that embeds mesh 

reinforcement at the same time of printing the concrete layers. The reinforcement is placed 

during the placement of the cementitious layers as overlapping strips (Figure 5.6b). 

Alternatively, [34] also presented an effective in-process reinforcing technique by 

penetrating reinforcing bars through a predefined number of freshly printed layers to 

increase inter-layer bonding (Figure 5.6c), and in [35], the printing of concrete reinforced 

with steel fibers with different lengths and at different fiber volume contents are 

investigated. The study shows that more than 90% of extruded fibers align within 0°-30° 

from the filament orientation.  

Finally, the concept that has received the most attention and has seen large-scale 

applications so far is the post-tensioning of 3D printed concrete [36,37] (Figure 5.6d). 

The advantage of this approach is that the printed concrete is stressed to a level so that 

only compression remains. 
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(a) (b) (c) (d) 

Figure 5.6. Providing tensile resistance to 3D-printed concrete by a) inserting traditional 

reinforcement cage [32], b) mesh reinforcements [33], c) penetrating reinforcing bars 

[34], and d) post-tensioning [36]. 

 

In the study that follows, the use of post-tensioning is focused on, with its geometry 

optimized simultaneously with the concrete distribution, thus alleviating the difficulty of 

introducing steel rebars or fibers in the 3D-printed concrete. 

The starting point for this study, are the conceptual designs as obtained by Amir and 

Shakour [38]. We again rely on the density-based TO approach, where the structural 

topology is represented by a collection of density values (x) that can vary between 0 (void) 

and 1 (material) at discrete points in the design domain. However, for this design, a new 

procedure was proposed for concurrent optimization of the concrete layout and also the 

shape of the post-tensioning tendon embedded into it. The theoretical background is 

mostly discussed in [38]. Section 5.3.2.1 explains the mathematical formulation. 

The following sections will subsequently focus on: (i) the design process, including the 

topology optimization approach, the post-processing methodology, and the print path 

generation; (ii) the manufacturing phase, including the segmental fabrication by 3D 

printing, the casting of the end blocks, and the assembly and post-tensioning of the girder; 

and finally (iii) the experimental testing and discussion section.  
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5.3.2 Design process 

5.3.2.1 Topology optimization of the girder 

As mentioned before, the design of the prestressed 3D-printed concrete girder is based 

on computational results from Amir and Shakour [38]. As the design procedure has been 

developed so far in 2D only and without precise design parameters, some adaptation of 

the design for the actual three-dimensional setting and material properties is necessary. 

Hence, the results from Amir and Shakour serve herein as a conceptual material 

distribution and tendon geometry, whereas actual dimensioning is performed in a post-

processing stage - described in the next section.  

The particular design and manufacturing test case is that of a simply supported beam 

subjected to a uniform load. For topology optimization, we use a rectangular design 

domain with a length-to-height ratio of 10:1 that is discretized into a grid of 300 × 30 

square finite elements, each element is associated with a density design variable. The 

setup of the problem is presented in Figure 5.7. Note that we utilize symmetry, so only 

one half of the design domain is simulated and optimized. At the beam’s end, horizontal 

sliding supports are available through the complete height of the domain, so that the 

optimization procedure finds the best location of the supports that will meet the tendon’s 

anchor. 

 

 

Figure 5.7. Setup for topology optimization of a single-span beam subjected to a uniform 

load, utilizing symmetry. Gray represents the initial density value of 0.5 throughout the 

domain, while the density of the top surface is fixed to 1 (black) so that the loading area 

is not disturbed. The blue line represents the initial tendon shape.  
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The optimization seeks a design that minimizes the displacements at the top surface of 

the beam, due to the combined action of the external loads and the post-tensioning 

tendon. In mathematical terms, this design goal reads: 
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where x is the vector of density variables; P the vector of tendon coordinates;  fext the 

vector of external forces; utotal the vector of total displacements, utotal = uext + upre; EN  

the number of finite elements and density variables; ve the volume of the e-th finite 

element; V  the available volume fraction for the concrete; P and P  the lower and 

upper bounds for the tendon coordinate movements; K the stiffness matrix of the concrete 

domain, related to the mathematical variables ρ and P via filtering and projection 

operations; and fpre the vector of prestress forces, that depends on P. We note that the 

square of the work   is used in the objective so to avoid the erroneous solution that 

magnifies the negative work of fext upon upre. 

For a standard beam with uniform cross-section, the required tendon force can be 

estimated as: 
total

STD

6
T

M
T

h
e

=
+

, where 
totalM  is the total bending moment at the critical 

point (mid-span in the particular case); eT the maximum eccentricity of the tendon; and h 

the beam height. The design chosen for manufacturing and testing is the one obtained 

with 
STD0.8T T=   and a concrete volume equal to 50% of the rectangular domain. The 

optimized concrete distribution and tendon layout are displayed in Figure 5.8. 
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Figure 5.8. Results of the topology optimization procedure for a single-span beam 

subjected to a uniform load. Black represents concrete; white represents void; cyan 

represents the tendon.  

 

It should be emphasized that topology optimization of structures is a well-established 

methodology and its development towards 3D concrete printing applications can benefit 

from a vast body of knowledge. The particular case of optimizing the tendon geometry is 

quite new but results of several cases, including statically indeterminate beams, are 

available in the referenced article [38]. Moreover, ongoing work focuses on a more 

practical formulation that includes the tendon force as a design variable; curvature 

constraints on the tendon; and stress constraints in the concrete. 

As topology optimization typically generates complex geometries, its coupling to additive 

manufacturing is natural and has been the focus of extensive research recently (see a 

recent review by Liu et al. [39] and references therein). The main challenge is to embed 

the printing limitations and constraints into the optimization formulation. So far, overhang 

limitations have been receiving attention, primarily by using projection or filtering 

operations [40,41]. As one of the limitations in concrete printing is the capacity to sustain 

self-weight during printing, formulations that embed gravity loads can be adapted to the 

particular case of concrete [42,43]. 

5.3.2.2 Design post-processing 

The topology-optimized result from Figure 5.8 was adopted and transformed into 3D using 

Fusion 360 – Autodesk. The idea was to have a circular lower chord, so that the post-

tension cable was evenly surrounded by a reasonable amount of concrete cover, thus 

avoiding local failure. Secondly, the upper chord of the girder was widened to allow for 

humans crossing the girder. We refer to this part as the deck side, as we purposely 
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envisioned a small bridge. Attention was paid not to make the deck too wide, since this 

would introduce unsafe transverse tensile forces in the top fibers of the upper chord. 

Taking these matters into account, a dynamic shape was finally created, see Figure 5.9. 

As can be observed, the 3D printing process was only used for the manufacturing of the 

contour shape of the girder; thereafter, the 3D-printed parts were assembled between two 

prefabricated end blocks, and the inner cavity was injected with a grout material. The 

function of the end blocks is two-fold. Primarily, they anchor the transverse bursting forces 

introduced by the post-tension force, and secondly, they are used to keep the separate 

parts together during the assembly and grouting process. Finally, as the project was meant 

to serve as a proof-of-concept, the girder was designed with a limited span width of 4.0 m, 

and the post-tensioning cable comprised a single 7-wire strand.  

 

 

 
Figure 5.9. Computer-generated images of the to-be printed design with and without end 

blocks. 
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The analysis of the 3D-printed girder cannot be based on the 2D calculation. Since the 

optimization analysis is purely 2D, its stress results are not valid. Therefore, the model 

was studied using 3D finite element analysis, and the structural response under different 

load conditions was analyzed. The considered load cases were self-weight (g), self-weight 

+ post-tensioning force (g + fpre), and self-weight + post-tensioning force + live load (g 

+ fpre + fext). For symmetry reasons, only half of the girder was modelled. The domain 

was discretized using C3D4 and C3D6 elements (4-node linear tetrahedrons and 6-node 

linear triangular prisms) and comprises 125,555 elements. The use of complex quadratic 

elements was not deemed critical at this stage since the differences in results are likely 

neglectable for design purposes. Also included in the FE study are the post-tensioning 

strand in the lower chord and the end blocks. These were modelled using linear elements 

and connected using tie constraints. A diameter of 8.2 mm was used for the strand to 

generate an equivalent area of 52 mm² corresponding to 7-wire strand with a 9.3 mm 

nominal diameter, and surface-to-surface contact properties were defined to model the 

unbonded interaction with the concrete girder. The sliding formulation was defined as 

small with hard normal contact properties, and frictionless tangential behavior [44]. The 

material properties used in the FE-study can be found in Table 5.1 and the characteristics 

of the post-tensioning strand in Table 5.2. For clarification, the shape of the end blocks 

was not optimized. 

