

The Paved Path Methodology: A Human-Centered Approach to Software
Security

Pieter De Cremer

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Bjorn De Sutter, PhD* - Matias Madou, PhD**

* Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

** Secure Code Warrior

Supervisors

December 2021

Wettelijk depot: D/2021/10.500/103
NUR 958, 980
ISBN 978-94-6355-555-5

Members of the Examination Board

Chair

Prof. Filip De Turck, PhD, Ghent University

Other members entitled to vote

Prof. Koen Aesaert, PhD, KU Leuven
Brian Chess, PhD, Oracle, USA

Prof. Bart Coppens, PhD, Ghent University
Prof. Bruno Volckaert, PhD, Ghent University
Jing Xie, PhD, Venafi, USA

Supervisors

Prof. Bjorn De Sutter, PhD, Ghent University
Matias Madou, PhD, Secure Code Warrior

Always in motion the future is – Yoda

II

Acknowledgements

We acquire many new skills during life, and they are taught to us by
many different people. Ever since I became a parent, I have realised just
how much impact some of these people have had on me. Being a dad
comes rather natural to me, and I can only attribute this to the many
great examples I have had in my life of loving parents and grandparents.
In the same way, I want to attribute the academic success of this work
to the many great examples I have encountered during these last few
years.

My thanks to...

Pieter Vandenbossche for standing on top of the desks, reading La-
tin texts in funny voices, and conducting an imaginary orchestra while
playing Carmina Burana in class. My Latin teacher in high school taught
me that interest and passion for a subject are infectious and to look for
those teachers and students that can infect me.

Bjorn De Sutter for being such an infectious teacher. I found that
paying attention to his classes took no effort at all and so I happily
attended all possible elective courses taught by him. It is because of
Bjorn that I found my way into the world of security.

Matias Madou for teaching me about hard work and determination,
but also about not always taking myself too seriously. It was based on
his advice that I applied for a grant and started this research. Matias is
not only the world’s okayest boss, but also a great mentor.

my examination board for their great feedback on both my research
and this dissertation. I appreciate all the time and effort they spent
evaluating this work.

IV

the technical advisory board at SCW for their feedback on the intel-
ligent tutor both in meetings and over mail. Brian’s continued interest
and feedback have been a source of confidence, and Chenxi’s advice to
do the dumb thing first will be a lesson that sticks with me for a long
time.

the students, teaching staff, and security professionals who parti-
cipated in the experiments and interviews in this dissertation.

my (former) colleagues at SCW and SysLab who made coming to
work fun and relaxing. I love the atmosphere at the Bruges office, and
the culture at SCW in general. Mondays would not be as fun without
breakfast at work. And, it is always a pleasure to travel to Gent and
catch up with my coworkers at the iGent tower. I already look forward
to the next game night.

former classmates and housemates for helping me with group pro-
jects, helping me study, and for helping me unwind from time to time.

Brysen, Downey, and Tim for their feedback, insights, and assistance
in my work, and for the countless evenings playing games to help me
unwind.

Stéphanie for helping me improve my graphs, and for all her support
and friendship.

Gillis for his feedback and support. For his friendship, and for always
being there when I need a sympathetic ear. I wish everyone a friend as
kind, down-to-earth, and awesome as Gillis.

my family for the unconditional support and love through all these
years and for giving me a warm place to call home. When I am in need,
there is never any doubt that my parents, my sister Laura, and her
husband Bram are all ready to help however they can.

Sarah for being a firm believer, and a never ending source of support
through the sometimes difficult times. Sarah and our daughter Suzanne
are my biggest fans. I could not have finished this without them.

Op weg naar veilige
software-ontwikkeling

Samenvatting

Het automatiseren van beveiligingstools heeft het mogelijk gemaakt om
onveiligheden sneller en vroeger in de software ontwikkelingscyclus te
detecteren. Desondanks zijn er nog steeds onveiligheden in bijna alle
soorten software. De grote meerderheid van deze onveiligheden wordt
veroorzaakt door fouten in de onderliggende code. Deze onveilige patro-
nen in de code zijn al jaren gekend. Traditionele beveiligingstools kunnen
deze problemen detecteren nadat de code is ontwikkeld, maar ze vertra-
gen het ontwikkelingsproces en verhinderen het regelmatig lanceren van
updates. Bovendien bieden ze geen specifieke hulp bij het oplossen van
de gevonden onveiligheden. Wanneer de onveiligheden gedetecteerd zijn,
is het aan de ontwikkelaars om deze op te lossen. Gemiddeld nemen be-
drijven slechts één beveiligingsexpert aan per 75-200 ontwikkelaars. Het
is eenvoudigweg niet mogelijk voor deze expert om elk van de ontwik-
kelaars hierbij te ondersteunen. Het is duidelijk dat softwarebeveiliging
niet enkel nog de taak is van de expert. Het is onvoldoende om onveilig-
heden te detecteren, er moeten minder onveiligheden geschreven worden.
Elke ontwikkelaar die code schrijft moet zelf verantwoordelijk zijn om
dit vanaf het begin op een veilige manier te doen. Om hierop een impact
te kunnen maken, moeten we kijken naar de betrokken processen, men-
sen, en technologie. Zo kunnen we garanderen dat er meer aandacht is
voor softwarebeveiliging doorheen de hele software ontwikkelingscyclus.

Proces Ik stel een proces voor dat meer aandacht heeft voor de ont-
wikkelaar, genaamd de verharde-wegmethode. Met deze methode is het
de bedoeling dat het beveiligingsteam niet langer de ontwikkelaars ver-
plicht om beveiligingstools in te zetten. In de plaats daarvan moet een
verharde weg gelegd worden voor de ontwikkelaars om te volgen. Deze
verharde weg moet verschillend zijn voor elk project en hangt sterk af

VI SAMENVATTING

van de gebruikte technologie. Ontwikkelaars en beveiligingsexperts moe-
ten samenwerken om richtlijnen en patronen op te stellen die deze weg
klaarleggen. Ze kunnen gezamenlijk beslissen over veiligheidskritische
functionaliteit, bijvoorbeeld het beheer van encryptiesleutels. Ze doen
dit door een bibliotheek en software te kiezen die hiervoor zal gebruikt
worden. Ze kunnen zelfs een nieuwe bibliotheek ontwikkelen die eventu-
eel een bestaande bibliotheek op een veilige manier aanroept. Ontwik-
kelaars zullen dan deze weg volgen, want deze bibliotheek is de eenvou-
digste manier om nieuwe functionaliteit toe te voegen die beheer van
encryptiesleutels vereist.

Mensen In de verharde weg methode zouden ontwikkelaars geen op-
leiding moeten volgen die eigenlijk bedoeld is voor beveiligingsexperts.
Het doel van hun opleiding is niet om de veiligheid van de software te
leren testen, maar hen de kennis en vaardigheden aan te leren die ze
nodig hebben voor het ontwikkelen van veilige code. Daarom moeten
ontwikkelaars een relevante en efficiënte opleiding ontvangen die speci-
fiek aan hun rol is aangepast. Elke ontwikkelaar moet een defensieve
opleiding volgen, in de taal en het raamwerk die gebruikt wordt tijdens
hun dagelijks werk. Veel begrippen in softwarebeveiliging zijn algemeen
toepasbaar, maar de oplossingen in de code zijn vaak specifiek gebon-
den aan de taal, en het zijn net die oplossingen die ontwikkelaars moeten
aanleren.

Het opleidingsplatform van Secure Code Warrior (SCW) biedt zulke
opleidingen aan in een brede waaier van programmeertalen. Daarbij
voegen ze ook gamificatie toe om de ontwikkelaar te motiveren. Des-
ondanks, is er een aanzienlijk deel van de gebruikers van het platform
dat slechts een minimale hoeveelheid training volgt. De gebruikers vol-
gen één van de vooropgestelde trajecten, en het is waarschijnlijk dat
het tempo van deze opleidingen niet geschikt is voor iedereen. Sommige
gebruikers vervelen zich door teveel herhaling, andere gebruikers raken
gefrustreerd omdat de opleiding te snel moeilijk wordt.

Ik heb een intelligent leersysteem ontwikkeld voor het aanbevelen
van oefeningen aan elke gebruiker op ieder ogenblik. Dit leersysteem
gebruikt een Collaboratieve Filtering (CF) algoritme om aanbevelingen
voor te stellen op basis van de voorkeuren van de meest gelijkgestemde
gebruikers. Om dit algoritme aan te passen aan een leersysteem, worden
gebruikers enkel als gelijkgestemd beschouwd wanneer zij hetzelfde nut
ervaren van een oefening rond hetzelfde vaardigheidsniveau. Dit vaardig-
heidsniveau kan niet rechtstreeks gemeten worden, maar wordt regelma-

SAMENVATTING VII

tig ingeschat door middel van het twee-parameter logistiek (2PL) model
uit de Item Respons Theorie (IRT). Dit model beschrijft de relatie tussen
de geobserveerde antwoorden van een gebruiker en diens vaardigheidsni-
veau. Door deze aanpassing aan leersystemen, kan de nauwkeurigheid
van een CF algoritme verhogen tot meer dan 13%. Het definitief ontwerp
van het intelligente leersysteem gebruikt het k-nearest neighbours base-
line algoritme en bereikt een gemiddelde absolute afwijking van 0.4206
op beoordelingen op een schaal van 1 tot 5.

Technologie Meer traditionele beveiligingstools gebruiken een reac-
tieve aanpak. Ze scannen (deels) afgewerkte code, en de oproepende
context ervan, op zoek naar onveiligheden. De feedback van de tools
komt vaak te laat, en dit vertraagt het regelmatig lanceren van updates.
Het is geweten dat ontwikkelaars deze beveiligingstools storend vinden
en zelfs vaak uitzetten. Ze worden beschouwd als één van de grootste
belemmeringen voor de productiviteit.

In de verharde-wegmethode zijn tools in de eerste plaats ontworpen
voor de ontwikkelaar. Daarvoor wordt gebruik gemaakt van een funda-
menteel andere aanpak. In plaats van het zoeken naar onveiligheden,
controleren ze het volgen van richtlijnen tijdens het schrijven van de
code, ongeacht diens context. Wanneer ontwikkelaars bezig zijn met
de functionaliteit van hun code, en hiervoor een bibliotheek gebruiken,
dan staat de veiligheid vaak haaks op dit doel. Een goede tool zou de
ontwikkelaar er op moeten wijzen wanneer die afdwaalt van de verharde
weg, en die terugleiden zonder de productiviteit te schaden. Dit terug-
leiden van de ontwikkelaar op de verharde weg, zal diens productiviteit
verhogen en tegelijkertijd de cognitieve belasting verlagen. Als de be-
veiligingsexpert de weg goed heeft aangelegd, dan zal de bekomen code
veilig zijn.

In dit onderzoek heb ik geholpen bij het ontwerp en evaluatie van
Sensei, een invoegtoepassing (Engels: plug-in) ontwikkeld door SCW,
voor de applicatie die ontwikkelaars ondersteunt bij het schrijven van
code. Net zoals een spellingscontrole programma, controleert Sensei
of de code voldoet aan zogenaamde recepten. Het voorziet hulp bij
het oplossen wanneer code afwijkt van deze recepten, in de vorm van
kant-en-klare oplossingen (Engels: quick-fixes). Ik heb experimenten
en gebruikerstests uitgevoerd die aantonen dat deze functionaliteit zeer
bruikbaar is en snel aanvoelt als een verlenging van de bestaande onder-
steuning voor ontwikkelaars.

Sensei voorziet een recept-verwerker die het mogelijk maakt voor ont-

VIII SAMENVATTING

wikkelaars en beveiligingsexperts om hun eigen project-specifieke richt-
lijnen in te stellen, in lijn met de verharde-wegmethode. Deze verwerker
biedt suggesties aan uit de code, en toont een live voorbeeld van het
effect van het recept op de code. In interviews met beveiligingsexperten
geven zij aan dat Sensei de makkelijkste tool is die ze al gebruikt hebben
voor het aanpassen van de opgelegde regels. In een empirisch experiment
met studenten heb ik aangetoond dat deze aangepaste recepten een po-
sitief effect hebben op het gebruik van de tool met minimale impact op
de productiviteit van de ontwikkelaar.

Toekomst Tot nu toe werden de opleiding en de tool apart beschouwd.
In de praktijk is de grens tussen deze twee niet zo duidelijk. Ontwikke-
laars leren vaak door te doen, en het leeraspect van de tools mag niet
onderschat worden. Het intelligente leersysteem kan uitgebreid worden
om data te gebruiken die verzameld wordt door Sensei en andere tools
die gebruikt worden door ontwikkelaars zoals de code opslagplaats en de
issue tracker. Ook kan in de toekomst de inschatting van het vaardig-
heidsniveau van de gebruiker uit het trainingsplatform gebruikt worden
om de feedback van Sensei af te stellen.

Paving the path towards secure
development

Summary

Automation of security tools has made it possible to identify software
vulnerabilities faster and earlier in the Software Development Life Cycle
(SDLC), but this has had little impact on the prevalence of vulnerabil-
ities in almost all types of software. The vast majority (90%) of these
vulnerabilities are caused by problems in the code, through insecure cod-
ing patterns that have been known for years. Traditional security tools
are capable of detecting these problems after the code has been devel-
oped, but they slow down agility and release cycles. Additionally, they
do not provide specific guidance to remediate the found vulnerabilities.
Once the vulnerabilities are discovered, it is up to the development team
to fix them. On average a company hires only 1 security expert for ev-
ery 75-200 developers. This expert simply cannot assist each of those
developers. It is evident that security is no longer just the responsibility
of the expert. The ability to detect vulnerabilities is not enough; we
need fewer vulnerabilities to be created. Every software developer pro-
ducing code should be responsible for doing this securely from the start.
To make impactful changes, we have to look at the processes, the peo-
ple, and the technology involved, to guarantee better software security
throughout the whole SDLC.

Process I propose a more developer-friendly workflow, named the
paved path methodology. In this methodology, the security team should
not force security testing on developers, but instead gradually build a
paved path for developers to follow. This paved path should be differ-
ent for each project and heavily depends on the technology stack for
that project. Together, developers and security experts should build
standards and patterns that lay out the paved path. They can decide
together how security critical features, such as key management, should

X SUMMARY

be handled. They do this by deciding on the library and the tools needed,
or even by creating a new (wrapper) library. Developers will then follow
that path, as using this library is the easiest way for them to implement
a feature that needs key management.

People In the paved path methodology, developers should not be
handed repurposed education meant for security professionals. The goal
of their education is not to teach them to test the security of the code,
but to teach them the knowledge and skills necessary to produce secure
code. The developers should hence be provided with role-specific, rel-
evant, and efficient training. Each developer should receive defensive
training in the same programming language and framework they are
using daily in order to understand syntax specific secure and insecure
coding patterns. While many security concepts are generally applicable,
the actual solutions to problems are often programming language spe-
cific, and these solutions are exactly what developers should be taught.

The Secure Code Warrior (SCW) training platform provides such
defensive training in a wide range of programming languages. Addi-
tionally, it provides some gamification features to keep the developers
engaged. Despite that, there is still a significant part of the user base
that only follows a minimal amount of training. Users follow one of the
predetermined courses, and it is likely that the pacing of these courses
does not fit their needs. Users get bored due to too much repetition, or
frustrated because the content is moving too fast.

I created an Intelligent Tutoring System (ITS) to recommend exer-
cises to each individual at any point in time. This ITS uses a Collab-
orative Filtering (CF) algorithm to make a recommendation based on
the preferences of the most like-minded users. To adapt this algorithm
to learning systems, users are only considered like-minded if they find
an exercise similarly useful around the same ability level. This ability
level cannot be observed directly, but is regularly estimated by using the
two-parameter logistic (2PL) model from Item Response Theory. This
model describes the relation between the observed answers of a user, and
their ability level. By using this adaptation to learning systems, the per-
formance of a CF algorithm can be significantly improved, by more than
13%. The final design of the ITS uses a k-nearest neighbours baseline
algorithm and reaches a mean absolute error of 0.4206 on a rating scale
from 1-5.

SUMMARY XI

Technology Traditional security tools use a reactive approach, scan-
ning (partly) completed code and its calling context for vulnerabilities.
The feedback they provide comes too late, slowing down deploy and
release cycles. Developers are known to dislike and often disable these
security tools during development. They frequently perceive the tools
as one of the biggest inhibitors of productivity.

In the paved path methodology, tools are in the first place designed
as developer tools, using a fundamentally different approach. Instead
of scanning for vulnerabilities, they enforce guidelines regardless of con-
text as the code is being written. When developers are focused on the
functionality of their code and using a library for this purpose, security
is usually orthogonal to that purpose. A good tool should then warn a
developer when they stray from the paved path and guide them back
without hurting productivity. This guiding of the developer along the
paved path, boosts their productivity while lowering their cognitive bur-
den. If the security experts have done a good job laying out this paved
path, the resulting code will be secure.

In this research, I helped design and I evaluated the Sensei Integrated
Development Environment (IDE) plugin, developed by SCW. Sensei en-
forces so-called recipes in the IDE, similar to an as-you-type spellchecker.
It also provides remediation guidance in the form of quick-fixes when
these recipes are violated. I conducted experiments and usability tests
that show that these features are usable and quickly feel like a natural
extension of the existing toolkit of the developer.

Sensei provides a recipe-editor to allow developers and security ex-
perts to create their own project-specific guidelines, in line with the
paved path methodology. The editor can generate suggestions from
the context of the code and provides the recipe-writer with a live pre-
view of the recipe, showing its markings on the code. In interviews
conducted during this research, security professionals indicate that cus-
tomizing recipes with Sensei is easier than any other tools they have
used in the past. Furthermore, in an empirical experiment with stu-
dents I have shown that customized recipes are effective at keeping the
developer’s trust with minimal impact on the developer’s productivity.

Perspectives Until now, education and tools were considered two sep-
arate things. In reality, the border between these two is not that clearly
defined and they blend over into each other. Developers often learn while
doing, and the educational aspect of Sensei itself should not be under-
estimated. In the future, the ITS can be extended to use information

XII SUMMARY

gathered by Sensei and other developer tools such as the code repository
and the issue tracking system. At the same time, the ability estimate of
the training platform can be used to tune the feedback of tools such as
Sensei to the ability of the user.

Contents

Nederlandstalige samenvatting V

English Summary IX

1 The paved path methodology 1

1.1 A story of increasing collaboration 2
1.1.1 The security team 2
1.1.2 The development team and the operations team . 3
1.1.3 Three is a party 4

1.2 Improved culture . 5
1.2.1 Aligning goals and metrics 5
1.2.2 Aligning communication 6

1.3 Developer-minded security education 6
1.3.1 Relevant education 7
1.3.2 Efficient education 7
1.3.3 Usable education 9

1.4 Developer-minded security tools 10
1.4.1 Relevant tools . 10
1.4.2 Efficient tools . 11
1.4.3 Usable tools . 12

1.5 This book . 13
1.6 Publication output . 15
1.7 Perspectives . 16

I Education 19

2 Secure Code Warrior 21

2.1 The company . 22
2.2 The training platform . 22
2.3 Exercises . 23
2.4 Context . 26
2.5 Course material . 30

XIV CONTENTS

2.6 Use in the paved path methodology 30

3 Intelligent tutoring system 33

3.1 Design . 34
3.2 Collaborative filtering . 36

3.2.1 Adapted to learning systems 37
3.2.2 Types of collaborative filtering 40
3.2.3 Alternative approaches 41

3.3 Difficulty estimation and ability estimation 45
3.3.1 Item response theory 46
3.3.2 Rasch model . 47
3.3.3 Alternative approaches 51

3.4 Data . 56
3.4.1 Data collection . 56
3.4.2 Data pre-processing 57
3.4.3 Data annotation 58

4 Experiments 61

4.1 Rash model . 62
4.1.1 Goals and research questions 62
4.1.2 Experimental set-up 63
4.1.3 Findings . 66

4.2 Step size adjustment ability estimation 71
4.2.1 Goals and research questions 71
4.2.2 Approximation procedures 71
4.2.3 Experimental set-up 73
4.2.4 Findings . 73

4.3 Collaborative filtering algorithms 74
4.3.1 Goal and research questions 74
4.3.2 Benchmark algorithms 75
4.3.3 Memory-based algorithms 76
4.3.4 Model-based algorithms 79
4.3.5 Experimental set-up 81
4.3.6 Findings . 84

4.4 Adaptation to learning systems 87
4.4.1 Goals and research questions 87
4.4.2 Experimental set-up 88
4.4.3 Adaptation to learning systems 88
4.4.4 Findings . 89

5 Discussion and perspectives 91

CONTENTS XV

5.1 Discussion . 92
5.1.1 Two-parameter logistic model 92
5.1.2 Recommendations 94
5.1.3 Adaptation . 96

5.2 Perspectives . 97
5.2.1 Implementation into the training platform 97
5.2.2 Integrating with developer tools 99
5.2.3 Mobile application 101

II Tools 103

6 Goals and requirements 105

6.1 Traditional security tools 106
6.2 Tools for the paved path methodology 107

7 Sensei 111

7.1 Recipes . 112
7.1.1 Creating recipes 112
7.1.2 Managing recipes 116
7.1.3 Verifying recipes 121
7.1.4 Explaining recipes 121

7.2 Recipe features . 124
7.2.1 Lowering effective false positives 125
7.2.2 Support for libraries 129
7.2.3 Support for detecting design flaws 131
7.2.4 Testing recipes . 132

8 Experiments and observations 135

8.1 Controlled empirical usability experiment 136
8.1.1 Goals and research questions 136
8.1.2 Experimental set-up 136
8.1.3 Findings . 143
8.1.4 Threats to validity 148

8.2 User testing with individual developers 151
8.2.1 Goals and research question 151
8.2.2 Experimental set-up 152
8.2.3 Findings . 153
8.2.4 Threats to validity 155

8.3 Industry trial in 2018 . 155
8.3.1 Goal . 156
8.3.2 Set-up . 156

XVI CONTENTS

8.3.3 Findings . 157
8.3.4 Threats to validity 157

8.4 Industry interview in 2021 157
8.4.1 Goal . 158
8.4.2 Set-up . 158
8.4.3 Findings . 159
8.4.4 Threats to validity 162

9 Discussion and perspectives 163

9.1 Discussion . 164
9.1.1 Installation and first use 164
9.1.2 Recipes . 164
9.1.3 Recipe editor . 165
9.1.4 Feedback and remediation 167
9.1.5 Project and team management 171

9.2 Perspectives . 174
9.2.1 Improved recipe creation 174
9.2.2 Adapting feedback to the skill level 175
9.2.3 Controlled experiment in industry environment . . 176

III Closing 181

10 Related work 183

10.1 Governance . 184
10.1.1 Training . 184
10.1.2 Compliance and policy 184

10.2 Develop . 187
10.2.1 Lint . 187
10.2.2 Security patterns 188
10.2.3 Security libraries and frameworks 189
10.2.4 Artificial intelligence code completion 189

10.3 Build . 190
10.3.1 Build tools . 190
10.3.2 Software composition analysis 191

10.4 Test . 192
10.4.1 Penetration testing 192
10.4.2 Code reviews . 193
10.4.3 Static analysis . 193
10.4.4 IDE-based static analysis 194
10.4.5 Rule customization 195

CONTENTS XVII

10.5 Release and deploy . 202
10.5.1 Infrastructure as code 202
10.5.2 Policy as code . 205

11 Conclusion 209

11.1 Intelligent Tutoring System 210
11.2 Sensei . 211
11.3 Paved path methodology 213

A Challenges 215

A.1 Challenge creation . 215
A.2 Scoring . 216

B Games-Howell post-hoc tests 219

C CF algorithm measurements 227

D Bad code patterns 233

E Recipe scopes 237

F Security battlecards 239

XVIII CONTENTS

List of Tables

4.1 Analysis Of Variance (ANOVA) test results for 2PL model 65
4.2 Pairwise Games-Howell post-hoc test results 65
4.3 Prediction performance of memory-based algorithms . . . 86
4.4 Prediction performance of model-based algorithms 87
4.5 Adapted collaborative filtering algorithms 90

8.1 Sensei events file . 142
8.2 Sensei events file with multiple violations at the same time143

A.1 Points awarded for each difficulty on the SCW platform . 216
A.2 Penalty for using hints . 217
A.3 Penalty for failed attempts 217

B.1 Games-Howell tests for categories 219
B.2 Games-Howell tests for frameworks 221

C.1 Comparison of default configurations for all CF algorithms228
C.2 User-based versus item-based k-nearest neighbours (k-

NN) algorithms . 229
C.3 Comparison of similarity metrics for k-NN algorithms . . 230
C.4 Adapted collaborative filtering algorithms 231

D.1 Bad code patterns . 234
D.2 Quality related bad code patterns 235

XX LISTOF TABLES

List of Figures

2.1 SCW mission control dashboard 24
2.2 SCW metrics dashboard 25
2.3 Identify challenge . 27
2.4 Locate challenge . 28
2.5 Fix challenge . 29

3.1 Design of the ITS . 34
3.2 Collaborative filtering algorithm 37
3.3 Adapted collaborative filtering algorithm 39
3.4 Item response functions of the 1PL model 48
3.5 Item response functions of the 2PL model 49
3.6 Item response functions of the 3PL model 53
3.7 Item response functions of the 4PL model 54

4.1 Difficulty of bugs versus flaws 66
4.2 Medium mean difficulty for XSS challenges 68
4.3 Memory-safe versus memory-unsafe languages 68
4.4 Frameworks versus default languages 69
4.5 Mobile versus web frameworks 70
4.6 Mean difficulty of challenge presentation 71
4.7 Error rates of step size adjustment procedures 75

5.1 OWASP Top 10 2021 . 93

6.1 Security as part of software testing 106
6.2 Shift left movement . 107
6.3 Paved path methodology 108

7.1 Old model-based recipe editor 113
7.2 Context-aware recipe creation menu 114
7.3 Recipe created from context 115
7.4 Fix creation window . 116
7.5 General recipe settings . 117

XXII LISTOF FIGURES

7.6 Cookbook manager . 119
7.7 Copy recipe option in the quick-fix menu 120
7.8 Clone recipe window . 120
7.9 Error marking on an XML opening tag. 122
7.10 Marking at the information error level 122
7.11 Short description of a recipe 123
7.12 Example of the full coding guideline. 124
7.13 Example of the quick-fix description. 125
7.14 Graphical User Interface (GUI) to add the requirement

of untrusted input. 128

8.1 Histogram of points scored in the Secure Code Warrior
(SCW) tournament . 139

8.2 Histogram of time spent in the SCW tournament 139
8.3 Histograms of the violations introduced during and re-

maining after the programming assignment 145
8.4 Average removal time of guidelines 147
8.5 Hints for different syntactic components in the recipe editor155

9.1 Slack theme editor . 167
9.2 Show variables button in the fix menu 168

10.1 Semgrep playground editor 200

Acronyms

1PL one-parameter logistic model. 47, 48, 52, 63

2PL two-parameter logistic model. 46–49, 52, 53, 57, 58, 61–63, 70, 91,
92, 97, 99, 100, 146, 191, 209–211

3PL three-parameter logistic model. 52, 53

4PL four-parameter logistic model. 52, 54

AI Artificial Intelligence. .189

ANOVA Analysis Of Variance. XIX, 64, 65

API Application Programming Interface. . 11, 15, 30, 112, 116, 118,
119, 123, 125, 130–133, 160, 165, 169, 170, 172–174, 183, 188, 189,
195–197, 202, 213, 241, 247, 250, 251

ASIDE Application Security plugin for Integrated Development Envi-
ronment. .169

AST Abstract Syntax Tree. 121, 187, 199, 250

AWS Amazon Web Services. .118

BBC The British Broadcasting Corporation. 22

CAT Computerized Adaptive Test. 44, 45, 58, 71, 72, 94, 99

CF Collaborative Filtering. 33, 34, 36–38, 40, 41, 43, 45, 51, 54, 57, 61,
74–76, 80–84, 87, 91, 94, 96, 99, 209–211, 228, 231

CI Continuous Integration. 193, 244

CICD Continuous Integration and Continuous Delivery. 3, 4, 135, 162,
172, 247

CML Conditional Maximum Likelihood. 49, 50

CNCF Cloud Native Computing Foundation. 204, 205

XXIV Acronyms

CPU Central Processing Unit. .202

CTT Classical Test Theory. 35, 51, 52

CVE Common Vulnerabilities and Exposures. 92

CWE Common Weakness Enumeration. 30, 92

DES Data Encryption Standard. 195–198, 250

DoS Denial of Service. 43

EC European Commission. .185

EE Enterprise Edition. 30, 68, 73, 82, 118, 237

EFP Effective False Positive. . 125–127, 161, 163, 167, 169, 172, 173,
175, 191, 195, 201, 242, 244, 246

EM Expectation-Maximization. 50

EO Executive Order. .186

ESAPI Enterprise Security API. 112, 125, 130, 189

ESF European Social Fund. 15

ESVD Early Security Vulnerability Detector.169

EU European Union. .185

FCP Fraction of Concordant Pairs. 84, 228

FIT Fixed Item Test. 44, 45

FOD Fortify on Demand. 194, 248

FSA Fortify Security Assistant. 194, 248

FSCA Fortify Static Code Analyzer. 247, 248

GDPR General Data Protection Regulation.56, 185, 186

GUI Graphical User Interface. . . . XXII, 111–114, 126–128, 166, 198

HIPAA Health Insurance Portability and Accountability Act. . .186

HTML Hyper Text Markup Language. 123, 124, 170

HTTP Hyper Text Transfer Protocol.129

Acronyms XXV

IaC Infrastructure as Code. 183, 202

id identifier. 56, 67

IDE Integrated Development Environment. 12,
13, 99, 100, 104, 108, 109, 111, 113, 116, 118, 121–124, 132, 133,
136–138, 140, 141, 151, 156, 159, 161, 164, 167, 168, 171, 172, 175,
187, 189, 194, 198, 209, 212, 239–241, 243–246, 248–252

IEC International Electrotechnical Commission.185

IRF Item Response Function. 46–49, 52–54, 58

IRT Item Response Theory.33, 35, 45, 46, 49–53, 55, 57, 58, 62, 64, 72,
73, 95, 98, 99, 209, 210

ISO International Organization for Standardization.185

ITS Intelligent Tutoring System. . . 13, 17, 20, 33–36, 40, 42, 44–46,
52–54, 56, 57, 61–63, 72, 74, 91, 97, 100, 172, 209–211

JAR Java ARchive. .252

JDK Java Development Kit. 130, 189

JML Joint Maximum Likelihood. 49

JSF JavaServer Faces. 68, 69

JSP JavaServer Pages. .30, 137, 138

k-NN k-nearest neighbours. XIX, 40, 61, 76, 77, 79, 82, 85, 86, 88–91,
94, 95, 228, 229, 231

MAE Mean Absolute Error. 83–86, 90, 228

MML Marginal Maximum Likelihood. 49, 50

MSD Mean Squared Difference. 77, 85

MVC Model View Controller. 30

NIST National Institute of Standards and Technology. . . . 186, 204

NMAE Normalized Mean Absolute Error. 83

NMF Non-negative Matrix Factorization. 81

NNMF Non-negative Matrix Factorization. 41

XXVI Acronyms

O&O Onderzoek & Ontwikkeling (English: Research & Development).
175

OPA Open Policy Agent. 205, 207

OS Operating System. 125, 127, 132, 138, 141, 175, 201–203, 234, 237

OWASP Open Web Application Security Project. 26, 30, 31, 44, 62,
67, 85, 92, 93, 100, 112, 125, 130, 188, 189, 191, 193, 203–205, 207

PCI DSS Payment Card Industry Data Security Standard.185

PMF Probabilistic Matrix Factorization. 41, 80, 81

QA Quality Assurance. .184

RMSE Root Mean Squared Error. 83, 84, 228

ROI Return on Investment. 156, 171, 177, 185

SaaS Software as a Service. 202, 249

SAST Static Application Security Testing. . .193, 241–249, 251, 252

SBOM Software Bill of Materials. 186, 191

SCA Software Component Analysis. 191, 240, 241

SCW Secure Code Warrior. XXII, 1, 13–15, 20–25, 27–31, 33,
42–44, 47, 49, 53, 56, 57, 61–64, 74, 76, 80, 85, 87, 91, 92, 94–97,
99–101, 104, 108, 111, 112, 118, 123, 124, 133, 136–138, 146, 151,
152, 156, 162, 171, 175, 204, 209–212, 216

SDK Software Development Kit.118

SDLC Software Development Life Cycle. . 71, 105–107, 121, 160, 162,
167, 171, 172, 178, 184, 187, 192, 194, 195, 211, 239–252

SQL Structured Query Language. 17, 23, 27–29, 42, 43, 100, 137, 141,
144, 146, 164, 171, 196

SVD Singular Value Decomposition. 41, 80, 81

UI User Interface. 135, 151, 152, 154, 160, 166, 167, 174, 176, 199, 209,
212, 244

URL Uniform Resource Locator.140

ACRONYMS XXVII

US United States. .186

UX User Experience. 151, 152

VG Veracode Greenlight. .249

VLAIO Vlaams Agentschap Innoveren & Ondernemen (English: Flan-
ders Innovation & Entrepreneurship).174

VM Virtual Machine. 202, 203

VMI Virtual Machine Image. .202

VSA Veracode Static Analysis. .249

WLE Weighted Likelihood Estimator. 51

XML Extensible Markup Language. 17, 108, 121, 122, 137, 183, 198,
247, 252

XSS Cross-Site Scripting. 6, 67, 137, 146, 170, 175, 189, 211

XXE XML External Entity. 66, 92, 234

YAML YAML Ain’t Markup Language. . 111, 113–115, 126–129, 135,
165, 174, 183, 198–200, 209, 237, 238, 244, 250, 252

XXVIII ACRONYMS

Glossary

AppSec Application security team. This term emphasizes the context
of security regarding software applications, in contrast with net-
work security. 2

bug tracking system A software application used to keep track of re-
ported bugs in software development projects. Often this is not a
standalone application but part of an issue tracking system. 2, 4,
107

Dev Development team. This team writes the code of the application.
2, 3

DevOps Contraction between Dev and Ops, a more or less unified team
of developers and operators. 3, 4, 106, 112, 190

DevSecOps Contraction between Dev, Sec, and Ops, a more or less
unified team of developers, security experts, and operators. 4, 5,
108

exploit A sequence of commands, inputs, or other manipulations that
can take advantage of a security problem and cause harm to the
stakeholders of the application. 6, 105

flaw A mistake in the design of the application that can lead to un-
wanted behaviour. They are mistakes in the functional structure
of the application that are harder to detect automatically than
security bugs. 66

issue A unit of work to accomplish an improvement in a software de-
velopment system. An issue can be a bug, a requested feature,
documentation, and more. 2

Ops Operations team. This team is responsible for running the code so
that the application is available to customers. 3

XXX GLOSSARY

Sec Security team, in the context of this book used to indicate the
application security team. This team has access to the code and
is responsible for evaluating and monitoring its security. . . 2, 4

security defect A security problem that has not yet been proven to
lead to a vulnerability. 6, 157

security problem Overlapping term for security bugs and security
flaws. 2, 4, 22, 106, 107

Slack A popular business communication platform that consists of per-
sistent chat rooms organized by topic, private groups, and direct
messaging.. 159, 166

vulnerability A security problem for which it has been proven an ex-
ploit exists.1, 2, 6, 12, 23, 56, 105,
106

Chapter 1

The paved pathmethodology

You must unlearn what you
have learned.

Yoda

Security automation has made it easier to identify software vulnera-
bilities, but this has had little impact on the prevalence of vulnerabilities
in almost all types of software. To turn the tide, fundamental changes
need to be made to software development practices. The ability to de-
tect vulnerabilities alone is not enough, we need better processes and
tools to prevent and fix vulnerabilities in a scalable way.

During the past four years I have researched developer and security
practices while working for the company Secure Code Warrior (SCW)1,
in collaboration with Ghent University. During this time I built a vision
of collaboration between developers and the security team, which I have
named the paved path methodology. In this chapter, I describe the
observations made during my research and the vision I have built. In
the remainder of this work, I explain how this vision can be achieved
through more intentional education (Part I) and tools (Part II).

1https://www.securecodewarrior.com/

2 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

If nothing else, take away from this chapter...

With the paved path methodology, I have built a vision to make
software security a shared responsibility between the security
team and developers. When using this methodology, the security
team should not force security testing on developers, but instead
gradually build a paved path for developers to follow. Developers
will then follow that path, as it is the easiest way to achieve their
goals. The discussed practices make it easier for developers to
produce secure code and fix existing vulnerabilities in a scalable
way without harming their productivity. To support the paved
path methodology better education and tools should be provided
that are more human-centered and keep the developer experience
in mind.

1.1 A story of increasing collaboration

1.1.1 The security team

Security issues still exist in all software products: 100% of the applica-
tions tested by Trustwave in 2017 displayed at least one vulnerability [1].
90% of these vulnerabilities are caused by problems or oversights in un-
derlying code [2]. They are the results of mistakes made by the program-
mers during development. These are not new problems, the same types
of vulnerabilities have been widely present in software for decades.

The (application) security team (Sec or AppSec) at these companies
is responsible for evaluating the software and finding all the vulnerabili-
ties. With the use of security tools much of this process is automated and
so they have become quite competent at finding problems in the code.
In fact, many of the reported numbers are collected through security
tools used by these very teams [3].

The ability to detect security problems alone is not sufficient, more
focus should be on preventing and fixing them in a scalable way. Once
these (potential) vulnerabilities are discovered, it is up to the develop-
ment team (Dev) to fix them. In order to help them manage this task,
the security team pushes discovered vulnerabilities into a bug tracking
system. They even organise the vulnerabilities by category and priori-
tize them by severity of impact. To actually understand each issue, and
to fix them in a consistent way, however, developers are often on their
own. On average a company hires only 1 security expert for every 75-200

1.1. A STORYOF INCREASINGCOLLABORATION 3

developers [4–6]. This expert simply cannot assist each of those devel-
opers. It is evident that security is no longer just the task of this expert.
Every developer should be responsible for producing code securely from
the start.

1.1.2 The development team and the operations team

In order to make producing secure code more scalable, we can take a look
at the improved collaboration between developers and operators in the
DevOps movement. The operations team (Ops) used to be the only one
responsible for testing and deploying code delivered by developers. Once
the code was finished, and working on the developer’s local machine, it
was thrown over the wall for the operators to deal with. The DevOps
movement aims to make this a more shared responsibility between Dev
and Ops. Ideally, the two become one integrated DevOps team. In
reality they are often still two closely related teams.

This close collaboration between the two is key. The operations team
provides a service to developers that enables them to test and deploy
their own code. They do not force automation but gradually build a
Continuous Integration and Continuous Delivery (CICD) pipeline. This
pipeline is different for each project and heavily depends on the chosen
technology stack for that project. Through this pipeline, developers
are able to check in smaller pieces of code more frequently and quickly
receive feedback. DevOps has quickly gained popularity, 43% of develop-
ers report using its practices and 80% of developers think using DevOps
practices is important [7].

The automated CICD pipeline also benefits the security team. Be-
cause of the faster release and deploy times, fixed security problems find
their way into production faster. The CICD pipeline also allows them
to automatically run static and dynamic analysis tools more easily. On
bigger projects, such tools easily need a couple of hours to complete
their analyses. This is not ideal for DevOps pipelines, where tight feed-
back loops are important. Almost all developers (96%) report that the
biggest inhibitor to productivity is the disconnect between development
and security workflows [6]. A guideline that is sometimes mentioned for
DevOps tools is the coffee test. The idea behind this test is that all
automations should be finished within the time it takes a developer to
get a cup of coffee after checking in their code.

To solve this, the security team can tune the tools so that they run
more lightweight analyses. One way to do this is by disabling certain
rules. More lightweight analyses do not hinder the developers’ productiv-

4 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

ity and also allow for fast feedback of the analysis results. Of course, the
full scan should still be run regularly, for example on a daily basis. Faster
feedback through lightweight analyses is definitely an improvement over
delayed pushing of security problems into a bug tracking system, but it
is not enough. The CICD pipeline may be convenient to automate secu-
rity, but it is still disconnected from the development workflow. There
is still only one expert to help up to 200 developers, so the problem
of preventing and fixing security problems at scale remains. The secu-
rity team acknowledges this, as they rank creating developer-friendly
workflows as their top priority, even ahead of protecting the production
software itself [6].

1.1.3 Three is a party

Similarly to the DevOps movement, security should become a shared
responsibility between the development (or DevOps) team and the secu-
rity team. The security team should not generate reports and throw it
over the wall to developers. Instead, they should closely collaborate with
developers to enable them to produce secure code consistently. This can
be achieved through the paved path methodology.

Like the operations team, the security team should provide a ser-
vice to developers to make it easy for them to secure their own code
in a consistent way. They should not force security testing on develop-
ers, but instead gradually build a paved path for developers to follow.
Just like the CICD pipeline, this paved path should be tailored for each
project and will heavily depend on the technology stack for that project.
Together, developers and security experts should build standards and
patterns that lay out the paved path for their project. For example,
they can decide together how key management should be handled by se-
lecting the library and the tools needed. The correct way to handle key
management will depend on the programming language, the framework,
and the type of software application. Developers will then follow the
paved path, as it is the easiest way for them to implement a feature that
needs key management. Automated checks can be included in CICD by
operators to prevent any other ways of handling key management.

In order to achieve this close collaboration, the security team needs
to be deliberate in their approach. Their focus should not just be on
the code, but also on the developer. They should be mindful of their
communication and be empathetic. This way Sec and DevOps can truly
come together to form a DevSecOps team with aligned goals.

1.2. IMPROVEDCULTURE 5

1.2 Improved culture

This shift towards collaboration starts with a shift in culture. Histori-
cally, the development team and the security team have developed some-
what of an adversarial relationship. The security team has to constantly
fight to make security a priority during development. They are aware
of the risks and the costs related to poor security and they try their
hardest to find all the problems in the code.

Since the security experts are understaffed and unable to adequately
assist developers, all they end up doing is slapping developers on the
wrist by pointing out their mistakes. In doing so, the security team loses
an opportunity to build a trusted relationship and provide a valuable
service to developers. This kind of interaction understandably causes
resistance and even contempt from the developers towards the security
team. This in turn gives security experts the impression that develop-
ers do not care about security. Furthermore, it is often the case that
security experts do not have sufficiently intimate knowledge of software
development. Even with the right intentions, they commonly lack the
skills, or at the minimum the credibility, to properly advise developers
in improving development processes and standards.

There is a clear need for mutual respect, empathy, and better co-
operation. The security team needs to empathize with developers and
provide a meaningful service to them. But to do so effectively, the devel-
opers need to empathize with the security team and work constructively
to make security an inherent part of the software development process.
This culture of cooperation and empathy is started by aligning goals,
and aligning language among the two teams.

1.2.1 Aligning goals andmetrics

To make security a shared responsibility, we have to meet developers
in the middle. Developers, and the business as a whole, want to ship
features regularly and with predictable speed. It is hurtful to the busi-
ness to delay releases for security concerns when customers are promised
these new features. The security team needs to understand this, and get
involved from the start. Security becomes a shared responsibility, but
so does building and deploying fast. Moreover, faster building and de-
ploying also benefits security, as any security problems that eventually
show up in production can also be patched and updated faster.

The mutual goal of a DevSecOps team should be to reduce the num-
ber of vulnerabilities in later stages of the development life cycle, while

6 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

also still maintaining or even improving deployment metrics [8]. It then
becomes clear that improving one at the detriment of the other, is not
real improvement.

1.2.2 Aligning communication

The culture of mutual empathy is also improved with more deliber-
ate and conscious communication. Instead of shaming or even punish-
ing developers when problems are introduced in the code, the security
team should try to understand the developer’s challenges, and offer help.
When the paved path has been built through collaboration, this implies
the guidelines for the project have been mutually agreed upon. When
such guidelines are violated, it becomes easier to demonstrate empathy
and to show good intent. The security team can ask developers if the
guidelines are insufficiently clear, if they lack recommendations for spe-
cific edge cases, or if there is any other valid reason the developer did
not adhere to the guideline.

By doing so, they can more easily avoid security jargon and speak in
clear, mutually understood language. They will talk about a guideline
violation instead of a vulnerability, exploit, or a security defect. Ter-
minology with subtle differences in meaning that are likely not fully
understood by developers. There is no need to talk about vulnerability
types or use acronyms, instead the focus can be on the desired result,
spoken in development terms. So instead of warning of a potential Cross-
Site Scripting (XSS) vulnerability, the security team can indicate a lack
of output escaping and request the use, or development, of a library for
this purpose.

By improving culture, and creating more empathy between the secu-
rity team and developers, the security team should be better equipped to
integrate security and development workflows without hurting produc-
tivity. The integration of these processes can be facilitated with appro-
priate technology that is more suited to developers. Instead of forcing
re-purposed security tools designed for security professionals onto devel-
opers, new technology should be used that is built with the developer
experience in mind.

1.3 Developer-minded security education

Deliberate security education that keeps the developer experience in
mind should be:

• relevant to the developer’s work,

1.3. DEVELOPER-MINDED SECURITY EDUCATION 7

• efficient in achieving the developer’s needs,
• usable, engaging, fun.

The goal of security education is to teach developers the knowledge
and skills necessary to produce secure code. To achieve this goal, we
want the acquired information to be stored in long-term memory. Every
piece of knowledge in long-term memory is stored as a series of associa-
tions [9].

If a developer learns about the programming language Kotlin, this
can be encoded in their memory under the following associations:

• Programming languages used for Android apps.
• Programming languages designed by JetBrains.
• Things I learned about while eating pizza.

More associations, and more meaningful associations, make it easier
to retrieve information from memory. Education should be designed
to allow for many meaningful associations. We often make numerous
unconscious associations by utilizing all of our senses, such as the as-
sociation between Kotlin and pizza in the example above. While these
associations may seem random, they are still used to retrieve information
and can even be used to design better education [9].

1.3.1 Relevant education

Some of the associations made while learning secure coding skills will be
related to the practical context in which the developer is taught. This
context should resemble the one where the acquired skills are applied, as
this will improve retrieval of the content. This phenomenon is one of the
reasons why pilots do not learn to fly a plane through slide presentations
but by using flight simulators [9]. Similarly, developers should not learn
secure coding through books or slide presentations.

The learning context should resemble the developer’s work context.
They should receive education in their office or home office, by using their
own computer, their own keyboard and mouse, and through actual code.
This code should be in the same programming language and framework
they are using daily. Even the type of software should be relevant to the
developer’s work. A developer working on mobile applications should
be taught secure coding by means of code for mobile applications.

1.3.2 Efficient education

Retention and recollection of the material is not just improved through
more and better associations, but also through repetition. Repetition

8 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

reinforces the associations in memory, this makes them stronger and
more durable [9]. Of course, we can not expect developers to study for
hours on a daily basis, education should be possible with minimal harm
to their productivity.

Finding the right balance between repetition and efficiency is a diffi-
cult problem. How much repetition is needed depends on the individual
learning pace of each developer. A teacher can easily adapt their pace to
the students in their classroom. However, in classroom teaching, much
of the practical context and other relevant aspects mentioned in the pre-
vious section are easily neglected. In online learning it is more practical
to allow each developer to train using their own programming language
and their own machine. Online learning also allows for better scalability.
But online systems are worse at adapting to the learning pace of each
user. A possible solution to this problem is described in Part I of this
work.

From the developer’s perspective, relevance and efficiency are closely
related. As explained in the previous section, education in the right lan-
guage and framework allows for better recollection because contextual
associations are made in memory. But using the right programming
language also ensures that the developer is being taught problems and
solutions that are immediately applicable to their work. Many learn-
ing resources teach secure coding concepts in a different programming
language, or by using pseudo-code. While most developers will be able
to apply the learned concepts to their own code, they will still need to
research specifics on their own to do so.

Efficiency can also be improved by providing exercises that help de-
velopers acquire the right skills. These skills are recognizing insecure
code patterns and (re)writing their code so that it is secure. They need
to be taught the paved path, and how to stay on it. Security experts,
on the other hand, are often occupied with testing whether potential
vulnerabilities can be exploited. This is frequently reflected in security
education; developers are handed penetration testing exercises. Such ex-
ercises certainly have a place in developer education, as they create new
and strengthen old associations in memory. However, in order to teach
developers secure coding skills more efficiently, the focus should be on
defensive exercises, i.e., exercises that teach the developer to recognize
insecure code and to prevent or fix insecurities.

1.3. DEVELOPER-MINDED SECURITY EDUCATION 9

1.3.3 Usable education

When it comes to online learning, usability and engagement go hand
in hand. By improving the usability of the education, engagement is
increased as well [10–13]. Engagement has been shown to have a clear
positive effect on learning [13, 14]. Because online learning often suffers
from low engagement, extra care should be put into usability [15].

Improving the relevance and efficiency of education will indirectly
make it more usable, as less effort will be needed to understand and
apply the learned lessons. Efficient training, that can avoid unnecessary
repetition, will make it less likely that a developer gets bored due to this
repetition. On the other hand, too much efficiency can cause the learning
curve to be unnecessarily steep. When developers have difficulty keeping
up with the material, they might experience frustration. A bored or
frustrated developer is likely to lose interest and even to disengage from
the education. When instead a developer continuously experiences the
right level of challenge, they are experiencing a state of flow [16, 17].
Flow affects learning both directly and via increased engagement [14,
16, 18]. Finding the right difficulty for each user to keep them in a state
of flow is a challenge tackled in Part I of this work.

Besides keeping users in a state of flow, usability and engagement
can also be improved through other means. One way to do this is
by providing a structured learning journey that lays out a clear path
and expectations [15]. This structured journey allows online learning
to replicate a more traditional learning experience. Another way to im-
prove usability and engagement is through increased interactivity of the
education [15]. It is possible to encourage interactivity between learn-
ers by adding gamification and competitive aspects such as high scores,
leaderboards, badges, achievements, or even prizes. Promising rewards
like these upon completion of certain tasks has a clear effect on learner
motivation and hence engagement. Finally, engagement can also be
increased through the presentation of the learning material. Many de-
velopers are problem solvers at heart. They enjoy trying to understand
a problem and coming up with an elegant solution. Rather than hand-
ing them descriptive learning material, it will likely improve engagement
when developers are allowed to figure out the answer for themselves. In
online learning this is not easily achieved, since automated grading of
open ended questions is difficult.

A form factor that still allows for some type of problem solving that is
easy to correct for a computer is multiple choice. This type of questions
teaches a developer to recognize the right answer among several [9]. In

10 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

reality, a developer also needs to recall the material without being given
options to choose from. However, such a recollection activity can be
turned into a recognition activity by providing so-called scaffolding [19].
In the next section I explain how security tools can be designed to pro-
vide this scaffolding during development.

1.4 Developer-minded security tools

Education alone is insufficient for developers to produce secure code.
Our memories are not infallible and regression of knowledge is possible.
Other times developers sufficiently remember, but fail to apply their
knowledge in practice [20]. Security tools should help close this gap
between knowledge and practice.

Developers are known to dislike and often disable security tools dur-
ing development [6]. They frequently perceive them as one of the biggest
inhibitors of productivity. A tool supporting the paved path methodol-
ogy should in the first place be designed as a developer tool, security
should come as an indirect result.

A developer tool should:

• provide relevant feedback to the developer’s work,
• be efficient and improve productivity instead of hurting it,
• be usable and well integrated into developer workflows.

To the developer, the goal of a tool is to make development easier.
It should help boost their productivity and lower their cognitive burden.
From the developer’s perspective, security is a non-functional require-
ment and not the main objective. By using the paved path methodol-
ogy, such a developer tool can improve the security of the code. Good
development teams are narrow in their allowed practices, as this makes
it more feasible to understand and maintain the software. In order to
be successful, the security team should contribute and help decide these
allowed practices. Security will then simply be a result of sticking to
these practices, a result of following the path of least resistance.

1.4.1 Relevant tools

To lay out this paved path, the security team and the development team
have to work closely together. Together, they need to create guidelines
that specify the preferred solution for a security-critical feature that
is needed by the development team. These guidelines should not be
conceptual guidelines like the security team is used to creating, as those

1.4. DEVELOPER-MINDED SECURITY TOOLS 11

are hard to translate into code by developers. Instead, the security
team should work together with members from the development team to
make specific, Application Programming Interface (API)-level guidelines.
These guidelines lay out which libraries or even which specific library
calls are to be used in the project.

When the developers are using libraries for a specific purpose, they
are focused on the functionality of their code. Security is often orthog-
onal to that purpose. When a library is used insecurely by a developer,
we should not blame the developer for this, but instead blame the design
of the library. When laying out the paved path, it is important that no
security bugs can be introduced by using the chosen library, and instead
all possible bugs are contained within the implementation of the library
itself. Custom (wrapper) libraries may need to be developed that are
inherently safe and that can be freely used by the developers.

A tool supporting the paved path methodology should then remind
the developer of the agreed guidelines any time they stray from the
paved path. Any library calls or custom methods that the developer uses
and that are functionally similar to the library provided by the security
team, should be marked by the tool. This should be done regardless of
the security of the used library. The goal of the tool is not to evaluate
the security of the code, but only its adherence to the guidelines. Since
these guidelines are customized for each project, this guarantees that the
feedback will always be applicable and highly relevant to the developer’s
work. The tool should hence be easy to configure so that project-specific
guidelines can be enforced.

1.4.2 Efficient tools

It is worth emphasizing that the enforced guidelines can have a wide
range of applications. They can be used to migrate to a new library,
to deprecate old functions, enforce code quality guidelines, improve leg-
ibility, and so on. Such a tool helps developers share their knowledge
and guide each other to improve the quality and maintainability of the
software.

To assert that the developer is adhering to the guidelines, only local
analyses are required. There is no need for complex data flow or control
flow analyses. The required local analyses can be done in real time, as
the developer types. A tool that supports the paved path methodology
is hence efficient and actively improves the productivity of the developer
instead of hurting it.

In contrast, traditional security tools will try to assert the absence of

12 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

certain bugs in the application. To do this, they have to analyse all pos-
sible data flows. Even moderately complex applications contain complex
data flows that are difficult to reason about [21]. This complexity leads
to slow scanning speed and, to the developer’s standards, insufficient
quality of results.

When using traditional security tools, developers report this poor
quality of feedback and slow scanning speed as big inhibitors of their
productivity [6]. These security tools are of course still valuable to the
security team to help them create and maintain libraries, but they are
not the right tool to provide to developers.

