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Summary

Positron emission tomography (PET) is a frequently used imaging tech-
nique. While most scans provide anatomical information such as com-
puterized tomography (CT) or magnetic resonance imaging (MRI), a
PET scan allows the visualization of functional processes. The injection
of, for instance, the radiopharmaceutical

18
F-fluorodeoxyglucose (

18
F-

FDG) enables the tracking of sugar molecules throughout the body. The
radiopharmaceutical, also called tracer, has a radioactive ligand

18
F that

emits gamma rays which can be measured by the PET detectors. Very
active organs, like the brain or heart have a high sugar consumption and
are clearly visible on a

18
F-FDG-PET scan. On the contrary tissues like

fat and bones have a low sugar metabolism and will barely be visible. If
regions with unexpectedly high sugar consumption, so called hot spots,
show up on the PET image, it might indicate the presence of actively
growing tumours. The early detection and treatment of tumours is
crucial for the patients recovery. Often tumours form metastases which
are very small tumours at other body regions. Unfortunately, metastases
below a certain size are not visible in PET images. The ability of the
scanner to resolve small structures is called the system spatial resolution.
It is dependent on several factors. One of them is the detector intrinsic
spatial resolution. The goal of this dissertation is the investigation of
PET detectors that will be able to provide better spatial resolution for
the use in clinical PET systems.
Typical PET detectors consist of a dense scintillation crystal that stops
the highly energetic gamma ray. The energy is then converted pro-
portionally to thousands of low-energetic light photons. This process
is called scintillation. The scintillation photons are in turn measured
by photodetectors that are attached to the crystal. In the state-of-the-
art detector design the scintillator is cut into pixels of 2.8-5 mm. The
purpose is to confine the scintillation light to a small area. The triggered
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pixel then correlates to the location of the gamma ray detection. The
width of the pixels however limits the obtainable resolution. A better
resolution can be obtained by using smaller pixels. To reach the ultimate
system resolution in a clinical PET scanner the intrinsic detector reso-
lution should be around 1.3 mm. Detector spatial resolutions below 1.3
mm are not very useful in clinical PET, since system resolution is dom-
inated by other fundamental resolution limits arising from beta decay
and annihilation physics. The downside of decreasing the pixel width
to this extent, is the loss of sensitivity, energy and timing resolution.
Furthermore, the smaller the pixel width the more expensive it becomes
to manufacture these pixelated crystals.
The alternative to pixelated crystals are monolithic crystals. As the
name says, the crystal is not segmented but is a block of several cen-
timetres width with a thickness of around 1-2 cm. One side of the
block is coupled to a photodetector array. This array measures the light
distribution inside the crystal. The light distribution is sampled by the
photodetector pixels at a 2-6 mm pitch. The distribution’s peak position
and peak width allow an accurate 3D position estimation of the gamma
ray interaction point. To obtain the best detector spatial resolution in
monolithic detectors we have to overcome two major challenges. They
are most likely the reasons why monolithic detectors are not yet imple-
mented in commercial clinical PET systems.
The first challenge is the detector calibration. To correlate the measured
photodetector signal to the actual gamma interaction position, a detec-
tor calibration is needed. In practice, a fine gamma ray beam scans the
crystal at known positions and collects reference signals. This process
requires a dedicated lab set-up and can be time consuming. Often this
procedure is repeated for each individual PET detector. A system can
consist of hundreds or even thousands of detectors.
The second challenge is the need for algorithms that are able to correlate
the reference light distributions with the unknown gamma interaction
location. There are many possible solutions to calculate the best fit
between the pre-measured reference signals and the signal with the
unknown interaction position. Statistical methods and artificial neural
networks are popular candidates to solve this problem.
In conclusion, the design of the calibration set-up, the acquisition of
reference data and the development of well-performing positioning al-
gorithms are crucial to obtain a high resolution monolithic detector.
To solve these challenges, in-depth knowledge and thorough studies are
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inevitable.
In this dissertation we investigate and improve monolithic detectors for
the use in high resolution clinical PET systems.
In optical simulations we study a 50 x 50 x 16 mm

3
lutetium-yttrium

oxyorthosilicate (LYSO) crystal. The crystal is read out by silicon
photomultiplier (SiPM) photodetector arrays. The detector is calibrated
by a gamma ray pencil beam in 1 mm steps. A statistical mean nearest
neighbour (MNN) algorithm is implemented to predict the 3D interac-
tion positions. The results indicate a 2D spatial resolution of 0.4-0.66
mm full width at half maximum (FWHM). Depth of interaction (DOI)
estimation is implemented with a depth-layer approach. The DOI was
estimated with an accuracy of 72% and a mean positioning error of 1.6
mm. This study confirmed the potential high resolution of the proposed
detector design, the calibration techniques and positioning methods.
Following the simulation study, we built and evaluated the prototype de-
tector. The obtained mean spatial resolution with the MNN positioning
algorithm is 1.13 mm FWHMwith small degradations towards the edges.
The evaluation was extended to a second positioning algorithm based
on artificial neural networks. The network achieves a more uniform
resolution and smaller bias. The mean spatial resolution is 1.02 mm.
DOI capability was enabled and implemented for both algorithms. The
detector energy resolution is around 11% allowing a reliable distinction
between scattered and non-scattered events. In conclusion, with our
prototype we achieved a better intrinsic detector resolution than the
desired 1.3 mm. The simulations and the prototype development al-
lowed us to identify many factors that have an influence on the spatial
resolution. We investigated the most important ones in detail, namely,
the calibration beam size, the impact of Compton scattered events, the
photodetector photon detection efficiency (PDE) and finally the impact
of background radiation.
First, the impact of the calibration beam size is investigated. In our
calibration set-up we can only collimate the beam to a diameter of 0.6
mm. In simulations and experiments we investigated, how the slightly
shifted gamma interaction positions affect the detector performance, and
if it would improve using an even smaller beam. Both, simulations and
experiments confirmed that a 0.6 mm and a 1 mm beam size allow
the calibration and training of a detector with comparable high reso-
lution. The positioning algorithms are not negatively impacted by the
slightly spread gamma interaction positions. However, for the detector
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evaluation the non-perfect calibration beam should be isolated. For
this purpose the expected spatial resolution can be approximated by a
mathematical deconvolution of the beam diameter width.
The second degrading factor is attributed to the Compton effect. More
than half of the detected events have scattered once or multiple times
resulting in an altered light distribution. In a simulation study we found
that the resolution would improve by 9-12% in terms of FWHM when
excluding scattered events. Not only the FWHM metric but also the
tails of the point spread functions (PSFs) are broadened. More accurate
positioning of scattered events is of great relevance for future high-
resolution PET detectors. Towards the end of the book we investigate
whether it is possible to improve positioning of Compton scattered events
using neural networks.
As a third degrading factor we investigated the SiPM PDE. It is defined
as the probability that a single photon is detected when impinging on the
SiPM surface. In simulations a PDE reduction of 75% to 35% led to a
resolution degradation of 16-30% depending on the size of SiPMs and the
number of readout channels. Higher PDEs improve the signal to noise
ratio (SNR) and are a major contributor to better spatial resolution in
monolithic detectors. Also the introduction of scintillators with higher
light yield and hence, more photons per energy unit, would improve
the SNR. Current SiPM PDEs range between 35% and 60%, and are
expected to improve further in the future.
The fourth degrading factor is the background radiation. A detector
calibration in singles mode suffers from a strong background signal.
It originates mainly from the radioactive scintillation material LYSO
containing

176
Lu, but also insufficient shielding thickness of the collima-

tor housing. We present effective methods to filter relevant calibration
events from background and provide high quality reference data.
To conclude, by the individual consideration of each degrading factor
one can estimate the magnitude of the degradation and gain insight into
the possibilities for improvement.
Throughout this thesis it has been shown that optical simulations are a
great tool to support the PET detector development. Be it the predic-
tion of detector performance metrics or the identification and analysis
of degrading effects.
In the final part, we determine if we can use the simulated detector data
and directly apply it to the training and positioning of the real detector.
First, we use the calibration maps generated by simulations, to serve
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as reference data to position real events of the prototype detector. A
calibration based on simulated reference data could potentially allow an
elimination of the lengthy calibration procedure. We obtained a spatial
resolution of 1.28 mm with a degradation towards the edges. Compared
to the experimental calibration this is a degradation of 11.7%. The
overall bias increased by 27% mostly attributed to the detector edges.
The obtained resolution is slightly degraded but still reaching the 1.3
mm detector resolution goal. This preliminary study provides promising
results for the role of optical simulation studies and potentially replacing
the cumbersome calibration procedure. Future research to improve these
results should be focused on a re-investigation of the reflection model
for the detector sides.
Second, we want to use simulations to tackle the degrading effect that
Compton scattered events have on the spatial resolution. We trained
a scatter distance estimation network from simulated data. This way
we were able to identify the events of the real detector that have a far
scatter distance. The results demonstrated that removing only 10% of
the farthest scattered events leads to a contrast improvement of our
phantom of 6-18%. Keeping in mind the ’sensitivity-spatial resolution’
trade-off, this is a great achievement which can be further improved by
removing a larger fraction of scattered events.
This dissertation demonstrated that monolithic detectors, with suffi-
cient thickness for clinical PET applications, can provide very high
spatial resolution approaching the fundamental spatial resolution limits
of PET. Using optical simulation models we were able to grasp the
factors that are limiting the intrinsic detector resolution and improve the
hardware and software design of the prototype detector. Furthermore
the potential of directly applying simulated data to improve monolithic
detectors was investigated. An important research topic in the future is
the implementation of meaningful evaluation standards for the spatial
resolution estimation across different research institutes. The variability
of the methods makes it very difficult to compare the performance of
different detectors, restraining the progress in the field. Furthermore,
one should carefully consider whether or not the detector should also be
optimized for time of flight (TOF) measurement. From our experience
the design indications for high spatial resolution and high coincidence
timing resolution (CTR) can be conflicting. A future research topic
should be the determination of an equilibrium between spatial resolution
and CTR.
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Some groups focus on better and faster calibrations in coincidence mode,
and by using a slit collimator. Resulting from this thesis, it is the logical
next step, to further investigate the use of optical simulations to speed
up detector calibration. As a major step towards better calibration with
simulated data we see the accurate modelling of the reflective surfaces
in the detector. A tool to ease the optical simulation workflow in Gate
for monolithic detector calibration could be useful for the community.
The combination of high spatial resolution with efficient calibration
methods and timing performance, can lead the way for monolithic de-
tectors to be the detector of choice in future PET systems.
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Samenvatting

Positron emissie tomografie (PET) is een veel gebruikte beeldvormings-
techniek. Terwijl de meeste scans anatomische informatie verschaffen zo-
als computertomografie (CT) of magnetic resonance imaging (MRI), kan
met een PET-scan een functioneel proces worden gevisualiseerd. Door
inspuiting van bijvoorbeeld het radiofarmacon

18
F-fluorodeoxyglucose

(
18
F-FDG) kunnen suikermoleculen in het hele lichaam worden opge-

spoord. Het radiofarmacon, ook wel tracer genoemd, heeft een radioac-
tief ligand

18
F dat gammastralen uitzendt die door de PET-detectoren

kunnen worden gemeten. Zeer actieve organen, zoals de hersenen of
het hart, hebben een hoog suikerverbruik en zijn duidelijk zichtbaar
op een

18
F-FDG-PET-scan. Weefsels zoals vet en botten daarentegen

hebben een laag suikermetabolisme en zullen nauwelijks zichtbaar zijn.
Als op het PET-beeld regio’s met een onverwacht hoog suikerverbruik
te zien zijn, zogenaamde ”hot spots”, kan dit wijzen op de aanwezigheid
van actief groeiende tumoren. Het vroegtijdig opsporen en behandelen
van tumoren is van cruciaal belang voor het herstel van de patiënt.
Vaak vormen tumoren uitzaaiingen, dat zijn zeer kleine tumoren in
andere lichaamsgebieden. Helaas zijn uitzaaiingen beneden een bepaalde
grootte niet zichtbaar op PET-beelden. Het vermogen van de scanner
om kleine structuren op te sporen, wordt de ruimtelijke resolutie van
het systeem genoemd. Deze is afhankelijk van verschillende factoren.
Eén daarvan is de intrinsieke ruimtelijke resolutie van de detector. Het
doel van dit proefschrift is het onderzoek naar PET detectoren die een
betere ruimtelijke resolutie kunnen bieden voor gebruik in klinische PET
systemen.
Typische PET-detectoren bestaan uit een dicht scintillatiekristal dat de
hoogenergetische gammastraal tegenhoudt. De energie wordt vervolgens
proportioneel omgezet in duizenden laag-energetische lichtfotonen. Dit
proces wordt scintillatie genoemd. De scintillatiefotonen worden dan
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weer gemeten door fotodetectoren die aan het kristal zijn aangebracht.
In het momenteel gangbare detectorontwerp wordt de scintillator gesne-
den in pixels van 2.8-5 mm. Het doel hiervan is het scintillatielicht tot
een klein gebied te beperken. De geactiveerde pixel correleert dan met
de plaats van de gammastraaldetectie. De breedte van de pixels beperkt
echter de haalbare resolutie. Een betere resolutie kan worden verkregen
door kleinere pixels te gebruiken. Om de best haalbare systeemresolutie
in een klinische PET-scanner te bereiken, moet de intrinsieke detector-
resolutie ongeveer 1.3 mm bedragen. Spatiële resoluties van de detector
van minder dan 1.3 mm zijn niet erg nuttig bij klinische PET, omdat
systeemresolutie wordt gedomineerd door andere fundamentele resolu-
tielimieten die het gevolg zijn van de fysische eigenschappen van het
beta verval en annihilatie. Het nadeel van een dergelijke verkleining van
de pixelbreedte is het verlies van sensitiviteit, energie- en tijdresolutie.
Bovendien geldt dat hoe kleiner de pixelbreedte wordt, hoe duurder het
wordt om deze gepixelde kristallen te vervaardigen.
Het alternatief voor gepixelde kristallen zijn monolithische kristallen.
Zoals de naam al zegt, is het kristal niet gesegmenteerd, maar is het
een blok van enkele centimeters breed met een dikte van ongeveer 1-2
cm. Eén zijde van het blok is gekoppeld aan een fotodetector-rooster.
Dit rooster meet de lichtverdeling in het kristal. De lichtverdeling wordt
door de fotodetectorpixels gesampled op een afstand van 2-6 mm. De
piekpositie en piekbreedte van de verdeling maken een nauwkeurige 3D-
positiebepaling van de gammastraal mogelijk.
Om bij monolithische detectoren de beste ruimtelijke resolutie van de
detector te verkrijgen, moeten we twee grote uitdagingen overwinnen.
Deze zijn hoogstwaarschijnlijk de redenen waarom monolithische detec-
toren nog niet in commerciële klinische PET-systemen worden gebruikt.
De eerste uitdaging is de kalibratie van de detector. Om het gemeten
signaal van de fotodetector te correleren met de werkelijke gamma in-
teractiepositie, is een kalibratie van de detector vereist. In de praktijk
wordt het kristal op gekende posities gescand met een fijne bundel gam-
mastralen en worden referentiesignalen verzameld. Dit proces vereist
een specifieke labo opstelling en kan veel tijd in beslag nemen. Vaak
wordt deze procedure voor iedere afzonderlijke PET-detector herhaald.
Een systeem kan uit honderden of zelfs duizenden detectoren bestaan.
De tweede uitdaging is de nood aan algoritmen die de referentielichtver-
delingen kunnen correleren met de onbekende gamma interactiepositie.
Er zijn talrijke oplossingen mogelijk om de ’best fit’ te berekenen tussen
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de vooraf gemeten referentiesignalen en het signaal met de onbekende
interactieplaats. Statistische methoden en artificiële neurale netwerken
zijn populaire kandidaten om dit probleem op te lossen.
Als conclusie kunnen we stellen dat het ontwerp van de kalibratieop-
stelling, de acquisitie van referentiedata en de ontwikkeling van goed
werkende positioneringsalgoritmen van cruciaal belang zijn voor het
verkrijgen van een monolithische detector met hoge resolutie. Om deze
uitdagingen op te lossen, zijn diepgaande kennis en grondige studies
onvermijdelijk.
In dit proefschrift onderzoeken en verbeteren we monolithische detecto-
ren om in klinische PET-systemen met hoge resolutie te gebruiken.
In optische simulaties bestuderen we een 50 x 50 x 16 mm

3
lutetium-

yttrium oxyorthosilicate (LYSO) kristal. Het kristal wordt uitgelezen
door roosters van SiPM fotodetectoren. De detector wordt gekalibreerd
met een gammabundel in stappen van 1 mm. Een statistisch mean
nearest neighbour (MNN)-algoritme wordt gëımplementeerd om de 3D-
interactieposities te berekenen. De resultaten geven een 2D ruimtelijke
resolutie aan van 0.4-0.66 mm FWHM. De diepte van de interactie (DOI)
schatting is uitgevoerd met een diepte-laag benadering. De DOI werd
geschat met een nauwkeurigheid van 72% en een gemiddelde positio-
neringsfout van 1.6 mm. Deze studie bevestigde de potentiële hoge
resolutie van het voorgestelde detectorontwerp, de kalibratietechnieken
en de positioneringsmethoden.
Na de simulatiestudie hebben we het prototype van de detector ontwor-
pen en geëvalueerd. De verkregen gemiddelde ruimtelijke resolutie met
het MNN positioneringsalgoritme is 1.13 mm FWHM met kleine degra-
daties naar de randen toe. De evaluatie werd uitgebreid met een tweede
positioneringsalgoritme op basis van artificiële neurale netwerken. Het
netwerk bereikt een meer uniforme resolutie en een kleinere bias. De ge-
middelde ruimtelijke resolutie bedraagt 1.02 mm. De DOI functionaliteit
werd voor beide algoritmen gëımplementeerd. De energieresolutie van
de detector bedraagt ongeveer 11%, wat een betrouwbaar onderscheid
mogelijk maakt tussen verstrooide en niet-verstrooide gebeurtenissen.
We kunnen besluiten dat wij met ons prototype een betere intrinsieke
detectorresolutie hebben bereikt dan de gewenste 1.3 mm. De simulaties
en de ontwikkeling van het prototype lieten ons toe om vele factoren
te identificeren die een invloed hebben op de ruimtelijke resolutie. Wij
hebben de belangrijkste in detail onderzocht, namelijk de grootte van de
kalibratiebundel, de invloed van Compton verstrooing, de foton detectie
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efficiëntie (PDE) en tenslotte de invloed van achtergrondstraling.
Eerst wordt de invloed van de grootte van de kalibratiebundel onder-
zocht. In onze kalibratieopstelling kunnen we de bundel slechts collime-
ren tot een diameter van 0.6 mm. Via simulaties en experimenten hebben
we onderzocht hoe de lichtjes verschoven gamma-interactieposities de
detectorprestaties bëınvloeden en of het gebruik van een nog kleinere
bundel deze prestaties zouden verbeteren. Zowel simulaties als experi-
menten bevestigden dat een bundel van 0.6 mm en 1 mm de kalibratie en
training van een detector met een vergelijkbaar hoge resolutie mogelijk
maken. De positioneringsalgoritmen worden niet negatief bëınvloed door
de licht gespreide gamma-interactieposities. Voor de evaluatie van de
detector moet de niet-perfecte kalibratiebundel echter worden gëısoleerd.
Daartoe kan de verwachte ruimtelijke resolutie worden benaderd door
een mathematische deconvolutie van de bundeldiameterbreedte.
De tweede degraderende factor wordt toegeschreven aan het Compton
effect. Meer dan de helft van de gedetecteerde gebeurtenissen zijn één
of meerdere keren verstrooid, wat een veranderde lichtverdeling teweeg
bracht. Uit simulaties bleek dat de resolutie met 9-12% zou verbeteren
in termen van FWHM wanneer verstrooide gebeurtenissen worden uit-
gesloten. Niet alleen de FWHM metriek maar ook de staarten van de
puntspreidingsfunctie (PSF) zijn breder geworden. Een nauwkeurigere
positionering van verstrooide gebeurtenissen is van groot belang voor
toekomstige PET-detectoren met hoge resolutie. Naar het einde van
het boek toe onderzoeken we of het mogelijk is om de positionering
van Compton verstrooide gebeurtenissen te verbeteren met behulp van
neurale netwerken.
Als derde degraderende factor hebben we de SiPM PDE onderzocht.
Deze is gedefinieerd als de waarschijnlijkheid dat één enkel foton wordt
gedetecteerd wanneer het op het SiPM valt. In simulaties leidde een
PDE-reductie van 75% naar 35% tot een resolutieverlies van 16 tot 30%,
afhankelijk van de grootte van de SiPMs en het aantal uitleeskanalen.
Hogere PDE’s verbeteren de signaal-ruisverhouding (SNR) en dragen
in belangrijke mate bij tot een betere ruimtelijke resolutie in monoli-
thische detectoren. Ook de invoering van scintillatoren met een hogere
lichtopbrengst en dus meer fotonen per energie-eenheid, zou de SNR
verbeteren. De huidige PDE’s van SiPM liggen tussen de 35% en 60%
en zullen naar verwachting in de toekomst nog verder verbeteren.
De vierde degraderende factor is de achtergrondstraling. Een detector-
kalibratie in singles mode heeft te lijden onder een sterk achtergrondsig-
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naal. Dit wordt voornamelijk veroorzaakt door het radioactieve scintil-
latiemateriaal LYSO dat

176
Lu bevat, maar ook door een onvoldoende

dikke afscherming van de collimatorbehuizing. We stellen methoden
voor om relevante kalibratie gebeurtenissen uit de achtergrond te filteren
en zo referentiedata van hoge kwaliteit te verkrijgen.
We kunnen besluiten dat, door elke degraderende factor afzonderlijk te
bekijken, men de omvang van de degradatie kan inschatten en men beter
inzicht krijgt in verbeteringsmogelijkheden.
Doorheen dit proefschrift is aangetoond dat optische simulaties een goed
hulpmiddel zijn bij de ontwikkeling van PET detectoren. Of het nu gaat
om het voorspellen van de prestaties van de detector of het identificeren
en analyseren van degraderende effecten.
In het laatste deel bepalen we of we de gesimuleerde detectorgegevens
kunnen gebruiken en rechtstreeks kunnen toepassen op de training en
positionering van de echte detector.
Ten eerste gebruiken we de kalibratiegegevens uit de simulaties als re-
ferentiedata voor echte gebeurtenissen van de prototype detector. Een
kalibratie op basis van gesimuleerde referentiedata zou een lange kalibra-
tieprocedure kunnen vermijden. We verkregen een ruimtelijke resolutie
van 1.28 mm met een degradatie naar de randen toe. Vergeleken met
de experimentele kalibratie is dit een degradatie van 11.7%. De totale
bias is met 27% toegenomen, vooral te wijten aan de uiteinden van de
detector. De verkregen resolutie is licht gedaald, maar bereikt nog steeds
de 1.3 mm detectorresolutie doelstelling. Deze preliminaire studie levert
veelbelovende resultaten op voor de rol van optische simulatiestudies en
kan mogelijk de omslachtige kalibratieprocedure vervangen. Toekomstig
onderzoek om deze resultaten te verbeteren, moet gefocust zijn op een
heronderzoek van het reflectiemodel voor de detectorzijden.
Ten tweede willen we simulaties gebruiken om het degraderende effect
van Compton verstrooing op de ruimtelijke resolutie aan te pakken. Op
basis van gesimuleerde data bouwden we een netwerk uit dat de verstroo-
ingsafstand kan inschatten. Op deze manier konden we de gebeurtenis-
sen van de echte detector identificeren die een grote verstrooiingsafstand
hebben. De resultaten toonden aan dat de eliminatie van slechts 10% van
de meest verstrooide gebeurtenissen leidt tot een contrastverbetering van
ons fantoom van 6-18%. De ’gevoeligheid-ruimtelijke resolutie’ trade-off
in gedachte houdende, is dit een uitstekend resultaat dat verder kan
worden verbeterd door het uitsluiten van een nog grotere fractie van de
verstrooide gebeurtenissen.

xv



Dit proefschrift heeft aangetoond dat monolithische detectoren, die vol-
doende dik zijn voor klinische PET-toepassingen, een ultra-hoge ruim-
telijke resolutie kunnen opleveren die heel dicht in de buurt komt van
de fundamentele ruimtelijke resolutielimieten van PET. Met behulp van
optische simulatiemodellen konden we factoren die de intrinsieke de-
tectorresolutie beperken, doorgronden en konden we het hardware- en
software ontwerp van de prototype detector verbeteren. Verder werd de
mogelijkheid onderzocht om gesimuleerde data rechtstreeks te gebruiken
om monolithische detectoren te verbeteren. Een belangrijk toekomstig
onderzoeksthema is de implementatie van betekenisvolle evaluatienor-
men voor ruimtelijke resolutieschattingen in verschillende onderzoeks-
instellingen. De brede waaier aan methoden maakt het zeer moeilijk
om prestaties van verschillende detectoren te vergelijken en belemmert
daardoor vooruitgang op dit gebied. Bovendien moet zorgvuldig worden
overwogen of de detector al dan niet ook moet worden geoptimaliseerd
voor Time of Flight (TOF) metingen. Uit onze ervaringen blijkt dat de
indicaties voor een hoge ruimtelijke resolutie en een hoge cöıncidentie
tijdresolutie (CTR) tegenstrijdig kunnen zijn. In de toekomst zou on-
derzoek moeten worden gedaan naar een evenwicht tussen ruimtelijke
resolutie en CTR. Sommige groepen richten zich op betere en snellere
kalibraties in cöıncidentiemodus en maken gebruik van een spleetcolli-
mator. Uit dit proefschrift blijkt dat verder onderzoek naar het gebruik
van optische simulaties om de kalibratie van detectoren te versnellen
een volgende logische stap zou zijn. Het accuraat modelleren van de
reflecterende oppervlakken in de detector beschouwen we als een be-
langrijke stap naar betere kalibratie via gesimuleerde data. Een tool
om de optische simulatie-workflow in Gate voor monolithische detector-
kalibratie te vergemakkelijken zou nuttig de onderzoeksgemeenschap ten
goede komen.
De combinatie van hoge ruimtelijke resolutie met efficiënte kalibratieme-
thoden en timingprestaties kan ertoe leiden dat monolithische detectoren
de voorkeursdetector worden in toekomstige PET-systemen.
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1

Introduction

1.1 Context

The subject of this dissertation is situated in the field of positron emis-
sion tomography (PET), a medical imaging technique. PET scanners
are typically found in nuclear medicine departments of major hospi-
tals or in research institutes for clinical or preclinical (animal) stud-
ies. While most scans such as x-ray, CT or MRI, provide anatomical
information, a PET scan allows the visualization of functional pro-
cesses in-vivo. The injection of, for instance, the radiopharmaceutical
18
F-fluorodeoxyglucose (FDG) enables the tracking of sugar molecules

throughout the body while the radioactive ligand
18
F decays under the

emission of positrons. These positrons annihilate with electrons under
the emission of two gamma rays that can be measured by the PET
detectors. Sugar metabolism is linked to how active different tissues
are and at the same time reveals pathologies such as tumour growth
indicated by unexpected hot spots appearing in the PET images. Of
utmost importance for the patients diagnosis, and the course and final
outcome of the treatment is the accurate localisation of even the smallest
metastases.
One of the factors that defines the image spatial resolution is the ability
of the PET detector to determine exactly where it was hit by the gamma
ray. The detector consists of a dense scintillation crystal that stops the
highly energetic gamma ray and converts its energy proportionally to
thousands of low-energetic light photons. These light photons are then
measured by photodetectors. In the state-of-the-art detector design
the scintillator is cut into pixels in order to confine the scintillation
light to a small area that defines the interaction location of the gamma
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ray. The pixel size which is currently between 2.8-5 mm is limiting
the obtainable resolution. A reduction of the pixel size induces the
loss of other important performance metrics, such as lower sensitivity,
lower energy and timing resolution and increased cost. Avoiding the
use of pixels and instead reading out the scintillation light over a larger
area has shown to achieve much better spatial resolution without the
degradation of other factors. However, this so called monolithic detec-
tor design poses several challenges that are not yet fully understood
and optimized. One challenge is the need for a detector calibration
that provides reference detector signals at known gamma interaction
positions. This is accomplished by moving a gamma ray beam on a
narrow calibration grid over the detector and collecting the detector
signals accordingly. To this point only pre-calibrated detectors provide
the desired resolution. Especially towards the detector edges a strong
spatial resolution degradation is otherwise typical. The second challenge
is the development of algorithms that are able to correlate the provided
light distribution with the gamma interaction location. In conclusion,
the efficient collection and processing of calibration data and the devel-
opment of well-performing algorithms are still not fully optimised and
a challenge for the research community. For these reasons monolithic
detectors are not yet implemented in commercial clinical PET systems
while their performance is superior in almost all respects.
This dissertation investigates a monolithic detector design for the use
in clinical PET scanners aiming at high spatial resolution. We use
simulation and experimental data to evaluate our hardware and software
design choices and identify the key factors that are relevant to reach the
ultimate performance.

1.2 Outline

In Chapter 2 we start with a broad introduction into the field of medical
imaging. Then PET and its sub-domains that are important to under-
stand how the systems work are explained. We cover topics ranging from
the clinical examination procedure to radionuclide production, from the
physics behind PET to the techniques applied to generate PET images.
Finally, the evolution of PET scanners from the first positron imaging
to the large total-body PET scanners that have recently entered the
market, are outlined.

2



1.2. Outline

In Chapter 3 the focus is on the most important component of the
system, the gamma ray detector. We are starting with an overview
of the milestones in PET detector development followed by a detailed
description and analysis of the detectors’ individual components. A
comparison of pixelated and monolithic detectors and the event posi-
tioning algorithms that are required to determine the gamma interaction
position in monolithic detectors are covered thereafter. The last section
explains the simulation software and applied photon reflection models
which are used extensively throughout this thesis.
In Chapter 4 we use optical simulations to investigate the detector
performance under idealised and controlled circumstances. Several hard-
ware related parameters that are difficult to study or cannot be studied
in depth in experimental set-ups are looked at in this chapter. Some of
the factors are the photodetector pixel size, the PDE, and the number
of photodetector readout channels.
In Chapter 5 the prototype development and experimental performance
evaluation is covered. Two positioning algorithms are tested, a MNN
algorithm and a neural network. Next to the PSF evaluation we devel-
oped a bar phantom that gives a qualitative and quantitative measure
of the detector performance in terms of spatial resolution and linearity.
The DOI estimation, energy resolution and uniformity measurements
are also part of this chapter.
In Chapter 6 we identify the factors that degrade the spatial resolution
of the detector and discuss their origin and how they can be tackled.
With the simulated and experimental results we have the data to under-
stand the impact of factors that otherwise are difficult or impossible to
investigate. In our set-up the four dominant factors are the calibration
beam size, the impact of Compton scattered events, the photodetector
PDE, and the influence of the intrinsic lutetium background radiation
of the scintillation crystals.
In Chapter 7 we investigate to what extent the simulated calibration
data can be applied to improve the performance of real detectors. At
first we test whether the simulated calibration maps can be used to avoid
the lengthy acquisition of calibration data from an experimental set-up.
The resulting spatial resolution degradation is evaluated. In the second
section of this chapter we train a neural network to estimate the scatter
distance of gamma rays inside the crystal. Since the farthest scattered
events are most difficult to position accurately they are removed from
the dataset. The resolution improvement is investigated using a bar

3
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phantom measurement.
Finally, in Chapter 8 an overview of our most important findings and a
general conclusion is drawn along with future research possibilities.
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2

Positron Emission
Tomography

2.1 Introduction

In this chapter we give an introduction into the world of medical imaging
and provide the scientific background to grasp the physics and techno-
logical features of PET imaging. Furthermore, we discuss the factors
that fundamentally limit the spatial resolution of a PET scan besides
the detector spatial resolution. In the last section an overview of the
technical evolution in PET over the last decades is given. After this
chapter we will go into more detail on PET detectors specifically.

