




The Interplay between Resource Distributions and Optimal Foraging 
Behavior: From Individuals to Populations

Johannes Nauta

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Pieter Simoens, PhD - Prof. Yara Khaluf, PhD

Department of Information Technology
Faculty of Engineering and Architecture, Ghent University

Supervisors

January 2022



Wettelijk depot: D/2022/10.500/2
NUR 910, 922
ISBN 978-94-6355-561-6



Members of the Examination Board

Chair

Prof. Hennie De Schepper, PhD, Ghent University

Other members entitled to vote

Prof. Dries Bonte, PhD, Ghent University
Prof. Francisco Correia dos Santos, PhD, Universidade de Lisboa, Portugal

Prof. An Ghysels, PhD, Ghent University
Prof. Ricardo Martinez-Garcia, PhD, Universidade Estadual Paulista, Brazil
Vito Trianni, PhD, Istituto di Scienze e Tecnologie della Cognizione, Italy

Supervisors

Prof. Pieter Simoens, PhD, Ghent University
Prof. Yara Khaluf, PhD, Ghent University





Acknowledgments

Writing the acknowledgments gives a rather odd feeling. It feels joyful, as
it signifies the end of a long four-year road filled with exciting research and
less-exciting deadlines. Yet, it also feels melancholic, as I come to conclude
that I thoroughly enjoy doing research and that my time as a PhD stu-
dent is up. Surprisingly, or perhaps unsurprisingly to some readers with
more academic experience, I feel like the skills needed to do good research
are finally within my grasp, only to realize that my PhD journey is at its
end. I personally have developed and matured as a researcher by learning
from the numerous amount of mishaps along the way. I believe that each
and every PhD student should undergo such mistakes in order to grow.
Nonetheless, I hope that I can assist my current and future colleagues to
avoid the same mistakes I made. However, I am convinced that they will
come across other mistakes that they need to deal with themselves.

Obviously, I could not have written this dissertation without the sup-
port of numerous people. I would like to thank prof. Pieter Simoens for
giving me the opportunity to do the research that I liked. I know the path
I followed was not a straight one, perhaps even a Lévy walk, yet you gave
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Samenvatting

– Summary in Dutch –

Foerageren beschrijft het zoeken naar hulpbronnen, zoals voedsel of
een schuilplaats, en is voor veel diersoorten essentieel om te overleven.
Daarom wordt verwacht dat foerageerders hun gedrag aanpassen om zo
hun overlevingskansen te maximaliseren. Aangezien foerageren alomver-
tegenwoordigd is in de natuur, denkt men dat voordelen tijdens foerage-
ren grote evolutionaire druk uitoefenen op diersoorten, en mogelijk zelfs
ten grondslag liggen aan het ontstaan van ingewikkelde zoekstrategiën,
complex sociaal gedrag, en indrukwekkende cognitieve vaardigheden zo-
als geheugen. Recente ontwikkelingen zijn pas net begonnen met het ont-
rafelen van de complexe mechanismen achter optimaal foerageergedrag,
en vele vragen blijven vooralsnog onbeantwoord.

Specifiek foerageergedrag hangt sterk af van het doel van het dier, of-
wel, waar is de foerageerder naar op zoek? In zogeheten ‘optimale foera-
geer theorie’, wordt aangenomen dat foerageerders gedrag vertonen dat
resulteert in het maximaliseren van een specifieke metriek, vaak de valuta
genoemd. Een veel gebruikte valuta is het aantal bronnen dat wordt verza-
meld binnen een bepaalde tijd: de foerageerefficiëntie. Deze metriek kan
echter niet al het foerageer gedrag dat wordt waargenomen in de natuur
verklaren. De reden hiervoor is dat foerageerders vaak bijkomende doel-
einden nastreven, zoals individuele overleving of het voortbestaan van de
soort. Hoogstwaarschijnlijk zijn er andere, misschien tot nog toe onont-
dekte, doelen die evolutionaire druk uitoefenen op foerageerders om hun
gedrag aan te blijven passen.

Welk foerageergedrag optimaal is, hangt vaak sterk samen met ver-
schillende factoren. Daarom richten we ons in dit proefschrift op de wis-
selwerking van verschillende doelen en dergelijke factoren, en bestude-
ren we hoe verschillende factoren de voordelen van specifiek foerageer-
gedrag bepalen. Een van de belangrijkste factoren is de configuratie van
hun leefgebieden, of, met andere woorden, de verdeling van hulpbronnen.
Daarom onderzoeken we specifiek hoe foerageergedrag wordt beı̈nvloed
door deze verdeling en hoe specifieke omgevingseigenschappen de indi-
viduen in staat stellen om deze in hun voordeel te gebruiken. Bovendien
toont het werk in dit proefschrift aan dat foerageerders zelf ook de verde-
ling over hulpbronnen kunnen beı̈nvloeden. Als gevolg oefenen foerageer-
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ders een sterke invloed uit op de onderliggende structuur van de gebieden
waarin ze leven.

Onderliggend aan bijna elk optimaal foerageergedrag ligt een efficiënte
zoekstrategie. Aangezien de locatie van hulpbronnen initiëel vaak on-
bekend zijn voor de foerageerder, wordt een groot deel van de optimale
foerageer theorie gewijd aan hoe willekeurige zoekacties kunnen worden
geoptimaliseerd. Terwijl deze zoekacties, zoals hun naam suggereert, in-
herent willekeurig zijn, kunnen ze interessant genoeg nog steeds effec-
tief worden gebruikt. In het bijzonder bestaat een bepaald type willekeu-
rige beweging die zogeheten ‘schaalvrije’ kenmerken vertoont; Lévy walks.
Lévy walks, of Lévy searches, omvatten een breed scala aan bewegingen
en beschrijven willekeurig zoekgedrag waarin lokaal zoekgedrag wordt
afgewisseld met zeldzame, maar statistisch relevante, verplaatsingen over
lange afstanden. Met andere woorden, Lévy walks wisselen af tussen het
intensief zoeken van een klein gebied, om alvorens te ‘springen’ naar een
verafgelegen gebied dat mogelijks van belang is.

In het algemeen vertonen de meeste leefgebieden zogeheten heterogeni-
teit, omdat bronnen in de natuur de neiging hebben om in clusters voor te
komen. Dit soort heterogene omgevingen zijn bovendien van belang om-
dat veel ecosystemen in omvang verminderen, vaak als gevolg van mense-
lijke invloeden. Door vermindering van geschikt habitat worden gebieden
vaak opgedeeld in kleinere gebieden, waardoor afzonderlijke stukken na-
tuur steeds meer geı̈soleerd raken. Dit proces heet fragmentatie, en heeft
vaak negatieve effecten op dierpopulaties in natuurgebieden. Daarom is
het van cruciaal belang om foerageergedrag in dit soort heterogene gebie-
den beter te begrijpen. In dit proefschrift worden verschillende foerageer-
strategieën besproken en deze zullen allemaal in heterogene gebieden wor-
den onderzocht. Het doel van dit proefschrift is om meer te leren over de
ingewikkelde wisselwerking tussen foerageerders en de gebieded waarin
ze leven.

Ten eerste beschouwen we een systeem van een enkele foerageerder die
het vermogen heeft om een ruimtelijke verdeling te leren. Zo een geheu-
gencomponent kan worden gebruikt door de foerageerder om naar plek-
ken, waarvan wordt verwacht dat ze rijk aan hulpbronnen zijn, te gaan.
We beargumenteren welke eigenschappen een geheugencomponent nodig
heeft en zullen de mogelijke voordelen voor de foerageerder uitlichten. Iets
specifieker, we onderzoeken een hybride strategie die exploratie, met een
Lévy walk, afwisselt met exploitatie, met geı̈nformeerde verplaatsingen
door gebruik te maken van geheugen. Daarna bekijken we hoe het op-
timale foerageergedrag wordt beı̈nvloed door twee verschillende doelen:
de foerageerefficiı̈entie en de brondiversiteit. De eerste term komt over-
een met de definitie hierboven, d.w.z. de hoeveelheid bronnen per tijds-
eenheid, terwijl de laatste term daarbovenop beschouwt uit welk gebied
de bronnen afkomstig zijn en dus rekening houdt met mogelijks verschil-
lende hulpbronnen. Onze resultaten tonen aan dat foerageerders voordeel
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halen uit het gebruik van geheugen door voortdurend een beperkte aan-
tal bronrijke plekken te bezoeken, waarvan de locaties effectief in het ge-
heugen zijn opgeslagen. Dit beperkt de foerageerder echter wel tot het
bezoeken van een beperkt gebied, en de brondiversiteit neemt als gevolg
hierdoor dan ook af. Aangezien de meeste foerageerders vaak een variatie
aan hulpbronnen nodig hebben om te overleven, bijvoorbeeld zowel voed-
sel als water, suggereert dit resultaat dat foerageergedrag dat gebaseerd is
op geheugen niet per se gunstig is. Onze resultaten ondersteunen de hy-
pothese dat foerageergedrag sterk moet afhangen van het specifieke doel
van de foerageerder.

Ten tweede, aangezien foerageerders niet altijd solitair zijn, bestude-
ren we een groep foerageerders en bekijken we hoe hun gedrag wordt
beı̈nvloed door de clustereigenschappen van hulpbronnen. We beschou-
wen foerageerders die de karakteristieken van hun Lévy walk kunnen
veranderen wanneer ze hulpbronnen tegenkomen, door over te schakelen
naar een meer intensieve, gelokaliseerde zoekstrategie. We bestuderen een
systeem waar het zoekgedrag van soortgenoten kan worden opgemerkt en
waar foerageerders bewegen richting degenen die intensief zoeken, omdat
dit een indicatie is dat zich daar een cluster met meerdere hulpbronnen
bevindt. Het is belangrijk om te beseffed dan, omdat het aantal hulpbron-
nen in de clusters beperkt is, de foerageerders concurrenten van elkaar
zijn. Door precies de clustereigenschappen van de bronverdelingen te con-
troleren, kunnen we kwantitatief de voordelen van foerageren in groepen
bepalen. We bestuderen twee doeleinden: de efficiëntie van de groep en
de overlevingskans van individuen. Onze resultaten tonen aan dat aggre-
gaties op de clusters alleen voordelig zijn voor de groep als de bronnen
sterk geclusterd zijn, omdat dit de concurrentie op de clusters tot een mi-
nimum beperkt. Foerageren in groepen blijkt nadelig wanneer concurren-
tie toeneemt, wat gebeurt wanneer de bronnen niet sterk geclusterd zijn
of wanneer er simpelweg heel veel foerageerders zijn. Dit staat in schril
contrast met individuele overlevingskansen, die gemaximaliseerd worden
juist wanneer de bronnen niet sterk geclusterd zijn. We meten hier de over-
levingskans als de afwijking van het gemiddelde, en laten zien dat deze
afwijking het laagst is wanneer het groepsgemiddelde laag is. Daarom
komen de resultaten van ons model overeen met de realiteit, waar vaak
wordt waargenomen dat foerageerders niet per se de foerageerefficiëntie
optimaliseren, maar dat ze, wanneer mogelijk, de variatie in het aantal ge-
vonden hulpbronnen willen verminderen om zo hun overlevingskansen te
vergroten.

Ten derde onderzoeken we een collectief systeem waarin foerageerders
kunnen samenwerken, in plaats van te concurreren. Daartoe introduce-
ren we een model waarin foerageerders andere foerageerders kunnen re-
kruteren naar bronlocaties, in plaats van zelf de hulpbron te exploiteren
(bijvoorbeeld door voedsel te consumeren). Rekrutering zelf betreft ook
een willekeurige zoektocht, een Lévy walk, maar dan voor soortgenoten
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en niet voor hulpbronnen. We laten zien dat deze zoektochten geoptima-
liseerd kunnen worden onder redelijke aannames. Verder bestuderen we
clusters van hulpbronnen die slechts voor een beperkte tijd beschikbaar
zijn. In zulke situaties is rekrutering alleen gunstig voor het collectief als
soortgenoten snel gevonden kunnen worden, zodat deze tijdig de hulp-
bron kunnen exploiteren. Daarom beargumenteren we dat foerageerders
geen soortgenoten moeten proberen te rekruteren naar clusters die korter
bestaan dan een bepaalde duur; de tijdsdrempel. We bestuderen hoe de ef-
fectiviteit van deze eenvoudige collectieve strategie afhangt van de gemid-
delde tijdsduur van bronnen. Onze resultaten geven aan dat rekrutering
alleen gunstig is voor het collectief als de clusters met bronnen moeilijk te
vinden zijn en een relatief lange tijdsduur hebben. Bovendien wordt de
collectieve foerageerefficiëntie positief beı̈nvloedt door een verhoogd aan-
tal interacties met soortgenoten, wat gebeurt bij hogere effectieve dichthe-
den van soortgenoten. Verder suggereren onze resultaten dat de specifieke
waarde van de tijdsdrempel een eerder beperkte invloed heeft, terwijl de
keuze om te rekruteren of niet van kritiek belang is. Dit resultaat kan ver-
strekkende gevolgen hebben voor toekomstige toepassingen in artificiële
foerageersystemen, omdat ons model aangeeft dat complexe beslissingen,
die mogelijks hoge cognitieve capaciteiten vereisen, niet nodig zijn om te
kunnen profiteren van collectief gedrag.

Ten vierde onderzoeken we hoe de fragmentatie van landschappen en
foerageergedrag de dynamiek van populaties beı̈nvloeden. Daartoe trans-
formeren we ons foerageer-hulpbron systeem, zonder demografische ge-
beurtenissen zoals sterfte, naar een roofdier-prooi systeem dat dergelijke
gebeurtenissen wel bevat. We beschouwen prooien die zich niet ver kun-
nen verplaatsen en, als gevolg van fragmentatie, daarom alleen in de af-
zonderlijke geı̈soleerde fragmenten kunnen overleven. Roofdieren kunnen
wel tussen de fragmenten bewegen, waarbij we hun verplaatsing zorgvul-
dig controleren d.m.v. een Lévy walk. Door het variëren van het fragmen-
tatieniveau onderzoeken we de effecten van fragmentatie op populaties
van roofdieren en hun prooi. Onze resultaten voorspellen dat de effecten
van fragmentatie op populaties meestal negatief zijn, maar het daadwer-
kelijke effect hangt sterk af van hoe de roofdieren zich bewegen tussen de
geı̈soleerde gebieden. Onze resultaten tonen aan dat de optimale bewe-
gingspatronen van roofdieren gekenmerkt worden door een hoge disper-
siegraad, om zowel verafgelegen gebieden te bezoeken én deze bij aan-
komst niet teveel te exploiteren. Wanneer fragmentatie toeneemt, neemt
deze optimale dispersiegraad ook toe, maar totale populatiegroottes ne-
men sterk af. Omdat prooi verhinderd is om zich naar andere fragmen-
ten te verplaatsen, zorgt fragmentatie er voor dat lokale prooipopulaties
zeer gevoelig zijn voor demografische fluctuaties, en dus meer kans heb-
ben om (lokaal) uit te sterven door overconsumptie. Onze resultaten laten
zien dat kleine fragmenten veel gevoeliger zijn aan deze schommelingen
en dus meer kans hebben om onomkeerbaar uitgeput te raken. Aange-
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zien sterk gefragmenteerde landschappen gemiddeld veel meer kleine ge-
bieden bevatten, wordt onomkeerbaar verlies van habitat in zulke land-
schappen verergerd. Onze resultaten suggereren echter dat een optimale
respons van roofdieren de totale hoeveelheid verloren habitat sterk kan
verminderen. Hoewel het verlies niet kan worden voorkomen, laten onze
resultaten zien dat foerageergedrag, dat zich uit in de verplaatsingen tus-
sen de geı̈soleerde fragmenten, van cruciaal belang is voor de stabiliteit
van ecosystemen.

Het gepresenteerde werk in dit proefschrift benadrukt het ingewik-
kelde samenspel van verschillende factoren op optimaal foerageergedrag.
We richten ons specifiek op hoe foerageerders worden beı̈nvloedt door, en
reageren op, veranderingen in ecosystemen en dragen zo bij aan de discus-
sie over hoe optimaal foerageergedrag voortdurend gevormd wordt door
cognitieve capaciteiten, interacties met soortgenoten en de onderliggende
structuur van het landschap.





Summary

Foraging describes the search for resources essential to the long-term sur-
vival of many animal species. Therefore, foragers are expected to opti-
mize their foraging behavior as to maximize their odds of survival. As
survival is the primary concern of species, it is unsurprising that foraging
is ubiquitous in nature. Moreover, it is believed that foraging advantages,
thus increased survival probabilities, exert major evolutionary pressure on
species, possibly underlying emergence of intricate search strategies, com-
plex social behavior, and impressive cognitive feats such as memory. Re-
cent developments have only started to unveil the complex decision mech-
anisms behind optimal foraging behavior and many questions remain still
unanswered.

Specific foraging behavior strongly depends on the incentive of the for-
ager, i.e. what is the forager looking for? In optimal foraging theory, it
is assumed that foragers exhibit behavior that results in maximizing some
metric, often called the currency. A widely employed currency is the num-
ber of resources gathered per unit time: the foraging efficiency. However,
foraging efficiency alone cannot explain all foraging patterns that have
been observed in natural systems, as foragers often address other impor-
tant incentives, such as individual survival or species persistence. Most likely,
other, perhaps yet undiscovered, incentives pressure foragers into further
adapting their behavior.

What foraging behavior is optimal, often heavily depends on several
other external factors. Therefore, in this dissertation, we focus on how
different foraging incentives are influenced by such factors and how dif-
ferent factors strongly determine advantages of specific foraging behav-
iors. Among the most important external factor is the spatial configuration
of the resource distribution. Therefore, we specifically examine how for-
aging behavior is influenced by the distribution over resources and how
specific distributions enable individuals to take advantage of, for exam-
ple, memory or conspecifics. Furthermore, the work in this dissertation
shows that foragers are not only influenced by resource distributions, but
can in turn effectively influence the resource distribution themselves. Con-
sequently, foragers strongly affect the underlying habitat structure of the
environments wherein they live.

Regardless of the incentives or factors, underlying nearly all optimal
foraging behavior are efficient searches. As the locations of resources are
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often a priori unknown to the forager, a large part of optimal foraging
theory pertains the study of random searches. Interestingly, while random
searches, or random walks, are, as their name suggests, inherently random,
they can still be employed effectively and have been observed to optimize
foraging efficiencies over a wide range of resource distributions. In our
particular interest is a random walk that expresses scale-free characteris-
tics in forager dispersal; the so-called Lévy walk. Lévy walks encompass
a wide range of movements and describe random walks that interchange
local search behavior with rare, but statistically relevant, long-range dis-
placements. In other words, Lévy walks encode for the search behavior,
and thus foraging strategy, of searching a small area intensively before
jumping towards a next far-away area of interest.

In general, the environments that shall be discussed exhibit spatial het-
erogeneity, as resources in natural systems tend to be clustered on patches.
Patchy environments are furthermore of interest as many ecosystems are
decreasing in size, often due to anthropogenic influences. These reduc-
tions in suitable habitat are often accompanied by increased fragmenta-
tion, where habitat is broken up into smaller and more isolated patches.
For conservation purposes, it is consequently of critical importance to un-
derstand how foragers respond to these, mostly negative, changes in spa-
tial resource configurations. The foraging strategies that are discussed in
this dissertation, will pertain to optimal foraging behavior in patchy, or
fragmented, landscapes. In general, the aim is to highlight and study the
intricate interplay between foragers and the environments they inhabit.

