






Nederlandse abstract

D e laatste decennia is de niet-lineaire fotonica steeds meer in de belangstelling komen
te staan. Dit is te danken aan de uitvinding van de laser en het eerste experimentele

bewijs van een niet-lineair optisch proces in 1961 door Peter Franken en zijn team. Niet-
lineaire fotonica heeft bewezen nuttig te zijn voor een groot aantal toepassingen. Het
wordt vooral gebruikt voor frequentieomzetting en spectrale verbreding. Deze effecten
worden nog steeds onderzocht met het oog op een beter begrip dat kan leiden tot nog
efficiëntere processen en nieuwe technologische vooruitgang.
Bovendien heeft de opkomst van gëıntegreerde fotonica een positieve invloed gehad op de
niet-lineaire fotonica. Dankzij de hoge mate van opsluiting van het licht in structuren
van een micrometer of zelfs een tiental nanometer, is de efficïentie van de niet-lineaire
fotonica blijven toenemen. Hierdoor is het mogelijk om centimeters grote platforms te
verkrijgen waarvoor vroeger een hele laboratoriumtafel nodig was. In dit verband zijn ook
andere vorderingen gemaakt. Golfgeleiders met laag verlies zijn ook ontwikkeld en ver-
leggen momenteel nieuwe grenzen. De ontwerpen worden ingenieuzer en gesofisticeerder
om gëıntegreerde componenten te ontwikkelen zoals interferometers, mode-converters, res-
onatoren en nog veel meer.
Gëıntegreerde fotonica en niet-lineaire fotonica is geschikte combinatie voor golfleng-
teomzetting, spectroscopie, modulatie en nog veel meer. Voor onderzoekers was het dus
niet meer dan een evidentie om deze twee aspecten samen te brengen. Eén onderwerp dat
nog steeds aandacht behoeft, en dat sinds het begin de aandacht van de wetenschappelijke
gemeenschap heeft gehouden, is het proces van tweede harmonische generatie.
Tweede harmonische generatie is experimenteel bewezen in 1961 door Peter Franken

en zijn team. Niettemin heeft dit proces nog steeds voordelen voor de gemeenschap en
kent het vele toepassingen zoals biologische beeldvorming of korte pulsmetingen.
Het is in deze context dat dit doctoraat plaatsvindt. Voor een beter begrip van dit
specifieke niet-lineaire proces in gëıntegreerde platforms, zullen we in dit proefschrift de
eigenschappen van het tweede harmonische generatieproces bekijken in het geval van sterk
begrensde elektromagnetische golven. Voor deze studie richten we ons op een bepaalde
legering van elementen die III-V materialen zijn. Dit zijn materialen die, voor sommige
ervan, een goede tweede orde niet-lineaire susceptibiliteit vertonen, alsook een CMOS
compatibiliteit. De eigenschappen die van belang zijn voor deze doctoraalscriptie zullen
in dit proefschrift worden uitgewerkt.
Voor een goed begrip van het onderwerp, begint deze dissertatie met een presentatie
van concepten over niet-lineaire optica. De nadruk zal liggen op tweede harmonische
generatie, maar voor een beter overzicht worden ook andere tweede orde niet-lineaire
effecten gepresenteerd, evenals derde orde niet-lineaire effecten. Gëıntegreerde fotonica
wordt voorgesteld. De bijzonderheid van een sterk begrensd licht dat in een golfgeleider
reist, zal in detail worden besproken. Niet-lineaire optica en gëıntegreerde optica worden
vervolgens met elkaar in verband gebracht en er wordt speciale aandacht besteed aan het
proces van tweede harmonische generatie in gëıntegreerde structuren. Hierna volgt een
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presentatie van III-V materialen. De eigenschappen van deze materialen worden in dit
deel besproken. Verbanden tussen deze materiaaleigenschappen en de eerste delen worden
gelegd om nauwkeuriger op het onderwerp in te gaan. Verschillende fabricageprocessen die
worden gebruikt om III-V-platforms te ontwerpen, worden ook in dit deel gepresenteerd.
Dit is nodig om het fabricageproces te begrijpen dat is gebruikt voor de bestudeerde
structuren.
Tenslotte worden de resultaten gepresenteerd die zijn verkregen in twee verschillende
soorten structuren. Elk van deze twee structuren wordt eerst voorgesteld met een bepaald
model om het proces van tweede harmonische generatie dat erin optreedt te begrijpen.
Vervolgens worden numerieke simulaties uitgevoerd rond het ontwikkelde model en tenslotte
worden de experimentele resultaten gepresenteerd en vergeleken met de resultaten van de
simulaties. De twee structuren die in dit werk zijn gebruikt zijn de nanogolfgeleirders en
de nanoringen.
De nanogolfgeleiders zijn eerst gebruikt om tweede harmonische generatie te bereiken

in indium gallium fosfide via modale faseovereenstemming. Details over het gebruikte fab-
ricageproces worden gegeven voor dit soort structuren met dit specifieke III-V-materiaal.
Verschillende typen faseovereenstemming zijn hier gebruikt in nanodraden: het type I en
het type II. De verschillen in het opwekkingsproces tussen deze twee worden toegelicht,
evenals het verschil in efficïentie en de afmetingen van de golfgeleider die nodig zijn om
de efficiëntie te verhogen. De experimenten die in deze structuren zijn uitgevoerd, hebben
het mogelijk gemaakt de omzettingsefficiëntie te meten van de pomp naar de tweede har-
monische voor beide types van fase-afstemming. De verschillen tussen de theoretische
simulaties en de experimentele resultaten in dit deel worden verklaard en helpen om de
beperkingen te begrijpen die bij dergelijke experimenten kunnen optreden, zoals bijvoor-
beeld het fabricageproces.
De nanoringen zijn vervolgens bestudeerd. Er wordt een uiteenzetting gegeven van de
eigenschappen van dergelijke structuren die het belang ervan verklaren. Deze structuur
maakt een hogere omzettingsefficïentie mogelijk dan nanogolfgeleiders, doordat het licht
verschillende keren rond loopt maakt voordat het de ring verlaat en dus meerdere malen
met het medium interageert. Voor dit type structuur is een ander III-V-materiaal ge-
bruikt: galliumfosfide. Het specifieke fabricageproces voor dit materiaal en de nanoringen
wordt gepresenteerd. Na de presentatie van het model wordt nagegaan aan welke voor-
waarden moet worden voldaan om een tweede harmonische in een dergelijke structuur op
te wekken door gebruik te maken van quasifase-matching. De eerste verkregen resultaten
zijn veelbelovend, maar er is meer werk nodig, met name op dit gebied.
Zoals we kunnen zien, is dit proefschrift een compleet project voor de studie van het

tweede harmonische generatie-effect. Het bevat delen over de ontwikkeling van numerieke
modellen, simulaties rond deze modellen aangepast aan het materiaal in kwestie, fab-
ricage van de structuren volgens het ontwerp gevonden tijdens de simulaties en die de
beste resultaten bieden in overeenstemming met het gewenste resultaat. Tenslotte wor-
den de structuren getest op een experimentele proefbank en vergeleken met de resultaten
verkregen uit de modellen en simulaties.
Als conclusie, kan worden gesteld dat het in deze dissertatie gepresenteerde werk tot doel
heeft een beter begrip te krijgen van het bijzondere tweede orde niet-lineaire effect dat
tweede harmonische generatie is in sterk begrensde structuren van III-V materiaal. Het is
ook mogelijk om de modellen die in dit proefschrift worden beschreven aan te passen aan
andere soorten materialen, omdat dit afhangt van de symmetrie van het gebruikte kristal.
Twee verschillende structuren worden gepresenteerd. De verkregen resultaten bieden een
numerieke benadering van de tweede harmonische generatie in opgesloten structuren en
geven inzicht in de beperkingen in deze specifieke structuur.
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English abstract

F or the last decades, nonlinear photonics has gained more and more interest over
the years. This is thanks to the invention of the laser and the first experimental

proof of nonlinear optical process in 1961 by Peter Franken and his team that nonlinear
photonics has never stopped attracting the attention of researchers. Nonlinear photonics
has proven to be useful for a lot of applications. It is mainly used when it comes to
frequency conversion and spectral broadening. These effects are still under the research
world scope for a better understanding that could lead to even more efficient processes
and new technological advances.
In addition, the emerging of integrated photonics has had a positive impact on nonlinear
photonics. Indeed, due to the high confinement of the light inside micrometer, and even
nanometer, structures, the efficiency of the nonlinear photonics effects has never stopped
increasing since. It allows obtaining in centimetres size platforms that required a whole
laboratory bench before. Other advances have also been done in this context. Low-loss
waveguides are also developed and break new limits currently. The designs become more
ingenious and sophisticated to develop integrated components such as interferometers,
mode converters, resonators, and much more.
Integrated photonics and nonlinear photonics are truly a great combination for wave-
length conversion, spectroscopy, modulation, and much more. So, it was only obvious to
researchers to join these two aspects. And one topic that still needs attention, and has
kept the attention of the scientific community since its beginning, is the second harmonic
generation process.
As we said, second harmonic generation has been experimentally proved in 1961 by

Peter Franken and his team. Nevertheless, this process still benefits the community and
has a lot of applications as biological imaging or short pulse measurement. And I think
that this process still requires a better understanding and an in-depth study of integrated
platforms.
This is in this context that this PhD takes place. For a better understanding of this par-
ticular nonlinear process in integrated platforms, we will see in this thesis the properties
of the second harmonic generation process in the case of strongly confined electromagnetic
waves. For this study, we focus on a particular alloy of elements that are III-V materials.
These are materials that present, for some of them, a good second order nonlinear sus-
ceptibility as well as CMOS compatibility. There are different alloys possible, every one
of them has its particularities. The characteristics of interest for this PhD matter will be
developed in this thesis.
For a good comprehension of the topic, this thesis starts with a presentation of concepts
about nonlinear optics. The focus will be on second harmonic generation, but other
second-order nonlinear effects are presented for a better overview, as well as third-order
nonlinear effects. Integrated photonics is presented. The particularity of a strongly con-
fined light travelling inside a waveguide will be detailed. Nonlinear optics and integrated
optics are then linked together and special attention to second harmonic generation pro-
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cess in integrated structures is given. A presentation of III-V materials is following. The
properties of these materials are discussed in this part. Links between these materials’
properties and the first parts are made to be more accurate on the topic. Several fab-
rication processes used to conceive III-V platforms are also presented in this part. This
is required to understand the fabrication process that has been used for the structures
studied.
Finally, presentations of the results obtained in two different kinds of structures are made.
Each of these two structures is first presented with a particular model to understand the
second harmonic generation process that occurs in it. Numerical simulations are thus
performed around the model developed and, finally, experimental results are presented
and compared to the results from the simulations. The two structures that have been
used in this work are the nanowires and the nanorings.
The nanowires have first been used to achieve second harmonic generation in indium

gallium phosphide via modal phase matching. Details for the fabrication process used are
given for those kinds of structures with this particular III-V material. Different types of
phase matching have been used in nanowires here: type I and type II. The differences
in the generation process between these two are explained, as well as their efficiency
difference and the waveguide dimensions requirements to increase the efficiency. The
experiments performed in these structures allowed to measure the conversion efficiency
from the pump to the second harmonic for both types of phase matching. The differences
observed between the theoretical simulations and the experimental results in this part
are explained and help to understand the limitations that can be encountered in such
experiments such as the fabrication process for instance.
The nanorings have then been studied. It is a widely used structure in neural networks or
lasers, for instance. A presentation of the properties of such structures explaining their
interest is made. Briefly, this structure allows higher conversion efficiency, compared to
nanowires, since the light makes several roundtrips before exiting the ring and so interact
several times with the medium. For this type of structure, another III-V material has been
used: gallium phosphide. The particular fabrication process involved for this material and
the nanorings is presented. After presenting the model, we see which conditions to fulfil
to generate second harmonic in such a structure by using quasi-phase matching. The first
results obtained are really promising, but more work is required on this topic in particular.
As we can see, this thesis is a complete project for the study of the second harmonic

generation effect. It contains parts on numerical model development, simulations around
these models adapted to the material of concern, fabrication of the structures according
to the design found during the simulations, and which offer the best results in agreement
with the result wanted. Finally, the structures are being tested on an experimental bench
and compared to the results obtained from the models and simulations.
To conclude, the work presented in this thesis aims to a better understanding of the
particular second-order nonlinear effect that is second harmonic generation in strongly
confined structures made of III-V material. It is also possible to adapt models exposed in
this thesis to different kinds of material, as it depends on the symmetry of the crystal used.
Two different structures are presented. The results obtained offer a numerical approach
to the second harmonic generation in confined structures and bring an understanding of
the limitations in this particular structure.

iv



Acknowledgements

I never knew that I will end up in a PhD study. Even up to the master degree level.
I think I just met some peoples on my way that offer me opportunities to pursue my
studies. This last step, the thesis, has been one of the biggest of all.
For this, I want to thank François Leo for the opportunity to work on this project. I also
want to express my gratitude to my supervisors, Simon-Pierre Gorza for his patience and
the time spend to answer my questions, and Bart Kuyken for the answers and interesting
thoughts brought. All three of us offer me their time and knowledge, and I’m grateful for
this. I also thank Marc Haelterman for his interest in the topic and the progress.
I want to thank all people from both research groups, past and present: OPERA and
PRG. Thank you for the sympathetic company, the funny times, and also the critical
thoughts on my subject. I am grateful to Fabrice Raineri, a member of the C2N group in
Paris, for the reception when I went to visit them for the fabrication of the chips. I also
thank them for the incredible technical knowledge that they have and shared with me.
I am particularly grateful to Maximilien Billet for always offering his help and granting
it when it was needed. I also thank Carlos Mas Arabi for the enlightenment he brought
me about theoretical aspects.
I thank Ibtissame Malouli, Alexandra Peereboom, and David Houssart for their adminis-
trative support.
I want to particularly thank Michael Fita Codina for all the tools he made for me and
the time spent on it to offer the best quality possible. I also thank him for everything else
that makes him a colleague, but also an excellent friend.
I also want to thank all my friends for their nice company and encouragement.
Finally, I want to thank my family for their moral support. And, most importantly, I
want to thank my girlfriend and my daughter. My girlfriend for her incredible support
and help and especially during the period of thesis writing. My daughter, although, for
a one-year-old child, not very understanding of the importance of the writing part of the
thesis, offers me the prettiest and most recomforting smiles.

v



Contents

Nederlandse abstract i

English abstract iii

Acknowledgements v

List of figures viii

List of tables xi

1 Introduction 1

1.1 Nonlinear photonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Basics principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Second-order nonlinear effects . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Third-order nonlinear effects . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Integrated photonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Interest and impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Light propagation in integrated structures . . . . . . . . . . . . . . 11

1.2.2.1 Slab waveguide study . . . . . . . . . . . . . . . . . . . . 11
1.2.2.2 Buried waveguide study . . . . . . . . . . . . . . . . . . . 13

1.2.3 Nonlinear photonics in integrated platforms . . . . . . . . . . . . . 17
1.2.4 SHG in integrated platforms . . . . . . . . . . . . . . . . . . . . . . 20

2 III-V integrated photonics 28

2.1 III-V materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 State of the art on III-V materials . . . . . . . . . . . . . . . . . . . 29
2.1.2 Optical properties of III-V materials . . . . . . . . . . . . . . . . . 31

2.2 Integration of III-V materials . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Material deposition on a substrate . . . . . . . . . . . . . . . . . . . 36

2.2.1.1 Epitaxy process . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1.2 Chemical vapour deposition . . . . . . . . . . . . . . . . . 37
2.2.1.3 Physical deposition . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Patterning of the III-V . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2.1 Ultraviolet lithography . . . . . . . . . . . . . . . . . . . . 41
2.2.2.2 Electron-beam lithography . . . . . . . . . . . . . . . . . . 42

2.2.3 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Second harmonic generation in III-V nanowires 55

3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 InGaP as a platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Linear properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



3.2.2 Nonlinear properties . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 SHG in InGaP nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1.1 Type I second harmonic generation model . . . . . . . . . 59
3.3.1.2 Type I second harmonic generation nonlinear coefficient

calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1.3 Type II second harmonic generation case . . . . . . . . . . 61

3.3.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2.1 Type I second harmonic generation . . . . . . . . . . . . . 62
3.3.2.2 Type II second harmonic generation . . . . . . . . . . . . 67

3.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.3.1 Type I second harmonic generation . . . . . . . . . . . . . 74
3.3.3.2 Type II second harmonic generation . . . . . . . . . . . . 78
3.3.3.3 Summary of the results . . . . . . . . . . . . . . . . . . . 81

3.4 AlGaAs as a nonlinear platform . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.2 Fabrication process particularities . . . . . . . . . . . . . . . . . . . 84
3.4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Second harmonic generation in III-V nanorings 94

4.1 Nanorings theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.1 Nanorings fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.2 SHG in III-V nanorings . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 GaP as a platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Properties of GaP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.3.1 Impact of the chip temperature and the angle of the optical
fibre for the injection . . . . . . . . . . . . . . . . . . . . . 104

4.2.3.2 Multimodal transmission and thermal effects . . . . . . . . 106
4.2.3.3 Research of the two quasi-phase matching points . . . . . 108

5 Conclusion and perspectives 116

vii



List of Figures

1.1 Representation of the sum-frequency generation effect . . . . . . . . . . . . 3
1.2 Second harmonic power as a function of the detuning and second harmonic

amplitude during the propagation in a medium for different wavelength
detunings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Representation of type I and type II phase-matching case . . . . . . . . . . 6
1.4 Schematic of the quasi-phase-matching process . . . . . . . . . . . . . . . . 7
1.5 Self-phase modulation impact on a gaussian shaped beam . . . . . . . . . . 8
1.6 Photonics integrated circuits applications . . . . . . . . . . . . . . . . . . . 10
1.7 Rectangular waveguides profile geometry . . . . . . . . . . . . . . . . . . . 11
1.8 Asymmetric slab waveguide representation with the refractive index profile 12
1.9 Schematic of the propagation of two different modes in a waveguide . . . . 13
1.10 All electric fields components of a mode in a rectangular waveguide . . . . 14
1.11 Modes components of different modes to see the symmetry link between

the different components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.12 Some modes profiles possible in a rectangular waveguide . . . . . . . . . . 17
1.13 Modal refractive indices for different modes in a rectangular waveguide . . 18
1.14 Optical frequency comb representation . . . . . . . . . . . . . . . . . . . . 19
1.15 Optical event horizon in a nonlinear waveguide . . . . . . . . . . . . . . . . 19
1.16 Optical frequency comb referencing via the second harmonic generation . . 20

2.1 Periodic table of the elements . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Industrial applications of III-V materials . . . . . . . . . . . . . . . . . . . 29
2.3 Mobility of charges inside different materials at room temperature . . . . . 30
2.4 Evolution of solar panels conversion efficiency over the years . . . . . . . . 31
2.5 Bandgap energy of different materials as a function of their lattice constant 32
2.6 Refractive index of some III-V materials . . . . . . . . . . . . . . . . . . . 33
2.7 Representation of frames in a rectangular waveguide for theoretical analysis 34
2.8 Chemical vapour deposition machines . . . . . . . . . . . . . . . . . . . . . 38
2.9 Explanation of the bonding steps for material deposition on a substrate . . 39
2.10 Pictures of successful bondings . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.11 Transfer printing steps development . . . . . . . . . . . . . . . . . . . . . . 41
2.12 Ultraviolet lithography steps representation . . . . . . . . . . . . . . . . . 42
2.13 Pictures of waveguide patterning via ebeam lithography with and without

the fixed beam moving stage option . . . . . . . . . . . . . . . . . . . . . . 43
2.14 Isotropic, anisotropic and perfectly anisotropic explanation representation . 44
2.15 Plasma etching machines schematic . . . . . . . . . . . . . . . . . . . . . . 45
2.16 Pictures from scanning electron microscopes of integrated structures . . . . 46

3.1 Refractive index of the indium gallium phosphide material . . . . . . . . . 57
3.2 Difference between the ordered and disordered state for indium gallium

phosphide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



3.3 Conversion efficiency for a type I second harmonic generation process with
a transverse electric pump for different waveguide profiles . . . . . . . . . . 63

3.4 Conversion efficiency for a type I second harmonic generation process with
a transverse magnetic pump for different waveguide profiles . . . . . . . . . 64

3.5 Profiles of the transverse electric and transverse magnetic fundamental mode 64
3.6 Representation of the overlapping integral for different phase matched cases 66
3.7 Conversion efficiency for a type II second harmonic generation process with

a transverse electric and a transverse magnetic pump for different waveg-
uide profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Schematic of the wafers involved for bonding . . . . . . . . . . . . . . . . . 69
3.9 Overview of a particular chip design used for nonlinear study . . . . . . . . 70
3.10 Representation of mode conversion via the refractive indices of different

modes for different waveguide width . . . . . . . . . . . . . . . . . . . . . . 71
3.11 Extraction of the linear losses in a waveguide from a picture of the waveg-

uide illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.12 Overview of a chip used for nonlinear studies characteristics . . . . . . . . 73
3.13 Schematic of an experimental setup used for second harmonic generation

studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.14 Type I phase-matching found for two different waveguides profiles . . . . . 75
3.15 Second harmonic power measures for the type I process . . . . . . . . . . . 76
3.16 Theoretical and experimental modes profiles pictures . . . . . . . . . . . . 78
3.17 Type II phase-matching parameters with the Poynting vector and the re-

fractive indices for the modes involved . . . . . . . . . . . . . . . . . . . . 79
3.18 Second harmonic power measure for the type II phase-matching case . . . . 80
3.19 Mode conversion in a taper explanation with the refractive indices for dif-

ferent waveguide width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.20 Theoretical and experimental profiles measured for the type II phase-matching

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.21 Refractive index of the aluminium gallium arsenide material . . . . . . . . 84
3.22 Pictures of the chip on which to deposit the aluminium gallium arsenide . 85
3.23 Fabrication process presentation for the aluminium gallium arsenid project 86
3.24 Microscope picture of an aluminium gallium arsenide sample after process-

ing and scanning electron microscope picture of a cross section . . . . . . . 86
3.25 Schematic of the different configurations for the simulations about alu-

minium gallium arsenide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Ring resonators parameters representation . . . . . . . . . . . . . . . . . . 95
4.2 Presentation of the electric fields for second harmonic in a ring resonator . 97
4.3 Ring resonator framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Quasi-phase-matching in a III-V ring resonator . . . . . . . . . . . . . . . 98
4.5 Refractive index of gallium phosphide material . . . . . . . . . . . . . . . . 99
4.6 Modes profiles modification due to the curve in a ring resonator . . . . . . 100
4.7 Azimuthal number mismatch and Poynting vectors of the modes involved

for a particular design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.8 Microscope pictures of the rings and experimental setup used for their study103
4.9 Transmission of gratings couplers for different injection fibre angles . . . . 104
4.10 Resonance measurement in a ring resonator . . . . . . . . . . . . . . . . . 105
4.11 Resonance measurement and second harmonic power measured for different

temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



4.12 Transmission of a multimodal ring resonator and second harmonic power
measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.13 Second harmonic power measured for a backward and forward wavelength
sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.14 Measurement of the transmission and second harmonic for a large wave-
length range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.15 Numerical fit of two resonances to extract ring parameters . . . . . . . . . 109
4.16 Large wavelength range measure of resonances and second harmonic power

in a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

x



List of Tables

2.1 Second-order nonlinear susceptibility of different materials . . . . . . . . . 33
2.2 Pertinent optical properties for different materials . . . . . . . . . . . . . . 35

3.1 Conversion efficiency in nanowires comparison . . . . . . . . . . . . . . . . 82
3.2 phase-matching results for aluminium gallium arsenide in different scenarios 88

4.1 Quasi-phase-matching wavelength and efficiency for different widths from
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Quasi-phase-matching wavelength for different widths and heights for two
different second harmonic modes . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



AlGaAs aluminium gallium arsenide

BCB benzocyclobutene

CMOS complementary metal oxide semiconductor

DTU Technical University of Denmark (Danmarks Tekniske Universitet)

FBMS fixed beam moving stage

FDE finite difference eigenmode

FSR free spectral range

FWHM full width at half maximum

FWM four-wave mixing

GaP gallium phosphide

GaAs gallium arsenide

HDPCVD high-density plasma chemical vapour deposition

HF hydrofluoric acid

HSQ hydrogen silsesquioxane

ICP inductively coupled plasma

InGaP indium gallium phosphide

InGaAs indium gallium arsenide

InP Indium Phosphide

LiNbO3 lithium niobate

LPCVD low-pressure chemical vapour deposition

MPM modal phase-matching

OFC optical frequency comb

PECVD plasma-enhanced chemical vapor deposition

PPLN periodically poled lithium niobate

PM phase matching

QPM quasi-phase matching

RF radio frequency

RIE reactive ion etching

Si silicon

SiN silicon nitride

xii



SiO2 silicon oxide

SH second harmonic

SHG second harmonic generation

SPM self-phase modulation

TE transverse electric

TM transverse magnetic

TPA two-photon absorption

UV ultraviolet

XPM cross-phase modulation

xiii



Chapter 1

Introduction

F or the last decades, photonics is booming. The Optical Society of America lists 31
Nobel Prizes in physics related to optics. The expansion is even more important

since the invention of the laser by Theodore Maiman. This invention has opened a new
field that is nonlinear optics. That is because, typically, only lasers have the intensity
required to trigger the nonlinear effects.
On another hand, the invention of the laser leads to a whole new world of telecommu-
nications. The network is thus developing around optical communications rather than
electrical ones. And so the technology necessary for such transmission such as lasers,
modulators, multiplexer. . . continues to develop. The usage of optical components for
these technologies is attractive. That’s a reason why integrated photonics is a growing
field too. Instead of meters-long systems for detection and demultiplexing, it can be done
in a centimetre-scale chip made of equivalent devices.
The objective of this thesis is to study the combination of both nonlinear optics and
integrated photonics. It focuses on a second-order nonlinear effect in particular, which
is second harmonic generation. In this thesis, theoretical models have been studied and
developed to explain the second harmonic generation process in integrated structures.
These structures have then been fabricated and experimentally tested to compare with
the previous models. In the case of this thesis, we want the device to be compatible with a
telecommunication system, so we work with wavelengths around 1550 nm. We also want
to generate an efficient second harmonic. III-V materials have thus been used. They
indeed present a high potential for second-order nonlinear effects, as we will see later.
This chapter has for purpose to have a complete apprehension of the theory about second
harmonic generation in integrated structures. For this, the nonlinear and integrated
aspects of photonics will be presented. First, nonlinear photonics will be introduced
and some important effects for our concern will be developed. Then, the importance and
particularities of integrated photonics will be presented. Finally, both fields will be linked,
as we will see that it is a great combination for frequency conversion.