2.2 Medical imaging

Medical imaging modalities play a big role in the quick and reliable
diagnosis of diseases at an early stage. The methods are various, some
are used extensively in the clinical day-to-day life, others are only applied
in very specific cases. Next to diagnosis medical imaging techniques
are used to plan and monitor therapy. This is for example the ra-
diation therapy plan for patients with cancer. Furthermore there is
also interventional imaging to guide the insertion of an instrument,
like a catheter or stent, into the patients body. This allows minimally
invasive procedures. In the research context medical imaging is often
used to get a better understanding of for example the functioning of
the brain or the pathway of a certain administered drug. Most common

5
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Figure 2.1: Overview of the radiation types and their wavelengths in the
electromagnetic spectrum. Most medical imaging techniques are based on
electromagnetic radiation.

examples of imaging modalities are ultrasound (US), x-ray radiogra-
phy, x-ray computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET) and single photon emission
computed tomography (SPECT). They can be separated into two main
groups, anatomical and functional imaging which are described below.

2.2.1 Anatomical imaging

Most commonly used imaging techniques are based on x-rays (Figure
2.1). The first x-ray image was conducted by the physicist Wilhelm
Conrad Roentgen in December 1895. X-rays are produced by an x-ray
tube and penetrate the tissue of the body part of interest. Depending on
the density of the tissue the x-rays are attenuated. Bones are absorbing
more radiation than for example soft tissue such as muscles or fat. The
resulting image, called a radiograph, gives a planar 2D representation
mostly used to diagnose fractures or examine bones or teeth, but also a
wide range of other organs like lungs and breast can be examined. An-
giography and fluoroscopy are two more examples of x-rays being used to
visualize anatomic features. The first technique visualizes blood vessels
by means of a contrast agent and the latter makes real time moving
images of objects like the beating heart or the swallowing process.
When many radiographs of the same region are obtained from different
angles a three dimensional image can be computed by image recon-
struction algorithms. This technique is known as CT scan. The word
tomography has its origins in ancient Greek where tomos means slice or
section and graphia means to write or to describe. The 3D images can
be examined by the radiologist in single slices. A CT scan is often used
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2.2. Medical imaging

to image organs in the pelvis, chest and abdomen where many overlap-
ping structures make it difficult to evaluate a 2D radiograph properly.
The range of applications is vast and often contrast agents are used to
improve the image for angiographies or other tissue examinations.
X-rays are ionizing radiation that damage the human tissue when ab-
sorbed and should be avoided as much as possible, especially for pregnant
women. Although the required x-ray doses could be reduced drastically
in the course of time there are anatomical imaging devices that rely on
other physical effects than the attenuation of x-rays in tissue.
MRI is an imaging technique based on strong magnetic fields of several
Tesla and pulsed radio waves. All protons, also those present in human
tissue, have a spin that produce a small magnetic moment. The protons
are mostly hydrogen nuclei of water molecules. As demonstrated in
Figure 2.2 a), the protons are initially randomly oriented. The strong
magnetic field of the MRI scanner causes the polarization of a fraction of
the protons to align parallel with that field while the rest of the protons
aligns anti-parallel (Figure 2.2 b)). A radio frequency pulse de-polarizes
the protons and forces it into a 90 or 180 degree realignment with the
static magnetic field (Figure 2.2 c)). Once the pulse is turned off the
proton follows its nature to align again with the magnetic field under
the release of electromagnetic energy (Figure 2.2 d)). Gradients in the
magnetic field allow the extraction of spatial information to form medical
images. The released energy and speed of realignment is measured
by a coil. Fourier transformation is applied to interpret the electri-
cal signal and determine the quantity and environment of the protons
and therefore tissue type. Functional magnetic resonance tomography
(fMRI) is a brain-specific functional imaging technique. While regular
MRI measures anatomical structures fMRI can visualize physiological
functions of the human body. The clue here is that e.g. neuronal
activity needs oxygen as a resource. Oxygen is carried by haemoglobin,
a component in the blood. Haemoglobin that carries oxygen has other
magnetic properties than de-oxygenated haemoglobin. This difference
can be measured using fMRI and can be linked to the brain activity
(blood oxygen level dependent (BOLD) contrast).
Sonography also known as ultrasound, is another example of anatom-
ical imaging without ionizing radiation. Per definition ultrasound is a
sound with frequencies above those that a human can hear. (Sounds
below the audible frequencies are called infrasound.) Sonography (lat.
sonos: sound, tone) however is the actual name for the medical imaging
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a) b) c) d)

Figure 2.2: MRI principles. a) The proton orientation is random, when no
magnetic field is applied. b) When the main field B0 is applied, the protons
align parallel or anti-parallel to that field. c) The radio-frequency pulse is
applied and changes the spin of a fraction of protons. d) After the RF pulse
stops these protons return to their previous orientation under the emission of
radio waves.

technique where a sound pulse is sent into the tissue using a probe.
Thereafter the echoes of the sound are recorded and give insight in the
properties of the tissues in which the sound waves were reflected. This
method is used in a variety of diagnostic and therapeutic procedures,
mostly for soft tissues and structures that are close to the surface. It
is very low-cost and not harmful for the patient. Mostly sonograms
are known from obstetrical sonography meaning the visualization of
the embryo or foetus in the woman’s womb. Additional (functional)
techniques using ultrasound are for example Doppler ultrasonography
which uses the Doppler effect to measure the relative velocity of blood
to examine the heart.

2.2.2 Functional imaging

An anatomical and morphological change in the body such as a tumour
manifests already a relatively long presence of disease. Many diseases
can be characterized much earlier by biochemical changes on the cellular
level. Medical imaging techniques that allow to investigate biological
processes (e.g. blood-flow or metabolism) are called functional imaging.
Functional imaging at the cellular and molecular level is called molecular
imaging.
Functional imaging can be performed to some extent with most imaging
modalities such as CT (CT perfusion), fMRI, sonography (Doppler and
contrast enhanced ultrasound) and optical imaging, some of which were
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already mentioned in the previous section. However, nuclear medicine
imaging techniques are the most sensitive and quantitative ones while
allowing a visualization of the deep structures. fMRI also allows visu-
alisation of deep structures but is less quantitative because it is only
sensitive to relative changes. The variety of radioactive tracers to target
different metabolic processes is large and only very small quantities are
needed. The two main modalities in this field are PET and SPECT.
In both cases radio-pharmaceuticals also known as tracers are injected
in the human body that take part in a biological process. A tracer is a
molecule of which one stable atom is substituted by one of its radioactive
isotopes. Stable and unstable (radioactive) isotopes act in a similar way
and allow us to track the molecules by measuring the emitted photons of
the radioactive decay. In a single photon emission tomography (SPECT)
system the emitted gamma rays are detected by one or multiple gamma
cameras that rotate around the patient and detect the radiation from dif-
ferent angles. From the acquisitions from different angles one can obtain
three dimensional images by applying inverse Radon transformation or
iterative reconstruction (described in Section 2.3.5). These images then
give information about the tracer distribution inside the patients body.
The gamma cameras use a collimator that allow only photons that come
from a certain direction to enter the detector. This drastically lowers
the camera sensitivity. In positron emission tomography (PET) imaging
a different effect is used to obtain directional information avoiding the
use of a collimator, therefore PET has higher sensitivity and also spatial
resolution. The PET principles are explained in detail in Section 2.3.

2.2.3 Multi-modality imaging

Nuclear imaging techniques such as PET and SPECT are highly sen-
sitive and quantitative for biochemical and molecular studies, but the
missing anatomical information makes the interpretation of these scans
challenging. In the past, pre-acquired CT (or MRI) scans were co-
registered with for example a PET scan to avoid misinterpretation of
radio-tracer distributions. While this works well for static, not-moving,
organs such as the brain that can be fixed in a certain position, the
image co-registration of other organs becomes difficult. Inaccuracies are
induced by the patient movement, moving from one bed to another, but
also respiratory and cardiac movement. To improve the co-registration
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Figure 2.3: FDG-PET/MRI scan a) T1-weighted MR, b) PET c) PET/MR.
Image courtesy of Dr. Joshua Schaefferkoetter, Clinical Imaging Research
Centre, Singapore. [1]

sequential scans can be done without moving the patient to a different
bed. Hybrid systems integrate all detectors and electronics inside a
single imaging unit and allow controlling the imaging devices with a
common software interface. Often combined are SPECT/ CT, PET/
CT, SPECT/ MRI, PET/ MRI. Nowadays PET is always combined with
CT in clinics. The typical PET/CT procedure is described in Section
2.3.1.

2.3 PET imaging

In PET the patient is injected with a radioactive tracer (see Figure 2.4)
that accumulates in tissue depending on the local metabolic activity.
The tracers in PET are positron (β

+
) emitting radionuclides. The

positron travels a short path in the tissue before it annihilates with an
electron into two 511 keV gamma rays travelling in opposite directions.
A coincident detection of the two gamma rays in a small enough time
window of nanoseconds allows to draw a line of response (LOR). Millions
of LORs are then used to reconstruct a PET image. To elaborate more
on the background of PET imaging we explain first the clinical routine
of a PET scan as well as several different types and applications of PET
examinations. Further, the production of the radionuclides used for PET
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Figure 2.4: In PET the patient is injected with a radioactive tracer (here as

an example
18
F -FDG). The tracer is taking part in the sugar metabolism in the

human or animal and emits positrons through β
+
decay of

18
F . The positron

annihilates with a surrounding electron resulting in two 511 keV gamma rays
that travel in opposite directions. Ideally both are detected by the detectors.

is explained. After that the physical principles of PET are explained
followed by a discussion on how the physics limit the obtainable spatial
resolution. The data acquisition and methods used to reconstruct a
PET image are covered as well. Finally, two specific techniques are
elaborated that have a direct or indirect influence on the obtainable
spatial resolution. First, the role of gamma arrival time measurement
known as TOF-PET, and second, the importance of DOI measurement.
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2.3.1 Clinical PET scan

A PET exam is usually taken in the nuclear medicine department of
a major, well-equipped hospital. A radio-tracer injection is performed
with an intravenous catheter on the arm. The vast majority of scans
is done with the tracer [

18
F]-FDG which is a glucose analogue. In

this case the patient should be sober six hours before the exam. The
glucose metabolises in the whole body and accumulates in tissues that
have a high sugar consumption. These are organs like the brain or the
heart but also tumours have a high metabolism and sugar accumulates
there. After 30-60 minutes the patient is moved to a sequential PET/CT
scanner. The interpretation of the PET images is supported and more
accurate when an anatomical image from the CT is taken at the same
exam. The two scanners are often combined into one unit and executed
sequentially. After the CT scan has been performed, taking around 2
minutes, the PET scan starts, taking 20-30 minutes. After the exam the
patient does not have to follow specific restrictions. The radio-tracer
will decay and also be flushed out through urine and stool. The medical
doctor will examine the three-dimensional PET/CT images stored in
the picture archiving and communication system (PACS). With PACS,
medical images and reports can be accessed digitally from secured net-
works and make the distribution and display very efficient. The universal
format for PACS is digital imaging and communications in medicine
(DICOM). DICOM has been adopted universally between different man-
ufacturers and most hospitals. Most commonly done PET/CT scans
are [

18
F]FDG PET/CT, [

18
F]Choline PET/CT, [

18
F]FET PET/CT and

PSMA PET/CT. Their application and working principles will be ex-
plained in more detail in the following paragraphs.

[
18
F]FDG PET/CT

[
18
F]FDG PET/CT is mostly used in the field of neurology and in the

field of oncology to detect tumours. [
18
F]FDG or fluorodeoxyglucose is

a glucose analogue with a substitution of the normal hydroxyl group
with fluorine-18, a positron emitter. Once injected the tracer has a
high uptake in cells that have a high glucose consumption. Next to the
brain, brown adipose tissue and the kidneys, cancer cells do have high
glucose uptake. [

18
F]FDG is therefore an outstanding tracer for tumour

detection. Around 90% of all PET scans are of this type.
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2.3. PET imaging

[
18
F]FET PET/CT

[
18
F]FET PET/CT stands for [

18
F]-Fluoroethylthyrosine PET/CT. FET

is a radioactively labelled amino acid. It has a high specificity for the
representation of brain tumours and is used to differentiate them from
healthy, inflammatory, irradiated/scarred brain tissue e.g. in the context
of radiation therapy or surgical planning and especially for the early
diagnosis of recurrences. The FET tracer is also used to differentiate
high-grade from low-grade tumours using dynamic PET. Amino acids
are the building blocks from which proteins are formed. These building
blocks are increasingly taken up by brain tumours, whereas the uptake
of amino acids in healthy brain tissue is low.

PSMA PET/CT

The tracer for PSMA PET/CT imaging is
68
Ga or

18
F labelled PSMA-

11. This tracer binds to the prostate-specific membrane antigen, a
transmembrane protein that occurs in the prostate. The expression of
this protein is increased in multiple malignancies, most pronounced in
prostate cancer.

[
18
F]Choline PET/CT

[
18
F]-Choline PET/CT is used when a clarification of a parathyroid ade-

noma in hyperparathyroidism (over-active parathyroid gland) is needed.
Radioactively labelled choline is administered to make the diseased tis-
sue visible. There is an increased growth and metabolism of the cells,
which then take up more choline than healthy cells.

These were some of the most common PET examinations with
their different tracers. However, the list of PET tracers being used and
researched keeps growing. In 2018, a promising new radio-tracer called
FAPI (fibroblast-activation protein inhibitor) was developed targeting a
protein that is overly expressed in cancerous tissues. The tumour delin-
eation and image contrast stand out and

68
Ga-FAPI-PET/CT allows to

visualise almost 30 different cancers (Figure 2.5) [2, 3]. FAPI-PET/CT
does not require specific patient preparation and uptake time reduces to
10 minutes improving work-flow and patient comfort.
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Figure 2.5: Radio-tracer distributions of 12 different cancers with FAPI-
PET/CT. (Ca = cancer; NSCLC = non-small cell lung cancer; CUP =
carcinoma of unknown primary; CCC = cholangiocarcinoma; GEP-NET=
Gastroenteropancreatic neuro-endocrine tumour). This research was originally
published in JNM. Frederik Giesel et al. Intensity of tracer-uptake in FAPI-
PET/CT in different kinds of cancer. J Nucl Med. 2019;60:289. © SNMMI
[4].

2.3.2 Radionuclide production

The radionuclides occurring in our natural environment are ones with
a very long half-life and no important role in human metabolism and
physiology. Therefore all radionuclides used in nuclear medicine are
produced artificially by bombarding stable atoms with neutrons or pro-
tons leading to the formation of unstable, radioactive nuclei. For clinics
today radionuclides are produced in a cyclotron or a specific generator.
The most commonly used radioisotope

18
F has a half-life of 109.8 min-

utes which gives PET facilities just enough time to have it delivered
from the production site. However, more and more hospitals make
use of cyclotrons installed directly on-site producing their own tracers.
Radioisotopes having a very short half-life must be produced on-site.
Examples are

15
O with a half-life of 2 minutes,

13
N with 11 minutes,

and
11
C with 20 minutes.

Typical isotopes that are produced by a generator are
82
Rb produced

by a
82
Sr/Rb generator with a half-life of 75 seconds and

68
Ga produced
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by a
68
Ge/Ga generator with a half-life of 68 minutes.

The biological function of the radionuclide element itself is interesting
only in very limited cases e.g. the iodine uptake in the thyroid using

131
I

(or
124

I). In most cases the radionuclide acts as a label of the compound
that is of interest, such as the glucose labelled

18
F. A radioisotope or

radio-pharmaceutical must furthermore meet many practical require-
ments in order to be used in clinics [5]:

• type and energy of emission: 50-600 keV (high enough to escape
the human body and low enough to meet the detection spectrum
of the hardware)

• physical half-life: seconds to days (ideally minutes to hours)

• high specific activity: to not disturb the biological system

• high purity: high fraction of desired radioactivity

• good chemical properties to bind to the molecule of interest

• feasible production cost and complexity

• no cascade (decay product is stable).

2.3.3 Physical principles and limitations

In this section the most relevant physical principles in PET are explained
in detail. Finally we discuss how these factors limit the spatial resolution
that can ultimately be achieved with PET.

Positron emission and annihilation

The principle upon which PET is based is positron emission followed
by a positron-electron annihilation. First the radionuclide of the PET
tracer transforms one of its protons p into a neutron n under the emission
of a positron e

+
and a neutrino νe (Figure 2.6).

p → n + e
+
+ νe (2.1)
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Figure 2.7: Annihilation. After the positron travels a certain distance it
combines with an electron in the surrounding tissue and both particles convert
into two gamma photons of 511 keV travelling anti-parallel.

The positron has a kinetic energy of a few MeV. Before the positron
captures an electron and forms a positronium it reduces its energy by
travelling a certain distance called the positron range. Depending on
the initial kinetic energy of the positron and the number of electrons of
the surrounding material the travel path can vary (see ’Mean range in
water’ in Table 2.1). The annihilating radiation consists of two gamma
rays.

e
+
e
−
→ γγ (2.2)

The two gamma rays have a discrete energy of 511 keV each and
travel in opposite directions (180

◦
) (Figure 2.7). These two particles

arrive at opposing detectors in coincidence, meaning, at (almost) the
same time.

Photon interaction with matter

The PET detector will be explained in detail in the next chapter, how-
ever, the rough principle is that the high energetic 511 keV gamma pho-
ton is stopped by a dense scintillator which converts the gamma energy
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Figure 2.8: Interaction of a gamma ray with an atom a) photoelectric
interaction and b) Compton scattering.

proportionally into light photons. These photons are then detected by
a photodetector. The different types of scintillators and photodetectors
and their properties are explained in detail in Section 3.4 and 3.5. The
attenuation properties of the scintillator can be calculated with the Beer-
Lambert law (Equation 2.3) where N is the number of gamma photons
that are not absorbed after travelling through a scintillator of thickness
x and µ is the linear attenuation coefficient. The linear attenuation
coefficient is dependent on the scintillator material and the gamma
energy. N0 is the initial number of gamma photons.

N(x) = N0e
−µx

(2.3)

Below 1022 keV there are two main interactions of photons with
matter in the PET detector: photoelectric and Compton interactions
(Figure 2.8). The photoelectric interaction is typically occurring be-
tween low-energy gamma rays and a material, such as the scintillator.
The full energy of the gamma photon is transferred to an electron in
the material. The electron is ejected from its atomic shell with an
energy proportional to the initial gamma photon energy. The energy
is transferred to the detector and can be used to identify the photon
energy. A photon can also scatter by an electron and lose some of its
energy depending on the scattering angle. This process is known as
Compton scattering. The photon continues its trajectory in a direction
with angle θ relative to the original direction.

E
′
=

E

1 + E

m0c
2 (1 − cosθ) (2.4)
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E
′
is the rest energy of the gamma photon while E is the incident energy

of the incident gamma photon. θ is the scatter angle. m0 is the rest
mass of the electron, c is the speed of light in vacuum.

Fundamental resolution limits of PET

In this section we discuss three factors that cause a fundamental limit in
the spatial resolution that a PET system can theoretically reach. These
factors are the positron range, the photon accolinearity and the intrinsic
detector resolution.
Positron range: Depending on the type of radioisotope the initial kinetic
energy of the positron after emission that determines the travel path is
different. The positron range induces blurring proportional to the travel
distance. For example the commonly used tracer

18
F induces blurring

of about 0.5 mm FWHM in water [6–8]. Most other radionuclides have
a larger positron range up to several millimetres. In Table 2.1 the most
relevant radionuclides for PET are listed including their mean travel
path in water and other important characteristics.

Table 2.1: Radionuclides used in PET with their half-life, maximum energy,
mean travel path and production site.

Isotope
t1/2
[min]

Emax

[MeV]

Mean range
in water
Rrange

[mm]

Production

11
C 20 0.959 1.1 on-site cyclotron

18
F 110 0.633 0.5 cyclotron

22
Na 1.37⋅10

6 0.55 0.5 cyclotron
68
Ga 67.8 1.89 2.9 generator

Non-collinearity: Non-collinearity describes the slightly non-collinear
annihilation of the two 511 keV gamma rays. The electron and positron
are not fully at rest leading to an emission of 180

◦
with a slight de-

viation that depends on the kinetic energy of the positron. For
18
F

the non-collinearity is 180 ± 0.2
◦
. This causes Gaussian blurring that

is proportional to the radius of the system r. The larger the distance
between the two detectors the larger the impact of non-collinearity. It
can be described as R180

◦ = 0.0044 ⋅ r mm FWHM.
Intrinsic detector resolution: For preclinical

18
F scans this leads to a best
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possible system spatial resolution of around 0.4 mm while for a human
system (d = 80cm) around 2 mm should be feasible. This resolution
limit is not yet achieved by the scanners that exist. A major limiting
factor is the intrinsic detector spatial resolution Rint that dominates the
system spatial resolution. The general formula to calculate this limit is

Rsys ≈

√
R2

det +R2
range +R2

180
◦ (2.5)

where for monoliths Rdet ≈
Rint√

2
, the positron range Rrange, and the

non-collinearity R180
◦ = 0.0044 ⋅ r. In Figure 2.9 the dependencies are

plotted. However, in practice spatial resolution is also limited by the
small number of detected events in a PET scanner leading to rather low
SNRs. A low SNR leads to degraded image resolution and negatively
impacts the lesion detectability [8]. The SNR is proportional to the
number of detected events n,

SNR ∝
√
n, (2.6)

and n is defined as:

n ≈ kAGε
2
T (2.7)

where A is the activity in the FOV, G is the geometric coverage of the
scanner, ε is the detector efficiency and is squared because both gamma
photons are required to build a LOR, T is the acquisition time and k

is specific to the patient (how many events are scattered and absorbed
in the body tissue). Improving SNR can also be achieved by including
TOF (see Section 2.3.6).
In conclusion, to reach the ultimate spatial resolution one should keep
in mind the positron range of the radiotracer, the system diameter and
the detector intrinsic resolution. Note that if the detector resolution
is improved at the cost of detector efficiency/sensitivity, the SNR is
degrading and is also degrading spatial resolution. Detector design is
discussed in Section 3.6.

2.3.4 Event types in annihilation coincidence detection

PET systems record an event when two gammas are detected in two
detectors in a defined coincidence time window. These events are called
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Figure 2.9: Fundamental spatial resolution limit in F-18 PET imaging
dependent on the system diameter and the intrinsic detector spatial resolution.

prompt coincidences. Ideally all events are true coincidences i.e. the
detected gammas are originating from the same annihilation event and
have not scattered on their path to the detectors (Figure 2.10). If one
or both gammas have scattered before detection the drawn LOR is not
accurate anymore. This is called a scattered coincidence. A coincidence
can also be triggered by two gammas from different annihilation events.
This is called a random coincidence. The true coincidence rate is calcu-
lated as:

Rtrue = Rprompt −Rscatter −Rrandom (2.8)

A PET specific system quality measure is the noise equivalent count
rate (NECR), which is defined as the same statistical noise level as
the observed count rate after random and scattered coincidences have
been corrected for. The NECR accounts for the additional statistical
noise from the correction for random and scattered coincidences [5].
It is usually plotted as a function of the activity since the random
coincidence rate and dead time count losses are activity dependent. The
measurement allows a comparison between different PET systems and
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True coincidence Scatter coincidence Random coincidence

Figure 2.10: True, scatter and random coincidences. Scatter and random
coincidences contain inaccurate positional information that lead to a uniform
background signal which degrades the image contrast.

the optimization of new systems.

NECR =

Rtrue
2

Rtrue +Rscatter +Rrandom
(2.9)

2.3.5 Data acquisition and image reconstruction

Two-dimensional radiographic images have the problem that multiple
anatomical structures overlap each other which make it difficult to inter-
pret these images. A set of radiographic images from different acquisition
angles can give the viewer more insight. However for some structures, for
example deep in the chest, there might always be overlaying structures
as in this case the rib cage. The solution is tomographic imaging which
allows to look at a 3D object in the form of slices including techniques
such as x-ray CT, SPECT and PET. To obtain sliced images the object
needs to be scanned from multiple angles also known as projection an-
gles. Mathematical reconstruction algorithms are then applied to either
reconstruct the emissions of radionuclides as in SPECT and PET or the
transmission of x-rays (CT). Two classes of reconstruction techniques
are outlined below: iterative and analytical reconstruction.

Analytical reconstruction

The simplest form of tomographic image reconstruction is back-projection.
Here it is assumed that each voxel in an LOR contributes equally to the
integrated line profile between the two detector pairs. Each LOR is
thus plotted with constant values along its path. In the final image one
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a)

b)

c)

Figure 2.11: Analytical reconstruction demonstrated on a phantom seen in
a). Simple backprojection with different number of projection angles in b).
Filtered backprojection can be seen in c) [9].

single voxel has the intensity of all LORs that intersect with this given
voxel. The larger the number of sampled angles and sampling points the
better the image resembles the original image. The main drawback of
BP is blurring of the image data. The blurring effect is equivalent to a

cone shaped filter function h(x, y) = (x2+y
2)−1/2. Applying the inverse

of this filter to the projections can correct for the blurring (see Figure
2.11). This is called filtered back-projection.

Iterative reconstruction

A more advanced technique to reconstruct image data to a tomographic
image is iterative reconstruction. A first estimate of the image (which
could be as simple as a uniform image) is made and forward projected.
The projections are compared to the original projection data p(r,φ).
The error is large in the first iteration, but the differences (or ratios)
are used to update the initial image estimate. Once the difference
between the projection data of the reconstructed image and the original
projection data is sufficiently small the iteration is stopped. Although
iterative reconstruction is computationally much more expensive than
analytical reconstruction it has become the standard technique in PET
through improved computational capacities. The most common iter-
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ative reconstruction algorithm is the maximum likelihood expectation
maximization (MLEM) algorithm.

2.3.6 TOF-PET

A PET system that measures the difference of the arrival times of
the two annihilation gamma photons at coincident detectors is called
TOF-PET. The more accurate this time can be measured the more
precisely the position of the positron annihilation along the LOR can
be determined. Theoretically, a pair of detectors that detect exactly
the same arrival time of two photons lead to the conclusion that the
annihilation point must be in the center of the LOR. However, there is a
so called coincidence timing resolution (CTR) which is the uncertainty
in the measured arrival time that leads to a position uncertainty ∆x

along the LOR. The best CTR reached in an experimental set-up is
about 58 ps translating to 8.7 mm uncertainty on the LOR [10]. The
corresponding formula is:

∆x =

CTR

2
⋅ 10

−10
⋅ c (2.10)

with the speed of light c being about 300 ⋅ 10
−6

m/s. The uncertainty
for different CTRs is plotted in Figure 2.12.

First clinical TOF-PET reached only 500-600 ps [11, 12], but im-
proved gradually over time with the introduction of faster scintilla-
tors, improved electronics and the replacement of photomultiplier tubes
(PMTs) with SiPMs [13, 14]. The latest TOF-PET on the market
(Siemens Biograph Vision) reaches 210 ps corresponding to about 3 cm
positioning uncertainty [15]. In preclinical PET the positioning uncer-
tainty is too large compared to the field of view (FOV) and therefore
TOF is typically not used. The 10 ps TOF challenge (https://the10ps-
challenge.org/) is the current effort of the PET community to reach the
challenging goal of reducing the CTR down to a point where the discrete
location on the LOR could be distinguished. At 10 ps this is about 2
mm. At this level reconstruction-less PET could open doors for novel
applications and general improvement of resolution effective sensitivity
and SNR [16]. An example of how the inclusion of TOF improves image
quality can be seen in Figure 2.13.
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Figure 2.12: The TOF positioning uncertainty dependent on the system CTR
according to Formula 2.10.

Figure 2.13: a) Image including no TOF information b) TOF information
is included in the reconstruction. Images are acquired on a Philips TOF PET
scanner. Images are courtesy of Dr Joel Karp, Philadelphia [1].
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2.3.7 Depth of interaction (DOI) in PET

At the edge of the FOV and at oblique imaging planes the so called
parallax error is induced leading to a degradation of spatial resolution.
The gamma photon is entering the crystal at an oblique angle which can
lead to the energy deposition in an adjacent detector pixel, instead of
the one that it initially entered (Figure 2.14). Consequently the LOR
cannot be formed accurately. The width of the LOR increases with angle
θ, the length x and width d of the scintillator according to the following
formula:

d
′
= d cos θ + x sin θ (2.11)

Wider or shorter pixels (increasing d or decreasing x), reduce parallax
effects, however this is only at the cost of either spatial resolution or
sensitivity. The estimation of the DOI to reduce parallax error has
been studied extensively. In pixelated detectors several designs have
been developed that allow some sort of extraction of DOI (phoswhich,
dual-ended readout) [17, 18]. Especially in dedicated organ scanners
where the small bore induces oblique incidence angles DOI improves
spatial resolution for larger radial distances and provides a more uniform
resolution across the bore [19].
In monolithic detectors an oblique incidence angle induces a similar
effect. If the gamma deposits its energy deeper inside the crystal, the
estimated 2D interaction position is not equal to the entrance position
anymore. Monolithic detectors, however, can easily extract DOI in-
formation without additional hardware or design alterations. This is
possible because the width of the measured light distribution correlates
to the DOI. It also needs to be said that, the better the intrinsic detector
resolution the more important the DOI performance gets [19]. DOI is
furthermore of interest for TOF-PET to correct for time walk inside the
detector [16].
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a) b)

𝜃

d’

d

x

Figure 2.14: Importance of DOI in PET scanner a) parallax error without
DOI determination b) reduction of parallax error by DOI encoding [20]

2.4 Technical evolution in PET

The following sections will give a brief overview of the milestones in the
development of PET with a focus on the developments relevant to this
thesis.