Because the tool is able to provide instantaneous feedback, it makes
sense to do so in the developer’s Integrated Development Environment
(IDE). It can then make all necessary information about the agreed
guidelines available in the IDE as well. This way, the developer is able
to access it without making a context switch to consult outside docu-
mentation, again boosting productivity.

The guidelines describe which library calls to use, that is, they de-
scribe the desired outcome. Because of this, the tool that is enforcing the
guidelines is able to provide targeted and relevant remediation guidance
that can even be automated by the tool.

The lack of such remediation guidance is a frequently mentioned
inhibitor of productivity in traditional security tools [6] which usually
can only provide generally applicable guidance [22].

1.4.3 Usable tools

Avoiding the need for research does not only boost productivity, it also
makes the feedback easier to understand. Because the information is pre-
sented as a guideline, it is immediately obvious for the developers what
is expected of them to fix the problem. Adhering to a coding guideline
is trivial, and does not require knowledge of the possible vulnerabilities
it mitigates.

When the developer is provided feedback that describes potential
vulnerabilities, on the other hand, solving the problem is a more complex
task. Even if the developer is already familiar with the vulnerability
and does not need to research it, the focus in the case of a potential
bug report is on determining whether this particular instance can be
exploited or not. If it is determined insecure, the developer needs to
research a solution, apply it, and verify whether no functional changes
were made. This requires a larger cognitive effort. Traditional security
tools are meant to be just that, tools for the security team.

1.5. THIS BOOK 13

The usability for developers is improved because the tool is designed
with the developer in mind. The tool resides in the developer’s IDE and
reuses existing features to display information and provide remediation
guidance. It is closely integrated in the developer’s workflow and is easily
and frequently used for other purposes than security.

1.5 This book

In Part I of this work, I describe how to create better security education
and keep the developer experience in mind. I analyzed the behaviour of
over 175,000 developers receiving security education on the online learn-
ing platform created by SCW. I designed, implemented, and evaluated
an Intelligent Tutoring System (ITS) that selects the most appropriate
exercise for each developer at each point in time. This ITS ensures
that developers are receiving relevant training and acquire the necessary
skills efficiently while still being usable and engaging. The research in
this part is based on a large data set made up of data from developers
at large corporations. This data is rigorously analyzed and the results
are strong evidence towards the proposed solutions.

This part is based on:

• Method and System for Adaptive Security Guidance

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
US Patent Application 16/234,037, 2018
US Patent Publication US20200211135A1, 2020

• Create a Certification Framework for Secure Development

Practices

Matias Madou, Brian Chess, Pieter De Cremer
Enhancing Software Supply Chain Security, NIST, 2021

In Part II, I describe the goals and requirements for a security tool
supporting the paved path methodology. I helped with the design and
requirements of this tool that is implemented by the engineering team
at SCW and evaluated it both in a controlled experiment as well as
in professional settings. The tool, called Sensei, functions as an IDE
plugin and reuses existing IDE features that the developer is familiar
with. It provides remediation guidance in the form of quick-fixes and
offers several features improving usability for the developer. Sensei is
designed as a developer tool first, improving productivity and reducing
the cognitive burden of development. It enables close collaboration be-
tween the development team and the security team, and ensures that

14 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

secure code is being produced in a scalable way. The research in this
part is mostly based on observations at companies and second hand in-
formation acquired through interviews. Since the research subjects are
developers working for paying customers at Secure Code Warrior, they
were not able to invest large amounts of time to collaborate in this re-
search. The results from these interviews do not offer a positive and
final proof for the hypothesis of this work due to the designed experi-
ments carried out with less than expected rigorousness, therefore, they
can not be interpreted as strong evidence towards the proposed solution.
Nonetheless, they serve as valuable informational insights in further im-
provements of the tool and for future experiments, which I explain in
detail in Section 9.2.3.

This part is based on:

• Sensei: Enforcing secure coding guidelines in the inte-

grated development environment

Pieter De Cremer, Nathan Desmet, Matias Madou, Bjorn De Sutter
In Software: Practice and Experience, 2020

• Method and Apparatus for Detecting and Remediating

Security Vulnerabilities in Computer Readable Code

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
US Patent Application 17/005,685, 2020

• Method and Apparatus for Generating Security Vulnera-

bility Guidelines

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
US Patent Application 17/005,729, 2020

• Promote a Paved Path Secure Development Methodology

Matias Madou, Brian Chess, Pieter De Cremer
Enhancing Software Supply Chain Security, NIST, 2021

Finally, in Part III, I describe related tools and practices, and offer
my opinion on how they can be used to achieve a more human-centered
approach to software security. Some of the discussed tools and practices
have been thoroughly researched and are used in industry, other work is
more recent and innovative. This includes practices around governance,
training, development, building, and deploying of software products.

Other contributions as a researcher at SCW that are not detailed in
this dissertation include:

• Actionable Software Security for Developers

IWT bedrijfssteun, 2015

1.6. PUBLICATIONOUTPUT 15

As part of this project I surveyed and researched security problems
introduced in Java applications by incorrect use of common APIs.
Out of this research I created close to 100 rules that can be enforced
in the Sensei IDE plugin.

• How to scale application security training for developers

VLAIO O&O project, 2017
As part of this project I surveyed and researched common secu-
rity problems introduced in mobile applications created using the
Android API. From this research, I created a mobile application
and introduced vulnerabilities into it to create 138 exercises on the
SCW training platform.

• Aanpasbare ondersteuning voor veilige software ontwikke-

ling

VLAIO O&O project, 2019
I invented and described automatic rule creation methods for the
Sensei IDE plugin to be developed with this funding. The methods
include:

– Improved manual creation of rules through rule editor

– Static generation of rules based on static analysis tool results

– Static generation of rules based on code repository history

– Dynamic generation of rules based on developer behaviour

• Secure Code Bootcamp

European Social Fund (ESF) project, 2020
I was part of the design and product management of a mobile
application to provide secure coding education to developers. This
application is now freely available in the Android Play store and
the iOS App store.

1.6 Publication output

My publication output during my research includes one journal paper,
two position papers, and four patents.

• Sensei: Enforcing secure coding guidelines in the inte-

grated development environment

Pieter De Cremer, Nathan Desmet, Matias Madou, Bjorn De Sutter
Journal paper, peer reviewed and published [23].
In Software: Practice and Experience, 2020

16 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

• Create a Certification Framework for Secure Development

Practices

Matias Madou, Brian Chess, Pieter De Cremer
Position paper, peer reviewed and published [24].
Enhancing Software Supply Chain Security, NIST, 2021

• Promote a Paved Path Secure Development Methodology

Matias Madou, Brian Chess, Pieter De Cremer
Position paper, peer reviewed and published [24].
Enhancing Software Supply Chain Security, NIST, 2021

• Method and System for Adaptive Security Guidance

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
Patent application, reviewed and granted [25].
US Patent Application 16/234,037, 2018
US Patent Publication US20200211135A1, 2020

• Method and Apparatus for Detecting and Remediating

Security Vulnerabilities in Computer Readable Code

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
Patent application, under review with the examiner.
US Patent Application 17/005,685, 2020

• Method and Apparatus for Generating Security Vulnera-

bility Guidelines

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
Patent application, under review with the examiner.
US Patent Application 17/005,729, 2020

• Method and Apparatus for Adaptive Security Guidance

Pieter De Cremer, Matias Madou, Nathan Desmet, Colin Wong
Patent continuation application, under review with the examiner.
US Patent Application 17/469,636, 2021

1.7 Perspectives

There is still progress to be made outside of this work, both in the edu-
cation and tools for the paved path methodology as well as in different
aspects of the cooperation between the security team and the develop-
ment team.

Until now, education and tools were considered two separate things
to provide to developers. In reality, the border between these two is not
that clearly defined and they blend over into each other.

1.7. PERSPECTIVES 17

Developers often learn while doing, and the educational aspect of
Sensei itself should not be underestimated. The approach of an ITS
can be extended to the tool. The information, and even guidance, that
is provided by Sensei should not be identical for each user. Different
information should be offered when teaching a new lesson compared to
brushing up a forgotten one. Teaching new concepts should also depend
on previous knowledge. It is easier to explain a new type of injection
flaw (e.g. Extensible Markup Language (XML) injection) to a developer
by drawing parallels with other injection flaws that they are already ac-
quainted with (e.g. Structured Query Language (SQL) injection). Mark-
ings and remediation guidance should depend on the knowledge of the
developer, and even that of other team members. Some critical security
features might need more expertise, and the most efficient way forward
as a team, could be for an uninformed developer to ask help from a more
educated or experienced coworker.

But not only Sensei can benefit from this blended border with educa-
tion. Education can also be more targeted if it can integrate with Sensei
and other developer tools. By observing which errors developers make
in practice, a better picture of their understanding can be created. By
integrating with issue trackers, it is possible to keep track of the issues
that developers are assigned to, and to design individual learning goals
for each developer. Integration with developer tools enables education
to become even more relevant, efficient, and usable.

Another challenge that remains for the paved path methodology is
applying it to existing, potentially large, legacy codebases. While the
security team can still lay out a paved path for developers to follow, it is
no easy task to refactor the existing code so that it adheres to this path.
Extra care should be taken when designing the inherently safe wrapper
library so that its uses match one to one as much as possible with the
existing library.

The paved path methodology helps the security team prevent and fix
vulnerabilities at scale. However, the security team still needs to tackle
scalability in other facets of their collaboration with developers beyond
the scope of this work. One example is threat modeling. It is impossible
for one security expert to model threats for all software designs by up
to 200 developers. Even though some approaches exist, they need wider
adoption and more thorough evaluation before they can be endorsed.

The paved path methodology by itself will not cause an enormous
shift in software development, nor will it single-handedly prevent all soft-
ware vulnerabilities in the future. But it is an improvement. With this
method, we are paving the path towards secure development, and tak-

18 CHAPTER 1. THE PAVEDPATHMETHODOLOGY

ing a step in the right direction. A step towards a more human-centered
future of software security, in a bigger journey to make security a shared
responsibility among everyone involved in the software development pro-
cess.

Part I

Education

Pass on what you have learned.
Strength. Mastery. But
weakness, folly, failure also.
Yes, failure most of all. The
greatest teacher, failure is.

Yoda

20

Introduction

Education in the paved path methodology should be deliberate and keep
the developer experience in mind. The SCW training platform is a good
resource for education in the paved path methodology. It provides on-
line training through defensive secure coding exercises in many different
programming languages and frameworks, and its gamification and inter-
activity make it fun and usable. Despite the focus on developers and its
many usability features, there is still a significant part of the user base
that only follows a minimal amount of training. Users follow one of the
predetermined courses, and it is likely that the pacing of these courses
does not fit their needs. Users get bored due to too much repetition, or
frustrated because the content is moving too fast.

I created an ITS by combining psychometric models with techniques
from computer science to recommend exercises to each individual at any
point in time. A customized recommendation like this is more likely
to keep the developer engaged and allows meaningful learning to take
place.

I start Part I by giving an overview of the SCW training platform,
its features, and the different types of exercises in Chapter 2. I then
describe the design of the ITS and explain the used techniques in more
detail in Chapter 3. The last chapter in this part provides an evaluation
of the ITS before offering some perspectives that remain future work.

Chapter 2

Secure CodeWarrior

In the paved path methodology, developers should be provided with
deliberate, targeted education that keeps the developer experience in
mind. This education should be relevant to the developers work, efficient
in achieving their needs, and usable to keep them engaged.

In this chapter, I describe the education provided by the online learn-
ing platform created by Secure Code Warrior (SCW). I assess its poten-
tial for use in the paved path methodology and describe shortcomings
that require further research.

If nothing else, take away from this chapter...

The SCW training platform provides training to hundreds of thou-
sands of developers from reputable customers. It provides defen-
sive exercises in a gamified and engaging way and offers a wide
variety of programming languages and frameworks. It is suitable
to be used in the paved path methodology as it is relevant and
usable. However, there is room for improvement when it comes
to the efficiency of the training. All users, regardless of skill
level, are presented challenges of the same difficulty. This leads
to boredom or frustration for some users and might cause them
to disengage from the training.

22 CHAPTER 2. SECURECODEWARRIOR

2.1 The company

The company was co-founded by Pieter Danhieux and Matias Madou
Ph.D., two alumni of Ghent University and both globally recognized
security experts. During their international careers, both founders no-
ticed that the focus in industry is too often on remediation rather than
prevention of security problems in software. Their vision is not to make
a security expert out of every developer, but to empower them to be-
come the first line of defence in the organisation. The company provides
education and tools to improve secure coding skills of developers. Both
the online training platform and their IDE based security tool can be
deployed to support a paved path methodology as described in this book.

Since its start in 2015, more than 400 customers from almost 40
countries around the world use SCW products to improve the secure
coding skills within their development teams. SCW focuses on large
companies with lots of developers. Most customers are active in banking,
finance, government, aviation, or telecommunications. Some notable
customers are:

• Coupang: the largest online retailer in South Korea

• 19 of the top 100 global banks

• The British Broadcasting Corporation (BBC): the largest broad-
caster in the world

• 2 of the world’s largest telecommunications providers

• 2 of the top US credit card processors

• Zoom: one of the largest communication technology companies

2.2 The training platform

The training platform provides an interactive and gamified way to learn
secure coding concepts, and focuses on defensive techniques. In the mis-
sion control dashboard, shown in Figure 2.1, developers are tasked with
defending an application from different types of threats originating from
all over the world. The developer is awarded points for completing exer-
cises, and leaderboards are shown to create a competitive environment.
By collecting enough points and spending enough time on the platform,
the developer can unlock achievements and gain badges. All of this
progress can be monitored on a metrics dashboard, shown in Figure 2.2.
A total of over 100,000 unique developers used the training platform in
2020.

2.3. EXERCISES 23

In a survey with 722 developers, 90% of respondents said they prefer
SCW over traditional classroom learning and 85% prefer it over other
online learning resources they have tried in the past. These results are
also confirmed by many testimonies, such as the following response on
TechValidate1.

Secure Code Warrior’s use of gamification has helped us em-
phasize the importance of secure coding in a refreshingly fun
and engaging way. – Developer at Global 500 Financial Ser-
vices Company

2.3 Exercises

Training exercises on the SCW platform, often called challenges, are
most frequently created from a complete and secure software applica-
tion such as a webstore or a banking application. To create a challenge,
a vulnerability is introduced into this application on purpose. The chal-
lenge is presented to the users as one of three types of exercises, each
assigned a numerical level, an identify (L1), locate (L2), or fix exercise
(L3).

Identify exercises (L1) mark the insecure code fragment and provide
the developer with a number of vulnerability categories. It is up to
the developer to identify which of the provided categories best describes
the vulnerability present in the code fragment. In Figure 2.3 an identify
exercise is shown based on a Structured Query Language (SQL) injection
in a Python web application.

For locate exercises (L2), the category of the vulnerability that is
present in the insecure code fragment is given. The insecure code frag-
ment is marked, as well as several other (secure) code fragments. It is
up to the developer to locate which code fragment contains the insecu-
rity. An example of a locate exercise is shown in Figure 2.4 using the
same SQL injection in the same Python web application as the identify
exercise in Figure 2.3.

Fix exercises (L3) show both the insecure code fragment and the
category of the inserted vulnerability to the user. Four alternatives are
shown, with changes made to the insecure code fragment, and sometimes
to other parts of the application code as well. The developer needs to
find the most secure alternative among the four options. A fix exercise
is shown in Figure 2.5, again using the same SQL injection as before.

1techvalidate.com/product-research/secure-code-warrior/facts

24 CHAPTER 2. SECURECODEWARRIOR

F
igure

2.1:
T

he
m

ission
control

dashb
oard

on
the

SC
W

platform
creates

a
gam

ified
overview

of
the

exercises.

2.3. EXERCISES 25

F
ig

ur
e

2.
2:

T
he

m
et

ri
cs

da
sh

b
oa

rd
on

th
e

SC
W

pl
at

fo
rm

al
lo

w
s

de
ve

lo
p

er
s

to
m

on
it

or
th

ei
r

pr
og

re
ss

an
d

un
lo

ck
ne

w
ba

dg
es

.

26 CHAPTER 2. SECURECODEWARRIOR

Fix (L3) exercises are often combined with identify (L1) or locate (L2)
exercises. These challenges then consist of two stages, in the first stage
the vulnerability needs to be identified or located, in the second stage
the exact same vulnerability needs to be fixed. The resulting two-stage
challenge is an identify-and-fix (L4 = L1 + L3) or a locate-and-fix (L5
= L2 + L3) challenge.

Recently new and more interactive challenge types are being devel-
oped. One such type requires the developer to construct input that
successfully exploits the vulnerability present in the application.

2.4 Context

The challenges are presented to users in different contexts, these are
training mode, tournament mode, or assessment mode.

The default context is the training mode. In this mode the developer
is allowed to use as many hints as needed. They are also allowed an un-
limited amount of attempts to find the right answer. Each hint or failed
attempt reduces the amount of points that the developer is awarded.
Appendix A describes in more detail how the difficulty of a challenge,
the amount of hints used, and the number of failed attempts determine
how many points are awarded. Developers are free to choose which chal-
lenges they solve first in training. A standard course that guides them
through the Open Web Application Security Project (OWASP) Top 10
categories is provided, and many developers complete this course before
trying other challenges.

In tournament mode, the scoring method and availability of hints
and attempts can be adjusted by the host. In this mode, all partici-
pants are shown exercises about the same vulnerability type and of the
same difficulty but in their language of choice. The tournament is run
for a limited time, usually a few hours, in which the contestants can
complete the challenges. In tournament mode, a live leaderboard is visi-
ble that can optionally be hidden close to the end for suspense. Since all
participants are shown the same number of exercises having the same
difficulty, it often comes down to speed to finish the challenges in time,
and accuracy to lose as few points as possible through hints or mistakes.

In assessment mode no hints are available and only one attempt is al-
lowed for each challenge. This mode is used to evaluate the performance
of a user. Customers can select the vulnerability type and difficulty of
the challenges making up the assessment. There are some templates
provided as an example that test for knowledge of the OWASP Top 10.

2.4. CONTEXT 27

F
ig

ur
e

2.
3:

SQ
L

in
je

ct
io

n
in

a
P

yt
ho

n
w

eb
ap

pl
ic

at
io

n
pr

es
en

te
d

as
an

id
en

ti
fy

ex
er

ci
se

,
th

e
fir

st
of

th
re

e
di

ff
er

en
t

ch
al

le
ng

e
ty

p
es

on
th

e
SC

W
pl

at
fo

rm
.

28 CHAPTER 2. SECURECODEWARRIOR

F
igure

2.4:
SQ

L
injection

in
a

P
ython

w
eb

application
presented

as
a

locate
exercise,

the
second

of
three

diff
erent

challenge
typ

es
on

the
SC

W
platform

.

2.4. CONTEXT 29

F
ig

ur
e

2.
5:

SQ
L

in
je

ct
io

n
in

a
P

yt
ho

n
w

eb
ap

pl
ic

at
io

n
pr

es
en

te
d

as
a

fix
ex

er
ci

se
,t

he
th

ir
d

of
th

re
e

di
ff

er
en

t
ch

al
le

ng
e

ty
p

es
on

th
e

SC
W

pl
at

fo
rm

.

30 CHAPTER 2. SECURECODEWARRIOR

2.5 Coursematerial

The SCW training portal provides training in more than 50 languages
and frameworks2, ranging from Cobol to Go, including languages for
web, mobile, cloud, and embedded software. The training content covers
184 different vulnerability types, including those in widely-used lists
such as the OWASP Top 103, OWASP Top 10 Mobile, OWASP Top
10 Application Programming Interface (API) Security and the Common
Weakness Enumeration (CWE) Top 254. The full list of vulnerabilities
can be found on the SCW website5. This coverage is not homogeneous
across all languages. For each language and framework, each relevant
vulnerability type is assigned a priority (high, medium, or low). This
priority depends on the severity and prevalence of the vulnerability type
in this particular language and framework combination.

How well a language is covered then depends on the amount of chal-
lenges that cover vulnerability types of different priorities. The mini-
mum requirement for a language to be considered ready for training is
three challenges for each category in the OWASP Top 10 categories. A
language is considered tournament ready when there are five challenges
(two easy, two medium, and one high difficulty) for all vulnerability
types with high priority, and two challenges (one easy, one medium) for
all vulnerability types with medium priority. There are other require-
ments still for assessments, specific courses, or the website trial.

For each of the top three frameworks over 450 unique vulnerabilities
have been introduced in applications. These frameworks are C# Model
View Controller (MVC) (461 vulnerabilities), Java Enterprise Edition
(EE) JavaServer Pages (JSP) (475 vulnerabilities), and Java EE Spring
(495 vulnerabilities). When multiplied by three (for identify, locate, and
fix), there are over 1350 challenges for each of these three frameworks.

2.6 Use in the paved pathmethodology

The SCW online learning platform is a great educational resource to sup-
port the paved path methodology. The platform is relevant, the learning
context resembles the developer’s work context as they are able to re-
ceive training in their office or home office and by looking at actual code.
The code on the platform is likely to be similar to that of the developer

2https://www.securecodewarrior.com/supported-languages
3https://owasp.org/www-project-top-ten/
4https://cwe.mitre.org/top25
5https://www.securecodewarrior.com/product/supported-vulnerabilities

2.6. USE IN THEPAVEDPATHMETHODOLOGY 31

due to the wide variety of programming languages, frameworks, and soft-
ware types that are supported. The exercises teach a developer a secure
paved path in their framework of choice. The identify, locate, and fix
exercises are all defensive tasks created with the developer in mind.

The platform is also usable as there are several features to increase
interactivity and engagement, such as the gamified theme, leaderboards,
tournaments, achievements, and badges. A structured journey is present
in the form of courses, such as the OWASP Top 10 courses. The learn-
ing material is presented through multiple choice questions. In newly
released exercise, developers are even allowed to discover the answer
through trial and error instead of picking from a list of options.

There is certainly enough content available to allow for sufficient
repetition so that the concepts can be committed to memory, with some
frameworks providing as many as 1350 challenges. However, there is
no guidance to find the right balance between repetition and efficiency.
The exercises often do not match the learning pace of each individual,
leading to boredom or frustration. This is apparent from the challenge
completion rate, as only 45% of users complete more than 30 challenges,
the amount of challenges in an OWASP top 10 course.

When surveyed, some users indicate this possible mismatch in the
learning pace. More than 700 respondents were asked to describe their
experience using the SCW portal after completing a tournament. To
do this, they were able to choose words from a set of options or write
their own. Many respondents selected words indicating their engagement
such as interactive (55%), engaging (53%), and fun (48%). But some also
picked words that could indicate an incorrect learning pace, among which
challenging (45%), repetitive (21%), long (7%), and boring (4%). Only
22 (3%) respondents wrote down additional words themselves, some of
which indicate mismatches in learning pace. Two users wrote down
tedious, two users wrote cumbersome, one wrote frustrating, and one
even went as far as to describe their experience as gambling.

In conclusion, the SCW online learning platform is a good educa-
tional resource when using a paved path methodology. Its defensive
exercises and wide support for different programming languages and
frameworks make it relevant to the developer’s work. The gamification
and interactivity keep it usable and fun. However, when it comes to
the efficiency of the training, there is still room for improvement, as
currently all users are presented with challenges of the same difficulty
regardless of their skill level and learning pace. User feedback indicates
that this leads to boredom or frustration for some of the users.

32 CHAPTER 2. SECURECODEWARRIOR

Chapter 3

Intelligent tutoring system

An important aspect of education in the paved path methodology is
its efficiency. Educational activities should not keep the developer from
their responsibilities for longer than necessary. The efficiency of training
on the SCW platform is lacking. Because every individual is presented
with the same exercises, they often receive training that is too repetitive
or too challenging. I designed an Intelligent Tutoring System (ITS)
that recommends exercises to each individual at any point in time to
provide them with a more appropriate learning pace. In this chapter,
I present the design of the ITS and discuss the used techniques in its
implementation in more detail.

If nothing else, take away from this chapter...

I designed an ITS that consists of three algorithmic components,
one for exercise selection, and one each for estimation of user abil-
ity and exercise difficulty. Exercise selection is achieved through
a Collaborative Filtering (CF) algorithm adapted to learning sys-
tems. In such an algorithm, a target user’s preference for an ex-
ercise is predicted based on the preferences of like-minded users.
Through the use of the psychometric model of Item Response The-
ory (IRT), estimation of both user ability and exercise difficulty
can be done at once. A sanitized data set of over 9 million solved
exercises is used to calibrate these algorithms making up the ITS.

34 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

User
history

Calibrated
users

Calibrated
exercises

Processed

Data
Item Response Theory

Exercise selection

Ability estimation

Difficulty estimation

Users

Exercises

Serve to user

Process answer

Training platformIntelligent tutoring system

Figure 3.1: The ITS consists of two loops. In the main loop, users are
served exercises and their answers are processed, before selecting a new
exercise. The user history is then regularly used in a secondary loop to
estimate both user abilities and exercise difficulties.

3.1 Design

The design of the ITS, shown in Figure 3.1, extends the existing func-
tionality of the training platform. This existing functionality is depicted
in orange on the right side of the figure, while components of the ITS are
drawn in blue on the left side. The ITS consists of two loops, it contains
three algorithmic components and three types of data collections.

The algorithmic component in the main loop is that of exercise se-
lection. Selecting the optimal exercise is done through an adapted CF
algorithm, as will be explained in more detail in Section 3.2. In this tech-
nique, a recommendation is derived from historical data of like-minded
users. To evaluate this technique, and hence improve it, we need a
measure to decide what a good recommendation is.

A useful challenge is a challenge from which the user has learned

3.1. DESIGN 35

something and that keeps the user engaged. That is, a good recom-
mendation system should increase the ability of the user, and their en-
gagement. It is easy to keep track of the engagement of the user. If
they continue to play more challenges, that means they stay engaged.
However, in order to determine if a recommendation leads to increased
ability, we need to be able to continuously measure the ability of each
user. Another reason to continuously measure the ability of each user
is the temporal aspect to learning. An exercise that is useful to a user
at the beginning of their journey is likely no longer an appropriate rec-
ommendation once their ability has sufficiently increased. Hence ability
estimation is needed to both determine if a challenge was useful to a
user, and when a challenge was useful.

A naive way to achieve an ability estimate is simply looking at the
accuracy of each user. A user answering all of the challenges correctly
(100% accuracy), is likely to have a higher ability level than a user an-
swering half of them correctly (50% accuracy). If all users completed the
exact same challenges, this could give a reasonably accurate representa-
tion of their ability level. In fact, that is exactly the reasoning behind
Classical Test Theory (CTT) [26]. In a classic test, all examinees are
given the same (or equivalent) exercises and their accuracy on the test
is an indication of their ability level.

However, on the training platform not all users are completing the
exact same challenges and this is not desirable, as that would conflict
with the goal of individually tailored recommendations. When users are
completing different challenges, accuracy alone is no longer sufficient. It
is possible for one user to maintain a high accuracy doing simple chal-
lenges, while another user’s accuracy is lower but they are completing
difficult challenges.

This is also true for exercises, the difficulty of an exercise can not
be accurately estimated through the accuracy of users completing it. It
is possible for one exercise to have a high accuracy because it is mostly
attempted by users of a high ability level, while another is often tried
by beginners and hence has a lower accuracy. It is clear that these two
remaining algorithmic components in the ITS are tightly coupled. Both
are implemented through the use of psychometric models from the field
of IRT as explained in Section 3.3. The calibration techniques of IRT
use the entire user history and take a while to complete. This is why
they are not performed every iteration of the main loop, but at regular
intervals in a secondary loop.

36 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

3.2 Collaborative filtering

In this section, I discuss the first algorithmic component of the ITS as
depicted in Figure 3.1, the component of exercise selection.

There are many possible factors that determine which exercise to
select. We can easily imagine some factors that are likely to have a
big influence, such as the difficulty of the exercise, the vulnerability
type, and the programming language. Research has also shown that
individual learning style has an impact on learning performance [27–30].
For other factors, it is more difficult to determine how important they
are, or if they matter at all. Some examples are code quality, code
legibility, software type, or even just the coding style of the author of
the challenge. There are also likely other factors that we are not yet
aware of.

For this reason, it is desirable to create a recommendation system
that uses a black box approach. With this kind of approach it is not nec-
essary to know which factors determine a good recommendation. There
only need to be enough users and challenges, as well as a way to deter-
mine if a challenge was useful to a user.

One frequently used technique for recommendation systems is CF.
In CF, a target user’s affinity for items is used to find other users who
are most like-minded. This group’s collective affinity for items is then
used to predict the target user’s affinity for those items.

These types of algorithms are most easily understood through a vi-
sual representation. In Figure 3.2, a simple example of a CF algorithm
is illustrated. In this figure, the recorded affinity of users i (i = 0, . . . , 5)
for movies j (j = A, . . . , J) is depicted in a two dimensional grid. A
green check mark in the grid means that the user enjoyed the movie, a
red cross means they did not. There are also many empty spaces as not
all users have watched all movies. In order to predict the affinity of a
target user i = 0 for a target movie j = B, the CF algorithm starts
by finding the users who are most like-minded, the users who have the
most similar recorded affinity. For each user, the algorithm determines
for how many movies they have the same affinity as the target user.
In Figure 3.2, the affinity of the target user is marked with an orange
background, affinity of other users that is the same as the target user is
marked with a green background. In the example, user i = 1 enjoyed
movies j ∈ {A,C}. But their affinity for movie C is the only affinity
they have in common with the target user. Users i ∈ {2, 3, 5} each have
the same affinity as the target user for two of the movies. In this exam-
ple, they make up the group of people that are most like-minded to the

3.2. COLLABORATIVE FILTERING 37

j

i

0

1

2

3

4

5

A B C D E F G H I J

? ✓ ✓ ✗ ✓

✓ ✓

✓ ✗

✗ ✗ ✗✓

✓ ✓ ✗

✗ ✓ ✓✗

✓

✓ affinity of i = 0

same affinity as i = 0

affinity for j = B and i ∈ {2, 3, 5}

enjoyable movieno data

boring movie

target

Figure 3.2: Visual representation of the steps to determine if the target
movie j = B is a good recommendation for the target user i = 0. The CF
algorithm first finds all users who have similar preferences for movies as
the target user (marked in green). The users who have the most similar
preferences are used in a majority vote. In the example users 2, 3, and 5
each had the same preference as the target user for two different movies.
The majority of these users enjoyed the target movie (marked in blue),
so the algorithm concludes that the target is a good recommendation.

target user. To predict if the target user would enjoy the target movie
j = B, the algorithm now uses this group’s affinity for the target movie,
marked in a blue background in Figure 3.2. Two of the most like-minded
users enjoyed the movie and one of them did not. Since the majority
of like-minded users enjoy the target movie, the algorithm predicts the
target user might enjoy it as well.

3.2.1 Adapted to learning systems

Some adjustments are needed to apply CF to a learning system. In a
learning system, a good recommendation is one that allows meaningful
learning to take place and at the same time keeps the user engaged.
A good recommendation is hence based on the utility of a user for an
item, rather than their affinity. If the users who are most like-minded
increased their ability level through playing this challenge, it is likely a
good recommendation.

As mentioned before, learning also has a more apparent temporal
aspect to it. An exercise that is useful to a user at the start is no
longer an appropriate recommendation once their ability has increased

38 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

sufficiently. It could hence be beneficial to keep track of the ability
level around which a recommendation can be deemed appropriate. The
CF algorithm can then only consider users to be like-minded, if they
experienced the same utility as the target user within a certain ability
range. Users who experienced the same utility for an item but at a
sufficiently dissimilar ability level will not be considered like-minded
users.

Figure 3.3 illustrates how this adaptation could be achieved on the
example algorithm from before. In this figure, the recorded utility that
the users i (i = 0, . . . , 5) experienced from challenges j (j = A, . . . , J) is
depicted in a two dimensional grid for three sufficiently distinct ability
levels θ. A green check mark means that this challenge was useful to the
user around that ability level. A red cross means it was not useful, and
the user either did not learn anything, or the challenge caused the user to
disengage from the training. How the utility of a challenge is determined
will be explained in Section 3.4.3. To predict the utility of the target
challenge j = B to the target user i = 0, the adapted CF algorithm
looks for the most like-minded users, the users who experienced the
most similar utility.

However, only if the same utility was experienced around the same
ability level does it count towards like-mindedness. In Figure 3.3, utility
that was experienced by the target user for challenges is marked with
an orange background. Similar utility that was experienced around the
same ability level is marked with a green background. At the lowest
ability level, user i = 2 experienced the same utility as the target user
for four challenges. User i = 1, just like the target user, experienced
challenge j = C as useful. However, the challenge was useful to user
i = 1 at the lowest ability level, while the target user found this challenge
useful when their ability level was sufficiently higher. Similar utility like
this that was experienced around a different ability level is marked with
a red background in the figure. This utility does not count towards like-
mindedness. Using this metric for like-mindedness, we find that users
i ∈ {2, 3, 5} each experienced the same utility around the same ability
level as the target user for four different challenges. They make up the
group of users who are most like-minded to the target user.

Beyond this adaptation, the same steps are used to decide the final
recommendation. The majority of like-minded users experienced the
target challenge as useful around the targeted ability level, marked with
a blue background. The algorithm concludes that the target challenge
is a good recommendation for the target user.

3.2. COLLABORATIVE FILTERING 39

θ

i j

012345

A B C D E F G H I J
✓

✓ ✗
✓ ✓

✓
✓

✓ ✗
✓ ✓

✗ ✗

✗

✓ ✗

✓
✗

012345

A B C D E F G H I J

✗
✓ ✓

✗
✓

✗
✗

✗

✓

✓ ✓

✗
✓ ✓

✓

✗
✓ ✗

012345

A B C D E F G H I J

?
✗

✓
✓

✗

useful challenge

no data

useless challenge

target

utility of i = 0

same utility as i = 0 at similar θ

same utility as i = 0 at different θ

utility of j = B for i ∈ {2, 3, 5}

Figure 3.3: Visual representation of the steps to determine if the target
challenge j = B is a good recommendation for the target user i = 0.
The collaborative filtering algorithm first finds all users who experienced
similar utility from challenges as the target user around the same ability
level θ (marked in green). Similar utility at a different ability level is
disregarded (marked in red). The users who experienced the most similar
utility are used in a majority vote. In the example, users 2, 3, and 5
each experienced the same utility as the target user for four different
challenges. The majority of these users experienced the target challenge
as useful (marked in blue), so the algorithm concludes that the target is
a good recommendation.

40 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

3.2.2 Types of collaborative filtering

In the examples until now, the affinity (or utility) of a user for an item
was considered binary, the user either liked it, or they did not. In re-
ality, often a more complex scale is used. For example, Netflix movie
recommendations use a rating scale between 1 and 5. In this context,
the affinity of a user u for an item i is often called the rating rui. The
goal of a CF algorithm is then to make a prediction for this rating r̂ui.
CF algorithms can be split into two broad categories, memory-based
and model-based algorithms, based on how they set out to achieve this
goal [31–35].

Memory-based

Memory-based CF algorithms directly use observed ratings to compute
predictions. Generally, these algorithms mark a subset of users as neigh-
bours to the target user by calculating the similarity between users [31,
36]. They then use the neighbour’s ratings to predict the rating of the
target user [35–38].

Memory-based CF algorithms are frequently used in recommender
systems and even commercial systems such as the Amazon webstore [32,
33]. The main advantages of memory-based collaborative filtering al-
gorithms are that they are easy to implement, and that new data can
be added easily and incrementally. Their biggest shortcoming is a de-
creased performance for sparse data, when it is difficult to find sufficient
neighbours. They also can not make recommendations for new users or
items as there is no data to do similarity computations with. In the ITS
however, we already need sufficient data to compute the difficulty and
ability estimates. In a learning system, the need for an initial calibra-
tion phase can not be avoided, so this shortcoming does not impact the
design of the ITS.

Five different memory-based CF algorithms are considered in this
work. They will be described in more detail in the experiments in Sec-
tion 4.3. Four of these algorithms are k-nearest neighbours (k-NN) algo-
rithms, they first determine the k nearest neighbours and then use the
ratings of these neighbours to compute a prediction. Because these al-
gorithms use an explicit definition of similarity between users, they can
be easily adapted to learning systems by changing this definition to take
into account the ability of the users. The remaining memory-based al-
gorithm uses the ratings of all users to make a prediction, adapting it to
learning systems will be harder, but can still be achieved by processing
the data, as will be explained in the description of the experiments.

3.2. COLLABORATIVE FILTERING 41

Model-based

Model-based CF algorithms use statistical and machine learning meth-
ods to construct a model, and use this model to make predictions [31,
32, 39, 40]. These models often use techniques to reduce the dimensions
of the matrix of user-item ratings. This reduces the scalability and spar-
sity problems that are experienced by memory-based algorithms [39, 41].
Model-based algorithms are often more accurate, but the construction
of the model is often slow and expensive, and they have to be re-built
regularly, every time new data is being added incrementally.

Algorithms using clustering techniques are simple examples of model-
based algorithms [34, 35, 39, 42]. Users or items are assigned to one or
more clusters so that the matrix of user-item ratings becomes a smaller,
denser matrix of clusters. It is then possible to use statistics from these
clusters to make predictions, for example, by taking the average rating
of a cluster. In the experiments of this work, one clustering algorithm
is evaluated.

Thanks to their accuracy and scalability, model-based algorithms
based on matrix factorization have gained a lot in popularity [38]. These
algorithms use the technique of Singular Value Decomposition (SVD) to
make a low rank approximation of the original ratings matrix [36, 38, 43].
SVD is a well-established technique in linear algebra and machine learn-
ing to identify latent semantic factors. Applying it in the CF domain
raises a few difficulties due to the sparsity of the rating matrix, which
increases the risk of overfitting.

In the experiments of this work, I evaluated Probabilistic Matrix Fac-
torization (PMF) [44], Non-negative Matrix Factorization (NNMF) [45,
46], SVD [38, 47, 48], and SVD++ [38, 49]. All of these algorithms are
explained in more detail in Section 4.3.

3.2.3 Alternative approaches

Many existing alternatives either do not take into account the ability
level of the users to make recommendations, or they only take into ac-
count the ability level [50].

Adaptive learning systems

Many computerized learning systems already exist, both in commercial
offerings and in research literature. Older systems do not consider indi-
vidual learners needs, but make decisions based on pre-planned instruc-
tions for the field of study. As a result, these systems do not provide

42 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

individual attention to students as a natural (human) teacher would [51].
This inspired the rise of more advanced learning systems that consider
both the field and the learner to provide flexibility in the presentation
of the educational material. Some such systems have been built to teach
computer science concepts, such as debugging [52], cryptographic algo-
rithms [51, 53], programming in C++ [54], or SQL [55].

These systems have varying degrees of intelligence and adaptiveness.
In commercial offerings, such as Pluralsight Iris1, adaptive learning often
refers to an initial calibration phase to determine the initial ability level
of a user. In other systems, students are allowed to advance to more dif-
ficult levels when a sufficiently high accuracy is achieved on exercises in
the current level [51, 54]. Even more advanced systems provide adaptive
feedback to the users, based on which mistakes have been made in the
exercises [52, 53]. Finally, the most advanced systems are able to adapt
the difficulty of the exercises more dynamically. Duolingo for example,
adapts the difficulty of the of last few exercises in a lesson based on the
performance of the student on the previous exercises2.

All of these systems focus on offering exercises of the appropriate
difficulty level, and some also take into account classifications of learning
styles [27, 30]. The goal of the ITS, however, is to also pay attention
to other potential factors such as the coding style, presentation form,
application type, and so on. The discussed systems could potentially be
adapted to take into account several of these factors.

Serious games

Several serious games exist for topics related to cybersecurity and social
engineering. They usually focus on increasing the awareness of software
users of different ages and are not used to train software developers [56–
59].

Research in this field mostly focuses on the effect of gamification, and
usually adds game elements to static learning content. They usually
do not adapt to the users beyond opening up new content after the
completion of preceding exercises. While gamification leads to increased
engagement, this is not the focus of my research as I believe the SCW
platform already has some decent gamification features.

1https://www.pluralsight.com/product/iris
2https://blog.duolingo.com/

3.2. COLLABORATIVE FILTERING 43

Content-based recommendation systems

Another type of recommendation system that is related to CF algo-
rithms, is content-based recommenders. These systems analyze item de-
scriptions to identify items that are of particular interest to a user [60].
To do this, they represent both items and users as a vector of charac-
teristics, similar to vectors in the latent space used by model-based CF
algorithms. However, in contrast with these CF algorithms, the vectors
are not computed in a latent space by the algorithm.

Item characteristics are often already available in the system, or they
can be detected through natural language processing. They are often eas-
ier to interpret than the dimensions of the latent space in model-based
algorithms. On the SCW platform, the framework, language, vulnera-
bility type, and author are examples of characteristics that are readily
available.

In order to make a recommendation for a user, items are selected
that have similar characteristics to previously liked items by this user.
Several algorithms can be used to achieve this, among which nearest
neighbour methods and decision trees [60]. In contrast with item-based
collaborative filtering, these algorithms compute the similarity between
items based on the characteristics of the items themselves. While in
CF algorithm the similarity between items is based on the similarity of
ratings these items receive by users. This is likely not a good approach
for learning systems, where diverse content should be recommended,
covering, for example, multiple vulnerability types.

Knowledge-based recommendation systems

Systems that make use of the organisation of learning material are called
knowledge-based, or semantics-based recommendation systems. They
create a structured knowledge graph or ontology to organise the learning
material.

Existing ontologies in software security attempt to organize different
security concepts in a broader knowledge graph of computer science.
For example, they classify SQL injection as a type of injection attack,
SQL security as a type of data integrity, and a Denial of Service (DoS)
attack is linked to the availability of the product [61, 62]. While this
information can be useful to a developer learning about different security
concepts, it can not be used to organise the learning material on the
SCW training platform.

Many vulnerability types require a broad knowledge of varying as-
pects of software development, such as the operating system, communica-

44 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

tion protocols, language and framework specifics, software architecture,
and more. On the SCW platform, however, we assume the users have
sufficient knowledge of these domains, and require education in software
security only. With this assumption, I do not see a need to create a
knowledge graph for software vulnerabilities. It is my belief that most
vulnerabilities are unrelated to each other, in the sense that it is possible
to understand and master each of them without the need to learn about
the other. Current education efforts often focus on the OWASP top 10,
in which vulnerabilities are ranked mostly based on their prevalence in
practice. This is strong evidence for the fact that the order they are
being taught to developers is not of big importance.

Computerized Adaptive Tests

Computerized Adaptive Tests (CATs) are computer-based tests that
adapt to the ability of the examinee. They continuously estimate the
ability level and serve the next test item based on the current estimate.
While there are techniques from CATs that are useful to us, as will be
explained in Section 3.3, the item selection is not appropriate for use in
the ITS.

This is because the goal of a test is to estimate the ability of an
examinee. CATs are able to maintain a higher precision of ability es-
timation while being about 50% shorter compared to Fixed Item Tests
(FITs) [63]. To estimate the examinee’s ability in such an efficient way,
CATs select the next item in a test based on which one provides the
most information about the examinee. These are the items for which
the probability of a correct answer is around 50% [64, 65].

This goal is of course different from that of the ITS which is to
motivate and engage the users. In fact, the opposite is even true, tests
are inherently not very motivating. Certainly that is the case for CATs,
where the examinee is only expected to correctly answer half of the test
questions. Research has shown that engagement can be improved, and
anxiety reduced, by choosing items for which the probability of a correct
answer is higher (e.g. 70%) [65]. Still, the item selection algorithm in
CATs only takes into account the difficulty of the items. As discussed
before, we want the ITS to possibly take into account other aspects of
the exercises, such as coding style, author, or application type.

3.3. DIFFICULTY ESTIMATIONANDABILITY ESTIMATION 45

3.3 Difficulty estimation and ability estimation

In the previous section, I discussed the component of exercise selection,
the first algorithmic component of the ITS as shown in Figure 3.1. This
algorithmic component is implemented through the use of a CF algo-
rithm. In order to use this algorithm effectively in a learning system,
we need an accurate ability measure. This ability measure is necessary
to both determine if a challenge was useful, and when a challenge was
useful. In this section, I discuss ability estimation, together with diffi-
culty estimation, the two remaining algorithmic components of the ITS.
I explain how both can be implemented simultaneously by using IRT, a
technique borrowed from the field of psychometrics. This field of study
focuses on the objective measurement of skills, knowledge, and abilities,
often with the goal to create better computerized tests.

The goal of a test is to estimate the ability of an examinee. With
CATs, this can be done with higher precision while using less exercises
than classic FITs. To achieve this, CATs continuously adapt the exer-
cises to the estimated ability level of the examinee. An overview of the
steps taken by a CAT is shown in Algorithm 1.

Algorithm 1: A computerized adaptive test
input : calibrated item bank I

output: ability level θ
1 Set θ to entry level;
2 while termination criterion not met do

3 Select optimal item i from I based on θ;
4 Present i to examinee;
5 Update θ based on all prior answers;

Some key components are needed to create such a test: calibrated
test items, a termination criterion, a starting point or entry level, an item
selection algorithm, and an ability estimation algorithm. We can easily
see parallels between a CAT and the ITS. First, test items in a CAT
need to be calibrated, similarly to the exercises in the ITS. Secondly, it
is necessary in both systems to continuously estimate the ability of the
users. Finally, there is also a selection algorithm that determines which
item the user is shown next. However, the item selection algorithm
in a CAT is designed with a different goal in mind, as discussed in
Section 3.2.3.

CATs frequently use the psychometric model IRT. This model not
only allows calibration of both users and items, but because they are

46 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

placed on the same scale, the results can easily be used for item selection
as well. Although it will not be used for exercise selection in the ITS,
the model is certainly useful for accurately estimating exercise difficulty
and user ability.

3.3.1 Item response theory

IRT is a model for measuring psychological latent traits, i.e. unobserv-
able characteristics such as ability or competence level. The model es-
timates these latent traits by means of manifest (observable) variables
and statistical psychometric models. This is done based on the math-
ematical relationship between the latent traits and the manifest vari-
ables. A user with a higher ability level (latent trait) is more likely to
answer more questions, and more difficult questions, correctly (manifest
variables). This relationship can be written down as a mathematical
function, called the Item Response Function (IRF). It describes the pos-
sibility of observing each possible answer as a function of person ability
levels and exercise parameters.

Pjk(θi,pj) = Pr(Xij = k|θi,pj) = f(k,θi,pj) (3.1)

In Equation 3.1 the ability level of a person i (i = 1, . . . , I) is rep-
resented by a multivariate vector of latent traits θi. pj is the set of
parameters of exercise j (j = 1, . . . , J). Xij is the answer of person
i for exercise j, with k representing one possible answer. For dichoto-
mously scored exercises, meaning there are only two possible answers
(e.g. true/false), k ∈ {0, 1}. Exercises with more than two options are
called polytomously scored exercises (e.g. multiple choice). For these
exercises k ∈ {0, . . . ,Kj}. There are many mathematical functions that
can be used to describe the IRF, each resulting in a different IRT model.
The most common is called the Rasch model, an extension of this model,
called the two-parameter logistic model (2PL) is used in the ITS. These
models will be explained in the next section.

The Rasch model and 2PL model are dichotomous models, which
means the items are scored as only having two possible outcomes, cor-
rect or incorrect. It is necessary to use a dichotomous model in the
ITS because some important data is missing to use polytomous models
effectively. Polytomous models are most effective when the number of
possible options for the multiple choice question is limited to three or
four. The incorrect options need to be deliberate and able to mislead a
person with a lower ability level.

3.3. DIFFICULTY ESTIMATIONANDABILITY ESTIMATION 47

On the SCW training platform, this is not the case as will be ex-
plained in Section 3.4. Because of this lack of useful polytomous infor-
mation, I decided to use the dichotomous 2PL model. For dichotomous
models, there are only two outcomes, k ∈ {0, 1}, representing correct
and incorrect. That means the IRF in Equation 3.1 can be reduced to

Pj1(θi,pj) = Pr(Xij = 1|θi,pj) = Pj(θi,pj), (3.2a)

Pj0(θi,pj) = Pr(Xij = 0|θi,pj) = 1− Pj(θi,pj) = Qj(θi,pj), (3.2b)

such that Pj represents the probability of a correct response for ex-
ercise j, and Qj the probability of an incorrect response.

3.3.2 Raschmodel

Several mathematical functions can be used to characterize the IRFs in
Equations 3.2a and 3.2b. The most commonly used are logistic distribu-
tion functions, resulting in the so-called Rasch model [66].

In its simplest form the Rasch model takes only one parameter
pj = bj representing the difficulty of the exercise. The IRF using a
one-parameter logistic distribution function is shown in Equation 3.3.

Pj(θi,pj) = Pr(Xij = 1|θi, bj) =
exp(θi − bj)

1 + exp(θi − bj)
(3.3)

The resulting model is called the one-parameter logistic model (1PL).
In Figure 3.4 the IRF of the 1PL model is plotted for three exercises
with various values for the difficulty parameter. In this model, for a
fixed ability level θ, the probability of a correct answer Pj is lower for
exercises with a larger difficulty bj . The probability takes the value of
0.5 when the ability level of the user exactly matches the difficulty of the
item. This is a result of placing the user abilities and the item difficulties
on the same scale.

There are more characteristics to an exercise than its difficulty. One
characteristic that is useful to help estimate the ability of users is the
discriminative ability of the exercise. This characteristic represents how
good an exercise is at differentiating between users of varying ability
levels. An extension to the 1PL model exists that includes this param-
eter, resulting in the 2PL. This second parameter aj of an item is a
multiplicative parameter, as shown in the IRF in Equation 3.4.

Pj(θi,pj) = Pr(Xij = 1|θi, aj , bj) =
exp

[

aj(θi − bj)
]

1 + exp
[

aj(θi − bj)
] (3.4)

48 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

−2 0 2
0

0.5

1

b j
=
−
2

b j
=
0

b j
=
2

θ

Pj

Figure 3.4: Three IRFs in the 1PL model, with different difficulty pa-
rameters bj . The difficulty parameter represents the difficulty of the
exercise. For a fixed ability level, e.g. θ = 0, a higher difficulty means
a lower probability Pj of getting a correct answer. The probability of a
correct answer is 50% when bj = θ.

In Figure 3.5 the IRFs are plotted for three exercises with the same
difficulty bj = 0 but various discriminative abilities. For all three IRFs
the probability of a correct answer is still 0.5 for users with an ability
level equal to the exercise difficulty. However, the second parameter
influences the steepness of the curve. For larger discrimination parame-
ters such as aj = 2, a smaller increase in ability θ around the exercise
difficulty level bj = 0 leads to a more notable increase in probability of
a correct answer Pj . Such an exercise discriminates better between low
and high ability users. On the other hand, exercises with lower discrim-
ination values, like aj = 0.5 result in flatter IRFs and do not allow as
easily for such discrimination.

Model calibration

Both the 1PL and 2PL models hold parameters of two types: item
parameters pj and person parameters θi. With enough data, both sets
of parameters can be accurately estimated. First, the item parameters
are estimated independently of the ability levels, this is called the model
calibration. Next, the ability levels are estimated while keeping the item

3.3. DIFFICULTY ESTIMATIONANDABILITY ESTIMATION 49

0

1

aj = 0.5

aj = 1

aj = 2

θ

Pj

Figure 3.5: Three IRFs in the 2PL model, with equal difficulty parame-
ter bj but different discrimination parameters aj . The discrimination pa-
rameter represents how well an exercise can differentiate between users
of different ability levels θ. A higher value means a steeper increase in
probability of a correct answer Pj around the difficulty level θ = bj .

parameters fixed.
IRT offers several model calibration techniques, mostly designed for

item banks with several dozens of items. The larger size of the item bank
of SCW will cause longer execution times and more difficult convergence
to stable estimates. I solve this problem by splitting the item bank to
several smaller item banks, for example one for each framework on the
platform. The resulting consequences are discussed in Chapter 4.

The calibration of the model consists of tuning the model param-
eters to maximize the likelihood of the observed data. More formally,
model calibration is maximizing the likelihood of the model L(θ,p) with
respect to all item parameters p = (p1, . . . ,pJ). Because this likelihood
is also dependent on all person parameters θ = (θ1, . . . , θI), direct max-
imization is not possible. There are several possible techniques that
can be used to overcome this. The most well-known are Joint Maxi-
mum Likelihood (JML), Conditional Maximum Likelihood (CML), and
Marginal Maximum Likelihood (MML) [64].

The JML algorithm iteratively maximizes the full likelihood with
respect to both person and item parameters until convergence is reached.

CML relies on properties specific to the Rasch model to replace un-
known ability levels with known sufficient statistics which then allows for

50 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

the estimation of the item parameters without requiring the estimation
of the person parameters.

MML is formulated under the assumption that the ability is a ran-
dom parameter. In contrast to the CML, it can be used for other IRT
models besides the Rasch model [67]. It does not replace the person
parameters by sufficient statistics, but aims to integrate out the person
parameters from the maximization process [64, 67]. A prior distribu-
tion for the ability parameters f(θ) is used to compute the marginal
likelihood (or the expectation) of a response pattern as shown in Equa-
tion 3.5.

Pj(pj) =

∫

R

Pj(θi,pj)f(θi)dθi (3.5)

The prior distributions are often chosen as normal distributions. The
item parameters can then be estimated by maximizing the full likelihood,
calculated as the product of all marginal pattern likelihoods. Computing
these marginal response pattern distributions was conceptually complex
until efficient Expectation-Maximization (EM) algorithms were imple-
mented [64].

In this work, I used the MML approach as it has many advantages,
such as its applicability to many types of IRT models, its ability to
compare the fit of different models, and its ability to handle perfect
response patterns (all correct or all incorrect answers).

Ability estimation

Once the item parameters are calibrated, they are set as fixed. Estimat-
ing the person parameters is done through maximizing the likelihood
function shown in Equation 3.6, with respect to θ.

L(θ) =
J
∏

j=1

Kj
∏

k=0

Pjk(θ,pj)
Yjk (3.6)

In this equation, Yjk equals one if the response category k was chosen
for item j and zero otherwise.

Note that since the item parameters pj are already calibrated and
now set as fixed, the function only depends on the person parameters θ.
Maximizing this function is equivalent to maximizing its logarithm, the

3.3. DIFFICULTY ESTIMATIONANDABILITY ESTIMATION 51

so-called log-likelihood function, as shown in Equation 3.7.

l(θ) =
J
∑

j=1

Kj
∑

k=0

Yjk logPjk(θ,pj) (3.7)

For dichotomous items (k ∈ {0, 1}), such as in our case, this can be
written as:

l(θ) =

J
∑

j=1

Yj1 logPj(θ,pj) + Yj0 logQj(θ,pj) (3.8)

There are several calibration methods to maximize this likelihood,
describing them is out of the scope of this book. The method applied in
this work is the Weighted Likelihood Estimator (WLE) [64].