To this end, we first consider a system of a single forager that is
equipped with the ability to learn a spatial distribution. Such an ability
is widely observed in many species and it effectively allows organisms
to direct their movement towards patches known to be rich in resources.
We discuss what type of memory allows for the recollection of patch lo-
cations and discuss potential benefits for foraging. More specifically, we
examine how a hybrid foraging strategy, that interchanges exploration, by
Lévy walk, and exploitation, by informed displacements, influences opti-
mal foraging behavior for two different incentives: foraging efficiency and
patch diversity. The former corresponds to the definition above, i.e. the
number of resources per unit time, while the latter additionally considers
from what patch the resources originated, thus representing the diversity
over consumed resources. Our results reveal that foragers can benefit from
spatial memory by continuously exploiting a limited set of resource rich
patches of which the locations are effectively stored in memory. However,
this restricts forager movement to a limited area and exploration is effec-
tively suppressed. As a result, frequent memory usage is associated with a
decline in patch diversity. As foragers often need a diverse set of resources
to survive, such as food and water, this suggests that spatial memory is not
necessarily always beneficial. Therefore, our results illustrate the idea that
foraging behavior should critically depend on the incentive of the forager.
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Second, as foragers are not always solitary, we study a group of foragers
and how their behavior is affected by resource patchiness. We consider
foragers that change the characteristics of their Lévy walk upon entering
a patch, by switching from an extensive search with long-displacements,
to an intensive, more localized search. We study a system where the
search behavior of nearby conspecifics can be monitored and foragers are
attracted to those that search intensively, as this signifies patch existence.
Because the set of resources on patches was limited, foragers are effectively
competing with one another. By controlling resource patchiness, we quan-
titatively determine the benefits of joining for two incentives: group for-
aging efficiency and individual survival probability. Our results show that
joining others increased the group foraging efficiency only when patches
contained sufficient resources, as it effectively keeps competition rates on
patches to a minimum. Joining is found to not be beneficial when com-
petition increased, which occurs when resources are not densely clustered
or when effective foraging densities are high. Interestingly, individual sur-
vival probabilities, that are maximized when the variation in resource in-
take is minimized, are greatest precisely when group foraging efficiencies
are minimized. Therefore, our results conform to empirical observations
that, while foraging in groups can be advantageous for the individual un-
der certain environmental conditions, many foragers instead resort to so-
called ‘low mean, low variance’ strategies as to increase the odds of sur-
vival.

Third, we examine a collective system wherein foragers exhibit altru-
istic behavior instead of competition between individuals. To this end,
we introduce an agent-based model wherein foragers can recruit other for-
agers to ephemeral patches instead of exploiting the patch by themselves.
Recruitment regards a random search, here a Lévy walk for conspecifics,
which we show can be optimized under some reasonable assumptions. As
patches only persist for some time, recruitment can only be considered ben-
eficial for the collective if it provided a net gain in resource intake. There-
fore, patches with a duration below a certain threshold should not trigger
recruitment behavior, while those that persist long enough should. We
study how the effectiveness of such threshold-based recruitment behav-
ior depends on resource ephemerality, by controlling the time over which
patches persist and examining the collective foraging efficiency as the in-
centive. Our results indicate that recruitment is only beneficial to the col-
lective if patches (thus resources) are difficult to locate and sufficiently per-
sistent. Additionally, collective foraging efficiencies are positively affected
by increased conspecific encounter rates mediated by increases in effec-
tive forager densities. Furthermore, our results indicate that the particular
value of the recruitment threshold has limited impact, whereas the choice
whether to recruit is critical. This result can have profound consequences
for future applications in artificial foraging systems, as our model suggests
that complex decisions needing high cognitive capabilities are not neces-
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sary to benefit from collective behavior.
Fourth, we investigate how landscape fragmentation and optimal for-

aging behavior jointly influence population dynamics. To this end, we
transform our forager-resource system without demographic events, such
as birth and death processes, to a predator-prey system that included such
events. We consider sessile prey species that, as a result of fragmenta-
tion, can inhabit only spatially separated fragments (patches). In contrast,
predators can move between the fragments, where their dispersal rates
were precisely controlled by having them assume Lévy walks. By varying
landscape fragmentation and predator dispersal rates, we closely examine
their effects on predator and prey populations. Our results predict that
the effects of fragmentation on population densities are mostly negative,
however the strength of the effects depend strongly on predator dispersal.
More specifically, our results show that optimal predator responses in land-
scapes that display little fragmentation are to adopt high dispersal rates, as
to both visit far away patches while not overexploiting them upon arrival.
Increases in fragmentation, in contrast, result in decreases in optimal dis-
persal rates for population densities to be maximal. As we consider prey
to be sessile, fragmentation prevents prey from moving between fragments
and, as such, small local prey populations become highly sensitive to de-
mographic fluctuations. Our results indicate that small patches are much
more sensitive to these fluctuations and are thus more likely to become
irreversibly depleted. As highly fragmented landscapes contain, on aver-
age, more smaller patches, irreversible habitat loss is exacerbated in such
landscapes. However, our results suggest that optimal predator responses
to high degrees of habitat fragmentation can reduce, but not prevent, the
amount of lost habitat. These results cement the critical importance of for-
ager dispersal on the stability of ecosystems.

The presented work in this dissertation highlights the intricate inter-
play of internal and external factors on optimal foraging behavior. We
specifically focus on individual-based behavioral responses to environ-
mental influences and thereby contribute towards the discussion on how
optimal foraging behavior is continuously shaped by cognitive capabili-
ties, interactions with conspecifics and the structure of the resource land-
scape.
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Introduction

1.1 Foraging
Imagine looking for your keys as you are leaving your house, yet you can-
not remember the last location where you have seen them. As you are
running late, you would like to optimize your search strategy such that
the expected time to find your keys is minimized. What kind of strategy
would you employ? One might first look in places with a high probability
of the key being there, such as a drawer, or a particular spot where the key
normally sits. Others may instead try to mentally retrace their activities, in
order to recall where they might have left it the day before. Most likely, the
more places that you have searched without success, the more exhaustive
your search will become. As the key does not move, a search strategy that
eliminates likely locations one-by-one, slowly turning into a full exhaus-
tive search if the key remains elusive, is probably the search strategy that
many will resort to.

While the above example might come across as a relatively simple task,
perhaps one that occurs almost daily to some, the underlying decision pro-
cess is in fact extremely complex. It combines complex spatial memory
with likelihood models of where the key might be, all while smoothly tran-
sitioning into different search strategies depending on the time elapsed
without finding the key. Now, whereas finding the key is not essential
to surviving, one can imagine animals searching for food in very similar
ways. The process of looking for essential resources, such as food, a nest-
ing site, or potential mates, of which locations of the resources are often a
priori unknown, is called foraging. As the above example already sketched
the plethora of possible search strategies that we and other animals might
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forager
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Figure 1.1: Illustrative example of a forager in a patchy resource landscape. The
forager (black dot) can detect resources (gray dots) within a detection radius R.
Note that resource locations are (often) not known a priori.

employ, the concept of optimal foraging has been extensively studied in the
last few decades, starting with the seminal works of Charnov in 1976 [1]
and Pyke in 1978 and 1978 [2, 3].

Optimal foraging theory (OFT) assumes that animals optimize their
(search) behavior in order to optimize for some type of currency, which is
typically energy related1 [4]. In general, the currency relates to biological
fitness, of which higher values are preferred by individual foragers. Hence,
natural selection results in ‘optimal foragers’ with foraging strategies that
maximizes the fitness [2, 5, 6]. Obviously, animals are subject to a wide
variety of factors that heavily influence optimal foraging behavior, such
as cognitive capabilities of the animal (i.e., can the animal learn?) [7–11],
what kind of information is available to the forager (e.g., resource sens-
ing) [3, 12–14], and possible social aspects (i.e., can foragers interact with
others?) [15–19]. Additionally, and perhaps most importantly, optimal for-
aging strategies strongly depend on the resource landscape [20–23], and
animals must take resource density (availability) and temporal resource
dynamics (predictability) into account if they are to survive. As foraging is
ubiquitous among the living, one might mistakenly consider it a mundane
task, yet the above examples highlight foraging as an incredibly complex
decision process. Moreover, it is precisely its ubiquity that foraging is of
interest to many scientific disciplines ranging from neuroscience [24], to

1Note that energy expenditure is often related to time spent searching or the distance trav-
eled during searches.
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ecology [25], to mathematics [26], and many others.

Understanding complex decision process, such as those underlying for-
aging behavior, allows researchers to mimic natural systems as to apply
(near) optimal strategies in artificial systems, giving rise to bio-inspired re-
search [27]. A prime example of a successful bio-inspired approach are
the now widespread artificial neural networks [28], that have displayed
incredible applicability due to the recent increases in data availability and
computational power [29]. Similarly, there has been a notable focus to-
wards artificial foraging systems [30–33], as artificial systems (e.g., robots)
become both more sophisticated and affordable. Most interest in this re-
gard, is aimed towards designing swarm robotic systems [34], mostly in-
spired by social insects such as ants and bees, but also by other taxa such
as flocking birds and fish schools. In swarms, individuals are considered
to be simple: it is the sum of many that realizes potentially complex be-
havior [31]. This display of swarm intelligence, where simple units can act
coherently despite lacking centralized control, largely overlaps with OFT,
as many animals forage in groups [10]. Hence, studying foraging in both
natural and artificial systems allows both the understanding of complex
decision making processes in natural systems, as well as translating these
to be applied in optimized artificial systems. As of now, the most cited
applications of (swarm) foraging are optimizing searches for search-and-
rescue missions [35, 36] and autonomous collection of resources on distant
planets [37–39].

Instead of studying and designing (near) optimal artificial systems for
specific foraging-related tasks, this dissertation instead takes a more fun-
damental approach and studies questions regarding different incentives
and factors that influence optimal foraging behavior.

1.2 Resource distributions

As briefly touched on above, the resource landscape heavily impacts op-
timal foraging behavior. For example, when resources are plentiful, intri-
cate behavior is often unnecessary as resources are encountered frequently
[40]. In contrast, when resources are difficult to locate, intelligent forag-
ing strategies become more important, as foragers can starve if they do not
find resources in time. While spatially homogeneous environments that
contain vast amounts of easy to locate resources exist (e.g., a cow grazing
in a field), most natural systems instead have resources be sparsely dis-
tributed, sometimes tied to seasonal availability. Moreover, resources are
often found to exhibit spatial heterogeneity, as they are distributed into
patches, or display scale-free, fractal-like patterns of aggregation [41–53].
As such, statistical modeling approaches, including the ones presented in
this dissertation, consider both patchy aggregates [54–57], as well as the
more complex fractal patterns [23, 53, 56].
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As different spatial features of the resource distribution will be tack-
led in this dissertation, a few comments on the different types of resource
distribution models are in order.

1.2.1 Resource distributions: spatial characteristics

In field studies, it is difficult to generate complex resource patterns in ex-
periments with real animals. As a result, these studies have often resorted
to distributing resources within (fixed-size) patches (see e.g., [58]). In con-
trast, computational approaches, such as those presented in this disserta-
tion, are not limited in this regard, and can therefore consider more com-
plex resource distributions (see e.g., [23]).

In general, it has been commonly accepted that homogeneous, uni-
form distributions are unlikely to describe realistic spatial resource distri-
butions. More specifically, initially homogeneous resource distributions
display increased heterogeneity over time as an effect of landscape irreg-
ularities, self-organization, interactions, and both intra- and interspecific
effects [59–64]. Despite the overwhelming evidence in favor of spatial het-
erogeneity, OFT has been studied extensively in cases where resource dis-
tributions were considered to be uniform (see e.g., [18, 40, 65–75]). How-
ever, studying such systems is not necessarily futile, as they can provide
insights on optimality of different foraging strategies that are decoupled
from more intricate effects of resource distributions. However, we argue
here that, going forward, it becomes increasingly difficult to assume non-
patchy, uniform distributions, as the evidence in favor of heterogeneous
distributions accumulates (see Fig. 1.2 for illustrative examples).

1.2.2 Resource dynamics: temporal characteristics

Obviously, most natural resource distributions are not static, but exhibit
temporal changes, where the source of these changes can differ drastically.

First, it is important to discuss how foraging itself can underlie tempo-
ral changes within resource distributions. Generally, foraging falls into two
categories: non-destructive and destructive foraging [40, 76]. As the name
implies, non-destructive foraging considers resources that can be revisited
indefinitely. While perhaps unintuitive, Viswanathan et al. [40] argue that
there exist natural systems wherein foragers exhibit this type of foraging,
namely those wherein resources become only temporarily unavailable, i.e.
those where resources (quickly) regenerate. Additionally, forager satiation
can result in foragers leaving patches that are potentially still rich in re-
sources. In contrast, destructive foraging considers foragers that consume
the resource, e.g., prey consumption by foraging predators. Therefore, it
implies time dependent spatial characteristics of the resource distribution
of which the underlying cause is the consumption and regeneration of re-
sources. To understand this, consider that when modeling foraging sys-
tems, it is often of interest to study specific incentives, such as the foraging
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Figure 1.2: Illustration of the different resource distributions studied in this dis-
sertation. (A) Resources are aggregated (clumped) in patches and resources do
not exist outside of the patches. (B) Resource distribution that displays scale-free,
fractal-like patterns, where clustered aggregates are surrounded by (potentially)
vast areas void of resources. (C) Fragmented resource landscape.

efficiency, as function of resource heterogeneity. Essentially, such model-
ing approaches vary specific parameters that only change these assets of
interest, while keeping all other characteristics constant. For example, if
one is interested in the effect of resource fragmentation per se (see below),
resource density should remain fixed – a widely employed tactic in works
regarding fragmentation (e.g., [77–80]). Hence, when resource density is
to remain fixed, destructive foraging implies immediate regeneration of a
new resource upon consumption [23, 66]. Note that the new spatial loca-
tion should not be the same as the old one, as that would make the foraging
non-destructive instead. In general, whereas non-destructive foraging al-
lows one to model resource distributions as static distributions, destructive
foraging implies either a reduction in the number of resources (depletion)
or indicates different spatial regeneration of resources that result in tempo-
ral changes in the resource distribution (dynamics). Note that both types
of foraging have been studied extensively, and that it is known that they
display vastly different optimal foraging strategies [40, 65, 66].

Finally, it is important to note that different causes can induce tempo-
ral changes in resource distributions. For example, there exist systems
wherein resources are only temporarily available [81, 82], or where re-
sources themselves are evasive, e.g. in predator-prey systems [65, 83]. Ad-
ditionally, loss of habitat, and thus possible reduction in resource avail-
ability, has received considerable attention as it often results from anthro-
pogenic influences and presents a major threat to the longevity of animal
populations across the globe [84–86]. Habitat loss typically results in in-
creased fragmentation [79], a process wherein habitable zones become in-
creasingly smaller and more spatially separated [87, 88]. As a result, it
greatly affects foraging behavior, as forager movement becomes necessary
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to ensure population stability [89–91]. In general, it is important to distin-
guish between different causes of resource dynamics, as they drastically
impact optimal foraging behavior and, subsequently, ecosystem stability.

1.3 Random searches
As described above, environmental characteristics shape optimal foraging
strategies, most notably the foragers’ movement strategy, also called disper-
sal. In general, it is assumed that resource locations are not known a priori,
and hence foragers need to resort to random searches. Viswanathan et al.
[92] define the random search problem as searching for an answer to the
following question: “What is the most efficient strategy for searching randomly
located objects whose exact locations are not known a priori?” A definite answer
to this question is not easily obtained. In essence, the random search prob-
lem is at the base of nearly all foraging tasks and is required even when
foragers are extremely clever. It corresponds to exploration, where new re-
source locations have to be discovered before other intricate mechanisms,
such as learning, can take place.

1.3.1 Random walks
As the name implies, random searches are inherently random. As such,
random walks are at the basis of random searches. The term ‘random walk’
was first used in a letter by the statistician Karl Pearson in 1905 [93], who
asked a solution to the now well-known drunkard problem. In this prob-
lem, a drunk person starts from some starting point and walks a fixed
distance ℓ in a straight line before turning through a random angle θ, af-
ter which the process is repeated n times. Pearson was interested in the
probability of the drunkard ending up at a particular location from its
starting point. For this particular problem, the answer was provided by
Lord Rayleigh merely a week later2, and sparked a vast interest on ran-
dom walks across many fields of science.

Interestingly, many random walks are not necessarily described by
an underlying stochastic process [95]. A well-known example of this is
Brownian motion, where small particles deterministically collide with even
smaller particles, resulting in seemingly random displacements. In the
same vain, while the decision process that underlies forager movement
might not be random, it can be described as a particle undergoing a ran-
dom walk, and thus is amendable to techniques from the domain of sta-
tistical mechanics [76]. Interestingly, Brownian motion and other closely

2Rather amusingly, in my opinion, Lord Rayleigh was able to provide the answer so
quickly because he solved this particular problem a few decades earlier in the context of
moving sound waves. This illustrates that studying random searches require an interdisci-
plinary approach as they are applicable in many fields of science, which includes (optimal)
foraging. While interdisciplinary studies are now increasingly common, at that time Pearson
eloquently wrote [94]: “... one does not expect to find the first stage in a biometric problem provided
in a memoir on sound.”.
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related random walks such as the Ornstein-Uhlenbeck process [96], have
been additionally applied in economics [97], as stock prices appear to fol-
low similar trends as particles and foragers.

In general, when random walks of many particles (foragers) are consid-
ered, they represent a diffusion process. Diffusion is the process by which
particles diffuse from regions with high concentrations to low concentra-
tions. An example of this from daily life is when one considers a blue ink
droplet that is dropped in a glass of water. Over time, the highly concen-
trated ink particles will diffuse, and as a result the water will turn blue.
As one can, in principle, track positions of individual particles over time,
diffusion is nothing more than the process of many random walks by (non-
)interacting particles. Throughout this dissertation, foragers will be dis-
cussed within this context as well (see also [76, 98]), where highly diffusive
foragers (those that quickly move away from the starting point) represent
foragers with a different random search strategy compared to slowly dif-
fusing foragers. As diffusion has been extensively studied in physics, it
should come as no surprise that many theoretical advances in OFT origi-
nate from studies on nonequilibrium statistical mechanics [76, 92, 99–101].

As random walks consider probabilistic displacements of particles,
quantities that are often of interest outside of the probability density func-
tion (pdf) are its moments and the mean squared displacement (MSD). More
formally, let x(t) describe the position of a particle at time t that started
at x0 at t = 0. Then p(x) defines the probability of finding the particle at
some location x + dx, with its corresponding nth moment

〈xn〉 =
∫

D
x

n p(x) dx (1.1)

over the domain D (which is typically [−∞, ∞]d, where d the dimensional-
ity of the system). The MSD is defined as

MSD(t) =
〈
|x(t)− x0|

2
〉

, (1.2)

where 〈·〉 denotes the ensemble average over many particles. In other
words, the MSD denotes the expected (or average) squared displacement
from a reference location x0. In foraging, the MSD is useful as it captures
how much of an environment has been explored, i.e. how much of the
environment has been covered at a time t [102].