1.1 Nonlinear photonics

Nonlinear optics is the study of the modification of the optical properties of a medium via
its interaction with light. The first experimental nonlinear effect was observed 50 years
from now by Peter Franken and his team [1]. This breakthrough in the photonic world
was possible thanks to the invention of the laser one year before by Theodore Maiman.
It is remarkable how the advent of this new technology leads to a whole new world of
possibilities. Nonlinear effects offer better results with a high-power coherent light. So
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the coming together of these two discoveries is not a surprise. The range of applications
nowadays for nonlinear effects is huge, as it goes from active components as laser for the
frequency conversion to passive ones with optical switching. In this chapter, second-order
nonlinear effects will be presented. A short presentation about third-order nonlinearities
will also be made here.

1.1.1 Basics principles

The basics of nonlinear photonics are to study the interaction of light with a medium.
When an electromagnetic wave, such as light, interacts with an atom, this results in
different outcomes according to the material and the parameters of the incoming electro-
magnetic wave. During the interaction, the electromagnetic wave creates a disturbance in
the electronic cloud of the atoms. The electrons will then oscillate at the same frequency
as the incoming wave. This negative charge oscillating linearly, in simple harmonic mo-
tion, about a stationary positive charge, generates an electromagnetic field oscillating at
the same frequency as the incoming wave. This dipole acquires a polarization that char-
acterizes the polarization density of the medium under the influence of the electric field.
Naturally, we expect this polarization to be proportional to the electric field strength:

P (t) = 0χ
(1)E(t), (1.1)

where 0 is the vacuum permittivity and χ
(1) is the linear susceptibility. However, when

a stronger electromagnetic wave hits the atom, the oscillation from this last one becomes
more complex. We can however predict the behaviour of the polarization P (t) by gener-
alizing the relation 1.1 as a power series of the components of the electric field E(t) of the
incoming wave, as long as we are far from the medium resonances [2]:

P (t) = 0[χ
(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ...], (1.2)

where χ(2) and χ(3) stand for the second and third-order nonlinear susceptibilities, respec-
tively. In the equation 1.2, the fields P(t) and E(t) have been taken as scalar quantities.
We first start with this approximation for simplicity. In the following parts, we will
introduce the vector nature of these components and thus the tensorial nature of the
susceptibility. In such a case, χ(1) becomes a second-rank tensor, χ(2) a third-rank one,
and so on.
Let’s now express the propagation of the light inside a nonlinear medium. To do so,

we are going to start with Maxwell’s equations. These equations are a set of partial
differential equations used to describe how the electric flux density (D), the electric field
intensity (E), the magnetic flux density (B), and the magnetic field intensity (H) are
generated by the electric charge density (ρ) and the electric current density (J), and how
they vary with the changes of the magnetic and electric flux density through time:

∇.D = ρ,
∇.B = 0,

∇×E = −∂B
∂t
,

∇×H = ∂D
∂t
+ J

(1.3)

We are here considering a propagating dielectric medium in which there are no free charges
(ρ = 0), and that contains no free current (J = 0). Moreover, if we consider the material as

2



non-magnetic, we can relate the magnetic field as B = µ0H . The material is considered
as nonlinear, which leads us to relate the electric fields as D = 0E + P with P the
polarization vector. We can thus express the electric fields as:

∇×∇ ×E = −∂∇×B
∂t

= −µ0 0
∂2E

∂t2
+
∂2P

∂t2
.

(1.4)

For a wave expressed as E(r) = A(r) exp (ik.r) where A is the field amplitude and k the
wavenumber, we can approximate the term on the left by (−∇2E). To do so, the slowly
varying approximation must be valid which means that we need :

d2A

dz2
k
dA

dz
. (1.5)

We here, and for the rest of the study, consider a wave propagating along the z-axis.
Under the slowly varying approximation 1.5, the expression 1.4 becomes:

∇2E − n
2

c2
∂2E

∂t2
=
1

ε0c2
∂2PNL

∂t2
, (1.6)

with n the refractive index of the medium and c the light velocity in vacuum and PNL =
ε0[χ

(2)E(t)2 + χ(3)E(t)3 + ...]. We understand from this last equation that the nonlinear
polarization PNL drives the electric field.

1.1.2 Second-order nonlinear effects

From this, we’re going to have a closer look at a second-order nonlinear effect in particular:
the sum-frequency generation. It is important to mention that not all materials are
suitable for second-order nonlinear effects. These effects require a noncentrosymmetric
crystal, which means crystals that do not exhibit inversion symmetry [2]. Moreover, this
effect has been chosen as a first approach of the second-order nonlinear effects because
it is a general case study. The second harmonic generation (SHG) effect is, indeed, a
particular case of this effect.

Figure 1.1: Representation of the sum-frequency generation effect where two pumps at
a certain frequency interact in a χ(2) nonlinear medium to generate a new wave at a
frequency equal to the sum of both pump frequencies.

This effect, as represented in fig. 1.1, is when two incoming waves are generating a new
wave by passing through a medium presenting second-order nonlinearities. The outcoming
wave will oscillate at a frequency equal to the sum of both incoming ones. We can express
each of the fields propagating in the z-direction as:
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Em(x, y, z, t) = Am(x, y, z) exp [i(kmz − ωmt)] + c.c., (1.7)

where Em represents the electric field of the wave m oscillating at the frequency ωm with
an amplitude Am and km =

nmωm
c
is its associated wavenumber. In such a case, we can

express the amplitude of the nonlinear polarization as P3 = 2 0χ
(2)E1E2. We can thus

express the wave equation 1.6 for the E3 electric field as:

d2A3
dz2

+ 2ik3
dA3
dz
− k23A3 +

n23
c2
ω23A3 exp [i (k3z − ω3t)] =

− 2χ
(2)

c2
ω23A1A2 exp [i ((k1 + k2)z − ω3t)].

(1.8)

We can notice here that k3 = n3ω3/c, resulting in the cancellation of the third and fourth
terms on the left-hand side of equation 1.8. Also, we are still working under the slowly
varying amplitude approximation, this means that the inequality 1.5 applies. The first
term can then also be neglected here. The expression then becomes:

2ik3
dA3
dz
exp [i (k3z − ω3t)] = −

2χ(2)

c2
ω23A1A2 exp [i ((k1 + k2)z − ω3t)]. (1.9)

We can thus simplify the fast oscillation exp (−iω3t). The final expression then reads:

dA3
dz
= i
χ(2)ω23
k3c2

A1A2 exp [i ((k1 + k2 − k3)z)] (1.10)

By repeating the same derivation for the two pumps electric fields, we end up with:

dA1
dz
= i
χ(2)ω21
k1c2

A2A
∗

2 exp [−i ((k1 + k2 − k3)z)],

dA2
dz
= i
χ(2)ω22
k2c2

A3A
∗

1 exp [−i ((k1 + k2 − k3)z)].
(1.11)

We here introduce the phase-mismatch between the wavenumbers ∆k = k1+k2−k3. This
parameter can be modified by tuning the dispersion of the propagation medium.
To analyze the influence of this parameter specifically, we here suppose that both ampli-
tudes A1 and A2 are constant. It is a valid assumption as long as the conversion from
the pumps to the generated field is not too important. This is better known as the unde-
pleted pump approximation. With this assumption, we can solve the equation 1.10 and
determine its amplitude at the end of the nonlinear medium of length L:

A3(L) = i
χ(2)ω23
k3c2

A1A2
L

0
exp [i (∆kz)]dz = i

χ(2)ω23
k3c2

A1A2
exp [i (∆kL)]− 1

i∆k
. (1.12)

The intensity, which is defined as Pm = |Em|2, of the sum-frequency wave can thus be
expressed as:

P3(L) =
χ(2)ω3
n3c

2

P1P2L
2 sinc2

∆kL

2
. (1.13)
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In this last expression, we can see that the power of the wave at the sum frequency is
maximum when the phase-mismatch is equal to zero. The expression of the second har-
monic (SH) power PSH found in the case of SHG when there is only one pump represented
by a power Pp, is similar and reads:

Psh(L) =
χ(2)ωsh
nshc

2

P 2pL
2 sinc2

∆kL

2
, (1.14)

where ∆k, in this case, is equal to 2kp− kSH . The representation of the second harmonic
power as a function of the phase-mismatch can also be seen in fig. 1.2(a). However, it
is also interesting to see how the SH amplitude will vary along with the propagation for
different phase-matching values.

Figure 1.2: Evolution of the SH power as a function of the phase-mismatch (a) and SH
amplitude during the propagation in a L long structure for different wavelength detunings
(b). A cross has been placed on the left curve representing the position of each detuning
represented on the right curve.

In the case of perfect phase-matching (∆k = 0), it has been shown in [3] that the SH
amplitude follows a hyperbolic tangent function. When the phase-matching is different
from 0, the amplitude is following a Jacobian elliptic function as represented in fig .1.2(b).
The maximum amplitude that can reach the generated wave for a given phase-mismatch
value is defined, in the case where the SH power is zero at the beginning, by:

Ashmax =
1

∆kl/4 + [1 + (∆kl/4)2](1/2)
, (1.15)

where l is a characteristic interaction length for which around 75 % of the pumps will be
converted to the SH wave and is expressed as

√
npnshc/(ωpχ

(2)|Ap(0)|) [3].
The most common way to achieve phase matching (PM) is to take advantage of the

birefringence of the crystal, which is the property of a material for which the refrac-
tive index depends on the polarization direction of the electric field. In a birefringent
medium, we define two different refractive indices: the ordinary refractive index (no) and
the extraordinary refractive index (ne). The first one is defined as the refractive index
experienced by a wave polarized perpendicularly to the plane containing the propagation
vector and the optical axis. The second one is when the polarization of the light is in the
plane containing the propagation vector and the optic axis. In the case of III-V materials,
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most of them have a zinc-blende structure. In this case, the birefringence is low [2]. It is
thus not required to consider it, and thus we can do the assumption that ne(ω) = no(ω).
For birefringent materials, the angle between the incoming waves’ propagation vector and
the material optic axis (the axis of the crystal for which the light suffers no birefringence)
can be tuned to achieve PM.
The type I case happens when two photons, of two distinct waves, have the same

polarization state and are used to generate a new photon at twice the frequency with a
polarization state perpendicular to the pumps ones, as represented in fig. 1.3.

Figure 1.3: Representation of the type I and type II phase-matching interactions with
two polarized pumps at the input. The type II case presents two solutions, as the second
harmonic can be polarized along the same axis as any of the pumps.

The other case is the type II SHG process. In this case, the two pumps waves have a
different, perpendicular polarization state and the wave generated has a polarization state
along with one of those as seen in fig. 1.3.
The type II phase-matching interaction presented in fig. 1.3 is easy to picture for a

sum-frequency generation process as two pumps are involved. Each of them is indeed
polarized along a different axis. However, in the case of SHG, it seems more difficult to
achieve. The trick is to put the pump in an intermediate polarization state so that we
have a projection of the pump along both polarization axes.
Another commonly used method for SHG is the quasi-phase matching (QPM) [3, 4]. It

is used to compensate for unsuitable properties of a material that will not allow standard
PM otherwise. Indeed, we already said that the dispersion is responsible for the phase-
mismatch [5, 6] and so no second-order nonlinear effect can be obtained from the material
as it naturally is. To realize this, some materials can be periodically poled, as represented
in fig. 1.4, to compensate the phase-mismatch due to the dispersion and thus enable a
SHG process for instance [4].
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Figure 1.4: Representation of the QPM process that occurs in a periodically poled mate-
rial.

The period defining the poling is written as Λ = 2π
∆k
. This value can thus be accurately

chosen for a specific wavelength knowing the dispersion properties of the medium used.
In the case of QPM, the amplitude grows with the propagation distance, but it doesn’t
reach the efficiency of a perfect phase-matching process. In the case of this thesis, we use
QPM for SHG in III-V nanorings resonators. The particular symmetry of III-V materials
makes QPM natural to achieve in this structure, as we will see later.
This ends the part on the second-order nonlinear effects. We are now going to take a

brief look at some third-order nonlinear effects.

1.1.3 Third-order nonlinear effects

Unlike the second-order nonlinear effects presented before, third-order nonlinear effects
can occur for both centrosymmetric and noncentrosymmetric media. One of the most
famous effects when it comes to third-order nonlinearities is the Kerr effect. We first define
a monochromatic light for which the electric field is written as E(t) = E0 exp (iωt) + c.c.
and such that the intensity I of the field is defined by |E0|2. Then the refractive index of
the material can be written as [7]:

n = n0 + n2I, (1.16)

where n0 = (1+χ
(1))1/2 is the linear refractive index of the material, n2 = 3χ

(3)/(4n0) [8]
is the nonlinear refractive index and I is the intensity of the electric field. When dealing
with guided waves, it is also quite common to find the γ coefficient to express the efficiency
of the third-order nonlinear process. This parameter is linked to the nonlinear refractive
index by the relation [7]:

γ =
ω0n2
cAeff

, (1.17)

where Aeff is the effective area of the optical mode. This effect is the basis of two other
effects that will be discussed below: the self-phase modulation (SPM) and the cross-phase
modulation (XPM).
Concerning the SPM, it is a modification self-induced by an intense light on its phase.
By defining the electric field as E(x,y, t) = E0(x, y) exp (iωt+ φ) where φ = 2π/λnz,
we can show that its instantaneous frequency dφ/dt changes over time. The refractive
index is written as shown in eq. 1.16, the instantaneous frequency becomes dφ/dt =
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(2π/λ)n2(dI/dt)z and thus the frequency of the wave becomes ω = ω + dφ/dt = ω +
(2π/λ)n2(dI/dt)z. We see that the phase will be different according to the intensity of
the pulse, leading to a modification of the spectral content of the pulse.

Figure 1.5: Representation of the SPM on a Gaussian pulse. Figure from [9]

The instantaneous frequency will thus change as shown in fig. 1.5, leading to the spectral
content modification called chirp.
This effect is well-known in optical fibres and integrated waveguides as it modifies the spec-
tral bandwidth [10]. It also allows the formation of solitons in the anomalous-dispersion
regime [11, 12], self-cleaning of a pulse [13] or pulse compression [14].
In the case of the XPM, a pulse impact another one. The influence on the refractive

index for the second pulse can be expressed as:

∆n(2) = 2n2I(1). (1.18)

It is coupled with SPM as the pump will also suffer some changes due to its high
intensity. It is used for optical switching [15] or demultiplexing [16]. SPM is also used for
passive mode-locking [17].
Another example of third-order nonlinear effects is the four-wave mixing (FWM). To

understand this effect, we first define four interacting waves by:

Ẽj(r, t) = Ej(r) exp (−i(ωjt) + c.c. (j = 1, 2, 3, 4)

= Aj(r) exp (kj.r − i(ωjt)) + c.c.,
(1.19)

with the nonlinear polarization in the medium being written as:

PNL,j =
klm

0χ
(3)
jklmEkElEm. (1.20)

We assume that each of the interacting waves follows the wave equation 1.6. And so, by
injecting 1.20 in it, we can express the amplitudes as follows:
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dA1
dz
=
2n2iω1
c

(|A1|2 + 2|A2|2 + 2|A3|2 + 2|A4|2)A1 + 2A∗2A3A4 exp (i∆kz) ,
dA2
dz
=
2n2iω2
c

(|A2|2 + 2|A3|2 + 2|A4|2 + 2|A1|2)A2 + 2A∗1A3A4 exp (i∆kz) ,
dA3
dz
=
2n2iω3
c

(|A3|2 + 2|A4|2 + 2|A1|2 + 2|A2|2)A3 + 2A∗4A1A2 exp (−i∆kz) ,
dA4
dz
=
2n2iω4
c

(|A4|2 + 2|A1|2 + 2|A2|2 + 2|A3|2)A4 + 2A∗3A1A2 exp (−i∆kz) ,

(1.21)

with ∆k = k3 + k4 − k1 − k2 the phase mismatch between the four waves. By taking a
closer look at these equations, we can see that the first term |Ai|2Ai represent the SPM
presented earlier and the three following ones (|Aj|2Ai) are XPM terms. The last term
is representative of the FWM process, and we see that there is also a phase-matching
condition ruling the efficiency of the process.

In this part, we have seen different nonlinear effects. We mainly focused on second-
order nonlinear effects as it is the main topic of this thesis. We still discussed third-
order nonlinear effects for a better understanding of the topic. The following part is on
integrated photonics, and we will make connections between what we have just seen about
nonlinear optics and integrated photonic devices.

1.2 Integrated photonics

In this section, integrated photonics will be presented. The reason for the interest in
such technology, as well as the impact that it has nowadays, will be developed. The
waveguides considered in this thesis have subwavelength width and height, it is, of course
of, interest to see the particularities of light propagation in such structures. As we will
see, it is different from propagation in large areas waveguides. This part allows us to
better understand the interactions with the material and how the nonlinear effects that
we are aiming for are obtained. We will explore both the linear and nonlinear regimes. A
highlight will be given to the SHG in these kinds of platforms to see the impact of this
process and put this thesis in the state of the art.

1.2.1 Interest and impact

Integrated photonics is a field that has known an exploding interest for the last decades.
The interest in optical communications instead of electric or radio waves has emerged in
the early sixties with the development of lasers. Lasers are sources that provide a stable
and coherent light. Lasers can be manipulated for information transmission via electro-
optic modulators and then converted into an electrical signal via detectors. A complete
communication system however required huge and expensive pieces of equipment. That’s
why integrated photonics made a breakthrough. The whole system is miniaturized and so
cheaper and more convenient to use and implement. Moreover, complementary metal ox-
ide semiconductor (CMOS) compatible platforms promise a low-cost fabrication process.
We can see in fig. 1.6 some possible applications of integrated circuits.

9



Figure 1.6: Possible photonics integrated circuits elements as it can be found in ref. [18]

Silicon is the heart of integrated photonics [19]. It is a material transparent for wavelength
above 1100 nm which makes it suitable for telecommunications systems (between 1260
and 1625 nm commonly). It is also a material that can easily be integrated with electronic
devices. Furthermore, the improvement of the fabrication processes for this material has
led to very low linear losses [20]. It also offers a large index contrast with its cladding,
which allows the light to be well confined inside the structure, important to avoid losses
in a bent waveguide and to reduce space requirements. Structures based on silicon (Si)
are widely used to make modulators [21–23], couplers [24, 25] and quantum photonics [26]
for instance.
Another important material that found its place in integrated photonics is silicon nitride
(SiN). SiN comes with advantages as well as some disadvantages compared to Si. For
instance, it has a lower refractive index contrast at 1550 nm with silicon oxide (SiO2) than
Si (3.5 for Si and 2 for SiN compared to 1.5 for SiO2). Which means lower confinement of
the light. SiN, however, usually presents lower linear losses than Si. While the linear loss
is usually around 1-2 dB/cm in silicon, it is usually an order of magnitude lower in silicon
nitride [27, 28]. SiN also shows itself as an interesting material for nonlinear applications
such as supercontinuum generation and frequency combs [29–31].
The developement of integrated photonic technology and the maturity obtained over the
last years also brought the possibility to build complex photonic circuits on a single
chip [32]. The amount of possibilities that bring such technology is vast. We can thus
see the emergence of nano processors that are used for deep learning and pattern recog-
nition [33] as well as simulations of quantum transport [34]. This is also an attractive
technology for quantum experiments as it requires stable and complex systems. We can
thus use photonic integrated circuits for experiments such as single-photon sources [35]
and entangled photons [36].
We can also couple the Si or SiN waveguide to other integrated devices for other purposes.
For example, the Si (SiN) will be the travelling medium, as low linear losses are achieved
in this material now, for the light emitted by an integrated laser [37, 38]. For this purpose,
the development of fabrication processes to work with other materials (such as III-V or
II-IV alloys) have emerged.
Other devices have also found their place in integrated photonics. For instance, photode-
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tectors are now widely spread [39, 40]. And the fabrication processes now allow producing
structures small enough to fabricate quantum wells and superlattices [41, 42], leading to
smaller and smaller devices.

1.2.2 Light propagation in integrated structures

In this part, we are going to discuss the particularities of an electromagnetic wave prop-
agating inside an integrated waveguide. As it is indeed different from bulk materials, it
is important to take a closer look at this part. It shows the particularities to take into
account for such propagation for the numerical simulations in the following parts.
The light is travelling through a core with a certain refractive index surrounded by a
cladding with a lower refractive index. The first thing to take into account is the shape of
the waveguide. Usually, integrated waveguides have a rectangular profile. However, this
profile can take different forms, as shown in fig. 1.7.

Figure 1.7: Representation of different waveguides with a rectangular profile. In all cases,
the material with the refractive index n2 > n1 is the one where the light is propagating.
In the case of strip-loaded waveguides, we also have n2 > n3. A representation of the area
where the light is confined is represented with an oval shape for each structure.

We are going to study more in detail the particular optical electric field distribution
of the light travelling inside these structures. To do so, we are first going to study the
case of slab waveguides followed by rectangular buried waveguides.

1.2.2.1 Slab waveguide study

We are now going to focus on a planar slab waveguide, as represented in fig. 1.8. The
planar slab waveguide is a useful case to understand the propagation in the structures
presented in fig. 1.7.
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Figure 1.8: Sketch of an asymmetric slab waveguide (left) and the representation of
refractive index profile of the waveguide (right).

For this study, we are considering a continuous, monochromatic wave propagating
along the z-direction with the propagation constant β in an isotropic medium with a
refractive index n at first. The electromagnetic field varies as:

Ẽ = E(x, y) exp [i(ωt − βz)],
H̃ =H(x,y) exp [i(ωt − βz)].

(1.22)

By substituting these two equations into Maxwell’s equation 1.3, we obtain the following
set of equations [43]:






∂Ez
∂y
+ iβEy = −iωµ0Hx,

−∂Ez
∂x
− iβEx = −iωµ0Hy,

∂Ey
∂x
− ∂Ex

∂y
= −iωµ0Hz,

(1.23)






∂Hz
∂y
+ iβHy = −iω 0n2Ex,

−∂Hz
∂x
− iβHx = −iω 0n2Ey,

∂Hy
∂x
− ∂Hx

∂y
= −iω 0n2Ez.

(1.24)

In the slab waveguide, the electromagnetic fields E and H have no y-axis dependency as
it is supposed infinite. Therefore, we set ∂E/dy = 0 and ∂H/dy = 0 [44].
Putting these relations into the sets of equations 1.23 and 1.24 leads to two independent
electric solutions denoted respectively as transverse electric (TE) and transverse magnetic
(TM). The TE solution satisfies the following wave equation:

∂2Ey
∂x2

= (β2 − n2k2)Ey, (1.25)

where k = ω/c = ω
√
0µ0. We also have for this solution:

Hy = Ex = Ez = 0,

Hx = −
β

ωµ0
Ey,

Hz = j
1

ωµ0

∂Ey
∂x
.

(1.26)

We are now taking the case where nm > nb > nt as represented in fig. 1.8 to express the
electric field in each parts of the waveguide. Moreover, the boundary conditions require
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that Ey and ∂Ey/∂x be continuous across the boundaries at x = 0 and x = h. For guided
modes, we thus have the following set of equations for each material [45]:






Ey = Et exp [−γt(x− h)] for h < x (top layer),
Ey = Em cos (γmx− φm) for 0 < x < h (middle layer),
Ey = Eb exp (γbx) fox x < 0 (bottom layer),

(1.27)

where γ2t = β
2 − n2tk2, γ2m = n2mk2 − β2 and γ2b = β2 − n2bk2. The boundary conditions

also involve that, for x = 0:





Eb = Em cos (φm),

tan (φm) =
γb
γm
.

(1.28)

Similarly, for x = h:





Et = Em cos (γmh− φm),
tan (γmh− φm) = γt

γm
.

(1.29)

Finally, these relations result in an eigenvalue equation:

γmh = (m+ 1)π − arctan
γm
γb
− arctan γm

γt
, (1.30)

where m is an integer denoting the mode number. This result shows that the modes that
are guided inside waveguides are discrete solutions.
The modes shapes are distinct as shown in fig. 1.9 for m = 0 and m = 1.

Figure 1.9: Formation of the fundamental mode (a) and a higher-order mode (b). The
solid lines represent a positive phase front and the dashed lines a negative phase front.

Furthermore, it is important to know that each mode propagating inside the same
medium has a different refractive index. This particularity will be more detailed later.
We have seen that light propagates in a rectangular slab waveguide with discrete

solutions called modes that present different shapes as seen in fig. 1.12. We are now going
to study the case of a buried waveguide and see more properties about the components
of these modes.