2.4.1 Positron imaging

Coincidence detection to capture positron annihilation in medicine was
independently reported in 1951 by Wrenn et al. [21] as well as Sweet
[1, 22]. In 1953, Brownell and Sweet published a more detailed report
on the coincidence detection for localizing brain tumours [23]. The
step from two coincident detectors to a full ring of 32 NaI detectors
was made in 1961 [24]. In the 1970s the so called positron camera
was developed by Burnham and Brownell which enabled the use of
smaller scintillation crystals by a shared photodetector scheme reducing
the number of needed photodetectors and improving spatial resolution
[25]. To this point the acquired images were still 2-dimensional and not
tomographic. Only after the development of CT in 1973 [26, 27] and
SPECT, first PET reconstructions were realized.
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2.4. Technical evolution in PET

2.4.2 First clinical PET

The first full PET systems named Positome [28] and PETT [29] ap-
peared and the latter entered the clinical market in a EG&G ORTEC
- collaboration for the first time in 1979 [30, 31]. Later PET systems
employed bismuth germanium oxide (BGO) as a scintillator rather than
NaI. It is more dense than NaI and not hygroscopic and therefore allows
much easier assembly. In 1986 Casey and Nutt published their work
on a matrix assembly of smaller scintillation crystals put into a block
with a shared photodetector coupling. This so called block detector
design marks a milestone in PET detector development [32]. The first
block detector was an 8 x 8 array of BGO crystals coupled to four
PMTs. It improved the spatial resolution while reducing the number
of photodetectors (further discussed in Section 3). The next step was
the extension from one ring to several rings of block detectors. First
versions were using septa (tungsten shielding) in between each ring. This
allowed to detect only coincidences within the plane of that detector
ring improving the rate of true coincidences and reducing dead time.
However the system sensitivity suffered significantly from the tungsten
septa. The next milestone for PET was removing the septa and acquiring
all possible coincidences across several detector rings [33]. First scanners
made the septa optional by making them retractable, however techniques
were developed to work PET from now on in fully 3D-mode. In 1998
FDG-PET scans were first reimbursed in the US.
To further improve spatial resolution by using finer segmented pixels
the light output of BGO was not high enough. The smallest feasible
pixel size at that time was about 6 mm x 3 mm. A brighter crystal was
needed to guarantee that the crystal encoding would still be reliable. The
engineering of lutetium oxyorthosilicate (LSO) [34] in 1992 provided a
scintillator that is not only five times brighter than BGO but also its
decay time with 40 ns is reduced by a factor of 7.5 compared to BGO. In
1999 the first system using LSO was commercialized, the ECAT ACCEL.
A variant of LSO including yttrium called LYSO (frequently used today)
was developed shortly after and offers similar characteristics. The new
scintillators allowed smaller crystal pixels leading to improved spatial
and energy resolution. The fast decay time decreased the detector dead-
time and for the first time the TOF of the two gamma rays could be
measured. This technique allows to decrease the range of possible anni-
hilation positions along the LOR to a few centimetres which improves the
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SNR ratio. The very first TOF-PET scanner were built by the Swedish
company Scanditronix, nowadays GE, late in 1980s and based on BaF2
material which delivers around 500 ps timing resolution. TOF-PET
systems came back in 2008 with the Philips Gemini [35] and Siemens
Biograph mCT(2010) [36]. A detailed overview of TOF-PET in given
in Section 2.3.6.

2.4.3 Preclinical PET

Preclinical PET scanners which are scanners mostly used for studies with
animals (small rodents) started evolving in the beginning of the 90s with
the same detectors used in human scanners. This led to limited spatial
resolution for rodents and the need for dedicated small animal PET
detectors appeared. In 1997 Cherry et al. [37] developed the first preclin-
ical PET device called the microPET with dedicated detectors which was
also commercialized. The LSO version of this scanner achieved spatial
resolutions smaller than 1 mm. The first scanner to use semiconductors
instead of PMTs is also a preclinical PET system [38] making PET
detectors MR-compatible. Only 10 years later semiconductors appeared
in clinical imaging. Although the preclinical imaging market is much
smaller than the clinical it has significant impact on scientific research
translating to the clinical world. The huge improvement of preclinical
PET systems over the last two decades can be seen in Figure 2.15.

2.4.4 PET/CT

The hardware fusion of PET and CT combines the low resolution func-
tional image with the high-resolution anatomical images. Not only does
it help the radiologist to interpret the tracer distribution in the patients
body but also the CT system is used to acquire attenuation correction
factors to be applied to the PET data. Technically the two systems
are simply put in sequence making almost simultaneous scans possible
without moving the patient. In 2001 two PET/CT systems entered
the imaging market (GE Discovery PET/CT and Siemens Biograph
PET/CT). A major economical advantage that led to the extinction
of PET as a standalone in clinics within 4 years [1] was the scanning
time reduction. It resulted from the attenuation correction done with
the CT in 1-2 minutes instead of several minutes with the PET sys-
tem. Furthermore, Philips, Canon and more recently United Imaging
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Figure 2.15: Preclinical imaging improvement. The first dedicated PET
scanner in 1997 is called microPET [37]. Since then many preclinical scanners
have entered the market [39–43]. Over time the image quality has improved
while the scanner dimensions have decreased to bench-top systems. The latest
technology PET scanner is the beta-cube from MOLECUBES with a system
size of 54 x 56 x 54 cm

3
and sub-mm spatial resolution [44].
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Figure 2.16: A) Conventional PET scanner with an axial FOV of 15-30 cm
and B) a total-body PET scanner with total-body coverage of almost 2 m [45].

Healthcare offer PET/CTs. Worldwide around 5000 PET/CT scanners
are installed [1].
The combination of PET and MRI has been limited by the photodetec-
tors’ need to be reliable in magnetic fields. The rise of avalanche pho-
todiodes (APDs) and SiPMs made this possible. The first APD-based
PET ring appeared in 2006 (Siemens Healthcare Molecular Imaging) for
brain imaging and 2010 for the whole body (Biograph mMR). PET/MRI
is, next to superior soft image contrast, also powerful in other domains
like low-radiation, motion correction (and more). However, it is very
expensive, has a low patient throughput and at this point is still mainly
used in research environments.
Semiconductor photodetectors which were initially designed for MR-
compatibility also became the preferred photodetector in PET/CT due
to its timing capability, compactness and general superior performance.
In 2016 GE launched the Discovery MI PET/CTs based on SiPMs.

2.4.5 Clinical total-body PET

The existing PET scanners have an axial FOV of about 15-30 cm. The
fraction of coincidences that is detected by this scanner geometry is
around 1%. A major improvement of current PET scans can be achieved
by increasing the axial length of the scanner (Figure 2.16) and therefore
improving sensitivity and SNR [46]. While the concept of so called total
body (TB)-PET is known for a long time it had not been realised due
to the large amounts of hardware needed and the related cost that was
expected to hinder the commercialisation. Recently the first funding
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allowed to construct such a system. The EXPLORER scanner [45, 47]
extends to 195 cm resulting in an increased sensitivity factor of 40. Not
only does the image quality improve significantly (6 times better SNR)
but also the tracer distribution throughout the human body can be
captured dynamically (Figure 2.17). In return for the improved image
quality the scanning time can be reduced by a factor of 40 or the injected
activity can be reduced by the same factor. This opens up a wide range
of interesting potential applications and opportunities that are currently
being explored. Similar approaches have been realised at UPenn with
a slightly shorter length and more focus on TOF implementation. The
reported timing resolution is 256 ps [48, 49]. The two systems employ
pixelated detectors of 2.76 mm and 3.76 mm crystal width leading to
system resolutions of 3.0 mm [50] and 4.0 mm respectively. The missing
DOI capabilities result in off-centre resolution degradation to 4.7 mm
and 5.6 mm FWHM.
Seen as the largest downside of TB-PET scanners is the cost factor.
Efforts are made to find the best benefit-cost trade-off. At UGent a TB-
PET is investigated that is reduced in length to around 1 m, covering
head to hip of most adults. The use of monolithic detectors will allow
uniform high resolution even at off-center positions due to their DOI
capability [51, 52].
An alternative design, called J-PET, was developed at the Jagiellonian
university in Krakow. The group constructed the first PET based on
plastic scintillators. The scintillators are long strips that are axially
arranged in layers. The interaction position of the gamma in the plastic
strip can be determined by the time difference that is measured at both
end of the strips. The strips are very cost-effective compared to organic
scintillators and have a small light attenuation. Due to the strip read-
out at both ends the axial FOV can easily be extended to a TB-PET
scanner without a significant increase of cost. In other words, the strip
readout is independent of the aFOV [53–55]. The first version of the
J-PET has an axial length of 50 cm [56]. However, to obtain similar
stopping power in a PET system much thicker scintillators are needed.
Furthermore, almost all interactions are Compton interaction making it
more difficult to filter true coincidences.
The first commercial total-body PET scanner has been launched by
United Imaging Healthcare the uExplorer [50] (Figure 2.18 a)) and is
based on the design of the previously mentioned EXPLORER. Shortly
after, the Biograph Vision Quadra was launched by Siemens [57] (Figure
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Figure 2.17: Dynamic scan of images acquired with the first total-body PET
scanner EXPLORER. This is the first time (2019) the entire human body is
imaged at the same time. This research was originally published in JNM.
Badawi et al. First Human Imaging Studies With the Explorer Total-Body
Pet Scanner. J Nucl Med. 2019;60:303. © SNMMI. [58].

2.18 c)). The Quadra has an axial FOV of 106 cm and was first installed
in October 2020. The system length is achieved by placing four detector-
block assemblies in series. The pixel width is 3.2 mm. The system also
has TOF capability of <250 ps.

32



2.5. Conclusion

a) b)

c)

Figure 2.18: The first total-body PET scanners a) the United Imaging
uEXPLORER b) the PennPET EXPLORER and c) the Siemens Biograph
Vision Quadra.

2.5 Conclusion

In this chapter we focussed on PET as a functional imaging modality
in the broader context of medical imaging. We provided an overview
of PET imaging principles, its limits, the scientific background and
the technological features. Finally we summarized the most important
technical milestones in PET, from the initial positron imaging successes
to the latest preclinical and clinical developments. In the next chapter
we leave the system level and focus on one of the most important
components of the system: the gamma ray detector.
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3

Gamma ray detectors for
PET

3.1 Introduction

In this chapter the PET gamma ray detector will be introduced, starting
with a brief overview of the most important milestones in PET detector
development. This is followed by a section about the performance
metrics used to evaluate a PET detector. The next section introduces
the scintillator mechanism, the ideal scintillator properties for PET
detectors and explains the importance of the crystal surface treatment.
Next, the available photodetectors used to read out the scintillators
are described. Then the principles, advantages and disadvantages of
pixelated versus monolithic detectors are described and discussed. Since
monolithic detectors require a calibration step to achieve high event
positioning performance the calibration techniques as well as the event
positioning algorithms are explained. The chapter closes with a sec-
tion on Monte Carlo methods used to model monolithic scintillators to
understand their behaviour, and predict and optimize their design.

3.2 Milestones in PET detector development

Scintillation gamma ray detectors consist of three main components: the
scintillator, the photosensor and the electronics. The most important
detector requirements are (i) having a high efficiency to detect 511 keV
gamma rays and (ii) providing precise information on the interaction
position of the gamma interaction(s) inside the crystal. Furthermore
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Figure 3.1: Different detector designs. a) One of the first block detector
designs b) fully pixelated design with light guide c) fully pixelated design with
one-to-one solid-state detector coupling (here SiPMs) d) monolithic detector
design.

good timing and energy resolution as well as good countrate performance
are desirable.
The classical PET detector, also known as block detector, first came up
in the 1970s. At the time it was a 20-30 mm thick BGO scintillator
coupled to photomultiplier tubes. To obtain better spatial resolution
the crystal was segmented in sub-elements. A photodetector coupling
for each of those elements would have increased the cost dramatically,
instead, the large crystal was segmented by partial cuts in the material
(Figure 3.1a)). The cuts were filled with a reflector to reduce crosstalk
between the elements and modify the light spread in the crystal de-
pending on the gamma interaction position. Only four PMTs were then
needed to get a response that can be used to determine the crystal
element where the interaction occurred. The output X,Y is the estimated
position of the annihilation in the block detector with the four signals
being PMTA, PMTB and so on.

X =

(PMTA + PMTB) − (PMTC + PMTD)
PMTA + PMTB + PMTC + PMTD

Y =

(PMTA + PMTC) − (PMTB + PMTD)
PMTA + PMTB + PMTC + PMTD

(3.1)
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Lutetium-based scintillators replaced the BGO scintillators in the late
1990s having a higher stopping power, higher light output and fast decay
time. Especially the higher light output enabled the use of smaller
and fully segmented scintillation pixels and thus improving spatial res-
olution. This array of pixels was coupled to a lightguide serving to
distribute the light over multiple PMTs (Figure 3.1b)). Between the
2000s and 2010s solid state photodetectors became available (Avalanche
photodiodes (APDs) and later silicon photomultipliers (SiPMs)). With
these devices being about the size of the segmented crystal a one-to-
one coupling was made possible improving the decoding error (Figure
3.1c)). To this day detectors with sub-elements down to 0.5 mm have
been developed [59]. The presence of small pixelated photodetectors also
brought rise to non-segmented monolithic detectors which can provide
high spatial resolution and provide DOI information (Figure 3.1d)). In
the next section we will define and discuss the performance metrics which
are relevant for a PET detector.

3.3 Performance metrics

3.3.1 Detector sensitivity

Sensitivity or detector efficiency defines the ratio of how many of the
emitted gamma rays are finally detected. According to Beer-Lambert
Law this value depends in first instance on the thickness of the crystal,
the effective atomic number Z and the density. Furthermore the packing
fraction of the crystal and the applied energy window has an influence
on the number of detected events.

S =

#photonsdetected
#photonsemitted

(3.2)

3.3.2 Spatial resolution

Detector intrinsic spatial resolution is the ability of the detector to
resolve adjacent points from each other. The better the spatial resolution
the sharper and more detailed the imaged object appears. Spatial
resolution is expressed as the full width at half maximum (FWHM)
of the detector response when irradiated with a infinitely small source
(Figure 3.2). The intrinsic spatial resolution of a PET detector is only
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Figure 3.2: The FWHM metric.

one factor that influences the resolution obtained on system level. Next
to the detector spatial resolution the positron range and system diameter
(non-collinearity) define the system resolution (cfr. Section 2.3.3). The
spatial resolution of a PET detector is dependent on many factors such
as the scintillator light output, the SiPM pixel size and photon detection
efficiency (PDE), and the scintillator thickness. In monolithic detectors
the spatial resolution is also dependent on the algorithm used to estimate
the gamma interaction positions from the measured light distribution.
For pixelated scintillation detectors the spatial resolution is dependent
on the width of the scintillator pixel elements (cfr. Section 3.6).

3.3.3 Energy resolution

Ideally the photopeak in the energy spectrum of a 511 keV emitter
appears as a sharp peak or line. The peak becomes broadened in
an actual spectrum by a whole range of effects. Even if the same
energy was deposited in a scintillation detector there is a statistical
variation of the number of generated scintillation photons per keV.
The scintillation position inside the crystal also changes the number of
scintillation photons that is detected. A scintillation close to a crystal
boundary can cause a large number of photons to exit the crystal. The
amount of light that exits the crystal depends mostly on the surface
treatment and reflective coating. Furthermore statistical variations are
introduced by the photodetector and by fluctuations in the power supply
of the photodetectors. Due to these statistical effects the photopeak
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Figure 3.3: The energy spectrum (blue) of a gamma ray detector is acquired
and fitted with a Gaussian (red). The peak position and width of the
distribution define the energy resolution.

appears as a more Gaussian shaped curve instead of a line. The energy
resolution is measured by calculating the FWHM of this energy peak.
The energy resolution Eres is given in percent as the FWHM of the peak
∆E divided by the energy peak position E.

Eres =
∆E

E
× 100% (3.3)

A good energy resolution is desired to distinguish gamma rays with
similar energies and exclude, for example, gammas that have interacted
with e.g. the patient tissue and scattered. A gamma ray that scattered in
the patients body changes its travel direction. Subsequently the detected
gamma does not contain the needed information to construct a valid
line-of-response. These events are then removed from the dataset.

3.3.4 Timing resolution

Timing resolution is the capability of the detector to accurately measure
the time when the gamma photon arrived at the detector. In first
instance the time window for accepting coincidences can be decreased
with better timing resolution and they reduce the number of random
coincidences. Approaching a much better timing resolution, the detector
can measure the time-of-flight difference of the gammas. This allows to
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reduce the range of possible interaction positions along the LOR and
therefore improve SNR. Ultimately the timing resolution could be good
enough to predict the exact interaction position along the LOR and no
reconstruction will be needed anymore.

3.4 Scintillators

3.4.1 The scintillation mechanism

The two main types of scintillators used for scintillation detectors are
organic materials dissolved in a liquid and inorganic solid scintillation
crystals. In PET mostly inorganic scintillators are used due to their
higher effective atomic number Zeff which enables the material to stop
the high-energy gamma photons. The light yield of inorganic scintil-
lators is also more proportional to the deposited energy compared to
inorganic scintillators [60].
The crystal structure is the reason why the scintillation occurs and
determines the energy states in the scintillator. While some crystals
exist in their pure state, most of them are doped with impurities of
other atoms to modify the energy states and enable the scintillation
effect. Two examples of impurity-activated scintillators are thallium
doped - sodium iodide NaI(Tl) or caesium iodide CsI(Tl).
The existing energy states are the valence and conduction band (Figure
3.4). The energy difference between the two bands is called band gap.
Through the photoelectric or Compton interaction in the scintillator
an electron is moving from the valence band to the conduction band.
The number of created electron-hole-pairs is proportional to the energy
absorbed. The electron then de-excites and moves back to the valence
band under the emission of its energy in the form of light photons. The
spectrum of the emitted light is determined by the energy states of the
bands and may be modified by impurities.

3.4.2 Properties of a scintillator

The properties of a small selection of typically used scintillator materials
are displayed in Table 3.1. The relevance of each property for PET
detectors is briefly discussed in this section.
Ideally a scintillator used for PET detectors should have a high stopping

40



3.4. Scintillators

Figure 3.4: The scintillation mechanism is based on the crystal structure with
its energy bands.

power which means that a large fraction of incident gamma photons are
absorbed by the material. As previously mentioned, this is dependent on
the density ρ and effective atomic number Zeff and the thickness of the
material x. Additionally, a large Zeff will increase the fraction of pho-
toelectric interactions versus Compton scatter. This is desired because
the gamma energy will be deposited at one single location and improve
the positioning accuracy which in turn improves the determination of
the line of response drawn between two opposing detectors.

Table 3.1: Scintillator materials used in PET and their properties [5].
LYSO(Ce) data from [61].

Property LYSO(Ce) BGO NaI(Tl) LaBr3(Ce)

Density (g/cm
3) ρ 7.20 7.13 3.67 5.3

Effective atomic number Zeff 66 73 50 46
Decay time (ns) 42 300 230 35
Photon yield (per keV) 29 8 38 61
Index of refraction 1.82 2.15 1.85 1.9
Hygroscopic no no yes yes
Peak emission (nm) 420 480 415 358
Attenuation length for 511
keV (mm)

11.5 10.4 29.1 21.3

Furthermore, a short decay time is desired, which is the time in
which most of the scintillation photons are generated. It reduces pile-up
effects, minimizes dead time and improves timing resolution.
The number of photons emitted per keV is called the light output or
photon yield. A higher light yield results in more accurate estimation
of the gamma interaction position and a better energy resolution. For
TOF performance the number of photons emitted (ideally with a short
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scintillator rise time) and finally detected per photodetector pixel is
important.
To optimize the extraction of the photons from the scintillator it should
have an index of refraction close to that of the photodetector. Addi-
tionally the emission spectrum of the scintillator and the wavelength
dependent quantum efficiency of the detector should match as good as
possible. The peak emission wavelength of different scintillators is given
in Table 3.1. Some crystals are hygroscopic meaning that they cannot be
exposed to air but must be encapsulated in a air-free (rather moisture-
free) environment. This makes the handling of those scintillators more
complicated and not desirable.
The attenuation length (mm) describes how easy a 511 keV gamma ray
can penetrate the material. The linear attenuation coefficient µ can be
calculated as 1/attenuation length (mm

−1
).

3.4.3 Crystal surface treatment

The measured light distribution depends strongly on the surface treat-
ment of the crystal. The crystal itself can be left ground as cut or
mechanically polished or chemically etched. Then a coating can be
applied such as black paint, Teflon wrap (or white paint), specular
mirror-like reflectors or retro-reflectors.
Black paint is mostly used for monolithic crystals because it absorbs
optical photons at the scintillator edges where many photons reflect
before being detected. The reflections lead to a distortion of the de-
tected light distribution potentially leading to an inaccurate position
estimation. However, it may also have a negative effect on energy and
timing resolution due to the smaller total number of collected optical
photons. Teflon is a white material that can be wrapped around the
crystal. It reflects photons with high probability and in a diffuse manner.
The more layers of Teflon tape are used, the higher the reflectivity.
Alternatively a white paint can be used leading to a similar reflection
pattern. Enhanced specular reflector (ESR) is a reflecting material that
has also a high reflectivity, but reflects optical photons in a specular
pattern. Retro-reflectors are known from traffic signalling like street
signs and reflect the photons in the same direction they came from
leading to a preservation of the light distribution. The micro-structure
of a retro-reflector is designed in a way that each photon reflects three
times inside a cube shaped structure before the photons travel path is
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reversed.

3.5 Photodetectors

To sample the light distribution generated by a scintillation pulse inside
a monolithic crystal, photodetectors are attached to typically the back-
side of the crystal. Different approaches have been investigated such as
front-side readout, front- plus back-side readout and only edge-readout
but not investigated in this work.
Photon sensors should have a response proportional to the number of
incident photons and the gain should be sufficiently large so that the
signals can be easily interpreted. The response times of the detectors
should be smaller than nanoseconds and they should be sensitive for a
broad range of electromagnetic wavelengths. The internal dark count
rate and noise should be as small as possible.

3.5.1 Photomultiplier tubes

PMTs were the main photodetectors in PET until a few years ago being
reliable and low noise photosensors. However, there are some drawbacks.
The quantum efficiency is limited by the photocathode to around 25%
at 420 nm. A high gain is reached only by applying a bias voltage of 1-2
kV which makes the power supply costly. Furthermore PMTs are very
large in size and are not suitable for the use in an MRI since they are
not working reliably in a magnetic field.

3.5.2 Semiconductor detectors: APDs and SiPMs

Semiconductor detectors are solid-state detectors that are compatible
with MR while providing high gain, improved timing and are much
more compact than PMTs. They work with low operating voltages and
the available pixel sizes are 2-6 mm, which is ideal for the use in PET
detectors. Initially APDs were used specifically for PET/MRI systems
[62, 63]. They have an outstanding high quantum efficiency of more than
65%, but excess noise (or gain noise) is next to temperature sensitivity
one major drawback and negatively affects timing resolution [64]. APDs
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Figure 3.5: PDE in function of the applied overvoltage at 410 nm. Compared
are SiPMs from different vendors: Broadcom, FBK, Ketek and SensL (now:
ON-semiconductor) [10].

are therefore not suitable for TOF-PET.
Later SiPMs replaced APDs [65] and are now the most commonly used
photodetectors in newer PET systems. SiPMs consist of hundreds to
thousands of microcells or single photon avalanche photodiodes (SPADs)
per mm

2
which are Geiger-APDs combined with individual quenching

circuits. The SiPM gain is around 1x10
6
and can be achieved with only

∼30 V bias voltage [66].

As seen in Figure 3.5, SiPMs can have PDEs up to 60%. The
PDE wavelength dependency can be seen in Figure 3.6. Note that the
peak emission of LYSO is at this wavelength (Table 3.1) and therefore
a perfect match to be combined with SiPMs. The noise is very low
and the uniformity between SPADs is high. This enables the SiPMs to
detect photo-electron spectra with high precision. This is not possible
with PMTs due to high variances in gain and noise.
PDE is the probability of a photon being detected by the SiPM and
is dependent on the photon wavelength λ, the over-voltage V and the
fill factor F . η(λ) is the quantum efficiency of silicon and ε(V ) the
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Figure 3.6: The SiPM PDE in relation to the photon wavelengths [67]. These
SiPMs are most sensitive for light with a wavelength of ∼430 nm.

probability of an avalanche to be initiated (Equation 3.4).

PDE(λ, V ) = η(λ) ⋅ ε(V ) ⋅ F (3.4)

The fill factor F is the active area of an SiPM that is sensitive to
light. Higher fill factors, meaning larger SPADs, lead to higher PDE
and gain but also increase recovery times. For better recovery times
smaller SPADs can be useful. Dark counts are the major source of noise
in SiPMs and originate from thermal electrons [64, 67].

3.6 Detector designs

3.6.1 Pixelated scintillators

All clinical and most preclinical PET scanners consist of detectors with
pixelated scintillator arrays. These arrays consist of many individual
thin crystal elements with a length of 15-25 mm for clinical PET (shorter
for preclinical). The more the width of the crystals is reduced the better
the resolution that can be achieved. For clinical settings this is a width
of 2.6-5 mm while in preclinical scanners the width can go down to 0.5
mm. The scintillation material is grown as an ingot, a large block, and
is then mechanically cut into crystal pixels (Figure 3.7). The crystal
pixel surface is further treated to influence the reflection properties and
light output (cfr. Section 3.4.3).
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a) b)

Figure 3.7: a) A LYSO ingot with maximum dimensions of ø 95 mm × 200
mm and b) manufactured pixelated LYSO arrays with different pixel sizes [61].

Pixel decoding

In a one-to-one pixel-photodetector coupling the 2D gamma interaction
position can simply be assigned to one of the discrete crystal pixels. In
case that number of scintillator pixels < number of photodetector pixels
a light guide can be used to spread the light over multiple photodetec-
tors. This reduces the number of photodetectors but negatively affects
the spatial resolution since mathematical algorithms are necessary that
introduce a pixel decoding error.

Sensitivity

In between the pixels a reflector is placed that is needed to minimize
crosstalk and improve light output. The reflector material reduces the
detector packing fraction and thus deadspace is created. The smaller the
pixels the more deadspace is created. The sensitivity drops significantly
as displayed in Table 3.2. For example, in an array of 1 mm pixels
the sensitivity loss is at 14% compared to a monolithic crystal that has
no deadspaces. Since PET detectors work in coincidence the impact is
quadratic which results in a total loss of 26%. The sensitivity loss can
be compensated by using longer crystals. The stopping power would be
better but in consequence the collection efficiency of scintillation photons
in very long crystals is compromised.

Light collection efficiency

In crystals with a large aspect ratio the photons reflect many times
before they reach the photodetector. According to a simulation of a 3 x
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Table 3.2: Sensitivity loss for pixelated arrays of different pixel sizes with 3M
Vikuit ESR reflectors compared to a monolithic detector design.

Pixel
array

Pixel
size
[mm]

Sensitive
area AS

[mm
2
]

Detector
size A
[mm

2
]

AS/A
Sensitivity
Loss

86 x 86 0.5 1849 2452.7 0.75 25%
46 x 46 1 2116 2452.7 0.86 14%
24 x 24 2 2304 2482.5 0.93 7%
16 x 16 3 2304 2428.0 0.95 5%
monolithic - 2500 2500 1 0%

3 x 20 mm
3
crystal a photon reflects on average 50 times in a polished

crystal [68]. An increasing number of reflections increases on the one
hand the chance that the photon is lost and on the other hand the time
until it is detected. This effect is amplified with increasing crystal aspect
ratio. The light collection efficiency drops.

DOI

The number of scintillation photons that reach the photodetector is
strongly dependent on the DOI of the gamma interaction and on the sur-
face finish. In a polished crystal the DOI effect is much less pronounced
than in a crystal with a rough surface structure. The light output
variance per depth and in between crystal pixels makes it challenging to
extract DOI information and usually requires additional hardware and
electronics.

Timing

Pixelated detectors have shown to provide excellent timing resolution
[69]. Current state-of-the-art CTR is 214 ps FWHM based on pixelated
arrays of 3.2 x 3.2 x 20 mm

3
[15]. However, the need for longer and

thinner crystals leads inevitably to a larger variance on the photon
transit times resulting in a deterioration of timing performance [8].
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Cost

The trend towards smaller scintillation crystals to obtain better spatial
resolution increases the cost of the detectors [70]. In a small market
study including two vendors in 2019 [71] we found that pixelated arrays
are more economical for larger pixel sizes with a price cross-over at 2
mm pixel size (unit prices for arrays with dimensions 50 x 50 x 16 mm

3
).

The smallest available pixel size was stated to be 0.5 mm, which makes
the prices more than triple compared to the monolithic block. In this
case, the pixelated detector design trades one performance parameter at
the cost of another. An improved spatial resolution is only achieved by
a loss of potentially all other performance metrics: sensitivity, energy
resolution, timing resolution and manufacturing feasibility.

3.6.2 Monolithic scintillators

Light distribution

Monolithic PET detectors consist of one slab of scintillation material
without any segmentation or gaps. The scintillation light spreads through-
out the crystal and is typically measured at one crystal side by a matrix
of photodetectors. The measured signal therefore represents the light
distribution inside the crystal. This light distribution can be used to
determine the 2D position of the gamma interaction by the peak position
of that distribution. Not only the 2D position but also the DOI can be
estimated from that distribution. Looking at the spread of the light over
the photodetector array one can estimate how deep in the crystal the
photon interaction occurred. If it occurred closer to the photodetectors
a concentration of most of the photons on a few photodetector pixels
can be observed. If it occurred further away from that array the light
will spread over many pixels (Figure 3.8).

Challenges

There are several factors that make the monolithic detector concept a bit
more complicated. First of all, there are many scintillation photons that
are reflected by the detector sides and top which influences the measured
distribution significantly. Especially towards the edges, the peak of the
measured distribution might not correlate to the interaction position.
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Figure 3.8: Simplified concept of light spread inside a monolithic crystal. A
gamma interaction towards the top spreads light on multiple photodetector
pixels. An interaction close to the array only triggers very few pixels.

Figure 3.9: The gamma energy deposition and resulting light distribution
for a pure photoelectric event and an event with two preceding Compton
interactions.

Furthermore, there is often more than one interaction position inside the
crystal, mostly due to Compton scatter, which makes it more complex
to determine the position(s) of interaction since the light distributions
will overlap (Figure 3.9) (cfr. Section 6.3). Additionally, statistical
noise, variations in scintillator light yield and amplifier gains of the
photodetectors contribute to the signal. It is also possible that multiple
events are triggered at once either two gamma events or one gamma
event and a

176
Lu event. The higher the count rates the higher the

probability that this will occur. However, in a non-saturated system the
chances are rather small.
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Timing resolution

For monoliths the light spread and collection over multiple photodetector
pixels results in low SNR and thus limits the achievable timing per-
formance [72, 73]. However, the unrestricted movement of scintillation
photons with a direct travel path to the photodetector makes monolithic
crystals fundamentally superior to be used for timing measurements.
The monolith is therefore a promising alternative to reach timing per-
formances comparable or better than those of pixelated detectors using
precise calibration techniques.