Let us briefly consider an simple example: one-dimensional Brownian
motion. The pdf of a particle undergoing Brownian motion starting at the
origin x0 = 0 is a normal distribution with mean (first central moment) of
0 and variance (second central moment) 2Dt, where D is the diffusivity, i.e.
the rate of diffusion that, in case of particles, depends on the medium. For
Brownian motion, the MSD is equal to the variance. As such, Brownian
foragers are most likely to be found close to where they started, which
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already indicates that this might in some cases be a suboptimal random
search.

In the context of area coverage (exploration) of an environment, ran-
dom walk theory predicts that the MSD of diffusing particles scales as

MSD(t) ∼ tµ, (1.3)

where µ depends on the type of diffusion. So-called ‘normal’, or Fickian,
diffusion describes processes where the MSD scales linearly with time, i.e.
µ = 1. Brownian motion is the simplest example of normal diffusion. In
contrast, anomalous diffusion arises when µ 6= 1, splitting into subdiffusive
(µ < 1) and superdiffusive (µ > 1) processes [66]. The fastest possible diffu-
sion is realized when particles execute straight-line motion, called ballistic
motion, where µ = 2. From the area coverage description of the MSD, it
is not hard to imagine that superdiffusive foragers might search more effi-
ciently.

Although in the early stages of theoretical ecology it was implicitly as-
sumed that the standard assumptions underlying equilibrium statistical
mechanics would hold for foragers as well, it has been argued that it pro-
vided “convenience rather than applicability” [103]. Effectively, it meant that
early studies into foraging behavior regarded movement to be described
by normal diffusion, while many foragers often display different types of
diffusion. More specifically, the diffusion characteristics of foragers are of-
ten resulting from complex interactions, such as attraction towards other
foragers [104–108], home ranges observed in central-place foragers [109–
113], memory [8, 9, 11, 57, 114], and many others. As such, nonequilibrium
statistical mechanics better describes foraging systems [76], which critically
applies to the random search behavior as well.

1.3.1.1 Lévy walks

As in all fields of science, OFT has profited from advancements in other
fields. Most notably, improvements in data logging techniques have re-
sulted in ascribing anomalous diffusion to foraging organisms [40, 51, 115].
More specifically, the pdf of their subsequent flight lengths – the lengths
during which their angle of direction remains constant (see, e.g. [66]) –
has a diverging second moment compatible with the generalized central
limit theorem devised by Paul Lévy in 1939 [116]. It is therefore that these
superdiffusive movements of foraging organisms are called Lévy flights or
Lévy walks.

Before we move on, it is important to distinguish between flights and
walks, as they define vastly different movement models. Lévy flights are
random walks wherein displacements occur with infinite velocity, i.e. there
are instantaneous ‘jumps’. On the other hand, Lévy walks consist of for-
agers walking along the sampled flight lengths with a (finite) fixed veloc-
ity v0, thus giving rise to a spatio-temporal correlation in forager move-
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Figure 1.3: Illustration of characteristics of Lévy walks for different Lévy param-
eters α. (A) The complementary cumulative density function P(L ≥ ℓ), which
defines the probability of sampling random flight lengths L larger or equal than ℓ.
(B) Typical Lévy walks as generated by sampling flight lengths from a power law
distribution and uniform angles.

ment [98]. Although flights with infinite velocity are unnatural by defini-
tion, they are generally more analytically tractable and have therefore been
studied extensively. Nonetheless, the study of Lévy walks pertains to more
realistic ecological frameworks, as indicated by the number of OFT studies
that consider Lévy walks over Lévy flights.

Lévy walks are characterized by heavy-tailed power law distributions
over flight lengths ℓ (Fig. 1.3), with a Lévy parameter α,

p(ℓ) ∼ ℓ−α. (1.4)

In general, it is assumed that the direction of travel for each flight is sam-
pled uniformly (but see e.g., [66]). For α ≤ 1, it can be easily verified that
the pdf cannot be normalized. Then, in the limit of L → ∞ and for α > 1,
Lévy walks encompass distinct modes, depending on the specific value of
α. First, as α ≥ 3, the second moment does converge, and the above distri-
bution describes normal diffusion (Brownian motion). For α → 1, we re-
cover ballistic (straight line) motion as flight lengths approach infinity. For
intermediate values 1 < α < 3, foragers exhibit anomalous diffusion with
superlinear scaling of the MSD. This type of diffusion effectively describes
foragers that interchange localized movement with rare, but statistically
relevant, long-range displacements (see Fig. 1.3 for examples and [98] for
an extended discussion on Lévy walks).

In the seminal work of Viswanathan et al. in 1999 [40], they illus-
trated that Lévy walks with α ≈ 2 are the optimal random search strat-
egy for a single forager in environments where resources were scarce and
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spatially uniform. In the years following this result, the robustness of
Lévy walks as an optimal random search has been widely established
[23, 54, 55, 65, 66, 83, 117]. However, despite these models supporting the
occurrence of Lévy walks in a foraging context, whether organisms truly
execute Lévy walks is currently still debated [118–123]. Nevertheless, ev-
idence from natural systems that exhibit Lévy walk behavior is accumu-
lating, and Lévy walks have been observed in a wide variety of systems
ranging from cancer cells [124], T cells [125], micro-organisms such as bac-
teria [126], insects such as honey-bees [127], birds such as the albatross
[115], many aquatic animals [51, 128], mammals such as deer [129, 130],
and even human hunter-gatherers [131].

1.3.1.2 Lévy flights as resource distributions

Before moving on towards more intricate search strategies, we would like
to mention that the above Lévy flight description can additionally be used
to describe spatial resource distributions, as in [23]. Therefore, resource-
to-resource distances have often been observed to follow an inverse power
law as well, either as a result of passive dispersal [51, 132, 133] or, for ex-
ample, seeds being dispersed by frugivores (see [134] for a recent review).
This gives rise to so-called Lévy dust distributions [53, 135], which provide a
simple way of simulating scale-free, fractal-like distributions (see Fig. 1.2).

1.3.1.3 Intermittent and adaptive searches

Whereas Lévy walks have been widely accepted as a sound random search
strategy, many organisms actually adapt their searching behavior depend-
ing on their internal state [1, 136, 137] and external (often environmental)
influences [128, 138, 139]. This is often a result foragers being effectively
‘blind’ [40, 71, 72], as the resources they are looking for are often detected
only up to a few body lengths. As such, long displacements such as those
encountered in the Lévy walks described above, often carry with them a
low resource detection probability. To this end, many animals exhibit in-
termittent searches, where localized, slow and thorough exploration that al-
lows resource detection, is interchanged with fast relocations during which
resources cannot be (easily) detected [140, 141] (and see [142] for an exten-
sive overview).

Interestingly, Lévy walks themselves seem to contain similar behav-
ior depending on α. Most notably, as visible in Fig. 1.3, for α = 2.0, the
foragers’ trajectory displays intermittent-like search behavior. However,
it must be noted that while the trajectory appears as if the search is in-
termittent, the behavior of the forager does not structurally change, and
detection is equally likely regardless of where along the trajectory the for-
ager is. Therefore, ‘true’ intermittent searches imply a structural change in
behavior, e.g. a change of α, when a certain condition is met.

In general, conditions that trigger a behavioral change are plentiful. In
this dissertation however, as we are most interested in the impact the re-
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Figure 1.4: Illustrative example of a forager displaying adaptive search behavior in
a one-dimensional patchy resource landscape. Switches from extensive to intensive
searches are triggered by resource detection. In turn, switching back to extensive
searches occurs when patches are exhausted.

source distribution has on optimal foraging behavior, we attribute the in-
termittence to patch detection (see Fig. 1.4). Note here that our definition of
intermittence, differs from the usual definition, e.g., as used by Bénichou
et al. [142]. The difference is that common terminology refers to inter-
mittence with fixed rates of switching search behavior, i.e. independent
of the current state of the forager, whereas we let this switch be state-
dependent. The reason for this difference is that natural environments
often have patchy resource distributions and, as such, finding a resource
typically indicates the presence of others nearby. Therefore, it is not hard to
imagine that more thorough local searches should be triggered by resource
detection [143]. This can, for example, be modeled as a Lévy walk that
changes its α to display less diffusive behavior, as to keep the forager close
to (or within) the patch rich in resources, making future resource detec-
tions more likely to occur. Hence, the effectiveness of intermittent searches
relies heavily on the resource distribution.

1.3.2 Informed walks

As organisms grow more complex, they can forego random searches in
favour of more informed search strategies [144–146]. This type of adap-
tation relies on several factors, such as the learning capabilities of the for-
ager and the predictability of the environment [147, 148]. Obviously, ad-
vantages of learning (such as memory) disappear when the environment
becomes highly unpredictable. Hence, as one would intuitively expect,
memory has been found to be more advantageous in environments that
are more predictable [149].

Even though environments might be predictable, most studies im-
plicitly assume no prior knowledge to be available to the forager. This
makes initial exploration of critical importance to the speed at which a pre-
dictable environment is learned. This gives rise to an important problem in
many fields of study, particularly those related to learning: the exploration-
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exploitation trade-off [150]. In a foraging context, the trade-off is encoun-
tered, for example, in ant colonies deciding on a new nesting site [151, 152],
or when foragers have to decide whether to exploit current known patches
in favour of searching for patches of potentially higher quality. While the
trade-off can most often not be explicitly solved, it should be noted that
within the context of foraging, survival is most often more important. As
such, simple models wherein foragers are more likely to exploit their cur-
rent knowledge when not having encountered resources in some time have
been shown to be effective [23, 73].

What and how foragers can learn depends strongly on the cognitive
capabilities of the forager. Whereas relocations to known patch locations
have been observed [153, 154], simpler schemes such as a (short-term)
memory of the number of encountered resources [23] or maintaining a
general direction (biased towards known patches) [155–157] can also be
considered. Importantly, this non-exhaustive list of examples illustrates
a more general result: regardless of the memory model, memory has the
potential to be beneficial in a predictable environment.

It should be noted that maintaining any memory model introduces ad-
ditional costs, i.e. increased metabolic rates [158], that foragers need to ac-
count for. As a result, benefits of memory depend strongly the complexity
of the environment. For example, in very simple environments, benefits
of maintaining a complex (spatial) memory simply do not outweigh the
expected costs [148].

1.4 Foraging in groups

The previous section considered possible strategies that single foragers can
use as to optimize their foraging efficiency. Besides this individual op-
timization, foragers that are contained within a group might be able to
benefit from interactions with conspecifics. As an example, one can imag-
ine that in a cohesive group, the search for difficult to find resources can
effectively be parallelized. Obviously, group foraging is a complex pro-
cess, as group sizes span several orders of magnitude: from two loosely
connected individuals to extremely large aggregates [159–161]. Forag-
ing in groups additionally regards a task for which optimal strategies are
straightforwardly transferred to practical applications, ranging from de-
signing a group of artificial agents (e.g., robots) that search for resources
[38] (as in the aforementioned search and rescue missions [35, 36]), to im-
plementing optimal decision making in swarms [162–164].

Foragers can interact with each other in many different ways (see
Fig. 1.1). In general, interactions facilitate an exchange of information. For
example, (long-range) vocal signalling between individuals is widespread
in the animal kingdom (see, e.g., [165–169]). Other methods, such as the
pheromone trails left by ants [170], enable information sharing through
indirect communication – a mechanism called stigmergy – and has seen



INTRODUCTION 13

r
R

A B

Figure 1.5: Illustrative examples of foraging in groups. Straight black arrows in-
dicate resource detection radius R and conspecific interaction radius r. Note that,
typically, r > R. Dotted trajectories indicate past movement, e.g. a Lévy walk, of
the focal forager (•) and a conspecific (•). Straight red arrows indicate future move-
ment of the focal forager towards the patch with resources (•). (A) Group foraging
scenario wherein a forager joins successful conspecifics on a patch. Note that this
behavior is strictly competitive, as resources on the patch need to be shared with
conspecifics (see text). (B) Collective foraging scenario where information (here;
the location of a patch) is shared between conspecifics, as indicated by the curved
arrows, in order to facilitate the collective. Note that this behavior is strictly collec-
tive, as it implies altruistic behavior of information sharing (see text), and that this
can occur off-patch.

widespread attention in artificial systems (see, e.g., [33, 171–174]). How
individuals, or the group as a whole, can benefit from interactions, and
how these benefits depend on individual decisions as well as environmen-
tal constraints, is not yet fully understood.

Before proceeding, we would like to note that foraging in groups does
not necessarily imply cooperation, but can additionally imply competition.
However, the terms group foraging and collective foraging have mostly been
used interchangeably, e.g., as seen in [106, 107]. In this dissertation, we
argue that one should make a clear distinction between the two, as they
refer to two vastly different phenomena.

In general, we argue that group foraging should pertain to the study of
groups of inherently selfish foragers. Thus, individual foragers do not nec-
essarily optimize their behavior to favour the group as a whole, but in-
stead optimize individual gain, hence assuming the selfish herd hypothesis
[175]. Note that while individual optimizations might lead to optimization
on the group-level, this is not always the case [21, 176–179]. Examples of
group foraging are systems wherein intraspecific competition is either ex-
plicit, e.g. fighting for patch dominance [180, 181], or implicit, e.g. through
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competition for a limited set of resources [21, 176, 178].

In contrast, we define collective foraging as a group of altruistic foragers,
where individuals act as to serve the collective. Such an altruistic frame-
work is often assumed to underlie (artificial) swarm systems [31, 182].
Again, optimizations on the level of the collective may result in individ-
ual optimizations, however this is not a requirement. Examples of collec-
tive behavior in collective foraging are active inhibition of visitation to ex-
hausted patches [183], task allocation-like structures [184, 185] and (active)
recruitment towards patches [186–188].

1.4.1 Group foraging

Group foraging has been studied in the context of so-called information-
sharing systems [16, 18], where interactions are often assumed to be limited
to continuous monitoring of (nearby) conspecifics. As resource environ-
ments are often patchy (see Section 1.2), individuals can benefit from join-
ing others that are observed to have been successful [67, 189]. Of course,
it can occur that more intricate behavior is displayed. Examples of such
behavior are on-patch competition, e.g. fighting over limited resources
[21, 190–192], kleptoparasitism [193–195], or, in contrast, social resource
sharing among individuals [196, 197]. Formation of aggregates on patches
rich in resources can also provide increased individual foraging successes
through synchronizing foraging bouts [198–200], which interestingly have
been observed even in mixed-species systems [201–204].

Different models discuss groups of foragers as producer-scrounger sys-
tems [15, 205–207], in which individuals are considered to be either a pro-
ducer or a scrounger. In its essence, producers are those that are taken ad-
vantage of by the scroungers [208]. Obviously, the effectiveness of both
strategies depends on the number of producers relative to the number
of scroungers. While information-sharing and producer-scrounger frame-
works are extensively studied, both idealistic models are unlikely to cap-
ture realistic settings in full detail. As such, more research is needed in
either combining the two models, or potentially devising novel models, as
to describe observed natural phenomena in foraging groups.

We would like to emphasize that, while it might appear that poten-
tial foraging advantages act as the evolutionary pressure leading to group-
level behavior, one should be careful by attributing this solely to forag-
ing. In particular, living in groups – not necessarily foraging – already pro-
vides individual benefits such as decreased predation risk [161, 175, 209],
possibly due to changes in individual vigilance [210–212]. However note
that, for example, decreases in individual vigilance often increases the time
spent foraging [21, 213] (but see [214]), thereby additionally contributing
to foraging advantages.
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1.4.1.1 Origins of competition and group foraging.

As explained above, group foraging pertains to the study of foraging in
groups that are inherently competitive. Most often, this is the result from
the limited number of resources available on patches, as these need to be
shared among all foragers. In our particular interest are systems where
this competition is implicit, i.e. there is no active competition, yet individ-
uals are competing for the same set of resources for which ‘first-come-first-
serve’ applies. These systems are thus comprised of destructive foraging
events, and hence are applicable to the study of dynamic resource land-
scapes. Individual foragers have to make decisions whether to join others
or not, often based on several factors, such as the estimated time to detect
patches and on-patch resource availability [67, 215]. Obviously, when re-
sources are plentiful, individuals do not need to join others as their own
random searches amount to high resource intake rates [105]. Addition-
ally, benefits of joining others depend critically on the estimated or ob-
served (local) forager densities, as these correspond to higher levels of on-
patch competition as group sizes increase [21, 108, 176–179, 216]. As such,
group formation, while providing some individual benefits under specific
circumstances, is not generally advantageous towards foraging optimally.

1.4.2 Collective foraging

On the other hand, collective foraging pertains to the study of foraging in
groups that are inherently collective, i.e. they should display some degree
of altruism. Altruistic behavior is introduced to group foragers by having
them explicitly communicate information, e.g. on specific patch locations.
Note here the subtle difference between informing conspecifics on a patch
location (which can occur off-patch) and attraction towards a (nearby) con-
specific (that can only occur on-patch). Thus, how information dissemina-
tion occurs within collective systems greatly affects the benefits of altruism.
Obviously, when others are difficult to communicate with (e.g. when for-
ager densities are low or communication ranges are short), foragers can
waste valuable time looking for others, thereby decreasing the benefits of
altruistic behavior. To this end, as many (both real and artificial) collective
systems exhibit short communication radii [31, 182], they often resort to
nesting sites wherein forager densities are high [217–219]. Especially the
latter is typical for ant and bee colonies, where they display highly intri-
cate communication patterns for information transfer, such as the waggle
dance performed by bees [184, 185, 220].

When nesting sites are not available however, active information trans-
fer is aided by formation of ephemeral aggregations [167, 221], including
those on the patches rich in resources [1, 222]. These type of aggregations
are often studied under the name of fission-fusion dynamics, where social in-
teractions with different conspecifics take place on the patches [223–225].
In principle, these interactions result in a (dynamic) interaction network,
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i.e. a graph, of which the structure highly influences the collective re-
sponse to environmental stimuli. The interaction networks or graphs, ob-
served in natural systems can take various forms, such as scale-free net-
works [32, 75, 226], and can rely on topological distances to nearby con-
specifics [227, 228]. While one might intuitively guess that fully connected
networks, i.e. allowing individuals to communicate with everyone, bene-
fit the information transfer in collective systems, this is most often not the
case. As an example, when collective responses need to be rapid, commu-
nication with a lower number of individuals has been shown to optimize
response times [229–231]. This is of particular interest to collective forag-
ing scenarios, as decisions should not take too long when environments
are (highly) dynamic for foraging to be efficient.

1.4.2.1 Origins of cooperation and collective foraging

The evolution of cooperation, ultimately leading to collective systems, has
been regarded as a major transition in evolution [232]. It is clear that under
specific circumstances, individuals can benefit from cooperation through
inclusive fitness [233]. Within the context of (collective) foraging, coopera-
tion might increase foraging efficiency, e.g. when large groups of cohesive
foragers experience increased foraging successes [234, 235]. Additionally,
foraging predators might require a minimum group size in order to take
down large prey [197, 236]. In general, reasons for cooperation are plenti-
ful, but one should be careful by attributing foraging benefits as the main
driving force behind collective behavior.