 

Table 5.1. Material properties as used in the FE-model. 

Material 
Young’s modulus 

(MPa) 

Poisson’s ratio 

(-) 

Density 

(kg/m³) 

Concrete (C30/37) 32,800 0.2 2500 

Steel 190,000 0.3 7800 
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Table 5.2. Properties of the post-tensioning 7-wire strand 

Type 3/8” 

Diameter (mm) 9.3 

Ap (mm²) 52 

fpk (N/mm²) 1860 

Max. prestress force (kN) 77.4 

 

It should be noted that for the numerical analysis, the girder (consisting of an outer layer 

of 3D-printed concrete and filled with grout infill material) was modelled as a solid section 

with averaged properties. Therefore, the Young’s modulus and its associated concrete 

grade had to be estimated based on the ‘hybrid’ nature of the structure. The ratio between 

the 3D-printed outer layers and the internal cavity volume was about ±85%, as such a 

mean value was calculated, taking into account that too much water was added to the 

grout premix. In the end, an equivalent concrete grade of C30/37 was selected for the 

analysis of the girder. Concerning the validation part, several other concrete grades were 

added and discussed. Based on this concrete grade with a characteristic cylinder 

compressive strength of 30 MPa (C30/37), the following design limits were extracted in 

accordance with EN 1992-1-1: the design compressive strength of the concrete was 

constrained to 20 MPa and the design tensile strength was limited to 1.35 MPa.  

The results of a linear elastic analysis based on the aforementioned geometry, loads and 

material properties can be found in Figure 5.10. The first study (Figure 5.10a) only 

considers the self-weight of the girder. Results show that the maximum principal stresses 

in the girder are mostly below these ultimate stress states. The average tensile stress in 

the lower chord is only 1 MPa. The second result (Figure 5.10b) presents the girder when 

the live load is also applied. This load case (without the post-tensioning) will not occur in 

reality but is included to assess certain risks. The live load is set equal to 17 kN distributed 
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equally across the top surface (i.e., fext = 10 kN/m²). The tensile stress in the girder now 

exceeds the design tensile strength. 

The third result (Figure 5.10c) considers the self-weight and the post-tensioning. Due to 

the prestress force, the lower chord of the girder is loaded in compression, while tensile 

forces arise in the top part of the girder. The prestress force was set at 50 kN. As can be 

observed, the occurring stresses are mostly within the design limits of the material; except 

for a peak stress concentration in one of the struts. The maximum compression stress in 

the lower chord is around 5 MPa, and the maximum tensile stress in the upper chord is 

0.5 MPa. The final analysis (Figure 5.10d) shows the principal stresses of the girder when 

all loads are combined: the self-weight of the girder plus the prestressing and external 

forces. As expected, in prestressed concrete design, the girder appears to be in a neutral 

state, where most of the tensile (and compressive) stresses are eliminated. A small peak 

of tensile stresses does remain at the bottom. 

Furthermore, in bridge design engineering, asymmetric design loads and concentrated 

convoy loads should be considered as well. A topology optimization study concerning 

such additional load cases was performed by Jansseune & De Corte [45]. However, as 

the approach was not yet combined with the algorithm described in Section 5.3.2.1, 

asymmetric design loads and concentrated convoy loads were not considered. 

Additionally, the stress distribution in the end blocks was removed from the results as 

they did not accurately predict the internal stresses. The reason for this is the inaccurate 

modeling of the anchorage zones and the simplifications in the material model. Advanced 

FE models such as proposed by Van Meirvenne et al. [46] could provide more insight. 

However, their incorporation is beyond the scope of the current study. The amount of 

rebar in the end blocks was therefore calculated manually, and in accordance with LRFD 

Bridge Design Specifications – AASHTO [47].  

Finally, some additional safety measures were taken in the final design. Additional rebars 

were added to the structure to protect it from unforeseen stress concentrations 

considering the segmentation in the printing process (see further). Therefore, in every 

diagonal strut, two rebars of Ø12 were added (Figure 5.10e). 
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Figure 5.10. Principal stress plots for the different load cases. (a) self-weight, (b) self-

weight + live load, (c) self-weight + prestress force, (d) self-weight + prestress force + 

live load, and (e) dimensioning of the reinforcements. 
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5.3.2.3 Print-path generation 

As expected, the girder could not be 3D printed in one piece. As such, a similar approach 

as observed in the production of the 3D-printed bicycle bridge in Gemert, The Netherlands 

[36] was adopted. In that project, six identical pieces were individually printed, then rotated 

on their sides and post-tensioned towards one another. Similar to that approach, this 

topology-optimized design was subdivided into several parts (Figure 5.11a) and for each 

of them the contour shape was 3D printed. Since each element had a maximum height of 

400 mm and a maximum total weight of 30 kg, they could be printed with a minimal 

amount of support material, where taller prints would collapse under self-weight load. The 

subdivision of the 3D design was performed in Rhinoceros using the Grasshopper plugin. 

A custom Grasshopper script was created to slice the volumes and to generate the RAPID 

code with robot control instructions (Figure 5.11b). Considering the symmetry of the 

girder, nine RAPID files were created, each containing roughly 4000 lines of code needed 

to control the ABB robotic arm. 

 

 

(a) 

 
(b) 

Figure 5.11. Generation of the printing path by visual scripting techniques in Rhinoceros 

& Grasshopper showing (a) all the different parts and (b) the tool path for part 8 and 9. 

Part 1 Part 2 Part 3 Part 4 Part 9 

Part 5 Part 6 Part 7 Part 8 
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5.3.3 Manufacturing process 

The manufacturing process of the girder was separated into three phases. Firstly, the 

actual 3D printing of the eighteen girder segments and the casting of the two end blocks 

is presented. Secondly, the assembly of the different parts is discussed, including the 

grouting process and the integration of rebars, and finally, the post-tensioning of the lower 

tendon. 

5.3.3.1 Printing the segments 

The 3D printing of the girder segments took place at the Magnel-Vandepitte Laboratory 

for concrete research and at Vertico [48]. Because both setups are very similar, only the 

printing setup of the former is described (Figure 5.12). The setup comprises: (i) a robotic 

arm, (ii) a mortar (screw) pump for cementitious material, and (iii) a concrete 3D printing 

mixture.  

The robot is of the type: ABB IRB6650 – with a range of 3.2 m and payload of 125 kg – 

and has 6 degrees of freedom (DOFs), which enable printing in almost every orientation 

and tool alignment. It is one of two systems that is frequently used by researchers and 

companies in the field of 3D concrete printing. In this experiment, the robot actuator 

remained perpendicular to the horizontal plane. The pump has a delivery rate between 2 

and 29 L/min and can handle pressures up to 30 bar. The mortar recipe was adopted from 

‘De Huizenprinters’ [49], and consists of 51.1% dried sand 0/2, 34.7% Portland cement 

CEM I 52.5 R, 13.2% water, and 1.0% water retention agent (these percentages are in 

mass, i.e. % of the total weight). The latter ensures that the water is more retained, and 

the mix gets its desired thixotropic behavior and prevents the occurrence of pressurized 

bleeding. The print nozzle has a Ø25 mm opening and is set to print at 80 mm/s. The total 

printing time of the segments was estimated to be around 24 hours. The actual printing 

was performed in three working days and required at least three operators simultaneously. 

The 3D-printed segments were allowed one night of settling, whereafter they could be 

removed from the printing bed and be transported.    
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Figure 5.12. 3D concrete printing set-up at the Magnel-Vandepitte Laboratory showing 

the realized post-tensioned concrete girder in the back. 