3.3.3 Alternative approaches

IRT is often used to adapt the learning material to the ability level of
the student in e-learning systems [50, 68]. Often the IRT ability level is
used to determine the appropriate difficulty level of the exercises that
should be presented to the user [50, 68, 69]. In another approach, the
IRT ability level was used as a weight in CF algorithms so that that the
users with greater ability level have greater weight in the calculation of
the recommendations than the users with less knowledge. This approach
assumes that users of greater ability level, such as teachers, are more able
to assess the utility of an item than users of lower ability level. In this
work, however, users do not rate the items explicitly but instead the
utility is determined from learning outcome and engagement, as will be
explained in Section 3.4.3.

Despite the popularity of IRT, some alternative approaches exist to
determine the ability level of a user.

Classical Test Theory

In CTT, all users have to complete the same exercises and their accuracy
on the questions is used as an indicator for the ability level. Classic
test theory assumes that each person has an unobservable true ability
score T that would be the result of a test if there are no errors in the
measurement. In a test, the observed score X is measured instead. This
score is defined as the sum of the true score and a measurement error E.
According to CTT, the true score is impossible to obtain, but several
techniques exist to estimate the reliability of a test.

52 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

Besides the lower accuracy of ability estimation, CTT is also not
appropriate to use in the ITS because it requires fixed item selection for
all the users. By doing this, some users are guaranteed to feel bored
or frustrated since it is impossible to select items of the appropriate
difficulty level for all of the users simultaneously.

Other IRTmodels

Three- and four-parameter logistic models In this work we are us-
ing the 2PL model of IRT. However, further extensions exist on the
2PL model that add additional parameters. The three-parameter logis-
tic model (3PL) and four-parameter logistic model (4PL) add param-
eters that influence the lower and upper asymptotic behaviour of the
IRF [64]. The lower asymptote parameter cj is sometimes called the
pseudo-guessing parameter. It allows the probability of a correct answer
for infinitely small ability levels to be a positive probability instead of
zero in the 1PL and 2PL model. Even users of extremely low ability
level still have a non-zero probability of answering the exercise correctly.
In reality, this can of course be achieved through guessing the correct
answer in case of multiple-choice.

On the opposite side of the curve, the upper asymptote parameter
dj allows the maximal probability to be lower than one. This parame-
ter is called the inattention parameter. The 4PL model allows users of
extremely high ability level to have a probability of less than 1 of an-
swering the exercise correctly. This can be explained as the user being
inattentive or hurried when answering the question.

The resulting IRFs are shown in Equations 3.9 and 3.10.

Pj(θi,pj) = Pr(Xij = 1|θi, aj , bj , cj)

= cj + (1− cj)
exp

[

aj(θi − bj)
]

1 + exp
[

aj(θi − bj)
]

(3.9)

Pj(θi,pj) = Pr(Xij = 1|θi, aj , bj , cj , dj)

= cj + (dj − cj)
exp

[

aj(θi − bj)
]

1 + exp
[

aj(θi − bj)
]

(3.10)

IRFs of the 3PL model with varying pseudo-guessing parameters are
plotted in Figure 3.6. In Figure 3.7, three IRFs are plotted with varying
values for the inattention parameter. The addition of these parameters is
likely to improve the fit of the model to the data. However, the pseudo-
guessing and inattention parameters of exercises are not of much use

3.3. DIFFICULTY ESTIMATIONANDABILITY ESTIMATION 53

0

0.1

0.3

1

cj = 0.3

cj = 0.1

cj = 0

θ

Pj

Figure 3.6: Three IRFs in the 3PL model, with equal difficulty and
discrimination parameters but different pseudo-guessing parameters cj .
The pseudo-guessing parameter represents the probability that a user
is able to guess the correct answer to a question. A non-zero pseudo-
guessing parameter means a non-zero probability of a correct answer Pj ,
even for users of extremely low ability level θ.

in the ITS or the SCW portal in general, and hence the 2PL model is
chosen.

Polytomous IRT models In the 2PL model, we are only concerned
with whether or not the selected answer is correct. However, even if an
incorrect option is selected, it is often possible to use this information
to refine the estimate of the ability level of the user based on which
incorrect option was chosen [64]. This is the intent of polytomous IRT
models. There are many polytomous models available but they generally
require scoring in a way that partial credit can be given for incorrect
answers [70]. This makes sense if one considers scoring essays based on
quality, or giving partial credit in mathematical questions for completing
some of the steps.

On the SCW portal this could be achieved by ranking the options
in the multiple choice questions from the most incorrect to the most
correct. However, currently this is not the case, so we have no indication
of which incorrect answer is closest to correct. Furthermore, historically
the incorrect answers have not been logged in the data collection, only
the amount of incorrect guesses before a correct answer is given. In case

54 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

0

0.7

0.9

1
dj = 1

dj = 0.9

dj = 0.7

θ

Pj

Figure 3.7: Three IRFs in the 4PL model, with equal difficulty, dis-
crimination, and pseudo-guessing parameters but different inattention
parameters dj . The inattention parameter represents the probability
that a user answers incorrectly due to inattention. An inattention pa-
rameter different from 1 means that the probability of a correct answer
Pj is never 1, not even for users of extremely high ability level θ.

the user gave up before finding the correct answer (or in assessments
where only one guess is available), the last guess is logged. Polytomous
models could result in more accurate results, but currently they cannot
be used with the available data.

Multidimensional IRTmodels While the ability level has been intro-
duced as a multivariate vector of latent traits θi, in Section 3.3.1, in
the current implementation this has been implemented as a scalar. In
reality, the ability of a user regarding software security is not accurately
represented as a single value. When the ability estimate is represented
as a vector, a value can be obtained for each dimensions of the skill. For
example, the ability of a user for each of the vulnerability categories can
be represented as a scalar. Using a multidimensional representation for
the ability level like this, is not only likely to result in more accurate
estimates, but also allows more granular decision making of the appro-
priate difficulty for an item in the ITS. However, sufficient data needs to
be available to have an accurate measurement for each of the dimensions
which would limit the amount of users that can be accurately assessed.
I have opted to keep as much data as possible to train the CF algorithm

3.3. DIFFICULTY ESTIMATIONANDABILITY ESTIMATION 55

instead.

Response-time IRTmodels Response-time IRT models also take into
account how much time each user takes to answer a correct answer.
However, as mentioned before, there have been several bugs present in
the time tracking features on the platform and this data is currently
unreliable.

Furthermore, time pressure varies in different modes on the plat-
form. While users can generally take as much time as they prefer when
answering questions in training and assessments, in tournaments there
is a limited time to complete the questions.

Elo system

The Elo rating system is a method for calculating relative skill levels
between players of a zero-sum game [71]. It is named after its inventor
Arpad Elo. The system is widely used in sports, games, and videogames,
such as chess, American football, basketball, Major League Baseball,
table tennis, Scrabble, Counter Strike: Global Offensive, and League of
Legends.

Similarly to IRT, the ability level is not measured directly, but it
is inferred from wins, losses, and draws against other players or teams.
Based on the current ability levels, the expected outcome of a match-up
is predicted. When the actual outcome differs from this expectation, the
ability level is updated [72]. By how much it is updated depends on the
difference between the ability levels, and in some cases by the observed
skill difference. For an overwhelming victory a bigger increase in ability
will often be awarded than for a near win.

The Elo system is designed for symmetric match-ups such as player
versus player, or team versus team. A zero-sum game is a mathematical
representation of a situation in which an advantage that is won by one
player is lost by the other. While IRT sets both users and items on
the same scale, the training platform can not be considered a zero-sum
game. One challenge is played by many more players than a single player
usually plays challenges.

Although adaptations exist for asymmetric games [73], I expect the
ability estimates to converge slower and the difficulty estimates of items
to be less stable than with IRT. IRT takes into account the entire re-
sponse pattern, hence it is able to estimate the outcome of a challenge
again later, based on new information. The Elo system only takes into
account the current ability of the user, which might still be inaccurate

56 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

at the time of playing. As a result, potentially large updates are made
to the difficulty of the items that are presented to this user.

3.4 Data

The data used to create the ITS is extracted from the developer log of
the SCW training platform.

While this database was not originally intended to be used for ana-
lytics, and other data sources have been set up since, lots of useful data
is present in this database and it is by far the largest collection.

Each challenge on the platform has a unique identifier (id). This
id is tied to the vulnerability in a code fragment, not to the way it
is presented to the user (L1-L5). For each challenge the language and
framework are known, as well as the category and subcategory of the
vulnerability. The difficulty assigned to this challenge is also known but
it is not an accurate representation. The way this difficulty is determined
is explained in more detail in Appendix A.

The multiple choice options for identify challenges are randomly gen-
erated each time they are presented to a user on the website. For the fix
challenges the multiple-choice options are fixed, and determined by the
author of the challenge. There is no clear order to the multiple-choice
options. There is only one correct option, and all others are incorrect,
with no distinction between which incorrect option is the closest to the
correct one, or the most misleading option.

Each user has a unique id that is a hashed, this way it is not possible
to identify the person behind this user id in compliance with the General
Data Protection Regulation (GDPR). Some information on the user is
available, but it is not used in the design of the ITS. For example, the
time zone and the chosen country as the home base in the gamification
features. For each user it is also possible to look up information about
the company they are working for, such as the size of the company and
its main industry.

3.4.1 Data collection

Whenever a user tries to solve a challenge, a number of variables is
written to the developer log. For each challenge attempt, the unique user
id is logged, as well as the challenge id and the way this challenge was
presented to the user (L1-L5). Each play mode (tournament, training,
assessment) is logged in a separate collection. A number of performance
metrics are logged as well, such as the outcome (correct or incorrect),

3.4. DATA 57

the amount of attempts needed, and the amount of hints used.
The time spent to complete the challenge is logged as well. However

upon inspecting this, there seem to have been several bugs present in
the past, making this metric not usable. Furthermore, even for the more
recent data where these bugs have been resolved, there is no way to find
out whether the user was actively trying to solve the challenge during
this time, or doing something else. It is also not possible to know how
much of this time was spent reading the hints.

More than 12 million challenge attempts have been written to the
developer log.

3.4.2 Data pre-processing

This vast collection of data includes users who only completed a small
number of challenges, such as during the free trial. For these users,
we cannot accurately predict their ability level, nor can we learn much
about their preferences. Both the CF algorithm and the 2PL model
are only successful when the user has a sufficiently long history on the
platform. For this reason, we are only using challenge attempts done by
users who completed at least 20 challenges, a recommended minimum
length to achieve reasonable accuracy for the 2PL model. Users who
have completed at least 20 challenges will be called active users from
here on. Out of the 175,979 unique users who have completed at least
one challenge on the platform, 95,591 are considered active users whose
behaviour on the platform will be used to create the ITS.

A similar argument can be made for the challenges. To accurately
calibrate the difficulty of a challenge enough users of varying ability levels
need to complete it. The ability level of these users needs to be known.
To calibrate the difficulty of an exercise, IRT recommends a minimum of
500 responses to an item. As a result we are filtering out all challenges
that are not completed by at least 500 active users. Out of the 19,782
exercises 9,144 remain, 40 of the 50 frameworks are still represented
in this data set. On the SCW training platform, there are multiple
modes, each with their own rules. In training and tournament, hints
are available and multiple attempts are allowed, while in assessments
there is only one attempt possible. The 2PL model, on the other hand,
expects dichotomous responses. To map challenge attempts of all modes
fairly to this binary outcome, any challenge attempt is only considered
correct if it was answered correctly without use of any hints on the first
attempt. In the rest of this book this will be implied when it is written
that a challenge is answered correctly.

58 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

3.4.3 Data annotation

The exercise difficulties and user ability levels as estimated by the 2PL
model can be used to determine the utility of an item for a user. A scale
of 1 to 5 was chosen, and each item is assigned a neutral utility of 3 by
default. This utility is updated based on the performance of the user on
this item, and on related items later in time.

Flow The first influence on the utility of an item is user engagement.
If the item is considered likely to keep the user in flow, its utility is
increased. If the item is likely to make users feel frustrated or bored, its
utility is decreased. Whether or not an item is likely to keep a user in flow
is calculated using the probability of a correct answer. Before each item
is played, the difficulty of this item and the current ability level of the
user are used to determine this probability through the IRF. The utility
is then updated based on this probability as well as the actual outcome
of the answer. If the probability of a correct answer is lower than 50%,
and the user did indeed answer the item incorrectly, this item’s utility is
lowered for risk of frustration. If, on the other hand, the probability of
a correct answer is larger than 80% and the item is answered correctly,
this item’s utility is lowered for risk of boredom. These values are in
line with research on the engagement of examinees in CATs [65, 74, 75].
The utility in both these cases is decreased by one.

This decrease in utility is immediately nullified if the next item is
played in short succession. When the next item is played within 40
minutes, the upper scale of a reasonable play time for a challenge, this
is evidence of continued engagement by the user. In that case, the utility
of the previous item is increased by one as a reward.

Increased ability If a user learns something new from an item, this
should also lead to increased utility. However, with IRT, and any other
approximation methods, the estimate of the ability is never increased
based on an incorrect answer. The only reason to increase the ability
estimate, is when there is evidence of this increase, i.e. when the user
answers a difficult item correctly. In reality, however, learning takes
place before this correct answer, and the actual (unobservable) ability
level has increased earlier in time, so that the user was able to answer
this difficult item correctly. In line with this observation, items are
updated retrospectively based on answers to related items later in time.

If an item is answered correctly, the utility of the previous item in
the same vulnerability category is increased based on the difference in

3.4. DATA 59

difficulty. Similarly, the utility of the previous item in the same category
is decreased for an incorrect answer.

Putting the rewards and punishments for flow and increased ability
together results in the final algorithm to determine the utility of an item
as shown in Algorithm 2. The min and max functions are added to ensure
utility ratings stay within the 1 - 5 scale.

Algorithm 2: Utility of challenges
input : current item i

probability of correct answer p

output: utility uj , for items j ≤ i

1 ui ← 3
2 uj ← previous item about same vulnerability category
3 if i− 1 played less than 40 minutes ago then ui−1 = ui−1 + 1;
4 if i answered correctly then

5 if p > 0.8 then ui = ui − 1;
6 if di > dj then uj = min(5, uj + (di − dj));
7 else

8 if p < 0.5 then ui = u1 − 1;
9 if di < dj then uj = max(1, uj + (di − dj));

Annotating the items like this results in a reasonable distribution
of the ratings. A large portion of the items is rated around the mid-
dle rating of 3, but a significant amount of items also end up with a
lower or higher rating. A clear bias exists for some users, for whom
the ratings are either consistently higher or consistently lower. This can
be explained by the (mis)match between these users’ ability levels and
the current item selection of the default courses or tournaments. Some
users have an ability level that is significantly higher, and they are con-
sistently shown items that can be considered too easy for them, resulting
in consistently lower ratings. For other users, the current selection hap-
pens to be about right for their skill level, and hence their ratings are
consistently somewhat higher.

60 CHAPTER 3. INTELLIGENT TUTORINGSYSTEM

Chapter 4

Experiments

Several techniques and algorithms have been combined in the design of
the ITS. With the implementation and evaluation of each of these, new
insights were gained into the mental model of the developer. In this
section, I describe the four experiments I conducted to evaluate and
fine-tune each component in the ITS.

If nothing else, take away from this chapter...

In the first experiment, I evaluated the results of the 2PL model
through statistical analyses. I found that the assigned difficulty
of an exercise on the SCW platform does not accurately represent
the actual difficulty as experienced by the users. The statistical
tests show that the actual difficulty does depend on the frame-
work of the exercise, the category of the vulnerability, and the
presentation of the exercise to the user.
The second experiment showed that out of the tested approxima-
tion methods, the one invented in this work is the best to achieve
a fast ability estimate at each point in time. The mean error stays
below 10% even after more than 200 completed challenges.
In the final two experiments, I tested the performance of different
CF algorithms and their adaptations to learning systems. The
adaptations caused an increase in prediction accuracy between
3.9% and 13.7%, depending on the algorithm. The best perform-
ing algorithm in the end is the k-NN baseline algorithm, achieving
a mean absolute error of 0.4206.

62 CHAPTER4. EXPERIMENTS

4.1 Rashmodel

4.1.1 Goals and research questions

The main goal of the first experiment is to discover correlations between
the difficulty of an exercise as estimated by the 2PL model, and charac-
teristics of that exercise. The purpose is to gain insights in the mental
model of the developer, and discover which languages, frameworks, or
vulnerability types are typically more difficult. The results of this ex-
periment can be used in the ITS to approximate the difficulty of an
exercise when there is no sufficient data available to obtain an estimate
with IRT.

The above goal can be achieved by means of an experiment aimed
at answering the following questions: Is there a statistically significant
correlation between the difficulty of a challenge and its

• Q1 assigned difficulty on the SCW platform?

• Q2 vulnerability category?

• Q3 vulnerability type (subcategory)?

• Q4 language and framework?

• Q5 presentation form (locate, identify, fix)?

It is expected that the last four characteristics have a significant in-
fluence on the difficulty of a challenge. Some vulnerabilities are more
difficult to detect, understand, or fix than others. This is evident, for ex-
ample, from the OWASP Top 10 pages, where each category is assigned
a score for exploitability, prevalance, detectability, and technical impact.
There is no clear explanation as to how these scores are determined. Per-
sonal and anecdotal evidence also shows that it is more difficult to get
security right while working in certain languages and frameworks.

The first variable, the assigned difficulty on the SCW platform, is
expected to have little impact on the actual difficulty. As explained in
Appendix A, this difficulty only represents the probability of a correct
answer in case of a blind guess. It does not take into account the contents
of the exercise, only the number of options to choose from. While the
amount of options is expected to have some influence on the actual dif-
ficulty, this effect is likely to be small compared to other characteristics
of the exercise.

4.1. RASHMODEL 63

4.1.2 Experimental set-up

In Section 3.3, it was previously mentioned that calibration techniques
for the 2PL model are mostly designed for item banks with several dozens
of items. The larger size of the item bank of SCW will cause longer
execution times and more difficult convergence to stable estimates. I
solved this problem by splitting the item bank into several smaller item
banks and calibrating each of them separately.

The downside to this approach is that the 2PL model does not use
an absolute scale. This is evident from the equation for the 1PL model
in Equation 3.3, repeated here for convenience in Equation 4.1.

Pj(θi,pj) = Pr(Xij = 1|θi, bj) =
exp(θi − bj)

1 + exp(θi − bj)
(4.1)

Adding or subtracting the same value from both the difficulty pa-
rameter bj and the ability level θi will cancel out and result in the same
probability of a correct answer Pj . In other words, the origin of the
scale can be chosen arbitrarily. In practice, the origin is often set to
the mean of the ability estimates [64]. I used the R package TAM to
estimate the item and person parameters [76]. In the documentation of
this package there is no information about the chosen scale. Based on
the implementation that is available on GitHub1, the scale is set to the
mean of the difficulty estimates after the first iteration of the calibration
process. For each item bank that is calibrated separately, the results can
hence not be easily compared to other item banks, as they each have
their own scale.

However, for this experiment it is necessary to compare the difficulty
of challenges across the entire platform. To be able to do this, the entire
item bank has to be calibrated at once. The necessary computations
took over 73 hours to complete, confirming once more that it would not
be feasible to use in the ITS.

Statistical significance

With this single 2PL model calibrated, there is a difficulty estimate
for every challenge on the platform. It is now possible to group these
challenges according to different characteristics and compute the mean
difficulty of each group. Before we can compare the mean difficulties for
each characteristic, however, the results have to be tested for statistical
significance.

1https://github.com/cran/TAM/blob/master/R/tam.mml.2pl.R

64 CHAPTER4. EXPERIMENTS

Which test can be used to do this, depends on the values each charac-
teristic can take. The difficulty as assigned on the SCW platform takes
on values between 0 and 100, and is hence a numerical variable. The
vulnerability category, vulnerability type, framework, and presentation
form are each categorical variables. Each of these characteristics can
only take a limited number of categorical values.

To test the correlation between the difficulty on the SCW training
platform and the IRT difficulty, the coefficient of determination (R-
squared) can be used, as both variables are numerical variables. The
test (R = 0.03, p = 1.85×10−3) determines that no significant variation
in the IRT difficulty can be explained by the SCW difficulty. This is no
surprise, it is clear that the current difficulty assigned on the platform
is not an accurate representation of the actual difficulty.

A one-way Analysis Of Variance (ANOVA) can be used for the cate-
gorical variables. This test determines if there is a statistically significant
difference between one or more of the possible values that a categorical
variable can take. The one-way ANOVA compares the mean difficulty
for each of those values and determines whether any of those means
are statistically significantly different from each other. If the one-way
ANOVA returns a statistically significant result, that means there are
at least two values that are statistically different from each other.

The variables were found to have unequal variances across the pos-
sible values, a property called heterogeneity of variances. A Welch
ANOVA should hence be used, as this ANOVA can account for type
I errors [77]. The results of the Welch ANOVAs are shown in Table 4.1
and show that a statistically significant difference exists between values
for each of the categorical variables.

In this ANOVA, the eta-squared (η2) metric was used to measure
the effect size of each categorical variable on the estimated IRT diffi-
culty. A medium effect was measured for the framework, category, and
vulnerability of the exercise and a large effect was measured for the
presentation.

Pairwise Games-Howell post-hoc tests were then used to determine
which of the values in each categorical variable are statistically different
from each other [78]. Results of these tests are shown in Table 4.2.

With the exception of the presentation, each of the categorical vari-
ables has a number of values that do not show a statistical significance
with any other value. If there is no statistical significant difference
between two values, this is usually due to insufficient data for one of
the values or because the data of one (or both) of the values is too
widely spread and there is significant overlap between the data for the

4.1. RASHMODEL 65

Table 4.1: The results of one-way ANOVA tests between variables of
the exercises and the estimated difficulty. For each variable, the degrees
of freedom (df) are shown, as well as the F-statistic, the p-value, and
the eta-squared (η2). All four categorical variables have statistically
significant correlations with the estimated difficulty of the exercise. The
presentation has a large effect on the estimated difficulty. The category,
vulnerability, and framework each have a medium effect.

Variable df F p η2

Category 36 14.154 2.97× 10−53 0.046

Vulnerability 142 5.393 1.19× 10−45 0.079

Framework 38 11.430 1.49× 10−41 0.060

Presentation 3 346.164 3.00× 10−6 0.155

Table 4.2: The second column displays the number of possible values.
Every one of those values is paired with all other values for a pairwise
Games-Howell test. The next two columns report the amount of pairs for
which the means differ in a statistically significant way, and the amount
of pairs for which this is not the case. In the final column the number
of values is shown, for which at least one pair exists where the means
are statistically significantly different.

Variable Values
Significant

pairs
Insignificant

pairs
Significant

values

Category 36 118 548 29

Vulnerability 142 384 9769 77

Framework 38 217 524 37
Presentation 3 3 0 3

66 CHAPTER4. EXPERIMENTS

XML external entity (XXE)

Injection

Session management

Use of vulnerable components

Denial of service (DoS)

Cross site request forgery (CSRF)

Business logic flaws

Poor authorization

mean difficulty

hardesteasiest

Figure 4.1: Vulnerabilities that often require only local changes to the
code to fix have lower mean difficulties.

two values. The remaining values show a statistically significant dif-
ference in mean difficulty with at least one other value. When mean
difficulties are compared in the remainder of this chapter, only values
are compared whose means show statistically significant differences as
determined by the pairwise Games-Howell tests. Each of the values that
are compared explicitly, show statistically significant differences in mean
difficulty with a p-value of at most 0.05. The exact p-values of these tests
are reported in Appendix B.

4.1.3 Findings

In this section, I report some of the notable differences in difficulty
between different values for each of the characteristics and offer possible
explanations for these observations.

Vulnerability category

There is a statistically significant difference between the mean difficulty
of the four hardest and the four easiest categories. When comparing
these categories to each other, as shown in Figure 4.1, their difficulty
seems mostly related to the locality of the vulnerability type.

The top four categories are (design) flaws, and the fix often involves
larger pieces of code. This is especially the case for business logic flaws
and denial of service, where the complexity of the code is the main cause
of the problem. In these categories the developer is unable to foresee
unintended results that are a direct result of the logic of their code.

The fixes of the four easiest categories usually only require local
changes to the code. Injection and XML External Entity (XXE) are

4.1. RASHMODEL 67

often fixed by properly sanitizing or whitelisting input parameters, or
by configuring components properly. Security problems related to ses-
sion management are things like incorrect session lengths, insufficient
entropy, or insufficient length for the session ids. Use of vulnerable
components is most frequently fixed by updating to a version of the
component where the vulnerabilities are fixed. To fix these vulnerabili-
ties, only local changes to the code are necessary, identifying the correct
fix out of several options only involves building a mental model of a
small piece of code, making it easier to reason about.

Still, it is noteworthy that the categories near the bottom of the
scale are some of the most infamous vulnerabilities. Injection for exam-
ple is the top category of the OWASP top 10 in 2017 and receives high
scores for exploitability, detectability, and technicality. It has currently
dropped to the third position in the iteration released in 20212. Based
on our training data, at least, it seems that these scores might be exag-
gerated. One exception to this is Cross-Site Scripting (XSS). Despite its
infamy, it is closer to the middle of the scale, as can be seen in Figure 4.2
where XSS is shown together with all categories it shows statistically sig-
nificant differences with. XSS being in the middle of the scale can be
explained by the fact that there are two major types of XSS, stored XSS
and reflected XSS. In the case of reflected XSS the vulnerability is rather
local, and the fix is also applied locally, by using output encoding. For
stored XSS there are usually multiple code fragments involved, one or
more where the user input is stored as data and one or more where the
stored data is used without output encoding.

In conclusion, the difficulty of the vulnerability correlates to the size
of the related code fragments. Vulnerabilities that only require local
changes in the code to fix are easier to understand and fix in training,
despite their apparent prevalence in practice.

Framework

Of the 38 different frameworks, 37 show statistically significant differ-
ences with at least one other framework. Pseudocode shows a significant
difference with 17 of these frameworks, all of which have a higher mean
difficulty. This makes sense as pseudocode is an artificial language. It
is designed to teach developers algorithms and other programming con-
cepts, and should be easy to understand.

Memory management in memory-unsafe languages such as C and
C++ can lead to a whole class of security problems that are avoided

2https://owasp.org/Top10/

68 CHAPTER4. EXPERIMENTS

XML external entity (XXE)

Injection

Session management

Use of vulnerable components

Improper platform usage

Broken cryptography (M)

Cross site scripting (XSS)

Cross site request forgery (CSRF)

Poor authorization

mean difficulty

hardesteasiest

Figure 4.2: Challenges about XSS show a mean difficulty around the
middle of the scale.

Java

C# (.NET)

Python

C

C++

Cobol

hardesteasiest
mean difficulty

Figure 4.3: Older programming languages require memory management
and use of pointers. They show harder mean difficulties than languages
that have automated memory management.

in memory-safe languages. We can see this effect in the higher mean
difficulty of C and C++ compared to those of the modern, memory-safe
programming languages Java, C# (.NET), and Python, as shown in
Figure 4.3. However, the memory-safe language Cobol also shows a sta-
tistically significantly higher mean difficulty compared to each of these
three languages. While Cobol is memory-safe, it does still require mem-
ory management and use of pointers, which might explain the higher
mean difficulty. Cobol is also known for its lack of clear documentation
regarding security concepts.

Several frameworks show statistically significant differences between
the framework and its standard programming language. This is the case
for Java Spring, Java EE, Java JavaServer Faces (JSF), C# (.NET) Web
Forms, and Python Django. All of these frameworks are more difficult
than their standard language counterparts, as shown in Figure 4.4. This

4.1. RASHMODEL 69

Java

C# (.NET)

Python

Java Spring

Java JSF

C# (.NET) Web Forms

Java EE

Python Django

hardesteasiest
mean difficulty

Figure 4.4: All of the frameworks that show statistically significant dif-
ferences with their standard programming language, have a higher mean
difficulty.

is surprising, as frameworks are designed to implement commonly used
functions so that the developer does not have to. For example, to se-
curely hash a password in standard Java, the developer has to research
which algorithm is the most secure, they have to generate a salt using
a secure random number generator and correctly combine each of these
techniques. In Java Spring a PasswordEncoder interface is provided,
the documentation of this interface is brief and informs developers that
BCryptPasswordEncoder is the preferred implementation3.

Because frameworks often automate these commonly used features,
some details of the implementations might be lost to developers. This is
also confirmed by previous research where 44% of analyzed applications
were shown to contain vulnerabilities caused by misunderstandings of
the framework implementation details [79]. When the implementation
in such a framework is insufficient, or when the framework is used incor-
rectly, it is possible that even a security conscious developer can remain
unaware of the consequences. On top of the standard language skills,
and the security knowledge, a developer using a framework hence also
needs an intimate knowledge of the framework itself to deliver secure
code.

The mobile framework Java Android is more difficult than web frame-
works for the same language (Java JSF, Java Spring), as shown in Fig-
ure 4.5. This can be explained through the increased attack vectors of
mobile applications that are installed on the device of the user. Because
the device and operating system cannot be trusted, the developer has to

3https://docs.spring.io/

70 CHAPTER4. EXPERIMENTS

Java

C# (.NET)

Python

Java Spring

Java JSF

Java Android

Swift

hardesteasiest
mean difficulty

Figure 4.5: Mobile framework and languages that show statistically sig-
nificant differences with their web counterparts have higher mean diffi-
culties.

be aware of other threats, such as restoring backups that are tampered
with, detecting root access, and tapjacking, a vulnerability where the
attacker can trick the user to perform unintended actions by drawing
overlays. Unfortunately, Objective C, an extension of C that can be
used for mobile development, does not show a statistically significant
difference with C itself to confirm this correlation. The more modern
replacement for Objective C, Swift, that is inspired by both C# (.NET)
and Python does show a statistically significant higher mean difficulty
than both these languages [80].

Languages and frameworks have evolved to automate some of the
tasks of the developer, such as memory management, and password en-
cryption. The abstractions provided by these languages and frameworks
do not always have a positive impact on security, as is evident from these
results. It is likely that the developer has to sufficiently grasp the im-
plementation details to fully understand the security impact of their
code.

Presentation

A challenge can be presented to the user as an identify, locate, or fix
exercise. It is unsurprising that identifying a vulnerability that is already
marked in the code, is the easiest type of exercise, as shown in Figure 4.6.
On the platform this type of exercise is usually the first stage of a two-
stage challenge, with the second stage a fix exercise.

According to the 2PL model, locating vulnerabilities in the code is
the most difficult task. This is in line with observations made in practice,
where many vulnerabilities go unnoticed by developers and are detected

4.2. STEP SIZE ADJUSTMENTABILITY ESTIMATION 71

Identify

Fix

Locate

mean difficulty

hardesteasiest

Figure 4.6: The mean difficulty of each presentation form is statistically
different of the other two. In line with observations in practice, locating
a vulnerability in code is the most difficult of the three tasks, followed
by fixing the vulnerability.

by automated tools at later stages in the Software Development Life
Cycle (SDLC).

4.2 Step size adjustment ability estimation

From the previous experiment in Section 4.1, it is evident that calibrat-
ing the entire item bank takes a long time. Similarly, computing the
ability estimate based on the entire response pattern of a user takes
too long. Currently, about 15,000 challenges are completed every day,
that is about one challenge every six seconds and this number is only
expected to go up. The computations to estimate the ability of a single
user frequently exceed that. For a procedure that has to be executed
this often, even a minute is too long.

4.2.1 Goals and research questions

The main goal of this experiment is to evaluate different approximation
procedures for the ability estimates. The purpose is to determine if they
can be used to improve the efficiency of the ability computations without
a significant loss in accuracy. The quality focus is the accuracy of the
procedures with increasing numbers of answered items. The above goal
can be achieved by means of an experiment aimed at answering the
following question for each procedure:

• Q1 how big is the mean error of the approximation after every 5
challenges?

4.2.2 Approximation procedures

In research literature, I have found two so-called step size adjustment
procedures that are used in CATs. These procedures update the latest

72 CHAPTER4. EXPERIMENTS

estimate based on either a fixed or variable step size [70].

Fixedstepsize With a fixed step size, the ability estimate is increased
(or decreased) by a specific amount, often between 0.4 and 0.7, when the
user answers an item correctly (or incorrectly). In this experiment the
smallest step size of 0.4 is used for the evaluation.

Variable step size With a variable step size the new ability estimate
is placed at the halfway point between the current estimate and the
difficulty of one of the two most extreme items in the item bank. This
is possible because the calibration techniques of IRT place users and
items on the same scale. If the user answers an item correctly, then the
highest item parameter is used, if not, the lowest is used. This procedure
makes sense when one considers that the item selection algorithm in
CATs continuously selects items that are significantly above the current
estimated ability level of the user, as explained in Section 3.2.3. This
is not the case for the historical data, and will also not be the case for
the item selection of the ITS in the future. With more forgiving item
selection this procedure will likely become inaccurate over time.

Adaptive step size As an improvement, I have developed a variation
of this procedure that uses the difficulty of the selected item instead
of the difficulty of the extreme items in the item bank. This adaptive
step size procedure is shown in Algorithm 3. When the user answers
an item correctly that was expected to be hard, the ability estimate
is increased to the halfway point between this item and the current
estimate. Similarly, when the user answers an item incorrectly that was
expected to be easy, the ability estimate is decreased to the halfway
point.

In the other cases, the outcome of the answer confirms that the
current ability estimate is accurate. A question that is more difficult
than the user’s current ability level is answered incorrectly, or a question
below the ability level is answer correctly. The player can then optionally
be rewarded or punished with a fixed value, similar to the fixed step
size adjustment procedure. For this experiment, two variations of the
adaptive step size procedure are tested, one with a fixed reward of 0.2
and one without a fixed reward.

4.2. STEP SIZE ADJUSTMENTABILITY ESTIMATION 73

Algorithm 3: Adaptive step size adjustment procedure
input : user ability θi

item difficulty βj
answer Xij

an optional punishment/reward value r

output: updated user ability θi
1 if Xij is correct then

2 if θi ≤ βj then

3 return (θi + βj)/2
4 else

5 return θi + r

6 else

7 if θi ≥ βj then

8 return (θi + βj)/2
9 else

10 return θi - r

4.2.3 Experimental set-up

The different procedures are evaluated by comparing their approxima-
tions with the (accurate) estimated IRT ability. To do this, an IRT
ability estimate is needed for each user at each point in time, which
requires many long-running IRT calibration procedures. The five frame-
works with the most data were chosen to use in the evaluation. These are
Java Spring, Java EE, NodeJS Express, Pseudocode and Python Django.
The IRT ability was estimated for every user after every 5 completed
challenges.

Each of the four procedures starts from the IRT ability estimate after
20 completed challenges. From that point forward, the approximation
methods are applied to the outcome of each challenge attempt. The
resulting approximations are compared to the IRT ability after every 5
challenges.

4.2.4 Findings

For each approximation method, the evolution of the mean error as a
percent of the full ability scale, is shown in Figure 4.7. The fixed step
size adjustment becomes excessively inaccurate after only 15 to 20 chal-
lenges following the initial calibration. After 200 challenges, the mean
error of this approximation is up to 300%. While the adaptive step

74 CHAPTER4. EXPERIMENTS

size procedure with a fixed reward is significantly better, its error still
becomes excessively large and rises indefinitely. The seemingly ever in-
creasing error for these two procedures is explained by the large amount
of users who play challenges that are below their skill level, and hence
often answer them correctly. With these two procedures, the ability
level of users like this is increased each time, while these answers have
no significant impact on the accurate estimates.

This effect is still visible for the variable step size adjustment pro-
cedure. However, with this procedure the estimate does not exceed the
difficulty of the most difficult item in the item bank, which limits the
error to about 30%.

The adaptive step size procedure without reward or punishment is
the most accurate. With this procedure, the ability estimate is not ad-
justed if the outcome of an item is as expected according to the current
estimate. The ability estimates of users who are answering easy items
correctly is not updated. For correct answers to difficult challenges or
for incorrect answers to easy challenges, the estimate is moved in the
right direction, but using smaller steps than the variable step size proce-
dure. The mean error of 10% is acceptable for it to be used in the ITS,
as will become evident in a following experiment in Section 4.4. This
implies that the full calibration procedure is only necessary once, for the
initial calibration. In practice, the abilities for existing users will still pe-
riodically be re-calibrated along with the initial calibration of new users.
The adaptive step size procedure itself takes roughly 500 ns to estimate
the new ability level.

4.3 Collaborative filtering algorithms

4.3.1 Goal and research questions

The main goal of this experiment is to test the prediction accuracy of
different (variations of) CF algorithms. The purpose is to determine
which algorithms are most effective at making recommendations on the
SCW platform. The quality focus is the error of the predicted ratings
compared to the observed ratings. The above goal can be achieved by
means of an experiment aimed at answering the following questions:

• Q1 What is a good error rate for this data set?

• Q2 Which algorithm achieves the lowest error rate for predicting
the utility of an item?

4.3. COLLABORATIVE FILTERINGALGORITHMS 75

45%

30% error

10%

0%

0 20 150 challenges 210

fixed step adaptive step
with fixed reward

variable step

adaptive step

Figure 4.7: The error rates of the two procedures with a fixed step
or a fixed reward become excessively large. For the variable step size
procedure, the error rate is capped at around 30%. The adaptive step
size procedure without fixed reward is the most accurate and its error
rate does not exceed 10%.

4.3.2 Benchmark algorithms

To train and evaluate different (variations of) algorithms, I have used the
open-source Python scikit Surprise [36]. Since it is open source, the code
is available to download from GitHub and the implemented algorithms
can later be adapted to learning systems.

Surprise provides two basic CF algorithms that can be used as bench-
marks to answer the first research question.

The first benchmark algorithm is called Normal Predictor, it esti-
mates a normal distribution based on the training data and makes new
predictions by randomly sampling from this distribution.

The second algorithm is the baseline algorithm. It uses the baseline
estimate as defined in Equation 4.2 [37].

r̂ui = bui = µ+ bu + bi (4.2)

In this equation, µ is the observed overall mean of the ratings, and
bu and bi are the biases, the average observed deviations of this mean
by user u and item i.

When computing the utility of an item in Section 3.4.3 it was ob-
served that some users show a consistent bias. This is because many

76 CHAPTER4. EXPERIMENTS

users on the SCW platform stick to the predetermined courses or tour-
naments. For users who have a higher ability level, this current selection
of challenges is consistently too easy, leading to boredom and hence con-
sistently lower ratings by these users. The utility experienced by these
users can likely be predicted relatively accurately using the baseline algo-
rithm. Hence it is expected that this benchmark algorithm will already
perform well.

4.3.3 Memory-based algorithms

Five memory-based CF algorithms are evaluated in this experiment, four
k-NN algorithms and an algorithm called the Slope One algorithm.

The k-NN algorithms predict the rating r̂ui of a user u for an item i

based on the observed ratings rvi of similar users v for that item. These
algorithms explicitly combine the ratings of the k nearest neighbours
to compute a prediction, hence their name as k-NN algorithms. The
difference between these algorithms lies in the exact formulas used to
combine the existing ratings of the neighbours to make a prediction.

k-NNbasic To predict a rating, the first k-NN algorithm, k-NN basic,
takes the weighted average of the observed ratings for that item by the k

nearest neighbours of the user. As shown in Equation 4.3, the similarity
between the users is used as the weight in the weighted average.

r̂ui =

∑

v∈Nk
i (u)

sim(u, v) · rvi

∑

v∈Nk
i (u)

sim(u, v)
(4.3)

In this equation, sim(u, v) is the similarity between users u and v,
and Nk

i (u) is the set of k nearest neighbours of user u that have rated
item i. Different similarity metrics can be used, as will be explained
later in this section.

The algorithm can also be used to do item-based CF, by summing
over j ∈ Nk

u (i), the k nearest neighbours of item i that are rated by user
u. In that case, the similarity between items sim(i, j) needs to be used.

k-NN with means The second k-NN algorithm is called k-NN with
means. It does not take the weighted average of the ratings of the
nearest neighbours, but instead uses the deviation of the mean, as shown

4.3. COLLABORATIVE FILTERINGALGORITHMS 77

in Equation 4.4.

r̂ui = µu +

∑

v∈Nk
i (u)

sim(u, v) · (rvi − µv)

∑

v∈Nk
i (u)

sim(u, v)
(4.4)

In this equation, µu is the mean rating given by user u. The algo-
rithm can similarly be used in an item-based fashion.

k-NNwithz-score The k-NN with z-score algorithm uses the standard
score, or z-score of the ratings of each user. The standard score is the
number of standard deviations the rating deviates from the mean. It
can be computed by taking the deviation from the mean, like in the
previous equation, and divide the result by the standard deviation. The
resulting formula is shown in Equation 4.5.

r̂ui = µu + σu

∑

v∈Nk
i (u)

sim(u, v) · (rvi − µv)/σv

∑

v∈Nk
i (u)

sim(u, v)
(4.5)

In this equation, σu is the standard deviation of the ratings of user
u. This algorithm can also be trivially changed to make item-based
predictions.

k-NN baseline The final k-NN algorithm, k-NN baseline, uses the
baselines of the k nearest neighbours to make a prediction, as shown
in Equation 4.6

r̂ui = bui +

∑

v∈Nk
i (u)

sim(u, v) · (rvi − bvi)

∑

v∈Nk
i (u)

sim(u, v)
(4.6)

In this equation, bui is the baseline rating of user u for item i, as
computed in Equation 4.2.

Similaritymetrics The k-NN algorithms described above all make use
of the similarity between users (or items) to make predictions, in the
formulas this similarity between two users u and v is denoted as sim(u, v).
Four similarity metrics are considered in this experiment.

The default configurations for the k-NN algorithms use the Mean
Squared Difference (MSD) similarity. The MSD is a metric for distance

78 CHAPTER4. EXPERIMENTS

between two users, it sums over all items that have been rated by both
users and takes the square of the difference of the given ratings, as shown
in Equation 4.7.

msd(u, v) =
1

|Iuv|
·
∑

i∈Iuv

(rui − rvi)
2 (4.7)

In this equation, Iuv is the set of items that have been rated by both
users u and v.

To use this distance as a similarity measure, the inverse has to be
taken. To avoid dividing by zero, a one is added to the denominator, as
shown in Equation 4.8.

msd_sim(u, v) =
1

msd(u, v) + 1
(4.8)

The second metric, the cosine similarity, requires the ratings of the
common items between two users to be represented as vectors. The
cosine similarity is then defined as the cosine of the angle between these
two vectors, which is the same as the inner product of the two vectors
normalized to both have length one. The resulting formula is shown in
Equation 4.9.

cosine_sim(u, v) =

∑

i∈Iuv

rui · rvi

√

∑

i∈Iuv

r2ui ·
√

∑

i∈Iuv

r2vi

(4.9)

The third metric is the Pearson correlation coefficient. It is com-
monly used in statistics as a measure of correlation between two data
sets. It can be seen as a mean-centered cosine similarity which is evi-
dent from similarity of the formula with that of the cosine similarity, as
shown in Equation 4.10.

pearson_sim(u, v) =

∑

i∈Iuv

(rui − µu) · (rvi − µv)

√

∑

i∈Iuv

(rui − µu)2 ·
√

∑

i∈Iuv

(rvi − µv)2
(4.10)

Baseline, the final similarity metric considered in this experiment,
is similar to the Pearson correlation coefficient, but uses baselines for
centering instead of means. This similarity metric is shown in Equa-

4.3. COLLABORATIVE FILTERINGALGORITHMS 79

tion 4.11.

pearson_baseline_sim(u, v) =

∑

i∈Iuv

(rui − bui) · (rvi − bvi)

√

∑

i∈Iuv

(rui − bui)2 ·
√

∑

i∈Iuv

(rvi − bvi)2

(4.11)

Slope One To predict a rating r̂ui of a user u for an item i, k-NN
algorithms only look at the ratings by similar users for that same item
rvi. The ratings of other common items are only used to determine the
most like-minded users, not to compute the predicted rating.

In the Slope One algorithm, all ratings of common items are used to
make a prediction by computing a popularity differential between each
pair of items [81]. To compute this popularity differential between two
items for two users, the rating of one user for this item is subtracted from
the rating of the other [36]. This can be done for all users to receive
an average popularity differential between these two items, as shown in
Equation 4.12.

popularity_differential(i, j) =
1

|Uij |

∑

u∈Uij

rui − ruj (4.12)

In this equation, Uij is the set of all users who rated both items i

and j.
This popularity differential can then be used to make predictions for

the ratings, by taking the mean rating of a user and adding the average
popularity differential between two items to this mean, as shown in
Equation 4.13.

r̂ui = µu +
1

|Ri(u)|

∑

j∈Ri(u)

popularity_differential(i, j) (4.13)

With Ri(u) the set of items j that have been rated by u and also
have been rated by at least one other user that has rated i.

4.3.4 Model-based algorithms

Besides these memory-based algorithms, Surprise also offers implemen-
tations for five popular model-based algorithms [36], one based on clus-
tering and four based on matrix factorization.

80 CHAPTER4. EXPERIMENTS

Co-Clustering The discussed memory-based algorithms make predic-
tions based on a neighbourhood of either like-minded users or similarly-
rated items. In the Co-Clustering CF algorithm, the idea is to simul-
taneously obtain user and item neighbourhoods via co-clustering [43].
Many algorithms exist to assign these co-clusters, sometimes called bi-
clusters [82]. The implementation in Surprise is a more straightforward
optimization method, similar to k-means [36].

The average ratings from these clusters can then be used to make
predictions about the ratings, as shown in Equation 4.14.

r̂ui = Cui + (µu − Cu) + (µi − Ci) (4.14)

In this equation, Cui is the average rating of co-cluster Cui, Cu is the
average rating of the cluster of user u, and Ci is the average rating of
the cluster of item i.

Probabilistic Matrix Factorization (PMF) Matrix factorization mod-
els map both the users and the items to a space of latent factors of
dimensionality f . This latent space tries to explain ratings by character-
izing both users and items. For example, on the SCW training platform,
factors might be obvious characteristics of items such as the vulnerabil-
ity category, or the presentation of the item. It is also possible that they
represent less defined dimensions such as readability of the code, or the
structure of the files, or even completely uninterpretable dimensions [38].

Each item i is then depicted as a vector qi ∈ R
f , that measures

the extent to which this item possesses the characteristics represented
in the latent space. Each user u is represented by a vector pu ∈ R

f

that measures the extent of the interest (or utility) this user has for the
corresponding factors.

The dot product of these two vectors captures the interest (or utility)
of the user for this item and can be used to make predictions, resulting
in the PMF algorithm [36, 44]. The formula is shown in Equation 4.15.

r̂ui = qTi pu (4.15)

Singular Value Decomposition (SVD) The SVD algorithm is similar
to PMF, but creates a final rating by also adding the baseline predic-
tors [36, 38, 83]. The resulting formula is shown in Equation 4.16.

r̂ui = µ+ bu + bi + qTi pu (4.16)

4.3. COLLABORATIVE FILTERINGALGORITHMS 81

To estimate each of these unknown variables, the following regular-
ized squared error needs to be minimized:

∑

rui∈Rtrain

(rui − r̂ui)
2 + λ

(

b2i + b2u + ||qi||
2 + ||pu||

2
)

(4.17)

The constant λ controls the extent of regularization, in this experi-
ment it is set to 0.02. Minimization of the error is typically done using
stochastic gradient descent [36, 38]. In this process, the algorithm makes
predictions for all existing ratings and computes the prediction error. All
parameters are then moved slightly in the opposite direction to improve
the predictions in the next pass. For the algorithm in this experiment,
this process was repeated 20 times to reach the final estimates.

Non-negativeMatrix Factorization (NMF) The NMF CF algorithm
is also similar to PMF, but the user and item factors are kept posi-
tive [36, 84–86]. That means each item i is depicted as a vector qi ∈ R

f
≥0,

and each user u as a vector pu ∈ R
f
≥0. Predictions are then computed

identically to PMF, as shown in Equation 4.15.
To ensure that the parameters remain positive, a stochastic gradient

descent is used that ensures non-negativity of factors based on the step
size and the initial values [36].

SVD++ The SVD++ algorithm was developed to make use of implicit
feedback. It builds on the assumption that the users can also be char-
acterized by accounting for which items they have or have not provided
a rating for. The SVD++ algorithm often results in superior accuracy
compared to SVD.

A second set of item factors yi ∈ R
f is added that is used to char-

acterize the users based on the set of items they have rated. The user
vector pu is then extended based on these characteristics before using it
to compute a prediction, as shown in Equation 4.18.

r̂ui = µ+ bu + bi + qTi



pu + |Iu|
− 1

2

∑

j∈Iu

yj



 (4.18)

4.3.5 Experimental set-up

To evaluate the various CF algorithms in this section, I have selected
the five frameworks with the most data available on the platform. These

82 CHAPTER4. EXPERIMENTS

are Java Spring, Java EE, NodeJS Express, Pseudocode and Python
Django. For each of those frameworks, I have iterated over the challenge
attempts in the data set and continuously estimated the ability of each
user. This estimate is computed with the adaptive step size adjustment
procedure, evaluated in the previous experiment of this chapter. This
ability estimate was then used to rate each challenge attempt according
to its utility for the user, as described in Section 3.4.3. The resulting
ratings, on a scale of 1 to 5, are used to evaluate the (variations of) CF
algorithms.

• The two benchmark algorithms are tested.

• All four k-NN algorithms are tested with default configurations.

• Each k-NN algorithm is tested with item-based similarities.

• Each of the four k-NN algorithms is tested with all four similarity
metrics.

• Slope One is tested with default configurations.

• All five model-based algorithms are tested with default configura-
tions.

Each (variation of an) algorithm is evaluated on each of the five
selected frameworks using a process of 10-fold cross-validation. In this
process, the data set of the framework is split into 10 equal parts, called
folds. Next, 9 of the 10 folds are used as training data, and the final
fold is used as test data. Every time an algorithm is evaluated on a fold
of test data, this is done with three different evaluation metrics that
will be explained further in this section. This process is repeated 10
times, each time alternating the fold to be used as test data. So for each
algorithm and framework combination, 10 measurements are obtained,
one for each fold. The final step of the cross-validation process is to take
the mean and standard deviation of these 10 measurements.

The mean of the 10 measurements is used to evaluate the algorithm
on this particular data set, as it represents the mean performance of the
algorithm. I will call this the framework-mean µf for an algorithm. The
set of five framework-means for an algorithm is then denoted as Mf . The
standard deviation can be used to assess the algorithm for overfitting.
Overfitting is a prediction error caused when the algorithm is too closely
aligned to the training sets, causing decreased performance on (some of)
the test sets. Analogous with the framework-mean, this will be denoted
as σf ∈ Sf .

4.3. COLLABORATIVE FILTERINGALGORITHMS 83

If all five standard deviations σf ∈ Sf are sufficiently small, we can
take the mean of the five framework-means µf ∈ Mf to obtain a final
result that enables us to evaluate the algorithm’s performance on all
five frameworks. This mean will be called the algorithm-mean µa. In
Appendix C, the algorithm-mean is reported for every (variation of)
algorithm evaluated, as well as the largest of the framework standard
deviations σmax = max(σf ∈ Sf) to show that no overfitting is taking
place.

Metrics

To evaluate the CF algorithms, I have used three metrics that compare
the set of predicted ratings R̂ to the set of observed ratings R.

Mean Absolute Error (MAE) One of the most popular metrics in re-
search literature is the MAE [35, 87]. It computes the average prediction
error over the entire set of predictions, as shown in Equation 4.19.

MAE =
1

|R̂|

∑

r̂ui∈R̂

|rui − r̂ui| (4.19)

The MAE uses the same scale as the ratings itself, and hence can-
not be used to make comparisons between measurements using different
scales. For this the Normalized Mean Absolute Error (NMAE) can be
used that expresses the error as a percentage of the full scale [35]. In our
rating scale, the MAE takes values between 0 for a perfect prediction
and 5 as the maximum error.

Root Mean Squared Error (RMSE) The RMSE amplifies the error
between the actual rating and the predictions by taking the square of
the prediction error, as shown in Equation 4.20.

RMSE =

√

√

√

√

1

|R̂|

∑

r̂ui∈R̂

(rui − r̂ui)2 (4.20)

Like the MAE, the RMSE is scale-dependent. It takes non-negative
values and a lower value means better prediction performance.

The RMSE has increased in popularity, partly because of its use in
the Netflix competition for movie recommendations [35, 88]. In 2006,
Netflix launched a competition to beat the current score of their recom-
mendation algorithm, Cinematch. At the time the algorithm achieved a

84 CHAPTER4. EXPERIMENTS

RMSE of 0.9514 [88, 89]. With the competition, Netflix offered a $1 mil-
lion dollar prize to the team that could improve this benchmark by 10%.
The algorithm of the winners, one year later, reached a RMSE of 0.8567
and was put into production [88, 90, 91]. This also shows that in CF
algorithms, improvements of several percents can already be valuable.

Fraction of Concordant Pairs (FCP) Finally, I have also included a
measure that puts more focus on the order the items are ranked rather
than the exact rating that is predicted. In the FCP, the number of
concordant pairs nu

c for a user u is determined by counting the pairs of
ratings that are ranked correctly [92]. This is shown in Equation 4.21.

nu
c = |{(i, j) | r̂ui > r̂uj and rui > ruj}| (4.21)

The number of pairs that is ranked incorrectly is the number of
discordant pairs nu

d .
The total number of concordant pairs nc and discordant pairs nd is

then obtained by summing over all users, as shown in Equation 4.22.

nc =
∑

u

nu
c , nd =

∑

u

nu
d (4.22)

Using this total number of concordant and discordant pairs, the FCP
can be computed as shown in Equation 4.23.

FCP =
nc

nc + nd

(4.23)

The FCP takes values between 1 and 0, with higher meaning that a
larger portion of pairs are ranked correctly.

4.3.6 Findings

All measurements during this experiment are included in the tables of
Appendix C. In this section, I will discuss some interesting results, and
mainly use the MAE to compare the performance of algorithms.

Benchmark

The benchmark algorithms perform reasonably well. The Baseline algo-
rithm in particular, as it reaches a µa MAE of 0.5004 and µa RMSE of
0.6169. This is significantly lower than the prediction error for the Net-
flix prize for example, where the winner reached a RMSE of 0.8567 [88,
90, 91]. The Netflix recommendations happen to use the same scale as

4.3. COLLABORATIVE FILTERINGALGORITHMS 85

the utility rating in this experiment, so this comparison can be made.
These results indicate that the utility of an item on the SCW platform
is in comparison easier to predict.