1.5 Foraging and population dynamics

While up until now we have not explicitly discussed demographic events,
such as death and reproduction of both foragers and resources, in real nat-
ural systems these features cannot be ignored when time scales exceed the
expected lifespan of the organisms. Therefore, we argue here that when
one studies foraging on appropriately large time scales, explicit population
dynamics must be included. Both to the understanding of natural systems
and the applications within artificial systems, unraveling population-wide
dynamics, such as species survival, is of great ecological importance [237].
Most interestingly, very recent studies have started to integrate movement
patterns from OFT into population models, e.g. Dannemann et al. in 2018
[238], as it is known that species dispersal significantly affects ecosystem
stability [91, 239]. Moreover, as nearly all animals forage for survival,
changes in landscape ecology shape the very future of life and biodiver-
sity across the globe.

In particular, rapid anthropogenic changes to global systems are of in-
creasing concern. As an example, the Amazon forest has seen extensive
deforestation, where almost 20% of the forest has been cut down as of
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writing this dissertation [240, 241]. As these rainforests house an incredi-
ble amount of species [242, 243], loss of habitat as a disturbance has long-
lasting (potentially irreversible) effects on the global climate and loss of
biodiversity [240, 244–247]. Moreover, many ecosystems across the globe
display increased levels of fragmentation [77, 79, 85, 86, 248], most often
caused by human action such as the aforementioned deforestation [249].
Here, fragmentation refers to the process wherein habitable zones become
both smaller and more spatially separated [77] (see Fig. 1.2).

As these changes are typically observed on scales much faster than
species can adapt, both habitat loss and subsequently fragmentation are
of specific interest to ecologists. Therefore, we argue that modeling efforts
that aim to identify the effects of landscape degradation on population dy-
namics of its inhabitants are of increasing importance.

1.5.1 Lotka-Volterra systems

For modeling population dynamics, an extensively studied system is the
Lotka-Volterra model, introduced independently by both Lotka [250] and
Volterra [251] in the 1920s, as a deterministic set of two coupled non-linear
differential equations. The equations describe the temporal evolution of a
system comprised of predators and their prey. Note that, within the context
of foraging as discussed in this dissertation, predator and prey populations
are represented by foragers and resources, however, these are most often
referred to as predator-prey models.

Historically, as fur trappers of the Hudson’s Bay Company had exten-
sive records of the number of pelts harvested each year, they observed reg-
ular oscillations in the number of pelts originating from hare and lynx be-
tween the years of 1821 and 1914 [252, 253]. These oscillations are a direct
effect of predator-prey interactions. As the number of prey increases, the
system supports more predators, which in turn increase predation pressure
leading to decreases in prey population and subsequently predator popu-
lation; a process that repeats with cycles often of fixed lengths [254, 255].
It were precisely these oscillations that could be modeled by the Lotka-
Volterra system, which is why it received considerable attention in fields
such as biology, chemistry, physics and mathematics [256–262]. Note that,
despite it being one of the foundational works on modeling population dy-
namics, the original Lotka-Volterra system presents some unrealistic fea-
tures and has been shown to be mathematically unstable [259, 262–265].

In brief, we shall discuss a simple two-species Lotka-Volterra model:
the classic predator-prey model. Recall that the bridge to foraging – on
which this dissertation focuses – is straightforward when regarding the
foragers as the predators and the resources as the prey. The model de-
scribes the time evolution of predator density x(t) and prey density y(t)
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Figure 1.6: Example of oscillations obtained using the two-species Lotka-Volterra
model for λ = 0.1, µ = 0.25 and σ = 0.5, and initial population densities
x(0) = y(0) = 10. Note that this example highlights one of the models’ unreal-
istic properties, in that populations can consist of less than 1 organism, yet are able
to recover (see e.g., [265]).

as

dx(t)

dt
= λx(t)y(t)− µx(t), (1.5)

dy(t)

dt
= σy(t)− λx(t)y(t), (1.6)

where λ, µ and σ the predator-prey interaction rate, predator mortality
rate and prey reproduction rate respectively. Depending on the values of
the demographic rates, oscillations in population numbers can be observed
(see Fig. 1.6). A more thorough description of the Lotka-Volterra system
would take considerable more effort, and is therefore considered to be well
beyond the scope of this dissertation.

1.5.1.1 Forager movement and Lotka-Volterra systems on lattices

Whereas the simple system above provides an elegant model of population
dynamics, it does not contain explicit spatial dependence. However, as dis-
cussed in Section 1.2, resource landscapes (habitat) often exhibit some form
of spatial heterogeneity. As to capture landscape characteristics, the above
system has been translated to represent population dynamics on specific
sites within a lattice. Lattice-based models, such as the Ising model [266],
have been the subject of many studies in the field of statistical physics,
making them able to capture the spatial structure prominent in natural
systems while remaining amendable to both analytical and computational
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methods [238, 263, 267–269]. Within the context of foraging, it models sys-
tems of foragers and resources existing on sites of a lattice, and allows for-
agers to ‘hop’ to other (neighboring) sites. Additionally, death and repro-
duction are modeled as creation and annihilation processes [263].

Most interestingly, inclusion of spatial structure immediately results in
(local) ‘pursuit and evasion’ patterns in predator and prey densities. This
can be explained similar to the cycles observed in natural systems, where
areas rich in resources are invaded by predators (pursuit) and prey reacts
by inhabiting empty surrounding sites (evasion) [263, 270, 271]. Moreover,
intricate spatial patterns can arise while applying simple rules, such as spi-
ral and fractal patterns [272–277]. Obviously, the rate of diffusion of both
predator and prey highly influences the stability of the ecosystem [278].
As an example, slowly diffusing prey populations can be more easily sub-
jected to local extinction if predators are highly diffusive, especially when
prey are reproducing slowly [100, 279]. When we can assume both preda-
tors and prey to be reactive, i.e. through adaptation of their diffusion rate,
how species respond to local extinction events has only recently begun to
be unraveled (see, e.g., [238]).

1.6 Applications of optimal foraging

We believe a discussion on application potential of the rather fundamental
work presented in this dissertation is warranted.

For computer scientists, applying results from fundamental studies on
biological systems has historically provided us with numerous technologi-
cal advances (e.g., [280]), and the field of biomimetics grows ever more pop-
ular (see [281] for a review). Our results can potentially be taken into ac-
count when designing (decentralized) controllers for autonomous (forag-
ing) systems such as swarm robotics [31, 32, 182, 282–285]. Within swarm
robotics, we find a plethora of applications ranging from efficient collec-
tive transport to systems that can self-organize [286–288]. Additionally,
optimizing collective foraging can aid in the mapping of hazardous en-
vironments by efficient exploration [289, 290], provide efficient searches
of patches of interest (e.g., pollution sources such as oil spills [291] and
weeds [292, 293]), and can substantially improve success of search-and-
rescue missions [36, 294, 295]. Another application – perhaps more futur-
istic – is the deployment of robot swarms on distant planets for planetary
exploration [296].

Within the context of ecology and conservation planning, we argue
that, as highlighted in Section 1.5, understanding foraging patterns in nat-
ural systems is invaluable to the conservation of those systems. Most im-
portantly, modeling the effects of destruction and fragmentation of habi-
tat might aid in the reversal of trends of declining biodiversity observed
around the globe [237]. While some studies pertaining foraging and habi-
tat loss exist [55, 238], the combination of applying OFT on the scale of pop-
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ulations is relatively unexplored. To this end, the work in this dissertation
provides a stepping stone for future studies into the complex interactions
between landscape patterns, population dynamics and optimal foraging,
and how these relate to global patterns and can help in the conservation of
biodiversity.

1.7 Research questions

Foraging encompasses complex random search behavior with intricate,
context- and state-dependent decision making. Although foraging re-
search has developed and matured over the past decades, there exist many
open questions regarding optimal foraging, of which some have been
sketched above. In particular, this dissertation addresses an overarching
question within foraging research: How can foragers maximize their forag-
ing efficiency, and how do optimal foraging strategies depend on different fac-
tors? More specifically, we study how environmental conditions can shape
optimal foraging behavior, with particular interest in the resource distri-
butions presented in Section 1.2, and how they depend on (i) individ-
ual cognitive capabilities (memory), (ii) interactions with conspecifics and
(iii) population-wide diffusion characteristics and (optimal) responses.

In order to address our main research question, we divide our work
into four research questions that include accompanying hypotheses. Be-
low, these research questions are iterated, including motivations for their
selection.

Research question 1 (Chapter 2). How can an individual forager benefit from
spatial memory when resources are distributed within patches?

As illustrated above, (spatial) memory is only beneficial in environ-
ments wherein resource distributions are predictable, at least to some ex-
tent. Instead of storing and recalling each individual resource location,
as this quickly becomes unrealistic when the number of (encountered)
resources grows over time, we propose to learn parameters of a spatial
distribution that approximates the patchy resource distribution. Hence,
if individual foragers posses the ability to learn a spatial distribution
[10, 146, 297], they can exploit this by sampling goal states from mem-
ory [144, 145]. These goal states, given that the spatial distribution ap-
proximates the true distribution well, are then within the patches rich in
resources with high probability.

Here, we argue that any memory component that is of any use to a
forager needs to posses the following requirements (at minimum); (i) a
spatial memory needs to be able to approximate the spatial resource distri-
bution; (ii) it needs to allow for sampling, i.e. to inform where the forager
will travel next; (iii) it needs the ability to be updated as to reflect possi-
ble changes in the resource distribution. Note that this additionally allows
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the forager to forget, which is a necessary component as most organisms
posses only limited (finite size) memory; and finally (iv) spatial memory
needs to exhibit a way to express uncertainty, as it allows foragers to make
decision based on the estimated correctness of their learned model.

To this end, we introduce an agent-based model wherein a forager is
able to learn a spatial distribution by learning a Gaussian mixture model
(GMM). As GMMs are universal function approximators [298, 299], and
given that resource distributions are clumped (as in Fig. 1.2), they can be
used to learn, in principle, any spatial distribution (requirement (i)). Addi-
tionally, sampling from GMMs is straightforward (requirement (ii)). More-
over, GMMs can be learned incrementally [300, 301] (requirement (iii)).
Despite GMMs providing an excellent baseline for a spatial model in en-
vironments with clumped resource distributions, when the forager should
exploit its knowledge is still a difficult decision. To this end, we instead let
the forager learn an ensemble of GMMs, and let the likelihood of exploiting
this ensemble model to depend the model uncertainty. As ensemble mod-
els consist of separate models learned on subsets of the data, the individual
models can be used to estimate how ‘correct’ the resource distribution is
approximated [302–304] (requirement (iv)).

Using the ensemble of GMMs as spatial memory, we consider foragers
that display a hybrid foraging strategy wherein random searches are in-
terchanged with informed searches towards goal locations sampled from
memory. More specifically, random searches are truncated in favor of in-
formed searches when the forager has not encountered resources in some
time. We let this time depend on the uncertainty of the learned spatial dis-
tribution, and consider a scheme wherein random searches are more likely
to be truncated the more certain the forager is.

To study the influence of the resource distribution and spatial mem-
ory on foraging efficiency, we subject a non-destructive forager to search
for (detect) a large number of resources and measure the number of steps
needed to complete this task. Then, we test the following hypothesis:

Hypothesis 1.1. Spatial memory increases foraging efficiency by enabling revis-
itation of known resource locations (patches).

Once a (small) subset of patches within the environment has been vis-
ited, the ensemble model converges to approximate this subset, and the
forager continuously exploits this by visiting these patches. Hence, higher
foraging efficiencies can be achieved, as more resources are detected in less
time, simply by exploiting a known subset of non-destructive resources.
Hence, strong use of spatial memory results in less diffusive behavior, ef-
fectively representing localized searches [57, 222]. Despite the obvious in-
crease in foraging efficiency, when multi-objective searches are of inter-
est, such a strategy is not necessarily advantageous as the forager is re-
stricted to consuming resources of only a small number of patches. This
can penultimately hurt the forager in the long-term, as many organisms
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rely on the intake of different resources (e.g., food and water) in order to
survive [54, 305–307]. More specifically, we study the patch diversity as
the number of resources per patch as an indication of how well different
patches are explored. Then, we arrive at the following hypothesis:

Hypothesis 1.2. Spatial memory negatively affects patch diversity, and thereby
potentially resource diversity as well.

�

As stated earlier, learning a spatial model is only beneficial to a forager
when the resource distribution is predictable. In Chapter 2, this is real-
ized by having the forager perform non-destructive foraging, effectively
rendering the resource distribution static. When foraging is destructive
instead, resource distributions change rapidly necessitating the need for
different search strategies, such as the adaptive searches discussed above.
Hence, we now study systems where the resource distribution displays
scale-free, fractal-like patterns (see Fig. 1.2). Additionally, as foragers are
often not solitary, we shift the focus from the individual forager to a group
of foragers that compete for resources within the environment. In this set-
ting, this dissertation aims to seek an answer to the following question:

Research question 2 (Chapter 3). How does resource fractility determine the
effectiveness of group foraging strategies on groups subjected to intraspecific com-
petition?

While foragers can benefit from interactions with conspecifics to in-
crease the (group) foraging efficiency [104, 107, 209, 221, 308], increased
group sizes give rise to increased levels of intraspecific competition [21,
108, 176, 178, 179, 216]. Obviously, when patches are extremely rich in
resources, large aggregations on patches can be supported. In contrast,
patches that contain little resources increase levels of competition, mak-
ing group-level strategies, such as joining successful others, less enticing.
While both individual foragers in highly complex environments, and com-
plex groups of foragers in simple environments have been studied exten-
sively, a full quantitative description of the effects of group-level behavior
(e.g., joining ranges) and resource distribution (e.g., degree of clustering)
is missing.

To this end, we employ an agent-based model of a group of intermittent
Lévy foragers that change their Lévy parameter upon resource encounter
(as discussed in Section 1.3.1.3). More specifically, they interchange highly
diffusive, extensive searches, with localized, intensive searches. Foragers
are attracted to those that search intensively, as this type of search indi-
cates the presence of a patch. In our model, we consider patchy resource
distributions and resource locations are sampled as a Lévy dust (see Sec-
tion 1.3.1.2). We use this relatively simple model to test the following hy-
pothesis:
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Hypothesis 2.1. Attraction towards successful conspecifics is advantageous for
individual foragers, but only when resources are sufficiently clustered and compe-
tition is not too fierce.

When dealing with clustered resource distributions, resource intake
rates among individuals are not necessarily uniformly (or normally) dis-
tributed. As one would expect, the forager that first detects a patch – or
rather an area dense in resources (see Fig. 1.2) – will be able to consume
more resources than others arriving at a later time. As Hypothesis 2.1 sug-
gests, fierce competition, expressed by large group sizes, only increases re-
source inequality. As is often implicitly and intuitively assumed, a group
benefits when each individual benefits (but see Section 1.4). However, in-
dividuals can benefit from group-level interactions while not necessarily
increasing the group search efficiency, e.g., by reducing resource intake
inequality. The reduced inequality effectively corresponds to a reduced
variation of resource intake, and therefore the following hypothesis is con-
sidered:

Hypothesis 2.2. Joining successful conspecifics in areas rich in resources de-
creases group benefits, but increases individual advantages as expressed by a re-
duced variation in resource intake.

�

Despite most natural systems being competitive by nature, collective
systems display the effectiveness of collective behavior. Most notably,
while individuals of collective systems are often (relatively) simple, it is
the sum of their parts that enables impressive feats [31]. In the context of
foraging, we argued that collective foraging pertains to the study of altruis-
tic behavior during a foraging task (see Section 1.4.2). Then, as to elucidate
potential influences of the resource distribution, we ask ourselves the fol-
lowing question:

Research question 3 (Chapter 4). How can altruistic behavior increase collec-
tive foraging efficiencies, and how does it depend on the patch persistence?

To answer this question, we study collective foraging in patchy and
ephemeral resource landscapes, and let individuals actively communicate
with one another over (relatively) short distances. Initially, all foragers ex-
ecute random Lévy searches, but they can switch to active recruitment of
conspecifics after detecting a patch, instead of individually exploiting it
themselves. However, not all patches should result in recruitment. When
patch durations are short, it becomes increasingly difficult to encounter
enough conspecifics, and it would have been better – both at the individ-
ual and collective level – for the forager to have exploited the patch by
itself. Therefore, for such a recruitment scheme to be beneficial, we pose
the following hypothesis:



24 CHAPTER 1

Hypothesis 3.1. The net gain of the collective should be estimated by a single
forager, providing a threshold for displaying altruistic recruitment behavior.

Note that estimating the net gain, i.e. how much the collective benefits
from resource sharing, should explicitly contain the expected number of
conspecifics to be encountered. Therefore, as we consider Lévy searchers,
one must first determine what Lévy parameter is expected to optimize
patch detection. Then, recruiting foragers must optimize their search for
conspecifics by assuming all other foragers search optimally. As in this
setting we consider patches (not resources) to be effectively and approx-
imately uniformly distributed (please find the discussion in Chapter 4),
it is known that ballistic searches are most efficient (see the discussion
in Section 1.3.1.1). Additionally, it is critical to note that, as patches are
ephemeral, recruitment of conspecifics either needs to be fast, or it needs
to occur in such a way that recruiting events are not far from the patch. We
assume that the latter is both more attainable and important, and as such
recruiting foragers should not move far away from the patch to which oth-
ers are to be recruited. Hence, as optimal searches for patches are ballistic
searches, optimal recruitment that maximizes conspecific encounters rates
are optimized when recruiters search locally, i.e.:

Hypothesis 3.2. When recruiting conspecifics, encounter rates are maximized
when diffusion characteristics of the recruiter contrast with those of conspecifics.

As the goal of the recruiter is to encounter (and subsequently recruit)
conspecifics while remaining close to the patch, one can imagine a more
passive recruitment scheme where the recruiting forager remains on the
patch to be more effective. Interestingly, such a passive scheme reduces the
system to a group forager system where foragers join successful others (as
discussed in Section 1.4.1). However, benefits of such a passive scheme de-
pend strongly on forager densities and interaction ranges. When effective
forager densities are high, encountering conspecifics is not difficult, and
thus passive recruitment might be advantageous. Note that effective for-
ager density contains interaction ranges as well, as large interaction ranges
additionally alleviate the need for more intricate recruiting searches, re-
sembling strategies closely related to broadcasting [106, 309, 310]. This
leads us to the following hypothesis:

Hypothesis 3.3. Active recruitment results in higher collective foraging efficien-
cies than passive recruitment, but only when effective forager densities are low.

�

As we discussed in Section 1.5, in natural systems foragers can die
and reproduce, thus generating intricate population dynamics that depend
strongly on foraging behavior and habitat characteristics [311]. Most im-
portantly, effective loss of habitat is currently a major threat to the stabil-
ity of populations [77], resulting in a rapid decline of biodiversity [248].
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A prominent effect of habitat loss is increased habitat fragmentation [79],
where patches (fragments) become smaller and more spatially separated
[87, 88]. Whereas habitat often facilitates resource growth, and as foraging
behavior depends strongly on resource (thus habitat) availability, we argue
that optimal foraging strategies should extend from individual or groups
of foragers to populations of foragers. This leads to the following research
question:

Research question 4 (Chapter 5). How does landscape fragmentation influ-
ence populations of optimal foragers and how can optimal foraging responses lead
to changes in spatial configurations affect the landscape?