1.2.2.2 Buried waveguide study

We are going to focus on a buried waveguide as represented in fig. 1.7 for the study of
the modes. This is a symmetric structure in the x and y direction which is closer to the
waveguides that will be used later.
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The electric field of a wave propagating along the z-axis can be derived from Maxwell’s
equations from 1.1.1 and the conditions at the interfaces. It is thus expressed as:

E(r, z) = E0(r) exp [−iβz] (1.31)

Where β is the propagation constant of the mode electric field and r represents the
position in the plane transverse to the propagation direction z.
This is a valid approximation in the case of a weakly guiding waveguide. Usually, optical
waveguides that possess a core index ncor close to the cladding index ncla are called weakly
guiding waveguides. The ∆ = 1/2(1− n2cla/n2cor) coefficient is thus used to estimate the
guiding efficiency and if ∆ 1, then we are in the case of a weakly guiding. For a weakly
guiding mode, the longitudinal component Ez of the electric field can be expressed as a
function of the transverse field components Et [46]:

Ez =
i(2∆)1/2

V
(ρ∇T .ET ), (1.32)

where V is the waveguide parameter defined as V = 2πρ/λ(n2cor−n2cla)1/2 and ρ is a linear
dimension in the waveguide cross-section such as the thickness of the core is equal to 2ρ.
This can be usually applied to the case of optical fibres.
However, this well-known approximation is no longer valid in such small structures, as we
are no longer in the case of ∆ 1. Indeed, in such confined conditions, the longitudi-
nal component becomes quite important and cannot be neglected anymore [47]. In this
context, the transverse component can be written as:

Ez =
λ0

2iπneff
∇T .ET , (1.33)

where ET represents the transverse electric field amplitude (Ex, Ey),∇T is the transverse
gradient and neff is the effective index of the mode inside the medium. The longitudinal
component, which can seem insignificant at first sight, will take all its meaning in our work,
as we will see later. As a first example, we represent in fig. 1.10 the mode components
of a fundamental mode propagating inside a 300 nm high and 800 nm wide Si waveguide
calculated from a numerical solver.

Figure 1.10: All the three electric field components of the fundamental mode in an 800 nm
wide and 300 nm high Si waveguide.

We can also note from eq. 1.33 that the longitudinal component is purely imaginary,
and this component will suffer a π/2 shift compared to its transverse counterparts.
We can also note different particular cases. For instance, there is the case of a quasi-TE
mode. In this case, we have Ey ≈ 0. And so, the eq. 1.33 can be expressed as:

Ez =
λ0

2jπneff

∂Ex
∂x
, (1.34)
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And so, we can see that the symmetry along the x-axis of the longitudinal component
Ez is the opposite of the longitudinal component. It means that an electric field with a
symmetric (anti-symmetric) Ex component along the x-axis will have an anti-symmetric
(symmetric) component Ez along x.
If we now take a quasi-TM mode for which Ex ≈ 0, the eq. 1.33 become:

Ez =
λ0

2jπneff

∂Ey
∂y
, (1.35)

In this case, a symmetric (anti-symmetric) Ey component along the y-axis will have an
anti-symmetric (symmetric) component Ez along y.
If we now study the general case of a quasi-TE and quasi-TM mode, we can define the

transverse component as:

Ez =
λ0

2jπneff

∂Ex
∂x
+
∂Ey
∂y

, (1.36)

An important point to raise in the case of a buried waveguide is that the Ey component
of the electric field will have a symmetry opposite to the Ex component of the electric
field in the x and y direction [46]. So Ey is symmetric (antisymmetric) along x (y) if
Ex is antisymmetric (symmetric) along x (y). And so, this symmetry property leads to
different symmetry cases for the longitudinal component Ez according to the symmetry
of the two other components.
If Ex is symmetric (antisymmetric) along x and antisymmetric along y, then Ey is

antisymmetric (symmetric) along x and symmetric along y. So Ez is antisymmetric (sym-
metric) along x and antisymmetric along y, as it can be seen in fig. 1.11 with the mode
TE01 (TM40). If Ex is symmetric (antisymmetric) along x and symmetric along y, then
Ey is antisymmetric (symmetric) along x too and antisymmetric along y. So Ez is anti-
symmetric (symmetric) along x and symmetric along y, as it can be seen in fig. 1.11 for
the mode TE40 (TM21).
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Figure 1.11: Modes components for an 800 nm wide and 320 nm high gallium phosphide
buried waveguide at a 775 nm wavelength. Each component of the modes has been
normalized to its max value for better visibility of the symmetry of the components of
the modes.

As it can also be noticed in fig. 1.11, names were given to the modes represented. By
convention, to distinguish the modes, the modes noted TEmn will refer to its orientation
with reference from the substrate. A mode that has a dominant electric field perpendicular
to the substrate will be denoted as TM while a mode with a dominant electric field
parallel to the interface between the substrate and the medium will be denoted as TE.
At the same time, the m and n coefficients will be determined by the number of zeros
from the main electric field component. For instance, a mode for which the dominant
electric field is parallel to the interface between the substrate and the propagation medium
which moreover presents two zeros in the vertical direction and only one in the horizontal
direction will be named TE12. In fig. 1.12 are represented some modes that can be
obtained in a rectangular waveguide with their names from the convention described to
better identify them.
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Figure 1.12: Representation of the Poynting vector of a few modes that propagates inside
a 1000 nm wide and 500 nm high silicon waveguide. Their names are also given for each
of them.

We here had an overview of how the propagation occurs and what is happening in
rectangular waveguides. This is necessary as this profile is the most common one in
integrated photonics. We saw the links between the symmetry of the components of
the modes in the case of a buried waveguide. In the following parts, we work with
ridge waveguides. It is a bit different from the example presented above as there is no
more symmetry of the refractive index along the y-axis (see fig. 1.7). The modes are so
not symmetric along the y-axis as they tend to be slightly shifted towards the substrate
(silicon oxide in our case) which has a higher refractive index than the surrounding medium
(air). Despite this difference from fully symmetric waveguides, the number of nodes and
the general shape of the mode components look similar, which helps to experimentally
identify the modes involved in the SHG process (we however stress that the waveguides
are symmetric in x and thus the symmetry properties from eq. 1.34 are accurate).
The next part will present some nonlinear effects in integrated platforms to have a

complete overview of the topic of this thesis.

1.2.3 Nonlinear photonics in integrated platforms

In this section, the focus is on the interest of nonlinear photonics in integrated structures
and some applications of it. For this purpose, we are going to use what has been seen
earlier about nonlinear effects and see how it applies in integrated structures.

As mentioned earlier, the strong confinement of the light ensures better interaction of
the light with the material, which allows nonlinear effects to be achieved at lower power.
It is one of the reasons why integrated nonlinear optics is so attractive. One of the first
reasons to use integrated structures is for wavelength conversion. As we have seen earlier,
for SHG for instance, the birefringence of the medium can be used to obtain a PM between
the pump and the SH. We have also seen in fig. 1.12 that a rectangular waveguide can be
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multimodal. We can take advantage of this and the fact that each mode that propagates
with a different propagation constant β = 2neffπ/λ where neff is the effective index of
the mode and λ the wavelength. We can thus use the effective refractive index to study
the modes. All modes have, indeed, a different refractive index for a given waveguide as
can be seen in fig. 1.13.

Figure 1.13: Refractive indices as a function of the wavelength of five modes for an 850 nm
wide and 400 nm high Si waveguide.

The variation of the refractive index with the wavelength is also different for each mode. It
is thus possible to satisfy the PM as long as the two modes have the same refractive index
for a certain wavelength. This particular case of PM is called modal phase-matching
(MPM). It is not limited to SHG [48, 49] as it can be applied to other effects. For
instance, this PM is used to make an optical parametric oscillator or to achieve PM in
the case of FWM [50–52]. Furthermore, it is possible to tailor the dispersive properties
of a waveguide by changing its dimensions [53, 54]. This way, it is possible to obtain a
certain PM at the desired wavelength.
MPM is not always needed in integrated structures. As proof, we can think of other

nonlinear effects that are widely discussed in integrated photonics: supercontinuum. It
consists in sending high-intensity pulses inside a nonlinear material and taking advan-
tage of the third-order nonlinear effects (but not necessarily [55]) to broaden the pulse
spectrum [56, 57]. Such sources are used in the domain of spectroscopy and fluorescence
microscopy for instance [58].
Besides this, optical frequency comb (OFC) is a hot topic nowadays. The creation

principle around OFC is close to the one of a supercontinuum. It consists of a succession
of spectral lines equally spaced as shown in fig. 1.14. A way to generate OFC is the use of
a continuous-wave laser that propagates inside a microring resonator with an important
third-order nonlinearity [59].
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Figure 1.14: Schematic of an optical frequency comb. The central frequency f0 of the
laser is subject to cascaded FWM to generate the other frequencies.

It is really useful in spectroscopy as it allows us to determine an unknown frequency by
measuring the beating between this one and the OFC [60, 61]. OFC are really under the
scope as it has been awarded a Nobel Prize in 2005.
Another example of a nonlinear optical phenomenon in integrated structures is the

observation of optical event horizons. Event horizons are, in astrophysics, a limit in a
black hole beyond which nothing can escape the black hole. It is thus possible to measure
an optical equivalent, which would be useful to understand black holes from the study of
an optical experiment [62]. An example of an optical event horizon is shown in fig. 1.15.

Figure 1.15: Example of the XPM effect where an intense pulse, the pump, is propagating
along z inside a nonlinear medium. It propagates with another weaker pulse, the probe
(step 1). Due to a different velocity in the dispersive medium, the probe will catch up
with the pump (step 2). The Kerr effect will induce XPM and thus a shift of the probe
wavelength (step 3). In this example, the resulting group velocity of the final probe is
lower than the pump (step 4).

In this example, the pump creates the equivalent of an event horizon for the probe as it
cannot go through it.

We have seen that nonlinear effects are really interesting coupled with integrated
photonics. This combination allows obtaining useful devices for other domains like spec-
troscopy and microscopy and can also reproduce an optical equivalent of other phenomena.
Nonlinear effects can also be used for light sources, to generate wavelength that will not
be easily available otherwise [63, 64]. For the following part, we will see more in detail
the case of the SHG process in integrated structures.
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1.2.4 SHG in integrated platforms

In this section, we are going to have a closer look at the interest that SHG can have in
integrated structures. A point will also be raised concerning the particularities of such a
process in integrated structures. This brings the last piece to understand the following
parts of this thesis. The idea to generate a SH inside an integrated structure is really
attractive. Indeed, it could be a further step in the context of OFC which has been
attracting a lot of attention for the last years [65, 66]. The SH is already used to measure
and stabilize the OFC [67, 68]. Fig. 1.16 shows how the SH currently helps to characterize
the OFC. This measure however requires to extract the comb from the medium where it
is generated to pass it through a second-order nonlinear crystal. Integration of the SHG
could allow to auto-reference the OFC in a single integrated structure [69].

Figure 1.16: Schematic of the self-referencing for an optical frequency comb. A certain
pump frequency line is doubled by SHG and the beat note that can be measured between
this doubled frequency and another pump frequency line allows to know the carrier-
envelope offset frequency (fCEO) and the repetition frequency (frep) of the OFC. The
equations, as an inset in the figure, show the relation between the two frequency lines
considered.

Furthermore, OFC can also be generated from second-order nonlinearities[70–72]. How-
ever, such integrated solutions are not fully developed yet and still need an in-depth
study.
The SHG process is also attractive as it allows reaching wavelengths that can be

difficult to obtain otherwise. For instance, it is used to obtain blue or green lasers via an
interaction with a nonlinear crystal [73, 74]. This leads to new sources for applications
such as in the medical field, for laser skin resurfacing for instance. It is also used for
microscopy purposes [75, 76], the autocorrelation of short pulses [77, 78].
We can thus easily understand the impact of SHG in the context of integrated optics,
especially when looking at the impact area of OFC. We are now going to see more in
detail an important aspect of SHG process.
Until now, we used a scalar description concerning SHG effect. The electric field needs,

however, to be treated as a vector, with all its three components to correctly express the
SHG in integrated structures. This requires the use of the general tensor expression of
second-order nonlinear susceptibility [2]. We are here using the definition dijk =

1
2
χ
(2)
ijk and

the notation contraction associated for simplicity. This contraction allows us to write only
a 6x3 matrix instead of a 9x3 matrix. It is known as the intrinsic permutation symmetry
and is always valid [2]. The contraction resulting is expressed:

jk 11 22 33 23/32 13/31 12/21
l 1 2 3 4 5 6

20



From these notations, we obtained the following tensor in a general case:

dil =




d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36





Instead of the scalar expression 1.2, the space components of the SH polarization are
linked to the pump electric fields components by:




Px
Py
Pz





SH

=




d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36









E2x
E2y
E2z
2EyEz
2ExEz
2ExEy





Pump

Besides, the knowledge of the crystallographic symmetry of the material used can lead to
simplifications of the second-order nonlinear tensor [79].
If we take the example of lithium niobate (LiNbO3), a uniaxial crystal belonging to the
3m crystal class, the previous equality between the pump and SH can thus be written as:




Px
Py
Pz





SH

=




0 0 0 0 d31 d21
d21 −d21 0 d31 0 0
d31 d31 d33 0 0 0









E2x
E2y
E2z
2EyEz
2ExEz
2ExEy





Pump

We can see how the crystal symmetry knowledge simplifies the calculations of the SHG
process. We can also see why it is important to use the vectorial definition in integrated
waveguides because it is needed to take care of all three components of the electric fields.

In this chapter, we have seen the impact of nonlinear photonics in different fields and
also exposed some important aspects to know for the understanding of this thesis. We
have also seen the impact of integrated photonics and how both aspects of the photonic
world can act together to obtain interesting, applicative and strong effects. The focus has
been made on SHG as it is a wide applicative effect that can be further developed. In the
following parts, we will be interested in a particular medium for the SHG effect: III-V
materials.
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Chapter 2

III-V integrated photonics

B y definition, III-V materials are alloys constituted of at least one element from
group III (boron, aluminium, gallium...) and at least one element from the group

V (nitrogen, phosphorus, arsenic...) of the periodic table in fig. 2.1. These materials are
well documented with various interesting properties [1]. They have been widely studied
in the domain of electronics for their semi-conductive properties [2, 3]. They also attract
a lot of attention in optoelectronic devices [4], especially in the domain of integrated
lasers [5–7], detectors [8–11] and modulators [12–14].

Figure 2.1: Periodic table of the elements from sciencenotes website [15]. The group III
elements can be seen in the thirteenth column, while the group V element can be seen in
the fifteenth column.

In this section, some interesting properties will be presented and linked to applications
to show the impact that III-V materials currently have. Then, the highlight will be on
optical properties of these materials for the subject in which we are interested: the second-
order nonlinear properties. This will also show the initial parameters linked to fabrication
processes that will follow.
For the usage of these materials full potential, it is indeed important to develop a fabrica-
tion process stable and reliable. Even if the processing of these materials is well-developed
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in the literature, it is not trivial to keep a reliable process that offers an adequate quality
for photonics applications, especially because any nanometer range defect or variation can
affect the whole property of the light propagation. In this section, we will show general
concepts about III-V materials fabrication. We will also make a state of the art of III-V
technological processing that I used during my PhD to fabricate III-V integrated waveg-
uides for nonlinear applications. Some of them were already developed when I arrived,
and others had to be developed or optimized.

2.1 III-V materials

2.1.1 State of the art on III-V materials

In this part, we are going to see the impact of the III-V alloys in the modern world
technology devices through different examples of their applications and explanations of
their success. III-V materials are widely used and developed in electro-optical devices in
particular. From sources like light-emitting diodes and semiconductor lasers to detection
systems such as photodiodes via electro-optic modulators. If we focus on integrated
structures, we can find a few examples of their implementation. If we take the example of
IBM research field, we can find the favourite III-V materials used for several applications
in fig. 2.2.

Figure 2.2: Four different devices that can be made from III-V materials (top) and the
materials used to create them (bottom) as it can be found on IBM website. The colour
of the device on top is reported on the bottom image to show which material is used to
make it [16].

As we can see, III-V materials are well-known for being useful to make electronic de-
vices [17].
One particular element that we can talk about are the integrated transistors. As the Moore
law predicts an exponential increase of the number of transistors on a microprocessor chip
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with time and as the silicon-based devices start to show some limitations, studies have
been performed to find an alternative, and it seems that III-V transistors will be a great
alternative to the actual ones [18, 19]. It seems that certain III-V materials show higher
electron mobility, as can be seen in fig. 2.3, as well as fast frequency response, important
elements to an efficient metal–oxide–semiconductor field-effect transistor (MOSFET).

Figure 2.3: Highest mobility at room temperature of holes (blue dots) and electrons (red
squares) in inversion layers and quantum wells as a function of the actual semiconductor
lattice constant [20].

In photonics, they also have a huge success due to the fact some of them possess
a direct bandgap, resulting in a better optical absorption or emission with electrical
stimulation [21].
For instance, they are used for large structures such as solar panels. Even if silicon-
based solar panels are the most common ones when it comes to public access [22], III-V
materials are also used in the spatial field [23, 24]. They present a higher performance
than their silicon equivalent and are a really promising material for this purpose. Standard
silicon solar panels usually reached 20 % efficiency while III-V solar panels efficiency is
more around 25 % as can be seen in fig. 2.4 and recent studies even reached 47.1 % of
efficiency [25].
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Figure 2.4: Curves of the evolution of conversion efficiency of solar panels over the years for
different materials. This figure is taken from the National Renewable Energy Laboratory
website [26]

On another side, their direct bandgap allows the creation of efficient integrated lasers,
modulators [27, 28] and photodetectors as well [29, 30]. Individually, these components
are already amazing for various applications. Together, they are key elements for telecom-
munication. A field that is also growing incredibly fast and in which III-V materials can
perfectly fit. Examples of III-V devices for telecommunication applications can be found
on OMMIC website for instance [31]. These alloys are also used in cameras with indium
gallium arsenide sensors (as the ones from Hamamatsu [32] or Raptor Photonics [33].

Even without taking into account their astonishing electrical properties, III-V mate-
rials are also interesting materials for optical frequency conversion. They usually have
a high nonlinear coefficient, as we will develop later, which makes them interesting for
nonlinear processes. Some of them possess, in fact, a second-order nonlinear susceptibility
around 200 pm/V [34–36] while other material like LiNbO3 (a reference in second-order
nonlinear effects) exhibits a second-order nonlinear susceptibility 3 times lower [37]. Con-
cerning third-order nonlinearities, they can present a nonlinear refractive index with an
order of magnitude greater than Si [38–41]. Furthermore, the fabrication processes de-
veloped for III-V materials have been developed such that it allows the fabrication of
micrometre-scale structures for nonlinear purposes [42].

As we’ve just seen here, III-V materials are widely used for their electrical and optical
properties. Indeed, they possess advantageous properties in those fields and the versatility
that they offer is also a great asset. The optical properties will now be explored further
in detail.

2.1.2 Optical properties of III-V materials

We are here going to see some optical properties of III-V materials. The linear and second-
order nonlinear properties of these materials especially, those being the most important
properties for SHG processes.
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First, by their very nature III-V materials can absorb a photon when this one possesses
energy larger than the bandgap. While this can be useful for many applications (detectors
and lasers for instance), it is a problem in our case. Even if it doesn’t absorb photons
at the pump wavelength, it could absorb photons generated at the SH wavelength. On
another side, it could be also troublesome at the pump wavelength as two photons could
be absorbed too, resulting in the two-photon absorption (TPA) effect. The absorption of
the pump wavelength reduces its power and could reduce the efficiency of the targeted
SHG process. A potential solution is to use an alloy composed of three different elements
(like InGaAs for instance). This allows tuning the bandgap energy by engineering the
proportion of elements in the material as can be seen in fig. 2.5.

Figure 2.5: Bandgap energy of different materials as a function of the lattice constant of
the material. The dashed lines represent indirect bandgap ternary alloys while the solid
lines represent ternary alloys with a direct bandgap. The figure comes from the Arizona
State University website [43]

The material must therefore be chosen carefully according to the intended use. For in-
stance, gallium antimony (GaSb) possesses a bandgap around 1 eV, which means that it
will not be interesting for studies at a wavelength below 1200 nm as it is absorbent below
this wavelength.
On another hand, several studies have been performed to calculate or measure the complex
refractive index of those materials and some are represented in fig. 2.6. The fit functions
of the real and imaginary parts of the complex refractive index are represented here. We
can define it as n = n+iξ where n is the refractive index and ξ is the extinction coefficient,
responsible for attenuation in the material.
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Figure 2.6: Real component of the complex refractive index (a) and imaginary component
in logarithmic scale (b) for four different III-V materials. The materials considered are
AlAs (orange line) [44], InAs (green line), InSb (red line) and GaP (blue line) [45].

Materials with very different bandgap (as can be seen in fig. 2.5) have been chosen. We
can see that the refractive index of these materials is large compared to air or SiO2
(typically 1.45 at 1.2 µm). This makes these materials interesting for integration as a
high-index contrast means higher light confinement inside the structure. On the other
side, the extinction coefficient is different from one material to another for a wavelength
in the range of a SH generated from a telecom wavelength (around 775 nm) for instance.
It can be significant as it can be null.

Concerning nonlinear effects, III-V materials are, for most of them, zinc-blende struc-
ture (4̄3m group). Some other III-V materials are wurtzite structures (gallium nitride
and aluminium nitride for instance). These last ones will not be discussed in this thesis.
Furthermore, III-V materials show a high second-order nonlinear susceptibility compared
to LiNbO3 as seen in table 2.1.

Material
Maximum second-order

Source
nonlinear susceptibility dil (pm/V)

GaAs 178.0 [46]
GaP 93.0 [46]
InP 134.5 [46]
AlAs 113.5 [46]
InGaP 110.0 [34]
AlGaAs 90.0 [36]
LiNbO3 31.5 [37]

Table 2.1: Second-order nonlinear susceptibility for different III-V materials and LiNbO3
as a comparison.

The particular symmetry of the 4̄ group leads to simplifications in the second-order
nonlinear susceptibility tensor that we have seen in part 1.1 [47]. In such cases, there
are only three non-zero components and all of them are equal to each other as long as
Kleinman’s symmetry is valid [48]. The second-order nonlinear susceptibility tensor is
thus written :

dil =




0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14



.

33



To understand how to use this particular tensor to find the conditions for SHG, we focus
on a rectangular cross-section waveguide in a (xyz) framework where x is the horizontal
component, y is the vertical one and the wave is propagating along the z-axis as repre-
sented in fig. 2.7. We here take the example where x, y, and z correspond to the [100],
[010], and [001] axis of the crystal, respectively. The x,y, and z-axis could, of course, be
any of these three crystallographic axes as long as it respects an orthonormal frame.
Using this tensor, we can define the polarization of the SH wave as a function of the
amplitude of the pump’s electric field components:




Px
Py
Pz





SH

=




0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14









E2x
E2y
E2z
2EyEz
2ExEz
2ExEy





Pump

We can notice that the SHG process needs two distinct components of the pump electric
field. For instance, to generate a SH that oscillates along the x-axis, we need an electric
field component of the pump along the y and the z axes.
Another possibility is to rotate the waveguide to align the direction of propagation with a
different axis of the III-V crystal than the [100] or [001] crystallographic axis (depending
on the patterning of the waveguide). The second-order nonlinear tensor will thus change
according to the angle, and so will the tensor components as it is expressed in a new
frame. This new reference frame (x’y’z’), expressing the rotation, is represented as in
fig. 2.7.

Figure 2.7: Representation of a III-V waveguide in a (xyz) frame where x, y and z
correspond to the [100], [010] and [001] axis of the crystal respectively. There is also
a (x’y’z’) frame that is a rotation of the first frame of an angle θ around the y-axis.

To compute the second-order tensor in the new frame, we need to apply a rotation matrix
to the framework. This matrix can be written as:




x
y
z



 =




cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ








x
y
z





By applying this rotation matrix, we obtain a global expression of the III-V crystal second-
order nonlinearity according to the angle of the waveguide.

D(θ) =


0 0 0 d14 cos(2θ) 0 2d14 cos θ sin θ

2d14 cos θ sin θ 0 −2d14 cos θ sin θ 0 d14 cos(2θ) 0
0 0 0 −2d14 cos θ sin θ 0 d14 cos(2θ)
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From this result, we can express the SH polarization according to the electric field com-
ponents of the pump wave. As we got:




Px
Py
Pz



 = D(θ)





ExEx
EyEy
EzEz

EyEz + EzEy
ExEz + EzEx
ExEy + EyEx





One of the most common ways to use integrated III-V waveguides as a SHG platform is to
pattern the waveguide such as the waves propagate along a different crystallographic axis
from the [100] (or [001]) direction of the crystal [49, 50]. For instance, staying within the
same frame as fig. 2.7, in the particular case of an angle θ equals to 45◦ between the [100]
(or [001]) crystallographic axis and the propagation direction, it is possible to generate a
SH polarized along the y-axis with only the x component of the pump polarization.
III-V materials can also be used for third-order nonlinear effects such as four-wave

mixing or Kerr effect [51–53]. In this case, the expression of the tensor can also be
simplified due to III-V particularities. As it involves a 4th rank tensor, it will not be
written. However, we still present the simplifications in the case of zinc-blende structure
in the work frame defined in fig. 2.7. Indeed, among the 81 elements composing the χ

(3)
ijkl

tensor for which i, j, k, l = x, y, z, only 21 are non-zero and 4 of them are independent [54].
These are:

xxxx = yyyy = zzzz

yyzz = zzyy = xxyy = yyxx = xxzz = zzxx

yzyz = zyzy = xzxz = zxzx = xyxy = yxyx

yzzy = zyyz = xzzx = zxxz = xyyx = yxxy

In experimental studies, only one component of the tensor is commonly used at a time
and thus measured [55, 56]. Furthermore, to characterize the efficiency of such processes,
the nonlinear refractive index (or Kerr coefficient) n2, expressed in m

2/W, is commonly
used. A comparison between different materials is presented in table 2.2 to compare their
respective third-order nonlinear properties. Two commonly used materials for third-order
nonlinear effects have first been chosen, followed by III-V materials that will be used in
this thesis.