 

5.3.3.2 Casting of the end blocks 

Traditional casting was used for the realization of the end blocks. A wooden formwork was 

made and steel rebars and spirals were inserted (Figures 5.13a and 5.13b). In each end 

block, not one but three anchorage systems were built in to later install the post-tensioning 

strands. The main strand in the middle and two supplementary deck strands (also ø 9.2 

mm) were provided for safety reasons (transport and inverse loading conditions during 

assembly). For this, steel ducts were embedded in the concrete to allow for the post-

tensioning strands and their hoses to run through the concrete mass. In addition, 

perpendicularly to the main duct, a steel reinforcing plate was embedded to transfer the 

post-tensioning force from the wedge into the concrete end block (Figure 5.13c). 

5.3.3.3 Assembly, integration of reinforcements & grouting 

After the 3D printing of the girder, the next step was to assemble all parts, including adding 

the reinforcement bars, and to fill the inner cavity with a grout mortar. This grout was 
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(a) (b) (c) 

Figure 5.13. Manufacturing of the end blocks: (a) CAD design - dimensions in [cm], (b) 

wooden formwork and added reinforcements, and (c) the resulting end block with a visual 

on the steel reinforcing plate. 

 

injected after a sufficient hardening/settling period of the 3D-printed segments (i.e., 

several weeks). 

First, the printed elements (Figure 5.14a) were positioned with their deck side flat on the 

ground. By positioning the parts this way, only a limited amount of support structure was 

required. Foam blocks were used to support the cylindrical sections in the mid part of the 

girder. The joining of the different parts was performed from one end to the other to enable 

the insertion of the steel rebar (Figure 5.14b). To keep them in place, traditional plastic 

spacers were used. The post-tensioning strands – surrounded by a plastic sheathing – 

were also brought in position. Attention was given to the positioning of the main strand, 

which had to run as centrically as possible to avoid secondary bending in the lower chord. 

To close the gaps between the printed elements, the two deck strands were prestressed 

using a very small force (5 kN). Next, the joints were sealed off with a PU foam gun to 

close any remaining gaps (Figure 5.14c). Finally, four 30 mm holes were drilled in the 

girder. The first and last hole were drilled 400 mm from the supports, and holes two and 

three were drilled 1000 mm from mid span. One of the center holes was used as inlet for 

the grout material, while the other holes served as an air outlet. The same pumping system 

as for the 3D printing was used to transport the grout. The grouting material was a high-
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quality shrinkage compensating high-strength seal mortar [50] (compressive strength ~60 

MPa; tensile strength ~12 MPa). However, since the consistency of the mortar had to be 

adjusted during pumping by adding water, the quality of the material is not certain, but 

likely somewhat lower. Whenever the mortar rose from one of the remaining holes, 

pumping was paused, and the hole was sealed. A small amount of mortar leaked through 

an unclosed gap in the mid-bottom section of the girder. Finally, the girder was allowed 

two weeks of hardening. 

 

(a) (b) (c) 

Figure 5.14. (a) 3D-printed segments, (b) positioning of reinforcement, and (c) assembly 

and grouting process. 

 

5.3.3.4 Post-tensioning 

After a hardening period of 14 days, the girder was lifted from the ground, and the main 

tendon was slightly tensioned (10 kN); next, the girder was flipped in its upright position. 

During this elevation and rotation process, the girder was supported by polyester lashing 

belts. The final structure was placed on supports with a rubber slab below each end block 

(Figure 5.15a) and a preliminary verification of the girder’s strength was performed by 

carefully allowing people on the girder (estimated weight: 7 kN). Finally, the full post-

tension force of 50 kN was applied, and the upward deflection was measured using several 
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dial indicators and digital image processing (Figure 5.15b). The upwards deflection of the 

upper chord was around 10 mm, while the lower chord’s maximum final deflection was 

around 18 mm. The (excessive) deflection of the lower chord (especially in the mid-span) 

was more than what the FE-model predicted and could be attributed to secondary bending 

of the lower chord (P-δ) and/or due to misalignment of the post-tensioning strand within. 

This issue is further discussed in the next section. 

 

 

 
(a) 

 
(b) 

Figure 5.15. (a) Completed girder and (b) digital image correlation software capturing the 

deflection (in mm) of the manufactured girder during the post-tensioning phase. 
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5.3.4 Experimental testing 

Finally, load/displacement tests were performed on the manufactured girder. The goal was 

to verify the service load performance of the optimized shape. Since the original objective 

of the optimization study was to seek a design that minimizes the displacements at the top 

surface of the beam, the focus of the experiment was also on the upper chord. Digital 

image processing [51] was used to measure the deflection of the girder, with the white 

markers being the area of interest. The displacements of these markers were tracked, and 

the measurements were verified using digital dial indicators (Figures 5.16 and 5.17). Both 

the upper and lower chord were registered. In the end, the experimental results were 

compared to the original FE analysis. 

 

(a) (b) 

Figure 5.16. Experimental setup to monitor deformations. 

 

In Figure 5.18, the numerical results and markers are presented using lines and points, 

respectively. The upper chord (Figure 5.18a) shows a good fit between the experimental 

and numerical results. Most of the tracked markers are within the grey area, which shows 

the numerical deflection values for different concrete grades. The small deviations from 

the numerical values can be attributed to the sectional assembly, and the use of linear 
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(a) (b) 

  
(c) (d) 

Figure 5.17. Registration of the displacements (in mm) of the concrete girder by digital 

image correlation (DIC). 

 

elements in the FE analysis (these elements are known to be overly stiff hence will 

underestimate deflections). On the other hand, the lower chord (Figure 5.18b) shows a 

much higher deviation from the numerical result. The main deviation arises around the 

mid-section, indicating an effect of secondary bending in the lower chord (P-δ). This can 

be attributed to tolerances in the position of the post-tensioning strand within the lower 

chord, as well as to the sectional assembly. During the post-tensioning phase, the 

upwards deflection of the mid-span was already higher than what was predicted. 

Therefore, when loading the structure, the initial positions of the tracked markers in the 

upward deformation that is being relaxed, is adding up to the deflection of the girder. In 

larger structures, the positioning of the post-tension strand should be easier to control 

and eliminate this problem. 
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(a) 

 
(b) 

Figure 5.18. Registration of the displacements of the concrete girder compared to the 

numerical results for (a) the upper chord and (b) the lower chord. 

 

5.3.5 Discussion 

This section presented a complete digital design-to-manufacture process that combined 

topology optimization, 3D concrete printing and post-tensioning. As additive 

manufacturing in general offers relatively large design freedom, it can promote the 

reduction of material consumption when coupled with techniques such as topology 

optimization. The complex shapes that arise from topology optimization procedures 

challenged the manufacturing techniques and material limitations of 3D concrete printing 

– hence our main purpose was to demonstrate the feasibility of the process and to show 

a proof-of-concept in the form of a scaled girder. By careful segmentation of the design 

into printable parts, followed by joining them with post-tensioning tendons, we obtained 

a viable concrete girder that could sustain the loads for which it was designed. The use of 

post-tensioning, with its geometry optimized simultaneously with the concrete 
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distribution, alleviated the difficulty of introducing steel reinforcement in 3D-printed 

concrete. 

Based on the performance of the optimized beam, in terms of mid-span deflections under 

self-weight (590 kg) and live loads (540 kg), we can predict material savings of roughly 

20%. This estimate is based on finding a T-section girder with the same flange size (585 

mm by 97 mm) and the same overall depth (388 mm) as the optimized beam, giving the 

same total deflection. The values for the defection (adopted from the numerical model) 

are 0.28 mm under self-weight and 0.24 mm under 540 kg. The resulting volume of the 

T-section concrete girder is nearly 20% higher than that of the optimized beam – hence 

clarifying the incentive to employ topology optimization and manufacture complex 

geometries. Furthermore, for larger bridge structures, where the self-weight component 

becomes even more significant, additional savings can be expected. More details of this 

comparison can be found in Appendix 3.  