Readout channels

One should also keep in mind that if all photodetector channels are read
out, the count rate performance of the electronics needs to be much
higher for monolithic detectors compared to pixelated ones. Various
techniques to reduce the number of readout channels have been eval-
uated e.g., Anger logic, row and column summing or a sparse readout
[74–77]. However, these techniques should be implemented cautiously
since performance parameters like spatial resolution can degrade but
especially timing resolution is sensitive to multiplexing [72, 78].

Spatial resolution

Multiple monolithic detector designs have been evaluated with respect
to spatial resolution. The performance depends highly on the crystal
thickness. For the use in clinical systems a thickness of more than 12
mm is typically required to have sufficient detector sensitivity. A spatial
resolution of 1.7 and 1.5 mm FWHM could be achieved with a 22 and
20 mm thick crystal, respectively [73, 79]. A 15 mm thick crystal was
used in [74] achieving 1.8 mm FWHM. In [80] a spatial resolution of
1.4 mm (with correction of source size) could be obtained with a crystal
thickness of 12 mm. Even better spatial resolution of 1.1 mm [79] and
0.78 mm [81] could be achieved with a 10 and 8 mm thick crystal. In [82]
a remarkable detector spatial resolution of 0.9 mm FWHM is reported
with a crystal of 15 mm thickness. A great effort is done to isolate
the source size from the measured FWHM values leading to a better
estimate of the intrinsic spatial resolution.
Not only the crystal thickness but also the evaluated region on the
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detector (centre, edge, corner, centre line on one axis) and the correction
methods applied to isolate the calibration beam diameter [82] have a
large impact on the stated spatial resolution. There is no standard-
ized procedure to evaluate the performance of monolithic detectors and
therefore it is not trivial to compare results from different groups.

3.7 Event positioning algorithms

The gamma interaction position inside the monolithic crystal induces a
shower of scintillation photons that is detected by the photodetectors
coupled usually to one side of the crystal. The measured light spread is
then used to estimate the interaction position in 2D (x,y) or 3D (x,y,z
(DOI)). Simple position estimation of the gamma interaction with Anger
logic or functions that model the light distribution work well in the
center of the detector. However, the reflections of the scintillation light
at the edges of the crystal are distorting the light distribution causing
positioning artefacts. The events at the crystal edges are compressed and
positioned more towards the center than they should be. Efforts have
been made to reduce this effect by using black absorbing paint to retain
the light distribution at the cost of potentially losing a large fraction of
photons. Further, more complex statistical approaches have been used
such as nearest neighbour, maximum likelihood estimation (MLE) and
more recently also neural networks to obtain the best spatial resolution
in monoliths. Most statistical methods do require a calibration upfront,
collecting reference light distributions at known irradiation positions.
A collimated source, for example by a tungsten collimator to a 1 mm
diameter beam or even narrower is produced by a radioisotope e.g.

68
Ge

or
22
Na (Figure 3.10). This beam is then irradiating the detector step-

by-step along a fine 2D grid (e.g. 1 mm steps). At each position 100 to
1000 events are acquired and stored as reference data. The events energy
which is the sum of all detected photons across the photodetector array
is calculated. Events above and below certain energy thresholds are
eliminated from the data set. This step filters out events that are not
photoelectric or have not deposited their full energy inside the crystal
e.g. scattered events.
Alternatively the physical collimation of the calibration source is achieved
by a slit collimator (tungsten or lead) or a coincident detector forming a
narrow calibration beam. Calibration leads to very good spatial resolu-
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tion at the cost of work-intensive procedures. Often each individual
detector block is calibrated separately. This is possibly the largest
factor holding back the adoption of monolithic crystals in clinical PET
systems. However, techniques to speed up the calibration are addressed
by multiple research groups [73, 79, 80, 83–86] and are not seen as a key
limitation of using the monolithic detector design in future PET systems
[8]. Only recently the more complex positioning has become possible in
real time due to more advanced hardware like GPUs.
Here we discuss in detail Anger logic, MLE, MNN positioning, artificial
neural networkss (ANNs) and gradient tree boosting (GTB).

3.7.1 Anger logic

Anger logic, also known as center of gravity (COG), was developed by
Hal Anger in 1958 [87]. It can be used without any sort of calibration
and serves detectors that do not need to achieve high spatial resolution.
Examples are certain clinical SPECT applications. In SPECT sensitivity
is a trade-off for spatial resolution due to the use of its collimators.
When sufficient sensitivity is required only low spatial resolution can be
obtained and Anger logic performance may be sufficient [88]. Anger logic
is also used for pre-processing calibration data of monolithic detectors
e.g. when a spatial filter is applied to remove non-relevant events outside
the region of interest (ROI) i.e. the calibration beam position.
The interaction position Xi,Yi is calculated with the weights wX and
wY that correspond to the position of the photodetectors with respect
to the detector center. The energy E is the sum of the charge C in all
photodetector channels E = ∑K

k=1Ck. The number of photodetectors is
K.

Xi =
∑K

k=1(wXk ⋅ Ck)
∑K

k=1Ck

(3.5)

Yi =
∑K

k=1(wYk ⋅ Ck)
∑K

k=1Ck

(3.6)

A variation of Anger logic is the raised to the power (RTP)-algorithm [89]
to improve positioning at the edges. The energy E is then exponentiated,
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with p being the power. The interaction position Xi,Yi are:

Xi =
∑K

k=1(wXk ⋅ Ck
p)

∑K
k=1Ck

p
(3.7)

Yi =
∑K

k=1(wYk ⋅ Ck
p))

∑K
k=1Ck

p
(3.8)

3.7.2 Maximum likelihood estimation

MLE [70, 90–93] is a statistical method requiring an extensive reference
dataset as mentioned above. Furthermore the events are normalised by
their energy values:

Cnormk
=

Ck

∑K
k=1Ck

(3.9)

For each photodetector pixel i and each calibration position j the mean
of the signal µi,j and the signal standard deviation σi,j are calculated
and stored in a look up table (LUT). Interpolation of the data allows a
positioning on a grid finer than what was recorded initially.

For each position j in the LUT the likelihood Pi,j,k is calculated
of an event i with photodetector channel values k occurring at this
calibration position.

Pi,j,k = ∏
k

( 1

σj,k
√
2π

exp(−Cnormi,k
− µj,k

2σ2

j,k

)) (3.10)

The event i is assigned to the calibration position j where the value
∏k(Pi,j,k) maximizes. The general approach is to calculate the likeli-
hood exhaustively for every position. A reduction of calculation steps
can be achieved by so called contracting-grid search [94], finding the
likelihood on a coarser calibration grid and then a finer search around
the coarse estimation position.
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Figure 3.10: a) Calibration set-up with tungsten collimator and the detector
mounted on a 3D-robot stage. b) Collimator with two collimation beam
diameters.

3.7.3 (Mean) nearest neighbour

To determine the 2D interaction position of a scintillation event, with
a nearest neighbour algorithm a large calibration data set is acquired
with a pencil beam source at a small pitched grid on the crystal surface.
For each position in the calibration data set the normalised signal is
calculated and stored in a calibration map. A test signal is then classified
to the nearest neighbour within the calibration map with the signal that
has the least square difference. In other words, the nearest neighbour
algorithm [95, 96] calculates the Euclidean distance between the light
spread of the unclassified event to the light spread of each event in a
reference data set. The reference data set includes the normalised charge
Crefj,k of each event in every calibration position j and photodetector
channel k. The event i that needs to be classified is normalised and
called Cnormi,k

. The reference event with the least Euclidean distance
to the unclassified event is considered the true interaction position.

Disti,j =

√√√√√√√⎷
K

∑
k=1

(Cnormi,k
− Crefj,k)2 (3.11)
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This method requires a relatively high number of calculations while only
the discrete calculation positions can be classified achieving only limited
spatial resolution. A variation of the nearest neighbour algorithm is
the MNN - algorithm. Here the mean normalised charge per calibration
position and photodetector channel is calculated. This reduces the num-
ber of calculation steps drastically. Instead of calculating the Euclidean
distance of hundreds of events per calibration position there is only one
event and one Euclidean distance per calibration position. Furthermore,
MNN allows interpolation of the data to position events on a grid finer
than what was recorded initially. While being efficient in the number of
calculation steps the spatial resolution suffers under the ’mean’-signal
approach.
A major improvement is achieved by first sorting the calibration data set
into several groups of signals that have a similar light distribution and
then calculating the mean of each of these groups [97]. The sorting can
be done by calculating the variance of each event per calibration position
and then building a number of groups per standard deviation range. The
calculation steps increase with the number of standard deviation groups
selected and degree of interpolation. DOI capability is also introduced
by these standard deviation groups. This method is applied in the scope
of this thesis and a more detailed description can be found in Section
4.2.2.

3.7.4 Artificial neural networks

ANNs [98–102] are very applicable to solve the inverse problem of link-
ing light distributions to the gamma interaction position in the crystal
especially with respect to the non-linear behaviour at the crystal edges.
The photodetector signal is the input for the ANN training with the
calibration beam position being the classification or regression output.
The network architecture is a feed-forward multilayer network with the
input nodes equal to the photodetector channels and followed by layers
of fully connected hidden layers. This method is also applied in the scope
of this thesis and a more detailed description can be found in Section
5.2.4.
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3.7.5 Gradient tree boosting

GTB is a supervised machine learning technique [80, 103] based on
sequential binary decisions called decision trees. The first tree is based
on the input calibration position while the following trees are trained
on the positioning error of the previous tree. Every new tree corrects
therefore the result of the tree before. The final output is the sum of
all previous predictions. The algorithm is very scalable to the memory
restrictions and easily implementable on an FPGA.

3.8 Modeling of gamma ray detectors

Monte Carlo simulations are used in the field of nuclear medicine to help
with scanner design decisions, the optimization of acquisition parame-
ters and the design of reconstruction algorithms [104]. System simu-
lations typically do not include the full detector modelling but rather
use analytical models that calculate the detector response based on user
defined input parameters such as detector energy resolution, dead time,
quantum efficiency and so on. Detector simulations, also called optical
simulations, focus solely on modeling single detector modules. Here each
high energy photon generates optical photons in the scintillator and
each scintillation photon is tracked until it is detected by the sensitive
volume. The sensitive volume or photodetector can also be modeled with
a certain packing fraction, PDE, noise etc. The photon trajectory can
be stored and each photon interaction can be tracked individually. This
is computing and memory expensive and therefore not (yet) feasible
to simulate for whole systems with 10s, 100s or 1000s of individual
detectors.
Here we will shortly introduce the simulation software Gate, one of its
simulation frameworks: the optical system, and finally the available
implementations to model surface reflectance.

3.8.1 Gate collaboration

GATE is an open-source Monte Carlo simulation toolkit which is de-
veloped and maintained by users in the medical physics community
[104–107]. The underlying physics like tracking particles and processing
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interactions are relying on the Geant4 toolkit. In 15 years of develop-
ment the applications of the simulation software is broad, ranging from
nuclear imaging to radiotherapy, dosimetry and hadron therapy. GATE
basically facilitates the simulation of imaging systems like PET and
SPECT and provides tools for numerous simulation conditions (actors,
kinetics, phantoms, readout etc.).

3.8.2 Optical system

To record interactions inside a simulated detector one needs to define
an optical system. All interactions occurring inside the system and
in a declared sensitive detector are recorded as hits to the simulation
output. The optical system has two levels which are the crystal and
pixel (crystal read out). The crystal geometry and material (density)
are defined directly in the macro file. The material properties related to
the scintillation material are defined separately in the Materials.xml file.
The user can define the scintillation yield, index of refraction, rise time,
absorption length etc. The generated optical photons are collected at
the sensitive detector which is simply a geometric body attached to the
crystal geometry. The photodetector array fill factor can be realized by
modeling a single pixel and using the repeaters command with respective
repeat vectors that leave a small gap in between each pixel. The PDE
is defined as EFFICIENCY in Surface.xml corresponding to the surface
definitions. The surface definitions are further described in the next
section.
The source type definition provides many options. Simple particles,
specific isotopes or a back-to-back source for coincidence measurements
can be defined. The source settings define for a big part the computa-
tional power and time necessary to complete the simulation. On the one
hand the user wants the simulations to be as realistic as possible, on
the other hand the simulations should only be as complex as necessary.
For example, in our detector calibration set-up the source is encapsu-
lated in a tungsten collimator (Figure 3.11). The collimator geometry
STL-file can be loaded into the software and the source can be placed
inside. However, if one only desires a collimated source, then the more
efficient implementation is a gamma point source definition with a small
opening angle, mono-energetic and with a certain activity. This saves
unnecessary computational steps of a huge fraction of gamma photons
that would be absorbed inside the shielding material of the collimator.
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Figure 3.11: Optical simulation set-up in Gate. A calibration beam is formed
by a tungsten collimator with a monoenergetic 511 keV gamma source. The
collimator is simulated by importing the 3D STL file into Gate. The detector is
a monolithic LYSO crystal with a pixelated photodetector readout. The crystal
surfaces are defined with the LUT Davis surface reflectance model.

3.8.3 Surface reflectance model

In optical simulation that track each single photon, often including
multiple reflections at geometry boundaries, it is crucial to precisely
define the optical surfaces to generate a realistic light distribution [104].
Often used models for surface reflectance, e.g. the UNIFIED model in
GATE [109, 110], suffer from inaccuracies, especially for rough surface
data [108, 111, 112]. The reflection surfaces are often modelled as a
set of micro-facets with orientations of a standard deviation σ defined

a) b)

Figure 3.12: a) Surface topology of polished scintillator surface measured
with atomic force microscopy (AFM). b) Rough surface topology. This figure
was originally published in [108] © Institute of Physics and Engineering in
Medicine. Reproduced by permission of IOP Publishing. All rights reserved.
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Table 3.3: Simulation conditions overview.
Ra= average roughness, Rms σ = root mean squared roughness, Rpv = peak-
to-valley roughness. Data from [68].

Rough surface Polished surface
Ra 0.48 µm 20.8 nm
Rms σ 0.57 µm 26.2 nm
Rpv 3.12 µm 34.7 nm

by the user. A more realistic model, the LUT Davis model, is based
on measured surface data obtained from AFM measurements. The
user simply defines the desired surface and reflector material and the
simulation will extract the needed information from the LUT provided
by the simulation software. In the following paragraph we will briefly
explain the methods used to calculate the LUTs.
The topographic measurements of polished and rough surfaces (Figure
3.12) are then loaded in a custom simulation [108]. The roughness
metrics can be seen in Table 3.3. The surfaces are irradiated with
photons from all angular directions. The resulting angular distribution
of the reflected rays (Figure 3.13) is stored in LUTs as well as the surface
reflectivity. This work was extended to an integrated model of the scin-
tillator and the reflector [68]. The available reflector options are Teflon
and ESR (either air or grease coupled). Compared to other existing
models the LUT Davis model considers the reflection probabilities and
directions with respect to the incidence photons. To allow for more
flexibility and user-specific surface modelling a tool was developed to
generate custom LUTs [113]. This allows the user to define the surface
roughness, scintillator properties, coupling medium and reflector type.
The LUT Davis model is officially implemented in Gate since version 8.0
[114].
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b) rougha) polished

Figure 3.13: Photons at 20
◦
incidence angle (black line) on a a) polished

and b) rough surface. The blue dots represent the reflection distribution of the
crystal surface, the green dots are reflected by the attached reflector (here, ESR,
air coupled), the pink dots are photons transmitted through the reflector. This
figure was originally published in [68] © Institute of Physics and Engineering
in Medicine. Reproduced by permission of IOP Publishing. All rights reserved.

3.9 Conclusion

In this chapter we gave a detailed overview on gamma ray detectors for
PET. The reader is provided with the necessary background to under-
stand the research motivation and applied methodologies. We explained
the most important developments in the field since the upcoming of the
first block detectors and how monolithic detectors became more inter-
esting in the recent past. Furthermore we elaborate on each individual
detector component. The advantages and disadvantages of monolithic
detectors versus the standard pixelated design play a central role for the
research motivation of this thesis. To get familiar with the methods that
we will use throughout the thesis we covered the calibration procedure
and the range of existing event positioning algorithms. We finalize this
chapter with the simulation software tools used to model the detector.
In the next chapter our monolithic detector design is evaluated in an
optical simulation study.
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4

Optical simulation study on
the detector spatial

resolution

4.1 Introduction

In the previous chapters we introduced PET and more specifically PET
detectors. We discussed the potential of monolithic PET detectors
for the use in clinical applications and their advantages compared to
the commonly used pixelated design. In summary, we found that the
trend towards smaller scintillation crystal pixels to obtain better spatial
resolution negatively affects other desirable parameters like sensitivity,
energy and timing resolution, and also cost. For this reason it is likely
that future generation PET detectors could be based on continuous
monolithic scintillation detectors. Other key features of continuous
crystals are the intrinsically available DOI information that can be
directly obtained from the measured light distribution. It also needs
to be said that, the better the intrinsic detector resolution the more
important the DOI performance gets. DOI improves the positioning
accuracy at oblique incidence angles and improves resolution at off-
center positions.
In this chapter optical simulations are used to investigate the detector
performance of our monolithic detector design under idealised and con-
trolled circumstances. We study several hardware-related parameters
that are difficult to study or cannot be studied in depth in experimental
set-ups due to cost, feasibility or because they cannot be controlled.
These parameters are the photodetector pixel size, the PDE and the
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number of channels used to read out the sensor array. Pixel size and
PDE are mainly limited to what is currently on the market: 2, 3, 4 or 6
mm pixels and 35-60% PDE. The number of electronic readout channels
can be equal to the number of pixels (here referred to as individual
channel readout) or a combined readout where signals from multiple
channels are summed to reduce the cost in electronics (referred to as
combined readout).
Optical simulations including an advanced surface reflection model allow
us to investigate the effect of the mentioned parameters individually
and understand their influence on the spatial resolution of the detector.
Additionally, simulations allow us to access the ground truth interaction
positions of Compton scattered events and generate perfect calibration
sources and high statistics. Simulations can be very powerful albeit at
the cost of ignoring effects that cannot be modelled accurately (noise,
electronics).
The influence of the SiPMs PDE is partially covered in this chapter.
The detailed analysis and discussion can be found in Section 6.4 of the
Chapter ’Main degrading factors on spatial resolution’.
The simulation work resulted in two peer reviewed A1 journal publica-
tion [71, 100] and four conference contributions [115–118].

4.2 Materials and methods

To obtain a better overview of this section a brief summary is provided
upfront. A monolithic 50 x 50 x 16 mm

3
LYSO scintillation crystal

with back-side SiPM readout (Figure 4.1) is simulated. The thickness
of 16 mm is typical to reach the needed sensitivity for clinical PET.
The width and length are chosen with respect to the attached SiPM
array. Arrays of 3.035 x 3.035 mm

2
and 6.07 x 6.07 mm

2
SiPM pixels

are tested with three different PDEs. Further, individual channel versus
combined channel readout, with summed rows and columns, are investi-
gated. The detector is calibrated with a 511 keV source in 1 mm steps.
Per position the calibration data is organized in six depth-layers. Events
are then positioned with a MNN algorithm. The 2D spatial resolution
is determined in terms of FWHM in the central region of the detector
and dependent on the depth-layer. The resolution degradation at the
edges and corners of the crystal are evaluated. The DOI positioning
performance is evaluated. Finally, the resolution is determined in a
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Figure 4.1: Optical simulation model of the monolithic PET detector with
back-side SiPM readout in GATE. Indicated are the surface finish at the top
and the sides of the crystal, and the virtual DOI layers.

Derenzo-like simulation set-up. Detector uniformity is assessed with a
flood source.

4.2.1 Optical simulation set-up

Monte Carlo simulation with Gate

Optical simulations are performed with GATE v8.0. The monolithic
crystal is defined as LYSO with dimensions 50 x 50 x 16 mm

3
. No

intrinsic radioactivity of lutetium is modelled. The scintillation yield
is 29,000 photons/MeV. The index of refraction is 1.82 [61]. The ab-
sorption length for optical photons is set to 1 m. Compton scatter
and the photoelectric effect are enabled in the GATE physics list. For
simulation studies that aim at improving spatial resolution it is ele-
mentary to include an accurate surface reflection model. In our study
we use the LUT Davis model (cfr. Section 3.8.3), the lateral sides are
modelled as rough surfaces painted with black paint. Depending on the
incidence angle of the photons on this surface they are either reflected
or transmitted according to a measured reflectance. The black paint
is modelled as 100% absorbing, which means all transmitted photons
are absorbed. The top of the crystal is polished and covered with
a specular reflector (3M ESR Vikuiti™) coupled with optical grease.
Typical parameters to characterize the surface roughness are extracted
from AFM data measured in [68] and were previously presented in
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Chapter 4. Optical simulation study on the detector spatial resolution

Table 4.1: Simulation conditions overview.

3 mm SiPMs 6 mm SiPMs
Actual pixel size 3.035 mm x 3.035 mm 6.07 mm x 6.07 mm
Pixel array 16 x 16 8 x 8
Channel readout 256 64
Combined readout 32 16

Scintillation material LYSO

Crystal size 50 x 50 x 16 mm
3

PDE 35%, 50%, 75%

Section 3.8.3. The bottom surface of the crystal is defined as polished.
Photons that are transmitted through this surface reach the sensor pixel
array. The refractive index between crystal and sensor array is that of
optical grease (n=1.5). Other optical material characteristics of the
scintillator and reflectors (wavelength dependencies, refractive indices,
reflectance properties) are intrinsic to the LUT Davis model.

Photon detection efficiency, pixel size and combining channels

The SiPM pixel size is 6.07 x 6.07 mm
2
in an 8 x 8 array with a pixel

pitch of 6.13 mm (values based on SensL SiPMs J-Series, now: onsemi).
The signal for 3.035 x 3.035 mm

2
pixels in a corresponding 16 x 16 array

is selected from the distribution of photons on the 6.07 x 6.07 mm
2
in

the 8 x 8 array. For simplicity, we refer to 3 mm and 6 mm pixel sizes
throughout this work. Combined channels refers to summing the signal
from rows and columns. For 6 mm pixels this means reducing 64 (8 x
8) channel readout to 16 (8 + 8) channels. For 3 mm the reduction is
from 256 (16 x 16) channel readout to 32 (16 + 16) channels. This is a
channel reduction factor of 4 and 8, respectively. PDEs of 35%, 50% and
75% are modelled. An overview is provided in Table 4.1. The details
on PDE modelling including a detailed analysis and discussion can be
found in Section 6.4.

4.2.2 Detector calibration and positioning algorithm

In the first paragraph we describe the general concept and then move
on to a detailed description of the methods.
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b)

Figure 4.2: The simulated photodetector array of 3.035 x 3.035 mm
2
and 6.07

x 6.07 mm
2
pixels with respect to the calibration positions. The symmetry of

the detector allows to characterize the whole area by only acquiring data at
the indicated calibration positions.
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Figure 4.3: The flowchart depicts how the calibration data for the given set-
up is organised for MNN positioning. S1 to SN are the event signals each
consisting of 16 channels ch1 to ch16. For each event the standard deviation
std1 to stdN over the 16 channels is calculated. The events are sorted according
to this standard deviation and separated in six groups. From each group the
mean signal per channel is calculated and saved. This is repeated for each
calibration position.
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Chapter 4. Optical simulation study on the detector spatial resolution

To determine the 2D interaction position of a scintillation event, a MNN
algorithm is used (cfr. Section 3.7.3). In principle, a large calibration
data set is acquired with a pencil beam source at a small pitched grid on
the crystal surface. For each position in the calibration data set the mean
of all signals is calculated and stored in a calibration map. A test signal is
then classified to the nearest neighbour within the calibration map with
the signal that has the least square difference. A strong signal variation
can be seen at a single position due to different gamma absorption depths
in the crystal. As described in Section 3.7.3, an improved 2D positioning
performance is obtained when the calibration data per position is first
sorted according to the standard deviation of all individual SiPM pixel
responses and then separated in multiple groups before calculating a
mean signal for each of these groups. For the choice of the number of
groups one must consider: 1. the amount of available calibration data
to keep sufficient statistics when splitting the data into groups, 2. the
computation time, 3. the increasing memory that is needed to store
more calibration maps. Sorting and grouping the data according to the
standard deviation does not only improve 2D positioning in the crystal,
it can also give information about the 3D position of the interaction. A
large standard deviation (with respect to other events at that calibration
position) correlates to deep interactions, close to the SiPM array, and a
small standard deviation to the ones closer to the crystal top. In Figure
4.4 the calibration maps are visualised for two depth layers. In the first
column the top layer is presented for four different pixels, in the second
column for layer 5 which is closer to the SiPM array. For each pixel its
mean signal amplitude is shown at each calibration position. The SiPM
pixels responds for a much larger range of calibration positions for layer
1 events than for layer 5. This correlates directly to the solid angle and
scintillation light spread of the events from different interaction depths.
For the sake of 3D positioning the size of each group is chosen equal to
the expected number of events per depth layer indicated in Figure 4.1.
Therefore, due to attenuation of the dense crystal material the group at
the crystal top contains the most events.
A virtual, perpendicular source is stepped in 1 mm steps across selected
areas of the detector. The source is perfectly collimated, pencil-shaped,
and monoenergetic (511 keV). The symmetry of the detector allows us
to characterize the whole area by scanning over the positions depicted
in Figure 4.2. At each calibration position a minimum of 25,000 events
was acquired. In each data set the sum of photons per event is recorded.
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The photopeak position is determined and a lower threshold is set at
the minimum between photopeak and Compton edge. This threshold
strongly varies per detector calibration position and is lower at the edges
due to more photon absorption. For a central calibration position, with
PDE 50%, the threshold is at ∼2,400 photons with photopeak at ∼3,100
photons. Events outside the photopeak energy window are rejected. The
remaining number of events is ∼20,000. For a single event each signal
channel is normalized by the sum of the charge in all channels. For this
set-up, six layers were chosen to maintain sufficient events in the bottom
layer (∼1,000 events), and keep the number of the classification signals
feasible. The number of classification signals is 223,494. For each layer
the mean channel signal is calculated and stored in a look-up-table. The
calibration data organization is shown in a flow chart in Figure 4.3. The
calibration maps are interpolated to a calibration grid step size of 0.25
mm by linear 2D interpolation. Test events are positioned with a MNN
algorithm. The data is first energy filtered and normalized as described
above. In an exhaustive neighbour search, each test event is compared to
calibration signals from all positions and all six layers. The calibration
signal with the calculated least distance to the test signal is the selected
nearest neighbour.

4.2.3 Spatial resolution

2D resolution

The spatial resolution is obtained by positioning 2,000 events per cali-
bration position in the central 10 x 10 mm

2
of the detector (Figure 4.5).

The PSFs are measured by fitting a Gaussian function and measuring its
FWHM in horizontal and vertical direction and presented as an average
of all profiles. The positioning bias is defined as the distance between the
real X, Y - position and the calculated position. The FWHM, the mean
positioning bias and the median bias for all events are calculated for pixel
sizes 3 mm and 6 mm, with individual and combined channel readout,
and with PDEs of 35%, 50% and 75%. A statistical paired difference
t-test with a p-value of <0.05 is calculated for all values discussed in
this section.
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Figure 4.4: Calibration maps. The plots show the mean signal amplitude of
an individual pixel at each calibration position. Here a subset of four pixels is
presented: 2, 5, 23 and 35. The left column displays first layer pixel responses
(close to entrance face), the right column displays layer 5 (deeper in the crystal,
towards readout).
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1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 10 11 14 15 1612 13

256

64

Figure 4.5: Simulation set-up for the spatial resolution estimation. The
detector is evaluated at the indicated source positions. The numbers indicate
the number of pixels in the first row for a 3 mm pixel readout (red) and a 6
mm pixel readout (black).

Layer-dependent 2D resolution

The positioning algorithm uses 2D calibration data that was separated
in six depth-dependent groups as described in Section 4.2.2. This allows
to obtain depth information for each positioned event. The positioned
events from Section 4.2.3 are histogrammed by the depth-layer. The
spatial resolution is determined individually dependent on the depth-
layer.

Full detector resolution

The spatial resolution for the complete 50 x 50 mm
2
detector area is

obtained by positioning 2,000 events at 49 x 49 positions with 1 mm
distances. FWHM and positioning bias are obtained as described in
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Table 4.2: Correlation between layer and gamma interaction depth.

Layer Discrete DOI [mm] DOI range [mm] Location

1 14.25 12.01-16.00 Crystal top
2 10.87 9.25-12.00
3 8.12 6.51-9.24
4 5.60 4.21-6.50
5 3.60 2.51-4.20
6 1.50 0.00-2.50 Close to SiPM

4.2.3. Here, a data set with a 32 channel readout and a PDE of 75% is
used.

DOI - resolution

To determine the DOI resolution, 10,000 test events from the center
of the detector with known 3D interaction information are positioned.
For Compton scattered events the depth coordinate of the events’ first
interaction in the crystal is used as the depth metric. The MNN search is
done, as previously, by comparing the test signals to calibration signals
from all positions and all six depth layers. The determined nearest
neighbour belongs therefore compulsively to one of the six depth-layers
which allows to assign a specific depth to each positioned event. The
discrete depth per layer is presented in Table 4.2. The determined depth-
layers of the test events are presented in a histogram dependent on the
real DOI coordinate. A layer determination is considered accurate if the
DOI falls in between the defined DOI ranges (Table 4.2). The accuracy
is given in percent per layer. For example, an event with a real DOI of
10 mm is accurately positioned in layer 2, the positioning error would be
0.87 mm. The calculation of the positioning error is done by comparing
the real DOI to the discrete layer depth. The mean absolute error per
layer is calculated as well as the standard deviation. Here, a data set
with a 256 channel readout and a PDE of 75% is used.

4.2.4 Derenzo-like collimator

Perfect 511 keV pencil beam sources with diameters 0.45 mm, 0.6 mm,
0.9 mm, 1.2 mm, 1.5 mm and 1.8 mm are positioned in the center
of the detector as depicted in Figure 4.6. The center-to-center distance
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4.2. Materials and methods

Figure 4.6: Spatial resolution determination with a Derenzo-like simulation
set-up a) Perfect pencil beam sources of diameters between 0.45 mm - 1.8 mm
are irradiating the detector.

between each source is twice its diameter. For this set-up a PDE of 50%,
3 mm pixel sizes and individual channel readout are used. 594,000 events
are positioned and 2D histogrammed in an image. In a further step the
histogram is normalized by the flood map of the uniformity measurement
from Section 4.2.5. A line profile is drawn through the image at the
center of 0.6 mm diameter sources to evaluate the distinguishability of
individual point spread functions.

4.2.5 Uniformity

A flood source is placed in one corner of the detector covering 1/4th
of the total area. 652,750 events are positioned. In a second step the
events are discriminated depending on the positioned layer.
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4.3 Results

4.3.1 Spatial resolution

2D resolution

In Table 4.3 the spatial resolution is presented for two SiPM pixel sizes as
a function of the number of readout channels and PDE. For 3 mm pixels
and a 256 channel readout the FWHM values are 0.48 mm, 0.44 mm and
0.40 mm for a PDE of 35%, 50% and 75%, respectively. In a combined
channel readout scenario (row and column summed) with 32 channels
the same pixel size results in FWHM values of 0.52 mm, 0.47 mm and
0.42 mm, respectively. For 6 mm pixels and a 64 channel readout the
FWHM values are 0.64 mm, 0.55 mm and 0.48 mm, respectively. In a
combined channel readout scenario with 16 channels the same pixel size
results in FWHM values of 0.66 mm, 0.56 mm and 0.48 mm, respectively.
A graphical presentation of these values can be found in Figure 4.7 (‘All
layers’).