To this end, we would like to model population dynamics on frag-
mented landscapes. Introduced in Section 1.5.1.1, spatial characteristics
can be captured by discussing lattices wherein each site can impart a spe-
cific influence on populations residing on that site. For example, within the
context of fragmentation only on sites belonging to the spatially separated
fragments (patches) experience organisms positive reproduction rates. As
a result, reproduction can only occur on patches. Moreover, lattices en-
able the modeling of fragmented landscapes using neutral landscape mod-
els (NLMs). In brief, NLMs were introduced as to model these patterns
without full understanding of the underlying processes that generate them
[312–315]. In general, these models produce lattices that can approximate
fragmented landscapes and can therefore be combined with population
models to unveil how fragmentation influences population dynamics (see
e.g., [238]).

More specifically, we develop a stochastic predator-prey (forager-
resource) model on a fragmented lattice wherein we vary predator disper-
sal and the degree of fragmentation. Consistent with OFT, we let predators
forage (i.e. disperse) according to a Lévy walk, while prey are sessile. De-
mographic fluctuations are mediated by having prey reproduce onto adja-
cent eligible sites, i.e. sites that are both empty and belonging to a habitat
fragment. Prey can be consumed by predators, which can trigger a preda-
tor reproduction event onto the site belonging to the prey, hence restricting
predator reproduction to the fragments as well. Then, we employ a Monte
Carlo approach, by randomly choosing sites and updating them according
to the demographic rules.

As prey consumption within this model effectively represents destruc-
tive foraging, the rate of consumption strongly defines the stability of both
populations. In turn, the rate of consumption is influenced heavily by for-
aging behavior, which determines specific predator dispersal rates [238].
Low dispersal rates result in overconsumption of prey as predators are lo-
cally bound. In contrast, high dispersal rates result in underconsumption
as predators spend most of their lives traveling in between patches, instead
of feeding and reproducing on them. As a result, intermediate dispersal
rates are expected to maximize population densities, however its precise
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level determines on the specific degree of fragmentation within the habi-
tat. As fragmentation effects become more pronounced, patches become
smaller on average, and thus local demographic fluctuations can result in
local extinction [316, 317], negatively affecting population densities. How-
ever, when predators are highly dispersive, these effects might not be detri-
mental as patch encounters are unlikely to be followed by overconsump-
tion and subsequently local extinction. Therefore, we pose the following
hypothesis:

Hypothesis 4.1. Strong fragmentation negatively impacts population densities,
but its severity depends strongly on predator dispersal rates.

Notably, changes in demographic rates, such as increased reproduc-
tion rates (e.g., through evolution), most often occur on much longer times
scales than those on which the current habitat changes take place. In con-
trast, adaptations in foraging strategy, corresponding to changes in preda-
tor dispersal, can occur rapidly [40, 136, 139]. Therefore, one would ex-
pect predators to respond optimally to the specific degree of fragmenta-
tion. However, from a more evolutionary standpoint, it is not precisely
clear what incentive predators optimize for. While intuitively one would
assume predators to optimize for predator densities, population stability
might instead pressure predators to optimize for ecosystem health. To as-
sess this, we introduce species richness as a metric that captures the rela-
tive occurrence of predator and prey, under the assumption that healthy
ecosystems exhibit equal abundance of species [318, 319]. As predators,
not prey, mediate rapid changes within the environment through adopting
optimal dispersal rates, we state the following hypothesis:

Hypothesis 4.2. Species richness is largely mediated by predator densities and
subsequently depends strongly on predator dispersal rates and the degree of frag-
mentation.

Critically, as prey are sessile, habitat regeneration can only occur when
it is physically connected to sites whereon prey live. In other words, spaces
between fragments act as barriers that prey cannot cross [320, 321]. As a re-
sult, disconnected patches that have become void of prey due to local over-
consumption through predation, will never be inhabited by prey again. As
a result, our model suggests that irreversible habitat loss occurs in discon-
nected landscapes. Moreover, as smaller patches are more prone to local
extinction events [322], we conclude with the following hypothesis:

Hypothesis 4.3. Fragmented environments undergo irreversible loss of habitat,
even when predator respond optimally as to maximize species richness. This habi-
tat loss is largely manifested by depletion of small patches.

�
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1.8 Dissertation outline

Within this dissertation, we would like to emphasize that each chapter cor-
responds to work that is published in international journals, or has been
submitted for publication3. The research that will be discussed pertains
to foraging over different spatial and temporal scales, ranging from indi-
vidual foragers with high individual complexity to entire populations of
foragers. In general, the work aims to answer the posed research questions
and test the corresponding hypotheses.

To this end, we shall first study an individual forager in Chapter 2, and
study the influence of a learned spatial memory of the foraging efficiency
using an agent-based model. When the forager is highly certain that its
model is correct, it is more likely to exploit this model by sampling goal
states when it has not detected a resource recently. We shall show that
spatial memory increases foraging efficiency by exploitation of known re-
source locations when foraging non-destructively. However, we also show
that this continuous exploitation leads to poor exploration, and thereby
frequent memory usage negatively affects patch diversity. Despite this,
our memory model can be easily adapted to account for different types of
resources if those are necessary for the survival of the forager.

While memory is known to be only beneficial in predictable environ-
ments, we study destructive foraging by a group of foragers competing
for resources in Chapter 3. In particular, we study systems wherein for-
agers execute intermittent random searches that interchange highly diffu-
sive, extensive searches with localized, intensive searches and informed
searches guided by attraction towards (recently) successful conspecifics.
More specifically, in this chapter we focus on attaining a quantitative de-
scription of the impact of resource fractility and joining ranges on the for-
aging efficiency. We determine both the foraging efficiency at the indi-
vidual and at the group level. Interestingly, the conditions under which
group advantages are highest are precisely those where individual advan-
tages are lowest. In more detail, joining others is beneficial at the group
level only when resources are sufficiently clustered and group sizes are
small and joining ranges are not too large. In contrast, individual advan-
tages, expressed as a reduced variation in resource intake rates, are largest
when resources are not clustered, or when group sizes are large and join-
ing ranges small. As a result, this chapter highlights that when individuals
within a group act with selfish intent, group-level incentives, such as high
foraging efficiencies, might not be attained at the expense of individual
benefit.

In Chapter 4, we replace competition by cooperation and study a col-

3Effectively, it means that each chapter is self-contained. Note that some of the text and
figures might have been changed to accommodate the reader of this dissertation.

4Note that although resources are not destroyed upon detection, patch ephemerality here
approximates destructive foraging. See Chapter 4 for more details.
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Table T.1.1: Structured overview of work presented in this dissertation.

Chapter 2 3 4 5
Research question 1 2 3 4
Environment clumped,

static
fractal,
dynamic

clumped,
ephemeral

fragmented,
dynamic

Foraging type non-
destructive

destructive destructive4 destructive

Interactions - competitive collective population

lective foraging system. We examine how both the resource distribution
and forager density affects the foraging efficiency of the collective. Within
an agent-based model setting, we model patch ephemerality by having
patches rich in resources disappear after some time. Cooperation between
foragers is introduced by having individuals recruit others towards the
patch with some probability that depends on the quality of the patch.
Recruitment is realized by having the recruiter that initially detected the
patch, actively search for others, and informing them about the location of
the patch. Encountered foragers are then recruited and travel towards the
patch as to feed on its resources. Since the system is collective, we study
foraging efficiency on the group level, and show that patch ephemerality
and availability highly influence the benefits of this altruistic recruitment
behavior. More specifically, we show that recruitment is only beneficial
when patches are both scarce and persistent. Moreover, when comparing
active recruitment with a more passive strategy, we show that the advan-
tage of active recruitment depends on both forager density and the inter-
action range. In general, we find that active recruitment is more beneficial
when forager densities are low and interaction ranges are short.

As resource distribution characteristics heavily determine foraging
strategies, we ask how species survival and landscape fragmentation inter-
act in Chapter 5. By precisely controlling the degree of fragmentation and
forager movement in a predator-prey system with sessile prey, we show
that optimal forager dispersal rates strongly affect population stability in
fragmented ecosystems. When the environment expresses little fragmen-
tation, our results indicate that high dispersal rates maximize population
densities, while low dispersal rates result in near extinction. Effectively,
high dispersal rates correspond to systems of highly diffusive foragers that
quickly locate large patches, while not overexploiting them as they are
prone to leave patches as well. Optimal dispersal rates decrease as frag-
mentation increases, since highly diffusive foragers are much more likely
to miss the small fragments on which their prey is located. Additionally,
our results predict habitat loss resulting from local prey extinctions. This
loss of habitat is irreversible, as prey populations cannot recover the de-
pleted patches since they are disconnected and separated by impenetrable
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barriers. Habitat loss is subsequently followed by decreases in population
densities and we show that these effects are more pronounced in highly
fragmented systems. Most importantly, we show that these negative effects
are significant even when foragers adopt strategies that maximize species
richness. However, our results indicate that habitat loss can be reduced,
but not prevented, when foragers adopt optimal foraging behavior, high-
lighting the important role of foraging behavior in ecosystem stability.

Finally, the dissertation is concluded in Chapter 6, gaps in the presented
research are discussed and an outlook is presented. As to facilitate the
reader, an overview of the chapters, what type of system is studied and
what research questions they address is provided in Table T.1.1.
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1.9 List of publications
The work presented in this dissertation is published in, or submitted to,
international scientific journals. The list below contains research that is not
discussed in this dissertation, but which has been published in interna-
tional scientific journals or presented at international conferences.

1.9.1 Publications in international journals (as listed in the

Science Citation Index 5)

1. Johannes Nauta, Yara Khaluf, Pieter Simoens, Ricardo Martinez-
Garcia (in review) “Foraging behavior and patch size distribution jointly
determine population dynamics in fragmented landscapes”. Journal of the
Royal Society Interface

2. Johannes Nauta, Pieter Simoens, Yara Khaluf (2021) “Group size and
resource fractality drive multimodal search strategies: a quantitative anal-
ysis on group foraging”. Physica A - Statistical Mechanics and its Ap-
plications

3. Johannes Nauta, Yara Khaluf, Pieter Simoens (2021) “Resource
ephemerality influences effectiveness of altruistic behavior in collective for-
aging”. Swarm Intelligence

4. Johannes Nauta, Yara Khaluf, Pieter Simoens (2020) “Hybrid forag-
ing in patchy environments using spatial memory”. Journal of the Royal
Society Interface, 17 (266), pp. 20200026

5. Johannes Nauta, Christof Mahieu, Christophe Michiels, Femke
Ongenae, Femke De Backere, Filip De Turck, Yara Khaluf, Pieter
Simoens (2019) “Pro-active positioning of a social robot intervening upon
behavioral disturbances of persons with dementia in a smart nursing
home”. Cognitive Systems Research 57, pp. 160-174

1.9.2 Publications in international conferences (as listed in

the Conference Proceedings Citation Index6)

1. Johannes Nauta, Stef van Havermaet, Pieter Simoens, Yara Khaluf
(2020) “Enhanced foraging in robot swarms using collective Lévy walks”.
ECAI2020, the 24th European Conference on Artificial Intelligence,
pp.171-178

5These publications are classified as ‘A1’ by Ghent University according to the following
definition: “Articles included in one of the ISI Web of Science indexes ’Science Citation Index’, ’Social
Science Citation Index’ or ’Arts and Humanities Citation Index’. Limited to the publications document
type: article, review, letter, note, proceedings paper.”

6These publications are classified as ‘P1’ by Ghent University according to the following
definition: “Proceedings included in one of these ISI Web of Science indexes: ’Conference Proceedings
Citation Index - Science’ of ’Conference Proceedings Citation Index - Social Science and Humanities’.
Limited to publications document type: article, review, letter, note, proceedings paper, with exception
of publications classified A1.”
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2. Ozan Çatal, Tim Verbelen, Johannes Nauta, Cedric de Boom,
Bart Dhoedt (2020) “Learning perception and planning with deep active
inference”. ICASSP 2020, IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 3952-3956

3. Ozan Çatal, Johannes Nauta, Tim Verbelen, Pieter Simoens,
Bart Dhoedt (2019) “Bayesian policy selection using active inference”.
Workshop on “Structure & Priors in Reinforcement Learning” at
ICLR 2019, Seventh International Conference on Learning Represen-
tations.

1.9.3 Publications in international conferences (as listed in

proceedings of academic conferences7)

1. Johannes Nauta, Pieter Simoens, Yara Khaluf (2020) “Memory induced
aggregation in collective foraging”. ANTS2020, The 13th International
Conference on Swarm Intelligence, pp. 176-189

2. Ilja Rausch, Johannes Nauta, Pieter Simoens, Yara Khaluf (2020)
“Modeling the influence of social feedback on altruism using multi-agent
systems”. ALIFE2020, the 2020 Conference on Artificial Life, (Vol.
325), pp. 727-735

3. Johannes Nauta, Yara Khaluf, Pieter Simoens (2019) “Using the
Ornstein-Uhlenbeck process for random exploration”. 4th International
Conference on Complexity, Future Information Systems and Risk
(COMPLEXIS2019), pp. 59-66
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random blind search for sparse targets. Proceedings of the National Academy of Sciences,
111(8):2931–2936, 2014.

[73] K. Zhao, R. Jurdak, J. Liu, D. Westcott, B. Kusy, H. Parry, P. Sommer, and A. McKeown.
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Viswanathan. Dynamical Robustness of Lévy Search Strategies. Phys. Rev. Lett., 91:
240601, Dec 2003.

[118] S. Benhamou. How many animals really do the Lévy walk? Ecology, 88(8):1962–1969,
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bacteria migrate by Lévy Walk. Nature communications, 6(1):1–6, 2015.

[127] A. M. Reynolds, A. D. Smith, R. Menzel, U. Greggers, D. R. Reynolds, and J. R. Riley.
Displaced honey bees perform optimal scale-free search flights. Ecology, 88(8):1955–
1961, 2007.



INTRODUCTION 37

[128] N. E. Humphries, N. Queiroz, J. R. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer,
D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle, J. D. Houghton, et al. Environmental
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[148] W. F. Fagan, M. A. Lewis, M. Auger-Méthé, T. Avgar, S. Benhamou, G. Breed, L. LaDage,
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[188] R. I’Anson Price and C. Grüter. Why, when and where did honey bee dance communi-
cation evolve? Frontiers in Ecology and Evolution, 3:125, 2015.

[189] C. W. Clark and M. Mangel. Foraging and flocking strategies: information in an uncer-
tain environment. The American Naturalist, 123(5):626–641, 1984.

[190] N. Metcalfe. Intraspecific variation in competitive ability and food intake in salmonids:
consequences for energy budgets and growth rates. Journal of Fish Biology, 28(5):525–
531, 1986.

[191] I. L. Andersen, H. Andenæs, K. E. Bøe, P. Jensen, and M. Bakken. The effects of weight
asymmetry and resource distribution on aggression in groups of unacquainted pigs.
Applied Animal Behaviour Science, 68(2):107–120, 2000.



40 CHAPTER 1

[192] S. Gende and T. Quinn. The relative importance of prey density and social dominance
in determining energy intake by bears feeding on pacific salmon. Canadian Journal of
Zoology, 82(1):75–85, 2004.

[193] L. Schenkeveld and R. Ydenberg. Synchronous diving by surf scoter flocks. Canadian
Journal of Zoology, 63(11):2516–2519, 1985.

[194] I. M. Hamilton and L. M. Dill. Group foraging by a kleptoparasitic fish: a strong infer-
ence test of social foraging models. Ecology, 84(12):3349–3359, 2003.

[195] T. P. Flower, M. F. Child, and A. R. Ridley. The ecological economics of kleptoparasitism:
pay-offs from self-foraging versus kleptoparasitism. Journal of Animal Ecology, 82(1):
245–255, 2013.

[196] B. Winterhalder. Social foraging and the behavioral ecology of intragroup resource
transfers. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews,
5(2):46–57, 1996.

[197] L. D. Mech and L. Boitani. Wolves: behavior, ecology, and conservation. University of
Chicago Press, 2010.

[198] F. Götmark, D. W. Winkler, and M. Andersson. Flock-feeding on fish schools increases
individual success in gulls. Nature, 319(6054):589–591, 1986.

[199] H. Weimerskirch. Are seabirds foraging for unpredictable resources? Deep Sea Research
Part II: Topical Studies in Oceanography, 54(3):211 – 223, 2007. ISSN 0967-0645.

[200] J. C. Evans, C. J. Torney, S. C. Votier, and S. R. Dall. Social information use and collective
foraging in a pursuit diving seabird. PloS one, 14(9):e0222600, 2019.

[201] J. Krause, A. J. Ward, A. Jackson, G. Ruxton, R. James, and S. Currie. The influence
of differential swimming speeds on composition of multi-species fish shoals. Journal of
Fish Biology, 67(3):866–872, 2005.
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[237] A. Valiente-Banuet, M. A. Aizen, J. M. Alcántara, J. Arroyo, A. Cocucci, M. Galetti, M. B.
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2
Hybrid foraging in patchy environments

using spatial memory

Abstract
Efficient random searches are essential to the survival of foragers searching for

sparsely distributed resources. As resources are distributed within patches, spa-

tial memory over the detected resources can be beneficial towards optimizing the

search efficiency. However, because foragers have limited memory, storing each

resource location separately is unrealistic. Therefore, in this chapter we propose

a scheme for learning a spatial distribution over resource locations instead. We

demonstrate that an ensemble of Gaussian mixture models is a suitable candidate

for such a memory component. We propose a hybrid foraging strategy wherein

a forager interchanges random Lévy searches with informed movement to loca-

tions sampled from memory. Our results show that frequent memory usage leads

to increases in search efficiencies by continuous revisitation of non-destructive re-

sources. However, this negatively affects both the resource and patch diversity, in-

dicating that frequent memory usage does not necessarily optimize multi-objective

searches. Hence, our results suggest that benefits of memory should depend on

the specific incentives of the forager. Furthermore, analysis of the distribution over

walking distances of the forager reveals that memory changes the underlying walk

characteristics. Specifically, the forager resorts to Brownian motion instead of Lévy

walks, due to memory effects resulting in the truncation of the long, straight line

displacements. Therefore, the results in this chapter indicate that memory greatly

affects forager dispersal characteristics and that foragers need to carefully balance

exploration and exploitation for their foraging behavior to be efficient.

47
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2.1 Introduction

Searching for resources whose distribution is unknown is an important
problem in behavioral ecology. Locating scarce food sources is fundamen-
tal for the survival of the forager, and hence optimal foraging strategies
must be employed in order to maximize survival probability [2, 3]. Ran-
dom searches can optimize the search for sparsely distributed resources [4–
8], however including memory effects that change the random search into
an informed search can highly influence the search efficiency of the forager
[9–11]. While random searches are a necessary component of any search
strategy, its importance decays over time if the forager has the capacity to
remember where resources are located. If all resource locations are known,
the random nature of the search can be completely ignored in favour of
purely informed movement [12, 13]. Thus, a trade-off between exploration
(based on a non-informed random search) and exploitation (based on the
gathered information) naturally arises when the resource encounter rate is
to be optimized through means other than random searches. This work
proposes a hybrid foraging strategy based on memory, wherein random
search and informed motion are alternated.