The good performance of the Baseline algorithm was expected based
on the observations of the data. In the current item selection, most users
are given the same exercises. These items are of course not randomly se-
lected, but carefully tailored by the SCW employees who designed these
OWASP Top 10 courses on the platform. As a result, for a number of
users this item selection is rather good, and the ratings of these users
are consistently high. For more experienced users, the content of these
courses is too easy, and as a result their ratings are consistently lower.
Using baselines, these consistent bias result in reasonably accurate pre-
dictions.

Memory-based algorithms

The default configurations of all memory-based algorithms result in im-
proved prediction performance compared to the baseline benchmark.
The Slope One algorithm performs worse than the k-NN algorithms.
It reaches a MAE of 0.4928 which is an improvement of about 1.5%
compared to the baseline benchmark. The best performing k-NN algo-
rithm is the k-NN baseline. As explained before, it is not surprising that
baseline algorithms are performing well on this data set. It reaches a
MAE of 0.4680, improving the baseline benchmark by 6.5%.

In the next test, the k-NN algorithms were configured to use item-
based similarities to find the k nearest neighbouring items, and make
predictions based on the ratings of those items. This item-based con-
figuration performed worse for all four algorithms, with an increase in
prediction error between 1.0% and 6.7% depending on the algorithm.

In the final test with the k-NN algorithms, each of the algorithms is
evaluated in combination with each of the four similarity metrics. The
results indicate that the similarity metric can have a big impact on the
prediction performance, with as much as a 7% increase in performance
for the k-NN with z-score algorithm between the cosine similarity metric
and the baseline similarity metric.

When the similarity metrics are ranked from best to worst perfor-
mance, this ranking is the same for each algorithm, and is as follows:

1. Baseline similarity,
2. Cosine similarity,
3. MSD similarity,
4. Pearson similarity.

86 CHAPTER4. EXPERIMENTS

Table 4.3: All memory-based algorithms perform better than the bench-
marks. k-NN basic and Slope One perform significantly worse than the
other algorithms.

MAE
µa σmax

k-NN basic 0.4902 0.003
k-NN with means 0.4521 0.002
k-NN with z-score 0.4508 0.002
k-NN baseline 0.4514 0.002
Slope One 0.4928 0.002

Once again, the choice based on baselines is the best performing.
For each of the k-NN algorithms, the item-based similarity, com-

puted with the baseline similarity metric, results in the best performance.
The MAE of the best performing configuration for each memory-based
algorithm is shown in Table 4.3, all other measurements are available in
Appendix C.

Model-based algorithms

In the next test, these results are compared to those of the model-based
algorithms, which tend to be more accurate, especially for sparse data.

Surprisingly, none of the model-based algorithms was able to im-
prove the prediction rate of the best performing memory-based algo-
rithm. Changing parameters in the model-based algorithms had influ-
ence on the speed of convergence, but no real impact on the prediction
accuracy. The MAE for each algorithm is shown in Table 4.4, for other
measurements consult Appendix C.

SVD++, the best performing of the model-based algorithms, reaches
a MAE of 0.4591, beating the default configurations of all memory-
based algorithms. This is not surprising, as SVD++ also takes into
account which items users have and have not rated. This algorithm can
hence make a better distinction between users who followed the standard
courses, and users who did not.

Co-Clustering performs the worst of the model-based algorithms and
its MAE is not significantly better than that of the baseline benchmark.
One of the strengths of the Co-Clustering algorithm is that it can han-
dle synonyms rather well. In recommendation systems, synonyms are
items that are (nearly) identical but are still labeled as different items.
Movie databases often have genres like “Children’s movie” and “Chil-
dren’s film”, which are then clustered together by the algorithm. More

4.4. ADAPTATIONTOLEARNINGSYSTEMS 87

Table 4.4: Most model-based algorithms perform worse than the fine-
tuned memory-based algorithms. SVD++ is the exception, it reaches
prediction accuracy close to that of the best performing memory-based
algorithms.

MAE
µa σmax

Co-Clustering 0.4999 0.007
PMF 0.4783 0.003
NMF 0.4835 0.002
SVD 0.4750 0.003
SVD++ 0.4591 0.003

data can then be used to make recommendations about either of those
genres. Evidently, on our platform few such synonyms are present, even
though for each framework many exercises exist about the same vulner-
ability types. The ratings for these exercises are sufficiently inconsistent
so that the Co-Clustering algorithm does not result in significant im-
provements in prediction accuracy.

While model-based algorithms are usually more accurate, this is not
the case for the SCW training data. This is likely because the advantages
of model-based algorithms are not very applicable to this data set, as
will be explained in the discussions in Chapter 5.

4.4 Adaptation to learning systems

Through the above experiments, I am able to obtain an accurate dif-
ficulty measure for each challenge, and a good approximation of the
ability level of each user at every point in time. I have also rigorously
tested the performance of several CF algorithms on the data set. In
the experiment of this section, I will use the ability level of the users to
improve the performance of these algorithms.

4.4.1 Goals and research questions

The main goal of this experiment is to test the prediction accuracy of
different CF algorithms after they have been adapted to learning systems.
The purpose is to determine if the proposed adaptations in this work lead
to improved performance in some or all algorithms. The quality focus
is the prediction error of the adapted algorithms in comparison to those
of the unaltered algorithms. The above goal can be achieved by means

88 CHAPTER4. EXPERIMENTS

of an experiment aimed at answering the following question for each
algorithm:

• Q1 Does the error rate of the prediction decrease when the pro-
posed adaptation to learning systems is applied?

4.4.2 Experimental set-up

The best performing configuration of each algorithm tested in the previ-
ous experiment of Section 4.3 has been adapted to learning systems and
measured in this experiment.

The same process of evaluation is used as in the previous experiment,
where each algorithm is tested using 10 fold cross-validation on each of
the top five frameworks. For each algorithm, the algorithm mean µa

and the largest standard deviation σmax of each of the three metrics are
reported in Appendix C.

4.4.3 Adaptation to learning systems

The goal of the adaptation is to include the ability level θui of user u

at the time of rating item i in the algorithm. In particular, this ability
level should be used to update the similarity between users. Currently,
two users are considered like-minded if they rate common items similarly.
With this adaptation, the goal is to consider two users like-minded if the
items they rated around the same ability level are rated similarly.

Similaritymetrics

The most obvious way to include this ability level is to update the simi-
larity metrics used by the k-NN algorithms.

In each of the metrics, to determine the similarity between users u

and v, summations are made over Iuv, the items that have been rated
by both users u and v. In the adaptation, this set is replaced by Ituv,
the items that have been rated by both users u and v and for which
the difference in ability level δθ = |θui − θvi| at the moment of rating is
smaller than the threshold t.

In Equation 4.24, this adaptation is demonstrated for the Baseline
similarity, the similarity metric that resulted in the best performance in

4.4. ADAPTATIONTOLEARNINGSYSTEMS 89

the previous experiment.

baseline_adapted_sim(u, v) =

∑

i∈Ituv

(rui − bui) · (rvi − bvi)

√

∑

i∈Ituv

(rui − bui)2 ·
√

∑

i∈Ituv

(rvi − bvi)2

(4.24)
The value of the threshold parameter t needs to be large enough so

that there is still enough data within this range to compare users with.
The best performance was measured when t was around a third of the
entire ability scale.

Data processing

The other algorithms do not explicitly use similarity between the users.
They can still be influenced to take the ability level at the time of rating
into account by processing the data first.

Instead of using a filter at the time of computing the similarity, it is
possible to filter at the time the rating is given. To do this, the ability
scale is split into three intervals, called expert, intermediate, and novice
ability level.

The ability level of the user at the time of rating an item i is taken
into account, by splitting the item into three distinct items, iexpert,
iintermediate, and inovice. If the user rates the item i, the data is then
processed as rating one of these three items, based on the ability level
of the user at the time of rating. This processed data can then be used
to train the unaltered algorithms.

This is less accurate than adapting the similarity metrics. It is pos-
sible that users at the bottom of the expert ability level rate items
similarly to the users at the top of the intermediate ability level. By
using a threshold at the time of computing the similarity, these users
are still considered similar. By splitting the ability scale into ranks, they
are not.

4.4.4 Findings

The proposed adaptation resulted in improved performance for all of
the algorithms, as shown in Table 4.5. The improvement is larger for
the k-NN algorithms, because these algorithms make more explicit use
of the ratings of neighbours to make a prediction. The improvement is
particularly large for the k-NN basic algorithm, with a 13.7% decrease

90 CHAPTER4. EXPERIMENTS

Table 4.5: All algorithms have improved performance because of the
adaptation to learning systems.

MAE
µa σmax

Similarity metric
k-NN basic 0.4232 0.002 -13.7%
k-NN with means 0.4261 0.002 -5.7%
k-NN with z-score 0.4276 0.002 -5.1%
k-NN baseline 0.4206 0.003 -6.8%

Data processing
Slope One 0.4719 0.002 -4.2%
Co-clustering 0.4940 0.007 -1.2%
PMF 0.4598 0.003 -3.9%
NMF 0.4614 0.003 -4.6%
SVD 0.4555 0.002 -4.1%
SVD++ 0.4409 0.003 -4.0%

in MAE. This algorithm is straightforward as it takes the mean of the
ratings of the most similar users to make a prediction. The improvement
of this algorithm is a clear indication that the ability level of a user at
the time of rating an item has a significant impact on the rating.

The smallest improvement is made by the Co-Clustering algorithm.
This algorithm was already the worst-performing, and it is likely that
the effect of splitting the items is somewhat negated by the clustering.

The best performing algorithm after the adaptation is the k-NN base-
line, it reaches a MAE of 0.4206, a total improvement of 16.0% over the
initial baseline benchmark.

Chapter 5

Discussion and perspectives

In the previous chapter, I described the goal and set-up of each exper-
iment, and reported their findings. In this chapter, I summarize the
findings and explain the learned lessons. I describe how these results
can be used to provide better support and training to developers.

If nothing else, take away from this chapter...

The 2PL model has shown that some infamous vulnerability types
that are typically considered high priority are relatively easy to
find and fix in training. This is evidence of a gap between knowl-
edge and practice. The paved path methodology, together with
more usable developer tools, could help developers apply their
knowledge better.
For use in the ITS, the k-NN baseline algorithm is the most accu-
rate CF algorithm. Baselines have proven to be accurate for the
data of the platform, most likely because many users show con-
sistent bias in their ratings. This is related to the current item
selection, that is often consistently right or consistently wrong,
based on the ability level of the user. In literature, model-based
algorithms are usually more accurate, but their advantages of deal-
ing with data sparsity, scalability, synonyms, and implicit data
are not applicable to the data set of the SCW training platform.
The results of the 2PL model and the ITS will be gradually im-
plemented in the training platform. In the future the ITS will
be improved to use data gathered from other developer tools, as
described in a published patent by SCW.

92 CHAPTER 5. DISCUSSIONANDPERSPECTIVES

5.1 Discussion

5.1.1 Two-parameter logisticmodel

Many efforts exist to rate, rank, organize, and prioritize vulnerabilities
into lists and taxonomies, such as the OWASP Top 10 [93], the seven
pernicious kingdoms [94], the Common Vulnerabilities and Exposures
(CVE) [95–97], and the CWE/SANS Top 25 most dangerous software
errors [98]. They are often built from the perspective of the security pro-
fessional, and take into account prevalence in production, detectability
by tools, and potential of impact. These lists and taxonomies can be
used as guidelines for security professionals to decide which insecurities
should be prioritized.

The results from the 2PL model sometimes contradict these lists. In-
jection and XXE, for example, are typically rated high on prioritization
lists because of their prevalence in production software. According to
our data, however, they are not the most difficult vulnerabilities in train-
ing. When the developer is aware such a vulnerability is present, they
are able to detect and resolve it with relative ease. So while popular lists
like OWASP Top 10 can be useful as baselines and guidelines for security
teams to set their priorities, they might not be the right focus from an
education perspective. Based on the results from the 2PL model, devel-
oper training should go further than these infamous security problems
and focus more on security problems involving larger pieces of code. We
can see this shift in priority in the newest version of the OWASP Top
101 as well. In the new version, shown in Figure 5.1, “Injection” goes
down in priority and “XXE” even merges with “Security misconfigura-
tion”. New categories are introduced such as “insecure design”, proposed
as the new number 4, shifting the focus towards security flaws.

We see a clear gap between knowledge and practice with these vul-
nerabilities being so prevalent in practice, but relatively easy to fix in
training. This is because, in a custom setting such as the SCW train-
ing platform, the developer is aware of security and able to apply their
knowledge to the examples at hand. In practice, however, the developer
is focused on the functionality and other requirements of the code, and
security is no longer a priority. The cognitive burden to constantly keep
track of both the functionality and the security of the code is evidently
too large. In other research similar observations have been made, where
half of the analyzed applications contained insecurities caused by over-
sights by the developer [79]. With the right processes and the right tools,

1https://owasp.org/Top10/

5.1. DISCUSSION 93

In
je

ct
io

n

B
ro

k
en

A
u
th

en
ti

ca
ti

on

S
en

si
ti

v
e

D
at

a
E

x
p

os
u
re

X
M

L
E

x
te

rn
al

E
n
ti

ty
(X

X
E

)

B
ro

k
en

A
cc

es
s

C
o
n
tr

ol

S
ec

u
ri

ty
M

is
co

n
fi
gu

ra
ti

on

C
ro

ss
-S

it
e

S
cr

ip
ti

n
g

(X
S
S
)

In
se

cu
re

D
es

er
ia

li
za

ti
on

U
si

n
g

C
om

p
on

en
ts

w
it

h
K

n
ow

n
V

u
ln

er
ab

il
it

ie
s

In
su

ffi
ci

en
t

L
og

gi
n
g

an
d

M
on

it
or

in
g

B
ro

k
en

A
cc

es
s

C
o
n
tr

o
l

C
ry

p
to

gr
ap

h
ic

F
a
il
u
re

s

In
je

ct
io

n

In
se

cu
re

D
es

ig
n

S
ec

u
ri

ty
M

is
co

n
fi
gu

ra
ti

o
n

V
u
ln

er
ab

le
an

d
O

u
td

at
ed

C
o
m

p
o
n
en

ts

Id
en

ti
fi
ca

ti
on

an
d

A
u
th

en
ti

ca
ti

o
n

F
a
il
u
re

s

S
of

tw
ar

e
an

d
D

at
a

In
te

g
ri

ty
F

a
il
u
re

s

S
ec

u
ri

ty
L

og
gi

n
g

an
d

M
on

it
o
ri

n
g

F
a
il
u
re

s

S
er

v
er

-S
id

e
R

eq
u
es

t
F

o
rg

er
y

(S
S
R

F
)

O
W

A
S
P

T
op

10
20

17
O

W
A

S
P

T
op

10
2
0
2
1

F
ig

ur
e

5.
1:

So
m

e
ca

te
go

ri
es

fr
om

th
e

O
W

A
SP

T
op

10
20

17
de

cr
ea

se
in

pr
io

ri
ty

(m
ar

ke
d

in
or

an
ge

)
in

20
21

,
ot

he
r

ca
te

go
ri

es
in

cr
ea

se
in

pr
io

ri
ty

(m
ar

ke
d

in
bl

ue
).

T
hr

ee
ca

te
go

ri
es

ar
e

m
er

ge
d

w
it

h
ot

he
r

ca
te

go
ri

es
(m

ar
ke

d
in

gr
ay

).
In

th
e

20
21

ve
rs

io
n,

th
re

e
ne

w
ca

te
go

ri
es

ar
e

in
tr

od
uc

ed
(m

ar
ke

d
in

bl
ue

).

94 CHAPTER 5. DISCUSSIONANDPERSPECTIVES

this burden can be alleviated, and the prevalence of these vulnerabilities
reduced. This is the goal of Part II of this work.

5.1.2 Recommendations

In the experiments described in the previous chapter, several algorithms
were tested and adapted to learning systems. Memory-based algorithms
based on baselines have come out on top. The best performing is the
k-NN baseline algorithm using the baseline-centered Pearson similarity
measure. This was expected based on the current exercise selection, as
many users show a consistent bias in their ratings. Model-based algo-
rithms based on dimensionality reduction through matrix factorization,
are often the best performing algorithms. However, the advantages of
these algorithms are often not applicable to our current data set.

Data sparsity In many recommender systems, the user-item rating
matrix is rather sparse. In Netflix, for example, few users will have
watched even half the catalogue of movies. This is also the case for the
SCW training platform, especially for the largest frameworks that offer
over a thousand challenges and by adapting the algorithms to learning
systems, the sparsity of the data has even been increased artificially.
This data sparsity can cause some problems for CF algorithms.

The cold start problem occurs when a new user or item enters the
system. Because there is no item available about this user or item, it is
difficult to find neighbouring items. Matrix factorization techniques re-
duce the dimensions of the matrix to alleviate this problem. In our data
set only users have been included that completed a sufficient amount of
challenges so that their ability level could be estimated, so this problem
has been avoided. In practice, it will still be necessary to calibrate the
ability level of new users before accurate recommendations can be made.
One problem to avoid the cold start problem can then be to use a short
entry test, in the form of CAT. A procedure like this is present in other
learning systems, such as Duolingo.

For new items, a trade-off needs to be made between exploitation
and exploration. In the exploitation phase the predictions from the
algorithms are used to provide a recommendation to the user. In the
exploration phase, an item is recommended for which there is insufficient
data, risking a bad recommendation in order to gather new information
about this item.

5.1. DISCUSSION 95

Scalability When the number of users and items is excessively large,
computing the similarity between every two users becomes an expensive
procedure. Model-based algorithms often scale better with large data
sets because matrix factorization techniques are used for dimensionality
reduction. While there are many users on the SCW training platform,
and the number of users is only expected to grow, in practice the data
sets are split per framework. They are not nearly large enough for scal-
ability to be a problem, as similarity matrices for the k-NN algorithms
are computed in less than a minute. These matrices only need to be
computed once in a while, for example once or twice a day.

Synonyms Synonyms occur when a number of identical or similar
items have different names or entries in the data set. Model-based tech-
niques are capable of dealing with the synonym problem because they
do not use the item names directly, but instead look for latent factors
related to the items. In our data set we do not expect many natural
synonyms to exist. While there are duplicate exercises, in the sense that
they are in the same framework and about the same vulnerability type,
in reality they are in different codebases, and of varying complexity.

With the learning adaptation, however, we have intentionally intro-
duced synonyms by splitting items into separate entities based on the
ability level of the users answering them. The fact that we still see sig-
nificant improvements in the model-based algorithms, who are supposed
to factor out item names, is proof that these items demonstrate signifi-
cantly different characteristics in the latent factor space. This validates
the hypothesis that user ability is an important factor for the recommen-
dation of items in a learning system. It is possible that user ability is
represented in the latent factor space in one way or another.

Shilling attacks In some recommendation systems (such as for exam-
ple the Amazon web store) users can be compelled to give positive recom-
mendations towards their own material and negative recommendations
towards their competitors. While there is less incentive to do this type
of intentional rating on the SCW training platform, similar scenarios
have been detected. Users in one company made it a competition to
see who could gather the most points, and they created bots for this
purpose. The bots would randomly guess at first, and keep track of the
correct answer for future attempts. This resulted in several users who
answered all exercises in a single framework several times over, caus-
ing worse ratings for those items as these users did not learn anything
new according to the IRT estimates. This has now been discouraged by

96 CHAPTER 5. DISCUSSIONANDPERSPECTIVES

preventing the same user from earning points through an exercise they
have already solved in the past. For the experiments of this work, data
generated by these bots has been filtered out.

Implicit data Implicit data has been briefly introduced in the expla-
nation of the SVD++ algorithm. This algorithm not only characterizes
users based on their ratings, but also based on which items they have
rated. Using implicit data like this is expected to have a big impact on
prediction accuracy for systems where the user can choose items them-
selves. In Netflix, for example, it can become apparent that a user
constantly avoids watching movies of a certain genre, or that star a cer-
tain actor. On the SCW platform we also see an improvement, most
likely because this allows the algorithm to better distinguish between
users who follow the recommended courses, and those who do not.

5.1.3 Adaptation

The proposed adaptations to learning systems in this work are not spe-
cific to software security and could be applied to other domains. The
adaptation based on processing of the data is especially easy to imple-
ment and can be applied to any CF algorithm. The biggest requirement
is that sufficient data needs to be available to overcome problems caused
by data scarcity which can be exaggerated by splitting the data even
more. In learning systems more so than in movie or music recommen-
dations, we can expect users to rate a significant portion of the items,
which makes this requirement more likely to be met.

The adaptation was less effective in model-based CF algorithms. One
possible explanation is that the latent factors from the dimensionality
reduction techniques already represented an ability estimate. However,
estimating this through the ratings alone is likely less accurate, which is
why adding it more explicitly as a filter still improved the accuracy of
the predictions. It is possible to imagine a similar adaptation in other
contexts where the latent factors might be doing a good job already,
but small improvements can be made by computing an important factor
explicitly.

5.2. PERSPECTIVES 97

5.2 Perspectives

5.2.1 Implementation into the training platform

Results from the 2PL model can be used to improve the SCW training
platform. This is a step by step process that has already started.

Quality control of the exercises The results of a 2PL model for the
use in tests are used to remove items with a low discrimination param-
eter from the item bank. A low discrimination parameter means that
this item it cannot differentiate well between users of high and low abil-
ity levels. Items like this are not useful in a test, where discriminating
between users of different ability levels is exactly the goal. Before remov-
ing items with a low discriminative ability, the examiner often manually
checks items that are only slightly below the predetermined threshold.
If they are deemed important enough to be included in the tests despite
their low discriminative ability, they are not removed from the item
bank.

As a first step to use the results of the 2PL models in the SCW
platform, we can use a similar procedure for quality control of the chal-
lenges. In contrast with tests, estimating ability is not the main goal
of the ITS. Items with a low discrimination parameter might have little
influence on the accuracy of ability estimates, but these items could still
provide meaningful learning opportunities. A low discriminative ability
can be explained by an extreme difficulty, or by a defect. If all users
are answering the challenge correctly because it is extremely easy, or
all users are answering it incorrectly because it is extremely hard, then
this challenge can not be used to discriminate between users of high and
low ability level. But if the discrimination parameter is low, and the
difficulty level is not extreme, that means there is a different reason for
this low correlation between a correct answer and the ability level of
the user. A low discrimination parameter, in this case, is an indication
that the challenge is misleading or defect. Challenges like this have been
manually checked, and many of them have indeed shown defects in the
past, or are still misleading in some way.

Improvedchallengedifficultymeasure As explained in Appendix A,
currently the difficulty of the challenges is only determined by the num-
ber of options to choose from. It is a probability of answering correctly
in case of a blind guess. The results of the 2PL model experiment in
Section 4.1 show that there is no statistically significant correlation be-

98 CHAPTER 5. DISCUSSIONANDPERSPECTIVES

tween this difficulty and the probability of users answering the challenge
correctly. It is not an accurate difficulty measure.

Nonetheless, this difficulty measure is used in tournaments and other
gamification features to decide the amount of points that are awarded
to a user after answering correctly. It would be more accurate to use
the IRT difficulty for this purpose. This difficulty is only available for
challenges for which there is a sufficient amount of data. There is still
need for another measure to better approximate the real difficulty of
new challenges that still have insufficient playtime.

In the experiment, I have shown that there is a correlation between
the difficulty on one hand and the framework, the vulnerability type, and
the presentation on the other hand. A good start for such a temporary
approximation could then be to take the mean difficulty of all challenges
in the same framework, about the same vulnerability, and with the same
presentation.

Improved user ability measure Currently, a security maturity score
is computed for each user based on the amount of points they have
earned and the accuracy they have maintained while doing so. This
maturity score is shown on the metrics dashboard, together with a more
granular breakdown of the average strengths and weaknesses. This met-
rics dashboard is shown in Figure 2.2, on page 25. It is easy to reach
a high maturity level for any user, if they spend enough time solving
many easy challenges so that they earn points while maintaining a high
accuracy.

The IRT ability estimate can be used to make this maturity score
more meaningful. However, it currently only provides a global ability
estimate and lacks the granularity required for the metrics dashboard.
A multidimensional IRT model can be used to achieve this. It remains
future work to train and evaluate such a multidimensional IRT model
with, for example, one dimension for each vulnerability category on the
platform.

Improvedassessments The past few months, assessments have been
the most used play mode on the platform. Assessments are built like
classic tests, all users have to complete the same challenges and their
accuracy is used as an indication of ability.

First, assessments can be improved by using IRT to estimate the
ability level of the user. This ability estimate is more meaningful than
the accuracy. This is most easily understood with an example: two users
each complete an assessment with two challenges, one easy challenge

5.2. PERSPECTIVES 99

and one difficult challenge. The first user makes a mistake (due to
inattention) on the easy challenge, but answers the difficult challenge
correctly. The second user answers the easy challenge correctly, but
does not know the answer to the difficult challenge. These users have
achieved the same accuracy on the assessment. However, intuitively, we
would be more likely to attribute a higher ability level to the first user.
This is exactly what can be achieved when IRT is used.

Second, assessments can be made adaptive, similar to a CAT. This
means, serving new challenges based on the temporary ability estimate
during the assessment. Not only will this improve accuracy of the ability
estimate, it will also reduce the amount of challenges needed to complete
an assessment.

Recommendations in training Once all other implementation related
to the 2PL model have been completed, the CF algorithm can be inte-
grated in the platform to dynamically recommend challenges to each
user in the training mode.

5.2.2 Integrating with developer tools

SCW is currently developing integrations for several developer and se-
curity tools such as Jira2, GitHub3, Fortify4, and more5. Additionally,
there is also an integration for the Integrated Development Environment
(IDE), discussed in great detail in Part II of this work.

The current goal of these integrations is to provide contextual train-
ing to developers. When a security vulnerability is detected through
Fortify, or a ticket that involves a vulnerability is created in one of the
bug tracking systems, the integration will insert links to training on the
SCW platform about this specific vulnerability. This training is highly
relevant since it is directly related to the task at hand, i.e. remediating
the vulnerability.

However, it is my opinion that they might hurt the productivity and
usability of the developer. I believe the developer does not want to
make a context switch to complete training exercises, when they should
be resolving the problem. It would be more beneficial to let these integra-
tions insert project-specific remediation guidance, as will be explained
in Part II.

2https://marketplace.atlassian.com/apps/1221320/
3https://github.com/marketplace/secure-code-warrior-for-github
4https://www.microfocus.com/en-us/fortify-integrations
5https://help.securecodewarrior.com

100 CHAPTER 5. DISCUSSIONANDPERSPECTIVES

Most of the integrations are still in development, and are only used by
a select few customers. In the future, when more data is available, it will
be interesting to analyse which of these inserted links are clicked most
frequently. This data can give an indication for which vulnerabilities
developers seek out training, and hence which vulnerabilities are likely
more difficult to understand and solve in practice. It would be interesting
to compare these results to those of the 2PL model and priority lists such
as the OWASP Top 10.

Adaptive Security Guidance Instead of forcing a developer to make
a context switch to follow this contextual training, I have invented an
alternative solution. With this system, contextual training can be pro-
vided at a more appropriate time, that is, when the developer opens
the training platform. This invention has been patented by SCW as a
“Method and System for Adaptive Security Guidance”6.

In this invention, the data collected from the integrations feeds into
the ITS to result in even more relevant, and highly applicable recom-
mendations. For example, the IDE integration allows us to monitor
code changes the developer makes and verify them against a set of rules
to detect the mistakes they make in practice. Integrations with secu-
rity scanners such as Fortify in combination with code repository tools
such as GitHub, also allow us to collect data about the detected vulner-
abilities and who is responsible for those pieces of code. At the same
time, integrations with issue tracking systems such as Jira allow us to
detect which tasks a developer is assigned to, and whether there are
any security problems or security-critical features among them. All of
this data, in combination with the performance of users on the platform
itself, enables us to make highly relevant recommendations.

Implementing such a system is most likely achieved by first selecting
a list of relevant items to recommend and then choosing the most appro-
priate. If a user is assigned a ticket on Jira regarding a SQL injection,
for example, a challenge needs to be selected from the list of challenges
about SQL injection in the relevant language and framework. Out of
this list, the challenge with the highest predicted rating can be recom-
mended to the user. Implementing and evaluating this system remains
future work.

6https://patents.google.com/patent/US20200211135A1/en

5.2. PERSPECTIVES 101

5.2.3 Mobile application

During my research at SCW I have been closely involved in the design of
a mobile application called Secure Code Bootcamp7. Besides videos and
texts explaining different vulnerability types, developers can also play
challenges similar to those on the training platform. The challenges for
the mobile app can be generated from the same vulnerability data as
those on the platform.

Instead of presenting it as an identify, locate, or fix exercise, a new
presentation form has been developed that is more suitable for a small
screen. In these challenges the user has to review a code sample and
either accept or reject it based on the security of the sample. To accept
or reject, the user can tap a button, or swipe to the left or right in a
Tinder-style interaction with the app.

The app is used by a few hundred students and developers but has
not yet had as much use as the SCW platform itself. In the future,
analyzing the learning behaviour of the users on this app can provide
further insights in the effect of different types of exercises, and the mobile
context of the education.

7https://www.securecodewarrior.com/products/secure-code-bootcamp

102 CHAPTER 5. DISCUSSIONANDPERSPECTIVES

Part II

Tools

Do, or do not. There is no try.

Yoda

104

Introduction

Despite growing efforts to educate developers, they still frequently make
mistakes in practice. Because security experts are understaffed and un-
able to assist each developer, security tools have become part of the
developer’s arsenal.

However, security tools are not designed with the developer in mind
and are often a big inhibitor of their productivity. As a result, developers
dislike and often disable these security tools.

Engineers at SCW designed and implemented an IDE plugin called
Sensei. I evaluated early prototypes and helped redesign and shape
Sensei to the tool it is today. Sensei is a tool in line with the paved
path methodology as it has a heavy focus on developer usability and
productivity. It checks compliance of code being written to a set of
coding guidelines, similar to an as-you-type spell checker. Upon detected
violations, it offers remediation guidance and additional information to
the developer. Sensei allows developers and security experts to develop
customized rule sets to be enforced, specific to each project.

In this part, I first describe the evolution of traditional security tools
in Chapter 6. I explain where they are lacking as a tool to support devel-
opment in the paved path methodology and what goals and requirements
to set instead. In Chapter 7, I describe the Sensei IDE plugin, its design,
and its features. I continue by describing the experiments and observa-
tions of the tool in Chapter 8. In Chapter 9, I discuss the findings of
the experiments and the lessons learned and also offer some perspectives
that remain future work.

Chapter 6

Goals and requirements

Traditional security tools are an important part of the SDLC, and will
remain so in the foreseeable future. However, they hinder productivity
and do not integrate well in the workflows of developers. To provide
developers with more suitable tools, it is critical to understand the goals
and the shortcomings of traditional security tools. In this chapter, I
briefly describe how security practices and tools evolved over time and
explain the disconnect with developer workflows. I also describe how
the paved path methodology can improve this situation.

If nothing else, take away from this chapter...

The goal of traditional security tools is automation of security
testing. In order to keep up with the ever increasing speed of
software development, they are shifting left in the SDLC, towards
the development phase. As a result they are being integrated
in developer tools. However, they are still fundamentally using
a reactive approach, scanning (partly) completed code and its
calling context for vulnerabilities. To fix detected vulnerabilities,
developers often have to go back to the code (potentially long)
after it was initially developed. With tools in the paved path
methodology, the goal is a preventative approach. Guidelines are
enforced regardless of context as the code is being written. This
helps the developer write secure code from the start, improving
their productivity. As a result, code fragments are being secured,
even if no current calling context exists that leads to an exploit.
The fragments are being secured for future use.

106 CHAPTER 6. GOALSANDREQUIREMENTS

Plan Develop Build Test Release

BreachesCode
analysis

Penetration
testing

Fix

Figure 6.1: Historically, security was considered a part of software test-
ing and addressed from the end (right) of the SDLC.

6.1 Traditional security tools

For a long time, security has been considered a part of software test-
ing [99]. Security was addressed in a reactive manner, from the end
(right) of the SDLC, as shown in Figure 6.1. Based on vulnerabilities
reported when the application was tested after its initial development
was completed or when it was already deployed and in production, de-
veloper training was adapted, new coding checks were introduced, and
security problems were fixed by revisiting code.

Experience has shown, however, that security should not be an af-
terthought of software development but that it should be addressed ear-
lier in the development. This is not only to minimize costs [100–103].
Shorter feedback loops also result in better learning performance [104,
105]. As a result a shift left movement is ongoing to try to identify pos-
sible security problems as early as possible in the SDLC, as illustrated
in Figure 6.2. New project management techniques such as Agile and
DevOps encourage fast incremental releases where the developer is also
responsible for meeting non-functional requirements such as security. To
support that, testing and deployment of security guidelines needs to be
more automated in short feedback loops, thus shifting security left.

While supporting the shift left, conventional vulnerability scanning
tools still use a reactive, testing-based approach. Furthermore, in train-
ing developers are typically taught how certain mistakes lead to vulnera-
bilities, and how these can be exploited. Afterwards they are taught how
to prevent the presented vulnerabilities. These practices are extended
into the development phase, where the focus is still on the (sometimes
complex) question of whether or not the code is vulnerable, and only
if it is considered to be vulnerable, it becomes a candidate to be fixed.
The shift left movement is certainly an improvement, but it is not yet
perfect. Many security problems still occur. Companies acknowledge

6.2. TOOLS FORTHEPAVEDPATHMETHODOLOGY 107

Plan Develop Build Test Release

BreachesCode
analysis

Penetration
testing

Code
analysis

Code
review

Fix

Figure 6.2: In the shift left movement, security practices are shifting left
in the SDLC. This results in shorter feedback loops, but is still using a
reactive approach to find problems after they have been introduced.

this, as is obvious from the incentives they put in place to minimize the
impact of potential breaches, such as bug bounty programs.

Many of the vulnerability scanning tools use complex control flow
and data flow analyses to scan for vulnerabilities in the product. They
identify, e.g., user input that is not properly validated and passed on
to security-critical parts of the application. If it is determined that a
malicious input exists that can cause unwanted or unexpected results,
these issues are placed into the bug tracking system for developers to deal
with. In order to successfully detect vulnerabilities, the calling context
of routines needs to be known in order to perform the necessary global
analyses. Because of this, such tools can only be deployed at a later
stage in development. It is, in other words, not possible to shift even
more to the left with only these tools. During the earlier development
stages of a product, it is entirely possible that no user input can reach a
buggy routine yet. The classic approach will only flag the routine once
the context exists where it can be exploited. This then requires the
developers to go back to secure the routine at a later time than when
they were originally developing it.

In short, even in the ongoing shift left movement, the problem is still
approached from the right side of the SDLC, following the detection of
vulnerabilities. The detection is shifted as much to the left as possible
but the approach is still reactive, and requires revisiting code (possibly
long) after it has been developed.

6.2 Tools for the paved pathmethodology

In the paved path methodology we try to avoid this reactive approach.
Instead, the goal is to prevent the introduction of security problems as
much as possible, as shown in Figure 6.3. This is achieved by laying

108 CHAPTER 6. GOALSANDREQUIREMENTS

Plan Develop Build Test Release

Security problemsGuidelines

Figure 6.3: The paved path methodology introduces a preventative ap-
proach. This is done by creating guidelines that, when adhered to, will
help prevent the introduction of security problems.

out guidelines early in the process and enforcing them regardless of the
calling context of the code. In code that does not take user input, and
hence is not likely to result in vulnerabilities, the guidelines are still
enforced. It is after all possible that in the future a calling context will be
developed that does take user input. The code may become vulnerable
at that point. Securing this code fragment from the start will protect
it for future use and avoids the need to revisit and fix it when such a
calling context exists. This practice is often called “establishing secure
defaults”, and it is part of a “security by design” approach in software
engineering1

This fundamentally different approach of enforcing (secure) coding
guidelines instead of scanning for vulnerabilities, makes it possible to
meet the requirements for tools supporting the paved path methodol-
ogy, such as Sensei. Sensei is an IDE plugin developed by SCW with
the goal of helping developers produce more secure code. It is currently
available for IntelliJ IDEA and Android Studio, it supports Java, Kotlin
and Extensible Markup Language (XML). Sensei can be used by Dev-
SecOps teams to apply the paved path methodology in their software
development process. As described in Chapter 1, to support the paved
path methodology, Sensei needs to be relevant, efficient, and usable.

In order to be relevant to the developer’s work, the paved path
methodology prescribes to create API-level guidelines that determine
which libraries and even which library calls are to be used in the project.
Custom (wrapper) libraries may need to be developed that are inherently
safe so they can be freely used by developers. To meet this requirement,
the guidelines enforced by Sensei need to be easy to customize. For this
purpose Sensei offers a custom editor inside the IDE which will be dis-
cussed in more detail in Chapter 7. Easy customization of the guidelines
enables security experts and developers to efficiently create and enforce
new guidelines as a way to share their knowledge among the rest of the

1https://wiki.owasp.org/index.php/Security_by_Design_Principles

6.2. TOOLS FORTHEPAVEDPATHMETHODOLOGY 109

team.
Sensei is designed to be a developer tool in the first place. It is effi-

cient as it improves developer productivity instead of hurting it. Sensei
enforces coding guidelines regardless of context. Since the context can
be ignored, it only needs to perform local code analyses that can be com-
pleted in real time, similar to an as-you-type spell checker. Also similar
to a spell checker, Sensei provides an easy way to remediate guideline
violations in the form of quick-fixes. These code transformations are an
existing IDE feature that the developer is familiar with. They are com-
monly used for marking syntax errors and general coding best practices.
With quick-fixes it is possible to avoid the need for research and even au-
tomate the remediation of guideline violations, which greatly improves
the productivity of the developer.

Quick-fixes turn the task of fixing insecure code into one where the
developer has to recognize the correct solution, rather than recollect,
reducing the cognitive effort and improving usability. Sensei and its
quick-fixes are also used by developers for other purposes than security,
as will be discussed in the next chapters. Because the tool resides in
the IDE and reuses existing IDE features it quickly feels like a simple
extension of the existing developer tool kit.

110 CHAPTER 6. GOALSANDREQUIREMENTS

Chapter 7

Sensei

The development of the Sensei IDE plugin started in 2016, when dr.
Matias Madou and Nathan Desmet founded the company Sensei Security.
I joined this company, that later would merge with SCW, as an intern
a few months later. When I started my research in 2017, I set forth
to discover how this tool could be used most effectively, to evaluate its
concepts and features, and to help direct its design. In this chapter, I
describe the Sensei IDE plugin and discuss the lessons we learned during
the implementation and testing of the tool.

If nothing else, take away from this chapter...

The first iteration of the Sensei rule editor was a Graphical User
Interface (GUI) containing many input fields to allow fast cus-
tomization of rules. It was used by us to create hundreds of
rules for customers and developer communities which frequently
resulted in the need for extra features. Some of these features
are useful for improving the context awareness of Sensei and its
usability, other features fell out of use. Eventually, through the
addition of these many features, the rule editor became too clut-
tered and unclear.
As a more flexible alternative, Nathan Desmet, principal engineer
at SCW, and I designed a new formatting language based on
YAML Ain’t Markup Language (YAML) syntax that allows rule-
writers to quickly and effectively create rules and quick-fixes. The
rules include several features to improve their usability and add
support for libraries and design flaws.

112 CHAPTER 7. SENSEI

7.1 Recipes

The API-level rules that are enforced by Sensei are called recipes. This
name is chosen to emphasize the difference between Sensei and existing,
traditional security tools, which often use rules to scan for vulnerabilities.
Recipes are also commonly used in the DevOps movement, for example
by the popular automation tool Chef 1.

7.1.1 Creating recipes

Customization and distribution of the recipes is a crucial feature for any
successful tool supporting the paved path methodology. If the recipes
are easy to customize, Sensei can be more easily tuned to provide highly
relevant and applicable feedback to the developer. This customization
should be scalable and hence not be a service provided by engineers
or experts at SCW. It should allow developers and security experts to
effortlessly share project-specific or team-specific guidelines among each
other. For this reason, the recipe creation process should be easy and
fast, and at the same time versatile.

Our first approach allowed users to create new recipes through pre-
defined recipe models. A GUI was used to let the recipe-writer fill in a
number of variables for this model. A simple example of such a model
is the “Replace method call model”. Figure 7.1 shows a recipe being
created to replace the addCookie method with a safe alternative from
the OWASP Enterprise Security API (ESAPI), an open-source, web ap-
plication security control library designed to make secure development
easier [106]; the organization also provides some commonly used secu-
rity guidelines. The recipe-writer has to fill in some specifics about the
method they want to be marked by Sensei, such as the package, class,
and method names. Then they can write one or more quick-fixes. To cre-
ate a quick-fix, they have to write a quick-fix description and they have
to define the code fragment that will be used to replace the original. For
the replacement code, they can reuse arguments, method names, and
more from the original code by means of a template language. In the
field “Rewrite to”, the example quick-fix reuses the first argument of the
original method call by using the template arguments.0.

However, for more complex models the number of input fields grew
rapidly to accommodate a plethora of corner cases, and so did the num-
ber of models for multiple scenarios. As of now the old recipe editor has
over 40 different models. With this many models, it becomes overwhelm-

1https://www.chef.io/

7.1. RECIPES 113

Figure 7.1: The old recipe editor used a GUI. It required the recipe-
writer to fill in a number of input fields to specify the behaviour of the
recipe.

ing for recipe-writers that have to select a model to enforce their desired
coding guideline. The described model-based recipe creation process is
not flexible and intuitive enough, so in the next iteration Nathan Desmet
and I designed a new approach.

In this approach, we split up the recipe in two parts: A trigger to
identify the violation, plus an optional quick-fix to correct the vulnerabil-
ity consistently according to company best practices. Triggers are now
specified by way of YAML2 syntax, which provides more flexibility. To
develop this YAML syntax, all existing Sensei rules were analyzed and
grouped based on which elements in the code are incorrect and which
transformations are required to fix them. The resulting taxonomy of 10
bad code patterns is included in Appendix D.

Since this approach requires recipe-writers to learn the new syntax,
we have provided some tools to assist them, in the form of a GUI that
can be used to build the desired recipe from scratch. In addition, the
recipe editor is now more context-aware. The recipe-writer can open a
recipe creation wizard by pressing a key combination in the text editor in
the IDE and selecting “create new recipe”. This opens a context-aware
menu depending on the position of the caret. For example, if the caret
was on a method call, the menu contains an option to create a new recipe
that searches for similar method calls, as shown in Figure 7.2.

When this context-aware option is chosen, the recipe creation wizard
is opened and a recipe is automatically suggested from the available
context. To search for a methodcall, the information that can be pre-

2https://yaml.org/

114 CHAPTER 7. SENSEI

Figure 7.2: The recipe creation menu is context aware, its options will
change based on the caret position.

filled from context is the type and the name of the methodcall, as well
as the number of arguments and each of their types. The user can then
adjust the recipe to reach the desired results through the YAML code
or the provided GUI. This window also provides a preview panel, as
shown in Figure 7.3. In this panel, the code file from which the recipe
wizard was opened is shown, and the effects of the recipe being created
are visualised, which allows for easy customization.

After creating a trigger, it is possible to create an optional quick-
fix. Here, the recipe-writer has to fill in the quick-fix description and
the replacement code. For the replacement code, they can make use
of the same template language as in the first approach to reuse parts
of the original code. Below the input field, an overview is provided of
the available parts of the original code, as shown in Figure 7.4. Double
clicking one of these options, adds its template to the fix. The quick-fix
creation window also offers a live preview in the lower right corner that
highlights the changes that would be made to the original code (shown
in the lower left corner) if the quick-fix is applied.

Finally, besides the trigger and the fix, there are also a number of
general settings for the recipe that can be configured, as shown in Fig-
ure 7.5. Some examples are the name, descriptions, the category of a
related vulnerability, overriding recipes, and scopes. All of these fea-
tures are related to the usability of the developer and will be discussed
in the following sections.

When creating recipes in-house, we have observed that the context-
aware recipe wizard has greatly sped up the recipe creation process. In
practice, creating new recipes often starts from a bad code example, ei-
ther when fixing a vulnerability or while reviewing the code of a colleague.
The recipe-writer can then simply open the recipe creation wizard from
this example. The live previews also greatly improve the usability, since
before they were introduced, to create a finished recipe the recipe-writer

7.1. RECIPES 115

F
ig

ur
e

7.
3:

A
re

ci
p

e
cr

ea
te

d
th

ro
ug

h
th

e
“s

ea
rc

h
fo

r
si

m
ila

r
m

et
ho

dc
al

ls
”

op
ti

on
in

th
e

co
nt

ex
t-

aw
ar

e
re

ci
p

e
cr

ea
ti

on
m

en
u

w
ill

ge
ne

ra
te

a
Y

A
M

L
-b

as
ed

re
ci

p
e

w
it

h
de

ta
ils

fr
om

th
e

co
nt

ex
t

of
th

e
ca

re
t

p
os

it
io

n.

116 CHAPTER 7. SENSEI

Figure 7.4: The fix creation window allows the recipe-writer to reuse
parts of the original code.

was required to go back and forth several times to test the recipe in the
IDE and adjust it in the recipe editor.

7.1.2 Managing recipes

In the paved path methodology, guidelines can be put in place at the
start of the project. If not, at the very least, relevant guidelines should
be created each time a new feature is going to be developed. Together
with those guidelines, Sensei recipes should be created as well. The
recipes, however, can also be used by the developers themselves, as a
way to share knowledge. When they develop new APIs, additionally
to documentation, developers can also add Sensei recipes to the project
that help their colleagues use these APIs as intended.

We also recommend to make Sensei recipes part of the remediation
process when problems are found by security testing or reported through
bug bounty programs. It should be part of the process to create a recipe
that prevents this same vulnerability from occurring in the future. Cur-
rently, it is often the case that security experts run the security scans.
When problems are found, these experts guide the developers by pro-
viding them with informal, broadly applicable guidelines and checklists.

7.1. RECIPES 117

Figure 7.5: Some additional settings are available in the recipe editor
mostly related to usability of the developer.

118 CHAPTER 7. SENSEI

These instructions sometimes use security jargon that might not be clear
to all developers, and even if they are understood, that does not guar-
antee the developer will be able to apply them in practice. In the paved
path methodology, security experts and developers should work together
to create API-level guidelines instead. As part of this process, to com-
municate these guidelines to the rest of the team, Sensei recipes can be
created as well.

For existing projects, we recommend companies to start with no
recipes and use existing data on the security of their project as a start-
ing point. This could be the report of a penetration test, or results
of vulnerability scans. While resolving these issues in the code, devel-
opers and security experts can start building the first recipes. Some
clients of SCW have been hesitant to start with an empty security tool
and, despite our recommendations to customize recipes for each project,
still wish to receive starting recipes. For this reason we have created
small open-source sets of unopinionated recipes that can be used in all
projects3. These recipes aid in correctly using the standard libraries
of certain popular frameworks (e.g., Java EE, Android Software Devel-
opment Kit (SDK), Amazon Web Services (AWS) SDK). This set can
be used as inspiration and to get both security experts and developers
accustomed to the tool, but usually it does not flag many issues.

Considering the different sources of recipes, developers can have
recipes imposed by management and/or by the security team, as well
as recipes distributed among the developers per team or project. On
top, there is the open-source recipes that can be used as a starting point
when first using the tool. To make the management of recipes easier, we
group recipes into cookbooks. Instead of distributing recipes one-by-one,
this allows for grouping and distributing related recipes more easily.

In order to manage these cookbooks in the IDE, a cookbook manager
is provided, as shown in Figure 7.6. Each cookbook is specified by a
name and a location. The developer can enable or disable any cookbook
as well as edit recipes in some cookbooks.

Cookbooks can be stored locally or remotely. Remote cookbooks
are called team cookbooks and can be loaded from a github project
(e.g., git@gitserver:cookbooks|master|recipes) or another remote
server location (e.g., https:ҏ//remote.com/recipes.zip). Remote cook-
books are only recommended to distribute generally applicable cook-
books, since remote recipes are not editable by the developers and are
instead read-only. Any updates to the remote cookbooks are automati-

3https://securecodewarrior.github.io/public-cookbooks/

7.1. RECIPES 119

Figure 7.6: The cookbook manager in this screenshot contains one re-
mote team cookbook as well as one default cookbook stored in the
project structure.

cally pushed to all the developers. Locally stored cookbooks are editable
and can be specified by a local path (e.g., /Users/dev/recipes) for per-
sonal cookbooks or a path starting from the project root (by default
project:ҏ//.sensei) for default cookbooks for a project. Local cook-
books are editable which means they can also be enabled on a recipe-by-
recipe basis. It is advised to store project-specific recipes as part of the
project. This way, the recipes are always available, up-to-date with the
code, and following the same flow as regular code (e.g., branch, review,
merge). When recipes follow the same flow as the code, new APIs and
the recipes needed to use them properly can be added to the project and
reviewed as a whole.

The paved path methodology encourages customization of the recipes
at project level. Previous research and experience have shown that cus-
tomization at this level is the most successful. This provides the needed
flexibility to tailor the enforced coding guidelines to the code, but also
ensures that the team has a joint approach to how the code for a project
should be developed [107]. Individually customized recipes might lead
to disagreements, while company-wide recipes might be too general to
be easily applied.

It is possible for a recipe to be configured to disable other recipes,
as shown in the general settings in Figure 7.5. This feature can be used
to improve remote, read-only recipes. It is possible that such a recipe
is not fully applicable to the project, e.g., because it requires too many
manual adaptations. It is then possible to create a replacement recipe
that can be distributed to one team or project and disables the original
recipe when it is active. To facilitate this, an option in the quick-fix
menu is added to copy remote recipes to a local cookbook, as shown in
Figure 7.7. This option can easily be hidden in the settings. The clone
recipe window, shown in Figure 7.8, provides an option to automatically

120 CHAPTER 7. SENSEI

Figure 7.7: For remote recipes, the quick-fix menu offers a “Copy recipe”
option.

Figure 7.8: The clone recipe window allows the recipe-writer to configure
the new recipe to disable the recipe it is copied from.

disable the original recipe it is copied from. When a remote recipe is
disabled or replaced, the author of this recipe should be notified. It is
possible that it is a generally applicable improvement and the recipe
can be updated accordingly for other teams or projects that use it in a
remote cookbook. An additional quick-fix option will be added in the
future to disable a recipe.

The discussed features to disable recipes have been designed to im-
prove the usability of the tool for developers. They are in line with the
philosophy that developers’ productivity benefits from their ability to
customize their development environment to their preferences, and to
give them a significant amount of freedom in that regard. In that philos-
ophy, it is preferable to have developers disable some recipes rather then
uninstalling or neglecting the tool completely. Importantly, this does

7.1. RECIPES 121

not necessarily result in guideline violations slipping below the radar,
since security and management can still have these recipes, as well as
complimentary tools, enabled in later phases of the SDLC.

7.1.3 Verifying recipes

To inspect the code against a number of recipes, our tool reuses the IDE
syntax checking features. When a developer writes new code, the IDE
rebuilds the Abstract Syntax Tree (AST) and computes the changes
compared to the previous version. A limited AST of the changes, con-
taining the necessary symbol information, is then passed on, allowing
tools to only analyze the changes. On this AST, a combination of spe-
cialized light-weight versions of existing analysis techniques is used such
as taint analysis, data flow analysis, and control flow analysis to verify
the recipes in real time.

7.1.4 Explaining recipes

In order to mark violated guidelines, our plugin makes use of existing
IDE features to flag coding mistakes. In most IDEs the code markings
by default have three levels of severity: error, warning, and information.
We recommend to mark coding guideline violations as errors. Traditional
error-level markings are usually immediately addressed by the developer,
while warning-level markings are more frequently ignored [105]. This is
the case because error-level warnings in an IDE typically indicate a prob-
lem in the code that will result in a compilation failure. Currently error
markings by our tool still allow successful compilation of a project, but
several clients have requested for the markings to result in compilation
failures, equivalent to errors marked by the IDE itself. This is not sur-
prising, as it is in line with the default behavior of popular IDEs such as
Visual Studio. For example, when Visual Studio’s C compiler compiles
code that uses the insecure sprintf function, it throws a compilation
error warning the developer that the function may be unsafe.

An example marking can be seen in Figure 7.9, where the opening
<activity> tag in XML code is marked as an error. This marking makes
the code fragment stand out and attracts the developer’s attention. In
the example, the Android activity is configured as a public activity by
setting the exported attribute to true but not configuring an intent
filter. In XML code, like in this example, it is advised to only mark the
opening tag, and not the entire XML tag and its content. This would
overwhelm the developer, and it would not be clear which part of the
code is lacking.

122 CHAPTER 7. SENSEI

Figure 7.9: XML recipes can be configured to mark the opening tag only
(shown in the figure), the opening tag and the closing tag, or both tags
and their entire content.

Figure 7.10: The information error level marking is clearly visible but
at the same time non-intrusive, as this is a permanent marking that can
not be resolved.

Permanent markings, that remind developers of security implications
of their decisions, should be marked as information. To continue on the
example of private and public activities, in the code file that implements
the activity, we mark the class definition at the information level. Hov-
ering over the marking informs the developer whether the activity is
configured as public or private, and provides a direct link to detailed
information about the security implications. This marking is shown in
Figure 7.10. Note how the markings are clearly visible and noticeable,
but at the same time non-intrusive to developers already used to their
IDE flagging code fragments.

The marking of code is accompanied by three descriptions. The
information in these descriptions is important to ensure the continued
use of the tool [103, 105]. Developers build trust with analysis tools, and
this trust is quickly lost if they do not understand the tool’s output [108].
The first description is the short error description, i.e., the text that
appears when the developer hovers their mouse pointer over the marked
code. It should be just one line. The purpose of this description is
to attract attention, inform the developer that something should be
addressed, not to explain how to address it.

We have learned through user feedback that it is most effective to at-
tract the user’s attention by starting with the “why” [109], the reason the
code is marked and should be addressed. In the past, the short descrip-
tion used to indicate the possible vulnerability class, for example “Could
lead to SQL injection”. We believed that starting with the potential con-
sequences, makes the developers realize the severity of their mistake and

7.1. RECIPES 123

Figure 7.11: The short description of a recipe is visible when hovering
over a marking. It should attract the developers attention but avoid
security jargon. Instead, the developer can be reminded of guidelines
that are in place.

encourages them to immediately address it. However, as explained in
Section 1.2.2, security jargon should be avoided when communicating to
developers. The feedback in all of the descriptions should be targeted
at developers, and hence the focus should be on the guidelines that were
put in place, on the paved path. A better short description is hence,
“Violates a guideline on data retrieval”, as depicted in Figure 7.11.