For an individual channel readout an improvement of 0.12 ± 0.04
mm in resolution could be obtained by reducing the pixel size from 6 mm
to 3 mm. For a combined readout the smaller 3 mm pixel size improved
the resolution by 0.10 ± 0.04 mm. The PDE increase from 35% to 50%
improved the resolution by 0.07 ± 0.03 mm, while a theoretical PDE
increase to 75% could result in another improvement of 0.06 ± 0.02
mm. For 3 mm pixel size the reduction of readout channels from 256
to 32 channels (factor 8) has an impact of 0.03 mm. For 6 mm pixel
size the reduction from 64 to 16 channels (factor 4) does not reduce the
resolution significantly. While the mean positioning bias is higher than
1.7 mm for all set-ups, the median bias stays below 0.56 mm for 3 mm
pixels and below 0.71 mm for 6 mm pixels.
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All layers

6 mm 3 mm

All layersyers

6 mm 3 mm

Individual channel readout

Combined channel readout

Figure 4.7: Layer-dependent spatial resolution. The spatial resolution is
presented individually for depth layers 1-5 and for all layers combined for
individual channel readout and combined channel readout. FWHM values from
layer 6 (and layer 5 for 6 mm pixels) are not presented due to large positioning
artefacts that do not allow to determine reasonable FWHM values. The column
’all layers’ contains the resolution over all layers.
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Table 4.3: Spatial resolution as FWHM[mm] is calculated separately for each layer and for all six layers combined at

central 10 x 10 mm
2
of the detector. For each FWHM value the mean of FWHMs at 121 positions in horizontal and vertical

direction is shown. Values in cursive are presented for the sake of completeness but are to be interpreted carefully because
artifacts are dominating the histograms.

SiPM size 3 mm 6 mm
Readout
channels

256 32 64 16

PDE[%] 35 50 75 35 50 75 35 50 75 35 50 75

Spatial resolution FWHM [mm]

L1 0.63 0.54 0.45 0.69 0.59 0.48 0.73 0.63 0.52 0.71 0.61 0.50
L2 0.55 0.48 0.43 0.63 0.54 0.46 0.63 0.55 0.47 0.65 0.56 0.48
L3 0.45 0.41 0.37 0.51 0.46 0.41 0.52 0.46 0.41 0.57 0.49 0.43
L4 0.37 0.34 0.32 0.40 0.37 0.34 0.46 0.42 0.38 0.47 0.42 0.38
L5 0.38 0.35 0.33 0.38 0.36 0.34 0.45 0.43 0.39 0.46 0.42 0.39

L6 0.35 0.31 0.30 0.32 0.33 0.31 0.38 0.36 0.34 0.36 0.38 0.35

All layers 0.48 0.44 0.40 0.52 0.47 0.42 0.64 0.55 0.48 0.66 0.56 0.48
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Table 4.4: Bias mean is the mean of all calculated x,y - biases per layer and all positioned events, respectively. Values in
cursive are presented for the sake of completeness but are to be interpreted carefully because artifacts are dominating the
histograms.

SiPM size 3 mm 6 mm
Readout
channels

256 32 64 16

PDE[%] 35 50 75 35 50 75 35 50 75 35 50 75

Mean bias

L1 1.31 1.26 1.18 1.34 1.33 1.37 1.33 1.26 1.26 1.43 1.43 1.37
L2 1.50 1.46 1.42 1.45 1.45 1.41 1.46 1.47 1.42 1.41 1.41 1.39
L3 1.91 1.89 1.79 1.63 1.64 1.66 1.84 1.83 1.81 1.63 1.73 1.75
L4 2.27 2.20 2.20 1.87 2.02 1.92 2.44 2.42 2.53 2.23 2.12 2.12
L5 2.97 2.81 2.63 2.82 2.84 2.82 2.82 2.80 2.80 2.90 2.74 2.76
L6 2.52 2.63 2.64 2.18 2.12 2.18 2.30 2.18 2.19 1.91 1.85 1.88
All events 1.89 1.83 1.78 1.72 1.73 1.73 1.85 1.80 1.79 1.77 1.74 1.73
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Table 4.5: Bias median is the median of all calculated x,y - biases per layer and all positioned events, respectively.

SiPM size 3 mm 6 mm
Readout
channels

256 32 64 16

PDE[%] 35 50 75 35 50 75 35 50 75 35 50 75

Median bias

L1 0.50 0.50 0.35 0.56 0.50 0.35 0.56 0.50 0.35 0.56 0.50 0.35
L2 0.56 0.56 0.50 0.56 0.56 0.50 0.56 0.56 0.50 0.56 0.56 0.50
L3 0.79 0.71 0.56 0.56 0.56 0.50 0.56 0.56 0.56 0.56 0.56 0.56
L4 0.71 0.56 0.56 0.56 0.56 0.50 0.75 0.75 0.79 0.79 0.71 0.56
L5 0.75 0.56 0.56 0.71 0.71 0.71 1.06 1.00 1.03 1.03 1.12 1.06
L6 1.00 1.00 1.00 1.00 0.90 0.95 1.41 1.41 1.41 1.25 1.25 1.25
All events 0.56 0.56 0.56 0.56 0.56 0.50 0.71 0.71 0.71 0.71 0.71 0.56
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Figure 4.8: Layer-dependent positioning performance for two different pixel
sizes. The impact of the pixel size on the positioning performance is most
prominent in layers 5 and 6. The central 10 x 10 mm

2
are evaluated.

Layer-dependent 2D resolution

In Table 4.3 and Figure 4.7 the spatial resolution dependent on the
depth layer is presented. Values in Table 4.3 printed in cursive should be
interpreted carefully (not presented graphically in Figure 4.7), because
artefacts are dominating (see Figure 4.8, layer 5 and 6), and it is thus not
meaningful to determine FWHM values. For almost all configurations,
the resolution improves towards layer 5 (close to the SiPM array). The
layer dependency is smaller for 6 mm pixels and for higher PDEs. In
the combined channel scenario the resolution difference between 3 and 6
mm pixel size is generally less pronounced than in the individual channel
readout scenario. The spatial resolution dependent on the depth-layer
is presented in Figure 4.8. For 3 mm pixels the artefacts concentrate in
layer 6 and a directional bias can be seen in layer 5. For 6 mm pixel size
strong artefacts are visible in layer 5 and 6.

Full detector resolution

In Figure 4.9 a) the detector spatial resolution in FWHM and positioning
bias for the whole detector is shown. The corresponding histogram of the
estimated event positions is presented in Figure 4.9 b). Table 4.6 shows
mean FWHM and mean and median bias values. The spatial resolution
in FWHM for the whole detector is 0.56 mm FWHM. The mean and
median positioning bias is 1.41 mm and 0.56 mm, respectively. For
the edge region illustrated in Figure 4.9 a) the resolution degrades to
0.72 mm FWHM and mean and median bias of 1.46 mm and 0.75 mm,
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Table 4.6: Spatial resolution as FWHM [mm]

Whole detector Edge Corner
Mean FWHM 0.56 0.72 0.80
Mean bias 1.41 1.46 1.45
Median bias 0.56 0.75 0.9

respectively. For the corner region illustrated in 4.9 a) the resolution
degrades to 0.8 mm FWHM and mean and median bias of 1.45 mm and
0.9 mm, respectively.

DOI - resolution

Figure 4.10 shows the correlation between the estimated depth-layers
and the real DOI. The depth distributions per layer are asymmetrical
and feature large tails towards the crystal top. The dotted lines indicate
the fraction of events that is not scattered. The layer classification
accuracy is high towards the crystal top with 97% and decreases towards
the lower layers (Table 4.7). The amount of events positioned in layer 1
is highest and decreases towards layer 5. Layer 6 contains slightly more
events than layer 5. The relative amount of positioned and expected
events per layer are listed in Table 5. The mean absolute DOI positioning
error and its standard deviation are also presented in Table 4.7 . The
mean error is ∼1 mm at the crystal top and increases towards the
deeper layers to ∼3 mm. The standard deviation increases in a similar
manner. In contrast, the values in parenthesis are from the non-scatter
scenario. The layer positioning accuracy is between 83 - 99%. The
mean error range from about 0.9 mm in layer 1 to 0.39 mm in layer 5.
Considering the relative amount of events per layer the overall accuracy
and positioning error is calculated. The overall layer accuracy is 72.2%
and the mean positioning error is 1.6 mm.

4.3.2 Derenzo-like collimator

The expected resolution from the given set-up (PDE 50%, 3 mm pixels,
256 channels) is 0.44 mm. Figure 4.11 shows that sources up to 0.6 mm
can be distinguished from one another. The next smaller sources 0.45
mm cannot be distinguished.
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Figure 4.9: Full detector positioning performance. a) Spatial resolution in
FWHM of each position of b). Positioning bias is given as vectors. b) 2D
histogram of 2000 positioned events per calibration position in a 49 x 49 grid.
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Figure 4.10: Detector depth resolution measurement. 10,000 events with
known interaction coordinates are positioned. On the x-axis, ’0’ represents the
depth of the SiPM pixels and ’16’ the entrance face of the detector. The DOI
is presented dependent on the determined depth layer. The histograms feature
long tails towards the right (crystal top). Non-scattered events are presented
in dotted line style. The tails are caused by the Compton scattered events.

Table 4.7: Detector depth resolution measurement. Values in parenthesis
present the non-scatter case. The last row gives the mean of all layers
considering the relative number of events in each layer. The overall layer
positioning accuracy is 72.2%, the absolute depth positioning error is 1.6 mm.
The scattered events degrade the positioning accuracy majorly.

Layer

Layer
Accuracy

[%]

Positioned events
/expected [%]

Mean
absolute error

[mm]

Standard
deviation
[mm]

1 96.57 (99.75) 28.27 / 29.5 0.99 (0.92) 0.72
2 70.69 (90.20) 21.73 / 22.95 1.18 (0.72) 1.11
3 66.45 (91.19) 17.14 / 17.87 1.58 (0.67) 1.78
4 58.38 (83.05) 13.60 / 13.91 1.91 (0.62) 2.46
5 50.69 (83.56) 8.01 / 10.83 2.3 (0.39) 3.17
6 54.58 (85.03) 11.25 / 4.94 3.03 (0.73) 3.87
All 72.2 100 / 100 1.6
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Figure 4.11: Spatial resolution determination with a Derenzo-like simulation
set-up a) Histogram of estimated source positions normalized by uniformity
measurement of 50% PDE 3 mm 256 channels. b) The indicated line profile is
drawn through 0.6 mm sources. The sources can be distinguished from each
other.

Figure 4.12: Evaluation of detector uniformity with a flood source. A flood
source is placed over 1/4th of the detector with 3 x 3 mm

2
SiPM pixels and

50% PDE. Histogram of the estimated (reconstructed) event positions showing
hot spots and edge non-uniformities.

4.3.3 Uniformity

In Figure 4.12 the uniformity can be evaluated qualitatively. In Figure
4.13 the layer-dependent uniformity plots show that the artefacts are
characteristic to the DOI of the event.

81



Chapter 4. Optical simulation study on the detector spatial resolution

Figure 4.13: The histogram data from Figure 4.12 is presented with
(reconstructed) depth-layer discrimination. Hot spots originate mainly from
layer 6 (SiPM-close). Edge artefacts occur in all layers.

4.4 Discussion

4.4.1 Spatial resolution

2D resolution

As results indicate, the pixel size has a significant impact on the reso-
lution, for all tested PDEs. Especially for individual channel readout
scenarios, the smaller pixel size improves the outcome, but also for a
combined readout smaller pixel sizes can improve resolution. Smaller
pixels allow to obtain a more detailed representation of the light distri-
bution projected onto the photodetector. The light distribution again
characterizes the position of the gamma interaction and therefore allows
for more precise positioning. The downside of smaller pixels is the
smaller SNR introduced by the smaller solid angle of the scintillation
light on an SiPM pixel and therefore a lower number of detected photons.
In terms of cost, smaller SiPM pixel sizes are similar in price per area,
but the much higher number of channels that need to be read out with
appropriate electronics are increasing the cost proportionally. Here a
combined readout can be applied to reduce the overall cost of a detector
by summing channels. In the presented set-ups, the number of channels
is drastically reduced by 87.5% and 75% for 3 mm and 6 mm pixel sizes,
respectively. The resulting loss of resolution is only <8% for 3 mm pixels
and insignificant for 6 mm pixels. If one is interested in lowering detector
costs the results strongly imply to use a reduced channel readout while
maintaining high resolution. However, recent research motivations also
aim at high timing resolution which might degrade when combining the
signals from multiple channels. Also note that superior resolution can
be obtained with less channels when using 3 mm pixels and combined-
channel readout (32 channels) instead of an individual channel readout
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(64 channels) and 6 mm pixel size. The artefacts are depth dependent
and discussed in the next section.
In our simulations we demonstrate the ultimate spatial resolution that
can be obtained with an idealized set-up. In a real set-up it is very
difficult to ensure the same accuracies. Factors that deteriorate the
spatial resolution or make optical simulations less reliable are: 1. the
scintillation crystal itself which can have internal defects 2. inhomo-
geneous crystal surface treatment 3. bad coupling of the crystal to the
SiPM array (non-uniform light extraction, air bubbles or misalignments)
4. light entering the detector 5. the calibration source diameter size 6.
alignment of calibration beam 7. sufficient calibration data statistics
8. SiPM PDE inhomogeneity 9. multiple sources of additional noise in
the signal processing chain 10. intrinsic radioactivity of LYSO. Some of
these factors will be be covered in Chapter 6.

Layer-dependent 2D resolution

A strong depth-dependent spatial resolution is presented that also de-
pends on pixel size, PDE and number of readout channels. The re-
sults show us that on the one side resolution improves when gamma
interactions occur rather close to the SiPM array than to the crystal
top, but on the other side an interaction too close to the SiPM array
leads to artefacts. These artefacts can be explained by insufficient light
spread which means that most scintillation light is captured by a single
SiPM pixel. The interaction position is then simply estimated as the
pixel center. For those SiPM-close events the positioning bias will be
determined mainly by the pixel size that means even without any light
spread a smaller pixel leads to smaller positioning bias. One should also
consider that the relative number of events occurring close to the array
is dependent on the scintillator thickness. The thicker the crystal the
smaller is the ratio of gamma interactions close to the array.
Another source of artefacts originates from Compton scattered events.
As seen in Figure 4.10 the lower layers capture events that first in-
teracted in the upper layers but then scattered. Scatter is the reason
for the decreasing DOI positioning accuracy and also the artefacts that
are not related to light spread issues. The depth-dependent resolution
differences can be linked to the noise that is present in the respective
set-up and has multiple sources. First, noise is introduced with lower
PDEs. Second, a 3 x 3 mm

2
pixel detects only about 1/4th of the
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number of photons compared to a 6 x 6 mm
2
pixel. Third, due to the

solid angle, with increasing distance of the scintillation position to the
array, the number of photons per area decreases. Therefore, the more
noise the set-up includes the stronger is the depth dependency of spatial
resolution.

Full detector resolution

Compared to the detector center the resolution degrades towards the
edge of the detector from 0.42 to 0.72 mm FWHM. The resolution
at the corner of the crystal degrades further to 0.8 mm FWHM. This
leads to a whole detector resolution of 0.56 mm FWHM. The resolution
degradation is limited to a relatively small area of a few millimetres
on the detector edges and corner. The signal is more complex and
influenced by the edge reflections. An improvement could potentially
be obtained by calibrating in a finer grid at the edges.

DOI - resolution

The higher amount of events in the top layers occurs due to the atten-
uation of the crystal material. The figure shows that each layer also
includes events from all shallower depths of the crystal. Considering
that a high percentage of events are Compton scattered and can be
distinguished in a simulation set-up, these long tails are identified as
scattered events. The applied positioning technique is based on average
detector responses which leads to a loss of information on scattered
events and makes positioning of those difficult. Nevertheless, 80% of
events are positioned with high accuracy, a mean error of 1.6 mm which is
very useful for the improvement of image quality and potentially timing
measurements in TOF PET systems. Much lower errors and higher
accuracies are obtained when scattered events are eliminated from the
data set.

4.4.2 Derenzo-like collimator

This simulation shows that high resolution cannot only be obtained
at the detectors calibration positions but also at random other center
positions. A small resolution degradation with this set-up is observed
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and expected. First of all, because the statistics per pixel are lower than
in Section 4.3.1 and second, because the tails of the adjacent Derenzo
spheres are overlapping each other which lowers their distinguishability
from each other.

4.4.3 Uniformity

The uniformity measurement shows how much the positioning perfor-
mance is diverging at the detector and crystal edges. The overall uni-
formity shows hot spots that follow a pattern that can be linked to the
underlying SiPM pixel grid of 3 mm steps and edge artefacts in a region
of ∼1.5 - 1.75 mm from the crystal edges. With a total area of 50 x 50
mm

2
the degradation area at the edges is 12 - 14%.

4.5 Conclusion

Optical simulations were performed to predict the performance of a
thick monolithic scintillation detector and investigate how several factors
influence the spatial resolution. Here we focussed on testing the influence
of the SiPM pixel size, the PDE and combining readout channels. The
determined 2D spatial resolution in the detector center is 0.40-0.66 mm
FWHM. Towards the edges and corner of the detector the resolution
slightly degrades. Smaller pixel sizes and higher PDE significantly im-
proved the spatial resolution. Reducing the number of readout channels
by a factor of 4 did not significantly change the resolution. Therefore, a
single channel readout is not always necessary to maintain high spatial
resolution. The DOI is estimated with a depth layer approach and
reaches 72% accuracy and a mean absolute positioning error of 1.6 mm.
The simulation results give strong design indications and demonstrate
the ultimate spatial resolution that is obtainable under optimal condi-
tions like a perfect calibration source, perfect coupling and alignment
of crystal and SiPMs, no intrinsic activity, etc. The data processing
framework developed for the simulated data will be the basis for the
data processing of the prototype detector in the next chapter. The
software to generate calibration maps from the event data and the posi-
tioning algorithm can be used with only small adaptations. Furthermore
the simulation model will be used in Chapter 6 to further analyse the
degrading factors and in Chapter 7 to improve the real detector using
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simulated data.
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5

Experimental detector
performance evaluation

5.1 Introduction

The previous chapter demonstrated the ultimate spatial resolution that
can be obtained with a thick monolithic PET detector under idealized
conditions. The simulation study provides insight into many parameters
and creates the basis to understand the physical processes in the detec-
tor. Hence, optical simulations are the ideal preparation for the develop-
ment of the detector prototype described in this chapter. Furthermore,
the generated calibration data serve as the basis for the development
of the data processing framework such as filtering, positioning, and
evaluation algorithms. However, one must carefully evaluate the ob-
stacles faced in experimental set-ups. These obstacles are identified and
discussed throughout this chapter and the next Chapter ’Main degrading
factors on spatial resolution’. The crystal properties of our prototype are
as previously simulated while the readout scheme is narrowed to one of
the multiple simulated ones, i.e. 6 x 6 mm

2
pixels, 16 channels, rows and

columns summed. Summing rows and columns reduces the number of
readout channels by a factor of 4. The readout electronics of our detector
are designed for cost-efficiency. The 2D spatial resolution and DOI
are evaluated as well as the energy resolution and detector uniformity.
The event positioning is extended from the previously applied MNN
algorithm to a neural network. Both algorithms are presented side-
by-side and compared for most evaluations. Neural networks are very
applicable to solve the inverse problem of linking light distributions to
the gamma interaction position especially with respect to the non-linear
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behaviour at the crystal edges. In the recent paper by Decuyper et
al. [100] we found that neural networks achieve superior positioning
performance when applied to the same simulated data as presented in the
previous chapter. Therefore we train and evaluate the neural network
design also on the experimental data.
In Section 2.3.3 ’Fundamental resolution limits of PET’ we discussed
the influence of non-collinearity, positron range, and intrinsic detector
resolution on the obtainable system resolution. Typical clinical systems
have a diameter of 60-80 cm and are utilized with a

18
F tracer, hence, the

ideal detector resolution should be better than 1.3 mm to not become
the dominating factor. The resulting system resolution is then around 2
mm which is the limit imposed by positron physics under the conditions
mentioned above. Applications in systems with smaller diameter such
as brain PET systems can also profit from better spatial resolutions. In
conclusion, in this chapter we present our prototype detector aiming
at 1.3 mm spatial resolution or better, using the MNN positioning
algorithm and neural networks.
The work presented in this chapter resulted in one peer reviewed A1
journal publication [119] and two conference contributions [120, 121].

5.2 Materials and methods

5.2.1 Experimental set-up

The investigated detector is a monolithic 50 x 50 x 16 mm
3
LYSO

(Epic Crystal) crystal, readout by SiPMs at the back (Figure 5.1). The
surfaces have a rough black painted finishing on the crystal sides (16 x
50 mm

2
) and a black painted specular reflector attached to a polished

crystal top (50 x 50 mm
2
). The crystal is coupled with optical grease

(St. Gobain BC630) to an 8 x 8 array of 6 x 6 mm
2
SiPMs (onsemi

MicroFJ-60035-TSV). The crystal and SiPMs are placed in a light-tight
aluminium housing (Figure 5.2). Similar to what has been previously
published [44, 81, 122] the signals of 64 SiPM pixels are combined to
16 (8+8) channels by summing rows and columns (Figure 5.3). This is
done by using a resistor network that splits the current of each pixel
in two. One half of the current ends up in the column signal and the
other half ends up in the row signal. The 16 rows and columns currents
are then amplified using a current-to-voltage amplifier (based on an
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operational amplifier). In a next step the amplified signal is converted
to a differential signal, using a differential amplifier. The differential
signal is digitized by a free-running ADC with a sampling frequency of
64 MHz.

5.2.2 Calibration data acquisition

The detector is calibrated with a collimated
68
Ge source (69 MBq) placed

in a tungsten collimator forming a beam with a diameter of 0.6 mm.
The collimated beam is orthogonal to the optical table irradiating the
detector which is mounted on a three-dimensional robot stage (Owis
LTM 80, positioning error 25 µm/100 mm) (Figure 5.1). Calibration
data is acquired in a 49 x 49 grid for 70s per position. A calibration
and an evaluation dataset are extracted from the acquired data. For the
calibration dataset the events are pre-positioned with an Anger logic
algorithm for each calibration position. A ROI is then drawn around
the calibration beam position to extract only data from the irradiated
position and to avoid events from the intrinsic

176
Lu radiation of the

scintillator. An energy window of 20% is applied. For the neural
network validation an additional dataset is acquired at 1 mm grid steps
in the detector center (10 x 10) with an offset of 0.5 mm with respect
to the calibration positions. This validation set is acquired to avoid
overfitting (more detail in Section 5.2.4). For clarity we summarise that
for both algorithms the training (calibration) data is energy filtered and
a position filter is applied. For the evaluation (test) dataset an energy
filter but no ROI selection (no position filter) is applied. Therefore,
only those scattered events are filtered that have not deposited their full
energy in the detector (i.e., Compton interaction then gamma exits the
crystal).

5.2.3 Mean nearest neighbour positioning algorithm

The implementation of the MNN algorithm closely resembles that in
Chapter 4. Here we explain the methods again with respect to the
differences in experimental measurements. The calibration data for the
MNN algorithm is extracted from the Anger histogram as a ROI of 37
high intensity pixels (pixel size = 0.26 mm). The remaining number
of events per position for the 0.6 mm beam is on average 4930 ± 730.
Each event first undergoes a baseline correction and is normalized by
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Monolithic 
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SiPM array
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collimator

a) b)

Figure 5.1: a) The calibration set-up consists of a collimator forming the
calibration beam and the detector that is mounted on a 3D robot stage b)

dividing the signal in each channel by the sum of all 16 channels to
make it energy independent. For each single event we calculate the
variance between the values of the 16 channel signals. These variances
are then used to sort the calibration events into six groups. For example,
the first group includes signals with small variances referring to events
that interacted at the top of the crystal where the light spread is broad
and many SiPM pixels have a similar value. On the contrary, the sixth
group includes events where the gamma interaction occurred close to the
SiPM array and most of the light is captured by a small number of SiPM
pixels and therefore the signal has a larger variance. The final step is to
calculate the mean signal in each of the channels per group. For each
calibration position we then end up with 6 reference signals which are
the mean of all the events per “depth”-group. In Figure 5.4 these mean
signals are presented for a calibration position in the detector centre.
The number of events per group, here called layers, best resembles the
expected depth distribution derived from Beer-Lambert attenuation law
with these splits: 29.5%, 22.95%, 17.87%, 13.91%, 10.83% and 4.94%
for layer 1 to 6 respectively. For simplicity we assume the beam to be
perpendicular, however, a certain opening angle is introduced by the
collimator geometry.
The six layers do not only provide depth information but also improve
2D spatial resolution [97]. The reason for the improvement is that the
signal at one 2D position varies greatly between the different interaction
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a) b)

Figure 5.2: The light-tight aluminium housing encapsulates the black-painted
scintillation crystal coupled to the SiPM array.

ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8

ch9

ch10

ch11

ch12

ch13

ch14

ch15

ch16

8 x 8 array SiPMs

Figure 5.3: The signals of the 64 SiPM pixels are summed per row and column
to a total of 16 readout channels.
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Figure 5.4: a) Detector geometry with SiPM readout and virtual DOI layers.
b) 16-channel signal of an event in the detector center dependent on layer. The
channel variance is smaller in layer 1 and increases towards layer 6.

depths. Using a single mean signal over all interaction depths would be
a too general representation of the signal variety. Therefore, using mean
events from different (here six) depth-groups leads to a better position
determination using the MNN algorithm. The ideal number of layers is
determined in Section 5.2.5. For each layer the mean signal is calculated,
interpolated to a grid size 0.26 mm and stored in look-up-tables. The
evaluation data is positioned with a nearest neighbour algorithm imple-
mented in Matlab (‘knnsearch’-function). In an exhaustive neighbour
search, each test event is compared to all reference signals from all six
depth layers. The calibration signal with the calculated least distance
to the test signal is the selected nearest neighbour.

5.2.4 Neural network positioning algorithm

The calibration data for the neural network is defined by a ROI of 109
high intensity pixels (pixel size = 0.26 mm) in the Anger histogram.The
ROI is larger for the neural network calibration dataset than in the MNN
dataset. A larger ROI includes more scattered events and especially the
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ones that scattered with a larger angle in a direction more parallel to
the entrance face. While the neural network training profits from the
‘far’- scattered events and learns to position them, the MNN algorithm
filters scattered events in the process of taking the mean signal of many
events. Therefore, it is counterproductive to include more scattered
events in the MNN training dataset. A fully connected artificial neural
network is designed with 16 inputs (from 8 + 8 SiPM signals), three
hidden layers containing each 256 neurons and three outputs (x, y and z
position coordinates) as illustrated in Figure 5.5. Leaky ReLU activation
is added after every hidden layer. The network is trained using the
AdamW optimization algorithm with an initial learning rate of 10

−3
, a

mini-batch size of 256 events and L1 loss between predicted and ground
truth calibration position as optimization metric. L2 weight decay is set
to 10

−2
. The calibration beam positions were used as ground truth x and

y coordinates. The z coordinate label was set to the DOI layer (label 1
to 6) the event belongs to as obtained from the events’ variance (similar
to Section 5.2.3). The number of events per calibration position is split
with 28.85% for layer 1 with the smaller standard deviations, 22.03%
for layer 2, 17.4% layer 3, 13.8% layer 4, 10.85% layer 5 and 8.07% for
layer 6 with the larger standard deviations. Each event is independently
standardized to zero mean and unit variance. The training set contains
1000 events per calibration position and one training epoch is defined
as an iteration over 100 events per position randomly extracted from
the training set. After every epoch, the network is validated on data
acquired in a 1 mm intermediate grid in the detector center (9 x 9 mm

2
,

10 x 10 positions, 1000 events/position). This allows to regularly check
and prevent potential overfitting on the training grid positions. Based
on the validation loss, learning rate is halved every 10 epochs without
improvement and training is stopped if the loss did not improve for 50
epochs. The deep learning methodology is implemented in python using
PyTorch and the network is trained on an 11 GB NVIDIA RTX 2080Ti
GPU. Optimization of the network architecture, training set size and
training procedure was done based on simulation data of the same set-
up. For full detail we refer the reader to the paper of Decuyper et al.
[100].
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256 256 256
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Figure 5.5: Neural network architecture. Input of 16 (8+8 summed row and
column) signals and three output coordinates x, y and z.

5.2.5 Performance Evaluation

The performance is evaluated based on two parameters: FWHM and
1D/2D-bias. The FWHM [mm] is the full width at half maximum of the
Gaussian fit to the horizontal and vertical line profile of the PSF in the
2D histogram of all events from all depths per calibration position. For
the estimation of the FWHM we need the peak value of the distribution
and the width of the distribution at half the peak value. To determine
these two parameters most accurately, we fitted a Gaussian to the central
peak region (including all values over a threshold T = 0.25 * peak value).
The FWHM could also be evaluated simply by extracting the peak of
the distribution and the width of the distribution at half the maximum
without fitting a function to the distribution. The low sampling on the
x-axis, however, does not allow to determine the FWHM at exactly the
half maximum. Therefore, an interpolation between the data points or a
fit is needed to determine these values. The positioning bias [mm] is the
distance between the peak of the PSF and the known calibration position
in x and y direction. The 2D bias [mm] is the 2D distance between the
peak of the PSF and the true calibration position. Mean and median
values are evaluated for the full detector (5 x 5 cm

2
) and the detector

centre (3 x 3 cm
2
), respectively. Note that PSFs at the detector edges

mostly do not resemble a Gaussian distribution resulting in inaccurate
FWHM values. As an alternative measure for spatial resolution over the
whole detector including the edges the bar phantom measurement can
be used.
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Spatial resolution estimation

The evaluation dataset includes 30000 energy-filtered events (20% en-
ergy window) per position without ROI selection. The results are not
corrected for the remaining source size of 0.6 mm. A bias correction for
the 2D - position between the two calibrations is done with 0.3 mm and
0.18 mm in x-direction and 0 mm and -0.18 mm in y-direction for the
MNN algorithm and neural network positioning respectively. The bias
originates from the disassembly and assembly steps in between the two
calibrations.

DOI estimation

For positioning with the MNN algorithm each of the reference events
automatically belongs to a certain depth-layer defined by the signal
variance and therefore DOI of the event. The principle is described in
detail in Section 5.2.3. For the neural network the DOI is determined by
a network trained on the DOI labels defined by the signal variance. This
is explained in Section 5.2.4. To evaluate the DOI estimation of both
algorithms the predicted relative number of events in each of those layers
is compared. We compare to (i) the theoretical number of events that
we expect by the attenuation of the crystal according to Beer-Lambert
law and (ii) the results we previously obtained from optical simulations
[71] modelling the same detector geometry, calibration procedure and
MNN positioning. Note that in the simulations the DOI was evaluated
for only the centre 10 x 10 mm

2
. Here, we use the calibration dataset

from the 1.0 mm beam with 109 pixels.