Concerning some of the current limitations, first of all, a clearly defined design protocol 

is missing. A mismatch is still present regarding the compatibility of the 2D topology 

optimization script and the development of the 3D design. The current approach was 

mainly based on engineering justice and was performed quite crude. Were this proposed 

methodology to gain traction in the construction industry, ideally the TO script should be 

developed to work in 3D as well. Additionally, as it was only optimized for a uniformly 

distributed load, the optimization only considered global deflection and stiffness, while in 

bridge design engineering, stresses and local deflection are of critical importance.  

In addition, no standards (or international regulations) were yet applied on this case. As 

such the essential performance requirements to protect the citizens cannot be guaranteed 

at this moment. The need for providing an internationally harmonized structural design 

and material acceptance framework for DFC structures is further discussed in [52]. For 

example, in Europe this means that the safety in the construction industry needs to be 

ensured at three different stages: the building preparation or design (EN-1992-1-1), 

building construction (EN 13670), and materials supply (EN 206). However, the 

particularities of a 3DCP structure are not worked out in any of these regulations. It is 
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clear that a considerable amount of research still needs to be performed to consider DFC 

as a standard construction method. 

Furthermore, the manufacturing process described in this work does not yet reveal a clear 

economic benefit. Nevertheless, the focus was on the feasibility of the process, combining 

a computational-intensive design method and robotic 3D concrete printing. The realistic 

economic benefits of 3D printing over traditional manufacturing methods are still a matter 

of research, not only in the context of concrete but also in more established technologies 

such as powder-based metal printing. Therefore, we do not claim any immediate 

economical savings. However, as the technology improves and consolidates, the expected 

key benefits will be: i) Reduction of concrete consumption, due to optimization and 

realization of complex geometry that is not necessarily feasible in traditional 

manufacturing; ii) No need of molding as in concrete casting; and iii) Possibility of 

(autonomous) robotic manufacturing. 

This study also opens up many research topics that require further investigations. At first, 

the deviations between the numerical model and the measured deflections at the lower 

chord need to be investigated. One possible explanation could be secondary bending 

moments due to imperfections in the alignment of the tendon. For this, it would have been 

interesting to assess the deflection of the lower chord, modelled by itself, assuming 

different eccentricities. Another factor of uncertainty is the determination of the equivalent 

material characteristics of the hybrid structure (3DCP segments and grout infill). From the 

computational design perspective, full 3D topology optimization with prestressing still 

needs to be addressed, while accounting for manufacturing limitations and uncertainties 

poses further challenges. From the manufacturing perspective, future work should focus 

on improving the buildability of printable construction materials, i.e. the ability of extruded 

material to retain its shape under sustained loads. This may be achieved in the future 

using active rheology (or stiffening) control as well as a setting-on-demand mix design 

approach. Progress in this field could increase the number of continuous layers that can 

be printed (or stacked) without failure and boost the maximum degree of overhang in a 

design. 
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In the broader context of 3D printing shape-complex structures, a recent interesting case 

was also presented by Kinomura et al. [37], who manufactured a topology optimized 

pedestrian bridge consisting of 44 3D printed, prestressed concrete segments. A holistic 

verification study via continuing numerical investigations of the design is included in the 

publication. E.g., it is confirmed that any fracture occurrences are not observed even under 

maximum loading and the manufactured bridge behaves as an elastic unity. 

Finally, having a finite element-based virtual simulation model for the 3D concrete printing 

process is valuable. Such model could predict values of strength, internal stresses, critical 

locations, and initial deformations during the printing progress. Based on the outcome 

from a FEM-based calculation, a particular design could be marked unfit for printing, 

providing additional insight on process parameters that could be tuned in order to increase 

the chance of success in printing the analyzed design; thus, avoiding costly physical 

experiments.  

Finally, if all these challenges can be overcome, the author sees great potential in using 

this design methodology for the manufacturing of large-scale post-tensioned concrete 

bridges. 
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6.1 Conclusions 

The goal of this doctoral thesis project was to enhance the design process of construction-

related components by harnessing the power of generative design optimization strategies 

such as topology optimization. Topology optimization was described in the introduction 

(Chapter 1) as an innovative mathematical design technique that allows for the exploration 

of ‘general’ shapes with the goal of maximizing performances. The use of topology 

optimization as a design tool is different from the other design practices in the sense that 

the design can attain any shape within the predefined design domain. This stands in 

contrast with the general methodology where most of the time a specific design 

configuration is decided on by the designer(s) or engineering team. In Chapter 2, a 

comprehensive overview of classical (structural) topology optimization schemes was given 

and several important algorithms and methods were described. Also, some extensions 

were elaborated on, and various examples presented.  

Of course, the idea for this research project was not only to study the state-of-the-art. The 

main objective was to explore the full potential of topology optimization for the design of 

construction-related components (within the building envelope). Especially, the 

suggestion/idea to optimize not only structural performances, but also certain multi-

physics performance indicators had the main interest. Consequently, Chapter 3 dug 

deeper into this subject.  

In this chapter, topology optimization was performed considering simultaneous structural 

and thermal analyses. The design of a thermally efficient masonry block and a brickwork 

support bracket were addressed. In both studies, the goal was to reduce localized thermal 

heat flow (cold bridging) and thermal resistance, while retaining sufficient structural 

stiffness and integrity. Several problems related to multi-physics topology optimization 

procedures were examined and the benefits of a two-material implementation were 

presented. The aim was to improve the robustness of such multi-physics optimization 

processes and to provide a methodology to accurately determine the beneficial design 

solutions.  
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In the first case study (thermally efficient masonry block), it was shown that topology 

optimization can generate a large diversity of different material distributions. It was 

demonstrated that the suggested methodology could inspire designers early on in the 

design process and help them to explore new design ideas by thinking outside the box. 

An advantage of the approach was that TO could aid engineers and designers to 

understand better the underlaying mathematical physical problem and aid them in the 

optimization of their designs. 

In the second case study (brickwork support bracket), the preliminary results showed that 

a small admission on the material usage or allowable volume fraction could largely 

improve the thermal performance (and thus reduce cold bridging) while retaining (almost) 

equal stiffness. A small additional cost of raw materials therefore proved to be beneficial 

in this kind of design problem. However, further on, a first parametric study revealed that 

a combined structural and thermal topology optimization approach can cause serious 

confusion regarding material interpolation. The penalization parameters that are used to 

construct the interpolation curves for the density - thermal conductivity relation are hard 

to determine, and when choosing improbable parameters, interesting design solutions 

could go by unnoticed. To solve this problem, a multi-material topology optimization 

approach was included which added an extra set of design variables. In this way, a new 

type of material could be added with predefined properties. Using this multi-material, 

multi-physics approach, innovative and new topological solutions were found. Choosing 

the right materials remained important, but unlike the traditional approach, the design 

solutions were unambiguous, and a realistic optimum could be obtained. The final study 

then optimized a brickwork support bracket inspired by a real-world design of Halfen and 

an improved design proposal was found that included two ABS thermal breaks.  

This first set of studies proved that finding optimal design solutions requires a broad 

knowledge in many different fields, as the design of construction-related components is 

unavoidably a multidisciplinary activity. Combining several disciplines within the topology 

optimization study should give much better (and faster) solutions in comparison to 

carrying out many individual (single-)disciplinary optimizations. 
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With respect to this chapter, future research could focus on experimenting with more than 

one additional material and try to include a cost function to incorporate the price variance 

of different materials. Also, the material strength and the strength of the bonding between 

the different materials and the incorporation of nonlinear material models into the 

algorithm could become relevant. Additionally, as mentioned already, the design of 

construction-related components is affected by many different disciplines. In addition to 

structural and thermal performances, other aspects such as acoustics, fire safety, 

hygrothermal effects, or durability and sustainability could be added.  

// 

A secondary objective in this research project was to consider the production method that 

would work best in harmony with the results from such a topology optimization study. As 

these highly optimized designs were often very complex in shape, additive manufacturing 

was identified as the most promising. Additionally, this idea of using additive 

manufacturing presented several opportunities, especially, the possibility to produce 

custom infill densities on the fly. This aspect was elaborated on in Chapter 4. 