Although informed movement seems to enable further optimization of
the search efficiency, any potential memory component still relies heavily
on the efficiency of random searches for resource localization. In particu-
lar, Lévy walks have been shown to optimize random searches in environ-
ments wherein the resource distribution is sparse [2, 4, 5, 8, 10, 14], even
in cases where resources were moving [15]. While search optimality of
Lévy walks has been observed when resources are sparsely distributed,
real-world environments are often both sparse and patchy [16–19], illus-
trating scale-free, fractal-like patterns [20–22]. These environments consist
of patches containing densely distributed resources and interpatch regions
where no resources are located (see Fig. 2.1). Nonetheless, Lévy walks have
been found to be robust to such fragmentation effects [10, 23]. Moreover,
Lévy walks have been found to encompass strategies which optimize patch
diversity, wherein multiple-objectives play a key role in the random search
process [14].

Patchy distributions within real-world environments remarkably alle-
viate the necessity for the foragers cognitive abilities to remember the exact
positions of resources. Specifically, in this chapter, we show that a forager
can estimate patch locations (and thus the resource locations) by learning
a spatial distribution over detected resources. Furthermore, by sampling
from the learned distribution, the forager can switch to informed move-
ment in cases where no resources have been detected for some time. Hence,
a hybrid foraging strategy emerges, in which random searches are alter-
nated with bouts of informed motion. This improves resource visitation
rates by visiting regions which are known (or assumed by the model) to
contain a high number of resources.
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Spatial memory is less beneficial when foraging becomes destructive,
meaning that resources are destroyed (e.g. consumed) upon detection.
Obviously, learning a spatial distribution over resource locations that con-
stantly changes due to destructive foraging is futile, since past locations of
resource detection do not convey any information about future locations.
Additionally, when the resources are constantly moving, for example in
predator-prey systems1, advantages of memory disappear. As expected,
memory has been found to be more advantageous in predictable environ-
ments [24]. It is important to note that natural resources have the tendency
to regenerate periodically, and hence a forager can, in principle, exploit
knowledge of the regeneration times in order to return to patches rich
in resources, e.g. seasonal changes. Such behavior has been observed in
Capuchin monkeys, which couple spatial locations to known (or learned)
time-varying patch qualities [25]. Stochastic regeneration rates are another
type of regeneration observed in nature, for example the nectar in flowers
[26], making learning the time dependence on the patch quality more dif-
ficult. While these types of interplay between resource regeneration and
destructive foraging may correspond to more realistic searches, e.g. when
describing foraging behavior of marine predators that consume their re-
sources [27], the empirically determined optimal Lévy parameter was of-
ten close to the non-destructive optimum. Moreover, in ecology, patches
are often dense [28], meaning that destructive foraging can effectively be
approximated by non-destructive foraging behavior since resources are
within close proximity of another. This suggests that the consumption rate
of such predators might be low enough, or that the regeneration rate within
the patch is high enough, such that their foraging can be approximated as
non-destructive. Hence, in the remainder of this study we limit ourselves
to non-destructive foraging tasks in static environments. Destructive for-
aging, foraging with known periodic or stochastic regeneration rates, and
foraging for dynamic resources are topics for future research.

Next, we ask what features a good memory component for a forager
in a patchy environment should have. An example of a simple random
search that employs an infinite memory kernel is the extensively studied
self-avoiding random walk. However, such models fail to capture mem-
ory effects that are useful for maximizing resource visitation, since in non-
destructive searches revisitation of resources is a very efficient foraging
strategy. Other memory models that have been studied consist of the gen-
eral direction wherein the forager prefers to move [29], location of a previ-
ously detected resource [30, 31] or a number of resources detected within
the last set of steps [10]. However, more intricate memory models have
been discussed based on diffusion models with drift vectors pointing to-
wards patches with high resource densities [11, 32]. In general, these works

1In such systems, foragers are the predators, while resources are the prey. See also Chap-
ter 5.
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all indicate that memory is beneficial for maximizing resource visitations,
given that the foraging is non-destructive, regardless of the specific choice
of memory model. Interestingly, (time-varying) spatial memory has been
experimentally verified in Capuchin monkeys [25, 33, 34]. These results
suggest that intelligent foragers are capable of maintaining a more com-
plex memory model that is able to estimate distributions over resources.
Therefore, such a model shall be introduced below.

In this chapter, we employ a Gaussian mixture model (GMM) that acts
as the memory component, since it fits all requirements of a spatial mem-
ory. Due to their universal approximation properties [35, 36], they can be
used to learn a spatial resource distribution over patchy landscapes from
which the forager can sample goal locations. An additional advantage of
a mixture of Gaussians, is that each component can be weighted differ-
ently. This enables differentiating different patches, for example based on
attributes of the patch, e.g. nutritional value. Furthermore, GMMs can be
learned incrementally [37, 38], allowing a forager with limited memory ca-
pacity to store positional resource information within a small number of
parameters that define the mixture model. Aside from real-world foragers
not having infinite memory capabilities, a major advantage is that such in-
cremental learning procedures can easily adapt to possible changes in the
resource distribution. Furthermore, instead of learning a single GMM, we
propose incremental learning of an ensemble of GMMs as to account for
a model disagreement that measures the foragers’ certainty of the learned
distribution. This allows the foragers to make decisions based on the es-
timated correctness of their memory model [39–41]. More specifically, we
let the truncation of the random search component of the emerging hybrid
walk be more likely when the forager is certain of its learned distribution
over resources. We believe that the results presented in this chapter are
beneficial towards understanding the influence of memory in foraging in
patchy environments.

The remainder of this chapter is organized as follows. In Section 2.2
we describe the patchy environment setup and discuss the random search
and the learning of the spatial distribution. In Section 2.4 we present the
results of numerical simulations and discuss several properties of the re-
sulting random search with informed movement. Finally, in Section 2.5,
we conclude the chapter and additionally present remarks and a future
outlook on further experiments.

2.2 Model description

We start by specifying the informed search characteristics, which con-
tains both a random search and a memory component. The forager al-
ternates between the two components through truncation of the random
search based on the learned memory model. Such a hybrid foraging strat-
egy shows similarity with previously studied composite or adaptive Lévy
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Figure 2.1: Illustrative example of the environment and the memory model for
Np = 3 patches with radius R and intrapatch mean free path λp. Resources
(black dots) are distributed homogeneously (uniformly) within the patches and
each patch contains an equal amount of resources np. The random search is trun-
cated (black square) according to the truncation probability (Eq. (2.2)) and, as a
result, the forager moves towards a sampled goal (open circle). After the informed
motion, the random search continues with the forager now (back) in the dense
patch.

walks [42–44], however in this work the change in strategy originates from
the memory component of the informed search.

2.2.1 Description of the informed search

Let us first discuss the random search component of the informed search.
The random search is realized by assuming that foragers execute a Lévy
random walk. Foragers following a Lévy walk pattern have their displace-
ment lengths distributed according to a (truncated) power law p(ℓ) ∼ ℓ−α,
for ℓ0 < ℓ < L and where 1 < α ≤ 3 is called the Lévy parameter. Note
that α ≤ 1 corresponds to non-normalizable distributions. For L → ∞

this power law distribution of displacement lengths has the same asymp-
totic behavior as the family of Lévy stable distributions [7, 45], meaning
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that higher order moments are infinite. However, in the real world such
moments can never be infinite, since they correspond to infinitely large
displacements. Therefore, we employ a truncated power law distribution

p(ℓ) =

{
α−1

(ℓ1−α
0 −L1−α)

ℓ−α if ℓ0 < ℓ ≤ L,

0 otherwise,
(2.1)

that effectively truncates walk distances at the environment size L. Here,
ℓ0 is the minimum displacement, hence omitting steps of a much smaller
scale that is irrelevant to the search process [46]. It is important to note
convergence of the truncated power law of Eq. (2.1) is ultraslow, meaning
that the general characteristics of Lévy distributions are conserved during
foraging [47].

In the asymptotic limit, the Lévy parameter defines the diffusion
characteristics of the random walk, being anomalous (superdiffusive) for
1 < α ≤ 3 and normal (Brownian) for α ≥ 3 [48]. When α → 1, the forager
moves ballistically, i.e. only straight line motion is visible. For interme-
diate values, the random walk displays scale-free characteristics with sta-
tistically relevant large jumps that govern the diffusive capabilities of the
forager. Such Lévy walks have been found to be optimal over a wide range
of resource distributions [23]. When foraging is non-destructive, αopt ≈ 2
has been found to optimize the Lévy random search. In destructive for-
aging, ballistic motion with αopt → 1 emerges as the optimal strategy. In-
termediate searches, e.g. setting a degree of resource revisitability through
regeneration [49, 50], give rise to intermediate values 1 ≤ αopt ≤ 2 that
optimize the random search. Additionally, values of 2 ≤ αopt ≤ 3 can
be found when a bias (e.g. an external drift, such as a current) is present
[51]. For a more extensive overview of Lévy random searches, we refer the
interested reader to previous works on Lévy walks in a foraging setting
[7, 28].

The actual informed search alternates the Lévy random search with
memory induced motion, wherein the forager steers towards a goal lo-
cation sampled from its memory. Foragers execute a Lévy random search
that is truncated based on the learned model. Every jth step adheres to the
following rules:

(a) Draw a walk distance ℓj from the (truncated) power law distribution

p(ℓ) ∼ ℓ−α (Eq. (2.1)), and an orientation angle θ sampled uniformly
between 0 and 2π, and walk along the sampled path with fixed steps
of size ℓ0.

(b) While traveling the distance ℓj with steps of size ℓ0, the forager scans
its direct environment within a radius rt after each step. When a re-
source is detected, the current walk is truncated. The forager moves
to the resource location 2 and stores the resource location in its tempo-

2In our study, the perception radius is of equal size as the step size of the forager, trivializ-
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rary (limited) memory. After detection of a resource, a new walking
distance and angle are sampled according to (a).

(c) After each step, when no resource is detected, the forager truncates
the random search according to the number of steps L0 wherein no
resource was encountered, a model disagreement ϕ (see Section 2.2.3)
and a truncation parameter β (see below).

p(L0, ϕ) = 1− exp

(
−

βL0

ϕ

)
. (2.2)

After the search has been truncated, the forager resorts to exploita-
tion by sampling a goal state from its model qE(x, Θ) (see Eq. (2.3))

xgoal ∼ qE(x|Θ),

where Θ are the parameters of the learned spatial distribution. The
forager then moves towards the sampled goal state, again with steps
of fixed size ℓ0. After this informed motion is finished, the forager
starts the random search again at (a).

We fix the step size to the detection radius in Eq. (2.1), i.e. l0 = rt, hence
naturally omitting steps smaller than the detection radius, as those are
meaningless within a search context. Additionally, the upper truncation
at L corresponds to the limit scale of the environment. Hence, the range
rt < ℓ ≤ L appropriately defines the relevant scales of the search process.

First, let us discuss the truncation of the random search in more de-
tail. Specifically, we adapt the framework of Zhao et al. [8] by including
the model disagreement ϕ in the random search truncation probability of
Eq. (2.2). This is indicated by the rule that the longer the forager has traveled
and the lower the model disagreement, the more likely the forager is to truncate its
random search and exploit its knowledge. The truncation parameter β defines
the foragers’ behavior (see Fig. 2.2 for an illustrative example). Low values
of β correspond to naive foragers, which require an extremely low model
disagreement before they trust their model enough to sample goal states
from. This results in the forager relying on exploration, hence the random
search will be the main component that determines the search efficiency.
In contrast, relatively large values of β correspond to greedy foragers, that
quickly resort to only sampling goal states from their model, even though
their model might have a large disagreement and thus likely fails to de-
scribe the true resource distribution. In between these two modes, there
exists an intermediate forager that balances exploration and exploitation
and hence is expected to optimize the search for resources. The trunca-
tion parameter β is thus an important metric that defines the behavior of
the forager.

ing the process of the forager moving to the resource location. However, when the perception
radius is much larger than the step size, the forager should compute a relative angle between
itself and the detected resource and travel in that direction until it is on the resource.
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The memory induced informed movement after truncation of the ran-
dom search is defined by taking steps along a calculated difference vector
between the current position and the goal, again with steps of size ℓ0 = rt.
Thus, after the informed movement has finished, the agent is within a de-
tection radius rt of the sampled goal state xgoal . If the model is correct (i.e.
it correctly models the sparse and patchy resource distribution), each goal
position corresponds to a position within a patch, and thus each goal state
is, in principle, close to a (previously detected) resource. However, when
the model is incorrect this does not have to be true. During the informed
movement, the forager continues to detect resources and truncates the in-
formed motion once a resource has been detected. This results in a more
natural search, since in real scenarios it is unlikely that foragers will skip
over available resources in favour of some arbitrary goal, given that we
assume patches with the same attributes.

The resource detection is based on a model of an effectively blind for-
ager, that only encounters resources within its perception range rt [6].
While it can be argued whether animals capable of learning a spatial map
have a limited perception radius, empirical results indicate that even with
memory (perhaps even due to memory), animals display superdiffusive
random searches when foraging [30, 52]. Furthermore, as the sparsity is
expressed in terms of the detection radius, increases of the detection ra-
dius do not change the outcome of the numerical experiments, but simply
changes the scale of the underlying foraging process. While many animals
have evolved intricate perception methods, these are simply there to de-
crease the intrapatch resource density λp and hence such situations will be
captured by discussing low values of the mean free path, which we do in
Section 2.4.

Note that the truncation based on the model is sure to decrease the dif-
fusivity of the resulting walk. In other words, the informed search might
not carry the same diffusion characteristics of the free Lévy walk, which
shows superdiffusive scaling behavior. Depending on the resource den-
sity, a switch to less diffusive searches might be realized by the forager,
due to the searches revisiting a small set of resources within a patch with
high resource density, compliant with empirical data [30, 34]. We both mea-
sure the characteristics of the resulting motion as well as introduce differ-
ent search efficiency metrics in order to investigate the informed search in
more detail.

2.2.2 Incremental learning procedure for spatial memory

In order to learn a spatial distribution over resource locations, we employ
incremental learning of a GMM with a variable number of mixture com-
ponents. The variety in the number of components equips foragers with
the ability to not overfit on the stored resource locations, when a simpler
model would suffice. Further, we argue that the decision of the forager, e.g.



HYBRID FORAGING IN PATCHY ENVIRONMENTS USING SPATIAL MEMORY 55

0 L

L
A

0 L

L
B

0 L

L
C

Figure 2.2: Examples of informed search for different truncation parameters β,
where the task is to find 2 · 103 resources. Red dots indicate detected resources
while the black lines are the trajectory of the forager. Patches and resources within
the patches are denoted by the gray circles and dots respectively. The arrow indi-
cates the (identical) starting position of the forager. (A) β = 10−9: Naive forager
that never employs a model, but continuously explores the environment using its
random search. (B) β = 10−1: Greedy forager that almost always uses its model
and hence quickly fixates around the first detected resources. (C) β = 10−5: In-
termediate forager that balances exploration and exploitation to generate a model
over several patches. The zoomed in region contains more detail on the visited
region and includes continuous and dotted ellipses that represent variances of the
components of the Gaussian mixtures of two ensemble members (K = 2), while
crosses indicate the means.

the time at which to execute informed movement versus a random search,
should be depending on the memory model. Hence, the GMM should be
able to reflect some type of ‘certainty’ that determines the foragers’ belief
that the model is accurate. If the model is indeed accurate, the forager
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should rely less on random search due to informed motion being the supe-
rior alternative. While a single GMM intrinsically captures the likelihood
of the data given the model, ascribing ‘certainty’ to the model gives rise to
an arbitrary threshold value that is hard to determine. Instead, we deploy
the foragers with an ensemble of GMMs from which the disagreement be-
tween each member of the ensemble and the full ensemble is able to reflect
the model uncertainty [39–41]. Thus, the spatial distribution is given by an
ensemble of K GMMs, each with Mk components (Gaussians):

qE(x|Θ) =
K

∑
k=1

Wkqk(x|Θ(k)), (2.3)

with qk(x|Θ(k)) =
Mk

∑
j=1

w
(k)
j N (µ

(k)
j , Σ

(k)
j ), (2.4)

where

Θ(k) = ∇×

(
w
(k)
1 , µ

(k)
1 , Σ

(k)
1

)
, . . . ,

(
w
(k)
Mk

, µ
(k)
Mk

, Σ
(k)
Mk

)

the parameters of the kth mixture model within the ensemble, w
(k)
j the nor-

malized weights, of each multivariate Gaussian with mean µ
(k)
j and covari-

ance Σ
(k)
j , and Wk the normalized ensemble weights. The normalization of

the (ensemble) weights means that ∑j w
(k)
j = 1 and ∑k Wk = 1.

We assume that foragers have limited memory, hence each forager in-
crementally learns the GMM [38]. While the forager explores the envi-
ronment and detects resources, it stores resource locations in its memory
up to a fixed maximum number Nmem. When the random search is trun-
cated, the GMM is incrementally updated with the latest Nmem detected
resources. Next, the resource locations are divided equally over the num-
ber of ensemble members K. It should be noted that a minimum number of
data points is needed for the ensemble to be trained. Furthermore, GMMs
are not suited to be computed over a single data point, hence we need at
least a multiple of the total number of Gaussians as the minimum size of
the data set. After distribution of the data among the ensemble members,
each member learns a new GMM over its subset of the recently detected
Nmem resource locations, with the number of mixture components between
Mmin and Mmax. In other words, for each M ∈ {Mmin, . . . , Mmax} a new
GMM is learned. Then, compliant with existing statistical measures, the
GMM with the lowest Bayesian information criterion (BIC) is selected as
the new GMM [38]. Additionally, the weights of the new GMM are scaled
by a forgetting factor f (0 < f < 1), which defines how much importance
is attributed to the new, incoming data. Values f → 0 indicate conservative
foragers, which do not change their model with new incoming data, while
f → 1 represents progressive foragers that dispose of the current model in
favour of the new one. Note that the forgetting factor additionally ensures
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normalization of the weights. Next, the previous GMM and the new GMM
are joined to form the incrementally updated GMM. However, if the sum of
components of the updated GMM exceeds the set maximum Mmax, Gaus-
sian components are merged. Which components are merged depends on
their similarity, expressed in a symmetric KL divergence

D
sym
KL =

1

2
(DKL(g1, g2) + DKL(g2, g1)) , (2.5)

where DKL(gi, gj) the KL-divergence between two Gaussians
gi ∼ N (µi, Σi), given by

DKL(gi, gj) = log

(
detΣj

detΣi

)
+ Tr

(
Σ
−1
j Σi

)

+
(

µj − µi

)T
Σ
−1
i

(
µj − µi

)
− D, (2.6)

where D is the number of dimensions of the Gaussian and det(A) the de-
terminant and Tr(A) the trace of a matrix A. Components that carry the
lowest values of the symmetric KL divergence are merged, i.e. compo-
nents that are most similar, until the total number of components is equal
to Xmax. Merging two Gaussians is defined by the following set of equa-
tions [37, 38]

w∗ = w1 + w2 (2.7)

µ
∗ =

w1µ1 + w2µ2

w1 + w2
(2.8)

Σ
∗ =

w1Σ1 + w2Σ2

w1 + w2
+

w1w2

(w1 + w2)
2
(µ1 − µ2) (µ1 − µ2)

T , (2.9)

where the asterisk denotes the new Gaussian. The merged Gaussians are
deleted from the GMM and replaced by the newly merged Gaussian. An
illustrative example of the final result of the learning procedure is depicted
in Fig. 2.2(C).