Next to the short description, a “read more” link is created by the
IDE for the interested developer. Upon clicking this link, a pop-up is
opened to show a more elaborate Hyper Text Markup Language (HTML)
page. This is the second description. Figure 7.12 shows an example.
This description is called the full coding guideline. The page starts with
a short abstract, stating in one sentence what should be done, such as
“Secure coding practices prescribe that queries need to be parameter-
ized”. The page’s next section presents in detail what it means to use
parameterized queries and gives an overview of the approved API meth-
ods. Small code examples are included as well, since previous research
has shown examples are the fastest way for developers to understand a
problem [105]. The goal of this description is after all to help developers
find out quickly how to comply to the coding guideline without spend-
ing much time or effort. This is crucial for a security tool to feel well
integrated into developer workflows. The last section of the description
contains a list of possible consequences when the developer fails to ad-
dress this issue. There is no mention of vulnerabilities or exploits until
this point. Each item in the list contains a link to the SCW training plat-
form to learn more about the vulnerabilities and how they are exploited.
This way an interested developer (with too much time on their hands?)
can still easily find the necessary information to learn the details of each
vulnerability and the possible attacks. Following this training would re-
quire a context switch and would likely hurt developer productivity. In

124 CHAPTER 7. SENSEI

Figure 7.12: The full coding guideline is a more elaborate HTML page
that explains the guideline in more detail and provides code examples.

the future the integration between the SCW training platform and the
Sensei IDE plugin can be improved as described in the perspectives in
Section 5.2.2.

The third description is visible to the developer when they press the
IDE’s key combination to start resolving the issue. A drop down menu
appears, containing the possible quick-fixes’ descriptions. IntelliJ also
provides options to disable inspections locally or globally. Figure 7.13
shows an example. In this menu we provide a very short description
of the actions that will be performed when this code transformation is
chosen, such as “Use parameterized queries”. A brief yet descriptive
quick-fix description allows developers to decide quickly whether the
fix is appropriate for them. If the effects of applying the quick-fix are
well understood, the developer will trust the tool and apply the fixes
more often. Sometimes the developer needs to choose between different
possible solutions. However, it is advised to keep the number of fixes as
low as possible, as to not complicate the issue unnecessarily.

7.2 Recipe features

Over time, several advanced features in the recipes have been developed
following user feedback. In this section, I explain the problems they
tackle and provide code examples for each one.

7.2. RECIPE FEATURES 125

Figure 7.13: The quick-fix description briefly describes the actions that
will be performed when each option is chosen. IntelliJ also offers a
feature to suppress markings of any inspection (Sensei or otherwise).

7.2.1 Lowering effective false positives

It is important to choose the right error level for the developer to pay at-
tention to the markings, but also not to overwhelm them with markings
to the point that they start to ignore them. Since the recipes can be
created by anyone in the team, they should not be too obtrusive. To a
recipe-writer, a false positive is an incorrect marking of code that is not
violating a coding guideline. However, to a developer, a false positive is
any code marking that they do not intend to fix and ignore instead [110].
A false positive from the perspective of the developer is also called an
Effective False Positive (EFP) [107]. To ensure the usability of the tool,
the EFP rate should be sufficiently low [107, 111].

To demonstrate EFPs we take a look at Operating System (OS)
Command injection. One of the APIs that is banned in the OWASP
ESAPI guidelines is Runtime.exec. This API is used to execute OS
commands in Java programs. When user input is added to this com-
mand, OS command injection is possible and the attacker can gain ac-
cess to the underlying OS. Using this information it is possible to create
a recipe that marks all uses of the Runtime.exec method. While this is
a good coding guideline, a security conscious developer recognizes that
the method needs user input before it can lead to OS command injection.
In rare occasions an OS command might be necessary for functionality
and perfectly valid and secure. For example, launching another software
product can be done securely as long as the command is hard-coded. An
example of insecure usage of the Runtime.exec method can be found in
Listing 7.1, examples of secure usage in Listings 7.2 and 7.3. The two
secure examples are still violations of the above coding guideline, and
they get flagged. An experienced developer has no intent to fix them,
meaning they are two cases of EFPs. Notice how this EFP depends
on the knowledge and skill of the developer, meaning that it might be

126 CHAPTER 7. SENSEI

beneficial to adjust the feedback of the tool for individual developers, as
explained in the perspectives in Section 9.2.

In order to keep the EFP rate sufficiently low, we have introduced
the concept of trusted input. Hard-coded input is automatically trusted,
since a user can not influence it, and hence it can not lead to a vulnerabil-
ity. However, function parameters and variables from other origins are
considered untrusted by default. This is still in line with the philosophy
to protect methods from future use, where we want to flag violations
that can one day lead to vulnerabilities. The requirement in recipes of
untrusted input can be added to arguments, this can be done using the
YAML syntax or by using the GUI as shown in Figure 7.14. The next
step is to define trusted sources. This also avoids the EFP in Listing 7.3.
The resulting recipe can be seen in Listing 7.4.

7.2. RECIPE FEATURES 127

1 public void executeCommand(String command){
2 Runtime r = Runtime.getRuntime();
3 r.exec(command);
4 }

Listing 7.1: if the command variable contains unsanitized user
input, this function is vulnerable to OS command injection.

1 public void executeCommand(){
2 Runtime r = Runtime.getRuntime();
3 r.exec("explorer.exe");
4 }

Listing 7.2: Using a hard-coded command avoids the possibility
that the variable will ever contain unsanitized user input.

1 public void executeCommand(){
2 Runtime r = Runtime.getRuntime();
3 String command = getSafeCommand();
4 r.exec(command);
5 }

Listing 7.3: This code fragment is secure if the getSafeCommand
method can be trusted to never return variables containing
unsanitized user input.

1 search:
2 methodcall:
3 name: "exec"
4 type: "java.lang.Runtime"
5 args:
6 1:
7 type: "java.lang.String"
8 containsUntrustedInput: true
9 trustedSources:

10 - methodcall:
11 name: "getSafeCommand"

Listing 7.4: This recipe trigger requires the argument of an exec
methodcall to contain untrusted input before it will mark the
methodcall. It also specifies the methodcall getSafeCommand as
a trusted source of input.

Another way to allow recipe-writers to create more targeted recipes
and to keep the EFP rate low, is to provide trigger scopes. Trigger scopes
can be added by using the in keyword in the YAML syntax, or by using
the GUI as shown in Figure 7.14. The in-clause can define restraints
on the context. This makes it possible to create a recipe that prevents

128 CHAPTER 7. SENSEI

Figure 7.14: It is possible to add requirements like untrusted input or
an in-clause through the GUI.

the usage of Runtime.exec except in a class with name AppLauncher.
Scopes like this can also help with performance, i.e., meeting the real-
time checking requirement, since recipes that are out of scope can be
skipped during analysis.

In the old editor, rather than trigger scopes, recipe scopes were a
property of the entire recipe. They were added by selecting the type of
scope and filling in some fields. By migrating these scopes to the YAML
syntax, the scoping of recipes becomes more flexible. The recipe scopes
that can be migrated to trigger scopes are the class scope, method scope,
file scope, Android context scope, and Android build property scope.
Descriptions of these scopes can be found in Appendix E.

There are two more recipe scopes, for which migration to trigger
scopes is not useful. The project scope allows us to enable or disable
recipes based on the name of the project. This is useful when different
cookbooks are required for each project in a company. This scope is

7.2. RECIPE FEATURES 129

1 Cookie myCookie = new Cookie("secure", "success");
2 response.addCookie(myCookie);

Listing 7.5: This cookie is not configured before it is added to the
response, as a result this code fragment is insecure.

1 Cookie myCookie = new Cookie("secure", "success");
2 myCookie.setSecure(true);
3 myCookie.setHttpOnly(true);
4 myCookie.setDomain("sub.domain.scw.com");
5 myCookie.setPath("more/narrow/path");
6 response.addCookie(myCookie);

Listing 7.6: Several configuration options are added to narrow the scope
that the cookie can be used, and to ensure it is not sent over plaintext.

no longer needed since we now allow cookbooks to be stored in the
project, which is a lot more convenient then adding a scope to each
recipe separately. The library scope can be used to enable recipes based
on the presence of a library. This way we can disable a recipe if the
fix uses a library that is not used in the project. Since this scope is
created for the fix of the recipe and not the trigger, it cannot be added
to the YAML syntax and remains a property of the entire recipe. In the
future it could be useful to add scopes to quick-fixes, so that a recipe
can provide different fixes depending on the presence of a library.

7.2.2 Support for libraries

Often quick-fixes are small code changes, such as adding a preceding
method call or changing a parameter, but sometimes they involve more
elaborate pieces of code. An example for this is adding a cookie to
a Hyper Text Transfer Protocol (HTTP) request. Before adding the
cookie, it needs to be properly configured. Insecure and secure code
examples are shown in Listings 7.5 and 7.6, respectively.

If this fix is applied at multiple locations in a project, it can result in
code bloat. It might then be better for the company to provide a method
that replaces the original addCookie method. In this method the cook-
ies can be first configured properly before calling the original addCookie
method. Such a replacement wrapper method is shown in Listing 7.7.
The new guideline for cookies is then to replace the addCookie method
with the safeAddCookie, as shown in Listing 7.8. The creation of such
a wrapper library is strongly recommended by the paved path method-

130 CHAPTER 7. SENSEI

1 public void safeAddCookie(Cookie myCookie, HttpServletResponse response){
2 myCookie.setSecure(true);
3 myCookie.setHttpOnly(true);
4 myCookie.setDomain("sub.domain.scw.com");
5 myCookie.setPath("more/narrow/path");
6 response.addCookie(myCookie);
7 }

Listing 7.7: A wrapper library can be created to avoid code reuse and
to improve clarity of the guidelines for the developer.

1 Cookie myCookie = new Cookie("secure", "success");
2 safeAddCookie(myCookie, response);

Listing 7.8: Migrating to the wrapper library consists of replacing the
original methodcall with one from the library.

ology, as the resulting guidelines are easy to understand for developers.
At the same time any security bugs are confined to the implementation
of the wrapper library, and no new bugs can be introduced by using the
wrapper library. This makes the job of the security team easier as well.

The first example, where the cookie is configured properly, is a library
usage recipe. This type of recipe provides guidance on using a library
correctly. The trigger of the recipe is on APIs from the library. Code
fragments are refactored without involving additional libraries, only li-
braries that are also used in the trigger.

The second example, where the insecure code is replaced with API
calls from a different library, is a library adoption recipe. Instead of pro-
viding guidance on the correct usage of the APIs, such recipes promote
the adoption of a new library. This type of recipe has a trigger in one
library but their fix uses a different library.

As a proof of concept for library adoption recipes, support has been
developed for the OWASP ESAPI library. Among others, the OWASP
ESAPI contains replacement methods for commonly used insecure Java
Development Kit (JDK) methods, the so-called OWASP ESAPI banned
APIs4. To support the OWASP ESAPI in companies that adopt it, a
recipe set was created to enforce the replacement of the banned APIs
with their alternatives from the OWASP ESAPI. Feedback from these
companies showed that this set of library adoption recipes was intuitive
and easy to use for developers. Importantly, it increased the speed of

4https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline

7.2. RECIPE FEATURES 131

the library’s adoption.
Library usage recipes are generally applicable to codebases because

the trigger and fix of these recipes use APIs from the same library, thus
ensuring that the recipes never mark any code when the fix is unavail-
able. The trigger and fix for library adoption recipes depend on different
libraries. This implies that an applied quick-fix can result in the use of
unavailable APIs.

Library scopes can be used for this purpose. When the library used
in the quick-fix serves as a scope of a recipe, it will not mark any code
if the library is unavailable.

7.2.3 Support for detecting design flaws

As discussed before, coding guidelines are enforced through mostly local
analyses. This allows Sensei to intervene earlier in the development pro-
cess and makes it possible to perform the analyses in real time while the
developer is typing. For this reason the focus of the approach is mostly
on implementation bugs. Detecting design flaws in the application code
(rather than in the APIs it relies on) is typically harder. Still, we have
learned that various flaws can be tackled through the use of configura-
tion files and the previously described trigger and recipe scopes.

An example of a flaw that is difficult to detect with local analyses is
excessive security logging. It is crucial to log important security events,
but too much logging can make it difficult or impossible to locate cer-
tain events. While enforcing guidelines can help with logging securely
(e.g., not logging sensitive data, not logging unsanitized input, logging
in proper format) it is difficult to monitor the frequency of the logging
through local analyses. Other examples are the use of transport layer
security, or whether authorization is needed or not.

One scenario that, to the contrary, enables us to detect some design
flaws, is when popular frameworks are used to implement security fea-
tures. For example, enforcing the use of transport layer security in an
Android app is as simple as adding a line to the Android manifest about
clear text traffic. This can be seen in Listing 7.9, line 3.

Another example is the use of encryption. It is trivial to detect if a
deprecated encryption algorithm is used by means of a known API, but it
is harder to detect the absence of encryption through local analyses. One
interesting class of mistakes that we observed was developers XOR’ing
data, or encoding data, rather than encrypting it. As a solution, a coding
guideline can be created that requires functions whose name contains
“encrypt” to perform encryption through some of their approved API

132 CHAPTER 7. SENSEI

1 <application
2 android:label="@string/app_name"
3 android:usesCleartextTraffic="false">

Listing 7.9: When the attribute usesCleartextTraffic is added to
the Android manifest with value false, the Android OS will ensure
that transport layer security is used for the communication with this
application.

methods. If such a function only performs encoding or XOR operations,
it implies that the required API calls are missing. In that case the tool
suggests quick-fixes that insert the necessary API calls. These quick-fixes
are only partial fixes: They inject code that invokes encryption routines
on an unspecified string or byte array. It is then still up to the developer
to remove the XOR operations and fill in the correct string or array
identifier. This emphasizes again why it is beneficial to provide fixes
in the IDE during development time. When this recipe is used during
the development of a new method, the developer starts by creating a
function declaration. When a function exists with “encrypt” in the name
and an empty body, this is marked, as the required API calls are missing.
The fix then inserts the required API calls, leading to comfortable and
intuitive security help for the developer. This recipe is a good example
to demonstrate the paved path methodology. It guides the developer
along a predetermined path laid out for them to implement encryption
securely.

We have also improved context-awareness to detect flaws by adding
more recipe scopes. One such example is the Android context scope.
As explained earlier, in the Android manifest a developer can configure
capabilities of components such as activities and broadcast receivers
regarding their communication towards the OS. They can listen to any
other application, only to authorized applications, or only to the own
application. The Android context scope allows us to enable recipes
based on the configuration of the relevant component, so that we can
enforce different recipes for different levels of exposure. Such a recipe
can allow communication of sensitive information between classes that
are configured as private components, but not between other classes.

7.2.4 Testing recipes

Testing custom recipes is a challenge. When new recipes are created,
the recipe-writers first have to test the behaviour of the recipe manually.

7.2. RECIPE FEATURES 133

They develop a few code fragments they expect to be marked, as well
as some that should not be marked by the recipe. They then apply the
transformations and manually inspect the resulting changes. The recipe
wizard helps speed up these tasks by providing preview panels during
recipe creation. A recipe-writer at a company, however, cannot be asked
to perform the manual checks again every time they install updates to
our plugin (including its underlying analyses) or to the IDE itself. Such
updates always risk altering the outcome of a recipe. Instead automated
testing is needed.

Such testing is available to the plugin developers at SCW. They have
sufficient capabilities to automate unit tests that verify the behavior of
the analyses. To do this, they also create a few demo recipes and test
the behavior of these recipes. Since they have access to the code of the
plugin, they can simply write unit tests and (directly) call internal plugin
and exported IDE methods to test the markings and transformations
and to compare them to the expected results. In other words, they can
write code snippets that verify whether or not updates to tools alter the
deployment of existing recipes. Such testing is unavailable to the custom
recipe-writers in a company, however, which do not have access to, and
definitely do not want to learn, the internal plugin APIs.

A better testing framework is hence required, such that the recipe-
writers in companies can indicate the expected outcomes of every recipe
they wrote on a number of code samples.. If we allow recipe-writers to
define tests in the plugin itself, and store them in the cookbooks, these
tests can automatically be performed when loading a new cookbook and
after every IDE and plugin update. We can then notify the user when
one of the recipes is no longer working as expected.

In the new recipe wizard it could be possible for the recipe-writer
to select one or more of the examples that are marked in the preview
panels and allow these examples to be used as the recipe tests. This
way the recipe-writers are creating tests for their recipes with nearly no
additional cognitive effort. However, this comes with the problem that
(possibly confidential) code of the client is then stored in these recipe
tests. At this point in time, implementing the necessary support for
recipe-writer defined tests remains future work.

134 CHAPTER 7. SENSEI

Chapter 8

Experiments and observations

Based on our own experience and anecdotal evidence, we have set goals
and priorities during the development of Sensei. During my research, I
conducted various experiments and interviews to asses these priorities,
and to evaluate the various features as described in the previous chapter.
In this chapter, I describe the goal of each experiment, its set-up, and
report the findings.

If nothing else, take away from this chapter...

I conducted a controlled user experiment that showed Sensei
markings are easy to understand and quick-fixes are applied fre-
quently. Addressing security problems like this with Sensei, only
caused an average increase in development time of about 11%.
Interviews with security professionals showed that the tool can be
used effectively in a professional setting to detect and remediate
security problems. They describe the customization of recipes as
being easier and faster compared to other security tools. Nonethe-
less, usability experiments showed that the YAML code used for
recipes can be overwhelming and that all users prefer the User In-
terface (UI) view of the new recipe editor. Creating new recipes
was more successful if the users followed along with documenta-
tion, or if they looked at example recipes first, creating recipes
from scratch can still be difficult.
The biggest disadvantages of Sensei compared to other tools are
its lack of reported metrics and its poor integration in the Con-
tinuous Integration and Continuous Delivery (CICD) pipeline.

136 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

8.1 Controlled empirical usability experiment

In November 2018, I conducted an experiment with students to evaluate
some features of the Sensei IDE plugin. This experiment has been well
designed with the help of my supervisors and prof. Riccardo Scandariato
who has practical experience with similar experiments. It was conducted
with the help of the lecturer, dr. ir. Mattias De Wael, and two of my
colleagues at SCW, Downey Robersscheuten and Tim Dekiere.

8.1.1 Goals and research questions

The main goal of the experiment is to observe the impact of the Sensei
IDE plugin on developers and their code. The purpose is evaluating the
usability and effectiveness of several of the features offered by Sensei dur-
ing development, such as customized guidelines and quick-fixes in the
IDE. The quality focus is the ability of the plugin to help developers ad-
here to secure coding guidelines without causing a significant cognitive
burden. The study evaluates the behaviour of a developer. We aim at
measuring the increase in cognitive burden when developers use the plu-
gin, by measuring the impact on development time. In our experiment,
we evaluated the impact on a group of students who have a consolidated
minimum level of expertise in both web application development and
web application security.

The above goal can be achieved by means of an experiment aimed
at answering the following four questions:

• Q1 How effective are the Sensei code markings at grabbing the
developer’s attention?

• Q2 Does the plugin significantly impact the development time?

• Q3 Do developers often use the provided remediation (quick-fixes)
to resolve code markings?

• Q4 Are there any specific code markings that significantly impact
the usability compared to others?

8.1.2 Experimental set-up

Subjects

The subjects for this study are a group of third year students following
the bachelor program for Computer and Cyber Crime Professional1 at

1https://www.howest.be/en/study-programmes?s_filter=bachelor

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 137

the college Hogeschool West-Vlaanderen (Howest) in Bruges, Belgium.
All students are in the third, and final year of the bachelor program. The
experiment was performed in the context of the Secure Object Oriented
Architectures class. In this course, the students are taught design pat-
terns, how to design three-layered applications, and Java technicalities.
During the entire course the focus is on development while conforming
to Oracle’s Secure Coding Guidelines2.

All of the students are familiar with Java programming in IntelliJ
IDEA, as it is the main language and IDE used in the education program.
They are, however, not experienced or trained with the Sensei tool. This
experiment was their first exposure to the tool.

The experiment was preceded by a secure coding tournament using
the SCW platform. The goal of this tournament was to both engage the
students as well as measure their skill level. Student participation was
voluntary, out of the 75 students that participated in the tournament,
60 also participated in the experiment itself. However, only 32 students
successfully submitted all necessary files after the experiment, as will be
described further down this section.

Development task

The subjects were given a development task to complete with the Sen-
sei plugin installed in their IDE. For the assignment they received the
incomplete code for an employment web app. The application provides
employees of a company a way to view, download, and upload their
payslips, as well as to submit requests for absence. The application is
written in Java and uses JSP as the server side technology. Some of
the features are incomplete and must be completed by the subjects dur-
ing the experiment. During the implementation of these features, the
subjects are at risk of introducing a number of web application vulnera-
bilities. Below is a list of features to be completed and their associated
risks.

• A web page to view absence requests: risk of XSS.
• A web form to search for absence requests in the database: risk of

SQL injection.
• A web form to upload payslips in XML format: risk of XML injec-

tion, XML external entity, unrestricted file upload, and local file
inclusion.

• Log all attempts made on the sign-in page: risk of log forgery.
2https://docs.oracle.com/cd/E26502_01/html/E29016/scode-1.html

138 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

Treatment

The treatment consisted of two parts. First, all subjects participated
in a SCW tournament. The next week, all participants were given the
Sensei IDE plugin, but some features were disabled for the control group.

Tournament One week preceding the experiment, all subjects partici-
pated in a tournament on the SCW platform. The subjects were handed
24 secure coding exercises in Java using JSP to complete within 90 min-
utes. The awarded points on completion of an exercise depends on its dif-
ficulty and the performance of the subject, as described in Appendix A.
The scoring method chosen was “Forgiving”.

The total maximum score for all exercises in the tournament was
5000 points. The highest score reached was 4920, while the lowest was
1600. The mean score reached by the participants (n = 75) was 3659 (s
= 710). The mean time spent solving all exercises was 53.70 min (s =
16.07 min). Both the score and the time spent are approximately normal
distributions as shown in Figure 8.1 and Figure 8.2. The score reached
by each subject in this tournament was used to split the subjects into two
equally skilled groups, a control group and a test group. The subjects
were told that they were participating in an experiment regarding the
Sensei plugin. They were told that they were split in a control group
and test group but were not informed of which group they were part, or
what the difference in treatment would be.

Sensei To complete the programming exercise, the subjects on both
groups were allowed to use their own device and OS but they had to
develop using the IntelliJ IDEA with the Sensei plugin installed. The
Sensei installation of both the control group and the test group included
a set of carefully tailored recipes to prevent introduction of the vulner-
abilities described in Section 8.1.2. However, for the control group the
markings and programming aid were disabled and the plugin was only
used as a monitoring tool. All features to view, edit, or disable recipes
were hidden, so that none of the subjects were able to consult or alter
the recipes. The information available to the subjects, in the different
descriptions, was designed as outlined in Section 7.1.4. In fact, the ex-
ample given in Figure 7.12 is a guideline used during the experiment.

Ethical review board

The teaching staff proposed the experiment to the college’s ethical re-
view board. We helped them in writing a detailed explanation of the

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 139

1500 50003659 points

Figure 8.1: The points scored by the subjects during the tournament is
approximately a normal distribution around the mean of 3659 points.

10 10054 min

Figure 8.2: The time spent by the subjects (n=75) competing in the
tournament is approximately a normal distribution around the mean of
54 min.

140 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

activities and the goals of the experiment. The board approved the ex-
periment under two conditions. Firstly, experiment participation was
to be voluntary and students were not to receive extra credit upon par-
ticipation. Secondly, all data handed to the researchers was to be made
completely anonymous. We and the teaching staff then operated in line
with these conditions.

Experimental procedure

The experimental procedure is split into two main activities, the con-
trolled experiment itself and the post-experimental information gather-
ing.

Controlled experiment All subjects were allowed to use their own
devices, and any resources they would normally use during development,
such as books and internet access. We did not allow communication with
other subjects. Subjects were allowed to take breaks and leave the room.
However, as to not give incentive to finish hastily and without care, all
subjects were required to be present during debriefing. The subjects
installed Sensei by adding a custom repository instead of through the
JetBrains Marketplace, as this allowed us to customize the features of
the plugin for this experiment.

The subjects were given:

• a consent form to acknowledge that their data will be analysed
anonymously;

• a repository Uniform Resource Locator (URL) to install the Sensei
plugin, which automatically includes the set of recipes for each
subject;

• a link to an archive containing the IDE project for the assignment;
• plugin installation instructions;
• a detailed description of the programming assignment.

During the controlled experiment, we asked the subjects to complete
the assignment using the procedure below.

1. Open the plugins menu in the IDE and copy-paste the URL to the
plugin repository.

2. Install the plugin and restart the IDE after the process has com-
pleted.

3. Verify correct installation of the plugin by finding the “Sensei”
menu in the menu bar of the IDE.

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 141

4. Download the archive containing IDE project.
5. Extract the archive and open the project in the IDE.
6. Execute the project and read the messages in the console.
7. Open a web browser and browse to localhost to verify that the

project is running correctly.
8. Sign in using provided credentials and get familiar with the func-

tionality of the web application.
9. Read the description of the features to be implemented.

10. Complete the programming assignment in silence.

Throughout all phases of the experiment, we provided assistance to
the subjects and answered all questions unrelated to the security of their
code or the information displayed by the plugin. Indeed, despite testing
on several operating systems and IDE versions there were some setup
issues to solve.

Post-experiment information gathering When the task had been
completed or the allocated time ended, the subjects were instructed to:

1. navigate to the Sensei installation folder and find the Sensei events
file, which contains a log of all the actions monitored by the Sensei
plugin

2. archive both the events file and the source files into one archive
3. submit the archive to the teaching staff

The events file contains timestamps and guidelines for all logged
events. Examples of event files are shown in Table 8.1, and Table 8.2.
The events in these tables include newly introduced guideline violations
(ADD) that are later in time removed (DELETE). In Table 8.2 viola-
tions are removed using quick fixes (FIX). The removal of a guideline
violation leads to compliant code. Sometimes it is possible to detect this
compliant code with a different Sensei recipe that is marked as a compli-
ant counterpart (C_ADD). For example, a parameterized query is the
compliant counterpart of a SQL injection. A compliant counterpart is
available for the recipe in Table 8.1. For other recipes, such as the one in
Table 8.2, no compliant counterpart can be created. This is not possible,
for example, for a recipe that forbids the use of OS commands, in order
to prevent OS command injection. All code devoid of OS commands
is technically compliant to this recipe, but we cannot create a recipe
that detects conscious compliance to the recipe. The events also include
the opening of a description (DESCRIPTION). The events file does not

142 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

ADD
DELETE

C_ADD
ADD

DESCRIPTION
DELETE

C_ADD

Table 8.1: The Sensei events file lists all events chronologically. In this
example, a recipe was violated twice (ADD). Both times the violation
was subsequently removed (DELETED) and replaced by compliant piece
of code (C_ADD). Before correcting the second violation, the descrip-
tion was opened (DESCRIPTION).

include code or code locations, as our clients do not want to expose this
information.

Several days after the experiment, all data was handed to us by the
teaching staff after having obscured all personal data. At this point we
discovered that the hand-in procedure was not correctly performed by
all subjects, as the majority of the subjects had handed in either the
code or the events file but few handed in both as requested. We asked
all subjects to hand in again, stressing to include both the events file
and all source files, but few subjects submitted a second time.

Without the source code in addition to the events file, I am unable
to verify whether the code is still functional, as simply removing the
relevant pieces of code would also effectively remove all guideline viola-
tions. On the other hand, without the events file we cannot verify which
impact the Sensei plugin had on the security of resulting code.

This means I do not have sufficient data to compare results from both
groups to evaluate the effectiveness of Sensei on improving the security of
the final code, but that was never the main objective of the experiment.
With the data from the 32 subjects who handed in their events file, I
can still evaluate the usability of Sensei, albeit with a smaller data set
than intended.

Analysismethod

Since the logs in the events file do not include file locations, we sometimes
have to make assumptions on which ADD and DELETE events should
be paired. On occasion, there are multiple guideline violations with
the same recipe ID present in the code at a certain time, as is the

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 143

ADD
ADD

FIX
DELETE

FIX
DELETE

Table 8.2: In this Sensei events file the recipe was first violated twice and
then both instances were fixed using the quick fixes (FIX), no compliant
counterpart exists for this recipe. From this information it is impossible
to assert which of the recipe violations was removed first.

case in Table 8.2. In this case, we cannot know for certain which of
the two violations is fixed first. During our experiment, this was the
case for 8% guideline violations, with the two ADD events on average
37.75 s (s = 44.05 s) apart. For the measurements of the time between
adding the violation and removing it, we assumed that the violations
were removed in the same order as they were introduced. For all of the
cases eventually either both violations were removed or neither of them
were. The aforementioned assumption hence has no influence on the
mean removal time and only influences the standard deviation of the
removal time.

We observed three exceptionally long removal times and inspected
the logs to determine the cause. Two of the outliers had events regarding
other recipe IDs in between the ADD and DELETE events and so the
subject did not spend this time actively solving the guideline violation.
For further computations of removal time, these two outliers are left out.
In between the ADD and DELETE events of the third case there were
a number of DESCRIPTION events with the same recipe ID. In this
case, we can safely assume that the subject did indeed spend 3.54 min
actively resolving the issue.

8.1.3 Findings

Guideline violations

On average, the subjects in the test group introduced 17.64 guideline
violations, as shown in the top right of Figure 8.3. The best perform-
ing subject (in this regard) introduced 2 guideline violations. For this
subject, the events log showed enough C_ADD events to assume that
the subject completed at least the majority of the programming exercise.

144 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

The worst performing subject added 37 guideline violations. In this case
the events log showed a large number of ADD and DELETE events for
the same recipe ID, making us believe that the subject was rewriting
the code a number of times. This can result from attempting to imple-
ment the code functionally correctly or from attempting to resolve the
guideline violation. The absence of DESCRIPTION events in the log is
strong evidence for the former.In the control group the average number
of violations introduced is 24.7, as shown in the bottom left of Figure 8.3.
The amount of violations introduced in this group is between 2 and 54,
however this distribution is not statistically significantly different from
the test group (p = 0.11).

After completion of the assignment, the test group had 0.22 remain-
ing guidelines on average, as shown in the top right in Figure 8.3. Out
of these subjects, 79% (n = 12) finished the assignment free of violations.
The average number of violations left at the end of the assignment in the
control group was 8.8 and only 6% (n = 1) of the subjects finished the as-
signment without any remaining violations. This is shown in Figure 8.3
in the bottom right. This difference in remaining violations between the
two groups is statistically significant (p = 0.00015).

Resolving guideline violations

Out of all the coding guideline violations in the test group, 98.4% have
been removed eventually. Out of the removed violations, 73.3% have
been removed with a quick-fix. For the remaining removals, it is not
possible to know the intention of the subject, i.e., whether the violations
were resolved manually as the subject spotted them as violations or
whether the removal was part of rewriting (or removing) the code for
another reason, such as simply meeting the functional requirements of
the assignment. The four unresolved guideline violations each violated
one different guideline, so there was no particular guideline causing the
majority of usability problems. One was violating a SQL query guideline
and the others were violations of several file upload guidelines by the
same user.

Out of the violations that were resolved, 89.3% were resolved within
one minute, and 99.5% were resolved within three minutes. Only one
case, previously discussed in Section 8.1.2, took 3.54 min to resolve. This
subject did eventually not use the quick-fix to resolve the issue.

On average the subjects of the test group took 19.10 s (s = 25.22
s) to resolve an issue. This large standard deviation is explained by a
large difference in removal time for certain guidelines, as can be seen

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 145

0 42 5617.6 violations 0 6 27violations

0 5624.7 violations 0 278.8 violations

Figure 8.3: Histograms of the amount of violations introduced during
the assignment (left column) and remaining at the end of the assignment
(right column) by users in the test group (in orange) and the control
group (in blue). The amount of violations introduced by the two groups
is not statistically significantly different. The amount of violations left
at the end of the assignment is significantly more for the control group.

146 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

in Figure 8.4. The mean remedation time when a quick-fix was used
was 17.36 s. The violations that were removed by the subjects of the
test group without a quick-fix were resolved in 21.73 s on average. The
influence of the quick-fix on the remediation time is not statistically
significant (p = 0.7). The average remediation time in the control group
was 129.21 s (s = 422.26 s), and this is significantly different from the
remedation time in the test group (p = 0.001).

On average more commonly known vulnerabilities such as SQL injec-
tion and XSS are resolved within less than 10 seconds, while the guide-
lines regarding file upload vulnerabilities take significantly longer. This
is in line with general results from the trained 2PL model in the experi-
ment of Section 4.1. The model showed that exercises about commonly
known vulnerabilities such as SQL injection and XSS have a lower mean
difficulty on the SCW training platform. Both these results indicate
that understanding and fixing these common vulnerabilities is relatively
easy. But in this experiment, as well as in practice, many developers still
make those mistakes. This gap between knowledge and practice shows
that when developers are focused on the functionality of their code, they
can easily lose track of the security.

Besides familiarity with the vulnerability, the difference in speed for
resolving the vulnerabilities can also be explained by the fact that one
piece of code can violate multiple guidelines. This was often the case for
the file upload guidelines, the naive implementation without any security
checks violates guidelines regarding file path, file size, and file extension.
The developers violating these guidelines receive a lot of simultaneous
feedback, which takes longer to process. Fixing these vulnerabilities
then also involves slightly larger pieces of code, as opposed to the often
single line of code that needs to be fixed for the other guidelines. This
is also in line with observations of the 2PL model, where the locality of
the fix has a big influence on the mean difficulty of exercises.

All of the subjects used at least one quick-fix, with an average of
12.71 (s = 4.73) quick-fixes used per subject. Less than half of the users
(42.85%) have opened a description. On average the subjects opened
2.79 (s = 7.64) descriptions.

Development time

Using the events file from Sensei we can determine the approximate de-
velopment time for the entire experiment. If we take the time difference
between the first and the last event, this will likely be close to the total
development time. This can be done for all users of both the control and

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 147

SQL

XSS

Input validation (2)

Stacktrace printing

Input validation (1)

Information leakage

Log forgery

File path

File extension

File size

4

7

15

21

27

29

30

32

35

38

mean removal time [s]

overall mean 19

Figure 8.4: The average removal time for each guideline fluctuates heav-
ily and many are different from the overall mean removal time of 19.10
seconds.

148 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

the test group that handed in the events file. For users in the test group
we can also approximate the time spent addressing Sensei markings by
taking the sum of all removal times. We can compare these results to
see how much impact Sensei had on the development time. Users of the
control group (n = 17) spent on average 61.54 min (s = 17.68 min) to
complete the experiment. Users of the test group (n = 15) spent on
average 68.75 min (s = 14.42 min). This is an increase of 11.72% in
development time when using the plugin. The time spent by the test
group addressing coding guideline violations was on average 8.42 min (s
= 10.06 min). The average share of total development time that is spent
addressing guideline violations is 11.28% (s = 12.25%). This is consistent
with the previously measured 11.72% increase in development time. This
increase in development time is explained by the large number of coding
guideline violations that are not addressed by users in the control group.
On average 8.8 violations were remaining in the control group, and the
mean remediation time in this group was 129 s. Resolving all guideline
violations would on then lead to an average development time of 80.46
minutes, which is 17% longer than the test group. This is a conservative
estimate, as vulnerabilities that are detected and resolved in later stages
of development are typically more costly and time-consuming to fix, com-
pared to remediating guideline violations during development [112, 113].
In the perspectives in Section 9.2.3, I propose some designs for future
experiments that could explore these results more thoroughly.

8.1.4 Threats to validity

In this section, I check the experiment against the possible threats to
validity as proposed by Wohlin et al. [114].

Conclusion validity

The final score of each subject in the tournament is not a complete es-
timate of the subject’s skills regarding security or secure development.
Since there is a time limit, a good score is also partly achieved by time
management. On one hand, taking too much time to complete the ex-
ercises will result in missed scoring opportunities by not finishing all
exercises. On the other hand, answering too hastily may result in mis-
takes that otherwise could have been avoided, again resulting in a loss
of points. However, the exercises were in the same language and frame-
work as the development task, and the subjects also had a limited time
to complete this task, so it is a reasonable estimate.

8.1. CONTROLLEDEMPIRICALUSABILITY EXPERIMENT 149

Each group of subjects were given the exact same development exer-
cise, only different treatment.

The subjects were not heterogeneous, as they were all bachelor stu-
dents, and the tournament score was used to avoid random irrelevance
to some degree.

Internal validity

Before starting the experiment, we clearly explained the programming
assignment and answered any arising questions publicly. The experiment
itself was conducted in a single session, with all participants in the same
room, this excludes all threats related to location, and repetitions.

Since the experiment was preceded by a secure coding tournament,
and the experiment took place in a security oriented class, this history
can affect the experimental results. However, do note that the entire
bachelor’s program followed by the subjects is focused on security, so
the security related activities are not that different from usual day-to-
day activities.

Since the experiment took over an hour, depending on the speed
of development, subjects may react differently as time passes. Indeed,
to avoid students getting tired, bored, or frustrated, we allowed them
to take breaks and leave the room. We also note that the opposite
is possible, and even likely, the subjects could have been learning and
adjusting their behaviour during the experiment. This will also inter-
act with the selection, since the test group receives feedback on their
behaviour through the tool, and the control group does not.

The effect of letting volunteers take part in an experiment may influ-
ence the result, since they are generally more motivated and suited for
a new task than the whole population. The subjects group might not
be representative of the whole population.

Since some of the subjects did not hand in their Sensei events file, it
can be useful to characterize the dropouts in order to check if they are
representative of the total sample. However, due to the anonymity of
the data, we were unable to do this.

The subjects in the control group are receiving less desirable treat-
ments. As the natural underdog, they might be motivated to reduce
or reverse the expected outcome of the experiment. This threatens the
comparison in development time between both groups. This effect is ex-
pected to be more present if we had been comparing the security of the
resulting code, but we did not do this. Moreover, we took the necessary
precautions to avoid that the control group was aware of being in a less

150 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

desirable situation, such as leaving them unaware of what the Sensei
tool looks like, thus leaving them unaware of it being disabled for them.

Construct validity

We collected information about the time spent resolving issues as the
time between introducing the violation and removing it. However, dur-
ing this time window the subjects might still be working on the function-
ality of the code instead of its security. Since these two tasks are mostly
interleaved, it would be nearly impossible to precisely asses the two times
separately. Hence our focus on the increase in total development time
as an additional measurement.

The subjects were aware that they were participating in an experi-
ment. This in itself may make the subjects more receptive to its feed-
back.

The subjects were allowed to use any resource they desired to com-
plete the task. This factor may influence the results, because better
resources could help in completing the programming task faster or with
less security issues.

The subjects might try to figure out what the purpose and intended
result of the experiment is. They are likely to change their behaviour
based on their guesses about the hypotheses. For this reason we did not
disclose to the participants whether or not they were part of the control
group or the test group. But it is likely at least the control group
would realise their role in the experiment after not receiving feedback
from the tool for a while. This does not influence our results about the
interaction with the tool since the control group does not interact with
it. The test group is less likely to realise their role in the experiment,
but the realization is more likely to cause an effect.

Some people are afraid of being evaluated. A form of human ten-
dency is to try to look better when being evaluated, this could influence
how the test group interacts with the tool. It is possible that the subjects
would ignore markings more often if they were not being evaluated.

External validity

All students come from the same college and the same bachelor’s pro-
gram. It is possible that subjects from a different college or program
might result in different performance while completing the development
task.

The subjects were not trained or experienced in the use of the treat-
ment. It is possible that developers with more experience with security

8.2. USER TESTINGWITH INDIVIDUALDEVELOPERS 151

tools in general, or specifically Sensei, behave differently when interact-
ing with the tool.

Since all subjects were tasked to develop a web application using
Java JSP, the findings might not relate to development in general. The
findings might not apply to development of other types of software, or
when using other languages, or frameworks.

The subjects mostly lack professional experience, most of them only
having done internships. It is possible that developers with more profes-
sional development experience behave differently.

8.2 User testing with individual developers

During my research of the Sensei IDE plugin, Sensei’s product manager
at SCW, Charlie Eriksen, has organized two usability tests. The first
usability test was performed in October 2020, the second several months
later in April 2021. The usability tests were executed by the company
Haxor3. Afterwards, screen recordings and insights were shared with us
to evaluate the tests.

8.2.1 Goals and research question

The main goal of the tests is to observe developers creating new recipes
for the Sensei IDE plugin. The purpose is evaluating different features
of the Sensei recipe editor. The quality focus is the ability of the plugin
to allow developers to easily create the recipes they have in mind. The
study evaluates the UI and User Experience (UX) of the recipe editor.

I aim to observe which features in the recipe editor are most effective
and usable. In the experiment, I evaluated the behaviour of several
groups of developers who have a minimum level of expertise in software
development in Java.

The above goal can be achieved by means of an experiment aimed
at answering the following four questions:

• Q1 Which features are most useful when creating a recipe?

• Q2 What are the main shortcomings when creating a recipe?

• Q3 Which features are most useful when creating a quick-fix?

• Q4 What are the main shortcomings when creating a quick-fix?

3https://haxor.sh/

152 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

The same usability tests are also used by Sensei’s product manager
to evaluate the installation process, the onboarding process, and the
documentation. Those results will be briefly discussed as well.

8.2.2 Experimental set-up

Subjects

For both runs of the experiment, the goal was to have at least five sub-
jects, a frequently used number in usability testing. It is the number of
users needed to detect 85% of the problems in an interface, given that
the probability of each problem occurring is 31% [115]. In practice, UI
and UX problems do not affect users in a predictable way, and the prob-
ability that a user encounters a problem can be significantly lower. In
that case a larger number of subjects is needed. However, it is advised to
use an iterative design and test strategy, where five subjects are brought
in to find problems and these problems are fixed before bringing in five
more [115]. In order to guarantee successful tests for five subjects even
in the case of a technical problem, each round six subjects were asked
to participate, resulting in a total of 12 subjects.

All subjects are hired by Haxor from the United States and speak
English. They are recruited from the Haxor Developer Community, De-
vPort, and online freelancing websites. The subjects are of entry and
intermediate skill level and have a minimum of 2 years professional ex-
perience. All of the subjects have programmed in Java before and are
familiar with the IntelliJ IDEA. An effort has been made by Haxor to
choose subjects with varying backgrounds, and at least one subject with
more than 5 years of professional experience is included in each test.

Task

The task was prepared by a UX design expert at SCW in cooperation
with the product manager of Sensei and myself.

The developers were given a project with a few fragments of exam-
ple code. These code fragments contain various calls to desirable and
undesirable methods.

The subjects were tasked to create Sensei recipes and quick-fixes that
transform the undesirable method calls into their desirable counterparts.

The required Sensei recipes are of increasing difficulty:

• Recipe 1 is already developed, users are questioned about their
understanding of the recipe.

8.2. USER TESTINGWITH INDIVIDUALDEVELOPERS 153

• Recipe 2 replaces the undesired methodcall by a different method-
call with the same signature (arguments and return type).

• Recipe 3 replaces the undesired methodcall by a different method-
call with a different signature (different arguments, same return
type).

Experimental procedure

Testingprocedure All subjects were allowed to use their own devices,
and any resources they would normally use during development, such
as books and internet access. To record their session, subjects were
instructed to use Paircast4. Paircast is desktop software that records a
developer’s screen, microphone, code changes, and open applications as
they work.

Developers were instructed to speak their thoughts out loud. In
the first round of user testing, the subjects were also prompted ques-
tions after completing each of the assigned tasks. This turned out to
be unnecessary as the subjects gave plenty of feedback without being
prompted, hence the questions were dropped in the second round.

I reviewed all of the video recordings. I manually timed each ac-
tion, as well as recorded any notable actions or comments made by the
subjects.

8.2.3 Findings

Installation and use

All of the users who installed the plugin through the Plugins menu
and the JetBrains marketplace have done so without any problems and
within several minutes.

All users found it easy to understand existing recipes and apply the
quick-fixes. Users claimed the recipes and quick-fixes looked exactly like
the IntelliJ quick-fixes and that they would use them frequently.

Creating recipes and quick-fixes

When tasked to create new recipes, not all users had as much success,
and the opinions were somewhat divided.

The instructions of the first usability test explained that Sensei
recipes are stored in a local file called rules.sensei. When reading those
instructions, several users opened this file to take a look. When, in the

4https://paircast.io/

154 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

next steps the users were then prompted to create new recipes, one of
them did not look for the recipe editor, but instead began to edit this
file at first. The other users who did find the recipe editor, opened it
while the rules.sensei file was opened in the text editor. As a result, the
preview panels did not show any relevant code examples. In the second
usability test, the rules.sensei file was not mentioned and all users found
the recipe editor immediately, and had relevant code files open in the
preview panels instead.

In the first usability test, only one user was able to find Sensei docu-
mentation by searching for it on the internet, 3 of the other users asked
for more documentation when they could not find any. For the second
test, the documentation was easier to find, and all of the users looked
for it and found it. Some users in both tests took their time to read
the documentation, they followed along with the getting started guide,
for example. All of these users reported they found it easy to create
new recipes. The users who opened existing recipes in the recipe editor
before trying to make their own, generally had less difficulties creating
new recipes than users who did not look at examples.

Many users used the context menu to open the recipe editor. How-
ever, in the context menu all of the users selected the option “start from
scratch”. For some users this was because their caret was not in a rele-
vant position, others simply did not use the context-aware options when
given the opportunity. It is possible that the different options in the
context menu need to be more descriptive. It is also possible that better
training in the form of documentation or an improved quick-start guide
can resolve this usability problem.

When creating a new recipe in the recipe editor, some users were
overwhelmed by the code view, all of them preferred to use the UI view.
One user refused to create a new recipe, saying they do not want to
learn a new language to do so.

Users who did not look at the documentation closely were more
likely to be overwhelmed with the amount of options in the drop-down
menus of the recipe editor. The options to choose from are not clearly
enough described, not all users are familiar with the different syntactic
components and their differences, e.g., method vs. methodcall. None
of the users noticed the hints that describe each of the elements in the
drop-down menu when they hover over it, as shown in Figure 8.5.

In the fix menu it is possible to reuse arguments of the original code
through a template language. All users who made use of these templates,
did so by copying the template from a different recipe and adjusting it
to their needs. None of the users used the suggestions available in the

8.3. INDUSTRYTRIAL IN 2018 155

Figure 8.5: There are hints available that describe the different syntactic
components that can be used in Sensei recipes. These hints are visible
when hovering over the different options in the drop-down menu of the
recipe editor.

fix menu.

8.2.4 Threats to validity

The focus of these tests is not to generalize any of the behaviours of
the subjects, but rather to identify common usability problems in the
interface of the recipe editor. Several of these problems were detected. I
make no further attempts at interpreting the results from this usability
test, I only report the findings as they appeared in the screen recordings.
There would be many threats to the validity of any further conclusions
drawn from the findings of these usability tests. The number of subjects
is small and the tasks they were asked to complete are artificial.

8.3 Industry trial in 2018

One of the earliest customers of Sensei closely monitored their use of
the tool during a trial period of several months in 2018. They reported
their findings to us and at the end of the trial they purchased additional
licenses for the tool.

156 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

8.3.1 Goal

The goal of the trial is for the client to observe the effects of the Sensei
IDE plugin on its development process. The purpose is to help the client
decide whether the Sensei IDE plugin is worth purchasing. The quality
focus is on the time and money saved by detecting possible vulnerabilities
early. The client aims at better estimating the Return on Investment
(ROI) of the potential purchase. During the trial, they can both collect
some objective data on the number of vulnerabilities prevented, as well
as collect opinions from the application security team and the developers
involved in the trial.

8.3.2 Set-up

Subjects

The client is a large bank included among the top 25 banks of the world
as listed on wikipedia5. The subjects were a group of five full-time
developers selected by the client for their security knowledge. The tool
was also given to an employee responsible for application security to help
evaluate the trial. This employee was our main contact during the trial
period.

Tasks

The subjects are part of teams developing and maintaining the web and
mobile applications of the client. They were developing in either IntelliJ
IDEA or Android Studio. During the trial period they continued their
daily responsibilities as usual, reporting periodically to the application
security expert on their impressions of the tool.

Treatment

The developers were given two sets of recipes, one for general Java ap-
plications, and one for mobile Android applications in particular. The
cookbook for general Java applications was developed by SCW devel-
opers in cooperation with the application security expert of the client.
They advised what they wanted to achieve from the developers with the
tool, and we created recipes to enforce this. The second cookbook was
also developed by us and was based on the official Android developer

5https://en.wikipedia.org/wiki/List_of_largest_banks

8.4. INDUSTRY INTERVIEW IN 2021 157

guidelines6. All of the recipes in this set had scopes so they would only
be active when the developer was working on an Android project.

Information gathering

The client did not share their code nor their Sensei events file. Our
contact was given the ability to view the summary of the Sensei events
file in the form of an update to the Sensei plugin that enables them to
view the statistics on each device. Our contact at the company evaluated
these and shared some of their insights as well as opinions from the
subjects themselves.

8.3.3 Findings

They reported that during the trial, over 200 markings were found that
were legitimate markings that could lead to vulnerabilities. With the
majority of these present in legacy code, they were security defects al-
ready in production. The two most common categories were mentioned
as being tapjacking and sensitive information leakage (mostly caused by
leaking stack traces).

The subjects reported the tool as useful and not too intrusive when
working on new code. They also reported improving their security knowl-
edge, driven by the markings from the plugin.

After the trial, the client chose to extend their current licenses and
purchase additional ones.

8.3.4 Threats to validity

There are many threats to the validity of conclusions drawn from the
findings of this trial. We have no detailed knowledge or control over the
task, the subjects, the time, or indeed over any other aspect of the trial.
We are unable to account for any noise in the metrics or any conditions
that limit our ability to generalize the results. For this reason we make
no attempts at interpreting the results from this trial, we only report
the findings as they were reported to us.

8.4 Industry interview in 2021

In August 2021, I had the opportunity to interview the security team
at a large company that has been using Sensei for over two years. They

6https://developer.android.com/

158 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

shared their insights in how the tool is used, what they liked about it
and what its biggest shortcomings are in their eyes.

8.4.1 Goal

The goal of this interview is to learn how Sensei is actually used in an
industry setting. The purpose is to understand if the design goals as
explained in this book align with the expectations of the users, and to
observe which features are most useful and which are lacking or missing.
The quality focus is on the frequency at which features are being used,
and for which purpose.

8.4.2 Set-up

Subjects

The client is an international cloud computing company building and
maintaining enterprise software used by more than 26,000 customers.
The teams observed and interviewed are based in Europe. They are 8
teams of developers and a team of 12 security professionals. Most, but
not all, security professionals have prior development experience, some
at this same company.

Task

The subjects are part of teams developing and maintaining the software
of the client. All of the Sensei users use the IntelliJ IDEA. During their
use of Sensei, they have continued their daily responsibilities as usual.

Treatment

Use of the Sensei plugin in these teams is voluntary. About 90 employees
in total are using the tool, of which 60 are using it more actively. Five
of the security professionals use the tool, as they are the ones involved
in Java development. The remaining users are developers.

The teams have been using Sensei for over two years. When it was
purchased, one of the security professionals gave a presentation and a
demonstration of the tool to interested coworkers. Most attendees were
team leads, managers, and some security champions. Security cham-
pions are developers who show more interest, and higher competence
regarding security. From there on, use of Sensei has not been actively
promoted across the company. However, one security professional reg-

8.4. INDUSTRY INTERVIEW IN 2021 159

ularly discusses the tool in the security champions group meetings, as
well as in the dedicated support channel on Slack.

The security team also uses Fortify, Checkmarx, SonarQube, Sem-
grep, and FindBugs. They have sufficient context to compare Sensei to
other security tools. The listed tools, together with other comparable
tools, are discussed in more detail in Chapter 10.

Information gathering

The team of security professionals is our contact at the company. Two
members of the team agreed to a meeting in which I interviewed them on
their use and their impressions of Sensei as well as other security tools
they are familiar with. This interview was recorded and the recording
reviewed before writing this report.

One of the interviewees has been with the company the entire time
that Sensei was purchased, this person has prior development experience.
The other interviewee joined the company after the purchase of Sensei,
this person does not have prior development experience, but has been a
security professional for a longer time.

8.4.3 Findings

Adoption

The security professionals found that adoption of the tool is not easy. It
is hard to get a chance to show value to the developers, and they are
hesitant to install new tools in their IDE. It is easier to convince the
security champions who are more interested, and actively looking for
tools that can help them produce secure code faster. So far, the security
professionals have preferred the hands-off approach and allowed the tool
to organically spread, instead of making it mandatory. The security
professionals, many who have development backgrounds, are convinced
that the tool can be an asset to developers outside of the context of
security as well.

Recipes

The security professionals have created around 50 recipes. These are
stored on a remote server and distributed to the developers as a read-
only cookbook. The recipes in this cookbook are not all related to
security, but around 70% of them are. The other recipes are related
to quality and code conventions. Many of the security team have a

160 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

development background, they have added these recipes in an attempt
to show their value to the developers. No public cookbooks are used,
but the recipes in the public cookbooks served as inspiration for their
own custom recipes.

The company has a lot of clear coding standards that are published
and used outside of their company as well. These coding standards are
used as a basis for recipes and their quick-fixes. No real consultation with
developers is needed, as it is generally agreed by developers and security
experts that these coding standards are to be used. However, to create
the quick-fixes, the security professionals frequently consult internally
with more experienced team members. Since some of them are former
developers at the same company, they have an intimate knowledge of
the codebase.

The company uses many wrapper libraries. However, these are often
not specifically written for security purposes only. Several Sensei recipes
exist to migrate to wrapper libraries or to different versions of APIs.

The security team is currently unaware of the number of recipes
that are being created by developers themselves. They are also unaware
if developers are frequently remediating markings from the distributed
cookbook. In fact, in their eyes, visibility into metrics like this is one of
the biggest shortcomings of the tool.

Recipe editor

The security professionals create both recipes from scratch and from
context and believe both use cases are important and necessary. They
most frequently use the UI view to edit recipes, but to refactor recipes
and make bulk changes, they sometimes use a text editor as well.