The goal of this chapter was to better tune multi-physics topology optimization for additive 

manufacturing processes and to stimulate topology-optimized design for 3D-printable 

building structures. A novel multi-physics interpolation model was proposed that linked 

3D-printing technology to density-based topology optimization. The structural and thermal 

material properties of a triangular infill pattern were analyzed and coupled to the 

mathematical design of the interpolation functions. Taking into account, among other 

things, thermal convection in the air cavities, a realistic penalization scheme was created. 

Subsequently, using this novel interpolation scheme, a roof component was optimized, 

and a design was generated with improved thermal and stiffness properties. Finally, the 

optimization study was able to generate several sets of optimized topologies with different 

trade-offs between structural stiffness and thermal efficiency. This was realized by 

implementing a weighted-sum multi-objective. By studying the pareto frontier, the 

decision-making process of the designer can be boosted, as it can provide the designer 

with additional domain knowledge and aid in choosing the final solution. 
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Future studies could analyze the influence of different infill patterns such as honeycomb 

structures or tri-hexagon patterns. Especially, the analysis of 3D-infill patterns such as 

cubic, tetrahedral, or gyroid patterns could proof to offer valuable benefits for multi-

physics topology optimization. Furthermore, this concept could strengthen the already 

existing and strong connection between topology-optimized design and additive 

manufacturing.  

Additionally, it was proposed theoretically that 3D concrete printing could offer solutions 

to enable a shift from “stepwise gradation” to a virtually seamless gradation of internal 

densities. This would enable the production of complex geometries, where relatively few 

adjustments must be made to comply with the manufacturing constraints. Therefore, the 

topic of variable-density multi-physics topology optimization for 3D-printable building 

structures looks very promising and could potentially revolutionize certain design methods 

for building engineering, especially in a world where digital design meets 3D-printing 

technology. 

// 

Thus, in the last chapter (Chapter 5), the aim was to link 3D concrete printing with topology 

optimized designs for the construction industry. As additive manufacturing in general 

offers relatively large design freedom, it can allow for the reduction of material 

consumption when coupled with design techniques such as topology optimization. The 

complex shapes that arose from topology optimization procedures challenged the 

manufacturing techniques and material limitations of 3D concrete printing. With this 

chapter, the opportunities for structural engineering of digitally fabricated concrete 

components were explored. A complete digital design-to-manufacture process was 

presented, combining topology optimization, 3D concrete printing and post-tensioning. 

The main focus was to demonstrate the feasibility of the process and to present a first 

proof-of-concept in the form of a 3D-printed scaled concrete girder (i.e. small bridge).  

One of the first steps described the transitioning from a 2D topology optimization result 

to the 3D design with help from FEM analysis, followed by careful segmentation of the 3D 
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design into printable parts, the printing process and the joining of the different parts with 

post-tensioning strands. A viable concrete girder was obtained that could sustain the loads 

for which it was designed. The use of post-tensioning, with its geometry optimized 

simultaneously with the concrete distribution, alleviated the difficulty of introducing steel 

reinforcement in 3D-printed concrete. 

Based on the performance of the optimized beam, in terms of mid-span deflections under 

self-weight and live loads, material savings of roughly 20% were achieved. The 

manufacturing process described in this work does not yet reveal a very clear economic 

benefit. However, the economical vision, that it could trigger a “chain of improvements” in 

the construction industry, is presumable.  

The realistic economic benefits of 3D printing over traditional manufacturing methods are 

still a matter of research, not only in the context of concrete but also in more established 

technologies such as powder-based metal printing. Here, the focus was on the feasibility 

of the process, combining a computational-intensive design method with robotic 3D 

concrete printing. As the technology improves and consolidates, the expected key benefits 

will be: i) a reduction of concrete consumption, due to optimization and realization of 

complex geometry that is not necessarily feasible in traditional manufacturing; ii) no need 

of molding as in concrete casting; and iii) the possibility of autonomous robotic 

manufacturing on site. 

 

6.2 Recommendations and outlook 

Now, to finally return to the original title and perhaps the main question of this PhD project: 

“Is there potential in combining topology optimization and 3D printing in the construction 

industry?”, I think the answer is clearly: Yes! Based on the findings of this PhD study, the 

future of combined design optimization and digital fabrication looks bright. Nevertheless, 

many important challenges remain. First of all, in many of the specific cases and 

algorithms, assumptions were introduced to simplify the problem. While often the 



Chapter 6: Conclusions 

  169 

assumptions were accounted for, there is always the risk that the results are not valid in 

their application. Additionally, some extensions were discussed that could prove to be 

very beneficial if they were to be added. For example, the introduction of stress constraints 

in certain topology optimization studies, or the strength of bonding for multi-material 

design problems. Concerning the topology optimized girder, also a clearly defined design 

protocol was still missing. The current approach where the 2D topology optimized solution 

was transformed into a realistic 3D design, was mainly based on engineering justice and 

influenced by aesthetic expectations. This leaves much room for further improvements 

and follow-up research studies. 

In my opinion, the main benefit (impact within the construction industry) will be found in 

single variable-based multi-material optimization for concrete (building) structures. For 

example, if the rheology of a concrete mixture could be changed actively inside the 3D 

printing extrusion nozzle, the topology optimization algorithm could determine the exact 

requirements of this mixture at every location, allowing for a precise assessment of the 

weight savings and performances. Being able to deposit a strong concrete mix where it 

needs to be strong, less strong (and less costly) where it is allowed, and perhaps thermally 

insulating where the design could benefit from it. This concept of having a functionally 

graded concrete available was only slightly touched in this work. Regrettably, the 

technology was not there yet to include some preliminary experimentation within this 

subject. I sincerely hope future studies could tackle this concept.  
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APPENDIX 1 SENSITIVITY ANALYSIS 

Several distinct methods exist for the computation of gradients: approximate, numerical 

methods, or exact, analytical methods. For the first set of methods, the sensitivity of the 

function with respect to one variable of the design domain is approximated by giving the 

value of the variable a small perturbation. The FE analysis is reiterated with this value and 

the response is compared to that obtained for the nominal value. As the analysis needs to 

be repeated for each variable of the design domain, the method becomes very time 

consuming and computationally expensive for problems with many design variables. The 

method should only be considered if the functions that are used, are not available 

analytically.  

In contrast, analytical methods can be used when the functions are differentiable. In 

structural optimization and topology optimization problems, analytical gradients are used 

almost exclusively. In the following paragraph, the derivation of the gradients for the 

compliance function is presented. 

Let us again define compliance C(x) as 

Tˆ( ) ( , ( ))C xC = =x x U F U .     (A1.1) 

Due to the nested formulation, the displacements U are implicitly function of x, meaning 

that the partial derivative of C(x) conceptually reads as follows:  

( ,( () )) ,ˆ ( )

( )

() )ˆ (

ee e

CC

xx x

C
=





 

+


 x xx U x

U x

U xU x
.   (A1.2) 

When differentiating the state equation ( =F KU ), the sensitivity of the displacements 

can be determined. 

( )
( ) ( )

( )

e eex xx

 
= +


 

x
x x

xK UF
U K ,    

which after rearrangement of terms read 
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1( ) ( )
( ) ( )

ee exx x

−   
= −


  

x
x x

xU F K
K U .    (A1.3) 

Inserting Eq.(A1.3) into Eq.(A1.2) yields 

( ,( )) ˆ ( )

e e

CC

x x
=

 

xx U x

. 

 
1( , )ˆ ( ) ( )
( (

)
) )

( e ex x

C −   
+ −   

x U x
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F
U x

x

K x
K x   (A1.4) 

Because from Eq. (A1.1) 

T( , )ˆ ( )

( )

C
=


x U x

x
F

U
,      (A1.5) 

and also from Eq. (A1.1) 

( , )ˆ ( )

ee

C

x x




=
 x FU x

U  

 

Equation (A1.4) simplifies to 

T 1( ) ( )
( ) ( )

e e e e

C

x x x x

−=
    

+ −     

x F F K x
U F K x U x . 