2.2.3 Truncation of the random search

With the spatial distribution in place, the forager needs to decide whether
to truncate the current random search in favour of informed motion to-
wards known (estimated) resource locations. To compute the truncation
probability of Eq. (2.2), the agent explicitly computes an uncertainty ϕ over
the learned ensemble. This uncertainty, the model disagreement, is defined
as the KL divergence between each member of the ensemble and the full
ensemble distribution

ϕ =
1

K

K

∑
k=1

DKL

[
qk(x|Θ(k))||qE(x|Θ)

]
. (2.10)
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Division by the number of ensemble members K ensures that the influ-
ence of memory is independent of the number of ensemble members.
Since there does not exist a closed form solution for computing the KL-
divergence between (ensemble) mixtures of Gaussians, like there is for two
Gaussians in Eq. (2.6), we resort to Monte Carlo approximation [53], where

DKL [qk||qE] ≈ DMC [qk||qE] =
1

N

N

∑
i=1

log
qk(xi|Θ

(k))

qE(xi|Θ)
, (2.11)

with xi ∼ qk(xi|Θ
(k)) samples from ensemble member k. Note that even

though the result is only exact in cases where N → ∞, the forager does
not require high accuracy of the integral, since it is not interested in the
precision rather the order of magnitude of the disagreement.

2.2.4 Model summary
In summary, hybrid foraging encapsulates both a random search and in-
formed motion based on the memory model. The forager learns an en-
semble of GMMs over a dataset of resource positions detected during the
random search. From this ensemble, the model disagreement ϕ is com-
puted, defining the uncertainty the forager has over the distribution of
resources. The tuning parameter β determines the truncation probability
p(L0, ϕ), which increases with the number of steps without detecting a re-
source L0. The truncation probability depends on the model disagreement,
where high model disagreements result in lower truncation probabilities,
hence longer random searches, than when the model disagreement is low,
corresponding to more frequent informed motion towards sampled goal
resources.

2.3 Methods

2.3.1 Environment description
We consider a two-dimensional (2D) L× L space with periodic boundaries.
The periodic boundary conditions effectively reflect infinite environments,
akin to natural habitats being much larger than the forager itself. The for-
ager is able to detect resources within a direct detection radius rt. The task
of the forager is to find a fixed number of resources, i.e. the search is only
halted after a specific number of resources have been detected. As an indi-
cation of the resource sparsity, the mean free path λe can be computed by
denoting that the cross-section of the resources equals 2r and the density
ρ = N/L2 can be expressed in the number of resources N and the area of
the environment. The mean free path indicates the average distance be-
tween consecutive resources and is given by [4]

λe = (2rtρ)
−1 =

L2

2rtN
. (2.12)
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Several sparsities can be studied by fixing the values for r and N, and vary-
ing λe which defines the environment size using Eq. (2.12) [5]. Note that
the above expression for λe holds in general for any distribution over re-
sources, thus including sparse and patchy distributions, however it is less
useful when the environment is patchy (see, e.g., [10]). In those cases, the
intrapatch mean free path is more appropriate. In patchy environments,
the resources are divided over Np patches, with each patch containing
the same number of np resources (i.e., N = Npnp). Then, the intrapatch
mean free path λp—the mean free path within the patches—can be com-
puted if we consider the patches to be non-overlapping circles with radius
R = wL < L, 0 ≤ w ≤ 1. Then we have

λp =
πR2

2rtnp
=

πw2L2

2rtnp
. (2.13)

The intrapatch mean free path can be expressed in terms of the mean free
path, through combining Eqs. (2.12) and (2.13), giving

λp = πw2Npλe. (2.14)

Note that the mean free path and the intrapatch mean free path are indeed
equal if the total area of all the distinct patches equals the total area of the
environment. This allows us to forego the use of the mean free path λe in
favor of the intrapatch mean free path λp; the (more) relevant statistic in
patchy environments.

In all following experiments, the forager is equipped with the task of
finding a minimum of N = 104 resources. Within the environment, we
distribute np = 1000 resources uniformly within each patch, where the
radius of each patch is set to R = 0.1L. The total number of patches is set
to Np = 10. The size of the environment L is determined by the intrapatch
mean free path λp, and is computed following Eq. (2.13). The step size, and
subsequently the detection radius, is the unit for the system and is hence
chosen to be rt = 1. Results are averaged over 500 realizations, unless
mentioned otherwise.

2.3.2 Measuring the search efficiency

In random searches, the efficiency of the process is often tightly intercon-
nected with the survival of the forager, e.g. individuals might starve if
they do not find enough food [54, 55]. Hence, an appropriate metric that
captures the efficiency is necessary. Obviously, one cannot uniquely de-
fine a search efficiency metric that captures all possible constraints. Such
constraints can vary from minimizing the time in between subsequent re-
source visits [51] to minimizing energy consumption along the foraging
trajectory [54–56].
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We define two separate search efficiencies. The first search efficiency ηs

defines the rate at which resources are detected. It is defined by

ηs =
n

d
, (2.15)

where n indicates the total number of resources found and d denotes the
total distance traveled by the forager. This definition of the search effi-
ciency has been widely deployed for studying random searches [4–8, 23].
However, as correctly identified in a previous study [14], it fails to capture
patch diversity. While the search efficiency of Eq. (3.5) correctly measures
the number of resources per traveled distance unit, it does not capture from
which patch these resources originated. The result is that revisitation of a
single resource, or a few close-by resources within a single patch, greatly
increases the search efficiency. We shall see that such behavior occurs when
memory effects are strong, and hence the search efficiency that follows the
above definition does not reflect more realistic scenarios, where patch di-
versity is also of importance. Multi-objective exploration might be ben-
eficial for several reasons, all depending on the attributes of the patches
(or resources). For example, the patches can differ in quality, hence con-
straining the search to a small subset of the number of patches might not
optimize the total quality gain. Patches might also contain different types
of resources, e.g. water and food, which are both necessarily for survival
of the forager. Hence, following Wosniack et al. [14], we define the patch
search efficiency as

ηp =
1

d

N∗p

Np

N∗p

∑
m=1

nm

(
1 +
|n̄− nm|

nm

)−1

, (2.16)

where d is again the total distance traveled by the forager, nm is the num-
ber of resources in patch m, n̄ = M−1 ∑m nm the mean number of found
resources per patch and N∗p the number of distinct patches visited. Note
that the denominator is minimized if n̄ = nm, meaning that to optimize
ηp, all patches should be visited an equal number of times. Mathemati-
cally, the search efficiency of Eq. (3.5) is recovered if N∗p = Np and n̄ = nm.
This represents a homogeneous environment, i.e. each ‘patch’ only con-
tains a single resource. Furthermore note that one can adapt the definition
of Eq. (2.16) to account for the interpatch differences, by labeling resources
by their different attributes (see [14]). Extending both the memory model
and the search efficiency to account for different types of resources is con-
sidered a topic for future work.

2.4 Results

2.4.1 Random search without memory (β = 0)
Let us first discuss the random search that occurs when the truncation
probability equals 0, which corresponds to β = 0. In this case, there are
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Figure 2.3: Normalized (patch) search efficiency for β = 0, i.e. random Lévy search
without memory, for different Lévy walk parameters α and different intrapatch
mean free paths λp. Blue squares represent the search efficiency ηsλp (Eq. (3.5)),
while black circles indicate the patch search efficiency ηpλp (Eq. (2.16)). Optimal
Lévy parameters αopt are indicated with arrows. The search efficiency is always
optimized for values αopt ≈ 2, while the patch search efficiency is optimized for
slightly lower values of α. Error bars represent one standard deviation.

no bouts of informed movement; the entire search is a random search. We
study the random search efficiency in heterogeneous environments as a
comparison against the proposed memory models. We measure the (patch)
search efficiency of the foraging process for different values of the intrap-
atch mean free path λp. Results are shown in Fig. 2.3, and identify the
existence of an optimal Lévy parameter αopt. The search efficiency ηs is
maximized for αopt ≈ 2, regardless of the value of λp, congruent with ex-
isting work that discusses the robustness of optimality of the Lévy walk in
heterogeneous environments (see e.g., [23]).

Recall that ηs is optimized through maximizing the number of re-
sources detected while simultaneously minimizing the traveled distance.
Intuitively, this is achieved by interchanging local search within dense
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patches (Brownian motion, α → 3) with global displacements in search of
other regions with high resource density (ballistic motion, α → 1). Sparse
patches henceforth lead to intermediate values of α ≈ 2 being optimal.
This is congruent with the well-established optimum in sparse, homoge-
neous environments [4, 5, 23].

In contrast, the patch search efficiency ηp is optimized by slightly more
ballistic strategies, as indicated by the arrows that highlight the optimal
value for α (see Fig. 2.3). Recall that ηp is optimized when each patch is
visited an equal number of times. Hence, due to the truncation of the walk
at resource detection, it is more difficult to exit a patch when patches are
dense (small λp), while the forager needs to exit its current patch in or-
der to maximize the patch search efficiency. The shift of the optimum to
(slightly) more ballistic strategies is therefore resulting from the fact that
these foragers are more likely to exit the patch and thus are more likely to
increase the number of distinct patches visited. As a result, when patch
diversity is of key importance, more ballistic strategies are preferred (see
also [14] and references therein).

2.4.2 Informed search with memory (β > 0)

Next, we study the influence of the truncation parameter β on both search
efficiencies. Note that the informed search is executed only after the model
has been initialized, which occurs after the minimum number of resources
Nmin = 100 have been detected through means of a random search. In
other words, the informed search is always preceded by a random search,
until a minimal number of resources have been detected through means of
a random search. The resources found in this initial random search, act as
the prior data for initializing the ensemble of GMMs that are incremen-
tally updated with new batches of resource positions found during the
informed search. In all following experiments, we set the number of en-
semble members K = 3, and the minimum and maximum number of com-
ponents per member to be 1 ≤ Mk ≤ 10. Note that the maximum number
of components is equals to the number of patches Np. For the Lévy pa-
rameter α, we chose the optimal value conform the random search, αs = 2
for the search efficiency ηs and αp = 1.8 for the patch search efficiency ηp.
Results for various intrapatch mean free paths are shown in Fig. 2.4, which
obviously indicate optima with respect to the memory strength β.

First, the search efficiency is maximized when memory effects are
strong, Fig. 2.4A-D. As indicated earlier, revisitation of a select number
of resources is highly beneficial for optimizing the search efficiency as
defined in Eq. (3.5). Indeed, as illustrated in Fig. 2.5, the total number
of unique resources (and patches) visited decreases when the memory
strength increases. Hence, the forager indeed favors revisitation of a small
fraction of the total number of resources, since its explorative motion is
truncated due to strong memory effects, resulting in more informed move-
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Figure 2.4: Normalized search efficiency ηsλp and patch search efficiency ηpλp

versus the scaled memory strength β/K for several intrapatch resource densities
λp. Low values of β/K correspond to highly explorative foragers, while larger
values correspond to foragers that adopt their model quickly. For the left column
α = 2.0 and for the right column α = 1.8. Arrows indicate maxima, shaded areas
represent one standard deviation.
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Figure 2.5: Unique resource and patch encounters versus the scaled memory
strength β/K. Error bars represent one standard deviation. (A) The percentage of
unique resources visited, for several intrapatch mean free paths λp. The decrease
indicates that, as the memory strength increases, the forager favors revisitation of
a select number of resources over more explorative behavior that displays a wider
variety of unique resources detected. (B) The number of unique patches visited dis-
plays similar characteristics, furthermore indicating that foragers prefer to not ven-
ture out into interpatch space, as to maximize the resource encounter rate within a
few patches found during the initial exploration (see also Fig. 2.2).

ment towards the detected clusters of resources. Furthermore note that
the search efficiency decreases when memory effects strengthen. Since
searches are ended after a fixed number of resources have been detected,
the increase in variance results from an increase in variance of the distance
traveled, as is shown in the inset of Fig. 2.6. Note that the variance increase
is more substantial in very sparse environments, since resource detection
is inherently more difficult in those cases. Due to this sparsity, goals sam-
pled from the spatial distribution learned over the resources detected dur-
ing the initial random search may not be in close proximity of an actual
resource. Hence, the informed movement potentially has to be repeated
several times, which results in the observed variance increase in the travel
distance and subsequently both search efficiencies. Furthermore note that,
as expected, more distance needs to be traversed to complete the search
task whenever the resource sparsity increases.

Next, the patch search efficiency displays interesting trends. It is opti-
mized for much more explorative strategies, with β as low as 10−7 (con-
form to the explorative forager in Fig. 2.2). Thus, increased memory
strength actually decreases the diversity of patch visitations, as also dis-
cussed above (see Fig. 2.5), and more explorative behavior is preferred.
This originates from the choice of incremental learning of the ensemble
of GMMs, since the ensemble members that were learned from the initial
batch of detected resources can be sampled from much further into the in-
formed search process. The influence of the initial set of detected resources
can be adapted by the aforementioned forgetting rate, which controls how
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Figure 2.6: Distance traveled versus the scaled memory strength β/K. Inset shows
its standard deviation. More sparse distributions require longer distances to be
traveled by the forager and additionally increase the variance due to the fact that
rates of detecting resources in very sparse environments are determined by chance
(see text).

conservative the forager is when new resources are encountered. However,
even when the forgetting rate is tuned such that all old resource locations
are forgotten, i.e. the incremental updating of the GMM is effectively re-
placed by learning a new GMM over the new resource locations, the new
resource locations will most likely be around the old resource locations
when memory effects are strong. Hence, most of the different patches vis-
ited during the task are already visited during the initial random search,
and memory does not increase the chance of detecting faraway regions
rich in resources. In other words, foragers that strongly depend on their
memory, are much more conservative and seldomly venture outwards to
discover new patches, which detriments the patch search efficiency. If a
high diversity of patches is preferred (or required, see Section 2.3.2), high
memory strengths are suboptimal. This indicates the long-term memory
effects are not beneficial towards optimizing resource diversity.

The patch search efficiency displays a minimum for intermediate mem-
ory strengths, which is more pronounced when resources are sparsely dis-
tributed within the patches, see Fig. 2.4E-H. These minima arise from long
bouts of exploration wherein no resource was detected, only truncating the
walk in favour of informed motion after a relatively large number of steps.
These bouts result in the forager venturing out into unknown territories.
However, due to the sparsity of the resource distribution, it is unlikely to
detect resources during these ventures. Hence, the forager travels more
(unnecessary) distance before giving up on the search and traveling back
to known territories. Such hesitations, i.e. no true commitment to explo-
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ration, result in an increase in the travel distance that is not accompanied
by an increase in the number of resources detected (as indicated in Fig. 2.5),
hence the resulting decrease of the patch search efficiency for intermediate
values of β.

Finally, the patch search efficiency again increases when the memory
strength increases, compared to intermediate memory strengths. This
increase originates from the efficiency of the revisitation strategy of the
forager, as the number of unique resources (and patches) visited do not
change when the memory strength increases further (see Fig. 2.5). How-
ever, venturing into unknown regions is suppressed due to higher trun-
cation probabilities resulting from larger values of β. Essentially, this re-
sults in similar revisitation as intermediate memory strengths exhibited,
while decreasing the distance traveled in between resource revisitations
(see Fig. 2.6). In turn, this reduction in travel distance increases the patch
search efficiency, however the increase does not rise above the optimum
reached for more explorative strategies, realized through smaller values of
β.

2.4.3 How does memory affects walk characteristics?

Next, we discuss the characteristics of the walk that results from both the
truncation at resource detection as well as the memory. As illustrated in
the example trajectories of Fig. 2.2, memory greatly influences the walk
characteristics. Specifically, the distribution over walk distances changes
from a power law to an exponential distribution, which does not posses the
fat tails characteristic to power law distributions. Stronger memory effects
(i.e. greedy foragers, high β), tend to more localized behavior around the
first few patches wherein resources are detected, hence disposing of the
statistically relevant long-range displacements typical of the Lévy walk.
Moreover, the power law tail observed in Lévy walks is often absent when
resource densities are high, regardless of memory [2].

We demonstrate this in more detail by executing an informed search
for fixed number of resources, wherein we define an episode to be a time
window wherein the model remains fixed. Thus, an episode ends at the
same time the random search is truncated and the model is (incrementally)
updated. First, the model disagreement ϕ is plotted, including the single
step truncation probability p(1, ϕ), in Fig. 2.7A,B. The model disagreement
decreases as the number of episodes (model updates) increases. Naturally,
the corresponding truncation probability depends heavily on β, as the in-
termediate forager has a single step truncation probability of effectively 0
(see Fig. 2.7A). However, the greedy forager is very likely to truncate its
random search after a single step after a few model updates due to the
combination of a low model disagreement ϕ and high value of β. As a
result, the greedy forager repetitively only visits resources from memory
and omits exploration entirely.
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Figure 2.7: Influence of memory on the power law distribution over walk dis-
tances for foragers searching with Lévy parameter α = 2 in an environment with
λp = 20rt. Two types of foragers – intermediate (β = 10−5, left), and greedy

(β = 10−1, right) – have executed an informed search to search for 104 resources.
(A,B) The average model disagreement ϕ continuously decreases as the model
is updated. The truncation probability p(1, ϕ) is shown in blue, with L0 = 1.
(C,D) The approximate power law exponent computed from the distribution over
walk distances, and (E,F) the corresponding log-likelihood ratio between a power
law distribution and an exponential distribution. Red colors indicate episodes for
which the average LLR < 0, while the vertical dotted lines highlight the episode
for which this first occurs. Note that the intermediate forager displays a power law
distribution across the full task, while the greedy forager changes its walk distance
distribution to an exponential (Brownian) one as its model is incrementally up-
dated. Each point shown corresponds to a single episode (see text). Shaded areas
represent one standard deviation, averaged over 50 different realizations.
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Next, we record the walk distances within each episode, which can be
truncated due to resource encounters. Using the distribution over walk
distances within each episode, we can fit a (truncated) power law distribu-
tion and compute an approximate value for the Lévy parameter α. How-
ever, fitting a distribution is misleading due to the fact that the underlying
data might not be described by the candidate function [57–60]. Therefore,
the log-likelihood ratio (LLR) between a (truncated) power law, which in-
dicates anomalous diffusion, and an exponential distribution, which is in-
dicative of Brownian-like diffusion, is computed. For this computation, we
use existing and well-established libraries [58].

We report results for two distinct types of foragers; intermediate and
greedy (see Fig. 2.2). The naive forager is not shown, since those do not
adapt their model due to their truncation probability being effectively zero,
hence the search consists of a single episode which obeys a power law
distribution over walk distances (results not shown). As seen in Fig. 2.7,
the intermediate forager has walk distance distributions that obey a power
law, up until the task is completed. In contrast, the greedy forager changes
its walk behavior to Brownian motion the more its spatial distribution is
updated. The result is that, approximately, both the fitted power law com-
ponent α ≥ 3, and LLR < 0, indicating that the distribution over walk dis-
tances does not follow a power law but is more likely to obey an exponen-
tial distribution, i.e. Brownian motion [2]. Memory thus affects the walk
distance distribution, inducing less diffusive motion in favour of revisita-
tion of a select area rich in resources. This decrease in diffusivity directly
results in the previously mentioned suboptimal patch search efficiencies
reached when memory effects are strong, since those are optimized with
more ballistic strategies (see Fig. 2.3 and [14]).