They believe the preview panels and the recipe editor are by far the
most useful features of the entire plugin. These features make customiza-
tion of the recipes significantly easier compared to the other tools they
are using in the SDLC.

Descriptions are often used, but the full coding guidelines are not
usually customized to the specific recipe. The coding guideline pro-
vided is instead a generally applicable description that provides links to
documentation about the secure coding standards that are used at the
company.

The security professionals use recipe scopes frequently. The scopes
are used to limit recipes to certain packages and modules. This is only
done as a consideration for developer usability, to avoid false positives
in the large codebase.

8.4. INDUSTRY INTERVIEW IN 2021 161

Finally, they try to provide quick-fixes as often as possible, but admit
it is not always possible. Sometimes, the quick-fix provided requires the
developer to make additional changes.

Paved pathmethodology

The security team does not use the paved path methodology. However,
their practices are in line with many of the goals of this methodology.

The security professionals try to be enablers, and not only tell devel-
opers what they do wrong, but also provide guidance as much as possible.
They provide a service to developers and are aware of developer usability.
The team prefers to neglect some parts of the security of the software
over generating too many false positives, which could result in EFPs.

They believe Sensei supports this enablement approach through its
quick-fixes. Since a complete Sensei recipe includes a quick-fix, the se-
curity team is forced to offer remediation guidance. This remediation
guidance in turn enables the developers to resolve security markings by
themselves.

For the security professionals without former development experi-
ence, this requirement of a quick-fix forces them to be closer to the
development workflows. Sometimes, creating a quick-fix pushes the lim-
its of their knowledge of programming. In that case, they do not consult
the development team, as suggested by the paved path methodology, but
instead consult with former developers in the security team itself.

Disadvantages

As mentioned before, visibility into the developers’ practices with the
tool is one of the biggest shortcomings of Sensei in the eyes of the se-
curity team. So far, features that report back information from the
IDE have been avoided as we expected customers would be hesitant of
such features. Many of the metrics that the security team requests are
available in the IDEs of the developers, in the Sensei events databases.
Clearly, gathering those databases is not a convenient way to collect
that information. On top of that, currently, we provide no convenient
way to visualize the results in a management dashboard, which other
tools commonly do.

Alternatively, some metrics can be collected through server side
scans. It is possible to run IntelliJ IDEA inspections from the com-
mand line, including the Sensei recipes. The resulting scans are not as
efficient as those by standalone tools, such as static analysis tools dis-
cussed in Chapter 10. In particular, the security professionals reported

162 CHAPTER 8. EXPERIMENTSANDOBSERVATIONS

that the memory usage is exceedingly big for large enough codebases.
Since these interviews, the developers at SCW have fixed a memory leak
in the command line scans which has mitigated this problem. It is also
more difficulty to automate running IntelliJ IDEA inspections in the
CICD pipeline compared to tools who provide better integrations for
this purpose. The convenience of running scans in other stages of the
SDLC seems to be the main reason the security team uses some of the
other tools.

8.4.4 Threats to validity

There are many threats to the validity of conclusions drawn from the
findings of this interview. We have no detailed knowledge or control
over the task, the subjects, the time, or indeed over any other aspect of
the use of Sensei. We are unable to account for any noise in the metrics
or any conditions that limit our ability to generalize the results. For
this reason we make no attempts at interpreting the results from this
interview, we only report the findings as they were reported to us.

Chapter 9

Discussion and perspectives

In the previous chapter, I described the goal and the set-up of each
experiment, and reported their findings. These findings allow us to
evaluate different features of the Sensei plugin, as well as its use in the
paved path methodology. In this chapter, I summarise the findings,
explain the lessons we learned and how they can affect the development
of Sensei in the future.

If nothing else, take away from this chapter...

Our findings and those of other research, show that customization
of recipes can have a significant impact on the EFP rate, and
hence the usability for the developer. Former research has shown
that applying secure coding guidelines early in development has
a positive impact on the codebase. As shown in the experiments
of this work, customized recipes can improve adherence to such
guidelines as quick-fixes are frequently used. If they are designed
properly, applying the recipes regardless of context has minimal
impact on performance, and helps improve code quality in many
cases.
Security professionals report that creating these customized
recipes with the recipe editor is easier than customizing rules
of comparable tools. Despite this, usability tests revealed that
some features of the recipe editor can still be improved such as
the templating language to reuse parts of the original code in a
quick-fix.

164 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

9.1 Discussion

9.1.1 Installation and first use

Because Sensei is distributed as an IDE plugin, it can be easily installed
from the IDE itself, using features that many developers are familiar
with. None of the developers in any of the experiments needed more
than several minutes to install the plugin.

After installation, the startup time of the IDE is not measurably
affected by the tool. Sensei only performs a license check, of which the
duration is shorter than the measured variation in IDE start-up time.

In the early industry trial and the controlled experiment, customized
Sensei recipes were provided by us as a service. In the usability tests
and the most recent industry trial, the subjects were provided with pub-
lic cookbooks that could be used as a starting point, but they were
encouraged to create their own recipes.

In both groups we have observed developers who unknowingly ad-
dressed Sensei markings, thinking they were regular IDE markings. This
is strong evidence that the tool is intuitive and feels like a natural ex-
tension of the IDE.

9.1.2 Recipes

Sensei is a developer tool first, and this is evident from the recipes that
are used in industry settings. A significant portion of the recipes are
related to the quality of the code rather than its security.

We have noticed, in practice, that security and quality are often
closely related. High quality code is easier to understand and maintain,
and hence also to secure. But often, writing high quality code can also
lead to secure code in a more direct way.

Take the example of a SQL query. Writing a data retrieval method
of high quality means that the query is easy to understand, but also that
the data is retrieved at high speed. When the query is parameterized, the
database can pre-compile a query plan, which speeds up the execution
of the query. Of course, using parameterized queries at the same time
ensures that the query is safe from SQL injection. Even if the current
query did not use any (unsanitized) user input, using a parameterized
query will protect it from future use. It will also set a good example
for future developers writing similar methods. Developers will often
copy existing code and make some changes to fit their needs. After all,
developers try to be as efficient as they can in delivering code. If no
parameterized queries are used, a subtle change can mean the difference

9.1. DISCUSSION 165

1 public ResultSet getUserById(int id){
2 String query = "SELECT * FROM user WHERE id = " + id;
3 PreparedStatement stmt = this.conn.prepareStatement(query);
4 ResultSet rs = stmt.executeQuery();
5 return rs;
6 }

Listing 9.1: This method concatenates an integer value to the query. An
integer variable can not alter the query, and hence this method can not
lead to SQL injection.

1 public ResultSet getUserById(String id){
2 String query = "SELECT * FROM user WHERE id = " + id;
3 PreparedStatement stmt = this.conn.prepareStatement(query);
4 ResultSet rs = stmt.executeQuery();
5 return rs;
6 }

Listing 9.2: This method concatenates a String variable to the query.
As a result it is vulnerable to SQL injection.

between secure code or a vulnerability, as shown in Listings 9.1 and 9.2.
In industry, recipes were created, both to help developers use li-

braries correctly, as well as to migrate to new libraries. Security profes-
sionals reported that many wrapper libraries are used in their codebase
to make the life of developers easier. These wrapper libraries were rarely
developed solely for security reasons, but often did include security au-
tomation. It is clear that for such wrapper libraries, it is crucial that
the recipes can easily be customized.

9.1.3 Recipe editor

When testing YAML syntax and creating recipes from context, we ob-
served a significant speed-up in writing recipes. Even for users that
were experienced with the old rule models, the preview panels in the
new recipe editor and the context-aware suggestions greatly improve
the recipe-writing process.

Security professionals report that Sensei is the easiest tool they have
used when it comes to customizing recipes. The majority of comparable
tools allow writing custom rules or analyses in one way or another, as
described in the related work, in Section 10.4.5. Writing rules for these
tools is often done through complex, but well documented APIs or more
user-friendly formats. None of the tools allow creating rules on-the-fly

166 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

in the code. Sensei does allow this, which greatly improves the speed
and usability of writing rules.

Recipe features

Because recipes can be created on-the-fly in the code, context-aware sug-
gestions can be made, and testing of the recipes is more efficient since
their markings can be observed live as the recipe is being created. This
live preview in the recipe editor is mentioned by the security profession-
als as Sensei’s most useful feature. Despite this, some of the features of
the recipes and the recipe editor are not used as often or as effective as
they could be.

When security professionals and developers create new recipes, they
rarely use the code view. In fact, we have noticed that the code view
can be overwhelming for some users who want to avoid learning a new
language. To create recipes from scratch, and to adapt existing recipes,
almost exclusively the UI view is used. The code view is only used
by recipe-writers when copy-pasting recipes from the documentation or
from recipes used as an example. The GUI can be updated to better
reflect this behaviour. The UI view should be the main focus when
opening the recipe editor, and the code view can be made smaller as its
main focus is to copy-paste examples. The resulting GUI will have a
similar user experience as the UI provided by Slack to customize (and
share) color themes, as shown in Figure 9.1.

Security professionals report using the context-wizard to automati-
cally generate recipes from context. However, in usability tests, none of
the tested users have used this feature. This indicates that the feature
might not be clearly understood. Instead of “create recipe for simi-
lar methodcalls”, it might be more effective to make the option in the
menu adapt to the context, for example “create recipe for Runtime.exec
methodcalls”.

Quick-fixes are added to nearly every recipe. However, in some situ-
ations no fully functional quick-fix can be created and the developer is
still required to make changes to the code after applying the quick-fix.
The template language that allows reusing parts of the original code is
often required to create a working quick-fix. However, the suggestion
box in the quick-fix menu is not clearly visible to the users, and as a
result these suggestions are rarely used. The recipe-writer can still find
them in the documentation or by copy-pasting from other rules, but
using this menu should be more convenient. Currently, the variables
are hidden by default and the “Show variables” button is not prominent

9.1. DISCUSSION 167

Figure 9.1: The theme editor in slack provides an intuitive UI interface
on top to edit the theme, but also adds a code view and a copy button
to allow fast and easy copy-pasting of existing themes.

enough, as shown in Figure 9.2.
Scopes are used frequently in industry, almost exclusively to avoid

creating EFPs and increase developer usability. Most of the comparable
tools operate in later stages of the SDLC. They perform scans during
code review or testing phases. It is often a security expert who will
analyze and prioritize the results of security scans by placing them into
the bug tracking system. Features for those tools often include integra-
tions with common bug tracking systems to allow them to publish bugs
automatically.

We observed that many tools provide functionality to disable certain
rule reports through configuring security policies. This is a necessary
feature to remove or hide classic false positives. However, this disabling
of reports is designed to help security experts keep a good overview of
the application state and to help prioritize more severe issues. With the
exception of the Fortify Security Assistant that disables rules to speed
up the scans, disabling rules themselves is rarely supported with the goal
to improve the usability of the developers.

9.1.4 Feedback and remediation

Sensei is distributed as an IDE plugin. This allows it to reuse and extend
existing IDE functionality, and hence feel like a natural extension of
the developer’s tool kit. When interviewed, subjects of the usability

168 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

Figure 9.2: The suggestions in the quick-fix menu are hidden by default.
Users do not make use of the “Show variables” button that reveals them,
as it does not attract their attention.

tests reported that the markings and quick-fixes felt similar to those
provided by the IDE itself. They all indicated that they would use them
frequently.

When analyzing newly written code, the longest time we have mea-
sured that is needed for the analyses to finish is 29 ms. This is far
below the threshold of 125 ms to be considered real time. A developer
is hence not hindered during development unless they are violating a
coding guideline and need to use remediation.

When code is marked, the developer needs to spend some extra time
understanding the issue and fixing it. During the empirical experiment of
Section 8.1, the mean observed remediation time of a guideline violation
is 19 seconds for users of the test group and 129 seconds for users of the
control group.

On average, the use of Sensei increased the total development time
with 11%. This is a relatively low increase considering the programming
assignment was to complete security-critical features and hence the sub-
jects were frequently confronted with feedback from the tool. It is also
important to note that for all of the subjects, the experiment was the
first time they were making use of the tool. In the control group, an
average of 8.8 violations were left at the end of the assignment, whereas
only 0.22 violations were remaining on average in the test group. If the
subjects of the control group had addressed all remaining violations and

9.1. DISCUSSION 169

maintained the mean remediation time, this group would have a mean
development time 17% longer than that of the test group.

During the experiment, 98.4% of code markings shown by Sensei (n =
247) were resolved by the developers. Out of the resolved code markings,
73.3% were fixed using the quick-fixes. All of the users (n = 15) used at
least one quick-fix, with an average of 12.71 (s = 4.73) quick-fixes used.
The remaining code markings have been removed manually, either by
fixing the violation or by removing the violating code entirely. This is
a high level of engagement, compared to the lower than 20% “Apply
fix” rate reported by the code review tool Tricorder [107]. On average
the subjects resolved the issue within 19.10 s (s = 25.22 s) of writing
the violating API call. Developers appear to be spending comparatively
little time understanding the issues and applying fixes. By comparison,
for Tricorder and SpotBugs the time between writing the violating code
and fixing is usually several days [107, 116].

In the experiment with Sensei, only 1.6% of code markings were
ignored, which is a low EFP rate. After carefully improving their ana-
lyzers, Tricorder reached an EFP rate of around 5%. Despite its great
attention to developer usability, during an experiment with Application
Security plugin for Integrated Development Environment (ASIDE), 63
of 101 (62%) markings were addressed [117]. When using SpotBugs, re-
search reports that 58% of the found issues were never reviewed and out
of the reviewed bugs, only 55% were eventually fixed [116]. Early Se-
curity Vulnerability Detector (ESVD), a tool with heavy focus on early
detection of vulnerabilities, but without customized rules, found that the
test group in their experiment only resolved 53% of the markings [118].

We observe a big gap in EFP rates with Sensei (1.6%) and Tricorder
(5%) on one hand, and ASIDE (38%), ESVD (53%), and SpotBugs
(77%) on the other hand. The reason for this is likely the customization
of rules. Tricorder allows creating new analyzers and their quality is
closely monitored. For Sensei, developers are given carefully tailored
rules, often written by the engineers themselves, and relevant to their
project. These efforts improve the usability of the tool and hence result
in increased trust by the developers.

Impact on security

The usability measurements presented so far suggest that when Sensei is
used, the secure coding guidelines are applied most of the time. During
the first industry trial of the plugin, described in Section 8.3, the client
has tracked closely whether or not the enforced guidelines actually pre-

170 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

vented the introduction of vulnerabilities early on. The trial was done
with five developers for the duration of three months. They reported a
total of over 200 confirmed bugs being prevented. The most common
issues involved sensitive information leakage and tapjacking vulnerabili-
ties in their mobile application.

A limitation of the tool’s local analyses is that they do not allow
us to detect whether or not a certain input has already been sanitized
before flowing into the routine being analyzed. This is in line with
our approach and goal of enforcing coding guidelines that defend every
routine for future use, i.e., such that it is still secure whenever it might
be reused with unsanitized data. So if the local analyses identify a lack
of local sanitization, the developer will be expected to let the routine
sanitize that input again. At first sight, this might result in the same
data being sanitized multiple times within an application, which will
negatively impact performance.

In practice, however, this proves to be largely a non-issue. In prac-
tice, APIs are not designed in a vacuum. Instead they are developed
with potential application architectures in mind. Furthermore, when
concrete applications are first designed, security and application archi-
tects also take into account best practices for secure architectures (that
is, if they care for security-by-design). Similarly, the coding guidelines
can be co-designed with certain application architectures in mind. Do-
ing so provides an easy mitigation of the potential issue of redundant,
multiple sanitizations.

For example, consider the case of XSS attacks. It is a common mis-
conception that in order to prevent stored XSS attacks, user input should
be encoded before it is stored in the database. A better recommendation
is to encode the database output when it is used, as the stored data may
be used in different contexts, requiring different encoding methods. For
example, a string value may be displayed on the HTML page and also
used in a JavaScript script on that same page, resulting in two different,
but simultaneous escape requirements. We learn that data should al-
ways be sanitized before it is stored in the database and encoded before
it is displayed in the web or mobile application. Since these are usu-
ally the ends of the data flow, no data needs to be sanitized or encoded
twice. If the rules are co-designed with the secure application architec-
ture, encoding routines can be enforced only at the correct locations in
code. The above does not imply that Sensei is the one and only tool
that solves all potential software development security issues.

To detect issues as early as possible, i.e., in real-time as the devel-
oper is writing code, analyses have to be light-weight. This implies that

9.1. DISCUSSION 171

all possible execution paths in the entire program cannot be exhaus-
tively considered, and some types of vulnerabilities, including design
flaws, can go undetected. This is a common trade-off, therefore tools
that are used early in the SDLC such as Sensei should be complemented
with more complete scanning solutions deployed later in the SDLC. Se-
curity professionals understand this. In the second industry trial Sensei
is complimented by five additional security tools: Fortify, Checkmarx,
SonarQube, Semgrep, and FindBugs.

An example of this strategy also exists with multiple products of
the same company. The Fortify Security Assistant IDE plugin is used
earlier in the SDLC than other Fortify tools, but only uses a subset of
the available rules to improve developer usability. It helps detect a set
of vulnerabilities earlier, and hence saves money and time fixing those
issues, but it does not provide the full protection that, e.g., Fortify on
Demand does. In the related work section, we will discuss where we
consider Sensei to improve over Fortify Security Assistant as an early
SDLC tool.

9.1.5 Project and teammanagement

Compliance

Coding guidelines can provide a good measure for security in a software
product. Where vulnerability scanning can only provide an indication
of the vulnerability density, they do not provide the full picture. In the
case, for example, where a large number of SQL injections is found, this
could indicate poor database security. But it can also mean that there
simply are a lot of database queries, with a large portion of them done
securely. For coding guidelines a relative measure can be designed, by
comparing the number of guideline violations to the number of times the
code complies to guidelines. Since complying to strong coding guidelines
leads to secure code [119, 120], we get a better indication of the security
in the software product.

The plugin is useful as a tool to aid the developer, but the option
to measure guideline deployment also hints at its potential as a manage-
ment tool. As demonstrated in the experiments, management can track
the changes developers makes to projects and log the guideline viola-
tions that they introduce and fix, with or without aid of the quick-fixes.
Currently, this data is collected in the events databases on the machine
of each developer. In the future, these metrics should be collected and
visualised on the SCW platform. This makes the ROI clear to companies
using the tool. With this data available in the platform, more targeted

172 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

and individually tailored training can be provided as well. This data
can for example feed into the ITS to improve its recommendations, as
described in Section 5.2.2.

Integration in other stages of the SDLC

While individual performance can hence be measured and improved,
with developers working in different branches, and hence different states
of the project, it is hard to get a good overview that way. To resolve
this, we also give managers the possibility to use the plugin technology
as a headless scan that can be performed from the command line. How-
ever, in practice, we have noticed that the performance of this headless
scan is lacking. In the IDE, recipes are verified against the code in the
current file of the editor, the code the developer is working on. In the
headless scan such context is not available, so every file in the project
needs to be inspected, this slows down analyses. Security professionals
also indicated that better integration with CICD tools is needed. This
lack of automation in different stages of the SDLC is critical for the se-
curity team. The security professionals in the second industry trial have
spent time and effort to recreate Sensei recipes in different tools in the
SDLC to compensate for Sensei’s lack of CICD integration. While the
tool is a developer tool first, it is also a security tool, and it is usually
purchased by the security team. Which is why it is important to show
value for both user groups.

Roll-out

From experience, we learned that the plugin is ideally rolled out when
new recipes do not mark any existing code. This is when a project kicks
off and zero lines of code have been written. Alternatively it can be
rolled out when a new API or library is introduced in the project and
recipes will be written for this library or API. Few projects are developed
from scratch, however, so the reality is that the plugin needs to work in
an already developed product. In that case, rolling the plugin out with
all recipes switched on can be overwhelming to developers, as they are
presented with a huge number of violations. In addition, developers are
often hesitant to fix issues they did not introduce in the code themselves,
and they might not even have permission to change code that is not
theirs. This results in a large number of EFPs, which we want to avoid.

When developers create their own recipes from scratch, they are
working on a certain branch of the project. They usually create targeted
recipes to fix or enforce small things in the project files they are working

9.1. DISCUSSION 173

on. When they create the recipe, they inspect the violations and fix
the markings. The recipe and fixed code are pushed to the codebase
simultaneously. This typically leads to few EFPs. However, often the
application security team of the company imposes recipes as well. At
one point, the security expert at a client of ours created a large number
of recipes and imposed them onto the developers without fixing any of
the resulting violations. It did not come as a surprise that this resulted
in a great number of EFPs and out of the 20 developers that had the
tool installed, all of them had disabled its markings out of frustration.
To avoid such failures, we recommend two approaches to keep the EFP
rate low for imposed cookbooks.

Firstly, in the ideal scenario the security team creates a number of
recipes and looks at their violations in the code to inspect their severity.
When recipes result in few violations, the team can safely roll out the
recipes without resulting in too many EFPs.

The roll-out is more challenging when a recipe results in a large
number of violations that are not trivially resolved. In that case the
security team should create a developer task force. Their task is to
create APIs to resolve the recipe hits. They then turn the original recipe
into a library adoption recipe and fix all marked code with this recipe.
In the process of doing so, many corner cases can be encountered that
help to fine-tune both the API and the recipe. The new API, the recipe,
and all code fixes can be pushed to the codebase simultaneously.

The ideal scenario might not apply in practice, however. It is possible
that the codebase is simply too large to start fixing all code markings.
We have had clients where a strong recipe resulted in over 3000 violations.
It can also be the case that when the security team creates a task force,
this developer time is paid by the security budget, not the development
budget. In such cases it is not beneficial to spend developer time to fix
the existing issues in the code before rolling out the recipe.

We then instead recommend the second approach, in which the
recipes are rolled out company-wide without fixing the code markings.
In order to keep the EFP rate sufficiently low, the violations are only
shown partly. For this purpose the option is added to the recipe editor,
to only mark a recipe on newly developed code. This way only new
violations are shown (and resolved) without resulting in an overly large
EFP rate.

174 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

9.2 Perspectives

9.2.1 Improved recipe creation

Security professionals report that Sensei is the easiest tool they have
used when it comes to creating new recipes. They attribute this mostly
to the preview panels in the recipe editor, rather than the specific YAML
syntax. Developers, on the other hand, are not used to creating rules
for any tools, so they usually have nothing to compare it to. This is
evident from the usability tests, where developers were more hesitant and
more easily overwhelmed by the recipe editor compared to the security
professionals. To reduce this hesitation, in the previous section, a design
was proposed that would make the UI view the main focus in the recipe
editor. In this design the code view would only be used for copy-pasting
recipes. However, this still requires developers to create recipes for an
analysis tool, a task they are not familiar with.

Instead, it might be possible to let developers create recipes simply
by writing code. Currently, Sensei is able to apply a code transformation
based on instructions from a recipe. In the future, it might be possible to
do the opposite, and generate a Sensei recipe from a code transformation.
If this technology exists, the recipe editor can simply show two code
panels side by side. The left panel can be a static view of the current
state of the code, while the right panel allows the developer to make
(small) changes to the code. A Sensei recipe can then be created from
the code changes that can optionally be adjusted in the next step.

This technology would also enable automatic recipe creation meth-
ods, such as generating a recipe from a code patch in the code reposi-
tory. It might even be possible to dynamically suggest recipes while ob-
serving the developer during their normal workflow. Previous research
has been performed to identify API rules for cryptography from code
changes [121]. Efforts have also been made to automatically generate
patches from code repositories and their histories, using different algo-
rithms [122], including those learned from human-written patches [123]
or correct code [124]. While this research tries to automatically patch
bugs, the approaches can also be used to create recipes to apply the
discovered patches more broadly and to do so during the writing of
code rather than afterwards. With some user interaction, such a tool
might also be able to generate recipes (without fixes) from the output
of traditional security tools.

This technology is part of ongoing research funded by a Vlaams
Agentschap Innoveren & Ondernemen (English: Flanders Innovation &

9.2. PERSPECTIVES 175

Entrepreneurship) (VLAIO) Onderzoek & Ontwikkeling (English: Re-
search & Development) (O&O) project as of 2019.

9.2.2 Adapting feedback to the skill level

An important concept during the design and evaluation of the Sensei IDE
plugin, is the EFP rate. When many markings exist in the code that
the developer does not intend to fix, i.e., when there is a high EFP rate,
this might cause developers to be overwhelmed and ignore feedback from
Sensei altogether. To explain this concept, the example of OS command
injection was used. A simple and easy to understand recipe to avoid OS
command injection, is to simply avoid all uses of OS commands. A more
experienced developer, however, will understand how OS commands can
be used securely, for example to launch a different software application
through a hard-coded command. This recipe will lead to an EFP for
an experienced developer, but might be more easily understood by a
developer with no security skills than a more advanced recipe.

In other cases, recipes are created that detect (presumably) delib-
erate insecure configurations. Take the example of cookies, where it is
generally recommended to configure them as HttpOnly. This prevents
the cookies from being used in client-side scripts, and hence avoids some
of the most common XSS attacks. However, in some legitimate cases
the developer might need to use a cookie in a client-side script, and to
configure the cookie as such. Of course, they have to take the security
implication of this configuration into consideration. For example, they
will have to ensure that this is not used for security-sensitive cookies,
such as session cookies. A recipe that detects insecure configurations
like this, will lead to EFPs for developers who need the features that are
blocked by these configurations.

Both the example of the OS command and cookie configuration, lead
to EFPs for security experts, but are still important recipes to enforce
for a novice developer. Fortunately, through integration with the SCW
portal, a user ability estimate is available, such that the feedback for
recipes like this can be adapted to the skill level of the developer. For
developers with a low ability level, this recipe can be shown as an error,
while the more experienced developer can be shown a warning or infor-
mation level marking. The descriptions can also be adapted for each
skill level. The less experienced developer can be shown the simple and
easy to understand guideline, to use the most secure configuration. To a
more skillfull developer it will be less overwhelming to explain the secu-
rity implications of the configuration, and how to mitigate them in other

176 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

parts of the code. Adapting UIs is most often based on the experience of
the user with the interface itself rather than their knowledge in a specific
field [125, 126]. This research indicates that optimizing UI design based
on novice learning rather than long-term efficiency by experienced users
can be counterproductive. It remains future work to assess whether or
not a more optimised UI will be required for advanced Sensei users.

9.2.3 Controlled experiment in industry environment

The experiments described earlier in Part II of this book mostly contain
second-hand information from industry trials, as well as a controlled
experiment with students that focuses on validating some of the features
contributing to the usability of Sensei. In contrast to the first part of
this book, no strong empirical evidence is presented that validates the
efficacy of a tool like Sensei, or the paved path methodology in general.

In this section, I discuss the design of future experiments that could
be conducted to gather stronger evidence for the proposed solution.

Subjects

In an industry setting, it is not practical to divide a team’s members
into a control group and test group of similar skill level. Instead, it
might be feasible to compare two teams and allow the use of Sensei
by only one of the teams. Alternatively, the same team could first be
observed for a duration of several days or weeks without use of Sensei
and then Sensei can be introduced and results can be compared over
time. These approaches can be applied to evaluate several research
questions depending on the goal of the experiment. In the remainder
of this section, the research goals and research questions of three such
experiments are outlined.

Research questions

In the controlled empirical experiment of Section 8.1, the focus was on
validating the effectiveness of several Sensei features at helping develop-
ers adhere to secure coding guidelines during development. The results
showed that Sensei code markings were addressed often, and were ad-
dressed fast. Of the guidelines violations introduced by subjects of the
test group, 98.4% were resolved with a mean remediation time of 19.10 s.

However, developers in an industry environment are likely to use Sen-
sei differently to the subjects of this experiment. Not only because they

9.2. PERSPECTIVES 177

are more experienced, and are likely more familiar with alternative tools,
but also because they work in larger teams and with stricter deadlines.

Feature validation In one experiment that can be conducted in the
future, the same features can be evaluated in an industry environment.
The goal of this experiment would be to observe the impact of the Sensei
plugin on the developers in an industry setting. The purpose would be to
evaluate the usability and effectiveness of some of the features of Sensei.
The quality focus is the ability of the plugin to help developers adhere
to the secure coding guidelines that are in place and the impact on their
cognitive burden while doing so.

The following research questions can be answered in this experiment:

• Q1 What is the effective false positive rate in an industry environ-
ment?

• Q2 What is the mean remediation time of markings in an industry
environment?

• Q3 Do developers in an industry environment often use the pro-
vided quick-fixes to resolve code markings?

This data could be analyzed and compared to the findings of the
experiment with students. This could both evaluate the Sensei features
more thoroughly as well as give us insights into the differences between
developers in educational institutions and developers in industry envi-
ronments. Experiments like this can help researchers and enterprises
that design security tools improve the usability and effectiveness of their
tools. However, to convince organizations to adopt role-specific tools
more widely, we should evaluate their impact on speed and security
during development.

Efficacy of the paved path methodology The goal of the experi-
ment is to measure the impact of the paved path methodology on devel-
opment and delivery of software. The purpose is to evaluate the ROI
for organizations that consider using this approach. The quality focus
is the impact of the methodology on the delivery speed as well as the
security of the delivered code. In industry environments, a trade-off ex-
ists between fast delivery of new software features and the security of
the software. Improving one at the detriment of the other is not real
improvement. In this experiment, it is hence crucial that both these
metrics are taken into account. By using the paved path methodology,

178 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

we expect that security problems are addressed earlier in the SDLC, and
this will positively impact the security of the code. We also expect that
because of this early intervention, time will be saved in later stages of
the SDLC as less markings will be found and subsequently need to be
fixed. It is expected that remediating potential issues during develop-
ment will require less time investment compared to remediating them in
later stages, resulting in an overall increased speed of delivery.

The above goal can be achieved by means of an experiment aimed
at answering the following questions:

• Q1 Is the speed of delivery impacted meaningfully when developers
use the paved path methodology?

• Q2 Is the number of findings by security tools deployed later in
the SDLC impacted meaningfully when developers use the paved
path methodology?

• Q3 Related to Q2, is the time and resources invested in finding
and remediating vulnerabilities in later stages of the SDLC reduced
when developers use the paved path methodology?

Delivery speed can be measured through several metrics [127].

• Lead time for change is the time it takes between a customer re-
quest and the request being satisfied.

• Deployment frequency is the frequency with which working soft-
ware is deployed to production or distributed to the customers.

• Change failure rate is the frequency with which deployments re-
quire rollback or other measures to amend failures.

• Time to restore service is the time it takes to restore service after
an incident or failure.

While the goal of this experiment is to evaluate the paved path
methodology, this methodology is inherently tied to the use of role-
specific developer tools. The evaluation is hence closely related to the
efficacy of the tool itself and it is possible that the outcome of this exper-
iment underestimates the efficacy of the paved path methodology due
to imperfect design and implementation of the used tool.

9.2. PERSPECTIVES 179

Efficacy of Sensei in supporting the paved pathmethodology Fi-
nally, an experiment could be set up to evaluate to which extent Sensei
helps development and security teams adopt practices in line with the
paved path methodology. The goal of this experiment is to observe the
impact of Sensei on the processes and interactions between security pro-
fessionals and developers. The purpose is to evaluate if Sensei is effective
at supporting the paved path methodology. The quality focus is on the
interactions between different team members and the purpose of the
Sensei recipes that are being developed.

The above goal can be achieved by means of an experiment aimed
at answering the following questions:

• Q1 Do security professionals frequently need to consult developers
to create quick-fixes?

• Q2 Do developers frequently write recipes for other purposes than
security?

180 CHAPTER 9. DISCUSSIONANDPERSPECTIVES

Part III

Closing

182

Chapter 10

Relatedwork

Read them have you?
Page-turners they were not.

Yoda

Software security is a relatively new field [128], but many tools and
practices have already been developed that have caused great advance-
ments.

If nothing else, take away from this chapter...

Security begins even before code is written. Laws, legislations,
and consumer demands all impact how much attention is given
to security. Besides lightweight linter tools, developers can also
find help to produce secure code from patterns, libraries, and
frameworks. In the build phase, the use of new methodologies
has driven the automation of building executables and installing
dependencies, which has made it easier to test for use of vulnerable
components.
Most security practices, however, take place in the test phase.
Many code review practices and tools exist, most of which allow
customization of the rules through one of three methods: an API,
a custom query language, or a formatting language such as XML
or YAML. Finally, in the release phase, recent advancements in
Infrastructure as Code (IaC) have made it easier to securely de-
ploy applications and manage infrastructure.

184 CHAPTER 10. RELATEDWORK

Many guides exist to help you decide which tools are appropriate
for your project. In this chapter, I want to extend these guides so that
you are better equipped to estimate the strengths of a tool for use in
the paved path methodology. I describe commonalities between tools in
different phases of the SDLC and how they can be deployed effectively.
For future reference, Appendix F contains a number of battlecards with
my thoughts on a few more tools.

10.1 Governance

Considering security begins before any code is written. Priorities set
by management and the business itself can have a big impact on the
security practices deployed during the SDLC.

10.1.1 Training

Training has always played a critical role in software development, be-
cause standard computer science and engineering education often ne-
glects software security.

Companies should first offer security awareness training to all em-
ployees involved in the SDLC. Security awareness training does not nec-
essarily need to be tailored to a specific audience. Developers, Quality
Assurance (QA) engineers, project managers, and operators can all par-
take in the same training. A generic introductory course like this how-
ever is insufficient, the next step is to provide role-specific individual
training. As explained in this work, developers should be taught secure
coding, and not follow training intended for security professionals or
penetration testers.

In the ideal scenario, a company should also verify or provide training
for vendors and contractors. They should require annual refreshers for
all employees and can host software security events to nurture a good
security culture.

10.1.2 Compliance and policy

Software security is not only a problem of enablement. Good enough
training, tools, and processes exist today that can embed security in
software development from the start. Yet, we still see frequent reports
in the media of bad software practices and vulnerabilities that easily
could have been prevented. The reality is that businesses often prioritize
getting to market and getting features out, over their obligations in

10.1. GOVERNANCE 185

terms of security. Not enough incentives are in place for businesses to
put more emphasis on the security of their products. Too often it is
simply considered an afterthought and a necessary cost.

Privacy and trust

The resulting security problems, however, do not only hurt the business,
they also hurt the consumer. When businesses are hacked, it is often
private data of consumers that is leaked. Recently, consumers have
claimed control and rights over their personal data. Legal frameworks
have been built around data privacy, forcing businesses to consider data
protection more seriously.

Most famously the GDPR, a law on data protection and privacy,
is enforced in the European Union (EU) since May 25, 2018 [129]. It
contains regulations that strengthen the individual’s fundamental rights
in the digital age and clarify rules for businesses storing or processing
personal data of individuals in the EU. This law forces businesses to
consider security more seriously, as it is estimated that at least 25% of
software vulnerabilities have GDPR implications [130]. Non-compliance
with the general data processing principles in this law can result in signif-
icant fines, for example in June 2021, Amazon was fined €746 million1.
Two years after the implementation of the GDPR, the European Com-
mission (EC) found that individuals’ knowledge about data privacy has
increased, and as a result privacy has become a competitive quality for
companies which consumers are taking into account in their decision-
making [131].

Security is no longer just a necessary cost during development, but
businesses are able to see a more direct ROI for high quality software
security. Businesses put more effort into the appearance of having
trustworthy data protections in place, a process called trust manage-
ment [132, 133]. In this discipline, consumer trust is the end-goal and
good security practices are a means to this end. To convince consumers
and buyers of software to trust a product, businesses can acquire a seal
of approval from a third party to prove they adhere to certain stan-
dards. One such widely known certification is the International Orga-
nization for Standardization (ISO)/International Electrotechnical Com-
mission (IEC) 27000-series, or ISO27K for short. This series provides
best practice recommendations on information security management,
covering privacy, confidentiality, and other cybersecurity issues [134].
Other regimens that companies often aim to comply with are Payment

1https://www.enforcementtracker.com/ETid-778

186 CHAPTER 10. RELATEDWORK

Card Industry Data Security Standard (PCI DSS) and Health Insurance
Portability and Accountability Act (HIPAA). To add transparency, busi-
nesses can also provide a Software Bill of Materials (SBOM), that lists
all components used in their software [135]. Such an SBOM is most
easily produced using build tools as explained in Section 10.3.

In the United States (US) Biden Executive Order (EO) on Improving
the Nation’s Cybersecurity issued May 12, 2021 the National Institute
of Standards and Technology (NIST) was ordered to publish guidelines
regarding practices that enhance the security of the software supply
chain. Besides providing the purchaser with such a SBOM, there are
numerous other standards and procedures listed regarding trust, multi-
factor authentication, encryption, and use of automated security tools.
In this EO, NIST is directed to solicit input from the private sector and
academia to develop standards, tools, and best practices. Among the
more than 150 position papers, dr. Matias Madou, dr. Brian Chess, and
I have also submitted two. One position paper advises the creation of
a certification framework for education in secure development practices.
The second promotes the use of the paved path methodology. Both pa-
pers have been accepted and published on the NIST website [24]. Time
will tell if this EO makes as big of an impact as the GDPR.

Besides the GDPR and the US EO, there are of course similar laws
in other parts of the world such as the Data Protection Act in the United
Kingdom, the Privacy Act in Canada, and the Personal Data Protection
Bill in India.

Law enforcement access

No discussion on laws and data privacy would be complete without men-
tioning laws on the collection and storage of electronic communication
and their access by authorities. Many of these laws contain requirements
that force operators of end-to-end encrypted systems to undermine this
encryption, so that law enforcement can be provided access to user com-
munications. One such example is the draft considered by the Belgian
government at the end of September 20212. Under this law, operators
would have to be able to “turn off” encryption for specific users, essen-
tially creating so-called backdoor access. The consensus among cyber-
secruity experts is that there is no way to provide third-party access
like this to end-to-end encrypted communications, without also creating
encryption backdoors and vulnerabilities that can be exploited by mali-
cious third parties [136]. Creating a backdoor like this, undermines the

2https://ibpt.be/index.php/operateurs/publication/annexe-1-dispositif

10.2. DEVELOP 187

whole security of the system and puts its users at risk [137].
In other countries where similar legislations have passed, such as

Australia, research has shown that this has discouraged companies from
offering new end-to-end encrypted products [138]. It is safe to say that
policy makers and governments can have a significant influence on the
security of software products, for better or for worse.

10.2 Develop

Developer toolkits evolve over time, and many new technologies and
frameworks exist to help developers produce code more efficiently, and
more securely. As explained in Section 6.1, security tools are handed
to the developer as well because a shift left movement is ongoing to
try and identify possible security problems as early as possible in the
SDLC. These tools, however, still use a reactive testing-based approach
and can usually only identify security problems once sufficient code has
been developed. These tools will be discussed in the section on testing,
Section 10.4. In this section, I discuss tools and practices that help a
developer produce secure code from the start.

10.2.1 Lint

Linter tools are designed to allow the developer to concentrate solely
on the algorithms, data structures, and correctness of the program, and
only later, with the aid of lint, address non-functional aspects of the
code. They mostly focus on syntax and styleguide checking but some
tools are advanced enough to check for certain bugs as well. Depending
on their targets, linters perform their analyses with string-matching or
reduced versions of ASTs without symbol information. The more ad-
vanced lint tools perform similar analyses to Sensei, making use of the
entire AST. Lint tools are useful and commonly used, but they are not
often deployed for security purposes. Some examples of lint tools are
Error Prone3, Checkstyle4, PMD5, and SonarLint6 (Appendix F, battle-
card 1) by SonarSource. Lint tools are also often included by default
in IDEs such as AndroidStudio7 and IntelliJ IDEA8. Not many secu-

3http://errorprone.info/
4http://checkstyle.sourceforge.net/
5https://pmd.github.io/
6https://www.sonarlint.org/
7https://developer.android.com/studio/write/lint
8https://www.jetbrains.com/help/idea/code-inspection.html

188 CHAPTER 10. RELATEDWORK

rity rules are included in lint tools by default. Out of the tools above,
SonarLint supports the most, with 29 rules targeting vulnerabilities in
Java9. This is because lint tools require fast response times, and scan-
ning for vulnerabilities often takes longer-running analyses. Many lint
tools are open-source which means their rules can be customized to en-
force secure coding guidelines, but none are designed for easy and fast
customization of the rules.

10.2.2 Security patterns

Research has shown that adherence to secure coding guidelines leads to
more secure code [79, 139]. It comes as no surprise that many efforts exist
both in industry and in research to develop such guidelines. In contrast
with vulnerability lists, discussed in Section 10.4, these patterns provide
proactive guidelines targeting developers. Many of these guidelines can
be used as a basis to create Sensei recipes, or rules for similar tools,
provided they are specific enough.

Some provide sufficiently clear API-level instructions that can di-
rectly be implemented as recipes in our plugin. We have demonstrated
this by creating a rule set from The Android Application Secure De-
sign/Secure Coding Guidebook by the Japan Smartphone Security As-
sociation [140]. Other notable examples are the guidelines designed to
counter side-channel attacks, designed by Witteman [141], and the Or-
acle Coding Standards10. The Java code issues and transformations in
these guidelines fall clearly within the capabilities of Sensei.

Other guidelines are too generic and high level such as the work by
Schumacher et al. [142], or the OWASP Proactive Controls11. In order
to support these with Sensei or other tools, they need to be translated
into concrete guidelines and customized for the used APIs. For example,
the OWASP Proactive Control number 5 instructs to validate all inputs.
To apply this proactive control in practice, security libraries have to be
developed or selected to perform the input validations.

Some efforts have also been made to automatically generate rules
from code changes such as Paletov et al. [121]. As mentioned in Sec-
tion 9.2.1, in the future we also want to develop such automatic recipe
creation methods.

9https://rules.sonarsource.com/java/type/Vulnerability
10https://wiki.sei.cmu.edu/confluence/display/java
11https://owasp.org/www-project-proactive-controls/

10.2. DEVELOP 189

10.2.3 Security libraries and frameworks

Another solution to make developers adhere to coding guidelines, is to
implement them into frameworks or libraries. An example is the OWASP
ESAPI, an open-source application security control library that provides
clear replacement APIs for insecure JDK implementations [106]. As
mentioned in this work, Sensei recipes have already been developed to
support replacing banned methods with alternatives from the ESAPI as
a demonstration of library adoption recipes.

Popular web application frameworks provide methods for sanitizing
inputs and escaping outputs to prevent common vulnerabilities. These
frameworks create a paved path for developers to follow. We have ob-
served that these efforts result in useful code examples in the documen-
tation of frameworks that are easy to understand for developers. They
also make for easy development of Sensei recipes to adhere to these
guidelines. However, the implementation details of these methods are
sometimes lost to developers, and the results from this work show that
this can sometimes lead to increased difficulty locating vulnerabilities.

Nonetheless, this evolution in frameworks has shown to be effective
at preventing security problems as indicated by the position of injection
flaws and XSS in the OWASP top 10. Despite XSS attempts remaining
common [1], the vulnerability has moved from third place in 2013, to
seventh place in 2017. In 2021 it is likely to merge with injection flaws,
as shown in Figure 5.1 on page 93. After being the top category since
2013, injection flaws are likely to move down to the third position in the
OWASP top 10 2021.

10.2.4 Artificial intelligence code completion

Recently some tools have emerged to help developers produce code more
efficiently with the help of Artificial Intelligence (AI). Some examples of
AI code completion tools are Copilot12, tabnine13 (formerly codota14),
and kite15. The most famous, Copilot, is a service created by GitHub
and OpenAI described as “Your AI pair programmer”. It functions as a
plugin for Visual Studio Code that generates code based on the current
file formats.

Copilot is trained on public code and text from the internet, includ-
ing public repositories on GitHub. It uses context from the IDE to

12https://copilot.github.com/
13https://www.tabnine.com/
14https://www.codota.com/
15https://www.kite.com/

190 CHAPTER 10. RELATEDWORK

provide suggestions in the code that is being developed.
Many developers that used Copilot found that it was accurate, and

often improved their productivity. Generally, when developers struggle
with the implementation of a feature, they will often Google it. In
many cases they will either find documentation or a Stack Overflow
post that will point them to a solution. It still requires judgement from
the developer to decide if the solution is correct and secure.

Similarly, the code suggestions Copilot provides are only as secure
as the repositories it was trained on. Copilot was used to complete
1,692 code scenarios with risk of introducing vulnerabilities. Researchers
found that in 40% of cases the suggested code was vulnerable [143]. It
is clear that it the developer’s judgment is still required to ensure the
produced code is secure.

10.3 Build

There is an evolution in software development towards increasingly itera-
tive and feedback-driven strategies. Most noticeable is the Agile develop-
ment model, formally introduced in 2001, where customer collaboration
and responsiveness to change are key components [144]. The highest
priority in this model is to satisfy the customer through continuous de-
livery of valuable software, by welcoming changing requirements, even
late in the development process. Working software has to be delivered
frequently, in a couple of weeks to a couple of months. Product manage-
ment and developers have to work closely together to set priorities and
iteratively deliver minimal viable products and improvements. In this
process, individuals and interactions are prioritized over processes and
tools, and working software is prioritized over comprehensive documen-
tation. The Scrum framework is frequently used to implement this type
of development strategy [145]. Generally, security benefits from things
that hold still. When the codebase remains the same for longer, the se-
curity team has more time to test and fix the security of the code. The
increased rate of change has made the job of the security professional
more challenging.

10.3.1 Build tools

Building on agile practices, DevOps aims for complete end-to-end au-
tomation of not only software development, but also delivery. In aca-
demic research, there is not yet a clear definition for DevOps, but it is
most often characterized by cross-functional teams and shared owner-

10.3. BUILD 191

ship [146, 147]. Quality deliveries with short release cycles need a high
degree of automation, and many tools have been developed to assist with
this automation.

Build tools are used for compiling code, they often include so-called
package or dependency managers to centralize project dependencies.
Some examples of build tools and package managers are Ant16, Maven17,
Gradle18, Pip 19, and Yarn20.

Managing dependencies centrally like this, makes it easy to monitor
and update them to newer versions. This also provides a centralized
overview of all software components used to create an SBOM as ex-
plained in Section 10.1.

10.3.2 Software composition analysis

Use of vulnerable and outdated components is a common vulnerability
category, and part of the OWASP top 10. Many Software Component
Analysis (SCA) tools exist that scan build files and alert developers when
any of the used dependencies contain vulnerabilities.

Some notable tools are Snyk Open Source (battlecard 2), Depend-
abot (battlecard 4) and GitLab Dependency Scanner (battlecard 5).
These tools are typically integrated into the code repository and run
regular scans. Use of vulnerable components is a vulnerability that can
be introduced after initial development because dependencies are (sup-
posed to be) updated frequently. It makes sense to integrate this type
of security tool in the code repository rather than development tools. In
the development tool, many developers would get notified of an outdated
dependency at the same time, while likely few of them would be working
on the build file. This would either result in many EFPs, or in the same
fix being applied by multiple developers. Remediation for these vulner-
abilities is often simply bumping the dependency to the newest version,
and results from the 2PL model show that developers have no difficulty
fixing this type of vulnerability. As remediation guidance, SCA tools
often create automated pull requests that update dependencies to a se-
cure version. This process is intuitive and well integrated with existing
developer workflows.

However, some challenges remain in this field, as in some program-
ming languages over 70% of vulnerabilities are in transitive dependen-

16https://ant.apache.org/
17https://maven.apache.org/
18https://gradle.org/
19https://pypi.org/project/pip/
20https://classic.yarnpkg.com/en/

192 CHAPTER 10. RELATEDWORK

cies [148]. Transitive dependencies can not be easily updated since they
are not in direct control of the developer. With some package managers
(such as Maven) it is possible to exclude a transitive dependency and
manually download the newest version. This comes with the risk of run-
time errors if the newest version contains any breaking changes, since
the developer has no control over the code in the direct dependency
where these breaking changes may cause errors. It can also suffice to
verify that the methods containing vulnerabilities are not used in the
code. These methods can also be excluded or replaced with so-called
monkey-patches21. All these options require more intimate knowledge
of the package manager or the dependencies being used and make fix-
ing this vulnerability type more complex than it is often represented in
training.

10.4 Test

Software security initially started as part of software testing [99]. Today,
still, most security practices are deployed in the testing phase. Some
part of software security will always be reactive. Like all other parts
of computer science, security keeps advancing, and we will always know
more tomorrow than we know today.

So while many novel security tools and practices have been intro-
duced and proven to be effective, new practices generally do not replace
old ones. Instead, they are added to the arsenal of weapons that is avail-
able for development and security teams. In this section, I describe new
tools and practices as well as some traditional ones, as I believe they will
remain relevant, even if new tools and practices are being introduced.

10.4.1 Penetration testing

Penetration testing is the practice of breaking into running software
by attacking it. Sometimes, the penetration tester has access to the
source code to speed up this process. It is a common practice used by
many companies and usually external experts are hired to perform these
tests [5, 149]. Since the penetration tester needs access to the running
software this can only be done late in the SDLC. Already in the intro-
duction, we addressed that relying on security experts does not scale
well. Furthermore, it does not integrate well in modern development
strategies, where fast feedback cycles and frequent releases are key [150].

21https://docs.plone.org/appendices/glossary.html#term-Monkey-patch

10.4. TEST 193

Penetration testing does improve the security awareness of the develop-
ers, but does not cause any long-lasting change in development practices
by itself [151].

10.4.2 Code reviews

To develop new features or fix bugs, a developer starts from a copy of the
current codebase. As other developers submit changed code, this copy
gradually ceases to reflect the main (or master) version. The longer
development continues, the greater the risk of conflicts when merging
work back into the main version. A code review is a manual inspection
of produced code that is performed when this work is merged back. It
is usually done by another developer than the original author but with
that author present. Code reviews have a clear positive impact on the
presence of vulnerabilities [79]. They also provide an educational aspect
for the developer whose code is reviewed [152]. The downside is that,
similarly to penetration testing, it relies on internal or external experts
and hence does not scale well.

Continuous Integration (CI) tools are developed to automatically
build and review code as frequently as possible when the working copies
of developers are merged into a shared main version. A build server is
usually set up for this purpose, which will build and test the code after
every commit and report the results back to the developers. This testing
is done with automated tools, such as static analysis tools.

10.4.3 Static analysis

Static analysis tools, often called Static Application Security Testing
(SAST) tools, are well researched [153–155] and commonly used to de-
tect vulnerabilities [4, 5, 149]. Most tools can run automatically, and
are easily adapted in modern development strategies as a result. Static
analysis tools vary from robust and time-consuming analyses such as
Fortify [156] (battlecard 13-14) and Veracode (battlecard 16) to light
real-time analyses [157]. Several resources exist to help compare differ-
ent tools, such as the OWASP list of source code analysis tools22 and
list of vulnerability scanning tools23, as well as Kompar24 which allows
easy comparison between static analysis tools. In controlled experiments,
static analysis tools proved to be more effective than penetration test-
ing [158].

22https://owasp.org/www-community/Source_Code_Analysis_Tools
23https://owasp.org/www-community/Vulnerability_Scanning_Tools
24https://kompar.tools/

194 CHAPTER 10. RELATEDWORK

As explained in this work, frequent testing is useful, but analyses
of traditional security tools often run too long to be well-integrated in
developer workflows. These tools are often seen as a big inhibitor for
the developer’s productivity. To mitigate this, a shift left movement is
ongoing to apply them as early as possible in the SDLC.

However, static analysis tools require sufficient code to be completed
in order to detect vulnerabilities, and hence can usually not be used in a
proactive manner. By customizing the rules, some tools can be tailored
to ignore context, which can speed up their analyses even if they were
not designed with this in mind. But even if local versions of the analyses
perform well, they often do not provide fixes to resolve the discovered
issues and hence do not enforce a paved path. They cannot be applied
in a pro-active manner, like Sensei can. Examples of tools that provide
fixes in the code review stage are Tricorder [107] (battlecard 11), its
open-source version Shipshape (battlecard 12), Semgrep (battlecard 9)
or Reshift Security25. Research with Tricorder showed that most de-
velopers go back to their IDE rather than use the code review tool to
resolve the issues [107].

10.4.4 IDE-based static analysis

Because developers prefer to remediate problems in their IDE, and as
part of the shift left movement, many static analysis tools are now avail-
able as IDE plugins as well. For some tools no effort has been made
to adapt them to better suit the developer. They still perform identical
analyses to the original tool, either remotely or locally. Examples of plu-
gins like this are FindBugs (battlecard 6) and Spotbugs (battlecard 7).
Some tools prevent the developer from making changes to the code while
the scan is in progress. This is the case for the Fortify Security Assistant
(battlecard 15).

Performing the full scan, however, often takes too long and as a re-
sult these tools are not very usable. In an attempt to be more developer-
friendly, other tools provide lightweight versions of the analyses, such as
Fortify Security Assistant (FSA) (battlecard 15) as a lightweight ver-
sion of Fortify on Demand (FOD) (battlecard 14), or Veracode Green-
light (battlecard 17) as a lightweight version of Veracode Static Analysis
(battlecard 16).

In this case, the plugin is often not able to detect the complete set
of vulnerabilities that the original tool is capable of. The goal is to
provide faster feedback loops to the developer, with the drawback that

25https://www.reshiftsecurity.com/

10.4. TEST 195

1 Cipher.getInstance("DES");

Listing 10.1: Insecure use of a deprecated cryptographic algorithm

some of the vulnerabilities will go unnoticed. But by detecting a portion
of the vulnerabilities earlier in the SDLC, they become easier and less
expensive to fix. All the other vulnerabilities are still caught when the
fully capable tool is used in later phases of the SDLC

10.4.5 Rule customization

For these tools to be most effective, their rules should be tailored specif-
ically to the organization’s coding standards and target vulnerabilities
relevant to the organization [4, 5]. As described in this work, this also
prevents false positives and EFPs, thus improving usability for develop-
ers and ensuring continued use of the tool.

Some tools do not allow customization of the rules, such as Reshift
security, Snyk Code (battlecard 3), and Veracode (battlecard 16,17).
Among the tools that do, different approaches exist. In this section,
these approaches will be demonstrated with a rule to detect the use
of the deprecated cryptographic algorithm Data Encryption Standard
(DES) in Java. The insecure line of code that needs to be marked is
shown in Listing 10.1.

API

The first method of rule customization is through use of an API. These
tools require the rule-writer to write code that extends the functionality
of tool so that it performs additional analyses. The tool, or sometimes
only the extension itself, then needs to be built into a new executable
that can be used to analyse software products. For Shipshape it is even
required to expose this executable as a service using a docker image26.