 

  

Again, inserting the equality that follows from the state equation (where T 1 T− =F K U ), 

the derivative of the compliance function finally reads: 

T
2

( ) ( )
( ) ( )

ee e

C

x xx
=

 
−



 

x K x
U x UU x

F
   (A1.6) 
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where 

0
ex


=


F

U . 

The final form of the derivation is thus:  

T( ) ( )
( ) ( )

e e

C

x x
=

 
−

 
x K x

U x U x  

 

// 

The reason why the compliance function is so widely used becomes evident from 

Eq.(A1.5): Here, the gradient of the nested compliance function with respect to ( )U x  

times the inverse of the stiffness matrix does not require an extra set of linear systems to 

be solved. If this was not the case, the linear system in Eq.(A1.3) would need to be solved 

once for each design variable, when using the direct method. For problems involving 

many design variables, an alternative method exists, called the adjoint method. In the 

adjoint formulation, a new set of linear systems is created from Eq.(A1.4) by introducing 

the vector jλ , where 

1
( , )ˆ ( )

(
(

)
)

j

j

C −=




x U x

U
K

x
λ x . 

Of course, here a general objective or constraint function ˆ jg  would be inserted instead 

of the compliance function ˆ jC . Using the adjoint formulation, the linear system generally 

needs to be solved ‘only’ once for each objective or constraint function (that is a function 

of ( )U x ).  
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APPENDIX 2 MATLAB CODES 

A 55-line MATLAB code for topology optimization 

%%%% AN 55 LINE TOPOLOGY OPTIMIZATION CODE - June 2016 - VANTYGHEM G %%%% 

function top55(nelx,nely,volfrac,penal,rmin,iter)  

% Example: top55(200,200,0.5,3,1.5,50) 

% PREPARE FINITE ELEMENT ANALYSIS 

E0=1;  

Emin=1e-9;  

nu=0.3; 

A11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12]; 

A12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6]; 

B11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4]; 

B12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2]; 

KE  = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]); 

nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 

edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1); 

edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -

1],nelx*nely,1); 

iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1); 

jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1); 

% DEFINE LOADS AND SUPPORTS 

F = sparse(2*(nely+1)*(nelx+1)-(nely),1,-1,2*(nely+1)*(nelx+1),1); 

U = zeros(2*(nely+1)*(nelx+1),1); 

fixeddofs = 1:2*(nely+1); 

alldofs = 1:2*(nely+1)*(nelx+1); 

freedofs = setdiff(alldofs,fixeddofs); 

% INITIALIZE ITERATION 

xold = repmat(volfrac,nely,nelx); 

xnew = xold; 

loop = 0; 

% START ITERATION 

for it = 1:iter;  

  loop = loop + 1; 

  % FE-ANALYSIS 

  sK = reshape(KE(:)*(Emin+xnew(:)'.^penal*(E0-Emin)),64*nelx*nely,1); 

  K = sparse(iK,jK,sK); K = (K+K')/2; 

  U(freedofs) = K(freedofs,freedofs)\F(freedofs); 

  % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 

  ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx); 

  c = sum(sum((Emin+xnew.^penal*(E0-Emin)).*ce)); 

  dc = -penal*(E0-Emin)*xnew.^(penal-1).*ce; 

  dv = ones(nely,nelx); 

  % FILTERING/MODIFICATION OF SENSITIVITIES 

  dc = imgaussfilt(dc,rmin); 

  % OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES 

  l1 = 0; l2 = 1e9; move = 0.2; 

  while (l2-l1)/(l1+l2) > 1e-3 

    lmid = 0.5*(l2+l1); 

    xnew = max(0,max(xold-move,min(1,min(xold+move,xold.*sqrt(-

dc./dv/lmid))))); 

    if sum(xnew(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; end 

  end 

  change = max(abs(xnew(:)-xold(:))); 

  xold = xnew; 

  % PRINT RESULTS 

  fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n',loop,c, ... 

    mean(xnew(:)),change); 

  % PLOT DESIGN VARIABLES 

  colormap(gray); imagesc(1-xnew); caxis([0 1]); axis equal; axis off; 

drawnow; 

end 
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A novel material interpolation scheme for topology optimization with improved 

mechanical and thermal properties 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%  TOPOLOGY OPTIMIZATION / Thermal + Structural / CODE NOV, 2018  %%%% 

%%%%% A Novel Material Interpolation Scheme for Topology Optimization %%%% 

%%%%%        with Improved Mechanical and Thermal Properties          %%%% 

%%%%%         Vantyghem  G - De Corte W - Steeman M - Boel V          %%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

addpath('C:\Users\...\MMAscripts'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% PARAMETERS 

nelx    = 120;           

nely    = 600;                     

nele    = nelx*nely;  

ini     = 0.5; 

rmin    = 4; 

niter   = 300;                         

Vmax    = 0.5; 

% MATERIAL PROPERTIES 

Emax    = 2500;            kmax    = 0.275; 

Emin    = 0.001;           kmin    = 0.025; 

% PREPARE FEA - Structural 

S.nu  = 1/3; 

S.A11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12]; 

S.A12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6]; 

S.B11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4]; 

S.B12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2]; 

S.KE  = 1/(1-S.nu^2)/24*([S.A11 S.A12;S.A12' S.A11]+S.nu*[S.B11 

S.B12;S.B12' S.B11]); 

S.nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 

S.edofVec = reshape(2*S.nodenrs(1:end-1,1:end-1)+1,nelx*nely,1); 

S.edofMat = repmat(S.edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -

1],nelx*nely,1); 

S.iK      = reshape(kron(S.edofMat,ones(8,1))',64*nelx*nely,1); 

S.jK      = reshape(kron(S.edofMat,ones(1,8))',64*nelx*nely,1); 

S.maxdof  = 2*(nely+1)*(nelx+1); 

% PREPARE FEA - Thermal 

T.A1 = [ 8 -2; -2  8]; 

T.A2 = [-4 -2; -2 -4]; 

T.KE = 1/12 * [T.A1 T.A2; T.A2 T.A1]; 

T.nodenrs = reshape (1:(nely+1)*( nelx+1),nely+1,nelx+1); 

T.nodeids = reshape(T.nodenrs(1:end-1,1:end-1),nely*nelx,1); 

T.edofVec = T.nodeids(:)+1; 

T.edofMat = repmat(T.edofVec,1,4)+repmat([0 nely+[1 0] -1],nelx*nely ,1); 

T.iK      = reshape(kron(T.edofMat,ones(4,1))',16*nele,1); 

T.jK      = reshape(kron(T.edofMat,ones(1,4))',16*nele,1); 

T.maxdof  = (nely+1)*(nelx+1); 

% DEFINE LOADS AND SUPPORTS - Structural 

S.F = sparse([1:2:2*(nely+1)-1 S.maxdof-2*(nely+1)+1:2:S.maxdof-1],1,-

1,S.maxdof,1); 

S.U = zeros(S.maxdof,1); 

S.fixeddofs = 2:2*(nely+1):nelx*2*(nely+1); 

S.fixeddofs = [ S.fixeddofs 2*(nely+1)-1]; 

S.alldofs   = 1:S.maxdof; 

S.freedofs  = setdiff(S.alldofs,S.fixeddofs); 

% DEFINE LOADS AND SUPPORTS - Thermal 

T.F = sparse(T.maxdof-(nely+1)+1:T.maxdof,1,-1,T.maxdof,1); 

T.U = zeros(T.maxdof,1); 

T.fixeddofs = 1:nely+1; 

T.alldofs   = 1:T.maxdof; 

T.freedofs  = setdiff(T.alldofs,T.fixeddofs); 

% PREPARE FILTER 

iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1); 

jH = ones(size(iH)); 

sH = zeros(size(iH)); 
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k = 0; 

for i1 = 1:nelx 

  for j1 = 1:nely 

    e1 = (i1-1)*nely+j1; 

    for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) 

      for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely) 

        e2 = (i2-1)*nely+j2; 

        k = k+1; 

        iH(k) = e1; 

        jH(k) = e2; 

        sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2)); 

      end 

    end 

  end 

end 

H = sparse(iH,jH,sH); 