Material Refractive index n2 (m
2/W) Reference

Si 3.478 4.5x10−18 [38]
SiN 1.996 2.4x10−19 [57]

indium gallium phosphide (InGaP) 3.105 1.3x10−17 [39]
aluminium gallium arsenide (AlGaAs) 3.178 2.0x10−17 [40]

gallium phosphide (GaP) 3.055 1.2x10−17 [41]

Table 2.2: Comparison of refractive index and nonlinear refractive index for different bulk
materials at 1550 nm

Table 2.2 shows that III-V materials are interesting for third-order nonlinear effects. In-
deed, the high index contrast with the air allows strong confinement of the light and the
strong nonlinear refractive index offers a strong conversion efficiency. In general, III-V
materials shows a higher nonlinear refractive index than Si for a refractive index almost
equivalent.
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We particularly focused on an integrated platform where the properties of III-V ma-
terials are best used. We have indeed seen before that the interest around III-V materials
and their integration via different applications. In each case, however, the common point
is that a reliable fabrication process is needed. For micro-structures fabrication, several
processes have been put in place and are needed for such a small structure. Even in the
case of solar panels, as big as they might be, they are fabricated from few inches wafers
and a deposition technique called metal-organic vapour-phase epitaxy (MOVPE) is com-
monly used for this deposition [58, 59]. In the next part, we are going to explore more in
detail the whole production process of such devices.

2.2 Integration of III-V materials

When it comes to the fabrication of structures, different ways are possible. In this chapter,
we are going to see a complete process flow of fabrication from the III-V material growing
to the waveguide patterning. For each step, we will explore different approaches to the
process flow for a better overview, and we will discuss the advantages and the limitations
of each of them.

2.2.1 Material deposition on a substrate

The first step in the fabrication process flow is the deposition of the material. For this
step, we distinguish here three different ways to do it: epitaxy, chemical vapour deposition
(CVD) and manual deposition. Each one is present with its particularities and differences.

2.2.1.1 Epitaxy process

The first method is a direct growth of the desired material on top of a substrate [60, 61].
In the case of this thesis, it is a method that has been used to create wafers for the other
processes that we will see here. It is a common technique, used in general for thin layers
deposition.
There are different ways to grow a material on another. The most common way is epi-

taxial growth, where the crystal is grown along with a certain crystallographic orientation.
We can distinguish two kinds of epitaxial processes: homoepitaxy and heteroepitaxy.
We will not develop too much the first one as it consists of deposition of the same material
as the substrate but with the difference that this new layer can be purer than the substrate
or doped [62].
The second process implies two different materials. In this case, it is important to take
care of the lattice mismatch of the two materials [63]. As it can be seen in fig. 2.5, each
material has its lattice constant that can match with another material or not. If this
constant does not match between the material to be deposited and the substrate, this can
lead to defects in the resulting layer. As they do not have the same lattice constant, there
will be deformation due to the intention of the grown material to match the substrate. It
leads to a mismatch dislocation which induces threading dislocations [64–66]. According
to the size of both mesh, the layer will be either strained (if the lattice constant of the
layer deposited is higher than the substrate one) or relaxed (in the opposite case). It is
also used to voluntarily strain a material because it can lead to some nonlinear effects that
the material will not have naturally [67, 68]. As an example of a correct combination, we
can cite the combination of InGaP and AlGaAs that we will see later which can, in the
correct proportion, be a perfect match.
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There are different epitaxial ways to grow materials. One of the most famous is the
molecular beam epitaxy [69]. It consists of heating a material to produce an evaporated
beam of particles. The material is then travelling in a very low-pressure environment
(lower than 10−10 Torr) to the substrate. The material finally condensates on the substrate
to create the wanted layer. It is a technique that is used to grow crystalline structures
(like III-V materials or silicon) but that cannot be used for amorphous materials (such
as amorphous silicon or SiN). It is widely used for semiconductors fabrication and has
imposed itself as a strong tool in the nanotechnology fabrication field [70].

2.2.1.2 Chemical vapour deposition

Another widely used method for growing semiconductors crystals is chemical vapour de-
position. Different processes have been developed around this basis. These techniques
are commonly used for amorphous silicon and SiN deposition for instance, compared to
the epitaxy technique exposed before, as those techniques allow the deposition of non-
crystalline materials. These techniques are, however, not fully developed for a III-V
material deposition yet but is a subject of study [71, 72]. The first case that we will treat
here is the low-pressure chemical vapour deposition (LPCVD). It consists of a gas trav-
elling inside a chamber at low pressure (commonly few mTorr) and a high temperature
(between 350 and 950 ◦C usually). The gas is undergoing a thermal decomposition on
the wafer, resulting in a new layer. For a Si deposition, usually, SiH4 or SiH2Cl2 are used
while NH3 and N2O are also added to deposit SiN and SiO2 respectively. A scheme of
a typical LPCVD machine is represented in fig. 2.8(a). It is a commonly used technique
for deposition as its conformality is excellent, and it is the only one that allows doing the
deposition on several wafers at the same time resulting in a faster process, even if the
deposition rate is slower than the following two.
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Figure 2.8: Representation of different processes using chemical vapour deposition. The
LPCVD (a) with its gas travelling through the chamber, the plasma-enhanced chemical
vapour deposition machine (b) with the two electrodes and the high-density plasma chem-
ical vapour deposition machine (c) with an inductively coupled plasma.

The other two types of material deposition use plasma. A mix of gases is excited by a radio
frequency (RF) wave at 13,56 MHz to create a plasma from these gases as represented in
fig. 2.8(b) and (c). The plasma, sustaining inside the chamber, is then diffused through the
sheath to adsorb on and interact with the substrate surface. This results in a material
deposition over the substrate standing in the chamber. The products other than the
deposited ones are then extracted from the chamber by a pump. The plasma-enhanced
chemical vapor deposition (PECVD) and high-density plasma chemical vapour deposition
(HDPCVD) differs mainly in the way the plasma is formed. The second case differs as it’s
involving an inductively coupled plasma resulting in a higher density plasma. On another
hand, the HDPCVD requires two RF sources to work: one to create the plasma and
the other to accelerate the ions to the wafer. Also, the operating pressure of a PECVD
machine is between 500 and 5000 mTorr while the one for HDPCVD is commonly between
5 and 30 mTorr. For those three machines, other parameters should be taken into account
of course (temperature, uniformity of the layer...) to determine which one is the best to
use according to the needs.
In the case of this thesis, only LPCVD and PECVD are available. LPCVD is used to
obtain the silicon oxide layer on silicon substrate wafers employed, as it is a fast process
to obtain several wafers. PECVD was used for materials deposition such as silicon oxide
or silicon nitride on our chip for its deposition rate higher than LPCVD for a single chip.
We focused on the epitaxial deposition for now. The next following techniques consist

of direct deposition of an existing material layer on a substrate instead of an atom by
atom deposition.
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2.2.1.3 Physical deposition

The first technique of this kind explained here is the flip-chip technique. The name is re-
vealing the nature of the technique as it consists in flipping the chip to deposit a structure,
commonly a laser, on top of a waveguide [73, 74]. The waveguide is usually physically
maintained with electrical contacts of pedestals [73, 75]. The size of the structure de-
posited with this technique depends on the structure deposited, of course. From what
I’ve read, it usually has an area from hundreds of millimetres square to several tenths of
millimetres square samples. It can also be quite challenging as the alignment is one of
the most important parts of the resulting quality and this alignment can be difficult [76].
This process is also limited by the dimensions of the chip that has to be flipped and the
quality of the surface. However, it is getting rid of the previous method due to the lattice
mismatch that limits the performance.
Another technique that is quite popular nowadays is the bonding technique [77–79].

This involves taking a certain material and putting it on top of a substrate. Both materials
are stuck together thanks to a polymer.
In our case, we usually cleave a part of a III-V wafer to bond on the substrate. The
area of these cleaved dies for the fabrication of a single chip is usually around 1 cm2.
Furthermore, the polymer used is a dilution of benzocyclobutene (BCB) and mesitylene.
The mix is spin-coated on top of the substrate and heated at 150◦C for 10 minutes. Then
the material is deposited on top to finally follow a curing process where the polymer is
heated under a low-pressure environment, allowing to get rid of potential bubbles in the
adhesive layer between the substrate and the material bond. The full curing process that
has been used in the incoming bonded chips fabrication processes is presented in fig. 2.9.

Figure 2.9: Different steps of the bonding technique (a) and representation of the tem-
perature variations as a function of time that occurs inside the chamber under a vacuum
environment (b).

The ratio between both chemicals and the spin coating speed defines the thickness of
the polymer layer between the substrate and the material [80] [81]. Moreover, the optical
properties of BCB are not an issue as our experiments will be in the transparency windows
of BCB and the absorption will start to be troublesome if the wavelength involved is above
3 µm [82] which will never be the case here. It also possesses a low refractive index that is
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comparable to the one of SiO2 [83] which could allow good confinement of the light inside
the waveguides for materials with a refractive index similar to Si.

Figure 2.10: Two AlGaAs bondings a blank silicon wafer (left picture) and on a silicon
wafer with SiN structures. The pictures here are taken after the bonding and after the
over-layers removal process.

The last technique that we will talk about is transfer printing. It is quite a new
technique but that has some advantages since it avoids the waste of material, unlike the
bonding. Indeed, it consists of taking a small part of the material from the original wafer
and depositing it thanks to a stamp on the substrate [84]. We thus understand that the
material size deposited on the substrate highly depends on the stamp size involved. For
instance, the stamp that has been used in our case is a 1 mm long and 60 µm polydimethyl-
siloxane stamp. We understand that it is not as interesting for large structures compared
to the bonding technique. It is however possible to deposit several structures at once with
some stamps [85]. This way, it is interesting for massive production. The material, once
deposited, is holding on the substrate thanks to a polymer such as BCB that we already
know from earlier. It is quite polyvalent as it also enables depositing lasers directly on
top of a waveguide structure [86]. It requires however quite a big thickness as it needs to
be taken by the stamp easily and to not get deformed during the transportation to the
substrate. The steps for this process can be seen in fig. 2.11.
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Figure 2.11: Basics steps of the transfer printing process are shown here to put the
material from its original wafer to a different substrate (a). Successful transfer printing
of semiconductors optical amplifiers on top of SiN waveguides are also shown here (b)

After the deposition of the material on the substrate, the BCB still needs to follow the
same curing process as for the bonding technique.

We have seen here how it is possible to deposit thin layers of a III-V material on a
substrate. For all the solutions that have been exposed there, patterning is required. Even
if it is possible to take structure already patterned with the transfer printing technique [85,
87], this step is always required at some point.

2.2.2 Patterning of the III-V

Once the material is deposited, we would like to give it the shape of the structure wanted.
To do so, we pattern another layer at first, deposited on top of the material.
We can cite two main techniques for the patterning of the materials that are the photo-
lithography and electron-beam (ebeam) lithography.

2.2.2.1 Ultraviolet lithography

The first process involves ultraviolet (UV) light to pattern the medium. It is a well-known
and widely used process called UV lithography. It requires depositing a resin on top of
the material to etch by spin coating, to obtain a uniform layer of resin on the material,
that is sensitive to UV light. The resin deposited will be partially exposed to UV light.
Some parts will be protected by a physical mask designed beforehand and linked to the
nature of the resin used (see fig. 2.12). It is also of interest to mention that some resin
(like the TI35E employed, which is a positive resin) can be fully re-illuminated after the
mask exposure, without a mask this time, to inverse the property of the resin. And so, a
positive resin for instance will use the same mask as a negative one thanks to this extra
step.
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Figure 2.12: UV lithography steps representation for both a positive and a negative resist.

After the illumination step, the chip will be placed in a chemical bath for development.
Thanks to this step, the unwanted part of the resin will be removed, and the final pattern
will be engraved on the resin. This will act as a protective mask for the final etching
process of the material. This kind of lithography is however limited by the optical system
in place. Indeed, the critical dimension (CD) of a structure with this kind of process is
defined as: CD = k1

λ
NA
. Where k1 is a process-related coefficient that is between 0,3 and

0,9 according to the lithography system, λ is the wavelength used andNA is the numerical
aperture as seen from the wafer. The dimension limitation is thus directly linked to the
wavelength, which is a limiting factor. That’s the reason why processes such as extreme
ultraviolet lithography appeared as their wavelength is much smaller and so the critical
dimension is proportionally reduced [1, 88, 89].

2.2.2.2 Electron-beam lithography

Another kind of patterning process which is extremely popular is electron-beam lithog-
raphy. It can theoretically allow reaching structure dimensions below 10 nm where UV
lithography is usually limited to 16 nm. The process is quite similar to the one explained
earlier and presented in fig. 2.12 concerning the mask and the resist. The main differ-
ence, in this case, is that the mask is a computer-aided designed mask, whereas the UV
lithography required a physical mask. The first one is thus much easier to modify quickly
compared to the physical mask. The resin used in this process is also different as it has
to react with electrons and not with UV light.
Finally, the nature of the source employed for the resin patterning is different. In this
process, an electron beam is employed to pattern the resist.
The electron-beam lithography is defined by a writing field, as can be seen in fig. 2.13
which is the area where the device can pattern the resin. If we want to pattern a structure
higher than the writing field, the electron beam will need to ”jump” to another writing
area. During this step, a misalignment between the two writing fields, better known as
stitching, can occur. To correct this kind of misalignment, a solution is to use a fixed
beam moving stage (FBMS) method. In this case, the beam is not moving while the stage
is travelling to pattern the resin. We can see in fig. 2.13(b) and (c) the result for such a
technique compared to a big structure without FBMS for the same structure.
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Figure 2.13: Representation of a writing field for a given structure (a). The result of the
patterning without the use of FBMS results in the presence of stitching (b) compared to
the same structure while using the FBMS process (c).

In the case without using the FBMS technique, we can see that there is no continuity in
the waveguides which correspond to the edge of the writing field. On the other side, while
using the FBMS, the waveguide doesn’t present any stitching.

We’ve seen how we can pattern the resist that is over the material in which we want to
create our structures. After this, we now need to etch the material that is now protected
by a resin mask. However, it is sometimes required to deposit another material as a hard
mask between the material to be patterned and the resin according to the resin properties.
For instance, it is required to deposit a hard mask when using the ARP-6200 resin (which
is a positive resist) but there is no need for such a thing when it comes to the hydrogen
silsesquioxane (HSQ) resin (a negative resin) [90].

2.2.3 Etching

The last step of a waveguide fabrication process is to pattern it. It is now time to give a
shape to our waveguide that will correspond to the needs. Once more, there are different
ways of etching materials.
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The first one is called wet etching. As its name suggests, it involves chemicals to react
with the material and remove the unwanted part. This is done by protecting the part
of the material that we want to preserve. It is commonly the role of the resin from the
patterning process.
When different materials are involved, the element to take into account is the selectivity
of the chemical for a couple of materials. The selectivity is defined as the ratio between
both etch rates of the two materials studied for a given solution. Indeed, each material
reacts differently with a certain chemical. This allows etching a material without hurting
too much the other one. We can consider, for instance, the case of citric acid (C6H8O7)
which, combined with hydrogen peroxide (H2O2) is a great combination for indium gallium
arsenide (InGaAs) (In0.53Ga0.47As to be more accurate) and Indium Phosphide (InP)
wafers as a C6H8O7:H2O2 solution in the 7:1 proportion presents an etch rate around
142,1 nm/min and 0,3 nm/min respectively resulting in a selectivity of 473,67 [91]. We
can notice that hydrogen peroxide is an important element in this solution. This is because
it acts like an oxidizer agent that allows the reaction with the acid agent. That’s why it
usually appears in this kind of process [92, 93].
Although it is a widely used method as it is highly selective and cheap, it can also have
a disadvantage. During wet etching, the process is usually anisotropic as it depends on
the orientation of the crystal [94, 95]. The result is a trapezoidal cross-section as seen in
fig. 2.14. For some materials, the etching can be isotropic [96] but this also leads to a
particular and unwanted cross-section as represented in fig. 2.14. The perfect case would
be a perfectly anisotropic etching as can be seen in fig. 2.14. Other methods have thus
been developed to overcome the wet etching issue, like the dry etching that we are going
to present.

Figure 2.14: Representation of difference between perfectly anisotropic, anisotropic and
isotropic etching for the same sample. In these cases, the material is protected by a
patterned mask beforehand.

The dry etching consists of the use of gases in a low-pressure environment and electrical
stimulation to generate plasma in the chamber. In this case, we can define two main
methods. The first one is the reactive ion etching (RIE) technique and the second is the
inductively coupled plasma (ICP) technique. They are quite similar except for an extra
RF power source used for the ICP machine as can be seen in fig. 2.15. In both cases, the
process consists in placing the chip to etch on a plate that is connected to a RF source.
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Usually, this source is oscillating at a 13,56 MHz frequency with a power of 100 W. This
has the effect to cause the break-down of the molecules in the gas inside the chamber and
so ionizing it. A direct current electric field is then applied to the plate, which leads to
the attraction of the plasma toward it and so the chip. The collision between the plasma
and the surface of the chip will induce an etching of the chip.
The fact that a RF source is added to the ICP process is to decouple the ion current and
the ion energy, allowing a wider range of processes.

Figure 2.15: Difference between the operation of a RIE machine (a) and an ICP machine.

This method is thus widely used as the last step of fabrication, to etch the final structures,
as it allows better control.

To conclude the chapter on the integration of III-V nonlinear materials, we show
in fig. 2.16 some final structures were obtained with III-V material from other research
groups while the structures fabricated in the context of this thesis will be presented later.
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Figure 2.16: We can here see several examples of what is possible with III-V materials
with a waveguide structure (a) from [97], a bullseye resonator[98], a nanolaser made of
photonic crystals [99] and a photonic crystals nanocavity [100]

We have seen here why it is interesting to integrate these alloys in our context due
to their optical properties. We’ve also seen how we can fabricate structures made of
these materials and some results that have already been obtained, which let believe in the
feasibility. In the following parts, we’re going to study the second-order nonlinear effects
in III-V alloys that have been fabricated using methods explained there. The fabrication
processes were adapted to the materials chosen according to our objectives.
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Chapter 3

Second harmonic generation in III-V

nanowires

W e have seen in part 1.2.4 how the SHG process works in integrated platforms. We
especially saw how the second-order nonlinear susceptibility is used with all the

electric fields components of both the pump and SH and we also noted some particular
aspects of the electric field propagation in strongly confined structures in the part 1.2.2.
Combining these two aspects, we can adapt the previous theoretical models 1.10, 1.11
and the second-order nonlinear susceptibility tensor from 1.2.4 to the particular case of
III-V material.
In this chapter, we will first focus on the ternary alloy that is indium gallium phosphide
(InGaP). In our case, it is composed of an equal proportion of indium and gallium which
means that it can be written as In0.5Ga0.5P. For simplicity, we will just call it InGaP
for the rest of this thesis. At first, we will focus on the properties of the material itself,
whether it is in the linear or the nonlinear regime. Both are essential to characterize and
achieve the SHG process. Next, a simulation study will be presented using the theory
developed about SHG in integrated platforms and adapted to III-V materials specificities.
Experimental results will then be presented and the link between them and the previous
simulations performed will of course be done.
Finally, we will discuss another project involving another III-V material that I worked
with. The material is the aluminium gallium arsenide with an equal proportion of alu-
minium and gallium (Al0.5Ga0.5As) that we will simply call AlGaAs for the rest of the
thesis. In this case, the material of the 13th group is either aluminium or gallium atoms
while the material from the 15th group is an arsenic atom. We will see its properties, but
also present the particular fabrication process that it involves. Some simulation results
about the possibility of SHG process have also been obtained and will be presented and
commented on.

3.1 State of the art

We have seen in section 2.1.2 some properties of III-V materials. III-V materials are
attractive for second-order nonlinearities due to their high second-order nonlinear sus-
ceptibility, as can be seen in 2.1, and a high refractive index, similar to silicon, as seen
in fig. 2.6 allowing high confinement of the light. A problem that restrained their usage
is their crystallographic symmetry. Due to their zinc-blende structure, they indeed lack
birefringence which makes phase-matching impossible in bulk material [1]. To compen-
sate for this lack of birefringence, solutions have thus been developed. For instance, it
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is possible to induce an artificial birefringence by creating a multilayer waveguide with
a III-V and another material [1, 2]. Another solution has been to periodically poled the
crystallographic orientation along which the waves are propagating [3]. This way, a QPM
is induced to generate a SH inside the III-V material.
To simplify the fabrication processes of these structures, another solution has emerged:
modal phase-matching (MPM). At a given wavelength, every mode propagates with a
different refractive index. It is thus possible to find a waveguide geometry for which
modes at the pump and the SH wavelength achieve phase-matching [4–6]. It allows
to work with uniform waveguides and just requires finding the correct waveguide pro-
files to achieve the phase-matching condition. This solution is the most used nowa-
days in III-V nanowires [7–10] and leads to normalized conversion efficiency as high as
47000 %.W−1.cm−2 (4000 %.W−1) [8]. These results are way higher than those obtained
via MPM in LiNbO3 waveguides, a reference for second-order nonlinearities. The maxi-
mum normalized conversion efficiency obtained via MPM in LiNbO3 is 650 %.W−1.cm−2

(36 %.W−1) [11]. The results obtained in III-V materials are even higher than the ones
obtained in periodically poled lithium niobate (PPLN) waveguides. In PPLN, the SH
is generated via QPM, a common method for LiNbO3. At the time of the writing of
this thesis, the maximum normalized conversion efficiency reached in this material is
2600 %.W−1.cm−2 (416 %.W−1) [12].
In the following sections, we are going to study the case of MPM, as it presents really
interesting results for SHG, in InGaP material. As seen in table 2.1, InGaP is a III-V
material that shows a high potential for second-order nonlinearities. A comparison with
the current state of the art will also be made to better place this work in the current
context.

3.2 InGaP as a platform

In this part, we will take a closer look at the InGaP material. It is a III-V material that
is used in solar cells [13, 14] and diodes [15] as examples. As far as we are concerned,
the nonlinear properties of this material are the most important characteristics. It is
indeed a fascinating and promising material concerning its nonlinear properties, as we
will develop later. For the needs of our subject, we will mainly focus on the second-order
nonlinearities, but we will also take a quick look at the third-order nonlinearities in this
material for a better overview of its nonlinear properties. At first, let’s develop the linear
properties of this material.

3.2.1 Linear properties

One of the most important things to have a look at in our context is the refractive index of
the material, especially its evolution according to the wavelength. The effective refractive
index, required to achieve the PM condition that we already discussed in section 1.2.4,
depends on the geometry of the waveguide and the refractive index of the bulk material.
For this purpose, we can thus refer to previous studies and find in the literature the
refractive index of the bulk material [16]. It has been measured, by an ellipsometry
method, for a very large wavelength range that InGaP refractive index is following the
curve represented in fig. 3.1.
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Figure 3.1: InGaP refractive index taken from R. Ferrini and al. study [16] as a function
of the wavelength. The wavelength range is limited between 500 nm and 2500 nm for
better visibility and because it is the range of interest for our experiments.

We can see from fig. 3.1 that the refractive index of InGaP offers a high index contrast
with air. This means that InGaP patterned structures allow strong confinement of the
light, which is interesting as it significantly increases the interaction between the light
and the material. We can also note that, in the range of interest delimited in the figure,
the refractive index is comparable to the one of Si that we can also find in literature [17].
On another hand, it is interesting to note that InGaP can exist under two states: an
ordered one and a disordered one [18]. In the ordered case, the indium and gallium
atoms are all aligned in alternating planes with the [1̄11] axis as a symmetry axis. In the
disordered state, the indium and gallium atoms are randomly distributed in the III-atoms
locations as is shown in fig. 3.2. In this last case, we also lose the symmetry of the ordered
state.

Figure 3.2: Ordered InGaP crystal (a) and example of a disordered InGaP crystal (b)

Indeed, the amount of disordering alters the crystal symmetry as the ordered state is
associated with a 3m symmetry class while the disordered state is associated with a 4̄3m
one. This amount of disordering will also have an impact on the bandgap. InGaP is a
material that possesses a large bandgap as can be seen in fig. 2.5. It can however vary
according to its amount of disordering. Indeed, the disordered state possesses a larger
bandgap than the ordered one [19, 20]. In this report, we are studying a disordered state
InGaP material. The value of the material bandgap used is Eg(InGaP) = 1.9 eV, which is
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equivalent to the energy of a photon at a 652.55 nm wavelength. This means that there is
no TPA while we work with a pump wavelength between 1500 and 1600 nm, making it a
very good material for telecom purposes in general as the range used in such applications
is usually between 1530 and 1625 nm (C and L bands). Also, in the case of the SHG
process, this means that there is no absorption at the SH wavelength.

Now that we learned more about some linear properties of InGaP which are essential
in the case of SHG processes, we will be able to find the PM condition of our structure,
as we’ll see later. But first, we are going to take a closer look at the nonlinear properties
of the material to be able to characterize the nonlinear effects that we are aiming for.

3.2.2 Nonlinear properties

The disordered InGaP material, like most of the III-V materials, possesses a 4̄3m symme-
try as we also just remembered before. This symmetry induces some particular properties
that we have already seen in part 2.1.2. As a reminder from this part, the second-order
nonlinear susceptibility tensor dil of InGaP can be simplified like this:

dil =




0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14





In the case of InGaP, the second-order nonlinear susceptibility d14 = χ
(2)
123/132/2 has been

measured to be as high as 110 pm/V [18]. It makes it higher than other materials such as
LiNbO3, a reference when it comes to SHG processes [11, 12, 21] which has a maximum
value of 31.5 pm/V [22]. It is however in the same order of magnitudes as other III-
V materials such as gallium arsenide (GaAs) (119 pm/V [23]) or AlGaAs for instance
(90 pm/V [2]). This makes InGaP, and other III-V in general, very good materials for
second-order nonlinear effects.
To complete the overview of this material, it is also interesting to mention that it can be
an attractive material for its third-order nonlinear effects, such as four-wave mixing, as
well. We can refer to table 2.2 and what has been said around it to understand why InGaP
is interesting for third-order nonlinearities. A high index contrast with air, meaning high
confinement of the light, as well as a higher nonlinear refractive index compared to Si and
SiN makes InGaP an interesting material for third-order nonlinear effects. Just looking
at these, this could signify that InGaP is more interesting, but the current fabrication
processes reveal that Si and SiN are still leading in this field as the linear losses obtained
are still lower in these materials [24, 25].