Energy resolution

The energy resolution is evaluated per calibration position. The sum
of each event signal from the calibration dataset (1.0 mm beam, 37
pixels) is histogrammed and a Gaussian is fit to the distribution. Sim-
ilar to what is described in Section 5.2.5 the Gaussian is fitted to the
photopeak so that the fit accurately represents the peak of the actual
distribution and the width at half maximum. To determine these two
parameters most accurately, we fitted a Gaussian to the central peak
region (including all values over a threshold T = 0.25 * peak value).
Figure 5.10 shows the original distribution and the Gaussian fit. A
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remainder of the background signal (
176

Lu) is present in the energy
histograms and explains the counts higher than what is expected from
the Germanium source. The fit does not consider the tails from the
Lutetium contamination.

Uniformity

An uncollimated
68
Ge point source (29 MBq) is placed at a distance of

52.5 cm of the detector. The acquired events are filtered with an energy
window of 20% and then positioned with the MNN algorithm and neural
network. The uniformity is further analysed by selecting the positioned
events per DOI layer.

Bar phantom

Additional to the analysis of the point spread function, a four-quadrant
bar phantom designed for this study gives a more visual impression on
the detector performance. With this phantom the spatial resolution of
the detector can be assessed by its capability to resolve adjacent bars.
Furthermore, spatial linearity can be visually inspected. The phantom
is a 60 x 60 x 15 mm

3
tungsten block in which slits of 0.6, 0.8, 1.0 and

1.2 mm are machined by wire erosion (see Figure 5.6). The phantom
is placed directly on the detector while the

68
Ge source (29 MBq) is

placed at 52.5 cm distance. For each of the four phantom quadrants a
separate measurement is done by positioning the source in the respective
quadrant center as seen in Figure 5.6. This way the entrance angles
are more perpendicular and less gamma rays penetrate the thin bars
worsening the contrast of the test pattern. Recorded events are filtered
with an energy window of 20% and positioned with the MNN algorithm
and the neural network. The flood source histograms from Section 5.2.5
are used to normalize for uniformity.
The line profiles are not taken at one discrete position but are summed
for each respective quadrant in the direction parallel to the bar pattern.
The minima Omin and maxima Omax are determined in the summed line
profile (Figure 5.14), between 0 and 60) to calculate the output modu-
lation Mout = (Omax − Omin)/(Omax + Omin). The input modulation
Min = (Imax − Imin)/(Imax + Imin) is obtained from Gate simulations.
The STL file of the bar phantom is loaded into the simulation software.
The detector is modelled in Gate with the same geometry, SiPM pixel
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size and surface finish as in the presented prototype. More details on sim-
ulation parameters can be found in [71]. The positions of the gamma rays
absorbed in the crystal are recorded for the four measurement scenarios
(source positions x1 to x4 in Figure 5.6 b)). Similar to the experimental
analysis the line profiles are then summed for each respective quadrant
in the direction parallel to the bar pattern. Then the input modulation
Min for all four bar widths is calculated. The simulated Min value
is almost constant over the detector but does not include events from
Lutetium background. Due to that and since a simulation represents
an idealized environment a rather high input modulation value between
0.93 and 0.95 is calculated. For the determination of the MTF it means
that the results shown here are rather on the pessimistic side and might
be better in reality. Finally, the modulation transfer function (MTF) is
calculated for each bar width w

MTF (w) = Mout(w)/Min(w). (5.1)

2D resolution improvement by adding DOI layers

For the MNN positioning algorithm the calibration data per position is
divided into groups according to the signal’s variance. For each group
the mean signal is calculated and stored as a reference signal. Since
the variance is related to the DOI of the signal we call these groups
DOI layers or simply layers. Here the effect of the number of chosen
DOI layers on the 2D resolution is evaluated. The acquired events from
the bar phantom measurements in 5.2.5 are positioned with reference
datasets calculated with different number of layers. For 1, 2, 4, 6, 8,
and 10 layers the 2D resolution is compared visually. A quantitative
comparison is provided by MTF values (Figure 5.15) that are determined
the same way as described in the previous section.
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Figure 5.6: a) 3D view of the four-quadrant bar phantom. b) Dimensions
of bar phantom and source positions x1-x4. c) Side view of the experimental
set-up.

5.3 Results

5.3.1 Spatial resolution estimation

The spatial resolution obtained for the detector calibrated with the 0.6
mm beam is shown in Figure 5.7 for the MNN algorithm and the neural
network respectively. For the MNN algorithm a FWHM of 1.17 mm
is obtained (Table 7.1). The mean x and y bias is 0.37 mm and the
resulting 2D bias is 0.59 mm. For the neural network, a mean and
median FWHM of 1.14 mm and 1.10 mm is obtained, respectively. The
mean x/y bias is 0.13/0.11 mm and the resulting 2D bias is 0.20 mm.
A general degradation is seen towards the edges of the detector. In the
detector center 30 x 30 mm

2
the mean FWHM value is 1.13 mm for

MNN and 1.02 mm for the neural network.
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a)

b)

Figure 5.7: Spatial resolution as FWHM [mm] for detector with 0.6 mm
diameter calibration beam. The bias vectors are indicated as arrows. a) MNN
event positioning. b) Neural network positioning.
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Table 5.1: Performance parameters for calibration of detector with 0.6 mm
diameter calibration beam

MNN Neural network

50 x 50 mm
2 30 x 30 mm

2

center
50 x 50 mm

2 30 x 30 mm
2

center

FWHM mean 1.17 1.13 1.14 1.02
FWHM median 1.17 1.14 1.10 1.01
Bias x mean 0.37 0.14 0.13 0.06
Bias y mean 0.37 0.16 0.11 0.05
2D Bias 0.59 0.26 0.20 0.09

5.3.2 DOI estimation

In Figure 5.8 the relative distribution of the identified DOI layer is
presented in red for the two algorithms. As a reference the theoretical
distribution that we expect by the attenuation of the crystal is shown as
a dotted black line. The result obtained from simulations [71] with the
MNN algorithm is shown as a black solid line. For the MNN algorithm
an offset of 1-2% can be observed in layer one to four compared to
the theoretical curve. The sixth layer contains about 6% more events
than expected. The depth distribution obtained from simulations with
the same algorithm also shows a significantly higher amount of events
positioned in layer 6 than expected from the theoretical distribution.
This has been investigated and is explained in the discussion. The neural
network fits the theoretical curve with a maximum offset of 0.8%.

5.3.3 Energy resolution

The evaluation of the energy resolution per calibration position is shown
in Figure 5.9. The energy resolution for the whole detector is 11.03%
± 1.1% and 10.7% ± 0.5% for the detector center (30 x 30 mm

2
).

Degradations of up to 18% can be observed in the top left and right
corner regions at 6-7 mm from the crystal edge. The bottom corner
region degrades to 14-15%. The energy spectrum includes small amounts
of

176
Lu background radiation from the LYSO scintillator which explain

the counts above 511 keV in Figure 5.10 [123].
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Figure 5.8: DOI evaluation. The distribution of events positioned in each
layer

Figure 5.9: The mean energy resolution of the detector per calibration
position is 11.03%.
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Figure 5.10: The energy spectrum at a calibration position in the detector
centre with Gaussian fit and energy resolution of 10.6% FWHM.

5.3.4 Uniformity

In Figure 5.11 the detector uniformity is shown for the MNN positioning
algorithm and the neural network. Both histograms show artefacts
related to the underlying 8 x 8 SiPM pixel array. Furthermore, the MNN
histogram shows bright hotspots while the neural network histogram
shows more wrinkle-like artefacts. A better understanding of the non-
uniformities can be obtained by looking at the 2D histograms per DOI
layer in Figure 5.12. From left to right, the uniformity can be observed
from the crystal top (gamma entrance face) to the readout (SiPM array)
side of the detector. Especially in layer 6 the uniformity suffers from the
underlying SiPM structure.

5.3.5 Bar phantom

In Figure 5.13 the bar patterns can be visually inspected from a) the
MNN algorithm and b) the neural network. The bar patterns can
be well distinguished for all bar sizes with both algorithms. A more
quantitative evaluation is shown in Figure 5.14. On the left the summed
line profiles are presented. From these profiles the output modulation
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a)

b)

Figure 5.11: Detector uniformity. 2D histogram of positioned events from a
flood source using a) the MNN positioning algorithm and b) the neural network
positioning
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Mout is calculated. The MTF (Figure 5.14b)) is calculated from Mout

and the input modulation Min which was obtained from simulations
(0.94) . It is given in line pairs per mm. The object contrast for the
largest 1.2 mm bars (spatial frequency of 0.8 mm) is 22% and 24% for
MNN and neural networks respectively. For the smallest bars of 0.6 mm
(spatial frequency of 1.67 mm

−1
) the object contrast is 2.9% and 5.3%.

5.3.6 2D resolution improvement by adding DOI layers

The 2D spatial resolution that is achieved with the MNN algorithm
depends amongst other factors on the implementation of DOI layers. In
Figure 5.15 the improvement can be seen between not using any DOI
layers and a 10 layer DOI implementation. MTF values are stated in
the corner of each quadrant. The most substantial improvement for this
detector can be seen between layers 1 and 6. Here the MTF values for
the largest bar size increase from 7.8% to 21.5% for the smallest bar
size the MTF increases from 1.5% to 2.9%. Between 6 to 10 layers the
improvement is limited. Here the MTF values for the largest bar size
increase from 21.5% to 22.3% for the smallest bar size the MTF increases
from 2.9% to 3.6%. For the neural network the 2D resolution does not
depend on the number of DOI layers.
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b) Neural networksa) MNN
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Figure 5.12: The detector uniformity presented per DOI layer. Layer 1 is the
gamma entrance face and layer 6 is close to the SiPM array. a) 2D histograms
for the MNN positioning and b) the neural network positioning.
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w = 1.2 mm w = 1.0 mm

w = 0.8 mmw = 0.6 mm

a)

b)
w = 1.2 mm w = 1.0 mm

w = 0.8 mmw = 0.6 mm

Figure 5.13: Bar phantom measurement with a) the MNN positioning and
b) the neural network positioning.
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a)

b)

Figure 5.14: Evaluation of the bar phantom. a) The summed line profiles of
the bar phantom. b) The MTF of the detector.
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c) 4 layers

0.202 0.154

0.0750.026

a) no layers b) 2 layers

0.078 0.1730.046 0.100

0.045 0.0430.015 0.017

d) 6 layers

0.215 0.164

0.0840.029

e) 8 layers f) 10 layers

0.221 0.2230.170 0.173

0.034 0.090 0.0930.036

Figure 5.15: Bar phantom measurement with MNN positioning using up to
10 layers a) - f). MTF values are stated in the corner of each quadrant.

108



5.4. Discussion

5.4 Discussion

The mean spatial resolution obtained with neural networks is 1.14 mm
FWHM for the whole detector and 1.02 mm in the center excluding
the edge region. Therefore, the novel neural network shows superior
positioning performance to the MNN positioning algorithm by 2.6%
and 9.7% respectively. The degradation towards the edges is typical
for these detectors and is due to the scintillation light truncation. The
measured PSFs at the edges are broader on the one hand but also not
well characterized by Gaussian distributions that are used to calculate
the FWHM. As can be seen in the uniformity measurement (Figure
5.11), events at the edges are often positioned at few very specific pixels
leading to very good FWHM values. However, they are also connected to
larger bias values. Hence, the fitting and resulting FWHM values at the
very edges need to be taken with caution and median values or values
excluding the edges are more reliable. In Figure 5.7 we see that the
neural network shows a more uniform positioning performance especially
at the edges compared to the MNN algorithm. The mean 2D bias is 0.59
mm for MNN and 0.2 mm for the neural network. In the center the bias
is 0.26 mm and 0.09 mm respectively. Further improvements could be
obtained by reading out more SiPM channels, that means 64 channels (8
x 8) when reading out each individual SiPM signal instead of one signal
from each row and column (8+8). Another option that can further
improve the results is using smaller SiPM pixels e.g. 3 x 3 mm

2
pixels

in a 16 x 16 array reading out 32 or 256 channels.
In the previous simulation chapter we found that with an MNN approach
for 6 x 6 mm

2
pixels (as used in this set-up) a single channel readout

does not significantly improve spatial resolution. The study also showed
that a reduction of the SiPM pixel size to 3 x 3 mm

2
can improve the

resolution by 20% with summed channel readout and that a single
channel readout with 256 channels further improves the resolution by
another 7%. The next logical step would therefore be a reduction of the
pixel size if better spatial resolution would be desired.
The experimental results do not include a correction to account for the
resolution degradation introduced by the calibration beam diameter.
The beam at its smallest diameter is here 0.6 mm. The collimator
geometry leads to a spread of that beam with increasing distance to
the collimator. The final beam width at the light extraction side of
the crystal is slightly above 1 mm. Note that the spatial resolution
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that we measure here depends strongly on the evaluation dataset. If we
evaluated this detector with the data of a perfect beam the resolution
would still improve significantly. In section 6.2 of the next chapter the
influence of the beam diameter on the spatial resolution is covered in a
simulation study and experiments with different beam diameters.
The main factors that could cause the performance differences between
the two positioning algorithms are discussed in this section. The fraction
of Compton scattered events is 60% and has a large influence on the
overall positioning performance [100]. The neural network is trained on
many individual events while for the MNN database we use the mean of
many signals which acts like a filter for PSFs of scattered events. The
positioning of scattered events might therefore be improved with the
neural networks. The output of the MNN algorithm is a discrete position
depending on the degree of interpolation that is applied. The neural
network on the contrary is able to provide continuous coordinates as an
output. However, it is also prone to overfitting on the discrete calibration
positions. Therefore, an additional dataset with signals of intermediate
positions is needed to cross-check for overfitting in the training process.
In terms of timing the neural network takes more time to be trained but
once the training is finished positioning can be accomplished much faster.
The MNN algorithm is comparing each event to the complete reference
dataset which is computationally more intensive. This increases with
higher degrees of interpolation and with the number of implemented
DOI layers.
Besides very good intrinsic spatial resolution, DOI estimation is an at-
tractive feature of monolithic detectors. The variance of the LSF gives a
direct measure of the DOI and can be easily extracted from the measured
signal. However, with wide (rather than thick) monolithic crystals it is
very difficult to quantify DOI performance. Obtaining depth dependent
data from an experimental set-up e.g. with an irradiation from the
side has two main drawbacks. Firstly, the fact that most events will
be captured at the very edge of the crystal and secondly, the Compton
scatter direction is dependent on the incident angle of the gamma pho-
ton thus a side irradiation changes the measured light distributions for
scattered events which are more than half of the events. Therefore, we
compare the number of events in each depth-layer with (i) theoretically
calculated numbers and (ii) simulated data, where the real DOI of the
event is known. For MNN the overall DOI distribution is similar to
what we expect but there is a large number of events in the sixth layer
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(close to the readout array). This is related to the mispositioning of
Compton scattered events when the actual photoelectric effect occurs
deeper inside the crystal than the first interaction. This was previously
shown in simulations. An implementation in neural networks with the
variance as a measure of the depth shows that neural networks on the
contrary are able to position scattered events more reliably. Ideally DOI
studies should be linked to simulated data since this is the most accurate
way to obtain ground truth data.
The measured energy resolution for the whole detector is 11.03%. The
major degradations in the corner regions could be linked to the crystal,
crystal finish or reflector. In separate experiments we turned the crystal
while the rest of the set-up stayed as it is. The degradation could still
be linked to the specific corner of the scintillator. Experiments using
other crystals showed also a degradation in the corners but with different
emphasis. Thus, for more uniform and better energy resolution towards
the corners the crystal and/or reflector quality should be examined.
The uniformity of the detector is clearly influenced by the underlying 8 x
8 SiPM pixel grid (Figure 5.11). When most optical photons are detected
by a single SiPM pixel the algorithms are not able to position the event
more accurately than in the center of that pixel. In Figure 5.12 the origin
of the artefacts becomes more clear by looking at the uniformity as a
function of the estimated interaction depth of the photons. Especially
towards the SiPM array in layer 5 and 6 uniformity starts to degrade. An
improvement could be achieved by using smaller SiPMs or a light guide.
Important to be aware of is that for the neural network a uniformity
measurement is very useful to check for overfitting. During the training
the overall positioning performance improves uniformly over the whole
detector until the performance at the discrete calibration positions keeps
improving while the other positions start degrading. At that point
the network is overfitting and detector performance will become non-
uniform. In the uniformity histogram more events would be drawn
towards the discrete 49 x 49 calibration grid forming a grid of hot
spots. This effect is not observed here proving limited or no overfitting
is present.
The bar phantom measurement gives a visual impression on the detector
resolution over the complete field of view. The neural network can
distinguish bars down to 0.6 mm with >5% contrast determined by
the MTFs while the MNN algorithm is just below the 5% mark. The
FWHM value is calculated as the smallest resolvable bar times 1.4 - 2
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[5]. Thus the bar phantom measurement shows a detector resolution of
0.84 - 1.2 mm FWHM for neural networks and is in the range of what
was evaluated with the PSFs. Note that for example in the bottom
left quadrant the bars can be distinguished all the way to the left edge
while they cannot be distinguished towards the bottom edge. This is
due to the source position and angle of the gamma rays penetrating the
bars. If a more perpendicular irradiation (and a flood source instead of
a point source) could be provided the resolution would improve towards
the bottom edge as well.
Both algorithms show similar spatial resolution values (0.1 mm differ-
ence). However, the artificial neural network provided more uniform
performance over the full detector and smaller positioning bias. Further-
more, the DOI performance was improved with neural networks mainly
due to improved positioning of scattered events. The bar phantom
measurement provides additional support of the determined detector
performance and spatial resolution at the detector centre, edges and
corners. The detector resolution using neural networks is 1.13 mm
FWHM over the whole detector and 1.02 mm FWHM without the
edges. This is expectedly exceeding the resolution of PET detectors
in the field that have a greater thickness than 16 mm [79] [82, 124].
In a recent publication of Gonzalez-Montoro [82] a remarkable detector
spatial resolution of 0.9 mm FWHM is reported with a only slightly
thinner crystal of 15 mm thickness. A notable difference is that the
spatial resolution presented in our work is not corrected for the beam
source diameter. In Gonzalez-Montoro [82] a great effort is done to
isolate the source size from the measured FWHM values leading to a
better estimate of the intrinsic spatial resolution. Other detectors that
have better spatial resolution are significantly thinner such as [79] with
1.1 mm spatial resolution at 10 mm thickness or [81] with 0.76 mm
spatial resolution at 8 mm thickness.

5.5 Conclusion

In this chapter the detector prototype construction, calibration and
performance evaluation is covered. We presented a monolithic detec-
tor design aiming to serve high-resolution clinical PET systems while
maintaining high sensitivity. The targeted detector resolution of 1.3 mm
intrinsic FWHM needed to reach a 2 mm resolution on system level (with
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bore diameter of 60-80 cm) was exceeded with a MNN algorithm and
1.13 mm FWHM, as well as with a neural network achieving 1.02 mm
FWHM. The 6-layer DOI positioning will also result in a uniform system
spatial resolution over the full FOV. In the next chapter simulations and
experiments are used to identify and analyse the most important spatial
resolution degrading factors.
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6

Main degrading factors on
spatial resolution

6.1 Introduction

In this chapter we identify and analyse the factors that have a degrading
effect on the detector spatial resolution and discuss how they can be
addressed. In the previous chapters we investigated the performance
of a simulated detector under idealized conditions and the prototype
detector in the lab. With the combination of simulations and experi-
ments we are able to understand the impact of factors that are otherwise
difficult to investigate and learn how to further improve future detector
performance. Here we focus on five factors:
Collimator beam size. In the experimental set-up a narrow calibration
beam is irradiating the detector at known 2D positions to collect the
signal of reference events. These reference events are then used to
train the positioning algorithms. However, the beam diameter has the
same magnitude as the resolution we want to obtain. The first section
therefore deals with the impact the finite calibration beam diameter has
on the obtainable resolution.
Compton scattered events. Many of the gamma particles that are de-
tected in a PET detector do not directly deposit their full energy in the
detector but first undergo one or multiple Compton scatter interactions.
The energy deposition at different locations results in an altered light
distribution that is detected by the photodetectors and has an effect on
the spatial resolution. In the second section the magnitude of this effect
is analysed using simulations.
Photon detection efficiency (PDE). To collect the optical scintillation
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light, photodetectors are coupled to the crystal. These devices cannot
collect all impinging photons because they have a limited PDE. The
lower the PDE the more noise is present in the measured signals. In the
third section we simulate different PDEs and investigate the effect on
spatial resolution.
The last two factors,

176
Lu background and collimator leak radiation, are

combined in one section since they both contribute to the background
signal.
176

Lu background. During the calibration of the detector in singles mode
one has to deal with background radiation that disturbs the quality of
the measurements. The most widely used scintillator material in PET
detectors is LSO or LYSO, both lutetium based materials. Lutetium
itself contains small amounts of radioactive

176
Lu that interfere with

the 511 keV energy peak of interest contaminating the measured signal.
In this section we analyse the

176
Lu spectrum.

Importance of collimator design. Furthermore the calibration source
that is encapsulated in a collimator made from tungsten ideally does not
allow any gamma rays to exit the housing except for the tiny beam. An
imperfect collimator design does allow gamma rays to exit the collimator
at undesired locations. In this section we analyse the collimator leak
radiation.
Finally, we present how to efficiently extract the gamma signals from
the

176
Lu background and collimator leak radiation.

The work presented in this chapter resulted in three conference contri-
butions [125–127].

6.2 Influence of collimator beam size

6.2.1 Introduction

To precisely determine the position of a gamma interaction inside a
monolithic detector, a fine calibration beam is used to obtain reference
detector signals from known x,y-positions. These reference events and
their known position can then be used to create reference data LUTs
for nearest neighbour positioning or to train neural network algorithms.
In a typical calibration set-up the calibration source is encapsulated
inside a collimator (Figure 6.1). Due to the machining of the collimator
the resulting calibration beam is not ideal, but has a certain diameter

116



6.2. Influence of collimator beam size

Figure 6.1: A drawing of the collimator. The encapsulated radioactive source
is placed inside the tungsten collimator. The beam is first collimated to 1 mm
and finally to a diameter A (0.6 or 1 mm). Between the collimator and the
housing is another ∼ 1 mm air gap to avoid a clash/interference during the
automated movement between different calibration positions.

and beam spread. This introduces a bias in the ground truth position
label. Here we examine the calibration beam size diameter as a potential
source of resolution degradation to understand and ultimately improve
the detector performance. First, we use optical simulations to produce a
perfect calibration beam and compare the resolution to a realistic beam
source. Second, we calibrate our prototype monolithic detector with a
collimator of 0.6 mm and 1.0 mm diameter, respectively. Finally, we use
deconvolution to estimate the spatial resolution without the impact of
the remaining source diameter present in the prototype calibration.
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Collimator

x

Scintillation

crystal

0.6 mm

1.02 mm

x = position point source

2
2

.5
m

m

= perfect beam source

Figure 6.2: The collimated beam is simulated as a point source at 22.5 mm
distance from the detector with an opening angle of 1.53

◦
.

6.2.2 Materials and methods

Simulation

The simulation is performed as explained in Chapter 4. For this study
we choose the same configuration as in the prototype, i.e. 8 x 8 array
of 6 x 6 mm

2
SiPMs with a 16 (8+8) channel rows and column summed

readout. The detector is calibrated in 1 mm steps, first with a perfect
perpendicular and mono-energetic 511 keV pencil beam source as in
Chapter 4, then with a source that models a 0.6 mm diameter collimator.
In the simulation this is done by a point source with an opening angle
of 1.53

◦
at a distance of 22.5 mm from the crystal surface (Figure 6.2).

For both calibration datasets the nearest neighbour positioning µ maps
are calculated. The mean and median FWHM values of the positioned
events are evaluated for the full detector and the detector 30 x 30 mm

2

center.

Four simulation scenarios are tested:

• Detector calibration with perfect beam (0.0 mm), evaluation with
same beam size.

• Detector calibration with perfect beam (0.0 mm), evaluation with
0.6 mm beam.
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• Detector calibration with 0.6 mm beam, evaluation with same
beam size.

• Detector calibration with 0.6 mm beam, evaluation with perfect
beam.

Experimental

The prototype detector described in Chapter 5 is calibrated with a
collimated

68
Ge source (69 MBq) placed in a tungsten collimator with

diameter A of 0.6 mm and 1 mm, respectively (Figure 6.4). Calibration
data is acquired in 1 mm steps for 70 s per position. In Figure 6.3 events
from the two different beam sizes are positioned with simple Anger logic.
For both calibration datasets (0.6 mm and 1 mm calibration beam) the
nearest neighbour positioning mu maps are calculated. The mean and
median FWHM values of the positioned events are evaluated for the full
detector and the detector 30 x 30 mm

2
center.

Four experimental scenarios are tested:

• Detector calibration with 0.6 mm beam, evaluation with same
beam size.

• Detector calibration with 0.6 mm beam, evaluation with 1 mm
beam.

• Detector calibration with 1.0 mm beam, evaluation with same
beam size.

• Detector calibration with 1.0 mm beam, evaluation with 0.6 mm
beam.

Estimation of real spatial resolution

To isolate the finite collimator beam size from the determined FWHM
values we apply a convolution of the beam profile. The beam profile is
assumed to be a rectangular function r of the width w of the collimator
beam. More likely the beam width is slightly broader since (as described
before) (i) there is a small gap between the crystal and collimator and
(ii) the beam has a spread. However, for simplicity we chose a rather
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pessimistic value. The rectangular function to represent the beam r(w)
has a width of w = 0.1 − 1.4 mm and height of h = 1.
For Gaussian functions g(x) with FWHM values of 0 to 1.4 mm we can
calculate

g(x) = 1

σ
√
2π

e
−(x−µ)2/2σ2

(6.1)

with mean µ = 0 and the standard deviation σ

σ =

FWHM

2 ∗ sqrt(2 ∗ log(2)) (6.2)

For each Gaussian g(x) and beam profile r(w) a convolution

gconv(x) = r ∗ g = ∫ g(τ)r(k − τ)dτ (6.3)

is performed with Matlab conv function. Finally, the FWHM value of
the resulting distribution gconv(x) is calculated.

6.2.3 Results

Simulation

When the detector is evaluated with data from a perfect calibration
beam, the detector calibration with the same source leads to a mean
spatial resolution of 0.81 mm FWHM (Table 6.1). When excluding the
edges and only looking at the central 30 x 30 mm

2
the mean spatial res-

olution is 0.61 mm FWHM. The values excluding the edges are stated in
brackets from now on. The detector calibration with a perfect calibration
source but tested with data from the source with a diameter of 0.6 mm
leads to a spatial resolution of 1.10 (0.88) mm FWHM. The calibration
with a collimated beam of 0.6 mm diameter leads to a spatial resolution
of 1.06 (0.88) mm FWHM when tested with data from the same source.
When the detector is again calibrated with a 0.6 mm source but the test
data originates from a perfect beam the spatial resolution improves to
0.78 (0.60) mm FWHM. The median FWHM values are stated in Table
6.2. For calibrations with both beam sizes a similar resolution could
be obtained when the evaluation was done with data from the same
source diameter. In Figure 6.4 the histograms of the positioned events
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Table 6.1: Mean FWHM values for the full detector 50 x 50 mm
2
(and in

brackets for the detector center 30 x 30 mm
2
) dependent on the collimator

beam size in the calibration data set and evaluation data set.

mean FWHM [mm]
Evaluation

0.0 mm 0.6 mm

Calibration
0.0 mm 0.81 (0.61) 1.10 (0.88)
0.6 mm 0.78 (0.60) 1.06 (0.88)

Table 6.2: Median FWHM values for the full detector 50 x 50 mm
2
(and

in brackets for the detector center 30 x 30 mm
2
) dependent on the collimator

beam size in the calibration data set and evaluation data set.

median FWHM [mm]
Evaluation

0.0 mm 0.6 mm

Calibration
0.0 mm 0.62 (0.56) 0.92 (0.85)
0.6 mm 0.62 (0.55) 0.93 (0.85)

from the different scenarios can be visually inspected. The resolution in
the first column (evaluation with 0.0 mm ’perfect’ beam) is superior to
the resolution in the second column (evaluation with 0.6 mm ’realistic’
beam) independent of the calibration beam size.

Experimental

The prototype detector calibration with the smaller 0.6 mm calibration
source leads to a mean spatial resolution of 1.17 (1.13) mm FWHM
(Table 6.3) when the detector is evaluated with data from the same
source. The detector calibration with the 0.6 mm calibration source but
tested with data from the source with a diameter of 1.0 mm leads to
a spatial resolution of 1.31 (1.30) mm FWHM. The calibration with a
collimated beam of 1.0 mm diameter beam leads to a spatial resolution
of 1.33 (1.31) mm FWHM when tested with data from the same source.
When the detector is again calibrated with a 1.0 mm source but the
test data originates from a 0.6 mm beam the spatial resolution improves
to 1.17 (1.16) mm FWHM. The median FWHM values are stated in
Table 6.4. Similar to the results from the simulated datasets we see
that the beam size in the evaluation dataset has a large influence on
the determined spatial resolution while the beam size in the calibration
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Table 6.3: Mean FWHM values for the full detector 50 x 50 mm
2
(and in

brackets for the detector center 30 x 30 mm
2
) dependent on the collimator

beam size in the calibration data set and evaluation data set.

mean FWHM [mm]
Evaluation

0.6 mm 1.0 mm

Calibration
0.6 mm 1.17 (1.13) 1.31 (1.30)
1.0 mm 1.17 (1.16) 1.33 (1.31)

Table 6.4: Median FWHM values for the full detector 50 x 50 mm
2
(and

in brackets for the detector center 30 x 30 mm
2
) dependent on the collimator

beam size in the calibration data set and evaluation data set.

median FWHM [mm]
Evaluation

0.6 mm 1.0 mm

Calibration
0.6 mm 1.17 (1.14) 1.30 (1.32)
1.0 mm 1.21 (1.16) 1.34 (1.31)

dataset results in comparable resolutions.

Estimation of real spatial resolution

In Figure 6.5 the convolution of Gaussian functions with rectangular
functions are shown in terms of their FWHM values. On the x-axis
the FWHM values of Gaussian distributions are plotted. On the y-axis
the FWHM values of the Gaussian distributions are plotted after the
convolution with the rectangular function. The rectangular function
represents the beam width and is represented in different colors. In
our experiments we used beam widths of 0.6 mm and 1 mm which
are the purple and green line respectively. If one now measured a
certain FWHM with a collimated beam of 0.6 mm width the graph
can indicate the spatial resolution without the influence of the beam
width. Specifically for our detector we measured a FWHM value of 1.13
mm with a beam diameter of 0.6 mm and a FWHM value of 1.30 mm
with a beam diameter of 1.0 mm. If we draw a horizontal line from
the respective measured spatial resolution to the according line with
the used beam width, we can read the spatial resolution isolated from
the effect of the beam width on the x-axis. For both beam width the
measurements indicate that the spatial resolution if it was measured
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with a perfect beam would be about 1.05 mm (see dashed black lines in
Figure 6.5).