Creating detectors through an API allows for sufficient flexibility,
but makes it more complex to develop and test custom rules. SpotBugs
(battlecard 7) is an example of a tool that uses an API for rule cus-
tomization by creating so-called third party “detectors” [159]. These
detectors have to be implemented and compiled into a SpotBugs plugin.
FindSecBugs [160] is a popular security plugin for SpotBugs. A detector
to mark use of the DES algorithm is already implemented by the Find-
SecBugs plugin. In Listing 10.2, a snippet of the class DesUsageDetector

26https://github.com/google/shipshape

196 CHAPTER 10. RELATEDWORK

1 public class DesUsageDetector extends CipherDetector {
2 ...
3 @Override
4 int getCipherPriority(String cipher) {
5 cipher = cipher.toLowerCase();
6 if (cipher.equals("des") || cipher.startsWith("des/")) {
7 return Priorities.NORMAL_PRIORITY;
8 }
9 return Priorities.IGNORE_PRIORITY;

10 }
11 ...
12 }

Listing 10.2: Rule customization of SpotBugs is done through java code
using their API.

is shown that implements this detector. This code is copied from the
find-sec-bugs project on GitHub27. The class extends the abstract
class CipherDetector that is also implemented by the plugin, and hence
not an API provided by the original tool. To create a detector for such
a relatively simple example, multiple files and many lines of code are
already needed that require sufficient knowledge of the APIs. While the
creation of additional detectors is not as convenient as creating recipes
with Sensei, at least the distribution of detectors through a plugin is
convenient for users of the tool.

Other examples of tools that use APIs for rule customization are
JavaParser28, Tricorder (battlecard 11), Shipshape (battlecard 12), and
Ruleguard (battlecard 18).

Customquery language

To make customization of rules easier, some tools provide a custom query
language that makes abstractions of their API. They still require the
rule-writer to write code, but they usually provide more specific syntax
to make the development of rules easier.

Code Query Language (CodeQL) is an example of such a query lan-
guage. It is a free and open-source semantic code analysis engine that is
created with the goal to query code as if it were data. It borrows syntac-
tic elements from data query languages such as SQL as well as elements
from Java. CodeQL is used by the popular analysis platform Semmle
(battlecard 8). A CodeQL query that detects use of DES is shown in

27https://github.com/find-sec-bugs/find-sec-bugs
28http://javaparser.org/

10.4. TEST 197

1 import java
2 from MethodAccess call, Method method
3 where
4 call.getMethod() = method and
5 method.hasName("getInstance") and
6 method.getDeclaringType().hasQualifiedName("javax.crypto", "Cipher")

and
7 method.getParameter(0).toString().regexpMatch("DES.*")
8 select call

Listing 10.3: CodeQL query used by Semmle to find use of insecure
algorithm DES.

1 result = All.FindByName("*getInstance*",11,11);
2 result = result.FindByParameterValue(0,"DES",BinaryOperator.

IdentityEquality);

Listing 10.4: CxQuery query used by Checkmarx to find use of insecure
algorithm DES.

Listing 10.3. This query is less complex and easier to write compared
to using an actual API. CodeQL provides an online “Query console”
that makes development of these queries easier. It provides syntax high-
lighting and auto-completion. With this console it is also possible to
test the queries on several demo projects. The available projects do not
necessarily contain the code a rule-writer is targeting, as was the case
for the example rule. None of the 7 available projects is using the DES
encryption algorithm.

The query language CxQuery by Checkmarx (battlecard 10) uses
regular Java syntax. It provides abstractions to iteratively filter results
based on certain properties of the code. Some knowledge of the API is
required, but Checkmarx provides clear and easy to understand docu-
mentation that contains lots of examples. The resulting query, shown
in Listing 10.4, is even shorter than the one for CodeQL and just as easy
to understand.

Other tools that are using a custom query language include jQAssis-
tant29, and Neo4J30.

29https://jqassistant.org/
30https://neo4j.com/

198 CHAPTER 10. RELATEDWORK

1 <Match>
2 <QualifiedName>javax.crypto.Cipher</QualifiedName>
3 <Method>getInstance</Method>
4 <Arguments>
5 <Argument>
6 <Index>0<Index>
7 <Value>
8 <ComparatorOperator>equals</ComparatorOperator>
9 <ExpectedValue>DES</ExpectedValue>

10 <ComparatorType>String</ComparatorType>
11 </Value>
12 <Argument>
13 </Arguments>
14 </Match>

Listing 10.5: SecureAssist rule to discover use of DES

Markup language

Some tools allow customization of the rules through markup languages
such XML and YAML. SecureAssist [161] (battlecard 21) is an exam-
ple of such a tool [162]. Additional rules can be added through a rule
pack configurator. Rules themselves are written in XML format and the
syntax is user-friendly and easily readable [163].

In Listing 10.5, an example rule is shown to discover uses of DES, as
a comparison the same rule for the Sensei plugin is shown in Listing 10.6.
SecureAssist’s rule syntax is similar to Sensei rules. However, creating
the rules requires learning their exact syntax, as no editor is provided,
rules are created using any text-editor. Sensei, on the other hand, pro-
vides a rule wizard, context-aware suggestions, and a GUI to edit the
rules as well as live-previews in the IDE. Sensei rules also support more
comprehensive features such as the concept of untrusted variables and
support for libraries.

Like Sensei, Semgrep (battlecard 9) uses YAML and its rule format
is also similar to that of Sensei. While it is intended to be used as a
testing tool, third-party plugins have been developed to use Semgrep in
the IDE, potentially making it a great tool for supporting the paved path
methodology. A rule to detect and fix use of DES is shown in Listing 10.7.
It is important to note that Semgrep is the first tool discussed in this
section that provides quick-fixes. Besides the search pattern and the
fix, the rule also includes metadata that is stored separately for Sensei
recipes, such as the category, severity level, and descriptions. Semgrep
rules have a few advanced features, such as the concept of metavariables,

10.4. TEST 199

1 search:
2 methodcall:
3 type: javax.crypto.Cipher
4 name: getInstance
5 args:
6 1:
7 type: java.lang.String
8 value: "DES"
9 availableFixes:

10 - name: "Change to use AES/GCM/NoPadding"
11 actions:
12 - rewrite:
13 to: '{{qualifier}}.getInstance("AES/GCM/NoPadding") '

Listing 10.6: Sensei recipe to discover use of DES

1 rules:
2 - fix: $CIPHER.getInstance("AES/GCM/NoPadding");
3 id: des-is-deprecated
4 languages:
5 - java
6 message: DES is considered deprecated. AES is the recommended cipher.
7 metadata:
8 category: security
9 cwe: "CWE-326: Inadequate Encryption Strength"

10 license: Commons Clause License Condition v1.0[LGPL-2.1-only]
11 owasp: "A3: Sensitive Data Exposure"
12 pattern: $CIPHER.getInstance("=~/DES/.*/");
13 severity: WARNING

Listing 10.7: Semgrep rule to discover use of DES

an abstraction made available to track variables such as method names
across the search pattern. The metavariable $CIPHER is used in the
example to define the fix. This is more user-friendly than the templating
language provided by Sensei where the rule-writer is required to know
the appropriate name of the element in the AST.

Semgrep provides a “Playground” on their website that allows recipe-
writers to develop and test rules. In this editor, a rule-writer can use the
“Advanced” view which is similar to Sensei’s code view. A “Simple” view
is available as well, but it does not provide the same level of support as
Sensei’s UI view does. As shown in Figure 10.1, this view still requires
the user to know and understand most of the YAML syntax. Testing is
unfortunately not real-time, but is completed in several seconds.

Semgrep also provides a few advanced features such as taint track-

200 CHAPTER 10. RELATEDWORK

F
igure

10.1:
Sem

grep’s
“Sim

ple”
view

in
the

P
layground

rule
editor

still
requires

use
of

the
Y

A
M

L
syntax.

10.4. TEST 201

ing which is similar to the concept of trusted input in Sensei. To use
taint tracking in a rule, sources and sinks need to be defined as well as
optional sanitizers. Since taint tracking requires a source to be specified,
it functions differently to the trusted input of Sensei, where all input
is untrusted by default. Using metavariables it is possible to create a
rule that prevents EFPs similarly to Sensei’s trusted input. Listing 10.8
shows a rule to detect potential OS command injections, the analogous
Sensei recipe is shown in Listing 7.4, but repeated here in Listing 10.9
for convenience.

1 rules:
2 - id: os-command
3 patterns:
4 - pattern: (Runtime $RUNTIME).exec($COMMAND)
5 - pattern-not: $RUNTIME.exec("$HARDCODED")
6 - pattern-not-inside: |
7 $COMMAND = getSafeCommand();
8 ...
9 $RUNTIME.exec($COMMAND);

10 message: OS Command test
11 languages: [java]
12 severity: ERROR

Listing 10.8: Semgrep rule to detect OS Command Injection.
Any commands passed on to the exec method that have not
been retrieved through getSafeCommand will be marked.

1 search:
2 methodcall:
3 name: "exec"
4 type: "java.lang.Runtime"
5 args:
6 1:
7 type: "java.lang.String"
8 containsUntrustedInput: true
9 trustedSources:

10 - methodcall:
11 name: "getSafeCommand"

Listing 10.9: Sensei recipe to detect OS command injection. Any
input is untrusted by default except input retrieved through
getSafeCommand. Untrusted input passed on to the exec
methodcall will be marked.

Other tools that use formatting languages to customize rules are
Fortify (battlecard 13-15), OpenRewrite (battlecard 19), ASIDE (bat-
tlecard 20), and GoKart (battlecard 22).

202 CHAPTER 10. RELATEDWORK

10.5 Release and deploy

High velocity of development and delivery is most easily achieved in Soft-
ware as a Service (SaaS) and other cloud computing delivery models. It
is easier to push frequent updates if there is only a single version of
the application running, hosted centrally and managed by the software
provider. Furthermore, because the service provider has access to user
data and behaviour, it is easier to collect feedback and make incremen-
tal improvements. Finally, it is more economically viable to adapt to
continuously changing requirements of customers, if the software is sold
on a subscription basis.

10.5.1 Infrastructure as code

To keep pace with this high velocity of software development, new tech-
nology has been developed to automate infrastructure and deployment.
With IaC, the process of managing and provisioning data centers is
done through machine-readable configuration files rather than hardware
configurations and interactive tools [164]. Most frequently these con-
figuration files are declarative, focusing on what the eventual target
configuration should be, rather than describing the necessary changes
to meet this configuration. Two big components are required for au-
tomated infrastructure, those are application deployment and runtime
orchestration.

Application deployment

Modern software applications often consist of a variety of services, such
as an API, a web front-end, a back-end application, logging services,
and services used for data analytics. To ease the deployment, and to
isolate services from each other, virtualization is used. In early virtu-
alization, a Virtual Machine Image (VMI) was created that contains
the service’s code and any requirements to run it, such as the OS and
the dependencies. A VMI is a form of hardware virtualization, each is
deployed as a guest on a host machine, providing its own OS with its
own kernel. Because of this, a Virtual Machine (VM) can be deployed
anywhere without requiring modifications to it. This also has the added
benefit of isolation between different services, so that each one has a
fixed amount of Central Processing Unit (CPU) processing power and
memory. However, they are large and take a lot of resources to store
and run.

10.5. RELEASEANDDEPLOY 203

1 # syntax=docker/dockerfile:1
2 FROM ubuntu:18.04
3 COPY . /app
4 RUN make /app
5 CMD python /app/app.py

Listing 10.10: Example of a Dockerfile to build and run a Python
application.

More modern technology moves from hardware virtualization to OS-
level virtualization. Here, the kernel of the host OS allows the existence
of multiple isolated user space instances, called containers. The most
popular container technology today is Docker31. With Docker, the ap-
plication and its dependencies are packaged in a virtual container that
can run on any OS. Docker containers are more lightweight, and a single
server or VM can run several containers simultaneously. A docker con-
tainer image is built by reading instructions from a Dockerfile32. This
file contains a selection of commands that a user could call on the com-
mand line interface to assemble the image. An example of a Dockerfile is
shown in Listing 10.10. The image is built from an ubuntu docker image.
Then the contents of the app directory are copied to the image and the
application is built using the make command. Finally the app is started.
Containers make it easy to control data and software components, and
make frequent updates such as security patches.

Docker promotes the use of multi-container applications, where each
service in the application is placed in its own container. This is done
through a docker-compose file, as shown in Listing 10.11. This example,
used during my research, sets up a mariaDB database and exposes it
on port 3306. It also creates a web interface called Adminer, hosted on
port 8080.

Placing separate services in their own containers like this improves
security, as containers run in isolation by default. Each container can
only access ports and files of other containers that are explicitly exposed
by them.

Docker increases the level of security in comparison to running ap-
plications directly on the host. It has features to more easily encrypt
volumes, manage secrets, and encrypt communication between contain-
ers, all helping to avoid some of the top categories in the OWASP top
10. But some misconfigurations can still downgrade the level of secu-

31https://www.docker.com/
32https://docs.docker.com/engine/reference/builder/

204 CHAPTER 10. RELATEDWORK

1 version: '3.1 '

2 services:
3 maria:
4 image: mariadb
5 ports:
6 - 3306:3306
7 volumes:
8 - mariadb:/var/lib/mysql
9 web:

10 image: adminer
11 ports:
12 - 8080:8080
13 volumes:
14 mariadb:

Listing 10.11: Example of a Dockerfile to build and run a Python
application.

rity and even introduce new vulnerabilities. Many guides and training
exist help developers secure Dockerfiles and other container technology,
including the SCW portal, the OWASP website33, and NIST34. Some
security tools, like Snyk, have adapted to scan for container misconfig-
urations, to detect, for example, use of open-source images with known
vulnerabilities.

Runtime orchestration

With runtime orchestration, the management of multiple physical servers
is being abstracted as well. An orchestration framework exposes a server
cluster as if it were a single pool of resources, and allows the installation
and management of containers across these servers from one centralized
host. Several runtime orchestration frameworks exist, with the most
popular being Kubernetes (K8s), originally designed by Google and now
maintained by the Cloud Native Computing Foundation (CNCF). Run-
time orchestration makes it easy to apply security practices such as
network encryption, authentication, and management of application se-
crets35.

Kubernetes is designed to be highly customizable and developers
must turn on certain features to make sure the resulting configuration

33https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_
Sheet.html

34https://csrc.nist.gov/publications/detail/nistir/8176/final
35https://kubernetes.io/docs/concepts/security/overview/

10.5. RELEASEANDDEPLOY 205

1 {
2 "management_chain": {
3 "bjorn": [
4 "pieter",
5 "bert"
6],
7 "alex": [
8 "gillis"
9]

10 }
11 }

Listing 10.12: Management chain data example for use in OPA.

is secure. More information can be found on the OWASP website36.

10.5.2 Policy as code

With policy as code, isolation and decoupling are applied to some of
the logic of the applications. A separate service is deployed that can be
queried to make policy decisions. One framework to run such a service
is Open Policy Agent (OPA), backed up by the CNCF.

To explain how policy decisions can be decoupled, I use the example
of authorization. In a budgeting application, a manager may be able
to access the salary of anyone who reports to them. To isolate the
necessary decisions from the application itself, the management chain
can be stored in the policy agent. In Listing 10.12, an example is shown
of how such a management chain can be stored in OPA.

It is then possible to define rules and execute queries based on this
data. In Listing 10.13, rules are shown that determine who is able to
access a salary. Users are allowed to see their own salary and that of
other users below them in the management chain.

The budgeting application can then make decisions by querying the
OPA service as shown in Listing 10.14.

Decoupling policy decisions has many advantages. It provides a cen-
tralized overview of policies and avoids redundancy in implementations.
In another application, for example, employees might be able to request
absence and these requests can be authorized by their manager, requiring
the same management chain to make authorization decisions. Instead
of implementing these decisions in the second application and possibly

36https://cheatsheetseries.owasp.org/cheatsheets/Kubernetes_Security_
Cheat_Sheet.html

206 CHAPTER 10. RELATEDWORK

1 default allow = false
2

3 allow {
4 input.method = "GET"
5 input.path = ["salary", id]
6 input.user_id = id
7 }
8

9 allow {
10 input.method = "GET"
11 input.path = ["salary", id]
12 managers = data.management_chain[id]
13 input.user_id = managers[_]
14 }

Listing 10.13: OPA rules that define who has access to the salary of
other users.

1 > input := {"method": "GET", "path": ["salary", "alex"], "user_id": "
gillis"}

2 > allow
3 false

Listing 10.14: Management chain data example for use in OPA.

10.5. RELEASEANDDEPLOY 207

even storing the data multiple times, the OPA service can be reused by
adding new rules.

Because of the declarative nature of the rules, they can be under-
stood easily, causing reduced complexity and hence reduced chance of
mistakes. The policy agent can be used to overcome several vulnerabili-
ties in OWASP top 10, such as authentication and authorization flaws,
as well as some business logic flaws.

By using a policy as code service, logging of the policy decisions
will also be done separately from application logs. This can make it
easier to monitor and detect abnormalities, partly mitigating the security
problem of excessive logging in the application.

208 CHAPTER 10. RELATEDWORK

Chapter 11

Conclusion

In this work, the focus is on improving the usability of the developer with
more targeted, role-specific training and tools. I propose a methodology
to improve collaboration between developers and security professionals,
called the paved path methodology. In line with this methodology, I
made improvements to both training and tools provided by Secure Code
Warrior (SCW).

If nothing else, take away from this chapter...

In the first part of this book, I designed and implemented an In-
telligent Tutoring System (ITS). First, the trained two-parameter
logistic model (2PL) model from the field of Item Response The-
ory (IRT) offered some useful insights in the mental model of the
developer. To speed up the slow estimation procedure for this
model, I created an approximation method that remained suffi-
ciently accurate long after initial calibration. This approximation
enables an accurate and easy-to-implement way to adapt existing
Collaborative Filtering (CF) algorithms to learning systems.
In part II, I evaluated the Integrated Development Environment
(IDE) plugin, called Sensei. The results from the experiments
show that customized rules and real-time remediation guidance
result in high engagement from the developers using the tool. To
encourage this customization of rules, a YAML Ain’t Markup
Language (YAML) based syntax and User Interface (UI) were
designed and evaluated. Security professionals reported that,
through this UI, customization of rules is easier than with com-
parable tools.

210 CHAPTER 11. CONCLUSION

11.1 Intelligent Tutoring System

The SCW training platform is usable and relevant to the needs of the
developers. It provides defense training, teaching developers to recognize
insecure code patterns and how to fix them. The training is available
in a wide variety of programming languages and frameworks. However,
there is still a significant part of users that only follow a minimal amount
of training. It is likely that the pacing of the predetermined courses and
tournaments does not fit their needs. This is confirmed through surveys,
where a portion of the users indicate they feel bored due to too much
repetition or frustrated because the content is moving too fast.

In this work, I aimed to improve the efficiency of the training by
adapting the learning pace to each individual user. To do this, I designed
an ITS consisting of three algorithmic components. These are exercise
selection, user ability estimation, and exercise difficulty estimation.

The latter two are achieved through calibrating a two parameter
logistic (2PL) model from the field of IRT. With the results of this
model, I have contributed insights into the mental model of a developer.
I have shown that both the vulnerability category and the language and
framework have a medium-sized effect on the difficulty of an exercise.
Some key findings are that languages that require memory management
result in increased difficulty, as well as the use of frameworks. For the
vulnerability category, results showed that the size of the related code
fragments is a big indicator of the difficulty. Design flaws that generally
require fixing of larger code fragments, showed a higher difficulty on
average.

Because the training of the 2PL model is slow, especially for large
data sets, I developed an approximation procedure that outperformed
several existing approximation methods from literature. This method
could be useful in many situations where full calibration procedures are
not appropriate.

Finally, the recommendation system itself was developed and evalu-
ated. In the set of CF algorithms that were tested, model-based algo-
rithms were outperformed by simpler memory-based algorithms. This
is likely because the advantages of model-based algorithms such as im-
proved capacity to deal with data sparsity, scalability, and synonyms
are not very applicable to the data set of the SCW training platform.

One of the main contributions of this work to the state of the art, is
the proposed adaptation of CF algorithms to learning systems. These
simple and easy-to-implement adaptations are applicable to many, if
not all, CF systems and have shown a significant increase in prediction

11.2. SENSEI 211

performance for all algorithms that have been tested.
Whether or not this recommendation system leads to increased en-

gagement remains to be tested after the ITS is implemented into the
SCW platform. This process will be gradually completed in several dis-
tinct steps. In the future, it is also the intention to extend the ITS so
that it uses data from integrations with other developer tools to provide
even more targeted training recommendations. Finally, the proposed
adaptations to learning systems could be tested on more CF algorithms
and more datasets.

The results from the 2PL model, however, also indicate that a gap
exists between knowledge and practice. Some of the most notorious vul-
nerability types in practice, such as injection vulnerabilities and Cross-
Site Scripting (XSS), are shown to be relatively easy to find and fix in
training. This suggests that education alone is insufficient. It is evi-
dently too hard for a developer to keep track of the security of the code
at all times while they are focused on the functionality instead. With
the right tools, such as Sensei, this burden can be alleviated and the
developer can be timely reminded of the security implications of their
work.

11.2 Sensei

There have been great advancements in the field of software security, as
explained in Chapter 10. Despite this, vulnerabilities still seem to be
present in all types of software. This is because advancements in devel-
opment methodologies have also greatly sped up development, resulting
in fast iterative releases. This increased rate of change has made the
job of security professionals more challenging. On top of that, security
professionals are understaffed and cannot adequately assist each of the
developers to fix their code.

A shift left movement is ongoing to attempt to address this problem.
In this movement, security becomes a shared responsibility among every-
one involved in the Software Development Life Cycle (SDLC). To help
developers secure their own code, they are given security training and
handed security tools. However, security training and tools are often
designed with security professionals in mind. They are using a reactive
approach, and scan for vulnerabilities. This approach requires sufficient
code and calling context to be completed, which means that developers
often have to go back to the code, potentially long after it was initially
developed. This clearly does not integrate well in developer workflows,
and it is no surprise that developers dislike and often disable these tools.

212 CHAPTER 11. CONCLUSION

Instead, they should be handed role-specific tools, so that they can re-
ceive proactive guidance that helps them more effectively and efficiently
produce secure code.

That is the intent of Sensei. In the related work, we have seen a
distinct lack of such security tools designed with the developer in mind.
With this work, we have created and evaluated such a tool. I helped
with the design and requirements of this tool that is implemented by
the engineering team at SCW. With Sensei, we take a fundamentally
different approach, enforcing guidelines regardless of the context, as the
code is being written. This will help developers produce secure code
from the start.

The contributions of this work include an evaluation of this tool and
some of its specific features. In the first experiment, I have evaluated
the effect of highly customized rules and remediation guidance in the
IDE. I was able to compare the results of this experiment to those of
similar experiments with other tools. I found that both the customiza-
tion of rules as well as the quick-fixes in the IDE itself lead to increased
engagement and trust from the developers.

Sensei is not the only tool that offers an easy-to-read rule syntax,
or features to more easily develop and test rules. However, usability
tests indicate that a UI that helps the rule-writer create rules without
requiring intimate knowledge of the rule syntax could be an important
feature. We are not currently aware of any other tools that provide such
a UI. Interviews with security professionals indicate that features in this
UI, such as the live preview, are useful and make development of rules
for Sensei easier than for comparable tools. They also indicated that the
requirement to create a quick-fix for a rule promotes closer cooperation
with colleagues that have a development background.

Based on the results of this work and those of related research, I rec-
ommend businesses to consider developer usability more closely and to
offer different role-specific tools to developers and security professionals
in their teams.

Future research could further expand on the security outcome of a
tool like Sensei. Previous work indicates that adhering to secure coding
guidelines and best practices leads to more secure code [79, 139]. Other
work has also shown that more vulnerabilities are eliminated if feedback
cycles are shorter [118]. The contributions of this work indicate that
when highly applicable remediation guidance is available, developers ac-
tively make use of it. In the future, the combination of these findings
could be validated to confirm that real-time guidance and quick-fixes
lead to more secure code.

11.3. PAVEDPATHMETHODOLOGY 213

11.3 Paved pathmethodology

New technology on its own will not turn the tide, but the proposed
solutions in this work will make it easier to make the required shift
in culture. A shift towards more human-centered and empathy-driven
software development processes and workflows.

This work started with the introduction of such a process, called
the paved path methodology. In this methodology, the security team
should gradually build a paved path for developers to follow. Together
with the developers, they should build standards and patterns that guide
the rest of the development team to develop secure code from the start.
The guidelines should be specific, Application Programming Interface
(API)-level instructions, that can be easily understood by developers,
and avoid security jargon.

By building a paved path, the security professionals can more easily
provide a service to developers, instead of forcing security testing on
them. A paved path approach like this can be encouraged with a tool
like Sensei. Because the security professional that is creating the rules is
now forced to also create a fix. To achieve this, they most likely need help
from members of the development team or at the very least colleagues
with a development background. Interactions like this result in closer
collaboration among the teams and hence more mutual empathy.

A shift like this does not happen overnight, and this work on its
own might not radically change software development. But with this
method, I advocate to pave the path towards secure development, and
take a step in the right direction. A step in the journey towards a more
human-centered future of software security.

214 CHAPTER 11. CONCLUSION

Appendix A

Challenges

A.1 Challenge creation

Challenges are created from a secure software application. To this appli-
cation vulnerabilities are introduced in separate git branches. By adding
a single vulnerability, five different challenges (L1-L5) can be created, as
described in Section 2.3. Some extra data is needed in order to generate
these exercises:

• Category and subcategory of the vulnerability type.

• A textual description explaining the insecurity.

• A textual description explaining the secure version.

• Line numbers of the code fragment containing the vulnerability.

• Sets of line numbers marking alternative code fragments. These
code fragments, usually called chunks, are used to generate the
possible options in a locate (L2) challenge.

• Three additional branches containing alternative but insecure so-
lutions to the insecurity. These branches are used to generate the
options to choose from in a fix (L3) challenge.

• A textual description for each insecure solution explaining why the
solution is suboptimal.

The difficulty D ∈ {1, 2, . . . , 100} of a challenge determines how
many insecure chunks ci (correct answers) and secure chunks cs (in-
correct answers) need to be marked. It also determines over how many
files f the markings need to be spread. The number of markings and
files is determined as shown in Equation A.1.

216 APPENDIX A. CHALLENGES

Table A.1: The maximum points awarded on completion of a challenge
depends on its difficulty.

Difficulty Points awarded
Easy 100
Medium 200
Hard 300

ci =

⌈

D

50

⌉

, (A.1a)

cs =

⌈

D

5

⌉

, (A.1b)

f =

⌈

D

15

⌉

, (A.1c)

This difficulty value D is split up in three tiers, a challenge is con-
sidered easy if D ∈ [0 − 35[, medium if D ∈ [35 − 70[and hard if
D ∈ [70 − 100]. For any challenge (L1-L5), D is an indication of the
probability of a correct blind guess when this challenge is presented as a
locate exercise (L2). This is likely not an accurate indication of the ac-
tual difficulty, which is dependent on many more factors, among which
the vulnerability type, code quality, and code complexity.

A.2 Scoring

A player on the SCW online learning platform is awarded points for
completing a challenge successfully. The amount of points depends on
the performance of the player and the difficulty of the challenge.

The maximum points a player can gain for the successful completion
of a challenge is determined by its difficulty tier, as shown in Table A.1.

The amount of points actually awarded depends on the performance
of the player. The player loses points if they need multiple attempts or
uses hints to find the correct answer.

Using hints comes with a penalty that decreases the maximum num-
ber of points that can still be gained. This penalty stacks for each
hint until all hints are used, and the total penalty reaches 100%, which
means that no more points can be scored. This is because, ultimately,
in every type of challenge the hints start to remove incorrect options
until only the correct option is left. No points should be awarded when

A.2. SCORING 217

Table A.2: The penalties for each hint depend on the type of challenge.
Using all hints always results in a total penalty of 100%.

Hint
Penalty (%)

Identify Locate Fix
1 0 0 -33
2 -5 -50 -33
3 -35 -50 -34
4 -60 — —

Table A.3: The points awarded for each number of failed attempts in
the three scoring methods.

Failed attempts
Points Awarded (%)

Forgiving Default Aggressive
0 100 100 100
1 60 60 60
2 30 30 0
3 10 0 —
4 5 — —
5 0 — —

only the correct option is left. The penalty for using a hint depends on
which type of challenge is faced. The reasoning behind this is that some
challenge types have more hints available then others. For an identify
exercise, for example, it impossible to provide a hint containing a video
that explains the vulnerability type in detail, as this would give away
the correct answer. An overview of the penalty for each hint in each
type of exercise is shown in Table A.2.

The amount of points that is actually awarded upon completing an
exercise depends on the amount of attempts that were needed to find
the correct answer. How many of the maximum points are still awarded
depends on which scoring method is used, as shown in Table A.3.

218 APPENDIX A. CHALLENGES

Appendix B

Games-Howell post-hoc tests

Table B.1: p-values of the Games-Howell post-hoc tests for the vulnera-
bility categories.

Access control Business logic flaws 0.0359

Access control Cryptography 0.0110

Access control CSRF 0.0010

Access control Injection 0.0010

Access control Poor authorization 0.0010

Access control Session Management 0.0010

Access control Use of vulnerable components 0.0011

Access control XXE 0.0021

Authentication Business logic flaws 0.0010

Authentication CSRF 0.0010

Authentication DoS 0.0039

Authentication Injection 0.0010

Authentication Poor authorization 0.0010

Business logic flaws Cryptography 0.0010

Business logic flaws ICS 0.0010

Business logic flaws Improper platform usage 0.0010

Business logic flaws Information exposure 0.0010

Business logic flaws Injection 0.0010

Business logic flaws Insufficient logging 0.0010

Business logic flaws Transport layer protection 0.0010

Business logic flaws Mass assignment 0.0254

Business logic flaws Memory errors 0.0055

Business logic flaws Misconfiguration 0.0010

Business logic flaws Session Management 0.0010

Business logic flaws URAF 0.0010

Business logic flaws Use of vulnerable components 0.0010

Business logic flaws XXE 0.0010

Broken cryptography Injection 0.0048

Code tampering Cryptography 0.0020

Code tampering improper platform usage 0.0121

Continued on next page

220 APPENDIX B. GAMES-HOWELLPOST-HOCTESTS

Code tampering Injection 0.0010

Code tampering Session Management 0.0010

Code tampering URAF 0.0347

Code tampering Use of vulnerable components 0.0010

Code tampering XXE 0.0010

Cryptography CSRF 0.0010

Cryptography DoS 0.0010

Cryptography Transport layer protection 0.0011

Cryptography Poor authorization 0.0010

Cryptography XSS 0.0010

CSRF ICS 0.0010

CSRF Improper platform usage 0.0010

CSRF Information exposure 0.0010

CSRF Injection 0.0010

CSRF Insufficient logging 0.0010

CSRF Transport layer protection 0.0010

CSRF Transport layer protection 0.0068

CSRF Mass assignment 0.0117

CSRF Memory errors 0.0010

CSRF Misconfiguration 0.0010

CSRF Session Management 0.0010

CSRF URAF 0.0010

CSRF Use of vulnerable components 0.0010

CSRF XSS 0.0010

CSRF XXE 0.0010

DoS ICS 0.0088

DoS Improper platform usage 0.0010

DoS Information exposure 0.0023

DoS Injection 0.0010

DoS Insufficient logging 0.0010

DoS Transport layer protection 0.0021

DoS Memory error 0.0277

DoS Misconfiguration 0.0010

DoS Session Management 0.0010

DoS URAF 0.0010

DoS Use of vulnerable components 0.0010

DoS XXE 0.0010

ICS Injection 0.0010

ICS Poor authorization 0.0010

Improper platform usage Poor authorization 0.0010

Improper platform usage XSS 0.0415

Information exposure Injection 0.0010

Information exposure Poor authorization 0.0010

Injection Insecure authentication 0.0021

Injection Insufficient logging 0.0388

Injection Transport layer protection 0.0010

Injection memory 0.0037

Injection Misconfiguration 0.0010

Injection Poor authorization 0.0010

Injection Reverse engineering 0.0357

Continued on next page

221

Injection Unintended data leakage 0.0010

Injection XSS 0.0010

Insecure authentication XXE 0.0209

Insufficient logging Poor authorization 0.0010

Transport layer protection Poor authorization 0.0010

Transport layer protection Poor authorization 0.0010

Transport layer protection Session Management 0.0010

Transport layer protection Use of vulnerable components 0.0010

Transport layer protection XXE 0.0010

Mass assignment Poor authorization 0.0010

Memory error Poor authorization 0.0010

Misconfiguration Poor authorization 0.0010

Poor authorization Session Management 0.0010

Poor authorization Unintended data leakage 0.0060

Poor authorization URAF 0.0010

Poor authorization Use of vulnerable components 0.0010

Poor authorization XSS 0.0010

Poor authorization XXE 0.0010

Session Management Unintended data leakage 0.0207

Session Management XSS 0.0010

Unintended data leakage Use of vulnerable components 0.0295

Unintended data leakage XXE 0.0112

Use of vulnerable components XSS 0.0010

XSS XXE 0.0010

Table B.2: p-values of the Games-Howell post-hoc tests for the frame-
works

Angular One C 0.0251

Angular One C#.NET Web Forms 0.0485

Angular One Cobol 0.0093

Angular One C++ 0.0181

Angular One Go 0.0047

Angular One Java Android 0.0335

Angular One Java EE 0.0273

Angular One JavaScript Angular.io 0.0252

Angular One JavaScript React 0.0237

Angular One NodeJS Express 0.0331

Angular One Objective C iOS 0.0200

Angular One Python Django 0.0212

Angular One Swift 0.0237

C C#.NET 0.0010

C Java EE API 0.0010

C Java Servlets 0.0010

C Java Spring API 0.0010

C Java 0.0010

C Pseudocode 0.0010

C Python Flask 0.0010

Continued on next page

222 APPENDIX B. GAMES-HOWELLPOST-HOCTESTS

C Python 0.0124

C Terraform 0.0010

C#.NET Core Java EE API 0.0309

C#.NET Core Java Servlets 0.0010

C#.NET Core Java Spring API 0.0094

C#.NET Core Java 0.0017

C#.NET Core Pseudocode 0.0452

C#.NET Core Python Flask 0.0050

C#.NET Core Terraform 0.0076

C#.NET MVC Cobol 0.0039

C#.NET MVC Go 0.0010

C#.NET MVC Java Servlets 0.0010

C#.NET MVC Java Spring API 0.0209

C#.NET MVC Java 0.0033

C#.NET MVC Python Flask 0.0114

C#.NET MVC Terraform 0.0170

C#.NET C#.NET Web Forms 0.0093

C#.NET Cobol 0.0010

C#.NET C++ 0.0010

C#.NET Go 0.0010

C#.NET Java Android 0.0137

C#.NET Java EE 0.0010

C#.NET Java Servlets 0.0052

C#.NET JavaScript Angular.io 0.0010

C#.NET JavaScript React 0.0010

C#.NET NodeJS Express 0.0025

C#.NET Objective C iOS 0.0262

C#.NET Python Django 0.0010

C#.NET Swift 0.0010

C#.NET Web API Java Servlets 0.0015

C#.NET Web Forms Go 0.0037

C#.NET Web Forms Java EE API 0.0052

C#.NET Web Forms Java Servlets 0.0010

C#.NET Web Forms Java Spring API 0.0019

C#.NET Web Forms Java 0.0010

C#.NET Web Forms Pseudocode 0.0010

C#.NET Web Forms Python Flask 0.0010

C#.NET Web Forms Terraform 0.0021

AWS CloudFormation Go 0.0389

Cobol Java EE API 0.0010

Cobol Java Servlets 0.0010

Cobol Java Spring 0.0010

Cobol Java Spring API 0.0010

Cobol Java 0.0010

Cobol PhP Symfony 0.0046

Cobol PLSQL 0.0019

Cobol Pseudocode 0.0010

Cobol Python Flask 0.0010

Cobol Python 0.0010

Cobol Terraform 0.0010

Continued on next page

223

C++ Java EE API 0.0010

C++ Java Servlets 0.0010

C++ Java Spring 0.0073

C++ Java Spring API 0.0010

C++ Java 0.0010

C++ PhP Symfony 0.0265

C++ PLSQL 0.0337

C++ Pseudocode 0.0010

C++ Python Flask 0.0010

C++ Python 0.0010

C++ Terraform 0.0010

docker:vanilla Java Servlets 0.0043

Go Java EE API 0.0010

Go Java Servlets 0.0010

Go Java Spring 0.0010

Go Java Spring API 0.0010

Go Java 0.0010

Go PhP Symfony 0.0010

Go PLSQL 0.0010

Go Pseudocode 0.0010

Go Python Flask 0.0010

Go Python 0.0010

Go Terraform 0.0010

Java Android Java EE API 0.0035

Java Android Java Servlets 0.0010

Java Android Java Spring API 0.0011

Java Android Java 0.0010

Java Android Pseudocode 0.0014

Java Android Python Flask 0.0010

Java Android Terraform 0.0010

Java EE Java EE API 0.0010

Java EE Java Servlets 0.0010

Java EE Java Spring API 0.0010

Java EE Java 0.0010

Java EE Pseudocode 0.0010

Java EE Python Flask 0.0010

Java EE Python 0.0055

Java EE Terraform 0.0010

Java EE API Java Servlets 0.0203

Java EE API Java Spring 0.0381

Java EE API JavaScript Angular.io 0.0010

Java EE API JavaScript React 0.0010

Java EE API Kotlin 0.0146

Java EE API NodeJS Express 0.0015

Java EE API Objective C iOS 0.0035

Java EE API Python Django 0.0010

Java EE API Swift 0.0010

Java JSF Java Servlets 0.0386

Java Servlets Java Spring 0.0010

Java Servlets Java Spring API 0.0468

Continued on next page

224 APPENDIX B. GAMES-HOWELLPOST-HOCTESTS

Java Servlets Java 0.0206

Java Servlets JavaScript Angular.io 0.0010

Java Servlets JavaScript React 0.0010

Java Servlets Kotlin 0.0010

Java Servlets Kubernetes 0.0015

Java Servlets NodeJS Express 0.0010

Java Servlets Objective C iOS 0.0010

Java Servlets PhP Symfony 0.0221

Java Servlets PLSQL 0.0012

Java Servlets Pseudocode 0.0046

Java Servlets Python Django 0.0010

Java Servlets Python 0.0040

Java Servlets Ruby on Rails 0.0022

Java Servlets scala:play 0.0128

Java Servlets Swift 0.0010

Java Servlets Terraform 0.0337

Java Spring Java Spring API 0.0126

Java Spring Java 0.0010

Java Spring Pseudocode 0.0087

Java Spring Python Django 0.0185

Java Spring Python Flask 0.0068

Java Spring Terraform 0.0110

Java Spring API JavaScript Angular.io 0.0010

Java Spring API JavaScript React 0.0010

Java Spring API Kotlin 0.0046

Java Spring API NodeJS Express 0.0010

Java Spring API Objective C iOS 0.0010

Java Spring API Python Django 0.0010

Java Spring API Swift 0.0010

Java JavaScript Angular.io 0.0010

Java JavaScript React 0.0010

Java Kotlin 0.0010

Java NodeJS Express 0.0010

Java Objective C iOS 0.0010

Java Python Django 0.0010

Java Swift 0.0010

JavaScript Angular.io Pseudocode 0.0010

JavaScript Angular.io Python Flask 0.0010

JavaScript Angular.io Python 0.0074

JavaScript Angular.io Terraform 0.0010

JavaScript React Pseudocode 0.0010

JavaScript React Python Flask 0.0010

JavaScript React Python 0.0047

JavaScript React Terraform 0.0010

Kotlin Pseudocode 0.0097

Kotlin Python Flask 0.0024

Kotlin Terraform 0.0039

NodeJS Express Pseudocode 0.0010

NodeJS Express Python Flask 0.0010

NodeJS Express Python 0.0482

Continued on next page

225

NodeJS Express Terraform 0.0010

Objective C iOS Pseudocode 0.0113

Objective C iOS Python Flask 0.0010

Objective C iOS Terraform 0.0010

PhP Symfony Python Django 0.0399

Pseudocode Python Django 0.0010

Pseudocode Swift 0.0010

Python Django Python Flask 0.0010

Python Django Python 0.0015

Python Django Terraform 0.0010

Python Flask Swift 0.0010

Python Swift 0.0072

Swift Terraform 0.0010

226 APPENDIX B. GAMES-HOWELLPOST-HOCTESTS

Appendix C

CF algorithmmeasurements

228 APPENDIX C. CFALGORITHMMEASUREMENTS

T
able

C
.1:

T
he

M
ean

A
bsolute

E
rror

(M
A

E
)

(sm
aller

is
b

etter),
R

oot
M

ean
Squared

E
rror

(R
M

SE
)

(sm
aller

is
b

etter),
and

Fraction
of

C
oncordant

P
airs

(F
C

P
)

(larger
is

b
etter)

for
the

default
configuration

of
all

available
C

F
algorithm

s.
T

he
baseline

algorithm
is

the
b

est
p

erform
ing

b
enchm

ark.
A

m
ong

the
m

em
ory-based

algorithm
s,

the
k-nearest

neighb
ours

(k-N
N

)
baseline

is
the

b
est

p
erform

ing.
For

the
m

odel-based
algorithm

s
SV

D
+

+
has

the
m

ost
accurate

predictions.

M
A

E
R

M
SE

F
C

P
µ
a

σ
m
a
x

µ
a

σ
m
a
x

µ
a

σ
m
a
x

B
enchm

ark
A
lgorithm

s
N

orm
al

P
redictor

0.7782
0.003

0.9761
0.003

0.4999
0.003

B
aseline

0.5004
0.002

0.6169
0.003

0.6049
0.004

M
em

ory-based
algorithm

s
k-N

N
basic

0.4786
0.002

0.6087
0.003

0.6206
0.005

k-N
N

w
ith

m
eans

0.4747
0.002

0.6086
0.003

0.6157
0.003

k-N
N

w
ith

z-score
0.4771

0.002
0.6145

0.003
0.6144

0.004
k-N

N
baseline

0.4680
0.002

0.6009
0.003

0.6200
0.004

Slop
e

O
ne

0.4928
0.002

0.6186
0.003

0.5953
0.004

M
odel-based

algorithm
s

C
o-C

lustering
0.4999

0.007
0.6398

0.005
0.5927

0.007
P

M
F

0.4783
0.003

0.6123
0.003

0.6118
0.005

N
M

F
0.4835

0.002
0.6130

0.003
0.6018

0.006
SV

D
0.4750

0.003
0.6017

0.003
0.6107

0.004
SV

D
+

+
0.4591

0.003
0.5911

0.004
0.6184

0.004

229

T
ab

le
C

.2
:

M
ea

su
re

m
en

ts
fo

r
it

em
-b

as
ed

ve
rs

us
us

er
-b

as
ed

k-
N

N
al

go
ri

th
m

s.
It

em
-b

as
ed

co
nfi

gu
ra

ti
on

s
p

er
fo

rm
w

or
se

fo
r

al
l

al
go

ri
th

m
s.

M
A

E
R

M
SE

F
C

P
µ
a

σ
m

a
x

µ
a

σ
m

a
x

µ
a

σ
m

a
x

k-
N

N
ba

si
c

us
er

-b
as

ed
0.

47
86

0.
00

2
0.

60
87

0.
00

3
0.

62
06

0.
00

5
k-

N
N

ba
si

c
it

em
-b

as
ed

0.
51

05
0.

00
2

0.
65

23
0.

00
3

0.
61

55
0.

00
4

+
6.

7%
+

7.
2%

-1
%

k-
N

N
w

it
h

m
ea

ns
us

er
-b

as
ed

0.
47

47
0.

00
2

0.
60

86
0.

00
3

0.
61

57
0.

00
3

k-
N

N
w

it
h

m
ea

ns
it

em
-b

as
ed

0.
48

16
0.

00
2

0.
61

39
0.

00
3

0.
61

57
0.

00
3

+
1.

3%
+

1.
0%

-0
.0

%
k-

N
N

w
it

h
z-

sc
or

e
us

er
-b

as
ed

0.
47

71
0.

00
2

0.
61

45
0.

00
3

0.
61

51
0.

00
4

k-
N

N
w

it
h

z-
sc

or
e

it
em

-b
as

ed
0.

48
22

0.
00

2
0.

61
84

0.
00

3
0.

61
44

0.
00

3
+

1.
0%

+
0.

1%
-0

.1
%

k-
N

N
ba

se
lin

e
us

er
-b

as
ed

0.
46

80
0.

00
2

0.
60

09
0.

00
3

0.
62

00
0.

00
4

k-
N

N
ba

se
lin

e
it

em
-b

as
ed

0.
48

07
0.

00
3

0.
61

30
0.

00
3

0.
61

65
0.

00
4

+
2.

6%
+

2.
0%

-0
.1

%

230 APPENDIX C. CFALGORITHMMEASUREMENTS

T
able

C
.3:

M
easurem

ents
for

each
algorithm

and
sim

ilarity
m

etric
com

bination.
For

each
algorithm

the
baseline

sim
ilarity

m
etric

is
the

m
ost

accurate.

M
A

E
R

M
SE

F
C

P
µ
a

σ
m

a
x

µ
a

σ
m

a
x

µ
a

σ
m

a
x

k-N
N

basic
M

SD
0.5105

0.002
0.6523

0.003
0.6148

0.003
k-N

N
basic

C
osine

0.5212
0.003

0.6719
0.004

0.5668
0.004

k-N
N

basic
P

earson
0.4964

0.003
0.6529

0.004
0.5809

0.006
k-N

N
basic

B
aseline

0.4902
0.003

0.6489
0.004

0.5926
0.004

k-N
N

w
ith

m
eans

M
SD

0.4816
0.003

0.6138
0.004

0.6159
0.004

k-N
N

w
ith

m
eans

C
osine

0.4835
0.002

0.6155
0.003

0.6157
0.004

k-N
N

w
ith

m
eans

P
earson

0.4601
0.002

0.5989
0.003

0.6259
0.003

k-N
N

w
ith

m
eans

B
aseline

0.4521
0.002

0.5934
0.002

0.6348
0.004

k-N
N

w
ith

z-score
M

SD
0.4823

0.002
0.6185

0.003
0.6154

0.004
k-N

N
w

ith
z-score

C
osine

0.4840
0.003

0.6195
0.004

0.6157
0.003

k-N
N

w
ith

z-score
P

earson
0.4593

0.002
0.6005

0.004
0.6262

0.005
k-N

N
w

ith
z-score

B
aseline

0.4508
0.002

0.5942
0.003

0.6345
0.003

k-N
N

baseline
M

SD
0.4808

0.003
0.6130

0.003
0.6166

0.005
k-N

N
baseline

C
osine

0.4828
0.002

0.6147
0.003

0.6164
0.005

k-N
N

baseline
P

earson
0.4593

0.003
0.5982

0.003
0.6272

0.005
k-N

N
baseline

B
aseline

0.4514
0.002

0.5930
0.003

0.6355
0.004

231

T
ab

le
C

.4
:

M
ea

su
re

m
en

ts
fo

r
al

l
C

F
al

go
ri

th
m

s
ad

ap
te

d
to

le
ar

ni
ng

sy
st

em
s.

Fo
r

ea
ch

al
go

ri
th

m
th

e
im

pr
ov

em
en

t
is

co
m

pu
te

d
in

co
m

pa
ri

so
n

to
th

e
b

es
t

no
n-

le
ar

ni
ng

ad
ap

te
d

co
nfi

gu
ra

ti
on

.
A

ll
of

th
e

al
go

ri
th

m
s

ar
e

im
pr

ov
ed

by
us

in
g

th
e

ab
ili

ty
fil

te
r.

T
he

b
es

t
p

er
fo

rm
in

g
al

go
ri

th
m

ov
er

al
l

is
th

e
k-

N
N

ba
se

lin
e

al
go

ri
th

m
.

M
A

E
R

M
SE

F
C

P
µ
a

σ
m

a
x

µ
a

σ
m

a
x

µ
a

σ
m

a
x

k-
N

N
ba

si
c

0.
42

32
0.

00
2

0.
56

21
0.

00
3

0.
64

47
0.

00
4

-1
3.

7%
-1

3.
4%

+
8.

8%
k-

N
N

w
it

h
m

ea
ns

0.
42

61
0.

00
2

0.
56

68
0.

00
3

0.
64

34
0.

00
5

-5
.7

%
-4

.5
%

+
1.

3%
k-

N
N

w
it

h
z-

sc
or

e
0.

42
76

0.
00

2
0.

57
00

0.
00

3
0.

64
35

0.
00

3
-5

.1
%

-4
.0

%
+

1.
4%

k-
N

N
ba

se
lin

e
0.

42
06

0.
00

3
0.

56
01

0.
00

4
0.

64
37

0.
00

4
-6

.8
%

-5
.5

%
+

1.
3%

Sl
op

e
O

ne
0.

47
19

0.
00

2
0.

60
29

0.
00

3
0.

60
70

0.
00

4
-4

.2
%

-2
.5

%
+

2.
0%

C
o-

cl
us

te
ri

ng
0.

49
40

0.
00

7
0.

63
53

0.
00

8
0.

60
42

0.
00

4
-1

.2
%

-5
.5

%
+

1.
3%

P
M

F
0.

45
98

0.
00

3
0.

60
15

0.
00

4
0.

62
45

0.
00

3
-3

.9
%

-1
.8

%
+

2.
1%

N
M

F
0.

46
14

0.
00

3
0.

59
87

0.
00

4
0.

61
51

0.
00

5
-4

.6
%

-2
.3

%
+

2.
2%

SV
D

0.
45

55
0.

00
2

0.
58

99
0.

00
4

0.
62

19
0.

00
3

-4
.1

%
-2

.0
%

+
1.

8%
SV

D
+

+
0.

44
09

0.
00

3
0.

57
86

0.
00

3
0.

63
26

0.
00

5
-4

.0
%

-2
.1

%
+

2.
3%

232 APPENDIX C. CFALGORITHMMEASUREMENTS

Appendix D

Bad code patterns

234 APPENDIXD. BADCODEPATTERNS

T
able

D
.1:

B
ad

code
patterns,

their
transitions,

and
resulting

approved
pattern.

R
e
la

te
d

v
u

ln
e
r
a
b

ilitie
s

B
a
d

p
a
tte

r
n

T
r
a
n

s
itio

n
A

p
p

r
o
v

e
d

p
a
tte

r
n

Injection
flaw

s
(SQ

L
,

N
oSQ

L
,

O
S

com
m

and,
G

raphQ
L

,
L

D
A

P
),

log
forging,

X
SS

P
olluting

trusted
data

E
xtract

untrusted
data

Separated
untrusted

data

C
onstrain

value
C

onstrained
untrusted

data

X
X

E
,

sensitive
data

exp
osure,

insecure
configuration,

insecure
deserialization

M
issing

ob
ject

configuration
C

onfigure
A

pproved
ob

ject
configuration

Insecure
ob

ject
configuration

C
orrect

configuration

R
em

ove
configuration

A
pproved

im
plicit

ob
ject

configuration

Insecure
deserialization,

security
m

isconfiguration,
broken

access
control

M
issing

annotation
A

nnotate
A

pproved
annotation

D
isapproved

annotation
C

orrect
annotation

O
S

com
m

and
injection,

X
X

E
,

security
m

isconfiguration,
op

en
redirects,

insecure
data

storage

M
issing

action
A

dd
action

A
pproved

actions
C

alling
a

disapproved
action

R
eplace

w
ith

alternative

R
em

ove
action

—

235

T
ab

le
D

.2
:

Q
ua

lit
y

re
la

te
d

ba
d

co
de

pa
tt

er
ns

,
th

ei
r

tr
an

si
ti

on
s,

an
d

re
su

lt
in

g
ap

pr
ov

ed
pa

tt
er

n.

B
a
d

p
a
tt

e
r
n

T
r
a
n

s
it

io
n

A
p

p
r
o
v

e
d

p
a
tt

e
r
n

N
eg

le
ct

in
g

na
m

in
g

co
nv

en
ti

on
s

R
en

am
e

Fo
llo

w
in

g
na

m
in

g
co

nv
en

ti
on

s

N
eg

le
ct

in
g

st
ru

ct
ur

al
co

nv
en

ti
on

s
A

dd
m

et
ho

d
Fo

llo
w

in
g

st
ru

ct
ur

al
co

nv
en

ti
on

s
A

dd
su

p
er

A
dd

fie
ld

C
od

e
du

pl
ic

at
io

n
R

em
ov

e
—

236 APPENDIXD. BADCODEPATTERNS

Appendix E

Recipe scopes

Class scope The class scope can enable or disable recipes based on
the name and/or package of the class itself or based on the name and
package of any classes or interfaces it inherits from.

Method scope The method scope enables recipes based on the name
of the method. These scopes are mostly used to enforce guidelines in
inherited methods. For example, when creating a servlet in Java Enter-
prise Edition (EE), it is advised to configure some security headers with
the doGet and doPost methods inherited from the HttpServlet class.
We do this by enforcing a guideline that states that the addHeader
method should be called with specific parameters to set the required
headers. We then limit the scope of this guideline to only be enabled
when the class inherits from HttpServlet and the method name is doGet
or doPost. Using the YAML syntax many properties of the method can
be used for the scope, such as the number of parameters, the types of
parameters, the return type, and any annotations added to the method.

File scope The file scope is used to enable recipes based on project
file names. This is mostly used for configuration files. This allows us for
example to enforce coding guidelines in the Android manifest file, as its
name is always AndroidManifest.xml. This scope is not yet migrated
to the YAML syntax.

Android context scope The Android context scope was created to
raise context awareness in Android projects. In the Android manifest a
developer can configure capabilities of components such as activities and
broadcast receivers regarding their communication towards the OS. They
can listen to any other application, or only to authorized applications,

238 APPENDIX E. RECIPE SCOPES

or only to the own application. The Android context scope allows us to
enable recipes based on the configuration of the relevant component, so
that we can enforce different recipes for different levels of exposure. We
can for example allow communication of sensitive information between
classes that are configured as private components, but not between other
classes. This scope is not yet migrated to the YAML syntax.

Androidbuildproperty scope The Android build property scope can
be used to enable recipes based on the build property of an Android
project. Mostly this is used to look at the minSdkVersion property, to
determine what versions of Android the application will be compiled to.
Specific versions of Android have specific vulnerabilities, so recipes need
to be disabled based on that build properties. This scope is not yet
migrated to the YAML syntax.