Hs = sum(H,2); 

% INITIALIZE ITERATION 

xnew  = repmat(ini,nely,nelx); 

xold2 = xnew(:); xold1 = xnew(:); xval  = xnew(:); 

xmax  = ones(nele,1);           upp   = xmax; 

xmin  = zeros(nele,1);          low   = xmin; 

  

% START ITERATION 

for iter = 1:niter 

  % FEA Structural 

  S.sK = reshape(S.KE(:)*(Emin+xnew(:)'./(3.6-2.6*xnew(:)')*(Emax-

Emin)),64*nelx*nely,1); 

  S.K  = sparse(S.iK,S.jK,S.sK); S.K = (S.K+S.K')/2; 

  S.U(S.freedofs) = S.K(S.freedofs,S.freedofs)\(S.F(S.freedofs)-

S.K(S.freedofs,S.fixeddofs)*S.U(S.fixeddofs)); 

  % FEA Thermal 

  T.sK = 

reshape(T.KE(:)*(kmin+(0.787*xnew(:)'.^2+0.136*xnew(:)'+0.078*xnew(:)'.^-1 

)*(kmax-kmin)),16*nelx*nely,1); 

  T.K  = sparse(T.iK,T.jK,T.sK); T.K = (T.K+T.K')/2; 

  T.U(T.freedofs) = T.K(T.freedofs,T.freedofs)\(T.F(T.freedofs)-

T.K(T.freedofs,T.fixeddofs)*T.U(T.fixeddofs)); 

  % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 

    v  = mean(xnew(:)); 

   dv  = ones(nele,1)/nele; 

  S.ce = reshape(sum((S.U(S.edofMat)*S.KE).*S.U(S.edofMat),2),nely,nelx);  

  S.c  = sum(sum((Emin+xnew./(3.6-2.6*xnew)*(Emax-Emin)).*S.ce)); 

  S.dc = -1*(Emax-Emin)*3.6./(3.6-2.6*xnew).^2.*S.ce; 

  T.ce = reshape(sum((T.U(T.edofMat)*T.KE).*T.U(T.edofMat),2),nely,nelx); 

  T.c  = sum(sum((kmin+(0.787*xnew.^2+0.136*xnew+0.078*xnew.^-1)*(kmax-

kmin)).*T.ce)); 

  T.dc = -1*(kmax-kmin)*( 2*0.787*xnew+0.136-0.078*xnew.^-2).*T.ce; 

  f1 = 3000; 

  f2 = 3000; 

  obj = S.c/f1-T.c/f2;  

  % FILTERING/MODIFICATION OF SENSITIVITIES 

  S.dc(:) = H*(S.dc(:)./Hs); 

  T.dc(:) = H*(T.dc(:)./Hs); 

  % MMA UPDATE OF DESIGN VARIABLES 

  m     = 1; 

  n     = nele; 

  f0val = obj; 

  df0dx = S.dc(:)/f1-T.dc(:)/f2; 

  fval  = v/Vmax-1; 

  dfdx  = dv(:)'/Vmax; 

  a0 = 1; a1 = zeros(m,1); c1 = 1000*ones(m,1); d1 = zeros(m,1); 

  [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ... 

  

mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2,f0val,df0dx,fval,dfdx,low,upp,a

0,a1,c1,d1); 

  xold2  = xold1; xold1  = xval; xval   = xmma; 
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  change = max(abs(xval(:)-xold1(:))); 

  xnew   = reshape(xmma,nely,nelx); 

  xnew(:) = (H*xnew(:))./Hs; 

  % PRINT RESULTS 

  fprintf([' I:%5i  Obj:%8.2f  Str.compl:%8.2f   Therm.compl:%8.2f   '... 

    '  Volume:%5.2f    Change:%6.3f\n'],iter,obj,S.c/f1,T.c/f2,v,change); 

  % PLOT DESIGN VARIABLES 

  figure(1);  

  set(gcf,'position',[100 240 1200 300]); 

  colormap(jet); imagesc(rot90(xnew)); caxis([0 1]); axis equal; axis 

tight; axis off;  

  colorbar('eastoutside'); drawnow; 

end 
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Topology optimization with stress constraints (Bresler Pister) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% TOPOLOGY OPTIMIZATION WITH STRESS CONSTRAINTS - Jun 2018 – VANTYGHEM %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  

nelx    =  40;                         % number of elements in x-dir 

nely    =  20;                         % number of elements in y-dir 

dikte   =  80; 

nele    =  nelx*nely;                  % number of finite elements 

ndofs   =  2*(nely+1)*(nelx+1);        % degrees of freedom 
  

ini     =  0.5;                        % initial density 

p       =  3;                          % penalization factor p 

q       =  2.8;                        % relaxation parameter q 

rmin    =  1.5;                        % filter radius 

niter   =  600;                        % number of iterations 

Smax    =  16;                         % max tensile strength 
  

% PREPARE FINITE ELEMENT ANALYSIS 

E0 = 30000;                            % Young's modulus solid (MPa) 

Emin = 1e-3;                           % Young's modulus void  (MPa) 

nu = 0.25;                             % Poisson factor 
  

A11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12]; 

A12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6]; 

B11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4]; 

B12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2]; 

KE  = dikte/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]); 
  

nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 

edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nele,1); 

edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nele,1); 

iK = reshape(kron(edofMat,ones(8,1))',64*nele,1); 

jK = reshape(kron(edofMat,ones(1,8))',64*nele,1); 
  

% DEFINE LOADS AND SUPPORTS 

load = [2 4 6 8]; loads = [load load+(nely+1)*2 load+(nely+1)*4]; 

F = sparse(loads,1,-125,ndofs,1);      % load vector (N) 

U = zeros(ndofs,1);                    % displacement Vector (mm) 

symm = 1:2:2*(nely+1); 

fixeddofs = [symm];                    % supports and symmetry 

alldofs   = 1:ndofs;                   % all degrees of freedom 

freedofs  = setdiff(alldofs,fixeddofs);% free degrees of freedom 
  

% INITIALIZE ITERATION and PREALLOCATION of MEMORY 
  

xnew  = repmat(ini,nely,nelx); 

xold2 = xnew(:)      ; xold1 = xold2        ; xval  = xold1; 

xmax  = ones(nele,1) ; xmin  = 0.1*ones(nele,1); 

low   = ones(nele,1) ; upp   = ones(nele,1) ; 
  

I1 = ones(nele,1)    ; J2 = ones(nele,1)    ; Bresler = ones(nele,1); 
  

B = [0.5,0;0,-0.5;-0.5,0.5]; B = [-abs(B),B,abs(B),-B]; 

D = E0/(1-nu^2)*[1    nu   0                

                 nu   1    0 

                 0    0  (1-nu)/2]; 

D1 =  E0/(1-nu)*[1 1 0];                     % D1 matrix 

D2 = (E0/(1-nu^2))^2 ...                     % D2 matrix 

        *  [  nu^2-nu+1        (-nu^2+4*nu-1)/2     0                

            (-nu^2+4*nu-1)/2     nu^2-nu+1          0 

                  0                  0         3*((1-nu)/2)^2 ]; 
 

st  = Smax; 

sc  = Smax; 

sb  = sc*1.16; 

c11  = (st-sc)/(st+sc) * (4*sb^2-sb*(sc+st)+sc*st) / (4*sb^2+2*sb*(st-sc)-

sc*st); 
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c22  =    1   /(st+sc) * (sb*(3*st-sc)-2*sc*st)    / (4*sb^2+2*sb*(st-sc)-

sc*st); 

c00  = c11*sc-c22*sc^2; 

ss  = sc/st; 
  

% PREPARE FILTER 

iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1); 

jH = ones(size(iH)); 

sH = zeros(size(iH)); 

k = 0; 

for i1 = 1:nelx 

  for j1 = 1:nely 

    e1 = (i1-1)*nely+j1; 

    for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) 

      for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely) 

        e2 = (i2-1)*nely+j2; 

        k = k+1; 

        iH(k) = e1; 

        jH(k) = e2; 

        sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2)); 

      end 

    end 

  end 

end 

H = sparse(iH,jH,sH); 