6.2.4 Discussion and conclusion

First, the influence of the calibration beam was evaluated for simulated
data. We used (i) a perfect beam with a negligible beam diameter
and (ii) a beam that simulates a realistic collimated beam of 0.6 mm
diameter including an opening angle leading to a spread of the beam.
The detector was calibrated with both beam sizes and then evaluated
on both data sets. For clarity, the calibration data consist of events
that were acquired per calibration position and then the mean reference
signals were stored in LUTs. We found that the calibration with both
beam sizes leads to a similar mean detector spatial resolution of 0.6 mm
FWHM excluding edges (and 0.8 mm FWHM over the whole detector)
when evaluated with the ’perfect’ beam dataset. However, the resolution
significantly degrades when the detectors are evaluated with the 0.6
mm beam. In simulations the ideal calibration beam can be provided,
but in an experimental set-up it is more difficult especially when using
mechanically collimated beams.
In a second step the same tests were done experimentally using the
prototype detector. Here we used (i) a collimator with a 0.6 mm beam
and (ii) a collimator with a 1 mm beam. The detector was calibrated
with both beam sizes and then evaluated on both data sets. The cali-
bration with both beam sizes lead to 1.17 mm FWHM over the whole
detector when evaluated on the 0.6 mm beam diameter data. When the
evaluation data from the larger beam diameter is used the resolution
degrades to about 1.3 mm FWHM.
In summary, we showed that for the calibration of the detector, the
beam diameter of up to 1 mm does not have a large influence on the
obtainable resolution. A calibration with even larger beam diameters
would pose several advantages, (i) more events can be acquired in less
time or a source with lower activity can be used for calibration, (ii)
improved SNR with respect to the background radiation (cfr. Section
6.5), and (iii) easier (cheaper) collimator manufacturing. The degree to
which the collimator beam size could be increased before a degradation
of the resolution is encountered, could be investigated in simulations.
Two important conclusions can be made: 1. a smaller calibration beam
does not necessarily lead to better spatial resolution and 2. to demon-
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strate the actual detector spatial resolution it is important to provide
data from a beam as small as possible. Therefore the (measured) reso-
lution would still improve if ground truth data (with a negligible beam
diameter) would be available for testing our prototype detector in the
lab. However that does not change the actual performance that the
detector will have on system level.
Using a deconvolution of the beam width we estimate the detector spatial
resolution we could get with a perfect beam. For a 0.6 mm beam the
resolution would improve by 7% to 1.05 mm. If the test was acquired by
a 1 mm beam the introduced degradation by the beam size is already
18%. This method is a good indicator of the impact of the beam width
on the obtained resolution, however, more advanced methods to extract
the beam diameter influence from the measured source profile have been
proposed in literature. In Maas et al. [128] a model was developed to
correct for the finite diameter of the annihilation photon beam by a
PSF model consisting of two convolved component, one for the spatial
distribution of the annihilation photon energy deposition and the second
for the influences of statistical signal fluctuations and electronic noise. In
Gonzalez-Montoro [82] an isolation of the beam source was achieved by
a theoretical model to fit the measured light distributions. The model is
based on a convolution of a Gaussian shaped distribution for the detector
contribution and a modified Lorentzian distribution to account for the
collimated source profile.

124



6.2. Influence of collimator beam size

(a) 0.6 mm

(b) 1.0 mm

Figure 6.3: Anger positioned events from 2 different collimators at a central
calibration position in the detector center.
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Figure 6.4: Histogram of positioned events dependent on the calibration data
collimation beam and evaluation data collimation beam. A-B show a zoomed
area of the respective detector center.
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Figure 6.5: The FWHM of the measured distribution g(x) is plotted on the
y-axis. The colors indicate the width of the rectangular function r(w). The
resulting FWHM values of the Gaussian w(k) after a deconvolution of g(x) and
r(w).
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6.3 Influence of Compton scattered events

6.3.1 Introduction

The gamma photon interaction inside a scintillator can be a single
photoelectric interaction or involve multiple Compton interactions. In
Figure 6.6 multiple scenarios are presented. In (1) the gamma di-
rectly undergoes a photoelectric interaction and deposits all its energy
at the interaction position. In (2) the gamma photon first undergoes
a Compton scatter, depositing part of its energy at this location. It
then travels further and undergoes a photoelectric interaction deposit-
ing its remaining energy. In (3) the gamma photon undergoes two
Compton interactions and in (4) three Compton interactions before the
photoelectric interaction occurs. In (5) the Compton scatter occurs
close to the crystal edge, subsequently the gamma exits the crystal and
does not deposit all its energy inside the detector. This event can be
filtered by an energy window if the energy loss is big enough. The
fraction of Compton scattered events in monolithic crystals depends on
the detector material and energy. For LYSO the so called photofraction
is ≈ 33%. The thickness of the crystal also has an effect on the number
of Compton scattered events in a dataset. This is because the chance
that the scattered photon is captured and therefore cannot be discarded
by the applied energy window is increasing with crystal thickness. The
scattering alters the measured light distribution and therefore has an
influence on the determined interaction position. In this section we first
analyse the number of Compton scattered events at different detector
positions and their mean travel paths and second we evaluate the impact
of Compton scatter on the obtainable spatial resolution.

6.3.2 Materials and methods

The simulation is performed as explained in Chapter 4. For this study
we use the data from an 8 x 8 array of 6 x 6 mm

2
SiPMs. The signal

from 64 SiPM pixels is combined to 16 (8+8) channels by summing
rows and columns. The detector is calibrated in 1 mm steps, with a
perfect perpendicular and mono-energetic 511 keV pencil beam source
as in Chapter 4. The calibration and evaluation data is energy-filtered
i.e. scattered events that have not deposited their full energy inside the
crystal are discarded. The information on the gamma 3D interaction
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Figure 6.6: Interaction scenarios: (1) photoelectric interaction, (2) Compton
scatter + photoelectric interaction, (3) two and (4) three Compton interactions
+ photoelectric interaction, (5) Compton interaction before gamma exits
crystal.

position and interaction process are saved from the simulations. The
nearest neighbour positioning mu maps are calculated as described in
Section 4.2.2.

Compton statistics

From the energy-filtered dataset the number of photoelectric and Comp-
ton interactions per event is determined for three calibration positions:
(i) in the very center of the detector, (ii) 1 mm from the corner of
the crystal and (iii) 1 mm from the edge of the crystal in between two
corners.
Further the scatter distances between the first interaction and the sec-
ond interaction are determined in x,y, and z direction for the center
position. This is either the scatter distance between a Compton and a
photoelectric interaction or between two Compton interactions.

Simulation study on Compton scatter

2000 events are positioned for each calibration position across the whole
detector for three scenarios. The evaluation data includes:

• scattered and non-scattered events.

• only events that have not scattered.

• only events that scattered once or multiple times.
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Table 6.5: Scatter distances [mm] between the first and second gamma
interaction and the first and third gamma interaction.

scatter distance between
1st and 2nd interaction

scatter distance between
1st and 3rd interaction

mean median mean median
x - direction 2.21 1.19 3.36 2.18
y - direction 2.06 1.12 3.24 2.11
z - direction 2.67 1.68 3.43 2.39

The mean and median FWHM values of the positioned events are
evaluated for the full detector and the 30 x 30 mm

2
center.

6.3.3 Results

Compton statistics

When irradiating the crystal with a perpendicular beam at the center
of the detector the number of 511 keV gammas that are undergoing
an immediate photoelectric interaction is 39.7% (Figure 6.7). 37.9%
of the gammas undergo one Compton interaction before releasing their
rest energy with a photoelectric interaction. The rest of the gammas,
22.4%, undergo at least two and up to six Compton interactions. The
distribution shifts when evaluating at the very edge of the crystal. In
that situation the number of 511 keV gammas that are immediately
undergoing a photoelectric interaction is 50.8% while 33% of the gammas
undergo one Compton interaction. At the corner this effect is enhanced
to 58% without Compton interactions. At the edges and corners a
gamma particle is more likely to exit the crystal after scattering, result-
ing in a lower energy deposition. This allows us to exclude these events
from the dataset and explains the higher fraction of non-scattered events
in Figure 6.7.
The mean scatter distance (Figure 6.8) between the first Compton in-
teraction and next interaction (either Compton or photoelectric) is 2.21
and 2.06 mm in x and y direction, respectively (Table 6.5). The mean
scatter distance in z direction is 2.67 mm. The mean distance between
the first Compton interaction and the third interaction increases to 3.36
mm in x, 3.24 mm in y and 3.43 mm in z direction.
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Figure 6.7: Relative number of Compton interactions per gamma event for
three different calibration positions. This graph only includes events that fall
into the energy window that means they have deposited their full energy in the
crystal. ’0’ Compton interactions means that the gamma event did not scatter.

Simulation study on Compton scatter

The determined mean spatial resolution for the full detector including
scattered and non-scattered events is 0.81 mm FWHM for the full detec-
tor and 0.61 mm excluding the edges (Table 6.6). To determine the effect
of Compton scattering, only the non-scattered events are positioned
leading to a mean spatial resolution of 0.71 mm and 0.56 mm for the
center. On the contrary, the evaluation of only scattered events results
in FWHM values of 1.20 mm and 0.92 mm for the center. In Figure
6.9 the effect of Compton scatter on the positioning performance can be
visually evaluated.

6.3.4 Discussion and conclusion

In this section the positioning performance is evaluated with respect to
the presence of Compton scattered interactions in the crystal. Events
that directly undergo a photoelectric interaction can be positioned more
accurately. The gamma energy is converted into scintillation light at one
single position which simplifies the corresponding light spread function
and the positioning with the MNN algorithm. When only photoelectric
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Table 6.6: Mean and median FWHM values for the full detector 50 x 50 mm
2

and the detector center 30 x 30 mm
2
for a) scattered and non-scattered events

b) only non-scattered events and c) only scattered events.

FWHM [mm] full detector 50 x 50 mm
2

center 30 x 30 mm
2

a) mean 0.81 0.61
median 0.62 0.56

b) mean 0.71 0.56
median 0.56 0.50

c) mean 1.20 0.92
median 1.04 0.89

events are present the resolution is 12% better over the full detector
and 9% excluding the edges (compared to scatter+non-scatter). The
scattered events can be scattered once or multiple times in the detec-
tor. The energy deposition occurs subsequently at multiple locations.
The effect on the light spread function that is measured can be small
when the final photoelectric interaction is in very close proximity and
occurs in the line of the irradiation beam with only a small lateral shift
with respect to the incidence angle. However, the light distribution of
many scattered events is altered, leading to a shift of the peak of the
light distribution. This negatively affects the positioning performance
of the MNN algorithm. When only positioning scattered events the
FWHM degrades by 32.5% and 33.7% excluding the edges (compared
to scatter+non-scatter). When positioning all events (i.e. scatter+non-
scatter) the differences in FWHM compared to only non-scatter is 9-
12%, however, scattered events contribute especially to the tails of the
PSFs rather than affecting the FWHM values [100]. Therefore it is of
great relevance to be able to position scattered events more accurately.
In collaboration with Decuyper et al. [129] a scatter determination
network was trained on simulated data to detect the distance events
have scattered. Those events that exceed a certain scatter threshold
can then be removed from the dataset and improve the positioning
accuracy of the remaining events. In Section 7.3 of the next chapter
this scatter determination network trained on simulation data is applied
to our prototype detector.
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Figure 6.8: Histogram of the gamma scatter distance [mm] in x, y and z
direction. This histogram does not include non-scattered events. The z -
direction considers forward scatter from 0 to 16 mm as well as backward scatter
from 0 to -16 mm.
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a)

b)

c)

Figure 6.9: Histograms of positioned events a) scattered and non-scattered
events b) only non-scattered events and c) only scattered events. a) is the
combination of b) and c).
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6.4 Photon detection efficiency (PDE)

6.4.1 Introduction

The scintillation light generated by the high energy gamma ray is typi-
cally extracted on one side of the crystal block by a photodetector array.
The most common type of photodetectors are SiPMs. The sensitivity,
or the probability that an impinging optical photon is detected by a
SiPM, is called the PDE. As discussed in 3.5.2, the PDE is dependent
on the quantum efficiency of silicon, the applied voltage and the fill
factor. Currently SiPMs have PDEs up to 60% [10]. In Chapter 4 the
PDEs of 35%, 50% and 75% were simulated. In this section we study in
more detail the influence of the noise introduced by lower PDEs.

6.4.2 Materials and methods

The GATE simulations performed in Chapter 4 initially use a detection
efficiency of 75%. According to the binomial selection theorem, a bi-
nomial selection of a Poisson distribution yields a Poisson distribution,
which can be fully characterized by its mean [130]. In a post-processing
step, the photons per pixel can thus be re-sampled to obtain a PDE of
50% and 35%, respectively. The 2D resolution is determined for PDEs
of 35% and 50% and compared to 75% PDE. The dependency between
photon wavelength and detection efficiency is not modelled. The spatial
resolution is obtained by positioning 2,000 events per calibration position
in the central 10 x 10 mm

2
of the detector. The PSFs are measured in

terms of FWHM (Gaussian fit) in horizontal and vertical direction and
presented as an average of all profiles. The positioning bias is defined as
the distance between the real X, Y - position and the calculated position.
The FWHM, the mean positioning bias and the median bias for all
events are calculated for pixel sizes 3 mm and 6 mm, with individual
and combined channel readout, and with PDEs of 35%, 50% and 75%.

6.4.3 Results

In Table 6.7 the determined spatial resolution is presented dependent on
three PDE values and different SiPM readout schemes. For a 16 channel
- combined row and column - readout the FWHM worsens from 0.48 mm
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Figure 6.10: The detector spatial resolution in terms of FWHM and its
dependency on the SiPM PDE.
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Figure 6.11: Positioning performance of the monolithic detector design. The
estimated event positions are presented in 2D histograms dependent on different
SiPM pixel sizes, PDEs and number of readout channels. The center region 10
x 10 mm

2
of the detector is evaluated.
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Table 6.7: FWHM (mm) dependent on the PDE and readout channels.

PDE
Readout
channels

35% 50% 75%

16 0.66 0.56 0.48
64 0.64 0.55 0.48
32 0.52 0.47 0.42
256 0.48 0.44 0.4

FWHM at 75% to 0.56 mm at 50% and 0.66 mm at 35%. The single
channel readout with 64 channels leads to similar FWHM values: 0.48,
0.55 and 0.64 mm. For 3 mm pixels and a corresponding - combined row
and column - 32 channel readout the FWHM values are 0.42, 0.47 and
0.52 FWHM. For the single channel 256 readout the values are slightly
better: 0.4, 0.44 and 0.48 mm FWHM. In Figure 6.10 one can see the
relatively small degradation introduced by summing row and columns
while it is also visible that PDE has a larger effect on the larger pixel size
(6 mm) than the smaller pixels (3 mm). Figure 6.11 shows histograms
of estimated event positions for all scenarios. Increasing PDE visibly
improves spatial resolution and reduces positioning bias. For 6 mm
pixel size the high intensity spots (artefacts), arranged in a square-like
pattern, are prominent, as well as the accumulation of events in the
central region of the evaluated area. The effect of channel reduction is
hardly visible.

6.4.4 Discussion and conclusion

In this section we analysed the influence of different PDEs on the obtain-
able spatial resolution. We found that the spatial resolution is strongly
dependent on the PDE. Depending on the readout scheme the PDE
reduction of 75% to 35% led to a resolution degradation of 16% - 30%.
An improvement of SiPM PDEs would improve the spatial resolution
due to higher signal-to-noise ratios. A similar effect would be obtained
when a scintillator with a higher light yield could be used.
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6.5 Influence of background radiation

6.5.1 Introduction

During the calibration of the detector in singles mode one has to deal
with two kinds of background radiation that disturb the quality of the
measurements. Here we analyse this background radiation which is the
intrinsic

176
Lu radiation of the scintillator and the events triggered by

the gammas that exit the collimator housing due to insufficient attenu-
ation thickness.

6.5.2
176

Lu radiation

Lutetium based scintillators, like LSO and LYSO, are the most widely
used ones in PET today. Their properties make them very suitable for
the detection of 511 keV gamma rays. The Lutetium contains 2.6%
of

176
Lu which decays naturally and generates a background signal in

the detectors. The resulting spectrum coincides with the photopeak
energies that are relevant in PET scans (Figure 6.12 a)). While during
a PET scan the coincidence principle most of the time reliably distin-
guishes between a gamma coincidence and single background events, the
background becomes a problem when performing measurements with the
detectors in singles mode. This is the case when calibrating the detectors
with a collimator. The challenge lies then in the filtering of background
events to extract the calibration signal.
In Figure 6.12 a) the background signal is measured with our prototype
detector and the events are positioned with simple Anger logic and
presented in a 2D histogram. The distribution is uniform with an
accumulation of events at each SiPM pixel center. The accumulation
of events at single image pixels is due to the limited light spread of
events that occur deep in the crystal, close to the SiPM array. The
edge region (around 3 mm on each side) is depleted and the events
are positioned more towards the center which can be described as a
shadow between the first and second hotspot. The corresponding energy
spectrum is presented in Figure 6.12 b). It consists of 3 characteristic
peaks and a long tail towards the higher energies. The decay of

176
Lu is

a combination of a continuous beta decay leading to the long tail of up
to 597 keV and a discrete energy deposition by multiple gamma decays
which are 88, 202 and 307 keV (Figure 6.13). During the beta-decay
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Figure 6.12: a) Histogram of positioned events of
176

Lu background

measurement. b) Corresponding
176

Lu energy spectrum with indicated region
of where the 511 keV photopeak would be expected.

an electron and an anti-neutrino are emitted. The beta spectrum is
continuous because the energy is shared between the electron and the
anti-neutrino. The electron deposits its energy inside the crystal while
the anti-neutrino rarely interacts with matter. The combination of the
continuous beta spectrum and the discrete gamma energies leads to the
characteristic Lutetium spectrum. In Figure 6.14 a) the different energy
combinations and in b) the resulting spectra are shown for a smaller and
a larger crystal.

6.5.3 Importance of collimator design

To calibrate the monolithic detector a collimated beam is stepped over
the detector. The measured signals per position are stored. The colli-
mator itself does not produce a perfect calibration beam. We already
discussed the beam diameter and spread in a previous section, however,
there is also leak radiation present that generates signals at undesired
detector locations. In Figure 6.15 a) the detector is irradiated in the
crystal center. The source is shielded with at least 60 mm tungsten
and only a very small fraction of gamma rays can pass the collimator
to reach the detector. In Figure 6.15 b) an edge calibration position is
sketched. As indicated with the arrows, here a part of the detector is
exposed to gamma rays that could pass an only 40 mm tungsten shield
which is expectedly a larger fraction of gamma rays. In Figure 6.15 c) an
edge calibration position for a smaller crystal is shown. Smaller crystals
suffer less from the effect of collimator leak radiation because they cover
a smaller solid angle.
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Figure 6.13: Decay scheme of
176

Lu [123].

a)

b)

Figure 6.14: a) The energy spectra contributions for each of the gamma beta

decay combinations for a smaller crystal geometry 1 x 1 x 1 cm
3
and a larger

crystal geometry 5.74 x 5.74 x 1 cm
3
. b) The individual contributions summed

to a single spectrum. Figure adapted from [123].
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a) b)a) c)

Figure 6.15: a) Travel path of gamma rays in collimator at central calibration
position. The absorbing material provides a minimal shielding of around 60
mm tungsten (indicated by red arrows). b) At an edge calibration position

using a 50 x 50 mm
2
scintillation crystal the minimal shielding decreases to

around 40 mm. c) In a smaller crystal 25 x 25 mm
2
the minimal shielding is

60 mm even at edge calibration positions.

In Figure 6.16 the effect can be seen demonstrated with a BGO crys-
tal. BGO is a scintillator with similar properties than LYSO but does
not contain the radioactive

176
Lu, hence no background radiation is

expected. In a) the BGO crystal is irradiated at an edge position.
One can clearly see the large signal detected at the opposite side of the
detector. The more the calibration position is located in the detector
center, as seen in b) and c), the less strong is the detected signal from
collimator leak radiation. Experiments with additional shielding led to
a reduction (elimination) of this effect.

6.5.4 Extraction from background

The combined effect from
176

Lu background and collimator leak radi-
ation can be seen in Figure 6.18 a). Due to the small collimator hole
the signal-to-background ratio is quite low and it becomes necessary
to filter the data to extract the relevant event signal. Especially for
the edge calibration positions the highest signal in the histogram is
not necessarily the region of interest. In Figure 6.18 b) many events
that correspond to hotspots are filtered, to be able to automatically
determine the calibration source position. In order to distinguish these
events one can calculate, for each event, the standard deviation over all
16 readout channels (see flowchart in Figure 6.17). The fraction with
the largest standard deviations are then removed from the dataset. In
our case 20% led to an Anger histogram that allows a reliable distinction
between background and source position. From the most intense pixel
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Collimated

beam

Collimated

beam

Collimated

beam

a) b) c)

Figure 6.16: BGO crystal of 50 x 50 mm
2

without
176

Lu background
irradiated at 3 different positions. 2D histograms of events positioned with
Anger logic. a) The beam is positioned at the top right corner. The strong
signal in the lower left corner is caused by collimator leak radiation. In b) and
c) the beam is positioned more in the center of the detector. A less strong
signal is detected at the corners.
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Figure 6.17: The flowchart depicts how to obtain a filtered Anger histogram
that allows the determination of the beam source position. S1 to SN are the
event signals each consisting of 16 channels ch1 to ch16. For each event the
standard deviation std1 to stdN over the 16 channels is calculated. The events
are sorted accordingly and a fraction (here 20%) of events is removed from the
dataset.

in this figure a circular ROI is drawn, here of 37 pixels. The determined
’true’ pixels (d)) are then extracted from the original image c). A too
small selected ROI has a better SNR (includes less background signal)
but also cuts off some events that are scattered. A too large selected
ROI includes a lot of background events that are not representing the
true signal from the calibration beam. For the training of the positioning
algorithms it is valid to draw a ROI and exclude a number of scattered
events, however, for the evaluation of the detector it would not be valid
to exclude scattered events. For the evaluation the data is simply energy
filtered and no ROI filter is applied.
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a)

c)

b)

d)

Figure 6.18: a) Unfiltered Anger positioned 2D histogram including
176

Lu
background events, collimator leak events and events from the calibration
beam. b) The filtered histogram after removing events with high standard
deviations. c) The original histogram excluding the ROI and d) only the
selected ROI.

6.5.5 Discussion and conclusion

The calibration procedure with a collimated beam in singles mode in-
volves some challenges, one of them being the contamination of the
dataset with not-relevant signals from the scintillator intrinsic radiation
and partially insufficient shielding of the calibration source.

176
Lu back-

ground and collimator leak radiation make up a large fraction of the
detected signal and need to be isolated from the set of reference signals
in order to obtain the most reliable position labels for the training of
the positioning algorithms. Here we analysed the contribution of both
factors to the pre-positioning histograms and the energy spectra. By
automated algorithms that first find the true beam position in the Anger
positioned histograms and then extract the events that are positioned
in a defined ROI one can obtain useful reference data. In conclusion,
only with the automated selection of accurate ROIs and understanding
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of the energy spectra it is possible to generate reference data sets that
lead to the best spatial resolution.

6.6 Summary and final conclusion

In this section we identified and analysed factors that have an impact
on the spatial resolution. The discussed factors are the collimator beam
size, the impact of Compton scattered events, the PDE of SiPMs and the
background radiation of the detector when operated in singles mode.
Both simulation and experimental results showed that a beam size in
the order of 0.6 and 1 mm does not significantly degrade the obtainable
detector spatial resolution. A beam size of 0.6 mm or 1 mm is not a
barrier to calibrate a detector with a high resolution of around 1 mm.
From the test data to evaluate the detector outside the system the beam
size needs to be taken into account. Here we showed that the beam size
of 0.6 mm will degrade the measured resolution by 7% and a beam size
of 1 mm will degrade the measured resolution by 21%. Implemented in a
clinical system both detectors would show similar performance though.
That means that beam size is not degrading the spatial resolution when
the detector is implemented in a system. To estimate the real spatial
resolution of the detector, which is only possible with ground truth
position data from a perfect beam, we deconvolved the PSF with a
rectangular function of the width of the collimated beam of 0.6 mm. The
spatial resolution of 1.13 measured with the MNN algorithm improved
to 1.05 mm after the deconvolution. In conclusion, the beam size does
not need to be improved, the influence of the beam size on the actual
detector performance is small. Quite the contrary, a larger beam size
can be advantageous to some extent as the SNR improves.
Compton scattered events make a large fraction of the detected events
and significantly degrade the detector spatial resolution. In simulations
we tested the effect on spatial resolution and found that when only
photoelectric events are present the resolution improves by 12%, and
when only scattered events are present the resolution degrades by 32.5%.
The resolution here was measured at FWHM, but foremost the scattered
events are present in the tails of the PSF. In Section 7.3 of the next
chapter a scatter determination network trained on simulation data is
applied to our prototype detector.
The SiPMs low PDE introduces noise in the detector which degrades the
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spatial resolution significantly. The simulation study showed a resolution
degradation of up to 30% when PDE dropped from 75% to 35%. In the
experimental setting the SiPMs have an estimated PDE of 50%. There
is additional noise introduced by the electronic readout which is difficult
to determine. It is likely that the noise present in the prototype detector
is slightly higher than what is simulated. A value between 35% and 50%
is probable. A SiPM PDE improvement to 60% can further improve the
detector performance but higher PDEs are currently not existing and
available by any supplier. A higher scintillator light yield would have a
similar positive impact on the spatial resolution.
The last section discusses the impact of the background radiation when
operating a detector in singles mode. The impact of

176
Lu and leak radi-

ation from non-perfect collimator design were discussed and an efficient
method to extract the valuable signals from the background by several
filters was explained. On system level the detectors that are calibrated
in singles mode can achieve very high resolution when one is aware of
the background and the prior filtering steps are done properly.
In conclusion, by analysing and evaluating each factor separately one can
evaluate the magnitude of the degradation and whether it is possible or
necessary to improve the factor. This work was published in the form
of several conference contributions.
In the next chapter we will train algorithms on simulated detector data
and apply them directly to the prototype detector. On the one hand,
to simplify or eliminate the need to do a physical detector calibration.
On the other hand, to reduce the degrading effect of Compton scattered
events by training an algorithm that can identify the events with the
largest scatter distances.
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7

Simulated data applied to
real detectors

7.1 Introduction

Throughout this thesis it has been shown that optical simulations are a
great tool to support the PET detector development. Be it the predic-
tion of detector performance metrics or the identification and analysis of
degrading effects. Taking it a step further, we will now determine if we
can use the simulated detector data and directly apply it to the training
and positioning of the real detector.
In the first section we use the calibration maps generated by simulations
to serve as reference data to position events of the prototype detector.
The lengthy calibration is one of the major factors holding back the
implementation of monolithic detectors in clinical PET scanners. A
calibration based on simulated reference data could potentially allow an
elimination of these lengthy measurements.
In the second section we want to tackle the degrading effect that Comp-
ton scattered events have on the spatial resolution. For the construction
of a LOR only the first interaction position of the gamma ray in the
detector is relevant. A scattered event with multiple interactions inside
the crystal often leads to a distorted light distribution and an inaccurate
position estimation (cfr. Section 6.3). Compton scatter is a factor that
significantly degrades spatial resolution in monolithic PET detectors.
Nevertheless, they are not treated differently as photoelectric events,
probably because it is very difficult to distinguish between scattered and
non-scattered events in experimental set-ups. To improve the position-
ing of Compton scattered events we assume that the interaction position
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of far-scattered events are most difficult for the algorithms to position.
Far-scattered means, the distance between the first and last interaction
position is large. Therefore scintillation light is emitted ’far’ from the
first interaction position which leads to a more distorted light distribu-
tion for ’far’ scattered events. Subsequently a detection and elimination
of the farthest scattered events should lead to an improvement of the
overall resolution.
In the thesis of Decuyper [129] a neural network was trained based on
simulated data to distinguish the scatter distance from the detected light
distribution. While Decuyper applied the network to simulated data, we
apply it to the real detector. In conclusion, we want to determine the
scatter distance of real events and evaluate if an improvement of the
resolution can be achieved.

7.2 Detector calibration with simulations

7.2.1 Introduction

Statistical event positioning methods require light distribution profiles
along with the 2D interaction position. As has been mentioned several
times throughout this work, this requires a lengthy calibration process
that scans the crystal in a narrow grid. Several methods have been pro-
posed to avoid acquiring the calibration datasets. One can for example
use theoretical models that describe the light distribution, use detector
uniformity flood maps, or use simulations [69, 73, 131–135]. In Li et
al. [134] several analytical solid angle models were used to describe the
relation between the gamma interaction position and the photodetector
signal. The internal reflections at side and top surfaces are modelled
using virtual mirrored sources outside the crystal. From these virtual
sources the solid angles can be drawn that arise from the reflected rays.
From the model the 3D coordinates can then be estimated using non-
linear least square fitting. The models were applied to experimental
data and achieved a spatial resolution of 1.4 mm FWHM in a 20 x 20 x
10 mm

3
LSO crystal. This method was further developed by Extebeste

et al. [136] to test its performance for different reflective materials. The
results show that for reflectors that are not fully specular, but more
diffuse, it is better to limit the influence of internal reflections in the
model especially towards the detector edges. Here a FWHM of 1.2 mm
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was measured for a 10 mm thick white painted LYSO crystal. The
authors repeat the importance of modelling the type of reflections at the
crystal edges properly and that it strongly depends on the interaction
position inside the crystal. Later this work was extended to tapered
crystal geometries leading to spatial resolution of 1-1.5 mm FWHM using
12.25 mm thick crystals [135].
To create realistic light distributions of monolithic crystals analytically
or with simulations requires the exact knowledge of the reflection prob-
abilities and reflection directions of the reflected optical photons. To
describe this analytically is very difficult since the reflections are complex
and the conditions change at every location in the crystal. Often there
are multiple reflectors used and also the reflections at the photodetector
readout surface should not be forgotten.
Optical simulations of monolithic detectors are able to track each optical
photon and decide at each interface whether the photon is reflected or
not, and in which direction. These decisions are based on LUTs that
are calculated including measured surface data of the crystal, refractive
indices and reflection probabilities (of crystal surface and reflector).
Subsequently a light distribution can be generated that is very close
to the real distribution. The reader is referred to Section 3.8.3 to find
more details on surface reflection models. Optical simulations have
gone through some fundamental changes in the last years, like (i) the
availability of more accurate surface reflection models, and (ii) the high
computing power that is needed to run these simulations, for example
computer clusters.
Here we use the calibration maps generated by optical simulations from
Chapter 4 to serve as reference data to position events of the prototype
detector.