To conclude about the InGaP material properties, we saw that it has a high second-
order nonlinear susceptibility as well as a high nonlinear refractive index. These coupled
with a high refractive index makes it a great platform for nonlinear photonic experiments.
The bandgap of this material as well as the CMOS compatibility also supports the interest
in this material

3.3 SHG in InGaP nanowires

We have first seen the aspects around SHG and how it is occurring inside integrated
platforms in part 1.2.4. We have also seen different properties and interests of III-V
materials in 2.1. At last, we focused on the specific case of InGaP material to see its
intrinsic properties. Here, we will mix all these elements to see how we can theoretically
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express the SHG process and support our models with experiments. We will here study
two kinds of phase-matching, the type I and the type II that we already exposed in 1.1.1.
To keep the presentation clear and complete in each part, we will focus on the type I SHG
process at first and then the type II case.

3.3.1 Analytical model

In this part, a development of the model for the study of SHG as well as simulations
around it is shown. We have seen in previous parts 1.1.1 and 1.2.4 some aspects of the
SHG process. We saw that parameters like the refractive index and the second-order
susceptibility of the material are crucial elements. We will start to see how we can find
these parameters and others like the linear loss are used to develop the model of the SHG
process in a III-V nanowaveguide.

3.3.1.1 Type I second harmonic generation model

To study the SHG process, we need to determine the evolution of both the pump and the
SH. To do so, we will first start to develop the expressions 1.11 and 1.10 from 1.1.1 in
the context of type I SHG in III-V material. We first consider that the waveguide, along
which the waves are propagating, is aligned with the z-axis of a Cartesian frame (xyz).
In this frame, we express the electric field as a superposition of two modes:

E = a1(z)ea1(r⊥, ω0)e
i(βaz−ω0t) + b(z)eb(r⊥, 2ω0)e

i(βbz−2ω0t) + c.c., (3.1)

where a represents the pump amplitude and b the SH one normalized such that |a|2
and |b|2 are carrying the power of the pump and the SH respectively. The propagation
constants are represented by βa for the pump at the carrier frequency ω0 and βb for
the SH at the carrier frequency 2ω0. The orthonormal vectorial electric profiles of the
modes represented here by ea(x, y, ω0) and eb(x,y, 2ω0) satisfy the usual orthonormality
condition [en(r⊥)× h∗m(r⊥)] .zdA = δnm [26]. We thus adapt the equations 1.11 and 1.10
for this case. The result can be read as:

da

dz
= iκ∗a(z)∗b(z) exp (−i∆βz)− αaa(z), (3.2)

db

dz
= a(z)2κ exp (i∆βz)− αbb(z). (3.3)

The phase mismatch between the pump and the SH is represented by ∆β and is expressed
as ∆β = 2βa − βb, the coefficient αa,b are respectively the linear loss of the pump and
the SH and κ is the nonlinear coefficient defined previously 1.1.1. In our study, we
make the hypothesis that there is no depletion of the pump which allows us to neglect
the parametric down-conversion terms in equation 3.2. This means that equation 3.2
will no longer be dependant on the SH power (which is cancelling the first term of the
equality for the pump) so the pump variations will only be due to the linear loss in the
waveguide. This simplification is possible as the pump power will be much higher than
the SH power. So the fluctuations that could be induced by the SH on the pump are
negligible. This approximation leads to analytically solve the equation 3.3 to express the
SH power Psh = |b|2 like:
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Psh = 4|κ|2P 2p
sinh (ΦL/2)

Φ

2

exp [−(αa + αb/2)L], (3.4)

where Φ = αa − αb/2 + i∆β, L represents the total length of the waveguide and Pp is
the pump power. In the particular case of a lossless waveguide, 3.4 then becomes the
well-known expression Psh = |κLPp sinc(∆βL)|2 about SHG processes from part 1.2.4.
From the expression 3.4 and the classical theoretical expression1.14, we can define an
effective length Leff such as Psh = |κ|2P 2pL2eff when the PM condition is fulfilled. This
leads to:

Leff = 2
exp(−αaL)− exp (−αbL/2)

αb − 2αa
. (3.5)

This effective length, which takes the linear loss into account, represents the length of the
waveguide if this one was lossless. It can also be proved that, by using the Taylor series
for the exponential, when the linear loss tends to zero, the effective length becomes equal
to the length of the material. It may be of interest to look at this, especially when the
linear losses of the structure are non-negligible like in our case, but that will come later.

3.3.1.2 Type I second harmonic generation nonlinear coefficient calculation

The SH power thus depends on different parameters: the length of the waveguide, linear
losses, the pump power, the phase mismatch and the nonlinear coefficient. The length is
already known as we have defined it during the fabrication process. Even if it can change
in the end due to the cleave, it is a physical value that can hardly be accurately changed
afterwards, and it can easily be measured with precision. Linear losses are also intrinsic
characteristics of the waveguide that depend on the fabrication process and material
quality. These losses, therefore, requires an experimental study to be determined. In the
case of the pump power, it can easily be tuned during the experiments. Furthermore,
to obtain the highest conversion efficiency possible in a waveguide, we need to consider
the case of a perfectly phase-matched process by tuning the pump wavelength. This will
put the ∆β value equal to zero. The only unknown parameter to know the SH power
is thus the nonlinear coefficient, which can numerically be evaluated. We know that
this coefficient depends on the overlap between the modes components and the intrinsic
properties of the nonlinear medium. It also depends, as seen in part 2.1.2, on the angle
between the propagation direction of the optical wave and the [100], [010] or [001] axis of
the crystal (depending on the growth direction of the crystal and the patterning of the
waveguide). That’s why we introduce a new frame (x’y’z’) here, like in fig. 2.7 from 2.1.2,
which is the frame of the crystal. It will allow us to define the rotation matrix seen in 2.1.2
to apply to the second-order nonlinear tensor to find its properties along the direction
wanted. As a reminder from 2.1.2, in this new frame, the waveguide will always be defined
as belonging to the x’z’ (010) plane. Indeed, we define the x’ axis as equivalent to the [100]
crystallographic direction while the z’ axis is along the [001] axis of the crystal. Finally,
y’ axis is equivalent to the [010] crystallographic axis and is always collinear to the y-
axis of the waveguide frame. We understand from this definition that, when the waves
are propagating along the [001] axis of the crystal, the x and x’ axis are superimposed.
We will furthermore define the angle θ as the angle between the x and x’ (or z and z’)
axes. We can define the nonlinear coefficient according to this rotation angle between the
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propagation axis and the [001] axis of the crystal such as it has been done in [27]:

κ(θ) =
0ω0

2Na
√
Nb A

χ(2)xyz [(e
x∗
b cos θ − ez∗b sin θ) (eya) (exa sin θ + eza cos θ)

+ (ey∗b ) (e
x
a cos θ − eza sin θ) (exa sin θ + eza cos θ)

+ (ex∗b sin θ + e
z∗
b cos θ) (e

y
a) (e

x
a cos θ − eza sin θ)] dx dy,

(3.6)

where Na and Nb are the normalization constants of the pump and the SH respectively
expressed as:

Nj =
1

2 A
ej × h∗jdxdy.

We can see with this expression how all the electric field components impact the efficiency
of the SHG process. We can particularly notice the importance of the longitudinal com-
ponent in this expression. Indeed, several studies only consider the transverse modes and
neglect the longitudinal one [4, 28], which is crucial when it comes to strongly confined
modes as seen in part 1.2.
This process is now fully expressed thanks to eq. 3.6 coupled with the eq. 3.4, we will

thus now focus on the equivalent development in the type II SHG case.

3.3.1.3 Type II second harmonic generation case

We already know that the type II SHG case is a bit different as there are two pumps fields
to take into account. In this case, we then express the electric field as a superposition of
three different modes:

E = a1(z)ea1(r⊥, ω0)e
i(βa1z−ω0t)

+ a2(z)ea2(r⊥, ω0)e
i(βa2z−ω0t)

+ b(z)eb(r⊥, 2ω0)e
i(βbz−2ω0t) + c.c..

(3.7)

In such process, the previous propagation equations in the waveguide frame (x’y’z’) can
be written as [29]:

da1
dz
= −αa1

2
a1 + iκ

∗

12ba
∗

2 exp (−i∆βz) (3.8)

da2
dz
= −αa2

2
a2 + iκ

∗

12ba
∗

1 exp (−i∆βz) (3.9)

db

dz
= −αb

2
b+ 2iκ12a1a2 exp (i∆βz), (3.10)

where αa1, αa2 and αb are the linear loss coefficients of the respective modes, ∆β =
βa1 + βa2 − βb is the wavenumber mismatch and κ12 is the nonlinear coefficient in the
type II case. We still work under the condition of undepleted pumps, which leads us to
analytically express the SH power as:

Psh = 16 |κ12|2
P1P2

|Φ|2
sinh

Φ

2
z

2

exp − αb
2
+ αa z , (3.11)

where αa1 = αa2 = αa and Φ = αb/2 − αa + i∆β. P1,2 = |a1,2|
2 are the input powers at

the pump wavelength. To maximize the conversion, we set P1 = P2 = P0/2 with P0 the
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total input power of the pump. In this case, we can also define an effective length Leff
expression. By applying the same methodology as before, we find that it has the same
expression as 3.5.
Now that there are three different modes involved, the expression of the nonlinear coeffi-
cient is thus different and reads:

κ12(θ) =
0ω0√

Na1Na2Nb A
χ(2)xyz [e

x∗
b ((e

y
a1e
z
a2 + e

y
a2e
z
a1) cos(2θ) + (e

y
a1e
x
a2 + e

x
a1e
y
a2) sin(2θ))

+ ey∗b ((e
x
a1e
z
a2 + e

z
a1e
x
a2) cos(2θ) + (e

x
a1e
x
a2 − eza1eza2) sin(2θ))

+ez∗b ((e
y
a1e
x
a2 + e

x
a1e
y
a2) cos(2θ)− (eya1eza2 + e

y
a2e
z
a1) sin(2θ))] dx dy.

(3.12)

This concludes the development of the models in both type I and type II PM cases.
The next step is to calculate the nonlinear coefficient from equations 3.6 and 3.12. To do
so, we need to get the components of the modes that are involved in the SHG process.
For this purpose, we use a finite difference eigenmode solver (Lumerical) to simulate our
structure and extract the components of the modes for both the pump (or pumps in the
type II case) and the SH.

3.3.2 Numerical simulations

Numerical simulations are required for the design of the waveguides. Indeed, the imple-
mentation of the models developed earlier allows finding the dimensions of the waveguide
that could offer the best efficiency possible. That’s why the simulations are done for
different widths and heights. It also helps to have a better understanding of the process
and the importance of the vectorial model used to express the optical modes. Indeed, the
results obtained linked to the theoretical models just developed will help us to understand
the impact of each term of 3.6 and 3.12.
The numerical study is performed here for InGaP based waveguides. The profile of the
structures for the numerical simulations is adapted for each type of PM to best match
the actual structure that will result from the manufacturing process. For this reason, we
first analyse an air-clad InGaP nanowire in the case of type I.

3.3.2.1 Type I second harmonic generation

In this case, the simulations are performed for the fundamental TE pump as well as for
the fundamental TM mode at a fixed wavelength of 1550 nm. The simulations have been
performed by looking for MPM between the pump considered and SH higher-order modes.
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Figure 3.3: Type I SH conversion efficiency for a TE fundamental pump mode at a
1550 nm wavelength as a function of the width and the height of an InGaP air-clad
waveguide. The colourmap shows the nonlinear coefficient of the process normalized by
the max value found (κmax = 2816

√
W/m) as a reference and is obtained for an 810 nm

wide and 110 nm high waveguide. The squares represent a waveguide aligned along the
[001] crystallographic axis while the diamonds represent the waveguide at a 45◦ angle
from this crystallographic axis. [27]

From figure 3.3, we can notice that it is for thin waveguides that the conversion efficiency
is the most important. Stronger confinement of the light inside the waveguide is indeed
important to obtain a better conversion efficiency as more power is contained inside the
nonlinear medium leading to a stronger interaction between the two waves. Concerning
the width, the nonlinear coefficient value depends on the nature of the SH higher-order
mode. We can notice that the nonlinear coefficient value increase with the width for
the TM00 and the TM20. It is due to the confinement of the SH inside the structure.
Indeed, for smaller widths, as the height is not important either, the TM modes tend to
propagate around the waveguide and not the nonlinear material. It thus leads to reducing
the nonlinear coefficient. For the TE10 however, the nonlinear coefficient decrease with
the width. It is because the area of the waveguide increase and thus reduce the nonlinear
interaction between the pump and SH modes.
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Figure 3.4: Type I SH conversion efficiency for a TM fundamental pump mode as a func-
tion of the width and the height of an InGaP air-clad waveguide. The colourmap shows
the efficiency of the process normalized by the max value found (κmax = 2021

√
W/m)

as a reference for an 850 nm wide and 290 nm high waveguide. The squares represent a
waveguide along the [001] crystallographic axis while the diamonds represent the waveg-
uide at a 45◦ angle from the [001] crystallographic axis.

In the other case of a TM pump, the first thing to note is that the conversion efficiency
is lower compared to a TE pump case. We can also see in figure 3.4 that we need thicker
waveguides to obtain a high conversion efficiency. This can be explained by the fact that
the TM fundamental mode of the pump is more difficult to confine inside a thin structure
as can be seen in fig. 3.5.

Figure 3.5: Main component of the TE00 (Ex) mode (left) at 1550 nm and main component
of the TM00 (Ey) mode (right) at the same wavelength. Both modes are from an 800 nm
wide and 300 high waveguide.

For the modes shown in fig. 3.5, the effective area calculated for both these modes is
0.26 µm2 in the case of the TE00 mode and 0.42 µm

2 for the TM00. The waveguide
area is 0.24 µm2, meaning that, as it is possible to see in the figure, an important
part of the TM00 mode is propagating around the waveguide and not inside the non-
linear medium. The mode effective area is calculated via the common formula Aeff =
( |E|2dA)2/ |E|4dA [30]) with Aeff the effective area, A the area of the waveguide and
E the total electric field of the mode.
On another point, it is possible to explain why a given PM is possible with a 0◦ angle

and not for a 45◦ and vice versa. It is actually due to the symmetry of the modes involved
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in the process. Indeed, for a given mode with a symmetric x component with respect to
the y-axis, both the y and z components will be antisymmetric [26]. On the contrary,
when the x component is antisymmetric, both the y and z components are symmetric.
And so, if we take a look at the expression for an angle θ between the propagation axis
and [001] axis of the crystal equal to 0◦, the expression (3.6) can thus be written as:

κ(0◦) =
0ω0

2Na
√
Nb A

χ(2)xyz (e
x∗
b e
y
ae
z
a + e

y∗
b e
x
ae
z
a + e

z∗
b e
y
ae
x
a) dx dy. (3.13)

We see that, for a TE fundamental mode, the dominating term will be: ey∗b e
x
ae
z
a. For a

non-zero integral, the y component of the SH electric field has to be antisymmetric along
the x-axis. This is also the case with all the modes found for this particular pump polar-
ization state: TE01 (x component is symmetric), TM30 (y component is antisymmetric)
and TE40 (x component is symmetric). In the case of a TM fundamental pump, the
dominating term will be: ex∗b e

y
ae
z
a. It thus requires this time that the x component of the

SH mode is symmetric for the integral to be non-zero which means that the y component
has to be antisymmetric in this case. Which is the case for the modes found there: TM30
(y component is antisymmetric), TM11 (y component is antisymmetric), TE21 (x com-
ponent is symmetric), TM50 (y component is antisymmetric) and TE40 (x component is
symmetric).
If we now look at the case of waves propagating along a 45◦ angle from the [001]

crystallographic axis, we can see that it becomes quite different. The efficiency, in this
case, can be expressed like this:

κ(45◦) =
0ω0

2Na
√
Nb A

χ(2)xyz e
y
a (e

x
ae
x∗
b − ez∗b eza) +

ey∗b
2
(exae

x
a − ezaeza) dx dy. (3.14)

We see that, for a TE fundamental mode, the dominating term is:
ey∗
b

2
(exae

x
a − ezaeza). The

x component being symmetric, the z component of the pump will be antisymmetric and
so the whole part (exae

x
a − ezaeza) is symmetric. Leading to the fact that the y component of

the SH needs to be symmetric in this case. This condition is fulfilled by the modes found
for this case: TE11, TE30, TM20 and TM00. For a TM fundamental mode, the dominating
term is: eya (e

x
ae
x∗
b − ez∗b eza). The y component is symmetric along the x-axis and thus the

x component of the SH has to be antisymmetric for the process to generate anything.
For the modes found in the simulations, this is actually what is happening: TE30, TM01,
TM40 and TM21.
For a better understanding, examples of the overlap results for a TE fundamental (TE00)
pump for both an angle of 0◦ and an angle of 45◦ from the [001] axis of the crystal can
be seen in fig. 3.6. The SH mode chosen for the PM in the case of a waveguide with a 0◦

angle from the [001] axis of the crystal is the TE01 while the TM20 is chosen for the PM
at a 45◦ angle. The equations 3.14 and 3.13 are applied to both PM to see the difference
and to better understand why the overlap is equal to zero in one case and not the other.

65



Figure 3.6: Example of the overlap result for the PM between the TE00 pump mode
at 1550 nm and two different SH modes. The first PM occurs in a 170 nm high and
610 nm wide waveguide between the TE00 and the TM20 while the second PM is in a
230 high waveguide and 610 nm wide waveguide between the TE00 and the TE01. Only
the elements resulting in a non-zero product are presented here for better readability. We
show the relevant components, the result of the product (and difference) and the final
sum which is the sum of all the terms in the integrals 3.14 or 3.13.

In the example shown in fig. 3.6, we can notice that in a 170 nm high and 610 nm wide
waveguide at a 0◦ angle from the [001] axis of the crystal, the mode product result is
symmetric along the x-axis and antisymmetric in the y-axis. The result of the integration
of such results along both directions is thus equal to zero. On the other hand, for the same
PM with a waveguide at 45◦, the result is symmetric in both directions. This leads to an
integral result different from zero. The same reasoning can be applied in the 230 nm high
and 610 nm wide waveguide case to understand why the conversion efficiency is different
from zero for a waveguide along the [001] axis of the crystal only.
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3.3.2.2 Type II second harmonic generation

For the case of type II PM, we study an InGaP nanowire with a 200 nm top layer of
HSQ. That’s because the fabrication process for the chip involved there is different and
involved HSQ as an overlayer (see 2.2.3 for more fabrication details). In this case, the
pump modes are both the TE and TM fundamental modes at a 1550 nm wavelength.

Figure 3.7: Type II SH conversion efficiency in the case of type II PM as a function
of the width and the height of an InGaP waveguide with an HSQ top layer for a TE00
and TM00 pump modes. The colourmap shows the efficiency of the process by using the
max value found (κmax = 3500i

√
W/m) as a reference and is found for a 605 nm wide

and 295 nm high waveguide. The squares represent the waves propagating along the
[001] crystallographic axis while the diamonds represent the waves propagating at a 45◦

angle. [31]

We are here noticing that it’s not with the thinner structures that the most efficient
generation occurs but for thicker waveguides. This difference is because we need both
a TE and a TM pump at the same time and the TM component of the pump is less
confined inside the structure as said earlier. A thicker waveguide leads to a higher overlap
between the three modes involved which improves the conversion efficiency. Concerning
the symmetry of the modes required for the SHG process, the same analysis as before can
be performed. In the case of waves propagating along the [001] axis of the crystal, the
expression 3.12 will become:

κ12(0
◦) =

0ω0√
Na1Na2Nb A

χ(2)xyz[e
∗x
b (e

y
a1
eza2 + e

z
a1
eya2)

+ e∗yb (e
z
a1
exa2 + e

x
a1
eza2)

+ e∗zb (e
x
a1
eya2 + e

y
a1
exa2)] dx dy,

(3.15)

which, in the case of a TE fundamental mode as the first pump and a TM fundamental
mode as the second one, it can be simplified as:

κ12(0
◦) ≈ 0ω0√

Na1Na2Nb A
χ(2)xyz e

x
a1
(e∗yb e

z
a2
+ e∗zb e

y
a2
) + e∗xb e

z
a1e
y
a2 dx dy. (3.16)

In this case, we see that the most important part of the integral would be e∗zb e
x
a1e
y
a2 as it

involves the two main electric field components for the pump modes chosen. If we only
consider, at first, that term, the result of the integral is non-zero when the z component of
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the SH mode is symmetric. As seen in section 1.2.2.1, it implies that the y component of
the SH mode is symmetric. And its x component is antisymmetric. With these symmetries
conditions, finally, all the integrated terms are different from zero. These terms could thus
increase or decrease the nonlinear coefficient. A condition that is fulfilled by the following
modes: TM01, TE11, TE30 and TM20.
Along the 45◦ angle, the simplified expression of the nonlinear coefficient with the same
pump modes become:

κ12(45
◦) ≈ 0ω0√

Na1Na2Nb A
χ(2)xyz e

∗x
b e
x
a1e
y
a2
− e∗yb eza1e

z
a2
− e∗zb eza1e

y
a2
dx dy. (3.17)

The term e∗xb e
x
a1e
y
a2
seems to be the most important part of the integral as it contains the

x component of our TE pump and y component of our TM one. To obtain a non-zero
value of the integral from this term, it is required for the x component of the SH to be
symmetric as the x component of the first pump and the y component of the second one
are symmetric. It is indeed observed for the modes found in the simulations: TE01, TM30,
and TM11. Furthermore, if we use the symmetry properties seen in section 1.2.2.1, the
symmetry of the x component of the SH involves that the z component is antisymmetric
as well as the y component. Finally, with these symmetry conditions, the other elements
of the integral are also different from zero. They can thus not be neglected and may
increase or decrease the nonlinear coefficient.

To conclude this section, both PM types were studied there and the conversion ef-
ficiency in each case. We show that thin waveguides can lead to more efficient type I
processes. Thinner waveguides are however more difficult to fabricate due to the high
tolerance of the geometry required. Also, fabrication defects (like the roughness) can be
even more troublesome as it leads to higher linear loss. On the other side, we have seen
that the type II case is more efficient for thicker waveguides, making it less sensitive to
these small variations and thus easier to fabricate. Also, we can notice that the most
efficient process is encountered when the waves are propagating with a 45◦ angle from the
[001] crystallographic axis in the type I case while, for the type II, it is the most efficient
when the waves propagate along the [001] crystallographic axis.

3.3.3 Experimental results

In this part, we are first going to take a closer look at the waveguides structures involved
in these experiments. Two different chips have been used for the case of type I SHG with
different structure types. Both of them have been fabricated with a different process, and
we will first see the shapes before going into details into the results. Then, we will see
the setup used for the measurements. Finally, the results obtained will be presented and
discussed starting, as before, with the type I SHG process followed by the type II one.

At first, we are going to take a closer look at the original wafer shown in fig. 3.8 used
for the fabrication of the chips. It is a wafer of 320 nm high of InGaP with two sacrificial
layers of 200 nm each (of GaAs and InGaP) and one substrate layer of 350 µm of GaAs.
It was bonded on a Si substrate with a 3 µm top layer of SiO2 according to the process
already explained in part 2.2.1. A thin layer of SiO2 of approximately 20 nm has been
deposited on the InGaP to increase the adhesion with the SiO2 from the substrate. The
bonding and substrate removal steps were the same for both chips, but the patterning
and etching processes were quite different afterwards.
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Figure 3.8: Representation of the two wafers used for the fabrication of the chips. On
the left, the III-V wafer with all the sacrificial layers and substrate. On the right, the
substrate wafer where the III-V material is bonded.

The first chip that we consider here presents a Z-like shape as seen in fig. 3.9(a). It was
patterned this way to put the cleave direction of both the InGaP (the [101] axis) and
the Si substrate (the [101] axis) along the same axis and to obtain the best conversion
efficiency. Indeed, each crystal has a cleavage plane according to its properties. When
cleaved, the crystal will follow this preferential direction. If the material bonded and the
substrate don’t have the same cleave direction, the main cleave will be along the cleave
direction of the substrate (as it is the thickest layer) but the facets of the bonded material
could be damaged in the process as it will mainly follow its cleaving direction. That’s
why it is useful to cleave the substrate and the bonded material along their cleave axis,
for a better quality of the facets as can be seen in fig. 3.9(b). On another hand, for both
the type I and the type II SHG cases, the best conversion efficiency has been found along
the [001] axis of the crystal with the material thickness that we have (320 nm). It is thus
of interest to propagate along this crystallographic axis. To summarize, it is to improve
the quality of the facets that the waveguide got two parts perpendicular to the [101] axis
of the crystal, while the middle part is to improve the SH conversion efficiency. It also
allows having different propagation lengths along this axis, interesting for the study of
the process as the SH power depends on the propagation length.

69



Figure 3.9: Layout used to pattern the first chip (a). An enlarged view of the facets of the
waveguides is shown in (b). A sketch of the actual waveguide is represented in (c) where
we can also see the different layers of interest. Finally, we can observe the smoothness of
the waveguide edge on (d).