Hs = sum(H,2); 
  

% START ITERATION 

for iter = 1:niter 

tic 

   if iter < 11 

    threshold = 0.65+0.2*(iter-1)/10; 

   else 

    threshold = 0.85; 

   end 
    

sK = reshape(KE(:)*(Emin+xnew(:)'.^p*(E0-Emin)),64*nele,1); 

K  = sparse(iK,jK,sK); K = (K+K')/2; 
  

% SPRING SUPPORTS 

spring = -1e1; 

K(ndofs-4*(nely+1),ndofs-4*(nely+1)) = K(ndofs-4*(nely+1),ndofs-

4*(nely+1))+spring; 

K(ndofs-2*(nely+1),ndofs-2*(nely+1)) = K(ndofs-2*(nely+1),ndofs-

2*(nely+1))+spring;  

K(ndofs,ndofs) = K(ndofs,ndofs)+spring; 
  

% SOLVE U (FREE DOFS) 

U(freedofs) = K(freedofs,freedofs)\F(freedofs); % solving state equation 
   

% STRESS CALCULATION 

I1 = U(edofMat)*(D1*B)'; 

J2 = sum(U(edofMat)*B'*D2*B.*U(edofMat),2); 

Bresler = reshape(1/ss*(sqrt(J2)-c00-c11*I1-c22*I1.^2),nely,nelx); 

stress = Bresler;%.*xnew.^p;          % penalized element stresses 

 

% PLOT FIGURE 

figure(1); clf('reset'); scale = 100; % Deformation Scale Factor 

xx = zeros(4,nele); 

yy = zeros(4,nele); 

iii=0; 

 for ely = 1:nely 

    for elx = 1:nelx 

      iii=iii+1; 

      n1 = (nely+1)*(elx-1)+ely; 

      n2 = (nely+1)* elx   +ely; 

      Ue = scale*U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 

2*n1+1;2*n1+2],1); 
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      ly = ely-1; lx = elx-1; 

      xx(:,iii) = [Ue(1,1)+lx Ue(3,1)+lx+1 Ue(5,1)+lx+1 Ue(7,1)+lx  ]'; 

      yy(:,iii) = [Ue(2,1)-ly Ue(4,1)-ly   Ue(6,1)-ly-1 Ue(8,1)-ly-1]'; 

    end 

 end 

 cc = (stress)'.*xnew'.^(p); 

 patch(xx,yy,cc(:)','EdgeColor','k'); 

 colormap(jet); caxis([0 Smax]); axis equal; axis off; 

 colorbar('eastoutside'); drawnow; 
  

% FIND HIGHEST STRESSED ELEMENTS 

[stressB,stressI] = sort(stress(:),'descend'); 

 count = find(stressB>(Smax*threshold)); nsconstr = max(count); 

 if isempty(nsconstr) 

    nsconstr = 1; 

 end 

 LocalList = stressI(1:nsconstr);   % find index of most stressed elements 
   

% FE-ANALYSIS PSEUDO LOADS 

 Ukrul = zeros(2*(nely+1)*(nelx+1),nsconstr); 

 parfor j = 1:nsconstr 

   e  = LocalList(j);  

   Ue = U(edofMat(e,:));   

   Loadps = (1/ss)*((Ue'*B'*D2*B*Ue).^(-1/2)*B'*D2*B*Ue-(c11*D1*B)'-

(2*c22*D1*B*Ue*D1*B)'); 

   Fkrul = sparse(edofMat(e,:),1,Loadps',ndofs,1); 

   Ukrul(freedofs,j) = K(freedofs,freedofs)\Fkrul(freedofs); 

 end 
   

% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 

    sig = xnew(LocalList).^(p-q).*stress(LocalList); 
   

   dsig = zeros(nsconstr,nele); 

  for e = 1:nsconstr 

    Uk = Ukrul(:,e); 

    sige = sum((Uk(edofMat)*KE).*U(edofMat),2); 

    dsig(e,:) = -p*(E0-Emin)*xnew(:)'.^(p-

1).*sige'.*xnew(LocalList(e))^(p-q);  

  end 

  krondelta = sparse(1:nsconstr,LocalList',(p-q)*xnew(LocalList)'.^(p-q-

1).*stress(LocalList)',nsconstr,nele); 

  dsig  = (dsig+krondelta); 
  

  % FILTERING/MODIFICATION OF SENSITIVITIES 
   

dv   = H*(dv./Hs); 
    

  for e = 1:nsconstr                    % filtering all dsig 

    test = dsig(e,:)'; 

    test = H*(test./Hs); 

    dsig(e,:) = test';  

  end 
  

  % MMA UPDATE OF DESIGN VARIABLES 
   

  m     = nsconstr;   % The number of constraints 

  n     = nele;       % The number of variables 
   

  f0val = v/nele;     % The value of the objective function 

  df0dx = dv/nele;    % Column vector with the derivatives of the obj.  

  fval  = sig/Smax-1; % Column vector with the values of the constraint f 

  dfdx  = dsig/Smax;  % (m x n)-matrix with the derivatives of the constr 
   

  a0 = 1; a1 = zeros(m,1); c1 = 100000*ones(m,1); d1 = ones(m,1); 
   

  [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = mmasub(m,n,iter, ... 

   xval,xmin,xmax,xold1,xold2,f0val,df0dx,fval,dfdx,low,upp,a0,a1,c1,d1); 
   

  xold2 = xold1; xold1 = xval; xval = xmma; 
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  change = max(abs(xval(:)-xold1(:))); 

  xnew = reshape(xmma,nely,nelx); 

  xnew(:)   = (H*xnew(:))./Hs; 
     

  figure(2); set(gcf,'position',[50 450 630 300]) 

  colormap(gray); imagesc(1-xnew); caxis([0 1]); axis equal; axis off; 

drawnow; 
  

  % PRINT RESULTS 

  time = toc; 

  fprintf(' I:%5i   Vol:%1.3f    Stress:%7.2f     nsconstr:%7.f  

Time:%7.f\n'... 

  ,iter,v/nele,max(sig),nsconstr,time); 
  

end 
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APPENDIX 3 T-SECTION VS TOPOLOGY 

OPTIMIZED GIRDER 

In this appendix, the topology optimized girder is numerically compared to a T-section 

girder with the same flange size (585 mm by 97 mm) and the same overall depth (389 

mm) (see Figure A3.1). 

First, the mid-span deflections of the topology optimized shape are obtained through 

numerical calculation in Abaqus. The material density (ρ) is set to 2500 kg/m³, the young’s 

modulus (E) is 32800 N/mm², and the ratio of Poisson (v) is 0.24. The values for the 

defection are respectively 0.29 mm under self-weight (615 kg) and 0.27 mm under the 

life loads (540 kg), both measured at the top of the girder. The numerical results are 

presented in Figure A3.2, indicating a total deflection of 0.56 mm. 

Secondly, the width of the web of the T-section girder is determined using Eq.(A3.1) 

where the maximum deflection of the T-section girder is set equal to the result by the 

numerical study. The formulation reads: 

 
4

max

5
(at center)

384

wl

EI
= .     (A3.1) 

with the uniformly distributed load (w) evaluated as 1.77 kN/m (self-weight) + 1.32 kN/m 

(life load), the girder’s length (l) is 4 m, and its moment of inertia is found to be (I) 

556024703 mm4, corresponding to a web thickness of 47 mm. 

 
Figure A3.1. Rhino model of the topology optimized girder. 
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(a) 

 
(b) 

Figure A3.2. The results of from the numerical study of the topology optimized girder 

showing a) the deformation under self-weight and b) deformations under the testing load. 

 

The resulting volume of the T-section concrete girder is 720 kg, nearly 20% higher than 

that of the optimized beam (615 kg), hence clarifying the incentive to employ topology 

optimization and manufacture complex geometries. The width of the T-section’s web is 

purely theoretical and does not comply to any rules related to minimum width. In reality, 

the difference in weight is therefore larger. Furthermore, for larger bridge structures, 

where the self-weight component becomes even more significant, additional savings can 

be expected.  
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