7.2.2 Materials and methods

Spatial resolution estimation

The simulated detector calibration and the corresponding calibration
data LUTs as described in Chapter 4 are used to position events from
the prototype detector. The simulated calibration data LUTs were gen-
erated with a perfectly collimated beam. They consist of a 16 channel,
summed row and column readout which is also the readout scheme of the
prototype detector. We simulated three different PDEs: 35%, 50%, and
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75%. The calibration data LUTs with PDE 35% were selected for this
study as the prototypes SiPM PDE (ON Semiconductor MicroFJ-60035-
TSV) is around 50% and the electronics introduce additional noise.
When simply comparing a subset of mean detector signals between the
simulated and experimental data a good fit could be observed (Figure
7.1). Identical to Section 5.2.3, 30000 energy-filtered events per position
without ROI selection were positioned with the MNN algorithm. The
performance is evaluated based on two parameters: FWHM and 1D/2D-
bias (cfr. Section 5.2.5).
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Figure 7.1: Mean calibration signals from simulation (blue) and experimental
calibration data (red) from a subset of calibration position starting with
position 1177 corresponding to row 23 and column 1 of a 49 x 49 calibration
grid. The following signals are presented in 5 mm intervals along row 23. The
readout channels 1 to 8 correspond to rows and 9 to 16 correspond to columns.
The error indicates the peak shift due to the beam moving along one row. The
peak position for the column is constant.
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DOI estimation

Each of the reference events belongs to a certain depth-layer defined
by the signal variance and therefore DOI of the event. To evaluate the
DOI estimation the predicted relative number of events in each of those
layers is compared to (i) the theoretical number of events that we expect
by the attenuation of the crystal according to Beer-Lambert Law and
(ii) the results we previously obtained from positioning the same events
with calibration maps of the actual detector.

Bar phantom

Additional to the analysis of the point spread function, the four-quadrant
bar phantom gives a more visual impression on the detector performance.
With this phantom the spatial resolution of the detector can be assessed
by its capability to resolve adjacent bars. The methods are identical to
those in Section 5.2.5 except that all events are positioned with simulated
calibration data LUTs. The most important methodological steps are
repeated below.
Recorded events are filtered with an energy window of 20% and po-
sitioned with the MNN algorithm. The flood source histograms are
generated as in Section 5.2.5 except the positioning is done with the
simulated calibration data LUTs. The bar phantom histograms are
then normalized with the flood source histograms. The line profiles
are summed per quadrant and the peak-to-valley ratios are determined
to calculate the MTF values.

7.2.3 Results

Spatial resolution estimation

The estimated mean and median spatial resolution of the prototype
detector when using completely simulated calibration maps is stated in
Table 7.1 sim-exp. For the full detector the estimated resolution is 1.38
mm and 1.28 mm for the detector center. The median FWHM values
for the full detector are 1.34 mm and 1.28 mm for the detector center.
The mean and median bias values are 0.48 mm and 0.46 mm for the full
detector and 0.2 mm and 0.23 mm for the detector center. The resulting
mean 2D bias is 0.76 mm and 0.35 mm for the center. For reference the
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Table 7.1: Performance parameters when using simulated calibration maps
to position experimental data.

MNN exp-exp MNN sim-exp

50 x 50 mm
2 30 x 30 mm

2

center
50 x 50 mm

2 30 x 30 mm
2

center

FWHM mean 1.17 1.13 1.38 1.28
FWHM median 1.17 1.14 1.34 1.27
Bias x mean 0.37 0.14 0.48 0.2
Bias y mean 0.37 0.16 0.46 0.23
2D Bias 0.59 0.26 0.76 0.35

results from a calibration with experimental data (cfr. Chapter 5 are
also stated in Table 7.1 exp-exp. The resolution per calibration position
is plotted in Figure 7.2. The bias is indicated as arrows.

DOI estimation

The DOI estimation is presented in Figure 7.3. The theoretical distri-
bution and distribution obtained by positioning the experimental data
with experimentally acquired calibration LUTs have already been shown
in Section 5.3.2 and are shown here as a reference. The distribution ob-
tained by positioning the experimental data with simulated calibration
LUTs leads to 28.6% of events in layer 1, 20.6% in layer 2, 14.2% in
layer 3, 10.8% in layer 4, 11%, in layer 5, and 14.8% in layer 6.

Bar phantom

The bar phantom plots are shown in Figure 7.4. In a) the measured data
is positioned with experimentally acquired data (result from Chapter 5)
and in b) positioned with simulated calibration maps. In terms of bar-
distiguishability both bar phantom histograms allow the separation of
bar widths down to the smallest bar pattern of 0.6 mm. The bars are less
uniform and more noisy in a) compared to b). The quantitative analysis
of the bars is shown in Figure 7.5. The red lines represent the summed
line profiles of the bar phantom positioned with the simulated calibra-
tions maps and the black lines the one positioned with the experimental
calibration maps. For both, the peaks can be distinguished easily for
all bar widths. Only towards the detector edges the distinguishability
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lowers. The positioning with simulated calibration maps is indeed less
uniform as already visually inspected in Figure 7.4. Finally, in Figure 7.6
the MTF is calculated from the peak-to-valley ratios. For all bar widths
the simulated calibration maps lead to a significant degradation of 2.8%,
4.0%, 2.3%, 0.26% for the largest to smallest bar pattern, respectively.
The relative degradation is 15.2%, 32.7%, 37.4%, and 9.8%.

7.2.4 Discussion and conclusion

The aim of this study is the performance evaluation of the experimental
data using simulated calibration maps. Even though we did not adapt
the simulated data for any SiPM gains or detector non-uniformities the
channel values for the mean events from simulation and experiments
show a close correlation. The obtained spatial resolution show a res-
olution degradation of 11.7% in the detector center and 15.2% over
the whole detector compared to the results from Chapter 5 that are
based on experimental detector calibration. The overall bias increases
by 27%. Comparing to Figure 5.7 especially the bias at the edges is
noticeable. This might be a sign for inaccurate modelling of the black
painted and rough crystal walls. At these detector locations the number
of reflections is much larger than in the rest of the detector, therefore
accurate modelling is more important. Rough surfaces in general show a
larger variation in micro-facet distribution than polished surfaces. Thus,
the modelling is more likely to be inaccurate when using a random
rough surface model for the representation of a rough surface from a
different crystal and vendor. The Davis LUT reflection model used
in this study provides surface models based on measured polished and
rough surfaces. An implementation of a rough surface model based on
measured data from the specific crystal provider could lead to more
accurate modelling. Furthermore, the black paint simulation model has
been developed specifically for our study and has not been validated
experimentally. It assumes that all photons interacting with the reflector
material are absorbed. In reality, the black paint is probably not 100%
absorbing and additionally between the crystal surface and the black
paint there are probably air inclusions leading to a lower refractive index
and higher reflection probability. The number of absorbed photons at
the detector edges might be overestimated. To improve these results one
should (i) re-evaluate the modelling of the detector edges or (ii) develop a
detector with surfaces that are easier to model, such as polished surfaces
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with more common reflectors like Teflon or ESR. However, the remaining
spatial resolution is still in a range that allows a 2 mm system resolution
in a system with a diameter as large as 80 cm (cfr. Figure 2.9).
The bar phantom histogram supports the results obtained from the PSF
analysis. The bars can be distinguished down to the 0.8 mm profile
with more than 5% contrast. FWHM value is calculated as the smallest
resolvable bar times 1.4-2 [5]. Thus the bar phantom measurement shows
a detector resolution of 1.12-1.6 mm FWHM. The increased positioning
bias is visible in this measurement. An adaptation of the channel gain
or similar procedures could be applied in the future to account for non-
uniformities.
To our knowledge no published work exists that has calibrated mono-
lithic detectors solely on simulated data and achieved this high resolu-
tion.
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a)

b)

exp-exp

sim-exp

Figure 7.2: Spatial resolution as FWHM [mm] for the detector prototype that
is calibrated a) on experimental data and b) entirely on simulated data.
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Figure 7.3: DOI performance of the detector prototype that is calibrated on
simulated data. As a reference the DOI performance for a detector calibrated
on experimental data is plotted and the theoretical (expected) values per depth
layer.
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w = 1.2 mm w = 1.0 mm

w = 0.8 mmw = 0.6 mm

a)
exp-exp

b)
w = 1.2 mm w = 1.0 mm

w = 0.8 mmw = 0.6 mm

sim-exp

Figure 7.4: Bar phantom measurements a) calibration data is acquired
experimentally and b) calibration data is simulated.
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Figure 7.5: Quantitative evaluation of the bar phantom. Line profiles
per quadrant are summed and plotted for bar phantom calibrated with
experimental (black) and simulated data (red).

Figure 7.6: MTF values in terms of spatial frequency of the bar phantom for
experimental (black) and simulated data (red).
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7.3 Scatter distance estimation network

7.3.1 Introduction

In Section 6.3 the influence of Compton scattered events was evaluated
based on simulated data. The results showed that scattered events lead
to a major degradation of the spatial resolution. In experiments it is very
difficult or impossible to investigate the effect of scatter. The simulations
allow us to collect the ground truth interaction positions of each gamma
photon individually.
These data allowed us to investigate the training of neural network to
identify Compton scatter and process them with different positioning
networks. While it was difficult to improve positioning performance by
specifically training algorithms on scattered data, it was shown that the
overall detector performance could be improved by discarding events
that have a large 3D scatter distance and therefore a large positioning
error (Figure 7.7). Following up on that idea, an algorithm was trained
that can determine the scatter distances between the first and last
interaction position in the crystal [127, 129] . With the scatter distance
one can then set a threshold (depending on the application) to define
how many events are removed from the dataset. Applied to simulated
detector data we were able to estimate the scatter distance of gamma
rays especially for far scattered events. The removal of 5% of the far-
scattered events improved the 3D positioning distance by 9%, a removal
of 10% lead to an improvement of 18%. In experiments it is not possible
to train networks the same way because there is no information on
3D scatter positions available. Here we apply the network trained on
simulated data to experimental data.

7.3.2 Materials and methods

The training data is the same as used in Chapter 4. The trained network
architecture can be seen in Figure 7.8 and is the same as described
in Section 5.2.4 i.e. three hidden layers of 256 neurons with leaky
ReLU activation. The inputs are the 16 channel signals from all 49
x 49 detector calibration positions. The output and ground truth labels
are the 3D scatter distances. 40% of the events in the data-set are not-
scattered and due to the perpendicular incidence angle of the calibration
beam most of the scattered events are forward scattered events with
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Figure 7.7: The positioning performance is investigated as a function of the
3D scatter distance of the gamma and the removal of those events with the
largest scatter distances [129].

a light distribution that resembles that of a non-scattered event. To
avoid that the network is overestimating the number of non-scattered
events it is only exposed to the scattered data. The network is trained
on 1000 events per calibration position using the AdamW optimisation
algorithm, mini-batch size of 256 events, MSE loss and L2 weight decay
set to 0.01. One epoch is defined as an iteration over 240,100 events,
randomly sampled with replacement from the entire training set. The
initial learning rate was set to 0.001 and halved every 10 epochs that
the validation loss did not improve. Early stopping was applied after 60
epochs without improvement. The network was implemented in PyTorch
and trained on a MacBook Pro with a 2.8 GHz Quad-Core Intel i7 CPU.
The described methods above are partially adapted from [129] where this
network is first described.

Bar phantom

Theoretically, to test the scatter distance estimation network one would
produce data with ’ground truth scatter distance’ - labels and then
determine how well the network can reproduce these values. Since it is
not possible to obtain ground truth information on the scatter distance
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Figure 7.8: Scatter distance estimation network.

from experimental set-ups, the evaluation is done with the bar phantom
measurement. The hypothesis is that if the far-scattered events are
removed successfully, the contrast should improve in the bar phantom
measurement.
The bar phantom data is evaluated by the scatter distance estimation
network. A fraction of the far-scattered events are removed from the
datasets i.e. 10%, 20%, and 40%. The same procedure is applied to
the uniformity histograms. The bar phantom plot is normalized by the
uniformity measurement. The bar phantom evaluation is done as in
Section 5.2.5.

7.3.3 Results

In Figure 7.9 the bar phantom images are presented. The respective
fraction of removed ’far-scattered’ events is stated below each image.
Visually it is difficult to find differences, however, when focussing on
the upper left quadrant with the largest bars and comparing Figure
7.9 a) to d), then one can clearly see an improved contrast. For the
quantitative evaluation of the contrast we use the peak-to-valley values
of the summed line profiles and calculate the resulting MTFs (Figure
7.10). The smallest spatial frequency 0.83 mm

−1
corresponds to the bar

width of 1.2 mm. The MTF contrast values are 21.5% initially, without
removing any scattered events. The removal of 10%, 20% and 40% of
the farthest scattered events determined by the neural network lead to
an improvement of the contrast to 22.7%, 23.6% and 26.1%. This is a
relative improvement of 6%, 9% and 18%.
For the largest spatial frequency 1.67 mm

−1
(0.6 mm bar width) the

MTF contrast values are 2.8% initially, without removing any scattered
events. The removal of 10%, 20% and 40% of the farthest scattered
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-20% scattered events removed

-10% scattered events removed0% scattered events removed

-40% scattered events removed

a) b)

c) d)

Figure 7.9: Scatter distance estimation network applied to the bar phantom
measurement. Several scatter distance thresholds are applied. In a) no events
are removed, in b) 10% of the determined farthest scattered events are removed,
in c) 20% are removed, in d) 40% are removed.

events determined by the neural network lead to an improvement of the
contrast to 3.2%, 3.4% and 3.9%. This is a relative improvement of
12.5%, 17.6% and 28.2%.

7.3.4 Discussion and conclusion

In this section we applied a scatter distance estimation network trained
on simulated data to experimental datasets. Since it is impossible to
acquire ground truth scatter distance data the algorithm is evaluated
on the bar phantom measurements. An improved contrast indicates
that the scatter distance determination is meaningful in the sense that
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Figure 7.10: MTF values in terms of spatial frequency of the bar phantom.

events can be sorted correctly according to their scatter distance, even
though the absolute distance metric is probably not reliable. The results
show that when 10% of the farthest scattered events are removed from
the dataset the contrast can be improved by 6% for the 1.2 mm bar
width and 18% for the 0.6 mm bars. When up to 40% of the farthest
scattered events are removed the contrast can be improved by 12.5%
for the 1.2 mm bar width and 28% for the 0.6 mm bars. This is a
drastic improvement that indicates that far scatter distances degrade
the resolution drastically and that it is possible to filter these events.
However, one has to trade the resolution improvement for sensitivity
which for coincidence measurements are introducing a squared loss since
always two detected gammas are necessary to form a LOR.

7.4 Summary and final conclusion

In this chapter we used the simulated detector data to directly apply it
to the training of the actual detector. In the first section we test which
spatial resolution we can retain when using the simulated calibration
data to position events from the prototype detector. The obtained
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spatial resolution is 1.38 mm FWHM over the whole detector and 1.28
mm in the detector center. This is a degradation of 15.2% and 11.7%
respectively. The bias increased by 27% being strongly linked to the
degradation at the detector edges. The increased bias might be related
to an inaccuracy of the reflection modelling of the black painted crystal
sides. Future research to improve these results should be focused on
a re-investigation of the reflection and absorption properties of black
paint or consider a scintillation crystal surface treatment that is easier
to model. The obtained resolution is degraded but still in the range to
obtain a 2 mm system spatial resolution in a system with a diameter as
large as 80 cm.
In the second section of this chapter we use the advantages of simulations
that can provide ground truth information of all interactions of each
single gamma ray along its trajectory. With this information we can
train a network to estimate the scatter distance of the gamma ray and
subsequently allow the user to exclude far-scattered events from the
dataset. We used the bar phantom measurement to evaluate whether
the contrast improves when removing certain amounts of far-scattered
events. The results showed us that removing only 10% of the farthest
scattered events leads to an improvement of 6% to 18% depending on
the bar pattern width. Further reduction of far-scattered events to
40% improves the contrast by 12.5% and up to 28%. Even though
this improvement can only be achieved trading for sensitivity, there are
applications where the count rate is sufficiently high to trade it for spatial
resolution.
In conclusion, the developed optical model for our monolithic detector
and the performed optical simulations provide a realistic representation
of the true detector. The simulated calibration maps can provide a
high spatial resolution and the scatter distance estimation network can
further improve the resolution.
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8

Conclusions and future
perspectives

8.1 Summary

The purpose of this dissertation was to study the ultimate spatial resolu-
tion that can be obtained from a thick monolithic detector for the use in
clinical PET applications. First, we investigated the expected detector
performance in an optical simulation study. Then, we focussed on the
construction of a prototype detector and design of a calibration set-up.
During this process we encountered several challenges and could identify
important degrading factors that influence the spatial resolution. The
combination of comprehensive simulations and lab experiments allowed
us to analyse these critical factors and understand the ultimate effect
on the detector performance on system level. Finally, we applied the
simulated data directly to the real detector. In first instance, to replace
the lengthy detector calibration procedure and secondly, to improve
positioning of scattered events.
In Chapter 2 and 3 we build the basis to grasp the principles of PET and
gamma ray detectors. To understand our motivation to use monolithic
detectors for clinical PET one needs to understand the physics behind
a PET scan and the factors that fundamentally limit PET system reso-
lution. We calculated that in a system of 65 cm diameter and using

18
F

as a tracer, the detector spatial resolution must be about 1.3 mm to not
be a significant degrading factor for the system resolution. The system
resolution is then close to the physics imposed limit which is around 2
mm. The 2 mm are attributed mainly to the system diameter and non-
collinearity of the gamma propagation, while the positron range has a
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smaller influence. Additionally, a detector with DOI capability helps to
maintain spatial resolution over the whole FOV, radially as well as axi-
ally. Considering these conditions, the monolithic detectors can provide
much higher intrinsic spatial resolution than pixelated detectors while
not loosing other important performance metrics such as sensitivity and
energy resolution. In terms of timing resolution pixelated detectors
are still superior, however, the unrestricted movement of scintillation
photons with a direct travel path to the photodetector makes monolithic
crystals fundamentally superior to be used for timing measurements.
In monoliths DOI can be extracted from the measured light distribu-
tion. On the contrary to provide high spatial resolution with pixelated
detectors, the scintillation crystals need to be finely segmented. This
leads to a large loss of sensitivity since the reflective material between
the segments introduces dead space. The sensitivity loss is squared
in PET scanners since always two gamma rays are needed to detect
one LOR. Further, the manufacturing becomes very expensive, more
expensive compared to monolithic detectors when requesting arrays of
segmented crystals below 2 mm width. The high number of reflections
per scintillation photon in a thin long pixelated crystal, leads to a loss
of these photons and worse light collection efficiency. Less collected
light photons lead to lower SNRs and worse energy resolution. Also, the
more reflections the longer it takes to collect all light. DOI capability
is usually only available at the cost of additional hardware or more
complex detector design, such as double-ended readout or phoswhich.
In summary, the monolithic detector is more suitable to provide high
overall performance when high spatial resolution is desired.
In Chapter 4 simulations are used to investigate the detector perfor-
mance of our monolithic detector design under idealised and controlled
circumstances. We study several hardware-related parameters that are
difficult to study or cannot be studied in depth in experimental set-ups.
An optical simulation study of a 50 x 50 x 16 mm

3
LYSO crystal with

SiPM readout is performed. The event positioning algorithm is a MNN
algorithm. The indicated 2D spatial resolution of the detector is 0.4-0.66
mm FWHM in the detector center. A clear advantage is a smaller pixel
size (here tested 3 mm and 6 mm) and also a higher PDE. Reducing the
number of readout channels by a factor of 4, however, had no significant
impact on the resolution. The performance slightly degrades towards
the edges. The DOI could be estimated with an accuracy of 72% and a
mean absolute positioning error of 1.6 mm.
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In Chapter 5 we build and evaluate the prototype detector which has 6
x 6 mm

2
pixels that are summed in rows and columns to a 16-channel

readout. The obtained mean spatial resolution is 1.13 mm FWHM with
small degradations towards the edges. The evaluation was extended to
a second positioning algorithm based on neural networks. This trained
network achieved a more uniform resolution and smaller bias. The mean
spatial resolution is 1.02 mm. The aim to reach 1.3 mm intrinsic spatial
resolution was exceeded by both algorithms. As mentioned above, this
intrinsic spatial resolution will not impose degradation to the system
spatial resolution in clinical PET scanners. DOI capability was enabled
and implemented for both algorithms by a layer approach which will
result in a nearly uniform system spatial resolution over the full FOV.
The detector energy resolution is around 11% (comparable to pixelated
detectors) allowing a reliable distinction between scattered and non-
scattered events.
The simulations in Chapter 4 and the prototype development in Chap-
ter 5 allowed us to identify many factors that have an effect on the
spatial resolution. In Chapter 6 we use the combination of both, to
further investigate those factors. First, the impact of the beam size
is investigated. In our calibration set-up we can only collimate the
beam to a diameter of 0.6 mm. In simulations and experiments we
investigated two questions: 1. How do the slightly shifted gamma
interaction positions affect the calibration and training of the detector?
2. How does it affect the detector evaluation? Both, simulations and
experiments, confirmed that a 0.6 mm and a 1 mm beam size allows the
calibration and training of a detector with comparable high resolution.
The MNN and neural network results are not negatively impacted by the
slightly spread gamma interaction positions. However, for the detector
evaluation the non-perfect calibration beam has a negative effect that
needs to be taken into account. For this purpose the beam diameter
can be isolated with a deconvolution. For our prototype detector this
resulted in a improvement from 1.17 mm to 1.05 mm when the beam
width of 0.6 mm was deconvolved from the measured PSFs.
The second degrading factor is the impact of Compton scattered events.
More than half of the detected events have scattered once or multiple
times resulting in an altered light distribution. In a simulation study we
found that the resolution in terms of FWHM would improve by 9-12%
when excluding scattered events (i.e. sensitivity loss of 50-60%). When
only positioning scattered events we do see a resolution degradation of

169



Chapter 8. Conclusions and future perspectives

more than 32%. Scattered events impact not only the FWHM metric
but also the tails are broadened by scattered events. Compton scattered
events have a significant influence on the detector spatial resolution. We
investigate in the Chapter 8 whether it is possible to improve positioning
of Compton scattered events.
As a third degrading factor we investigated the SiPM PDE. It is defined
as the probability that a single photon is detected when impinging on
the SiPM surface. Current SiPM PDEs range between 35% and 60%. In
simulations a PDE reduction of 75% to 35% led to a resolution degrada-
tion of 16-30% depending on the size of SiPMs and the number of readout
channels. We conclude that higher PDEs improve the SNR and are a
major contributor to better spatial resolution detectors. Unfortunately
PDEs higher than 60% are currently not existing and available by any
supplier. The SiPM PDE is however expected to improve further in the
future. Also the introduction of scintillators with higher light yield and
hence, more photons per energy unit deposited in the detector, would
have a similar positive effect.
The fourth degrading factor is the background radiation. A detector
calibration in singles mode suffers from a strong background signal, i.e. a
detection of events that are not 511 keV gamma photons originating from
our calibration beam. First of all, there is the intrinsic
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of the Lutetium-based scintillation crystal. It introduces a background
signal with a complex energy spectrum covering the gamma photopeak.
The amount of background radiation increases with detector volume.
Secondly, the collimator does not provide sufficient attenuation thickness
so that, at large solid angles, more gammas from the calibration source
can exit the collimator housing. Potentially the radiation from both
sources contaminate the calibration data. Here we presented effective
methods to filter relevant calibration events from background. With
these methods we can train high resolution detectors even when a large
background signal is present during calibration.
We presented four important degrading factors in this chapter. The
individual consideration of each degrading factor allows us to identify
the origin and quantify the magnitude of the degradation.
In Chapter 8 we use the simulated detector data to directly apply it to
the training of the actual detector.
The main drawback of monolithic detectors is the need for a calibration
that requires a dedicated lab set-up and often a separate calibration
for each detector. If the calibration procedure could be replaced by
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simulated calibration data the actual calibration could be avoided. Ad-
ditionally, simulations provide ideal conditions, such as a perfect cali-
bration beam, no intrinsic detector activity, and provide ground truth
information on DOI and scatter interactions.
First, we test which spatial resolution we can retain when using the sim-
ulated calibration data to position events from the prototype detector.
The obtained spatial resolution is 1.28 mm with a degradation towards
the edges. Compared to the experimental calibration this is a degrada-
tion of 11.7%. The overall bias increased by 27% mostly attributed to the
detector edges. The increased bias might be related to an inaccuracy
of the reflection modelling of the black painted crystal sides. Future
research to improve these results should be focused on a re-investigation
of the reflection and absorption properties of black paint or consider a
scintillation crystal surface treatment that is easier to model (cfr. next
section ’Future research’). The obtained resolution is slightly degraded
but still within the range to obtain a 2 mm system spatial resolution
in a system with a diameter as large as 80 cm. This preliminary study
provides promising results for the role of optical simulation studies and
to potentially replace the cumbersome calibration procedure.
In the second section of this chapter we use the advantage that simula-
tions can provide ground truth information on all interactions of each
single gamma ray along its trajectory. With this information we can
train a network to estimate the gamma scatter distances and subse-
quently allow the user to exclude far-scattered events from the dataset.
We used the bar phantom measurement to evaluate whether the contrast
improves when removing certain amounts of far-scattered events. The
results demonstrated that removing only 10% of the farthest scattered
events leads to an improvement of the MTF by 6-18% depending on
the bar pattern width. Further reduction of far-scattered events to
40% improves the contrast by 12.5 and up to 28%. Even though this
improvement can only be achieved by trading in sensitivity, there are
several applications where the count statistics are sufficiently high.

8.2 Future research

Based on the results of this dissertation, a number of future research
topics are discussed in this section.
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In terms of further improving spatial resolution we showed that very
high intrinsic 2D spatial resolution can be obtained with the presented
methods. Even at the very edges of the detector only relatively small
degradations were present. A further 2D resolution improvement would
not necessarily be advantageous on system level since there are other
dominating factors, such as the non-collinearity and positron range.
However, improved resolution could be traded for other degrading fac-
tors like (i) using a thicker scintillator, (ii) less calibration data or coarser
calibration grid (ii) larger SiPM pixel size or (iii) less readout channels.
An important research topic in the future is the implementation of mean-
ingful evaluation standards for the spatial resolution estimation across
different research institutes. The variability of the methods makes it very
difficult to compare the performance of different detectors, restraining
the progress in the field. The differences are introduced by: (i) the
calibration beam size and the method that is used to correct for it, (ii)
the energy or position filtering of the data, (iii) the evaluated region
of the detector (centre, edge, corner, line on one axis), (iv) the PSF
evaluation (directly measuring FWHM or first fitting a function to the
PSF), (v) type of fitted function (Gaussian, fitted to peak or complete
PSF?) (vi) DOI evaluation (by side irradiation or ’expected events per
layer’) etc. The list can be further extended. Instead of evaluating
PSFs, the measurement of a standardised bar phantom as it is first used
in this dissertation could be useful. A measurement standard on how
to use the phantom could be implemented. The phantom allows the
estimation of the spatial resolution across the whole detector with a
single measurement and also shows the detector linearity.
Even more challenging than 2D resolution evaluation is the DOI perfor-
mance estimation. Experimental DOI settings using a side irradiation
are highly impractical. While it is a reasonable measurement in thin
pixelated detectors, the side irradiation in monolithic crystals has two
major disadvantages (i) most events are interacting close to the crystal
edge and (ii) Compton scatter are dependent on the incidence angle and
therefore the side irradiation introduces light distributions that are not
representative, nor realistic. An important future step might therefore
be the training of DOI with neural networks and simulated data for real
detectors.
While this thesis led to several design indications aiming at high spatial
resolution, one should carefully consider whether or not the detector
should also be optimized for TOF measurement. TOF is an important
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feature for large bore systems. It reduces the statistical uncertainty
of the annihilation position estimation along the LOR and therefore
improves the SNR. From our experience the design indications for high
spatial resolution and high CTR can be conflicting. The factors we are
aware of are the crystal coating, the pixel size and the readout scheme.
Crystal coating. On the one hand, black crystal coating reduces the
photon reflections on the crystal sides and therefore helps to retain
the event’s light distribution. On the other hand we know that the
light collection over multiple photodetector pixels already results in low
SNR. The black coating further reduces the SNR and thus limits the
achievable timing performance. To obtain better CTR polished surfaces
with reflective coating would be more effective.
SiPM pixel size. Larger SiPM pixels provide better SNRs because more
photons per area are detected. This is an advantage for CTR but not
for spatial resolution. However this was concluded from simulations
that only took into account PDE and pixel size, no other electronic
specifications.
Readout. A summed row and column readout is a design advantage
in terms of spatial resolution. The readout cost are much lower but
the resolution does not degrade significantly. For CTR, however, the
summed signal is a disadvantage because it inherently introduces some
degree of uncertainty in the time-stamping of the event.
A future research topic should be the determination of an equilibrium
between spatial resolution and CTR.
Since a major drawback of monolithic detectors is the lengthy calibra-
tion, effort should be made to reduce the work and time spent on it.
Especially the strongly collimated beam in singles mode combined with
a thick Lutetium-based scintillator, that has high intrinsic radioactivity,
leads to a challenging calibration procedure. Other groups focus on
better and faster calibrations in coincidence mode, and by using a slit
collimator. Resulting from this thesis, it is the logical next step, to
further investigate the use of optical simulations to speed up detector cal-
ibration. As a major step towards better calibration with simulated data
we see the accurate modelling of the reflective surfaces in the detector.
The use of surfaces that are easy to characterise, can be an important
step. As a rule of thumb, polished surfaces are more predictable as the
surface facet distribution has a smaller variability. Polished surfaces
may be problematic at the edges since the large fraction of reflected
photons shifts the light distribution. As a result the interaction position
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estimation becomes more difficult to solve. A reinvestigation of polished
sides with our neural network positioning algorithms might be successful.
Furthermore, at this point the ’black paint’-model has not been validated
for simulations which should be done in the future. Another option
is simply switching to validated surface reflector models like, Teflon
or ESR. A tool to ease the optical simulation workflow in Gate for
monolithic detector calibration could be useful for the community. A list
of input parameters would include: crystal material, crystal geometry,
crystal surface treatment and reflector, SiPM pixel size, SiPM PDE,
calibration grid size, events per calibration position.

8.3 Final conclusion

This dissertation demonstrated that monolithic detectors, with sufficient
thickness for clinical PET applications, can provide very high intrinsic
spatial resolution, approaching the fundamental spatial resolution limits
of PET. Using optical simulation models we were able to grasp the
factors that are limiting the intrinsic detector resolution and improve the
hardware and software design of the prototype detector. Furthermore
the development of an advanced simulation model demonstrated the
potential of directly applying simulated data to improve monolithic
detectors. The combination of high intrinsic spatial resolution with
efficient calibration methods and good timing performance, can lead
the way for monolithic detectors to be the detector of choice in future
PET systems.
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