Some rings have also been added to the mask for further experiments in another chapter.
The design should be formed of waveguides with the same straight section length on both
sides of the part at 45◦, but the last cleaving step was tricky to perform and so it was
not possible to have the same length on both sides. Furthermore, both sides should have
a taper but it was only possible to keep one of them as represented on the sketch of
fig. 3.9(c). At the beginning of the waveguides, we got a 5 µm wide and 200 µm long
taper. The absence of taper on a side is a good thing in our experiments. Indeed, the
taper may introduce problems in some cases as it can act like a mode converter [32]. It
is a well-known issue and can be used for this purpose specifically [33]. As can be seen in
fig.3.10, it can be tricky to inject a quasi-TM fundamental pump. We can observe several
crossing points between the TM00 mode and TE higher-order modes. This means that
a mode conversion is possible from the TM00 mode to a TE mode. This will reduce the
amount of power of the TM mode propagating in the following waveguide. This problem
is however absent when it comes to the TE00 mode.
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Figure 3.10: Modes indices for different modes as a function of the InGaP waveguide
width for a 320 nm high material at a 1550 nm wavelength. Only six modes have been
represented here. The TE modes are represented in solid lines while the TM mode is rep-
resented by dashed lines. The crossings between the TM00 mode and the others represent
a possible conversion of energy from this one to other TE higher-order modes

It still is a great asset on the injection side and the mode conversion that we just ad-
dressed could happen for the SH mode, preventing the mode observation. This chip has
furthermore been patterned with HSQ negative resist, a well-known resist for ultra-high-
resolution electron beam [34], resulting in a 200 nm top layer similar to SiO2 and smooth
edges as can be seen in fig. 3.9(d).
From this chip, we first need to extract the linear losses of both the pump and the SH.
Indeed, as seen in the coupled equations systems 3.2-3.3 and 3.10, the linear losses play
an important role in these experiments as they limit the conversion efficiency. In our
case, we use two different wavelengths for our experiments: the pump around 1550 nm
and its SH. We thus need to know these losses for each wavelength as seen in the models.
A common way to extract these losses is to measure the power at the output of the
waveguide with a lensed fibre while knowing the power at the input injected with another
lensed fibre. This way, we can determine the total losses of the system (the linear losses
added to the loss from the coupling between the lensed fibres and the waveguide). In
the case of this chip, due to an unfortunate lack of symmetry induced by the taper, we
cannot assume the coupling loss at the entrance/exit of the waveguide to be equal. This
prevents extracting the propagation loss from the method described above and another
technique has to be used. A way for measuring the linear losses is to measure the diffusion
pattern with a camera placed on top of the waveguides for each wavelength as can be
seen in fig. 3.11(a) and (b). By extracting the intensity measured by the camera, as
the length of the waveguide is exactly known, it is possible to extract the linear losses
of the structure. Indeed, the optical power Pout in W measured at the output of a
medium of a length L with an attenuation a in m−1 from an input power Pin is written
Pout = Pin exp (−aL). By expressing the optical powers in decibels (dB), the expression
becomes Pout(dB) = Pin(dB) − αL with α = 10 log [exp (1) It is thus possible to use a
linear fit from the power extracted and converted in decibels to find the linear loss of the
medium.
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Figure 3.11: Observation of SH from above the waveguide during the SHG process for
a pump coming from the left side (a) and observation of the pump at low power (b).
We can see the SH being generated in the middle part of the waveguide and then being
attenuated due to the linear losses in the final part of the waveguide (a). The SH (c) and
pump (d) intensities measured are fitted with a linear function to extract the linear losses
of the mode. The equations found from the fit are added to the curve and written with
the length L in centimeters.

The linear losses for the pump have been measured to be around 12 dB/cm at the pump
wavelength and 64 dB/cm at the SH wavelength as we can see in fig. 3.11(d) and (c)
respectively.

The second chip is different in shape as it presents a L-like pattern as seen in fig. 3.12(a).
This has been chosen to have different propagation lengths too. We inject the pump from
the shorter length to neglect the nonlinear process along this part and only focus on the
process along the longest part. It has undergone a different fabrication process in the end.
This time, a positive resist has been involved as well as the FBMS technique (see 2.2.2
for more details). A 200 nm SiN hard mask was deposited for the final etching process
step as the positive resist doesn’t provide a protective mask as the HSQ does. After the
etching process, another etching run has been performed to remove the SiN hard mask. It
results in a 20 nm remaining SiN top layer on the InGaP waveguide as represented on the
sketch of fig. 3.12(b). Furthermore, due to a too-small distance between two successive
waveguides, an unequal width of the waveguide has been observed. Indeed, during the
ebeam process and because the waveguides are close, there was a transmission of the elec-
trons when one waveguide was patterned to the neighbouring waveguides. This leads to a
variation of the width and a higher roughness on the sides. This can be seen in fig. 3.12(c)
where the width of the waveguides according to the distance is plotted. Indeed, around
the bending areas, two waveguides (a short and a long one) become close to each other.
That’s where the long waveguide starts being thinner. Also, because the chip has been
bonded at a 45◦ degree angle according to the [001] axis of both InGaP and Si, the facets
are sometimes crooked as can be seen in fig. 3.12(d).
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Figure 3.12: The theoretical GDS file represent in (a) as it should have been patterned.
A representation of the chip is shown on (b) to see how it varies with the propagation.
The real width of the waveguide according to the length is shown on (c). The concerned
waveguides have been coloured on (a) to compare it with the curve. It is also shown with
dashed lines where the width variation is. A scanning electron microscope (SEM) picture
of a cleaved facet is also shown here (d)

To extract the linear losses from this chip, we applied the technique explained before with
a lensed fibre at the input and one at the output. As we got different waveguide lengths
available, it is possible to extract the coupling losses and propagation losses. However, it
is more difficult to evaluate it accurately as the waveguide width is changing during the
propagation and the roughness is quite random for each waveguide. The linear loss is thus
higher in the thinner part of the waveguide, due to a higher roughness, and the linear
loss is different from one waveguide to another due to the randomness of the issue during
the patterning process here. It is not possible to use the same technique as before where
a picture from the top of the waveguide is involved, as the SHG process occurs all along
the waveguide. So, there is no part of the waveguide where there are only linear losses
involved. To evaluate the losses in these waveguides, the usual technique of a lensed fibre
at the input and another one at the output has been used. This way, we can evaluate the
linear losses by assuming that the coupling and collecting sides have the same coupling
loss. A source at the pump wavelength and another one at the SH wavelength have been
used. We finally estimated the linear loss for the pump wavelength around 22 dB/cm
while this value raised to 90 dB/cm at the SH wavelength and the insertion loss due to
the lensed fibre is evaluated at 12 dB. The linear loss measured at the SH wavelength
is probably underestimated as it has been measured for a fundamental mode at the SH
wavelength while a higher-order mode is involved in the SHG process. It is still a good
approximation to evaluate the effective nonlinearity of the process.

Now that the differences of each chip involved in the experiments have been exposed,
let’s take a closer look at the experimental setup used to study the SHG in these structures.
It was the same for both chips and it is presented in fig. 3.13. It has however been adapted
as the first chip has the output of the waveguide at the opposite side of the input one and
the second chip has the output at 90◦ compared to the input of the waveguide.
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Figure 3.13: Experimental setup for the SHG process study. A continuous-wave (CW)
laser goes through a polarization controller (PC) before being injected into the chip thanks
to a lensed fibre (LF). The light is collected with a microscope objective (MO) before
being split by a dichroic mirror (DM). Each wave goes through an imaging lens (L) and
a Glan-Taylor polarizer (GTP). The power is finally measured by a dedicated photodiode
(PD). [35]

With this setup, we can control the polarization of the incoming wave with a polarization
controller. It allows exciting the desired fundamental pump mode in the structure that
will induce the SHG process. The light is then injected inside the waveguide thanks to a
lensed fibre and collected at the output by a high numerical aperture (NA = 0.9) micro-
scope objective. The high numerical aperture allows us to collect a maximum of the light
at the output of the waveguide. It has been chosen to efficiently collect the SH principally.
This microscope objective is part of the imaging system put in place here. The micro-
scope is a MPLFLN100xBDP from Olympus. It has been chosen for its high numerical
aperture and a working distance of 1 mm. This working distance makes it comfortable
to work with because of the space requirements of the mechanical parts. Its 1.8 mm
focal length coupled to the 750 mm focal length imaging lens offers a total magnification
of G = fIL/fMO ≈ 417. The imaging lenses have been chosen as explained earlier to
obtain an important magnification that will allow the mode profiles to be observed. The
pump and SH waves are split after the microscope objective thanks to a dichroic mirror
with a cutoff wavelength at 1000 nm. Both waves will then be measured on a dedicated
photodiode after going through the imaging lens. The photodiode is an indium gallium
arsenide photodiode for the pump as it is sensible to light with a wavelength between 800
and 1700 nm. To measure the SH, a silicon photodiode has been chosen as it can detect
wavelengths in a range from 450 to 1020 nm. This last one has also been chosen as it can
also detect power until -90 dBm, an important point as the SH power detected is low as we
will see later in this thesis. Those photodiodes will be replaced by cameras to observe the
profiles of the modes. The camera used to observe the SH is made of a silicon sensor for
the same reasons as the chosen photodiode. For the pump, however, the camera is made
of an indium gallium phosphide sensor, efficient in the short-wave infrared part of the light
spectrum (from 700 to 2500 nm). Glan-Taylor polarizers, with an adapted coating accord-
ing to the wavelength analyzed, have also been placed on the path of the waves to analyze
the polarization of the outcoming waves as it is a clue on the nature of the mode measured.

3.3.3.1 Type I second harmonic generation

Concerning the first chip, the best result was observed in the 810 nm wide and 320 nm
high waveguide. For this design, the PM wavelength was theoretically found at 1563.3 nm
as can be seen in fig. 3.14(a) and occurs between the TE00 pump mode and the TM30 SH
higher-order mode. The x component of the pump is symmetric along the x-axis, while
the y and z components are antisymmetric along the x-axis. To get an overlap integral
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between the pump and the SH modes different from zero along the [001] axis of the crystal,
the symmetry properties of the SH mode are restricted, as seen in section 3.3.2.1. The x
component of the SH mode is symmetric while the y and z components are antisymmetric.
Considering the numerically computed field components and a propagation along the [001]
axis, a nonlinear coefficient κ of 260i (

√
W.m)−1 is expected.

Figure 3.14: phase-matching in the type I PM case. The effective refractive index is shown
for both the pump and the SH. The associated Poynting vector is also shown here. The
figure on the left corresponds to the first chip while the second chip is associated with the
one on the right.

At first, a wavelength sweep has been performed with the pump laser to find the PM
wavelength. It has been found at 1550 nm as shown in the fig. 3.15(a). It was only
observed, thanks to the camera put on top of the chip, along the [001] axis of the crystal
as it can be seen in fig. 3.15(b). We can also see some fast oscillations on the experimental
results due to a Fabry-Perot effect. Indeed, the two facets of the waveguides act as mirrors
in this case. The free spectral range (FSR) of those oscillations has been measured to
be 75 pm which is equivalent to a 4.6 mm long waveguide. This result is compatible
with the actual length of the waveguide measured to be 4.4 mm. We also observed, while
performing a wavelength sweep, that the SH pattern was changing and took a shape close
to the theory seen in part 1.1.1. It revealed some points of the SH power as a function of
the wavelength measured as can be seen in fig. 3.15(b).
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Figure 3.15: Normalized SH power as a function of the wavelength (a). The experimental
results are represented here and superimposed to the theoretical results from equations
3.4 and top pictures of the illumination of the waveguides during the SHG process (b) for
different input wavelengths as numbered in figure (a). Enlargement has been performed
on a part of the sinc shape curve and can be seen in the inset to show the oscillations. [35]

Thanks to the eq. 3.4, we can determine the absolute square value of the nonlinear coef-
ficient from the pump and SH power, the length and linear losses of the waveguide and
the phase mismatch between the pump and the SH. The fact that we can only extract
the absolute square value is the reason why we got the absolute value of the nonlinear
coefficient. The measurements of the nonlinear coefficient are performed in the case of
∆β = 0 as it is more convenient. The pump power used for this measurement is 2.5 mW
while the SH power measured is in a range of 0.5 nW to 2 nW depending on the waveguide.
The injection loss is estimated to be 12 dB while the collection loss has been neglected as
a high numerical aperture (0.9) microscope objective is used. For the waveguide consid-
ered, the absolute value of the nonlinear coefficient measured in this waveguide is around
7.75 (

√
W.m)−1, way lower than the theoretical absolute value of 260 (

√
W.m)−1. On

another hand, the fig. 3.15 shows that the width of the function linked to the wavelength
sweep measured experimentally is in good agreement with the theory. On the other hand,
the SH collection wasn’t efficient enough to calculate a convincing conversion efficiency
because of the angled facet (see fig. 3.12(d)). This last point added makes it a very difficult
structure to efficiently study both the conversion efficiency and the SH mode profile.
The second chip has a different width from the first one. From this chip, we were able

to extract results from two different waveguides. The first one is the shorter waveguide
(0.4 mm long) of the two while the other one is 1.9 mm long. The waveguide profile used
is a 600 nm wide waveguide now for the same height, 320 nm. With this width, a PM
wavelength is theoretically found around 1590.0 nm between the mode TM00 at the pump
wavelength and the TM11 mode at the SH wavelength as can be seen in fig. 3.14(b). The x
component of the pump is antisymmetric along the x-axis, while the y and z components
are symmetric along the x-axis. Concerning the TM11 SH mode, the x component is
symmetric along the x-axis while the y and z components are antisymmetric along this
same axis. This allows the overlap integral to be different from zero along the [001]
crystallographic axis. A nonlinear coefficient of 57i (

√
W.m)−1 is expected for a waveguide
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along the [001] axis of the crystal for this couple of modes. As it was mentioned before,
the width of these waveguides isn’t constant during the propagation. The exact width
and length has been measured and can be seen in fig. 3.12(c). As expected, the SHG
process only occurs when the width of the waveguide is narrower. If we wanted to see
the SHG process in the wider part of the same waveguide, we should have significantly
increased the wavelength, which was not possible with the source used. On another side,
the polarization of the SH has been measured and it reveals the predominance of the TM
components. In the shorter waveguide, we measured the absolute value of the nonlinear
coefficient to be 27 (

√
W.m)−1 which is lower than the theoretical value of 57i (

√
W.m)−1

but still of the same order of magnitude.
We then replaced the SH photodiode with a CCD camera to take benefits of the imaging
system and try to measure the mode profile of the SH mode. The result is a bit deformed
compared to the theoretical modes. Indeed, as can be seen in fig. 3.16, the aspect ratio
seems different as it looks larger in height. Also, the separation between all the lobes is
not clear. The aspect ratio deformation is the reason why we also performed a measure-
ment of a fundamental mode at the SH wavelength with a suitable laser. We can see in
fig. 3.16 that the aspect ratio for a fundamental mode is also different from the theoretical
expectations. The waveguide being only 320 nm high, at the SH wavelength, it is not
possible to have a satisfying resolution due to the circular aperture of our system. To
be more explicit, we are working here with a microscope objective that has a numerical
aperture of 0.9 as we already said before and a 1.8 mm focal length. This means that
the effective aperture diameter of the microscope is 3.24 mm. With this equipment and
for this process, the Airy disk will have a radius around 525 nm at the SH wavelength.
We, therefore, understand that it is not that troublesome in the horizontal orientation as
the waveguide is 600 nm wide, but it becomes a problem in the vertical orientation as it
is only 320 nm high. Simulations of the imaging result that can be expected from our
system with the modes considered in our measurements in fig. 3.16.
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Figure 3.16: Pictures of the modes theoretically obtained from a mode solver (first column)
for a fundamental mode, the Ey and Ex electric field components of the mode SH mode
involved in the process in the second chip. The fundamental mode has been obtained
thanks to a laser at the SH wavelength.

As we can see, the result obtained during the experiments is predictable when we take
into consideration the resolution limit of the imaging system.
In the case of the longer waveguide, the absolute value of the nonlinear coefficient has been
measured to be as high as 68 (

√
W.m)−1 for the same process. This value is, this time,

a bit higher than the theoretical one but we are still in the same order of magnitude. It
could be imputed to an overestimation of the linear losses for this waveguide as we already
said that it was difficult to accurately define with those waveguides. The mode profile
was also measured as can be seen in fig. 3.16, and the result for the vertical component is
significantly close to the theoretical one knowing that we can’t resolve perfectly the SH
mode. All these results put together are really convincing proof of the necessity of the
vectorial model around type I SHG in integrated structures. We have also shown some
theoretical results around SHG especially around the PM with the different shapes of the
light inside the waveguide (see fig. 3.15).

3.3.3.2 Type II second harmonic generation

We will now focus our study on the type II SHG process. The experiments for this
specific case were only performed in the first chip presented. An 850 wide and 320 nm
high waveguide is used so the PM aimed is among the most efficient conversion efficiency
possible if we refer to fig. 3.7. It occurs between the TE00 and TM00 pump modes and
the TM01 SH mode. The TE00 mode presents a symmetry of its x component along the
x-axis while the y and z components are antisymmetric. The opposite goes for the TM00
mode as its x component is antisymmetric along the x-axis and the y and z components
are symmetric. Therefore, to have an overlap integral different from zero, the SH mode
needs to have a x component antisymmetric along the x-axis and both other components
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symmetric. Which is a condition fulfilled by the TM01 mode as presented in section 3.3.2.2.
In this case, the theoretical nonlinear coefficient is κ12 = i3200 (

√
W.m)−1. As the height

of our waveguide is a bit different from the point in the figure for the same width (325 nm),
the PM wavelength expected for our structure is around 1536 nm as seen in fig. 3.17 instead
of 1550 nm for the theoretical figure.

Figure 3.17: phase-matching in the type II PM case. The effective refractive index is
shown for both pumps, the SH and the average of the pumps to better notice the PM
point. The Poynting vector is also added to the associated wave. [31]

It has been measured that the maximum SH power is measured when the polarization of
the pump is constituted of a TE and a TM component. The polarization axis of the Glan-
Taylor polarizer is at 45◦, a sign of a type II SHG process. To confirm that, a comparison
of the SH power at the output of the waveguide for three polarization states of the pump
is performed and the result can be seen in fig. 3.18. The pump power is equal to 25 mW
for this experiment (which correspond to a pump power of 3.8 mW before the part of the
waveguide along the [001] crystallographic axis). Concerning the SH power, it has been
calculated to be equal to 2 µW, in the optimal case, after the part of the waveguide along
the [001]. We can see that, as expected, there is almost no SH power for a quasi-TE or
quasi-TM pump and that it becomes way more efficient when the pump is in both states
at the same time. A power sweep has also been performed as is shown by the inset of
fig. 3.18. A slope of 2 with a logarithmic scale is measured, which is expected for this kind
of process. The nonlinear coefficient, measured in the case of a phase mismatch between
the pump and the SH equals 0, from this experiment is around κ12 = 500 (

√
W.m)−1 which

is lower than the theoretical value of 3200 (
√
W.m)−1 expected. This can be explained

by higher linear losses than expected, as explained earlier. Indeed, the linear losses have
a huge impact on the result as it has been shown with eq. 3.5. It could also be the result
of an overestimated efficiency of the collection part of the setup than it is.

79



Figure 3.18: Representation of the SH power as a function of the wavelength for three
different polarization states of the pump: quasi-TE, quasi-TM and an equal mix of both.
The theoretical curve obtained from the expression 3.10 with a nonlinear coefficient of
500 (

√
W.m)−1 has been added to the curve. The SH power as a function of the pump

power in the case of a perfect PM is also shown in the inset and fit with eq. 3.11 for the
same nonlinear coefficient. [31]

For this experiment, a measurement of the profile of the SH has also been tried. As
discussed earlier, due to the limitations of the optical system, it seems impossible in the
current configuration to see the SH mode present in fig.3.17. As there is only a visible
zero along the y-axis of the waveguide, the lobes of the mode are not in the resolution
domain. An attempt of an imagery measurement from both sides of the waveguide is
made to see if it is nevertheless possible to extract any information from it. If we want
to take a look at the mode profile from the taper, as discussed before, a mode conversion
can occur. The overlapping point of the refractive indices can be seen in fig. 3.19.

Figure 3.19: Refractive index for different modes as a function of the waveguide width at
a 775 nm wavelength. Only seven modes have been represented here. The TM modes are
represented in dashed lines while the TE modes are solid lines. The crossings between
the TM01 mode and the others represent a possible transmission of energy from this one
to other TE higher-order modes

This phenomenon is indeed observed during a measurement with the Si camera and cap-
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tured as it is shown in fig. 3.20. The mode expected is completely different from the
expected one and, from what we just saw, it seems clear that it has been converted from
the expected mode to another one. While trying to observe the mode from the side
without taper, it has been confirmed that the imaging was impossible as can be seen in
fig. 3.20. The result observed can’t confirm the SH mode from its profile.

Figure 3.20: On the left, we can see the theoretical mode profile that is involved in the
SHG process and found previously from the simulations. In the middle is a picture from
a camera taken at the output of the waveguide without the taper. On the right is the
same measure but from the tapered facet of the waveguide. The scale for this last picture
has been divided by two for better visibility.

Even if this last measurement is not possible in the current configuration, the other results
coupled tend to prove the theoretical expectations, except for the efficiency. As we said,
the losses limit the conversion efficiency in our experiments. One way to check this is by
applying equation 3.5 for the linear loss of chip 1 with the dimensions of our waveguide,
we find an effective length equal to 700 µm for a 1.43 mm long waveguide. If we come
back to the first experiment with the type I PM, the effective length for the shorter
waveguide of 0,4 mm results in 0.29 mm while the longer one of 1,9 mm long results in an
effective length of 0,46 mm. We thus cannot take advantage of the full potential of the
waveguides used. It is quite clear that the linear losses are a big deal in these experiments.
A better fabrication process could lead to fewer losses and will be better for this kind of
experiment. The difference between the simulations and the theory could also be imputed
to the uncertainty of the collection power at the output. As it is really sensitive to the
facet at the output, a bad cleave, in this case, can lead to different results.

3.3.3.3 Summary of the results

To summarize the previous results obtained, we can compare them to the state of the art
from 2.1.1. For easier comparison, the following table grouped the results. Two different
efficiencies, usually found in the literature, have been reported here: the normalized
conversion efficiency expressed in %/(W.cm2) and the conversion efficiency expressed in
%/W. They both have different physical meanings. The normalized conversion efficiency
(equals to |κ|2) represents the process efficiency (material potential and modes overlap),
while the conversion efficiency (equals to Psh/P

2
p ) considers the waveguide properties

(length and linear losses). This last one thus depends on the fabrication process quality.
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Material

Pump Normalized Conversion

Reference
Phase-matching wavelength conversion efficiency

type
(nm)

efficiency
(%/W)

(%/(W.cm2))

AlGaAs
MPM (type I)

1560 1202 86.9 [10]
1536 30 0.7 [5]

MPM (type II) 1583 13.8 21.9 [4]

GaAs MPM (type I)
2010 13000 250 [7]

1968-1979 47000 4000 [8]
GaP MPM (type I) 1270-1360 0.4 0.009 [9]

InGaP
MPM (type I)

1550 0.601 0.0015
1572 7.29 0.0063 This
1566 46.24 0.0968 work

MPM (type II) 1536 2500 12.28

LiNbO3 MPM (type I)
1546 650 36 [11]

1520-1580 41 0.37 [28]

PPLN QPM
1510-1620 2600 416 [12]
1530-1580 1900 17.73 [36]
1540 4600 4.14 [37]

Table 3.1: Comparison of the conversion efficiency in nanowires for different materials.

In table 3.1, we can see that the efficiencies I obtained in this work are below what is
already done concerning the type I phase-matching case. When it comes to the type II
phase-matching case, the normalized conversion efficiency is larger than what is done in
GaP, AlGaAs and LiNbO3. The result is also in the same order of magnitude as what is
obtained in PPLN, a widely used material for SHG. The results are, however, an order
of magnitude under current records obtained in GaAs, which is another III-V material.
The bandgap of GaAs is, however, equal to 1.424 eV as we have seen in fig. 2.5. It is
such that the SH wavelength has to be over 871 nm not to be absorbed by the material.
That’s why a pump wavelength of around 2 µm is used for GaAs [7, 8]. It means that
GaAs is not suitable for telecom wavelength applications compared to the other materials
in table 3.1.
As we have seen in our previous experiments, linear losses are a limiting factor. If we
could get rid of these, it would significantly increase the conversion efficiency. Considering
the type II case, which is the most efficient experiment performed in this chapter, the
conversion efficiency would indeed rise to 51.12 %/W. Furthermore, we said that, in
theory, we would expect a nonlinear coefficient equal to 3200 (

√
W.m)−1. This value

leads to a normalized conversion efficiency of 102400 %/(W.cm2). In the case of our lossy,
1.43 mm long waveguide, it would lead to a conversion efficiency equal to 501.76 %/W.
Moreover, in the perfect case of a lossless waveguide, the conversion efficiency becomes
equal to 2093.98 (

√
W.m)−1. In this perfect case, we are in the same order of magnitude

than the actual record in GaAs [8]. As we said, the normalized conversion efficiency takes
care of the material potential, and the modes overlap. InGaP material presents a high
potential as it has a high second-order nonlinear susceptibility (110 pm/V for the record).
In the end, the most important issue seems to come from the experimental overlap between
the pump and the SH. Inhomogeneity of the dimensions could explain this issue. It is
proof that a good fabrication process is required to increase conversion efficiency.
We could also wonder what would be the conversion efficiency in the case of a better
mode overlap than the ones we experimentally got. By this, I mean if the nonlinear
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interaction occurs between fundamental (TE or TM) modes for both the pump and the
SH. To do so, we need to ignore the PM condition for a while and just focus on the
modes overlap. For this, we consider the dimensions of the waveguides used in the pre-
vious experiments. Concerning the first experiment in an 810 nm wide and 320 nm high
waveguide, we calculated a theoretical normalized conversion efficiency along the [001]
crystallographic axis equal to 676 %/(W.cm2) at a 1563.3 nm wavelength. If we now
consider an interaction between the TM00 pump mode and the TE00 SH mode, which is
the most efficient interaction found, considering only fundamentals modes, at the same
wavelength and along the same crystallographic axis, the normalized conversion efficiency
drops to 56.73 %/(W.cm2). If we propagate along the [101] crystallographic axis, however,
we calculate a normalized conversion efficiency equal to 264072.65 %/(W.cm2) between
the TE00 pump mode and the TM00 SH mode. By applying the same methodology to
the other waveguides dimensions, we find for the 600 nm wide and 320 nm high waveg-
uide a conversion efficiency equal to 1274.49 %/(W.cm2) for a TM00 pump mode and
the TE00 SH mode along the [001] crystallographic axis at a 1590 nm wavelength. As a
reminder, the theoretical normalized conversion efficiency for the previous experiment is
32.49 %/(W.cm2). Along the [101] crystallographic axis, the normalized conversion effi-
ciency is as high as 349043.46 %/(W.cm2) between the TE00 pump mode and the TM00
SH mode. Concerning the type II PM case, the waveguide is 850 nm wide and 320 high.
A PM was found at a 1536 nm wavelength between the TE00 and TM00 pump mode and
the TM01 SH mode. The theoretical conversion efficiency for this interaction is equal to
102400 %/(W.cm2) along the [001] crystallographic axis. Considering only fundamen-
tals modes, the best conversion efficiency at this wavelength has been found between
the TE00 and TM00 pump modes and the TM00 SH mode. In this case, the normalized
conversion efficiency is equal to 23.41 %/(W.cm2). Along the [101] crystallographic axis,
however, the maximum normalized conversion efficiency has been calculated to be equal
at 155946.01 %/(W.cm2) between the TE00 and TM00 pump modes and the TE00 SH
mode, which is the same order of magnitude as the theoretical normalized conversion
efficiency considered in the previous experiment. We can thus note that, along the [001]
crystallographic axis, the best-normalized conversion efficiency isn’t necessarily for fun-
damental modes. This proves the impact of the longitudinal component as a better mode
overlap doesn’t lead to better normalized conversion efficiency. However, propagation
along the [101] crystallographic offers a better normalized conversion efficiency with the
fundamental modes. It could be explained by the components of the modes involved in
the nonlinear overlap 3.14. By taking a closer look at the type II PM case, the modes
used in our experiments result in a normalized conversion efficiency similar to the case
with fundamental modes. It was indeed the most efficient interaction as shown in fig. 3.7.