Appendix F

Security battlecards

In this appendix, I discuss a number of related tools in more depth and
give my opinion on them. Some of these tools are no longer supported,
and hence can not be actively endorsed, but they are interesting to
discuss nonetheless. These tools are indicated by an orange box. I also
discuss one tool that is an in-house tool used by Google, and is hence
not publicly available, this tool is marked by a gray box. All remaining
tools are still actively updated at the time of writing this thesis and have
a significant userbase, they are marked in green.

SonarLint by SonarSource 1
https://www.sonarlint.org/

SonarLint is a free IDE plugin that focuses on code quality. As explained
in this work, code quality and code security are often related and hence
some rules exist in SonarLint that target security rules. SonarLint is
developer-friendly as it provides quick-fixes and clear descriptions with
small code examples. However, it only provides a small number of
security rules and the rules are not easily customized. I definitely rec-
ommend SonarLint, but also recommend supplementing it with a more
security-focused tool.

Type Lint SDLC Develop
Speed Real-time Fix Quick-fix

240 APPENDIX F. SECURITY BATTLECARDS

Snyk Open Source 2
https://snyk.io/product/open-source-security-management/

Snyk Open Source tests for vulnerabilities in open-source dependencies.
It is available in several IDEs but its web view is the most useful. Snyk
Open Source provides remediation through automated pull requests to
bump the dependency to the latest version. Both GitHub and GitLab
have built-in alternatives and I highly recommend using a tool like this.

Type Software Com-
ponent Analysis
(SCA)

SDLC Build

Speed Seconds Fix Pull request

Snyk Code 3
https://snyk.io/product/snyk-code/

Snyk Code (formerly DeepCode.ai) claims to be a developer-first static
analysis tool. It is a plugin available for JetBrains IDEs and Visual-
Studio Code. It works by uploading the code to a cloud service that
runs the analysis, which are then displayed in the IDE. While they
claim the scans are real-time, in reality I have found that even for very
small projects they already take several seconds. The rules cannot be
customized as they are generated by machine learning based on open-
source commits. Remediation is offered in the form of code examples
from these open-source projects on GitHub. These are not always great
examples, and sometimes they are even different from the text descrip-
tion. However, the results are usually easy to understand and apply.

Type SCA SDLC Develop
Speed Seconds Fix Code examples

241

Dependabot 4
https://dependabot.com/

Dependabot creates pull requests to keep your dependencies secure and
up-to-date. It is acquired by GitHub and is since free to use and inte-
grated into the platform.

Type SCA SDLC Build
Speed Seconds Fix Pull request

GitLab Dependency Scanning 5
https://gitlab.com/gitlab-org/security-products/dependency-scanning

GitLab’s integrated dependency scanner supports many languages and
package managers. It provides remediation through automated merge
requests, GitLab’s term for pull requests.

Type SCA SDLC Build
Speed Seconds Fix Merge request

FindBugs 6
http://findbugs.sourceforge.net/

FindBugs is a static analysis tool that looks for bugs in Java code. It
has not been updated since 2017 and its spiritual successor is SpotBugs.
Its IDE plugin is not compatible with newer versions of IntelliJ. To
customize the rules, APIs must be used. A popular plugin exists, Find
Sec Bugs, that is still updated. This plugin customizes the rule set and
adds over 100 security bugs.

Type Static Applica-
tion Security
Testing (SAST)

SDLC Test

Speed Minutes Fix Description

242 APPENDIX F. SECURITY BATTLECARDS

SpotBugs 7
http://findbugs.sourceforge.net/

SpotBugs is a community supported successor of FindBugs. It is free to
use and can find up to 400 bug patterns in Java code. Its IDE plugin
is still compatible with the newest version of IntelliJ but the Find Sec
Bugs rules can not be easily added to this IDE plugin. SpotBugs is
the spiritual successor of FindBugs, carrying on from the point where it
left off with support of its community. SpotBugs’ bug descriptions are
very short, do not suggest any remediation but provide links to relevant
Wikipedia articles.
This lack of information and remediation to the developer has shown to
result in low developer trust, as was explained in Section 7.2.1. Exper-
iments with this tool showed that half of the reported issues are never
even reviewed [116]. SpotBugs is well researched [116, 165, 166] and
used in industry. It is also used at the company of one of our trials.
Research by Ayewah et al. [116] showed that the tool has an Effective
False Positive (EFP) rate of 77%, and that the most interesting bugs
were found and fixed without SpotBugs, namely after they were revealed
by static analysis scans later in the SDLC. Ayewah et al. conclude, how-
ever, that the tool could have been used to discover those bugs earlier, if
only it would have been used more actively by developers. This is in line
with our findings indicating that a low EFP rate inhibits effectiveness.
I believe that shorter scan times, better descriptions, and remediation
help as available in Sensei might improve the use of SpotBugs by devel-
opers in earlier stages of development.

Type SAST SDLC Test
Speed Minutes Fix Description

243

Semmle 8
https://semmle.com/

Semmle is a tool acquired by GitHub that also offers an IDE plugin.
It uses a reactive approach, and the default rules are focused on find-
ing vulnerabilities, but the rules can be customized to use more local
analyses and enforce code best practices. Creating new rules is done
through a custom query language, called CodeQL. A “Query console”
is provided that has syntax highlighting and completion, two features
that make development of these queries easier. Some example projects
are available in the query console that can be used to test newly devel-
oped queries, but in my experience you have to be lucky to find relevant
code.

Type SAST SDLC Test
Speed Minutes Fix None

244 APPENDIX F. SECURITY BATTLECARDS

Semgrep 9
https://semgrep.dev/

Out of all the tools reviewed in this work, Semgrep most closely
resembles Sensei. Semgrep is a fast static analysis tool commer-
cialised by r2c (https://r2c.dev/) that uses pfff (https://github.
com/returntocorp/pfff/) as a static analysis engine. Semgrep allows
easy customization of rules through a YAML syntax that is very similar
to that of Sensei. It provides advanced features to tune rules so that
they minimize the chance for EFPs. Semgrep rules also include fixes,
and use so-called metavariables to reuse parts of the original code, which
seems more user-friendly than the moustache code provided by Sensei.
To develop new Semgrep rules, a web-interface called the Playground
can be used. In this interface rules can be developed and tested on
any fragment of code, which makes development a smooth experience.
It also makes it easy to share examples and working rules among the
community. A large set of default and community rules are available,
most of which target security issues. No real, fleshed-out UI is available
to create rules, and the rule-writer is required to read documentation to
fully understand the rule syntax. In our research, this has shown to be
a hurdle for developers who can be thrown of by learning a new syntax
for this purpose. Security professionals, on the other hand, will find
that this format is already a big improvement over many other security
tools. I found myself able to create moderately complex rules reasonably
fast, and I found great community support on the r2c community slack
channel.
Despite marketing material using the term “paving the road”, Semgrep
is still lacking as a developer tool to support the paved path method-
ology outlined in this work, as it is mostly intended as a Continuous
Integration (CI) tool and is hence not a role-specific tool targeted at
developers. Third party plugins are available for some IDEs, but they
are not officially supported. At the time of writing, the IntelliJ IDEA
plugin neither supports the newest version of IntelliJ nor the newest
version of Semgrep.

Type SAST SDLC Test
Speed Seconds Fix Quick-fix

245

Checkmarx 10
https://checkmarx.com/

CxSAST [167] is the static analysis tool by Checkmarx that perfoms
source code scans. It has support for over 25 coding and scripting lan-
guages, including Java, C#, and python. CxSAST has IDE plugins
for Eclipse, Visual Studio, and IntelliJ. In contrast to Sensei, these plu-
gins do not perform any local scans but instead allow uploading the
source code to CxSAST. They provide an interactive way to view the
scan results by marking the relevant code in the IDE editor. Vulnera-
bilities marked in the scan results have a category but no descriptions
are provided. This means that little help is provided compared to the
remediation suggestions and quick-fixes of Sensei. This way developers
can learn about the vulnerability and how to fix it in an interactive
way. This integration is similar to the integration between Secure Code
Warrior and Fortify on Demand or Sensei.
Checkmarx claims flexible rules lead to higher accuracy, and the tool
uses a very extensive Query Language (CxQL) [168] to allow the creation
of rules. It uses regular Java syntax and is easy to understand. There
is good documentation available but no proper tool to create or test
rules, this makes development of the rules notably more difficult. It
seems that the rules in CxQL can be built to ignore context and enforce
secure coding guidelines in line with the paved path methodology. It is
also possible to tune CxSAST so that it uses more lightweight analyses,
resulting in faster feedback.

Type SAST SDLC Test
Speed Minutes Fix Guidance

246 APPENDIX F. SECURITY BATTLECARDS

Tricorder 11
https://research.google/pubs/pub43322/

Tricorder [107] is a data-driven program analysis platform integrated
into the workflow of developers at Google. Tricorder’s design philosophy
closely resembles that of Sensei where they put developer usability first.
Custom analyzers are written in Java, C++, Python, or Go, and also
require setting up a service in a docker file.
The results of Tricorder analyzers are shown in a review tool. In this
tool quick-fixes are available, but empirical observations have shown
they are not used frequently, as only a 20% “Apply fix” rate is reported
for Tricorder [107]. It is hypothesised that developers prefer to go back
to their IDE to fix the problems [107]. After carefully improving their
analyzers, Tricorder reached an EFP rate of around 5%. While both
the customized rules of Sensei and the customized analyzers used by
Tricorder appear to be effective solutions for preventing EFPs, quick-
fixes are more practical in the IDE than during the test or review stage,
as is evident from the low “Apply fix” rate for Tricorder.

Type SAST SDLC Test
Speed Minutes Fix Quick-fix

Shipshape 12
https://github.com/google/shipshape

Shipshape is the open-source version of Tricorder (battlecard 11).

Type SAST SDLC Test
Speed Minutes Fix Quick-fix

247

Fortify Static Code Analyzer 13
https://www.microfocus.com/en-us/cyberres/application-security/
static-code-analyzer

Micro Focus Fortify is an ecosystem that embeds application security
testing into all stages of the development tool chain.
As the name suggests, Fortify Static Code Analyzer (FSCA) [169] per-
forms static code analysis on the source code. It can be built in Continu-
ous Integration and Continuous Delivery (CICD) tools and has support
for 25 programming languages including Java and C#. Scanning takes
several minutes and the results can be shown in a web interface or in in-
tegrations with many bug tracking systems, ticketing systems, and code
repositories. Fortify recommends using their rule sets that cover over
1000 vulnerability categories and more than one million APIs. Creating
new rules can be done in their custom Extensible Markup Language
(XML) format in any text editor [170]. Doing so requires reading ex-
tensive documentation and learning the proper syntax. They do not
provide a rule editor, instead the rule writer can use any preferred text
editor.
FSCA provides detailed descriptions of vulnerabilities, which focus on
explaining the vulnerabilities in detail, in part by providing examples
of insecure code.

Type SAST SDLC Test
Speed Minutes Fix Description

248 APPENDIX F. SECURITY BATTLECARDS

Fortify on Demand 14
https://www.microfocus.com/en-us/cyberres/application-security/
fortify-on-demand

Fortify on Demand (FOD) [171] provides similar features to FSCA (bat-
tlecard 13) but through a web portal, Micro Focus calls this “Application
Security Testing as a Service”. It provides the same feedback as FSCA,
but in a second tab, also provides a description and code examples to
resolve the vulnerability. Both tools also provide links to reference ma-
terial and to recommended solutions, but on top, FOD provides links
to Secure Code Warrior to provide training on a specific vulnerability.
An FOD plugin is available for Eclipse, Visual Studio, and IntelliJ. It al-
lows the developer to request static assessments from FOD by uploading
the code and downloading the results.

Type SAST SDLC Test
Speed Minutes Fix Description

Fortify Security Assistant 15
https://marketplace.microfocus.com/fortify/category/plugins

Fortify Security Assistant (FSA) [172] is a plugin currently available
for Eclipse and Visual Studio. It allows security scans similar to that
of FSCA (battlecard 13) and FOD (battlecard 14), but does so in the
IDE. The rule set is tuned such that the longest analyses are disabled by
default. The scan can take several minutes during which the developer
cannot make any code changes. This is still quite long compared to the
real-time results of Sensei and might inhibit developers from requesting
scans frequently during development.

Type SAST SDLC Test
Speed Minutes Fix Description

249

Veracode Static Analysis 16
https://www.veracode.com/products/binary-static-analysis-sast

Veracode Static Analysis (VSA) is a Software as a Service (SaaS) plat-
form that allows the developer to upload their code to be analyzed. The
tool performs static analysis scans on compiled bytecode of web appli-
cations in 23 programming languages. Because it does not need access
to the source code it can also analyse frameworks and libraries used in
the project. The downside to this approach is that sufficient code needs
to be finished and a successful build is required.
Veracode focuses heavily on detecting vulnerabilities but also guides
remediation. To that extent, they provide detailed instructions and
videos. There is even the possibility to schedule a one-on-one conference
call with a consultation expert.
The company claims most scans finish in under an hour. This means
the feedback cycle is rather long compared to the other tools. Since
the scans are performed on binaries, they are not able to provide quick-
fixes as Sensei does, which is unfortunate for a solution otherwise very
focused on remediation.

Type SAST SDLC Test
Speed Hour Fix Descriptions

Veracode Greenlight 17
https://help.veracode.com/r/c_master_greenlight

Veracode Greenlight (VG) is an IDE plugin that performs lightweight
versions of the analyses performed by VSA (battlecard 16). In my opin-
ion, VG is not suited as a developer tool. The lack of rule customization,
absence of quick-fixes, and the fact that it analyzes bytecode are all big
hurdles for it to be well-integrated in the developer workflow.

Type SAST SDLC Test
Speed Minutes Fix Descriptions

250 APPENDIX F. SECURITY BATTLECARDS

Ruleguard 18
https://go-ruleguard.github.io/

Ruleguard is an analysis tool for the Go programming language that
runs dynamically loaded rules written in Go. Its rules are not restricted
to the Abstract Syntax Tree (AST), as it can even match comments.
It is not integrated in the IDE but does provide quick-fixes. They can
be invoked with the ‘-fix‘ argument when running Ruleguard in the
terminal. It has been shown that quick-fixes outside the IDE are not
frequently used by developers [107]. The lack of IDE support, and the
fact that rule customization is done through a programming language
makes this tool less than ideal for use in the paved path methodology.

Type Linter SDLC Test
Speed Seconds Fix Descriptions

OpenRewrite 19
https://github.com/openrewrite/rewrite

OpenRewrite focuses on code refactoring, and the focus is mostly on
quality. Its rules always include a “fix” part. Rules are defined in
a YAML format, but allow only to match a few basic building block
transformations, such as “Change method name”, “Remove annotation”.
This closely resembles the original approach taken in the Sensei rule ed-
itor, where separate models were created for each such scenario. This
quickly caused the amount of models to be unnecessary large and diffi-
cult to distinguish from one another. The amount of building blocks sup-
ported by OpenRewrite is very limited, however. There is no “Change
method argument” model available, which would be required to detect
use of the Data Encryption Standard (DES) algorithm as is the running
example in this work. The documentation describes how a new model
can be developed using their API.

Type Refactor SDLC Develop
Speed Seconds Fix Quick-fix

251

OWASP ASIDE 20
https://wiki.owasp.org/index.php/OWASP_ASIDE_Project

The OWASP ASIDE/ESIDE [173] project consist of two branches, the
ASIDE branch that focuses on detecting software vulnerabilities and
helping developer write secure code, and the ESIDE branch that focuses
on helping students in acquiring secure programming knowledge and
practices.
ASIDE stands for Application Security IDE (another source claims it
is an abbreviation for Assured Software IDE). It performs fast scans
of the code in Eclipse, but unlike Sensei the scans need to be started
manually. Besides detecting vulnerabilities they also provide quick-fixes
for some issues. The quick-fixes require the developers to choose from
a list of options, which could overwhelm them. In previous research
a large number of false positives were detected [117], however, most of
these are what is considered protection for future use in this work. They
are cases where best practices should be applied even if their violation
is not yet exploitable at this point in development. ASIDE also marks
variables in the code that are tainted, this could be compared to Sensei’s
concept of untrusted input. Untrusted input in Sensei is not currently
marked to avoid unnecessary clutter.
The goal of ESIDE [105, 174] is to provide information and training at
all times during the education. Its rules can not be configured and the
tool does not provide quick-fixes. However, they provide explanations
in external web pages linked from Eclipse. Their information is similar
to our full coding guidelines where information on APIs and a correct
code example is provided.
The project is no longer supported and many of the links on the website
are dead.

Type SAST SDLC Develop
Speed Seconds Fix Quick-fix (sometimes)

252 APPENDIX F. SECURITY BATTLECARDS

SecureAssist 21
https://community.synopsys.com/s/article/SecureAssist-Overview

SecureAssist [161] is an IDE plugin targeting the discovery of security
bugs in code. It is available for eclipse, intelliJ, VisualStudio, RAD,
and Spring Tool Suite [162]. Its scans are not performed in the IDE
but on the enterprise portal. The results are sent back to the IDE once
completed. This allows scanning without preventing the developer from
continuing his work. Remediation is provided in the form of descriptions
that explain the attack and provide some code examples but the tool
does not provide quick-fixes [175].
Rule packs are distributed as Java ARchive (JAR) files and the tool
provides a Rulepack Configurator similar to Sensei’s cookbook Man-
ager. The rules themselves are created in an XML format. No user
interface is provided, and writing the rules requires going through long
documentation.

Type SAST SDLC Test
Speed Minutes Fix Description

GoKart 22
https://github.com/praetorian-inc/gokart

GoKart is a static analysis tool for Go. It uses specialized techniques
for more accurate taint tracking in Go. The analyzers can be easily
extended using a YAML format. However, there is no IDE integration
and the tool does not offer any form of remediation guidance, so it is
not the best suited to give to the developer.

Type SAST SDLC Test
Speed Minutes Fix None

Bibliography

[1] Trustwave. Global security report. https://www2.trustwave.
com/rs/815-RFM-693/images/Trustwave_2018-GSR_20180329_
Interactive.pdf. Last accessed 2018-05-22.

[2] U.S. Department of Homeland Security. Infosheet Software
Assurance. https://www.us-cert.gov/sites/default/files/
publications/infosheet_SoftwareAssurance.pdf. Last ac-
cessed 2018-05-22.

[3] OWASP. Owasp top 10 datacall submissions. https://github.
com/OWASP/Top10/tree/master/2017/datacall/submissions.
Last accessed 2020-12-19.

[4] Gary McGraw, Sammy Migues, and Jacob West. Building secu-
rity in maturity model 9(bsimm). https://www.bsimm.com/. Last
accessed 2018-05-22.

[5] Gary McGraw, Sammy Migues, and Jacob West. Building security
in maturity model 11(bsimm). https://www.bsimm.com/. Last
accessed 2020-12-22.

[6] ShiftLeft. Developer productivity & security survey. https://go.
shiftleft.io/developer-productivity-and-security-survey.
Last accessed 2020-12-22.

[7] StackOverflow. 2020 Developer Survey. https://insights.
stackoverflow.com/survey/2020. Last accessed 2021-06-09.

[8] Thomas Lam and Nicolas Chaillan. Department of defense
(dod) enterprise devsecops reference design, department of
defense (dod) chief information officer. https://dodcio.defense.
gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%
20Reference%20Design%20v1.0_Public%20Release.pdf. Last
accessed 2021-07-05.

[9] Julie Dirksen. Design for how people learn. New Riders, 2015.

254 BIBLIOGRAPHY

[10] Franca Garzotto. Investigating the educational effectiveness of
multiplayer online games for children. In Proceedings of the 6th
international conference on Interaction design and children, pages
29–36, 2007.

[11] Penelope Sweetser and Peta Wyeth. Gameflow: a model for eval-
uating player enjoyment in games. Computers in Entertainment
(CIE), 3(3):3–3, 2005.

[12] Alessandro Febretti and Franca Garzotto. Usability, playability,
and long-term engagement in computer games. CHI ’09 Extended
Abstracts on Human Factors in Computing Systems, pages 4063–
4068, 04 2009.

[13] Khalid Abed Dahleez, Ayman A El-Saleh, Abrar Mohammed
Al Alawi, and Fadi Abdelmuniem Abdelfattah. Higher education
student engagement in times of pandemic: the role of e-learning
system usability and teacher behavior. International Journal of
Educational Management, 2021.

[14] Juho Hamari, David J Shernoff, Elizabeth Rowe, Brianno Coller,
Jodi Asbell-Clarke, and Teon Edwards. Challenging games help
students learn: An empirical study on engagement, flow and im-
mersion in game-based learning. Computers in human behavior,
54:170–179, 2016.

[15] Syed Munib HADI and Rebecca RAWSON. Driving learner en-
gagement and completion within moocs: a case for structured
learning support. Proceedings of the European Stakeholder Sum-
mit on experiences and best practices in and around MOOCs
(EMOOCS 2016), page 81, 2016.

[16] Young Ju Joo, Kyu Yon Lim, and Su Mi Kim. A model for pre-
dicting learning flow and achievement in corporate e-learning. Ed-
ucational Technology & Society, 15(1):313, 2012.

[17] Mihaly Csikszentmihalyi. Learning,“flow,” and happiness. In Ap-
plications of flow in human development and education, pages 153–
172. Springer, 2014.

[18] Giel Van Lankveld, Pieter Spronck, and Matthias Rauterberg. Dif-
ficulty scaling through incongruity. In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Con-
ference, pages 228–229. AIIDE, 2008.

BIBLIOGRAPHY 255

[19] Janet Maybin, Neil Mercer, and Barry Stierer. Scaffolding learning
in the classroom. Thinking voices: The work of the national oracy
project, pages 186–195, 1992.

[20] Jing Xie, Heather Richter Lipford, and Bill Chu. Why do pro-
grammers make security errors? In Visual Languages and Human-
Centric Computing (VL/HCC), 2011 IEEE Symposium on, pages
161–164. IEEE, 2011.

[21] Christoph Kern. Securing the tangled web. Queue, 12(7):40–55,
2014.

[22] Aniqua Z Baset and Tamara Denning. Ide plugins for detecting
input-validation vulnerabilities. In 2017 IEEE Security and Pri-
vacy Workshops (SPW), pages 143–146. IEEE, 2017.

[23] Pieter De Cremer, Nathan Desmet, and Bjorn Madou, Matias
De Sutter. Sensei: Enforcing secure coding guidelines in the inte-
grated development environment. Software: Practice and Experi-
ence, 50(9):1682–1718, 2020.

[24] NIST. Enhancing Software Supply Chain
Security. https://www.nist.gov/itl/
executive-order-improving-nations-cybersecurity/
enhancing-software-supply-chain-security. (Archived)
Last accessed 2021-11-14.

[25] De Cremer, Pieter and Desmet, Nathan and Madou, Matias and
Wong, Colin. Method and system for adaptive security guid-
ance. https://patents.google.com/patent/US20200211135A1/
en. US20200211135A1.

[26] National Council on Measurement in Education. Glossary
(archived). https://web.archive.org/web/20170722194028/
http://www.ncme.org/ncme/NCME/Resource_Center/
Glossary/NCME/Resource_Center/Glossary1.aspx?hkey=
4bb87415-44dc-4088-9ed9-e8515326a061#anchorC. Last ac-
cessed 2021-09-30.

[27] Mohammad Alshammari, Rachid Anane, and Robert J Hendley.
Design and usability evaluation of adaptive e-learning systems
based on learner knowledge and learning style. In IFIP Conference
on Human-Computer Interaction, pages 584–591. Springer, 2015.

256 BIBLIOGRAPHY

[28] Silvia Schiaffino, Patricio Garcia, and Analia Amandi. eteacher:
Providing personalized assistance to e-learning students. Comput-
ers & Education, 51(4):1744–1754, 2008.

[29] Sabine Graf, Silvia Rita Viola, and T Leo Kinshuk. Representative
characteristics of felder-silverman learning styles: An empirical
model. In Proceedings of the IADIS International Conference on
Cognition and Exploratory Learning in Digital Age (CELDA 2006),
Barcelona, Spain, pages 235–242, 2006.

[30] Richard M Felder, Linda K Silverman, et al. Learning and teaching
styles in engineering education. Engineering education, 78(7):674–
681, 1988.

[31] Man Li, Luosheng Wen, and Feiyu Chen. A novel collaborative fil-
tering recommendation approach based on soft co-clustering. Phys-
ica A: Statistical Mechanics and its Applications, 561:125140, 2021.

[32] Ritu Sharma, Dinesh Gopalani, and Yogesh Meena. Collabora-
tive filtering-based recommender system: Approaches and research
challenges. In 2017 3rd international conference on computational
intelligence & communication technology (CICT), pages 1–6. IEEE,
2017.

[33] Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, and H-P
Kriegel. Probabilistic memory-based collaborative filtering. IEEE
Transactions on Knowledge and Data Engineering, 16(1):56–69,
2004.

[34] John S Breese, David Heckerman, and Carl Kadie. Empirical
analysis of predictive algorithms for collaborative filtering. arXiv
preprint arXiv:1301.7363, 2013.

[35] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative
filtering techniques. Advances in artificial intelligence, 2009.

[36] Nicolas Hug. Surprise: A python library for recommender systems.
Journal of Open Source Software, 5(52):2174, 2020.

[37] Yehuda Koren. Factor in the neighbors: Scalable and accurate
collaborative filtering. ACM Transactions on Knowledge Discovery
from Data (TKDD), 4(1):1–24, 2010.

BIBLIOGRAPHY 257

[38] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to
recommender systems handbook. In Recommender systems hand-
book, pages 1–35. Springer, 2011.

[39] Badrul M Sarwar, George Karypis, Joseph Konstan, and John
Riedl. Recommender systems for large-scale e-commerce: Scalable
neighborhood formation using clustering. In Proceedings of the fifth
international conference on computer and information technology,
volume 1, pages 291–324. Citeseer, 2002.

[40] David Heckerman, David Maxwell Chickering, Christopher Meek,
Robert Rounthwaite, and Carl Kadie. Dependency networks for
inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research, 1(Oct):49–75, 2000.

[41] María N Moreno, Saddys Segrera, Vivian F López, María Dolores
Muñoz, and Ángel Luis Sánchez. Web mining based framework
for solving usual problems in recommender systems. a case study
for movies฀ recommendation. Neurocomputing, 176:72–80, 2016.

[42] Mark O’Connor and Jon Herlocker. Clustering items for collabo-
rative filtering. In Proceedings of the ACM SIGIR workshop on
recommender systems, volume 128. Citeseer, 1999.

[43] Thomas George and Srujana Merugu. A scalable collaborative
filtering framework based on co-clustering. In Fifth IEEE Interna-
tional Conference on Data Mining (ICDM’05), pages 4–pp. IEEE,
2005.

[44] Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix fac-
torization. In Advances in neural information processing systems,
pages 1257–1264, 2008.

[45] Yu-Xiong Wang and Yu-Jin Zhang. Nonnegative matrix factoriza-
tion: A comprehensive review. IEEE Transactions on knowledge
and data engineering, 25(6):1336–1353, 2012.

[46] Patrik O Hoyer. Non-negative matrix factorization with sparseness
constraints. Journal of machine learning research, 5(9), 2004.

[47] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
Application of dimensionality reduction in recommender system-a
case study. Technical report, Minnesota Univ Minneapolis Dept
of Computer Science, 2000.

258 BIBLIOGRAPHY

[48] Huseyin Polat and Wenliang Du. Svd-based collaborative filtering
with privacy. In Proceedings of the 2005 ACM symposium on
Applied computing, pages 791–795, 2005.

[49] Yehuda Koren. Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 426–434, 2008.

[50] Chih-Ming Chen, Hahn-Ming Lee, and Ya-Hui Chen. Personal-
ized e-learning system using item response theory. Computers &
Education, 44(3):237–255, 2005.

[51] Ali O Mahdi, Mohammed I Alhabbash, and Samy S Abu-Naser.
An intelligent tutoring system for teaching advanced topics in in-
formation security. World Wide Journal of Multidisciplinary Re-
search and Development, 2016.

[52] Elizabeth Carter and Glenn D Blank. A tutoring system for de-
bugging: status report. Journal of Computing Sciences in Colleges,
28(3):46–52, 2013.

[53] Jihan Y AbuEl-Reesh and Samy S Abu-Naser. An intelligent tutor-
ing system for learning classical cryptography algorithms (ccaits).
International Journal of Academic and Applied Research (IJAAR),
2(2), 2018.

[54] Samy S Abu-Naser. Evaluating the effectiveness of the cpp-tutor,
an intelligent tutoring system for students learning to program in
c++. Journal of Applied Sciences Research, 2009.

[55] Antonija Mitrovic. An intelligent sql tutor on the web. Interna-
tional Journal of Artificial Intelligence in Education, 13(2-4):173–
197, 2003.

[56] Filippos Giannakas, Georgios Kambourakis, and Stefanos Gritza-
lis. Cyberaware: A mobile game-based app for cybersecurity edu-
cation and awareness. In 2015 International Conference on Inter-
active Mobile Communication Technologies and Learning (IMCL),
pages 54–58. IEEE, 2015.

[57] Ge Jin, Manghui Tu, Tae-Hoon Kim, Justin Heffron, and Jonathan
White. Evaluation of game-based learning in cybersecurity educa-
tion for high school students. Journal of Education and Learning
(EduLearn), 12(1):150–158, 2018.

BIBLIOGRAPHY 259

[58] Kristian Beckers and Sebastian Pape. A serious game for elicit-
ing social engineering security requirements. In 2016 IEEE 24th
International Requirements Engineering Conference (RE), pages
16–25. IEEE, 2016.

[59] Affan Yasin, Lin Liu, Tong Li, Jianmin Wang, and Didar Zowghi.
Design and preliminary evaluation of a cyber security requirements
education game (sreg). Information and Software Technology,
95:179–200, 2018.

[60] Michael J Pazzani and Daniel Billsus. Content-based recommen-
dation systems. In The adaptive web, pages 325–341. Springer,
2007.

[61] Wentao Kang and Ying Liang. A security ontology with mda for
software development. In 2013 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, pages
67–74. IEEE, 2013.

[62] Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, and Aiping Li. A
practical approach to constructing a knowledge graph for cyberse-
curity. Engineering, 4(1):53–60, 2018.

[63] David J Weiss and G Gage Kingsbury. Application of computer-
ized adaptive testing to educational problems. Journal of Educa-
tional Measurement, 21(4):361–375, 1984.

[64] David Magis, Duanli Yan, and Alina A Von Davier. Computerized
adaptive and multistage testing with R: Using packages catr and
mstr. Springer, 2017.

[65] Guangming Ling, Yigal Attali, Bridgid Finn, and Elizabeth A
Stone. Is a computerized adaptive test more motivating than a
fixed-item test? Applied psychological measurement, 41(7):495–
511, 2017.

[66] George Rasch. Probabilistic models for some intelligence and at-
tainment tests: Danish institute for educational research. Den-
mark Paedogiska, Copenhagen, 1960.

[67] Francesco Bartolucci and Luca Scrucca. Point estimation methods
with applications to item response theory models. International
Encyclopedia of Education, pages 366–373, 12 2010.

260 BIBLIOGRAPHY

[68] Maryam Yarandi, Hamid Jahankhani, Mohammad Dastbaz, and
Abdel-Rahman Tawil. Personalised mobile learning system based
on item response theory. Advances in Computing and Technology,
2011.

[69] Shristi Shakya Khanal, PWC Prasad, Abeer Alsadoon, and An-
gelika Maag. A systematic review: machine learning based rec-
ommendation systems for e-learning. Education and Information
Technologies, 25(4):2635–2664, 2020.

[70] Barbara G Dodd, RJ De Ayala, and William R Koch. Computer-
ized adaptive testing with polytomous items. Applied psychological
measurement, 19(1):5–22, 1995.

[71] Arpad E Elo. The rating of chessplayers, past and present. Arco
Pub., 1978.

[72] Arpad E Elo. Logistic probability as a rating basis. The Rating of
Chessplayers, Past&Present. Bronx NY, 10453, 2008.

[73] Ben Wise. Elo ratings for large tournaments of software agents in
asymmetric games. arXiv preprint arXiv:2105.00839, 2021.

[74] Brian Ed Bolton. Handbook of measurement and evaluation in
rehabilitation. University Park Press, 1976.

[75] Mariola Moeyaert, Kelly Wauters, Piet Desmet, and Wim Van den
Noortgate. When easy becomes boring and difficult becomes frus-
trating: disentangling the effects of item difficulty level and person
proficiency on learning and motivation. Systems, 4(1):14, 2016.

[76] Alexander Robitzsch, Thomas Kiefer, Margaret Wu, Main-
tainer Alexander Robitzsch, Wilson Adams, LinkingTo Rcpp,
and RcppArmadillo Enhances LSAmitR. Package ‘tam’. https:
//cran.r-project.org/web/packages/TAM/TAM.pdf, 2021. Last
accessed 2021-10-05.

[77] Hangcheng Liu. Comparing Welch ANOVA, a Kruskal-Wallis test,
and traditional ANOVA in case of heterogeneity of variance. Vir-
ginia Commonwealth University, 2015.

[78] Paul A Games and John F Howell. Pairwise multiple comparison
procedures with unequal n’s and/or variances: a monte carlo study.
Journal of Educational Statistics, 1(2):113–125, 1976.

BIBLIOGRAPHY 261

[79] Daniel Votipka, Kelsey R Fulton, James Parker, Matthew Hou,
Michelle L Mazurek, and Michael Hicks. Understanding secu-
rity mistakes developers make: Qualitative analysis from build
it, break it, fix it. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 109–126, 2020.

[80] Chris Lattner. Chris lattner’s homepage. http://nondot.org/
sabre/. Last accessed 2021-08-18.

[81] Daniel Lemire and Anna Maclachlan. Slope one predictors for
online rating-based collaborative filtering. In Proceedings of the
2005 SIAM International Conference on Data Mining, pages 471–
475. SIAM, 2005.

[82] Amos Tanay, Roded Sharan, and Ron Shamir. Biclustering algo-
rithms: A survey. Handbook of computational molecular biology,
9(1-20):122–124, 2005.

[83] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factoriza-
tion techniques for recommender systems. Computer, 42(8):30–37,
2009.

[84] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. An
efficient non-negative matrix-factorization-based approach to col-
laborative filtering for recommender systems. IEEE Transactions
on Industrial Informatics, 10(2):1273–1284, 2014.

[85] Cédric Févotte and Jérôme Idier. Algorithms for nonnegative
matrix factorization with the β-divergence. Neural computation,
23(9):2421–2456, 2011.

[86] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon.
Learning from incomplete ratings using non-negative matrix fac-
torization. In Proceedings of the 2006 SIAM international confer-
ence on data mining, pages 549–553. SIAM, 2006.

[87] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
Item-based collaborative filtering recommendation algorithms. In
Proceedings of the 10th international conference on World Wide
Web, pages 285–295, 2001.

[88] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong
Pan. Large-scale parallel collaborative filtering for the netflix prize.
In International conference on algorithmic applications in manage-
ment, pages 337–348. Springer, 2008.

262 BIBLIOGRAPHY

[89] James Bennett, Stan Lanning, et al. The netflix prize. In Proceed-
ings of KDD cup and workshop, volume 2007, page 35. New York,
NY, USA., 2007.

[90] Netflix. Netflix Prize: Forum / Grand Prize awarded to team
BellKor’s Pragmatic Chaos. https://web.archive.org/web/
20090924184639/http://www.netflixprize.com/community/
viewtopic.php?id=1537. (Archived) Last accessed 2021-09-23.

[91] Netflix. Netflix Prize: View Leaderboard. https://web.archive.
org/web/20091227111134/http://www.netflixprize.com/
leaderboard. (Archived) Last accessed 2021-09-23.

[92] Yehuda Koren and Joseph Sill. Collaborative filtering on ordinal
user feedback. In Twenty-third international joint conference on
artificial intelligence, 2013.

[93] Dave Wichers and Jeff Williams. Owasp top-10 2017. OWASP
Foundation, 2017.

[94] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven per-
nicious kingdoms: A taxonomy of software security errors. IEEE
Security & Privacy, 3(6):81–84, 2005.

[95] Minzhe Guo and Ju An Wang. An ontology-based approach to
model common vulnerabilities and exposures in information secu-
rity. In ASEE Southest Section Conference, 2009.

[96] David E Mann and Steven M Christey. Towards a common enu-
meration of vulnerabilities. In 2nd Workshop on Research with Se-
curity Vulnerability Databases, Purdue University, West Lafayette,
Indiana, 1999.

[97] David W Baker, Steven M Christey, William H Hill, and David E
Mann. The development of a common enumeration of vulnerabil-
ities and exposures. In Recent Advances in Intrusion Detection,
volume 7, page 9, 1999.

[98] Bob Martin, Mason Brown, Alan Paller, Dennis Kirby, and Steve
Christey. 2011 cwe/sans top 25 most dangerous software errors.
Common Weakness Enumeration, 7515, 2011.

[99] Anuradha Sharma and Praveen Kumar Misra. Aspects of enhanc-
ing security in software development life cycle. Advances in Com-
putational Sciences and Technology, 10(2):203–210, 2017.

BIBLIOGRAPHY 263

[100] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. Faults-slip-
through—a concept for measuring the efficiency of the test process.
Software Process: Improvement and Practice, 11(1):47–59, 2006.

[101] Lionel C Briand, Khaled El Emam, Bernd G Freimut, and Oliver
Laitenberger. A comprehensive evaluation of capture-recapture
models for estimating software defect content. IEEE Transactions
on Software Engineering, 26(6):518–540, 2000.

[102] Dejan Baca, Bengt Carlsson, and Lars Lundberg. Evaluating the
cost reduction of static code analysis for software security. In
Proc. 3rd ACM SIGPLAN workshop on Programming languages
and analysis for security, pages 79–88. ACM, 2008.

[103] Lucas Layman, Laurie Williams, and Robert St Amant. Toward
reducing fault fix time: Understanding developer behavior for the
design of automated fault detection tools. In Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First Interna-
tional Symposium on, pages 176–185. IEEE, 2007.

[104] Matthew Syed. Black Box Thinking: Why Most People Never
Learn from Their Mistakes–But Some Do. Penguin, 2015.

[105] Michael Whitney, Heather Richter Lipford, Bill Chu, and Tyler
Thomas. Embedding secure coding instruction into the ide: Com-
plementing early and intermediate cs courses with eside. Journal
of Educational Computing Research, 56(3):415–438, 2018.

[106] OWASP Enterprise Security API Toolkits - Datasheet. https:
//www.owasp.org/images/8/81/Esapi-datasheet.pdf.

[107] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söder-
berg, and Collin Winter. Tricorder: Building a program analysis
ecosystem. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 598–608. IEEE Press, 2015.

[108] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and
Dawson Engler. A few billion lines of code later: using static
analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010.

[109] Christopher Romeo. How to Transform Developers into
Security People. https://www.rsaconference.com/videos/
how-to-transform-developers-into-security-people.

264 BIBLIOGRAPHY

[110] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John
Penix, and YuQian Zhou. Evaluating static analysis defect warn-
ings on production software. In Proc. 7th workshop on Program
analysis for software tools and engineering, pages 1–8, 2007.

[111] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and
Robert Bowdidge. Why don’t software developers use static anal-
ysis tools to find bugs? In Proceedings of the 2013 International
Conference on Software Engineering, pages 672–681. IEEE Press,
2013.

[112] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsa-
lovski, Achim D Brucker, and Philip Miseldine. Factors impacting
the effort required to fix security vulnerabilities. In International
Conference on Information Security, pages 102–119. Springer,
2015.

[113] Maurice Dawson, Darrell Burrell, Emad Rahim, and Stephen
Brewster. Integrating software assurance into the software develop-
ment life cycle (sdlc). Journal of Information Systems Technology
and Planning, 3:49–53, 01 2010.

[114] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson,
Björn Regnell, and Anders Wesslén. Experimentation in software
engineering. Springer Science & Business Media, 2012.

[115] Jakob Nielsen and Thomas K Landauer. A mathematical model
of the finding of usability problems. In Proceedings of the INTER-
ACT’93 and CHI’93 conference on Human factors in computing
systems, pages 206–213, 1993.

[116] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John
Penix, and YuQian Zhou. Using findbugs on production software.
In Companion to the 22nd Conf. on Object-oriented programming
systems and applications, pages 805–806, 2007.

[117] Jing Xie, Bill Chu, Heather Richter Lipford, and John T Melton.
ASIDE: IDE support for web application security. In Proceedings
of the 27th Annual Computer Security Applications Conference,
pages 267–276. ACM, 2011.

[118] Luciano Sampaio and Alessandro Garcia. Exploring context-
sensitive data flow analysis for early vulnerability detection. Jour-
nal of Systems and Software, 113:337–361, 2016.

BIBLIOGRAPHY 265

[119] C Banerjee and SK Pandey. Software security rules, sdlc perspec-
tive. arXiv preprint arXiv:0911.0494, 2009.

[120] Madiha Tabassum, Stacey Watson, and Heather Richter Lipford.
Comparing educational approaches to secure programming: Tool
vs. ta. In Symposium on Usable Privacy and Security (SOUPS),
2017.

[121] Rumen Paletov, Petar Tsankov, Veselin Raychev, and Martin
Vechev. Inferring crypto api rules from code changes. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 450–464. ACM, 2018.

[122] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and
Stephanie Forrest. Automatically finding patches using genetic
programming. In Proc. 31st Int’l Conf. on Software Engineering,
pages 364–374. IEEE Computer Society, 2009.

[123] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim.
Automatic patch generation learned from human-written patches.
In Proceedings of the 2013 International Conference on Software
Engineering, pages 802–811. IEEE Press, 2013.

[124] Fan Long and Martin Rinard. Automatic patch generation by
learning correct code. ACM SIGPLAN Notices, 51(1):298–312,
2016.

[125] Brittany Johnson, Rahul Pandita, Emerson Murphy-Hill, and
Sarah Heckman. Bespoke tools: adapted to the concepts devel-
opers know. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 878–881, 2015.

[126] Andy Cockburn, Carl Gutwin, Joey Scarr, and Sylvain Malacria.
Supporting novice to expert transitions in user interfaces. ACM
Computing Surveys (CSUR), 47(2):1–36, 2014.

[127] Marc Sallin, Martin Kropp, Craig Anslow, James W. Quilty, and
Andreas Meier. Measuring software delivery performance using the
four key metrics of devops. In Peggy Gregory, Casper Lassenius,
Xiaofeng Wang, and Philippe Kruchten, editors, Agile Processes in
Software Engineering and Extreme Programming, pages 103–119,
Cham, 2021. Springer International Publishing.

[128] Gary McGraw. Software security. IEEE Security & Privacy,
2(2):80–83, 2004.

266 BIBLIOGRAPHY

[129] European Commission. Data protection in the eu.
https://ec.europa.eu/info/law/law-topic/data-protection/
data-protection-eu_en. Last accessed 2021-09-28.

[130] hackerone. What percentage of your software vulnerabilities
have gdpr implications? https://www.hackerone.com/sites/
default/files/2018-01/GDPR%20Implications-ebook.pdf. Last
accessed 2021-09-28.

[131] European Union Agency for Fundamental Rights (FRA). Your
rights matter: Data protection and privacy - fundamental
rights survey. https://fra.europa.eu/en/publication/2020/
fundamental-rights-survey-data-protection. Last accessed
2021-09-28.

[132] Cadelina Cassandra, Yuli Eni, Yuriska Marcela, Stevania Clarissa,
et al. Analysis of product trust, product rating and seller trust in e-
commerce on purchase intention during the covid-19 pandemic. In
2021 International Conference on Information Management and
Technology (ICIMTech), volume 1, pages 522–525. IEEE, 2021.

[133] Muhammad Ashraf, Jamil Ahmad, Wareesa Sharif, Arslan Ali
Raza, Muhammad Salman Shabbir, Mazhar Abbas, and Ramayah
Thurasamy. The role of continuous trust in usage of online product
recommendations. Online Information Review, 2020.

[134] ISO. Iso/iec 27001 information security management. https://
www.iso.org/isoiec-27001-information-security.html. Last
accessed 2021-09-29.

[135] National Telecommunications and Information Administration.
Software bill of materials. https://www.ntia.gov/sbom. Last ac-
cessed 2021-09-28.

[136] Joan Bliss, Mike Askew, and Sheila Macrae. Effective teaching
and learning: Scaffolding revisited. Oxford review of Education,
22(1):37–61, 1996.

[137] Global Encryption Coalition. Breaking encryption
myths. https://www.globalencryption.org/2020/11/
breaking-encryption-myths/. Last accessed 2021-09-30.

[138] George Robert Barker, William Lehr, Mark Loney, and Douglas
Sicker. The economic impact of laws that weaken encryption.
Available at SSRN 3866902, 2021.

BIBLIOGRAPHY 267

[139] Heather Richter Lipford, Jing Xie, Will Stranathan, Daniel Oak-
ley, and Bei-Tseng Chu. The impact of a structured application
development framework on web application security. In Proceed-
ings of the 14th Colloquium for Information Systems Security Ed-
ucation, pages 212–219. Baltimore Marriott Inner Harbor, 2010.

[140] Japan Smartphone Security Association. Android Application Se-
cure Design/Secure Coding Guidebook. http://www.jssec.org/
dl/android_securecoding_en.pdf. Last accessed 2021-07-25.

[141] Marc Witteman and Martijn Oostdijk. Secure application pro-
gramming in the presence of side channel attacks. In RSA confer-
ence, volume 2008, 2008.

[142] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybert-
son, Frank Buschmann, and Peter Sommerlad. Security Patterns:
Integrating security and systems engineering. John Wiley & Sons,
2013.

[143] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan
Dolan-Gavitt, and Ramesh Karri. An empirical cybersecu-
rity evaluation of github copilot’s code contributions. CoRR,
abs/2108.09293, 2021.

[144] Martin Fowler, Jim Highsmith, et al. The agile manifesto. Software
development, 9(8):28–35, 2001.

[145] Ken Schwaber. Agile project management with Scrum. Microsoft
press, 2004.

[146] Floris MA Erich, Chintan Amrit, and Maya Daneva. A qualitative
study of devops usage in practice. Journal of software: Evolution
and Process, 29(6):e1885, 2017.

[147] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas
Serrano. Devops. Ieee Software, 33(3):94–100, 2016.

[148] Snyk. The state of open source security report 2020. https://go.
snyk.io/SoOSS-Report-2020.html. Last accessed 2021-09-28.

[149] Daniela Soares Cruzes, Michael Felderer, Tosin Daniel Oyetoyan,
Matthias Gander, and Irdin Pekaric. How is security testing done
in agile teams? a cross-case analysis of four software teams. In Int’l
Conf. on Agile Software Development, pages 201–216. Springer,
2017.

268 BIBLIOGRAPHY

[150] Daniela Soares Cruzes, Michael Felderer, Tosin Daniel Oyetoyan,
Matthias Gander, and Irdin Pekaric. How is security testing done
in agile teams? a cross-case analysis of four software teams. In
Hubert Baumeister, Horst Lichter, and Matthias Riebisch, editors,
Agile Processes in Software Engineering and Extreme Program-
ming, pages 201–216, Cham, 2017. Springer International Publish-
ing.

[151] Sven Türpe, Laura Kocksch, and Andreas Poller. Penetration tests
a turning point in security practices? organizational challenges
and implications in a software development team. In WSIW@
SOUPS, 2016.

[152] Lynn Futcher and Rossouw von Solms. Guidelines for secure soft-
ware development. In Proceedings of the 2008 annual research
conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing coun-
tries: riding the wave of technology, pages 56–65. ACM, 2008.

[153] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried
Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and
Le Traon. Static analysis of android apps: A systematic literature
review. Information and Software Technology, 88:67–95, 2017.

[154] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy:
A static analysis tool for detecting web application vulnerabilities.
In Security and Privacy, 2006 IEEE Symposium on, pages 6–pp.
IEEE, 2006.

[155] V Benjamin Livshits and Monica S Lam. Finding security vul-
nerabilities in java applications with static analysis. In USENIX
Security Symposium, volume 14, pages 18–18, 2005.

[156] Brian Chess and Gary McGraw. Static analysis for security. IEEE
Security & Privacy, 2(6):76–79, 2004.

[157] Fraser Brown, Andres Nötzli, and Dawson Engler. How to build
static checking systems using orders of magnitude less code. ACM
SIGPLAN Notices, 51(4):143–157, 2016.

[158] R. Scandariato, J. Walden, and W. Joosen. Static analysis versus
penetration testing: A controlled experiment. In 24th Int’l Symp.
on Software Reliability Engineering (ISSRE), pages 451–460, Nov
2013.

BIBLIOGRAPHY 269

[159] SpotBugs. SpotBugs API Documentation. https://javadoc.io/
doc/com.github.spotbugs/spotbugs/3.1.10. Last accessed 2019-
10-15.

[160] FindSecBugs. Find Security Bugs: The SpotBugs plugin for se-
curity audits of Java web applications. https://find-sec-bugs.
github.io/. Last accessed 2019-10-15.

[161] Synopsys. SecureAssist Overview. https://community.synopsys.
com/s/article/SecureAssist-Overview. Last accessed 2019-10-
25.

[162] Synopsys. SAST in IDE (SecureAssist). https://www.
synopsys.com/content/dam/synopsys/sig-assets/datasheets/
secureassist-datasheet.pdf. Last accessed 2019-10-25.

[163] Synopsys. SecureAssist Custom Rule Tutorial. http:
//download.asteriskresearch.com/2.4/SecureAssist%
20Custom%20Rule%20Tutorial%2010-2014.pdf. Last accessed
2019-10-25.

[164] Michael Wittig and Andreas Wittig. Amazon web services in ac-
tion. Simon and Schuster, 2018.

[165] Nathaniel Ayewah and William Pugh. The google findbugs fixit.
In Proc. 19th Int’l Symp. on Software testing and analysis, pages
241–252, 2010.

[166] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh. Using static analysis to find bugs. IEEE Software,
25(5):22–29, Sept 2008.

[167] Checkmarx. Static Application Security Testing: Secure Your
Code from the Very Beginning. https://www.checkmarx.com/
products/static-application-security-testing/. Last ac-
cessed 2019-10-15.

[168] Checkmarx. CxAudit Overview. https://checkmarx.atlassian.
net/wiki/spaces/KC/pages/5406733/CxAudit+Overview. Last
accessed 2019-10-15.

[169] Micro Focus. Fortify Static Code Analyzer: Static Application Se-
curity Testing. https://www.microfocus.com/en-us/products/
static-code-analysis-sast/overview. Last accessed 2019-10-
14.

270 BIBLIOGRAPHY

[170] Micro Focus. Fortify SCA Custom Rules Reference. http://
bigsec.net/b52/Fortify/rules-schema/. Last accessed 2019-10-
15.

[171] Micro Focus. Fortify on Demand: Application Security
as a Service. https://www.microfocus.com/en-us/products/
application-security-testing/overview. Last accessed 2019-
10-15.

[172] Micro Focus. Secure SDLC - IDEs. https://www.microfocus.
com/en-us/marketing/secure-sdlc-and-devops#section3.
Last accessed 2019-10-15.

[173] OWASP. ASIDE Project. https://www.owasp.org/index.php/
OWASP_ASIDE_Project. Last accessed 2019-10-16.

[174] UNC Charlotte College of Computing and Informatics. Educa-
tional Security in the IDE (ESIDE). https://eside.uncc.edu/.
Last accessed 2019-10-16.

[175] Synopsys. How to use SecureAssist IntelliJ Plu-
gin. https://community.synopsys.com/s/article/
How-to-Use-SecureAssist-IntelliJ-Plug-in. Last accessed
2019-10-25.

	Nederlandstalige samenvatting
	English Summary
	The paved path methodology
	A story of increasing collaboration
	The security team
	The development team and the operations team
	Three is a party

	Improved culture
	Aligning goals and metrics
	Aligning communication

	Developer-minded security education
	Relevant education
	Efficient education
	Usable education

	Developer-minded security tools
	Relevant tools
	Efficient tools
	Usable tools

	This book
	Publication output
	Perspectives

	I Education
	Secure Code Warrior
	The company
	The training platform
	Exercises
	Context
	Course material
	Use in the paved path methodology

	Intelligent tutoring system
	Design
	Collaborative filtering
	Adapted to learning systems
	Types of collaborative filtering
	Alternative approaches

	Difficulty estimation and ability estimation
	Item response theory
	Rasch model
	Alternative approaches

	Data
	Data collection
	Data pre-processing
	Data annotation

	Experiments
	Rash model
	Goals and research questions
	Experimental set-up
	Findings

	Step size adjustment ability estimation
	Goals and research questions
	Approximation procedures
	Experimental set-up
	Findings

	Collaborative filtering algorithms
	Goal and research questions
	Benchmark algorithms
	Memory-based algorithms
	Model-based algorithms
	Experimental set-up
	Findings

	Adaptation to learning systems
	Goals and research questions
	Experimental set-up
	Adaptation to learning systems
	Findings

	Discussion and perspectives
	Discussion
	Two-parameter logistic model
	Recommendations
	Adaptation

	Perspectives
	Implementation into the training platform
	Integrating with developer tools
	Mobile application

	II Tools
	Goals and requirements
	Traditional security tools
	Tools for the paved path methodology

	Sensei
	Recipes
	Creating recipes
	Managing recipes
	Verifying recipes
	Explaining recipes

	Recipe features
	Lowering effective false positives
	Support for libraries
	Support for detecting design flaws
	Testing recipes

	Experiments and observations
	Controlled empirical usability experiment
	Goals and research questions
	Experimental set-up
	Findings
	Threats to validity

	User testing with individual developers
	Goals and research question
	Experimental set-up
	Findings
	Threats to validity

	Industry trial in 2018
	Goal
	Set-up
	Findings
	Threats to validity

	Industry interview in 2021
	Goal
	Set-up
	Findings
	Threats to validity

	Discussion and perspectives
	Discussion
	Installation and first use
	Recipes
	Recipe editor
	Feedback and remediation
	Project and team management

	Perspectives
	Improved recipe creation
	Adapting feedback to the skill level
	Controlled experiment in industry environment

	III Closing
	Related work
	Governance
	Training
	Compliance and policy

	Develop
	Lint
	Security patterns
	Security libraries and frameworks
	Artificial intelligence code completion

	Build
	Build tools
	Software composition analysis

	Test
	Penetration testing
	Code reviews
	Static analysis
	IDE-based static analysis
	Rule customization

	Release and deploy
	Infrastructure as code
	Policy as code

	Conclusion
	Intelligent Tutoring System
	Sensei
	Paved path methodology

	Challenges
	Challenge creation
	Scoring

	Games-Howell post-hoc tests
	CF algorithm measurements
	Bad code patterns
	Recipe scopes
	Security battlecards