We saw in this part the development of an analytical model to express SHG process in
nanowires. We have been able to compare the two different PM cases with their operating
method and efficiency. Type II has presented itself as the most efficient case here and
also allows working with thicker structure which may be less restrictive regarding the
fabrication process. We have tested these models through experiments. For instance, we
measured the polarization of the modes, the SH power as a function of the wavelength as
well as a function of the pump power and the mode profile in the type I case. The results
obtained are really convincing and promising. It has also been explained that the most
limiting aspect is the linear loss of the medium. With lower linear losses, we could be
able to achieve more significant conversion efficiency.
We will now see another usage of another III-V material via a different project. It comes
from a collaboration in which I participated as a manufacturer of the chips and also
provides some simulations about SHG.
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3.4 AlGaAs as a nonlinear platform

During my PhD, I worked on another project for the Technical University of Denmark
(Danmarks Tekniske Universitet) (DTU). For this project, the light is first coupled, thanks
to a grating coupler, inside a silicon nitride (SiN) waveguide. The light is then coupled
to a III-V material (AlGaAs in this case) to benefit the nonlinear effects. We also first
benefit from the low linear losses of the SiN at the beginning and better manufacturing
processes of this material.

3.4.1 Properties

We already know from table 2.1 that AlGaAs as a nonlinear susceptibility χ(2) equals
180 pm/V [2] which is close to the InGaP one (220 pm/V). Besides, we can see the
refractive index as a function of the wavelength for this material in fig. 3.21 [38]. It
also possesses a bandgap around 2 eV which makes it also insensitive to TPA at telecom
wavelength. Furthermore, studies show that it is a very interesting material for third-order
nonlinear experiments [39].

Figure 3.21: AlGaAs refractive index from the literature [38] as a function of the wave-
length. The wavelength has been limited between 500 nm and 1900 nm for better visibility
and because it is the range of interest for our experiments.

It is a material quite similar to the material that we’ve studied in the previous section,
but the projects involved there are completely different in the first place. As a part of a
collaboration with DTU, we have studied the feasibility and the efficiency of SHG process
in their structure.

3.4.2 Fabrication process particularities

The fabrication process around AlGaAs is different from the last one because it involves
more steps due to the particularity of the project that we discussed a bit earlier. In this
case, we don’t bond the III-V material on a blank substrate, but we have to bond it on
an existing chip with already existing patterns. The first step therefore includes some
processes on this chip to make it ready to host the AlGaAs. The part of the chip that
we are interested in (in the orange rectangle in fig. 3.22) is composed of SiN straight
waveguides (and spots) in which the light is injected thanks to grating couplers. The idea
here is to first take advantage of the very low linear loss and nonlinear potential of the
SiN [40–42] to inject the light and propagates and then use inverted tapers to couple the
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light from the SiN waveguide to the III-V material bonded on top of the SiN waveguide
and patterned as wanted [43]. This way, we take advantage of the nonlinearity of the
III-V material and are less restricted by the linear loss of it. For this to be efficient, the
distance between both waveguides needs to be small. As we can see in figure 3.23, the
SiO2 layer on top of the SiN is quite thick. So, the first thing to do is to reduce the SiO2
layer for a good energy transfer. To do so, a RIE machine is used with an O2andSF6
recipe to reduce this layer up to approximately 500 nm. The recipe being well known in
Ghent university cleanroom, the etch rate to know how long the sample can be left inside
the machine is 300 nm/min.
Then, we need to open the markers on the chip (shown by green rectangles in fig. 3.22).
This means that we locally remove the SiO2 on top of these markers. This need to be done
early for the last patterning step. At the very end of the process, the III-V material that
we deposit will have to be patterned at specific places and these markers are references
for the ebeam machine. For the machine to be able to perceive them, we have to open
them as the layer on top of them can be too thick and thus shift the alignment of the
III-V patterning.

Figure 3.22: GDS file of the SiN chip used for the project. It shows the region of interest
for the bonding of the III-V in orange, the UV markers in green and the ebeam markers
in yellow.

As it is the same material that hides the markers as the first removed one and which is
still present in lower proportion, we need to protect the rest of the chip to only process
on the markers. To do so, we use the UV lithography process, as seen in 2.2.2, with
a custom mask specific to the SiN chip. Once it has been performed, a hydrofluoric
acid (HF) solution is used to remove the SiO2. The etching process will be followed at
different times thanks to a profilometer to be sure to etch the correct amount of SiO2. The
markers finally opened, we then need to bond the III-V material on top of this chip. We
will apply the bonding process already developed in the 2.2.1 part but skip the deposition
of SiO2 on the III-V material as several tests performed at DTU have shown that it is not
required. The adhesive solution is composed of BCB and mesitylene in the proportion 1:8
to have a 50 nm final layer of BCB between the chip and the III-V material.
Once the bonding is performed, we have to perform the substrate removal step. This
part of the process is the most critical here. The AlGaAs layer is attacked on the side
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by the solution used to etch the GaAs layers, leading to a complete disintegration of
the material. To solve this problem, wax was spread all around the bonded material to
protect the AlGaAs layer from the solution. To remove the first 350 µm GaAs substrate
layer, we used a solution of nitric acid (HNO3), hydrogen peroxide (H2O2) and deionized
water in the proportion 1:4:1. The etch rate of this solution is around 4 µm/min. For the
following 150 nm InGaP sacrificial layer, I used a pure solution of hydrochloric acid which
has an etch rate of 400 nm/min. Then comes another sacrificial layer of GaAs which is
300 nm thick. To remove it, we can’t use the same solution as before as the etch rate is
too important. This time, we, therefore, used a citric acid-based (C6H8O7) solution with
hydrogen peroxide in proportion 4:1. The etch rate of such a solution is 400 nm/min.
Finally, the final sacrificial layer of 30 nm of InGaP is removed using a pure solution of
hydrochloric acid.

Figure 3.23: Representation of the main steps of the fabrication process for the AlGaAs
project.

Figure 3.24: Picture of the final result of the chip taken with a microscope (a) and cross-
sections of the chip to see the thicknesses of the different layers (b)
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Once the bonding is done and promising, the chips are sent to DTU for the patterning
and etching part of the chip. The structure finished, we took a look at possible SHG PM
with the structures designed by the DTU team.

3.4.3 Simulations

In this section, we will see the simulations performed for the structure in AlGaAs. There
are three particularities to take into account in this case. The first one is that, due to the
grating coupler used for the injection, it is only possible to couple the fundamental TE
pump inside the structure. We thus limit our simulations to this mode. The second point
to take into account is the possibility to bury the AlGaAs structure. Both cases are thus
taken into account: when there is no cladding around the AlGaAs layer and when there
is a SiO2 cladding as it can be seen in fig. 3.25(a)-(b). Finally, the third thing to keep in
mind is that to take advantage of all the places available, sometimes the structure is not
on top of SiN but, on top of SiO2 as represented in fig. 3.25(c)-(d). The coupling region
of the III-V is still on top of SiN but the main structure is not necessarily. It doesn’t
change anything for the fabrication process, it’s just more structure in another place than
the first targeted one to increase the number of structures available in the end.

Figure 3.25: Representation of the four configurations possible for the simulations with
AlGaAs. There is the case with SiN under the AlGaAs ring, where no SiO2 has been
deposited after the dry etching process (a), the top layer of SiO2 is due to the use of HSQ
for the ebeam lithography process. There is the case where some SiO2 has been deposited
and the structure is now buried (b). There are also the cases where SiO2 is under the
AlGaAs ring, where the structure is not buried (c) and where it is buried (d).

The simulations have been performed for a wavelength from 1500 nm to 1600 nm,
following the possibilities of the grating coupler which also act as a filter. All the results
of the simulations as explained there are reported inside table 3.2.
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Configuration
Width phase-matching κ

(nm) wavelength (nm) (
√
W.m)−1

400 / /

450 1543.38
-0.6
139.9

SiN under and
500

1566.74 -91.99
SiO2 cladding 1588.46 51.81

550
1552.00 42.13
1583.11 67.75

600
1530.00 36.94
1594.50 -53.69

400 / /
450 1545.85 -1.26i

SiN under and 500 1583.29 -98.84
SiO2 on top only 550

1572.30 63.07
1597.54 63.57

600
1501.99 -16.63
1540.69 50.84

400
1500.00 -3+2.5i
1514.42 114.88

450 1545.76
-0.21
65.75

SiO2 under and 500
1568.98 42.68

SiO2 cladding 1591.37 -13.46

550
1553.40 12.66
1585.21 31.13

600
1530.00 26.30
1596.49 24.52

400
1526.52 -0.88i
1536.07 -268.59

450
1549.24 146.5

SiO2 under and 1565.67 -0.51
SiO2 on top only 500 1586.52 -99.33

550 1574.36 -28.52

600
1502.60 -16.76
1541.78 26.69

Table 3.2: Phase-matching wavelength and efficiency for different widths and in the four
configurations possible for the project analysed

We can see there that there is some interesting PM possible to achieve in these struc-
tures. For instance, the 400 nm wide waveguide with SiO2 on top and under is fascinating
as it appears to be efficient and at a wavelength that is easily reachable by common lasers.
The results have been communicated, and the study is still under process at DTU.

In this chapter, we studied in detail the SHG effects in nanowires waveguides and
confirmed the theoretical models developed by experiments. The results obtained are
showing a good agreement with the theory and are very encouraging in the understand-
ing and the development of efficient SHG in III-V structures. We showed, in particular,
the need to use a vectorial definition of the electric fields for such a process in strongly
confined waveguides. The observation of the modes profiles and their comparison with
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the theoretical ones, the SH power measured for a pump wavelength and power are all
evidence supporting the models here. We also noticed the burden that is linear losses in
our experiments and, with further engineering and fabrication development, a stronger
conversion efficiency could be obtained. On this point, another way to increase signifi-
cantly the conversion is to use another kind of integrated structure: the ring resonator. It
is with this objective in mind and a better understanding of the physic behind the process
that the following studies have been done.
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Chapter 4

Second harmonic generation in III-V

nanorings

T he principle behind a resonator is that a light wave travelling inside will be resonant
if its optical path length is equal to a whole number of its wavelength. If this

condition is respected, it will result in a wave propagating in the resonator. Resonators
can exist in different forms. One of the most common forms is the bulk-optical resonator.
It is indeed the basics of lasers [1–4].
The emergence of integrated photonics has also brought resonators to its panel of elements.
Microring resonators are elements that can be used to act like a wavelength filter [5, 6]
and are a great asset in the integrated photonics world [7]. They are useful in different
applications such as modulators [8], lasers [9] or chemical sensors [10] to name just a few.
In this chapter, we are going to see why and how we can use ring resonators for SHG with
III-V materials.
To do so, a brief explanation of the fundamentals of ring resonators and how we can use
them in the context of SHG will be presented. We will then put this topic in the particular
case of III-V materials.
Then, we will focus on a III-V material that has not been presented yet: GaP. We will
use its relevant properties in numerical simulations thanks to the theory defined.
Finally, experimental results obtained from a GaP platform results will be presented.

4.1 Nanorings theory

In this part, we will start to see the general theory about nanorings to better understand
them and the experimental results presented later. Then, the focus will be on the second-
order nonlinear effects in such a structure and, finally, we will apply this theory to III-V
material to see how it reacts in such particular geometry.

4.1.1 Nanorings fundamentals

A ring resonator is an element that is known for its filtering abilities. It is first defined
by a FSR which is the spectral spacing between two successive resonances and that is
linked to its physical parameters and properties of the medium. Indeed, the FSR of a
ring resonator is expressed as:

FSRν =
c

ngL
, (4.1)
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where c is the light velocity in the void, ng is the group index of the mode propagating
inside the ring and L is the circumference of the ring equal to 2πR with R the ring radius
of the ring. It can be expressed via the wavelength instead, as FSRλ =

λ2

ngL
with λ the

central wavelength.
To inject the light inside the ring, different systems exist (prism and tapered fibre for
instance). Here, we focus on an injection via what is called a bus waveguide. The
bus waveguide is put at a certain distance, called a gap, from the ring and the light is
coupled inside the ring by following the coupled modes’ theory [11]. From this model,
different parameters are defined as can be seen in fig. 4.1(a). In the classical case of such a
structure, we define three parameters which are the transmitted electric field from the bus
waveguide (ring) [12] to the ring (bus) by the coefficient k. The part of the electric field
that isn’t transmitted inside the ring (bus) and that will continue in the same waveguide
is symbolized by r. By definition, we have r2 + k2 = 1. These parameters are in a direct
link to the coupling length between the bus waveguide and the ring and the gap between
those two. Finally, we need to take into account the losses of the medium via a parameter
which is expressed as a2 = exp (−αL) where α is the power linear attenuation expressed
in m−1 and L is the length of the medium considered.

Figure 4.1: Sketch of a ring resonator with the different parameters represent (a) as well
as an example of the transmission as a function of the wavelength (b). The parameters
for this example are a = 0.96; r = 0.9 and ng = 3.3 for a 15 µm ring radius.

We can thus define the transmission function of the system with these parameters as:

T =
a2 − 2ra cosφ+ r2
1− 2ar cosφ+ (ar)2 , (4.2)

where φ = βL with β the propagation constant equal to 2ngπ
λ
and λ the wavelength. We

can so plot the transmission function of the ring as can be seen in fig 4.1(b). Apart from
the FSR parameter already defined, we can note in this figure the extinction ratio (ER)
of the function and also the full width at half maximum (FWHM) value. This last one is
a good indication of the properties of the ring experimentally speaking. Indeed, during
our experiments, we will be able to obtain the transmission function and so find the ring
parameters. To do so, we will use the expression of the FWHM in this case, which is:

FWHM =
(1− ra)λresonance
πngL

√
ra

,

where λresonance is the wavelength for which a resonance is measurable in the fig. 4.1(b). As
we can extract the group index of the material from the FSR, the only unknown parame-
ters in this last equation are r and a. These parameters can be extracted experimentally
by fitting a resonance with a Lorentzian function [12].
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In the case of ring resonators, we also use the finesse and the quality factor to define a ring.
The finesse is defined as the ratio of the FSR with the FWHM while the quality factor Q is
equal to the resonant wavelength divided by the FWHM. The physical meanings of these
parameters are to represent the number of round-trips that the electric field will perform
before being lost by the attenuation of the medium or coupled to the bus waveguide.

We tried here to give a summary of the main properties of a ring resonator. It is an
important element in optical telecommunications [13, 14] and much more [11]. They are
also widely used in the context of nonlinear photonics [15–17].
The filtering particularity of ring resonators has also been coupled to nonlinear properties
and their ability to create new frequencies. As an example, third-order nonlinear effects
for instance are widely used for supercontinuum generation [18, 19]. As a ring resonator
is known for its filtering abilities, we understand that coupling nonlinear effects and ring
resonators together could lead to what we call an OFC [20–22]. OFC is a hot topic
nowadays due to its high impact in a lot of fields [23]. We will now go deeper in the
context of second-order nonlinear properties to see how the SHG process is occurring in
such structures.

4.1.2 SHG in III-V nanorings

In this part, we will see the theoretical development of the SHG process in nanorings. We
will see it from a global perspective of the process in nanorings and then see how it applies
to the case of III-V materials that we are interested in. To keep the same approach as
the SHG in wire waveguides, we will first express the variations of the SH electric field as
a function of the pump and other useful parameters.
We first denote the temporal part of the electric fields as Ak,n(t) = ak(t) exp (iωnt) where n
is either the pump (p) or the SH (sh), ak is the complex amplitude of the mode normalized
such that |ak|2 is carrying the energy of the mode that pulsates at ωn. In such a case,
we can define the coupled temporal equations that link the pump and the SH amplitudes
like this [24]:

dap
dt
= iωp −

1

τp
ap + iω1β1a

∗

pash+
2

τe,p
s+p ,

dash
dt
= iωsh −

1

τsh
ash + iω2β2a

2
p,

(4.3)

in which ωp (ωsh) is the pump (SH) pulsation, 1/τp (1/τsh) represents the sum of the
pump (SH) decay rate to the bus waveguide 1/τe,p (1/τe,sh) with the intrinsic decay 1/τi,p
(1/τi,sh) (linked to the absorption). Finally, s

+
p represents the time-dependent amplitude

of the pump from the bus waveguide to the ring normalized, such as |s+|2 is carrying the
mode power. We can also define s−k , which is the amplitude coupled from the waveguide
to the bus waveguide and is equal to ak/τk. A representation is shown in fig. 4.2.
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Figure 4.2: Representation of the electric fields in the structure for the SHG model de-
veloped

The key parameters of this model are the nonlinear coefficients β1 and β2 between the
pump and SH modes. The coefficient for the SH is defined as [25]:

β2 =
1

4

ijk 0χ
(2)
ijk Epi(E

∗

shjEpk + EpjE
∗

shk) dxdy

( p|Ep|2 dr) ( sh|Esh|2 dxdy)1/2
, (4.4)

where p and sh are respectively the permittivity of the material at the pump and the SH
wavelength. We only define β2 here as it is related to β1 via the conservation of energy
ωpβ1 = ωshβ

∗

2 .
Moreover, since our structure in which the SHG occurs as a cylindrical symmetry, it is
interesting to write the equation 4.4 in a cylindrical frame as represented in fig. 4.3.

Figure 4.3: Representation of a ring resonator in a cylindrical coordinate system

As a reminder, the modes components expression to switch from the Cartesian frame to
a cylindrical one is as follows:

Ex = Er cos θ − Eθ sin θ,
Ey = Er sin θ + Eθ cos θ,

Ez = Ez.

We thus find the following expression for the nonlinear coefficient [26]:
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β2 =
2π

0
β+ exp [i(2mp −msh + 2)θ] + β− exp [i(2mp −msh− 2)θ] dθ,

β± =
1

4



 0χ
(2)
ijk (2 [EprEpθE

∗

shz + Epz(EpθE
∗

shr + EprE
∗

shθ)]) r dr dz

( p|Ep|2r dr dz) ( sh|Esh|2r dr dz)1/2

±i
0χ
(2)
ijk (E

2
pr − E2pθ)E∗shz + 2(EprE∗shr − EpθE∗shθ)Epz r dr dz
( p|Ep|2r dr dz) ( sh|Esh|2r dr dz)1/2



 .

(4.5)

From the equations above, we can see that the conversion is maximized when the QPM
condition ∆m = 2mp − msh = ±2 with mp = 2npπ/(λpR) (where np is the refractive
index of the pump and R the ring radius) the azimuthal number of the pump and msh
the azimuthal number of the SH. This differs from the wire waveguides case, for which
only one PM wavelength can be found for a couple of pump and SH modes. Let’s note
that each QPM point is associated with an individual efficiency, and thus for the same
couple of modes.
Moreover, we can see that, if we want to generate a SH in a ring resonator, we should not
achieve phase matching in this case. Indeed, the condition required being ∆m = ±2, it is
a different kind of process called quasi-phase matching that has to be achieved here [27].
We have already seen some theory around QPM in 1.1.1. It is a common method

that has a lot of success. For instance, experiments have been performed in LiNbO3, by
polling of the material to achieve the QPM conditions [28, 29]. When it comes to, III-V
materials it’s however quite easier. In fact, due to the symmetry of these materials that
we already discussed before, we can remember that a 90° rotation of the crystal leads
to a total inversion of the crystal. This means that the effective nonlinear susceptibility
becomes the opposite when the crystal is 90° rotated as represented in fig. 4.4.

Figure 4.4: Representation of the inversion of the crystal symmetry that occurs in the
case of a III-V microring resonator

We can therefore understand that this naturally leads to the fulfilment of the QPM
condition. So, the SHG effect should be present at the condition that the azimuthal
numbers equality ∆m = ±2 is fulfilled.
Finally, it is possible to express the SH harmonic power at the output with the non-

linear overlap from 4.5 and the characteristics of the ring [30]:

Psh =
1

ωp 30
|β2|2P 2p

Q4pQ
2
sh

Q2c,pQc,sh
, (4.6)

for which Qk is the loaded quality factor, as seen in 4.1.1, of the mode k = p, sh and
Qc,k is the external coupling quality factor. We can define the loaded quality factor as
dependent on the external coupling quality factor and the intrinsic quality factor 1/Qk =
1/Qi,k + 1/Qc,k. The different quality factors are linked to the previous decay rates as
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Qi,k = ωkτi,k/2 and Qc,k = ωkτc,k/2. Furthermore, we can see that we can express a
conversion efficiency coefficient in W−1 that depends on the coupled of modes interacting
and that is defined as |β2|2/ωp 30.
We have seen how we can express the SH and pump electric field in a microresonator

and the coupling factor that linked them. This allows us to determine the efficiency of
the SH and to have an analytical expression of the SH power expected for a given couple
of modes. We have also seen how the parameters of the ring are important for such a
process and so is the fabrication process. To experimentally test these models, the choice
has been on GaP as we will see in what follows.

4.2 GaP as a platform

Gallium phosphide, a recently emerged material in this field, has already offered some nice
results in nonlinear photonics [31–34] and deserves some attention. It is a material similar
to InGaP concerning the crystal symmetry but still different in other aspects. We will see
there how this material can also be a good platform for nonlinear integrated photonics.

4.2.1 Properties of GaP

In this section, we will develop the properties of GaP and put it into perspective with
the previous material already studied. We will mainly focus and the relevant comparison
points considering our context. First, let’s take a look at the refractive index of this
material shown in fig. 4.5.

Figure 4.5: Refractive index of the GaP material. It has been limited to the 500 nm to
2000 nm range for better visibility and because it is our range of interest.

At first sight, it is in the same range of refractive index as the two previous III-V materials
that are InGaP and AlGaAs in the 600 nm to 2000 nm range. Meaning that it presents
the same advantages concerning the strong confinement due to the high refractive index
contrast. GaP material as a bandgap which is equal to 2.24 eV [35] which still means that
there is no TPA at telecom wavelength as it corresponds to a 553.5 nm wavelength.
We have just seen that the linear properties of GaP are similar to the ones of InGaP.

We are now going to take a look at the nonlinear properties of this material, see if it’s
a good alternative for the experiments that we are trying to achieve. The second-order
nonlinear susceptibility χ(2) has been measured to be as high as 200 pm/V [36]. Which is
in close range of the one measured for InGaP (220 pm/V as a reminder). Concerning the
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third-order nonlinearities, as we have already noticed in table 2.2, the potential of GaP
is also similar to its InGaP cousin.

All of these elements put together mean that GaP is a good alternative to InGaP for
the kind of process that we are interested in. Furthermore, we can manage to develop the
whole fabrication process (from the transfer printing to the final dry etching) in Ghent
cleanroom. Concerning InGaP, the last step of dry etching had to be performed in the
laboratoire de photonique et de nanostructures (LPN) group in Paris. The independence
of the manufacturing process was an asset at some point. Also, some recent works have
shown that GaP can exhibit very low linear losses [37]. Something that we didn’t man-
age to obtain with InGaP for the moment. So this makes it even more interesting for
experiments.

4.2.2 Simulations

In this part, we’re going to use the refractive index from the previous part to perform
structures simulations. To do so, we designed on Lumerical software a rectangular profile
with varying width and 300 nm high structure. This height corresponds to an available
GaP wafer that can be used for fabrication processes. The structures used will also be
fabricated using the transfer printing technique, as presented in 2.2.1. For this reason,
a ring radius of 15 µm has been taken into account as it corresponds to the maximum
ring radius that we can reach via the stamp from the transfer printing machine. The ring
radius has to be taken into account as it will change the profile of the mode propagating
as can be seen in fig. 4.6. This curving could lead to a non-zero overlap as it will break
the symmetry of the mode inside the nonlinear structure.

Figure 4.6: Pictures of the mode asymmetry engendered by the curve of the ring for three
different ring radius (0, 5 and 10 µm) with the centre on the left of the waveguide. The
TE00 mode is for a 1550 nm wavelength while the TE20 mode is for a 775 nm wavelength.

In this figure, we can see that the energy tends to shift on a side of the waveguide due to
the bending. The modes, showing two symmetry axes along the waveguide axis without
bending, are then not symmetrical to the horizontal axis as soon as a bending occurs.
The results found during the simulations are reported in table 4.1. The research has been
performed for a TE00 pump and a wavelength range for which the grating couplers designs

100



are already known.

Width SH Pump Conversion Pump Conversion
(nm) mode wavelength efficiency wavelength efficiency

for ∆m = -2 (×10−18(W−1)) for ∆m = 2 (×10−18(W−1))
500 / / / / /
600 / / / / /
700 / / / / /

800
TE01 1603.44 125.34 / /
TM30 1454.00 747.40 1497.78 893.40

900
TE30 1581.13 0.17 1635.11 9.20
TM30 1570.21 690.75 1634.11 658.38
TE01 1531.98 38.27 1594.21 170.68

1000 TE01 1507.71 1.55 1570.21 1.20

1100
TE01 1488.97 4.21 1548.81 3.97
TE40 1470.74 0.06 1514.78 0.10
TM40 / / 1483.97 24.80

1200
TE40 1581.13 0.12 1638.11 0.15
TM40 1517.78 29.19 1570.21 31.42
TE01 1478.29 0.38 1527.98 0.24

1300
TM40 1588.21 29.94 1645.00 31.64
TE01 1468.74 1.44 1524.98 1.49

1400
TE50 1495.28 0.03 1542.32 0.03
TE01 1467.74 4.23 1519.38 3.86
TM50 / / 1478.89 24.29

1500
TE50 1581.13 0.03 1639.11 0.03
TM50 1494.78 24.34 1545.31 27.74
TE01 1462.31 0.05 1514.78 0.00

1600
TM50 1545.81 22.83 1603.44 26.00
TE01 1462.31 0.70 1513.78 0.67
TE60 / / 1478.29 0.02

1700
TM50 / / 1595.21 22.18
TE60 1499.78 0.02 1553.81 0.03
TE01 1462.31 1.75 1511.71 1.75

1800
TE60 1570.21 0.03 1634.11 0.03
TM60 1468.74 13.16 1520.78 14.28
TE01 1458.31 0.20 1507.71 0.28

1900
TM60 1506.71 12.42 1562.43 13.60
TE01 1460.31 0.34 1509.71 0.36
TE70 / / 1487.97 0.01

2000
TM60 1542.32 10.71 1604.94 11.82
TE70 1490.97 0.02 1548.81 0.02
TE01 1460.81 0.72 1510.71 0.80

Table 4.1: Results of the QPM found for structures with a different width. The simulations
have been performed for a wavelength between 1450 and 1650 nm to keep the results in
a range that can be reached by the lasers in our laboratory.

The results, shown in table 4.1, reveal one particular mode that is more efficient than
the others and is available for structures that are 800 nm or 900 nm wide. Indeed, the
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TM30 SH mode shows itself as the most efficient one with the restrictions that we put in
place. This SHG from the TE00 pump mode to the TM30 SH mode has already shown
some good results [30] but there are still things to learn about the generation process.
For a more interesting result, a waveguide width of 850 nm has been chosen. With this,
the two QPM expected wavelengths are 1505.9 and 1555.15 nm as it is shown in fig. 4.7.
This makes those easier to reach with standard lasers.

Figure 4.7: Difference of azimuthal number between the pump and the SH for an 850 nm
wide and 300 nm high ring and 15 µm radius. The azimuthal number values of -2 and 2
are highlighted there with a green and red dashed line respectively. The Poynting vector
of the pump and SH modes are also shown.

Another QPM has also been found at 1566.12 nm with the TE01 SH mode. Nevertheless,
this last one is a third less efficient than the TM30 one, but still efficient and interesting
to measure.
The problem that we can expect here is that it would be difficult to have both QPM
wavelengths fit with the resonances of the ring. However, increasing the ring radius
reduces the FSR. We are, however, limited in the sample size (and so the FSR). The
fabrication process is transfer printing for the rings, the sample size cannot exceed the
stamp size (as seen in section 2.2.1.3). Here, the stamp is 1 mm long and 60 µm wide.
We thus limited ourselves to a 15 µm ring radius. To fit a resonance of the ring with a
QPM wavelength, a solution would be to change the working temperature to shift the
resonances of the ring and find a suitable temperature to fit a resonance with a QPM
wavelength.

Simulations have been performed here and interesting QPM have been found for rea-
sonable structure dimensions. Experimental results will thus be presented in the following
part of this chapter.

4.2.3 Experimental results

We will focus now on the experimental results obtained in the case of SHG in nanorings.
At first, we are going to note the differences in structures and approach compared to the
first experiments in rib waveguides.

The rings that have been used for these experiments have been fabricated thanks to the
transfer printing technique (see section 2.2.1.3 for more details). This time, the injection
is accomplished thanks to a grating coupler as can be seen in fig. 4.8(a). There are several
advantages to this kind of device. As a first example, it acts as a polarization filter as it
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can be designed to mainly let go through the waveguide a certain polarization [38]. This
will help to solve the problem from an injection by the facet with a lensed fibre where
the polarization state can only be known at the output. On another hand, it is also a
bigger structure that makes it easier to align with a fibre compared to a direct approach
of the facet with a lensed fibre. Indeed, the grating coupler can be several hundred square
micrometre areas, which is much bigger than a waveguide that is usually only a few square
micrometre area only. However, if it allows us to get rid of the cleave issues like the ones
we had in the previous part 3.3, it is also not possible to measure the profiles of the modes
with these structures as we did before. Furthermore, grating couplers are also wavelength
dependent and so act as a frequency filter [38]. It has a certain bandwidth that depends
on the manufacturing parameters. The centre wavelength of the transmission spectrum
can nevertheless be shifted by a few nanometres according to the angle of the fibre as
shown in fig 4.9.
The complete setup involved in these experiments is quite different from earlier as can
be seen in fig. 4.8(b). We can see that a temperature controller system has been added
to the setup in this case. It has been required here as a variation of the temperature
can allow shifting the resonance of the ring as it can be seen on the fig. 4.11. This
is favourable in such experiments as it can allow us to make the pump resonance fit
with the QPM wavelength. This will enhance the nonlinear effects and so a higher SH
conversion efficiency.

Figure 4.8: (a) Microscope picture of some GaP rings where we can see the grating
couplers, the bus waveguide and the rings. (b) Experimental setup of the SHG process
in nanoresonators. A continuous-wave (CW) laser goes through a 95/5 coupler before a
polarization controller (PC). It is then injected into the chip thanks to a single-mode fibre
(SMF) and grating couplers on the chip. The light is collected with another single-mode
fibre. The power is finally measured by a dedicated photodiode (PD). The temperature
of the chip is set thanks to a thermoelectric cooler (TEC) alimented with a power supply.

The setup here, as the first one, keep the possibility to control the polarization of the pump
injected inside the structure. It will be tuned to maximize the transmission thanks to the
photodiode at the output. With the grating couplers properties, we’re almost certain that
the TE00 mode will be the one propagating inside the structure. The amount of power
sent in is checked thanks to a 95/5 coupler, placed before the polarization controller, and
a photodiode connected at the 5 % output of the coupler.
The chip is placed on a thermoelectric cooler which is connected to a power supply. It is
two thermoelectric coolers placed on top of each other to be allowed to reach hotter tem-
peratures while heating the chip. We, however, need to be careful about the temperature
that we set. As the sample is surrounded by air, there will be condensation on the chip
if we set a temperature too low. It would lead to higher losses due to the absorption of
water. Some tests have been made and we observed condensation below 13 ◦C so we will
be careful not to set a temperature lower than this limit. We will also limit ourselves to
a temperature of 60◦C as it can cause some perturbations due to air convection between
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the chip and the fibre for a too high temperature. This being said, we put our chip in
place for the first experiments.

4.2.3.1 Impact of the chip temperature and the angle of the optical fibre for

the injection

The first chip to be used in this experiment was composed of two different waveguides
widths: 500 and 1000 nm. Concerning the narrower ones, no QPM was found in a suitable
wavelength range as we’ve seen before in 4.1. For the wider one, a single SH mode that
presents a QPM has been found between the TE00 pump mode and the TE01 SH mode.
The values of the azimuthal number where the SHG process is expected is when it is equal
to -2 or 2 as seen before. In this structure, it has been found during the simulations that
the azimuthal number mismatch is equal to -2 when the wavelength is equal to 1507.71 nm
and equal to 2 when the wavelength is 1570.21 nm.

Figure 4.9: Normalized power transmitted through the structure as a function of the
wavelength in the case of two different angles of the fibre used for the injection, as repre-
sented in the inset.

We first aimed for the second wavelength as a transmission scan performed with a fibre
tilted at 20 ◦ revealed that the grating coupler let this wavelength pass while the lower
wavelength wasn’t as can be seen in fig 4.9. The FSR was first measured to confirm the
propagation of a TE00 mode inside the structure. A FSR equal to 7.72 nm has been
measured, as shown in fig. 4.10. From the theoretical values, we have expected a FSR of
7.69 nm. This confirms that it is indeed the TE00 mode that is propagating inside the
ring.
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Figure 4.10: Measurement of the resonance for a 15 µm ring radius with a 1000 nm wide
and 300 high waveguide profile.

We can also remark some fast oscillation with a FSR of 820 pm. This is actually due
to a Fabry-Perot effect of the waveguide. Indeed, the group index of the mode is 3.38
according to the simulations. This lead to a calculated length of 442 µm which is close
to the 460 µm long theoretical length of the waveguide. From a camera sensitive to the
visible light that is used for the alignment, the SH was observed for a pump wavelength
at 1573.49 nm. Although the grating coupler at the output is not designed to collect
the SH, we still gave it a try. Fortunately, we were able to collect some SH power from
the grating. To improve the SH power, we thus settled the temperature thanks to the
thermoelectric cooler to shift the resonance at the same wavelength as the SHG occurs as
seen in fig. 4.11(a) and (b).

Figure 4.11: Measurement of the resonance in the ring for different temperatures (a)
compared with the SH power measured for the same parameters (b). We can also see the
maximum SH power measured for different temperatures (c).

We can notice in fig. 4.11(b) and (c) that the SH power increases with the temperature
until a certain value and then decreases. This shows that we are indeed shifting the
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resonance to make it match with the QPM wavelength value, which is also drifting due
to the temperature modification. It also proves that, even if the QPM wavelength shifts
under the temperature modification, the resonance shift is more important than the QPM
wavelength shift. It can be explained as the FSR depends on the group index while
the QPM wavelength depends on the effective index. As both vary differently with the
temperature, the shift in wavelength as a function of the temperature is different for each
of them.
We can also notice that there is a double resonance in fig. 4.11(a) which is unexpected as
it doesn’t match with the FSR of the studied mode. It is a resonance of the TM00 mode as
it can be measured from the other peaks highlighted in fig. 4.11(a). The FSR measured
there is equal to 6.61 nm which is in agreement with the theoretical value of 6.84 nm
calculated for this mode. The fact that the peak becomes deeper with the temperature
is because there is a transfer of energy from the TE00 to the TM00 as has already been
observed [39]. It happens when there is a coupling between modes as a parameter (here
the group index induced by the temperature modification).
For the second part of the experiment, the second QPM point was the goal. However,

this point is for a wavelength around 1507.71 nm. But, as we said, the grating couplers act
like a wavelength filter. Unfortunately, we are not able to reach this wavelength in such
a case as can be seen in fig. 4.9. To be able to reach this wavelength, we need to increase
the angle of the fibre. As for now, we were working with a fibre at a 20◦ angle. We can
increase this angle (so bring the fibre closer to a horizontal position as the lab floor as a
reference) to reach this position. Unfortunately, even if the transmission properties of the
grating was shifted around the wanted wavelength for an angle of 37◦, the lower coupling
in the structure and the low conversion efficiency of this modes combination didn’t allow
us to observe the second QPM point.
In the meantime, a second chip designed for higher conversion efficiency, as found

during the simulations, has been fabricated. This chip, specifically designed for the study
of SHG in nanorings was thus put in place instead of the other.

4.2.3.2 Multimodal transmission and thermal effects

On this new chip, as said in the simulation part, the waveguide is 850 nm wide and
possesses a 250 nm gap between the bus waveguide and the ring (R1). We expect the
conversion efficiency to be much higher in this case. For a first measurement, the fibre
has been put at a 10◦ angle. First measurements have been performed to find the QPM
point at the higher wavelength (1555.15 nm). A wavelength sweep around the expected
QPM has been performed, and the transmission obtained can be seen in fig. 4.12.
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Figure 4.12: Measure of the transmission of the pump in the structure (a). Three different
FSR are present here and pictures with different colours. The different peaks have been
numbered according to the mode they belong to, for better visualization. A measure of
the SH power, as well as the pump transmission (b) as a function of the pump wavelength,
are also presented here.

We can notice in this figure that there are different resonances, and we were able to
measure three different FSR. Indeed, the first FSR has been measured to be 7.23 nm
which corresponds to the TE00 fundamental mode. The theoretical FSR of this mode is
7.46 nm from the finite difference eigenmode (FDE) solver employed. The second one
corresponds to the TE10 as the FSR has been measured to be 5.98 nm and the last one
measured has a FSR of 6.48 nm which correspond to the TM00 (FSR 3). It is possible to
confirm their nature as it fits with the theoretical FSR extracted from our solver. Indeed,
for these two other modes, the FSR are 6.03 nm for the TE10 and 6.39 nm for the TM00.
We can see that the TE00 resonances can be recognized from their particular sharpness
compared to the others. As we have seen before, this means that the finesse is higher for
this mode and so this mode stay longer in the cavity than the two others.
On another hand, a measurement of the SH has been performed as a function of the pump
wavelength. The SH has been observed at a TE00 resonance. The thing to notice here is
the particular shape of the SH power. It is a ramp shape that has already been observed
in the case of microcavities [40]. It seems to be a thermal drift of the resonance. And one
way to be sure of it is to perform the wavelength sweep in the other direction. As it was
performed from the shorter to the higher wavelength in this measure (forward direction),
the idea has been to perform the same measurement in the backward direction. The result
can be seen in fig 4.13.
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Figure 4.13: Measures of the SH power in the forward and backward direction of the
wavelength sweep

We can find here the same results as reported in this paper [41]. Except for an overshoot
during the backward sweep that hasn’t been observed, the result fits well with the the-
oretical predictions and other experimental references [40, 42]. We can explain the fact
that we don’t observe the overshoot by a too low resolution.

4.2.3.3 Research of the two quasi-phase matching points

It is of interest to be able to also measure the other QPM point from this ring. This
would show that the results from the simulations are correct, and it’s also something that
has never been measured to the best of my knowledge. A wavelength sweep on a larger
scale has thus been performed in this waveguide as it is shown in fig. 4.14.

Figure 4.14: Large measure of the pump transmission and the SH power in the ring.

As we already saw in fig. 4.12, the ring measured is quite multimodal. This last measure-
ment confirms and reveals that it is not possible to find this other QPM. Indeed, due to
the unclear transmission measured, we cannot be certain of the mode that generates the
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SH that we are looking for. This is a motivation to look for another ring (R2) that should
be more suitable. This previous ring (R1) was the first one to be focused on as it was
measured before to be the one with the best quality factor from the run. By fitting the
resonance with a Lorentzian function as shown in fig. 4.15(a), we found a quality factor
of 28200 for this ring.

Figure 4.15: Fit of the data points measured of the resonance study for the SHG of the
first ring (R1) used by a Lorentzian function (a) and for the second ring (R2) used (b).

It was also possible to extract the linear loss of the ring as explained in 4.1.1. In this
ring, linear loss around 8 dB/cm has been extracted from the fit. A coupling coefficient
k2 = 2.8 % was also extracted from this fit, and so we also have r2 = 97.2 %.
We change to another ring (R2), which possess the same dimensions as the first one to

find one with a better transmission spectrum but the same parameters for the SHG. The
only difference is that the gap between the bus waveguide and the ring is smaller with
this new one as it goes from 250 nm on the previous one to 200 nm with this one. For this
one, a quality factor extracted from the fit shown in fig. 4.15(b) of 18000 was extracted
while the linear loss is also measured to be around 8 dB/cm. The coupling coefficient was
measured to be k2 = 5 % and so the transmission is r2 = 95 %. This means that more
light is coupled from the bus to the ring, but this also holds the other way around. So
the light doesn’t stay in this ring as long as in the other one.
A large wavelength sweep range measurement was performed on this ring and is dis-

played in fig. 4.16.
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Figure 4.16: Measure of the pump transmission and the SH power in the second ring
studied.

We can see in this figure that the resonances obtained are cleaner for the whole range of
measurement, which should make the results more certain than before.
Another sweep is thus performed to measure the SH as it was done before. The result of
the measurement can be seen in fig. 4.16. We can here see four different peaks appearing
here at different wavelengths: 1473 nm, 1493 nm, 1535 nm and 1543 nm.
The FSR is easier to measure and has been measured to be equal to 7.14 nm, which

corresponds to the expected FSR for the fundamental TE mode. The SH peaks thus
seem to correspond to QPM for the pump mode considered. The simulation results have
shown that we expect a QPM between the TE00 pump mode and the TM30 SH mode at
1505.9 nm and 1555.1 nm. A result that we don’t find here. However, if we consider an
imperfect ring dimension, especially if we consider that the width and the height are not
the ones expected, we can get closer to the measurements.

Width Height TE30 QPM wavelength for TM30 QPM wavelength for
(nm) (nm) ∆m = -2 ∆m = +2 ∆m = 2 ∆m = +2

840
290 1504.92 1548.40 1493.22 1539.09
300 1491.21 1534.99 1496.13 1543.21
310 1479.79 1522.82 1494.19 1542.18

850
290 1519.81 1565.23 1500.02 1546.40
300 1505.95 1551.09 1503.10 1550.08
310 1494.19 1539.09 1503.94 1553.62

860
290 1534.99 1581.34 1503.94 1555.72
300 1520.81 1567.35 1513.82 1563.10
310 1508.86 1554.67 1513.82 1563.10

Table 4.2: Results of the QPM found for structures with different widths and heights
around the values of the theoretical dimensions. The simulations have been performed
for the two SH modes that presented a QPM with a TE00 pump.

From the simulations in table 4.2, we can see that, for a waveguide dimension of 840 nm
wide and 310 nm high, simulations results get close to the results obtained in fig. 4.16.
The efficiency for both QPM, as we have seen in table 4.1, is however quite different. The
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numerical efficiency for the QPM with the TM30 SH mode is at least 10 times higher than
for the TE30 mode. The resulting measurement in fig. 4.16 doesn’t show this at all, but
more the opposite.
The extraction of the conversion efficiency is quite difficult here. The grating couplers have
been fabricated for a fundamental TE mode around 1550 nm, it is tough to evaluate the
coupling from a higher-order mode at the SH wavelength in the output fibre. Furthermore,
the coupling for one higher-order mode to another in the tapered part of the waveguide
can be quite different, and it could explain the inconsistency of results measured so far.
For a convincing measurement of the conversion efficiency, a way to do this is to cleave
one of the grating couplers. This way, the SH will be collected from a facet and the power
could be evaluated more accurately as the coupling will be the same for both SH modes.

In this chapter, we have shown how it is possible to describe the SHG process in
nanorings to obtain the most efficient process possible. Simulations have been performed
around it and experimental results have been presented. There is still work to be done on
this last point to fully connect it to the theoretical models and simulations, but the first
results obtained are promising about the nature of the process.
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Chapter 5

Conclusion and perspectives

I n this thesis, we have studied the second-order nonlinear properties of two III-V ma-terials: InGaP and GaP. The two belong to the same crystallographic structure
(zinc-blende) and has high second-order nonlinear susceptibility. On top of that, they
exhibit a high refractive index, comparable to the one of Si. This last point induces good
confinement of the light in the structure and thus stronger nonlinear effects. Being really
promising materials for second-order nonlinear effects, the thesis focused on them.

The first one, InGaP, has been used for the production of nanowires. In these struc-
tures, we have studied the type I and the type II phase-matching cases. A model has
been developed for the type I case [1, 2] and has been adapted for the type II case [3].
The models take care of the longitudinal component of the electric fields of the pump
and the SH, a crucial element in such tightly confined structures. Thanks to this, we
were able to find pump wavelengths for which a PM occurs. Without paying attention
to the longitudinal component, these PM would have stayed out of the study as resulting
in a null overlap integral of the two modes. Two different fabrications processes have
been used for the production of those structures. The final structures fabricated have
been placed on an experimental setup. While exhibits high linear loss at 1550 nm (12
and 22 dB/cm for two different structures), they also reveal interesting results. The SH
power as a function of the wavelength and as a function of the pump power was a good
indicator of the nature of the process. Furthermore, a measurement of the profiles of the
modes confirmed the expected couple of pump and SH modes involved in the interaction.
The conversion efficiency was however lower than the expectations from the simulations.
The high linear losses at the pump and the SH wavelength (64 dB/cm for a structure and
90 dB/cm for the other) are really limiting the possibilities here.
The other material studied, GaP, has been used in the case of nanorings. The fabri-

cation process for these rings was different as transfer printing was used here instead of
the bonding technique. A model has been applied to calculate the efficiency in nanorings
made of GaP material [4, 5]. Let’s remind that, in this case, there is two QPM for the
same couple of modes instead of one in nanowires. The first result tends to show the
validity of the model as two QPM have been found and could fit with the theory. The
efficiency is nevertheless not possible to calculate in the current state. The SH power has
been measured at the output of a grating coupler designed for a 1550 nm fundamental
TE mode. The output coupling for a SH higher-order mode is impossible to evaluate
currently. Linear loss as high as 8 dB/cm has been extracted from a fit of the resonances
at the pump wavelength. This is still a high linear loss compared to the losses below
1 dB/cm that can be found in Si [6].

Linear losses are limiting parameters in these experiments. Being able to put in place
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a reliable process that will drop the linear loss below 2 dB/cm will be much enjoyable.
The high linear losses in these materials are a reason of other solutions. For instance,
propagation can be in another low-loss medium (like Si or SiN) at first and then coupled
into the III-V [7, 8]. Concerning a short-range objective, removing one of the grating
couplers from the ring structure could allow measuring the efficiency of the SHG process
in the ring. Also, efficient PM in nanowire have been found and not measured yet due to
the small thickness required. Experiments to measure a few of them would be of interest
to confirm once more the models deployed for III-V nanowires.
With further studies and fabrication development, super-efficient SHG on-chip could

be expected. This will be useful for a lot of applications such as quantum circuits [9] and
frequency combs stabilization [10, 11]. We could even go further in the frequency comb
generation and aim for a second-order nonlinear frequency comb as predicted [12]. This
could generate broadband frequency combs compared to the third-order nonlinear case.
And it could also be a standalone device capable to stabilize the comb by itself.

To conclude, we provided here a way to estimate SHG in integrated structures and
confirmed the models by experiments. III-V materials present interesting properties for
nonlinear photonics application but still present too high linear loss. Studies to reduce
this loss are required to transform III-V materials into a nonlinear photonics champion.

117



Bibliography

1. Poulvellarie, N. et al. Second-harmonic generation enabled by longitudinal electric-
field components in photonic wire waveguides. en. Physical Review A 102, 023521.
issn: 2469-9926, 2469-9934. https://link.aps.org/doi/10.1103/PhysRevA.
102.023521 (2020) (Aug. 2020).

2. Ciret, C. et al. Influence of longitudinal mode components on second harmonic
generation in III-V-on-insulator nanowires. en. Optics Express 28, 31584. issn:
1094-4087. https://www.osapublishing.org/abstract.cfm?URI=oe-28-21-
31584 (2020) (Oct. 2020).

3. Poulvellarie, N. et al. Efficient type II second harmonic generation in an indium
gallium phosphide on insulator wire waveguide aligned with a crystallographic
axis. en. Optics Letters 46, 1490. issn: 0146-9592, 1539-4794. https: / / www .
osapublishing.org/abstract.cfm?URI=ol-46-6-1490 (2021) (Mar. 2021).

4. Bi, Z.-F. et al. High-efficiency second-harmonic generation in doubly-resonant χˆ(2)
microring resonators. en. Optics Express 20, 7526. issn: 1094-4087. https://www.
osapublishing.org/oe/abstract.cfm?uri=oe-20-7-7526 (2020) (Mar. 2012).

5. Rodriguez, A., Soljac?ic, M., Joannopoulos, J. D. & Johnson, S. G. χ(2) and χ(3)
harmonic generation at a. en, 16 (2007).

6. Li, G. et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip
interconnects. en.Opt. Express 20, 12035. issn: 1094-4087. https://www.osapublishing.
org/oe/abstract.cfm?uri=oe-20-11-12035 (2021) (May 2012).

7. Tran, M. et al. Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated
Silicon/III-V Photonics. en. Applied Sciences 8, 1139. issn: 2076-3417. http://
www.mdpi.com/2076-3417/8/7/1139 (2021) (July 2018).

8. Pu, M., Liu, L., Ou, H., Yvind, K. & Hvam, J. M. Ultra-low-loss inverted taper
coupler for silicon-on-insulator ridge waveguide. en. Optics Communications 283,
3678–3682. issn: 00304018. https://linkinghub.elsevier.com/retrieve/pii/
S0030401810005018 (2021) (Oct. 2010).

9. Zaske, S. et al. Visible-to-Telecom Quantum Frequency Conversion of Light from a
Single Quantum Emitter. en. Phys. Rev. Lett. 109, 147404. issn: 0031-9007, 1079-
7114. https://link.aps.org/doi/10.1103/PhysRevLett.109.147404 (2020)
(Oct. 2012).

10. Diddams, S. A. et al. Direct Link between Microwave and Optical Frequencies with a
300 THz Femtosecond Laser Comb. en. Phys. Rev. Lett. 84, 5102–5105. issn: 0031-
9007, 1079-7114. https://link.aps.org/doi/10.1103/PhysRevLett.84.5102
(2020) (May 2000).

11. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride
chip. en. Optics Letters 36, 3398. issn: 0146-9592, 1539-4794. https: // www .
osapublishing.org/abstract.cfm?URI=ol-36-17-3398 (2021) (Sept. 2011).

118



12. Leo, F. et al. Frequency-comb formation in doubly resonant second-harmonic gen-
eration. en. Physical Review A 93, 043831. issn: 2469-9926, 2469-9934. https:
//link.aps.org/doi/10.1103/PhysRevA.93.043831 (2020) (Apr. 2016).

119