Whereas assigning power law distributions to empirical datasets of
walk distances needs to be handled with caution [59, 60], our rudimen-
tary study of the underlying distributions illustrates that the diffusivity is
not necessarily determined by the underlying sampling procedure [2]. In-
deed, random walks with memory induced relocations to previously vis-
ited locations, have been shown to display subdiffusion [31]. Moreover,
Brownian motion induced by memory is favored over more ballistic Lévy
walks when resources are more difficult to encounter [11], indicating that
the switch to more Brownian-like motion aids non-destructive resource de-
tection in very sparse environments. Additional careful analysis on the ef-
fect of spatial memory on the movement pattern of the forager is beyond
the scope of this paper.

2.5 Discussion

We have investigated the effects of spatial memory on the search efficiency
in patchy environments. Spatial memory constituted of an ensemble of
Gaussian mixture models. The resulting hybrid foraging strategy, alter-
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nates Lévy walks as random searches with memory induced walks. The
truncation probability, which indicates the switch between the two distinct
walks, increases with the number of steps since the last resource detec-
tion and decreases of the model disagreement. We have shown that non-
destructive foraging is optimized when memory effects are strong and the
search efficiency is defined solely through the rate of resource detection per
unit traveled. However, strong memory effects result in high revisitation
rates of a select few resources, often within a small fraction of the available
patches. Thus, explorative behavior is penalized due to increases in the
traveled distance not being accompanied by similar increases in the num-
ber of resources detected. This identifies a trade-off between the search
efficiency and patch diversity. The trade-off is not trivially solved by inter-
mediate memory strengths, since we observed the patch search efficiency
to be minimized when memory strengths are intermediate. As a result,
the benefits of memory heavily depends on the needs of the forager. If a
high diversity of resources is required for survival, then more explorative
motion is preferred, whereas memory serves more useful in sparse envi-
ronments in which resources can be revisited indefinitely.

Where we have assumed an infinite regeneration rate by assuming non-
destructive foraging, we believe that the results might also be beneficial
for finite regeneration rates. Notably, the benefits the forager obtains from
using a spatial memory strongly depend on the regeneration rates of re-
sources. When resources are sparsely distributed, but do regenerate over
potentially long periods of time, memory might serve as a very useful tool
that increases survival chance due to enabling revisitation of previously ex-
hausted patches that have regenerated [61]. Moreover, finely tuning mem-
ory strengths with potential periodicity of the availability of the resources,
e.g. seasonal growth, might greatly reduce search times and energy con-
sumption and as a result increase the search efficiency [62]. In addition,
random walks without memory also exhibit a switch from superdiffusive
walks to ballistic motion as the resource regeneration time changes from
zero (non-destructive) to infinity (destructive) [50].

Further, using an ensemble of GMMs as a spatial distribution enables
researching attribute dependent behavior. Since each member of the en-
semble consists of a mixture of Gaussians, weighting the Gaussians dif-
ferently when sampling goal states can be coupled to certain attributes of
the resources whereover the Gaussian was fitted, e.g. patch quality. Addi-
tionally, each member can represent different types of resources in order to
account for balanced resource detections, furthermore accompanied by the
aforementioned possible adaptations of the patch search efficiency. Future
studies might indicate that foragers that aim to optimize overall resource
diversity, benefit more from an ensemble of differently weighted spatial
distributions.

Lastly, it is important to note that the Lévy walk paradigm [63], i.e. that
forager movement follows a Lévy walk, has been criticized as being unre-
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alistic [46], mainly because traditional implementations of the Lévy walk
omit directionality resulting from a continuous decision-process. An effect
of the continuity of the foraging process, is that any organism can change
its behavior at any instant in time [64]. In this work, the decision process of
the forager is continuous as the forager decides to continue or truncate the
search based on its current available information from both from its per-
ception as well as its memory. An additional critique was that the spatial
scales whereover the walk characteristics are determined should be rele-
vant to the foraging process, something that we have achieved by sampling
walk distances using a truncated power law. Hence, while further investi-
gation on the motion of foragers is warranted, we have directly tackled the
main criticisms of the Lévy walk paradigm by inclusion of the truncation
probability depending on memory.

This work presented in this chapter indicates that spatial memory is
not necessarily beneficial towards detecting a diverse set of resources. We
have identified strengths and weaknesses of a potential spatial memory
candidate, which suggests that the balance between using memory versus
naive random walks is fickle and is in much need of further study.
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3
Group size and resource fractility drive

multimodal search strategies:

a quantitative analysis on group foraging

Abstract
In the previous chapter, resource distributions were effectively static as foraging

was considered to be non-destructive. Instead, this chapter will focus on destruc-

tive foraging. Learning a spatial distribution over a dynamic resource distribu-

tion is, however, most often likely ineffective, and hence we omit learning spatial

memory entirely. As the problem of optimizing individual random searches in

such environments has been studied extensively, we additionally shift our focus to

studying foraging behavior in a group of competitive foragers. We introduce an

agent-based model wherein competition arises from foragers having to compete

for a limited set of resources. We consider foragers that change the characteris-

tics of their random search upon entering a patch, by switching from an extensive

search with long-range relocations, to intensive, more localized searches. We study

a system where foragers can monitor the search behavior of nearby conspecifics

and become attracted to those that are searching intensively, as this behavior sig-

nifies a patch rich in resources. By controlling resource patchiness, we quantita-

tively determine advantages of group foraging on individual foraging efficiencies.

Our results indicate that, when resources are sufficiently clustered, joining nearby

others in their successful foraging efforts is shown to become an efficient strategy.

However, when group sizes increase, joining others is disadvantageous due to in-

creased levels of competition on the patches. We further examine individual advan-

tages by measuring the variation in resource intake rates. Interestingly, our results

show that individual advantages are highest in conditions wherein group advan-
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tages are lowest. This indicates that, while foraging in groups can be advantageous

for the individual under certain environmental conditions, foragers often resort

to so-called ‘low mean, low variance’ strategies instead. The results presented in

this chapter supports the notion that foraging in groups does not necessarily result

in increased foraging efficiencies, but that it might facilitate more strict incentives

such as survival.

3.1 Introduction

Foraging is critical to the survival of many animal species. To this end,
many animals exhibit optimized foraging behavior. Often, precise re-
source locations are unknown, making optimizing random searches for in-
dividuals of vital importance [2–4]. In addition, foragers within a group
might benefit from interactions with others in order to further increase
their foraging efficiency [5, 6]. For example, detecting successful nearby
conspecifics and joining them has been a well-documented phenomenon
in natural systems [7–12]. However, when group sizes increase, intraspe-
cific competition additionally increases [13–20], in turn leading to possible
overpopulation or overconsumption of areas rich in resources. Ultimately,
this can reduce the average resource consumption rate of individuals. This
indicates that foraging efficiency is not only highly dependent on the re-
source distribution, but also on individual decision processes and interac-
tions between foragers [21].

Traditionally, foragers joining successful others have been studied in
the context of information sharing systems [22, 23] or producer-scrounger
systems [24, 25]. In information sharing systems, foragers individually
search for resources while simultaneously monitoring the behavior of
nearby conspecifics, thus allowing unsuccessful foragers to join success-
ful others [26]. Such joining mechanisms can reduce variations in re-
source intakes as it equalizes the distribution of resources, possibly lead-
ing to higher group search efficiencies [12, 27]. In the producer-scrounger
framework [23, 28], individuals are typically considered to be either a
scrounger or a producer. They can choose to search independently for re-
sources (producers), or take advantage of others (scroungers), for example
by joining a patch and competing for resources. Thus, the effectiveness
of scrounging depends heavily on the number of scroungers relative to
producers. Producer-scrounger models have been used to model group
foraging [25, 29], where field studies have identified intricate producer-
scrounger dynamics within populations of baboons [30], rooks [31] and
finches [32], among others. While these dynamics critically depend on the
environment, very little is known about the precise influence of resource
distributions and availability on the effectiveness of group foraging.

In general, advantages of joining others increase as resources become
more difficult to locate. When resources are readily available, an individ-
ual does not need to be joining others, as individual resource encounter
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rates are high. In contrast, many natural landscapes have resources dis-
tributed in patches, leading to fragmented distributions [33, 34]. Most of-
ten, separate patches are the result of power laws that describe the under-
lying resource distributions [35, 36], leading to scale-free, fractal resource
landscapes [37–45]. Such resource distributions typically increase the ben-
efits of joining, since resources themselves are more difficult to locate, but
patches contain many resources [46]. However, it is important to consider
that intraspecific competition – as foragers are competing for the same set
of (limited) resources – highly influences the advantages of joining strate-
gies. Quantitative results on critical degrees of fragmentation or clustering,
and levels of competition (group sizes and joining ranges), are to the best
of our knowledge absent from current literature.

Besides joining nearby successful conspecifics, individual search strate-
gies are still of critical importance. Data logging techniques have resulted
in attributing existence of heavy-tails in the distribution of flight lengths
used in random searches [43, 47], thus allowing for the description of ran-
dom searches as Lévy walks or flights [3, 48]. Whereas the robustness of
these Lévy searches has been widely established [2, 4, 49–51], whether ani-
mals truly execute Lévy walks is currently still up for debate [52–57]. Nev-
ertheless, increasing evidence shows existence of Lévy walk characteristics
across a wide variety of organisms, ranging from micro-organisms such as
bacteria [58], cancer cells [59] and T cells [60] to aquatic animals [61], and
from insects such as honey-bees [62] to mammals such as deer [63, 64] and
even human hunter-gatherers [65]. Moreover, recent theoretical advances
seem to point towards Lévy walks as random searches for optimal area
coverage [66] and for optimising the time needed to detect sparse targets
of different sizes [67].

The characteristics of Lévy walks depend heavily on environmental
influences [61], where individuals generally display lower levels of dis-
persion when resources are plentiful. To model this, the (non-adaptive)
Lévy walk framework originally proposed by Viswanathan et al. [2] can
be adapted to a multimodal (adaptive or composite) search [68, 69]. Differ-
ent levels of diffusion in each mode represent differences between global
displacements (exploration) and localized searches (exploitation), where
switching between the modes can be mediated by the state of the forager.
Both resource availability and resource distribution significantly impact
the effectiveness of composite random searches. This raises the question if
there exist optimal search strategies that take into account resource distri-
bution and (local) conspecific densities. Most likely, searches that optimize
foraging efficiencies balance individual searches with group behavior such
as aggregation [6, 70].

This work aims to provide a quantitative analysis on the effects of in-
traspecific competition on the individual- and group-level foraging effi-
ciencies in fractal resource landscapes. It acts as a first effort to system-
atically investigate observed behavioral traits in foragers, and how these
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depend on the resource landscape and interactions between individuals.
To this end, we study multimodal random searches in the information-
sharing framework. More specifically, we study the intricate interplay be-
tween the resource landscape, the individual decision process, and the ben-
efits of joining successful conspecifics. We employ an agent-based model
that implements a group of foragers that compete for resources available
within the environment. Competition arises from the fact that foraging
is destructive, i.e. resources disappear after consuming them, leading to
areas initially rich in resources becoming depleted over time.

Within our model, we first introduce a bimodal (adaptive) Lévy search
consisting of an extensive and an intensive search mode. The extensive
search is defined by choosing parameters of the Lévy search such that ran-
dom searches become highly diffusive, representing exploration. In con-
trast, assuming resources are sufficiently clustered, the forager switches to
more localized random searches upon resource detection, representing ex-
ploitation. Using this model, we show that when intensive searches are
of relatively long duration, i.e. sufficient exploitation, ballistic extensive
searches are always the most efficient. Interestingly, due to intraspecific
competition, individual searches by a single forager are, on average, al-
ways more efficient than those achieved by groups of foragers. We find
that when resources are not clustered, distributions over resource intake
rates are log-normal, but this feature disappears beyond a certain degree
of clustering. The reason is that intraspecific competition results in skewed
distributions over resource intakes, meaning that a significant fraction of
the group find little to no resources when those are significantly clustered.

Afterwards, we then extend the bimodal model to a trimodal one,
wherein foragers can additionally be attracted towards successful nearby
conspecifics. Here, successful foragers are those that have recently de-
tected a resource, and are thus executing intensive searches. Therefore,
we consider switches to intensive searches to act as a cue to nearby others,
effectively identifying the forager as an attractor. By introducing attraction
towards successful conspecifics, we show that log-normal distributions are
recovered over the full range of resource landscapes that we consider, dis-
playing more equal resource intake with lower variation. Furthermore, we
study the foraging efficiency more quantitatively by comparing systems
of foragers that join successful others with systems of non-interacting for-
agers. We find that there exist optimal intermediate joining ranges, which
decrease in size as relative resource availability decreases. Thus, we show
that joining others results in higher average foraging efficiencies only if
(i) resources are clustered to some sufficient degree, and (ii) group sizes do
not become too large. More interestingly, we find that in resource land-
scapes where joining does not increase individual resource intake rates,
the variation in resource intake decreases. This highlights that many nat-
ural systems might not execute optimal foraging per se, but instead favour
strategies that result in small variation, as long as minimum energetic con-
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Figure 3.1: Examples of typical resource distributions of M = 2048 resources in the
L× L environment for different Lévy parameters γ. The periodic boundary effects
are apparent when γ decreases, resulting in increasingly uniform distributions for
γ → 1. In contrast, high values of γ result in highly clustered resource distribu-
tions. Resource landscapes with intermediate values of γ contain multiple clusters
separated by large empty spaces.

straints are met.
We have organized this chapter as follows. First, we introduce the frac-

tal resource landscape in Section 3.2.1, and discuss the bimodal and tri-
modal Lévy searches in Section 3.2.2, and Section 3.2.3 respectively. In
Section 3.3 we present our numerical studies of agent-based model on the
foraging task, and discuss the relevance to existing literature. Finally, we
conclude our work in Section 3.4 and present an outlook on the implica-
tions of our work.

3.2 Model description

3.2.1 The resource landscape

We consider a square, two-dimensional (2D) L× L environment with pe-
riodic boundaries. The characteristics of the resource landscape determine
the efficiency of the search strategy used by the foragers. For example,
when resources are highly clustered, aggregation might be an efficient
strategy, even though levels of resource competition increase [6, 71]. Char-
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acterizing the resource distribution is thus of vital importance towards un-
derstanding the motivations of aggregations in large-scale systems.

Since we study destructive foraging in fractal resource landscapes, re-
source dynamics are modeled as disappearance (consumption) of a re-
source upon detection, and reappearance (regeneration) at a distance sam-
pled according to a Lévy flight. Simultaneous consumption and regener-
ation ensures that the resource density within the environment stays con-
stant. This is desired as it enables us to study foraging behavior in absence
of more invasive effects such as drastic changes in resource availability.
Time dependent resource densities that result from external causes, e.g.
deforestation, are considered important topics for future research.

We let distances between resources be sampled from a truncated in-
verse power law, where upper and lower truncation ensure that distribu-
tions occur on the appropriate scale [50, 56]. The distribution with Lévy
parameter γ is defined as

pγ(ℓ) =

{
Zγℓ−γ ℓ0 < ℓ ≤ L

0 otherwise,
(3.1)

where Zγ is the normalization constant and ℓ0 and L are the minimum re-
spectively the maximum distances. The orientation angle θ between sub-
sequent resource placements is sampled uniformly between 0 and 2π. As
such, the generated resource distribution represents a Lévy dust [72, 73],
where each point in the flight represents a resource location.

Lévy flights capture different resource distributions, related to the
properties of the distribution (see Fig. 3.1). For γ → 1, distances between
subsequent resources are large, resulting in a (near) uniform distribution
due to the periodic boundaries (see also [66]). When γ ≥ 3, the resulting
pattern is highly clustered, often resulting in resources being contained in a
single, dense cluster. Intermediate values 1 < γ < 3 result in clumped dis-
tributions, where multiple aggregates are separated by large empty spaces.
In principle, when the number of resources M → ∞, due to the periodic
boundary conditions all values of γ will asymptotically converge to the
same distribution, being dense and uniform [50]. However, since realistic
environments have a finite number of resources, the significant structural
differences for different values of γ become apparent even for relatively
large values of M, as seen in Fig. 3.1.

3.2.2 Individual behavior

Within the clustered resource landscape, we consider a system of N for-
agers initially distributed uniformly within the environment. In our ex-
periments, resources can be detected by the foragers within a detection
radius R. Each individual forager randomly searches the environment for
resources by executing a (bimodal) adaptive Lévy walk with parameter α
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[69, 74]. It is important to note here the difference between a Lévy flight
and a Lévy walk, with only the latter having a finite velocity that implies
a spatiotemporal coupling [48, 50]. Then, similar to Eq. (3.6), flight lengths
are sampled from an inverse power law as

pα(ℓ) =

{
Zαℓ−α, ℓ0 < ℓ ≤ L

0 otherwise
, (3.2)

where Zα the normalization constant. Foragers walk along the sampled
flight lengths with step size (fixed velocity) ℓ0, with the direction φ sam-
pled uniformly from 0 to 2π. The parameter α defines the spatial charac-
teristics of the movement. Lévy walks encompass a wide range of different
movement patterns (diffusion), ranging from ballistic motion for α → 1 to
anomalous diffusion for 1 < α < 3, and normal diffusion (Brownian mo-
tion) for α ≥ 3. It is critical to note that convergence of Eq. (3.2) towards
a Gaussian process is ultraslow [75], hence the general characteristics, e.g.
the heavy tail, of the Lévy distribution are conserved during our finite time
foraging task. For a more detailed discussion on Lévy flights and Lévy
walks, and their implications for foraging, we refer the interested reader to
more in-depth studies [3, 48].

In this work, we let the actual value of α depend on the mode the for-
ager is in. The bimodal search consists of an extensive search mode with
parameter α and an intensive search with parameter α′. Initially, each for-
ager starts in the extensive search mode wherein the forager explores the
environment using a Lévy walk parameter α ≤ 3. At resource detection,
the forager switches to the intensive mode with α′ = 3 (Brownian motion),
under the assumption that the resource distribution is clustered. Such a
composite random walk has been observed in numerous animal species
(see e.g., [76–78] and references therein). Effectively, these search strategies
allow individuals to focus their efforts on areas rich in resources, while si-
multaneously minimizing time spent in areas void of resources [3]. While
such composite random walks have been found to accommodate higher
search efficiencies for single foragers [74, 78], to the best of our knowledge
such composite Lévy searches have not been studied extensively in group
foraging scenarios (but see [6]).

In our bimodal Lévy search, the intensive search mode can at any point
in time be truncated with probability pβ, effectively switching back to the
extensive search. Naturally, this truncation strongly influences the effi-
ciency of the search. When exactly a forager truncates its current intensive
search should depend heavily on the resource landscape. Similar to previ-
ous studies [79, 80] (as as discussed in Chapter 2), it is therefore sensible to
have the truncation probability depend on the recent success of the forager.
In general, when the forager assumes a clustered resource distribution, in-
tensive searches should be longer, while short intensive searches should
be preferred when resources are more spread out. To this end, we define
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the switching probability for switching back to the extensive search from an
intensive search by

pβ(d0) = 1− exp

[
−

βd0

ℓ0

]
, (3.3)

where β is the switching parameter, and d0 the distance traveled without
resource encounter. Thus, the forager is more likely to exit its current in-
tensive search if it has not detected a resource in some time; a decision that
is influenced by the switching parameter β.

Essentially, the switching parameter β determines to what extent a for-
ager should ‘exploit’ the current region, assumed by the forager to be rich
in resources (see also [69, 78]). Lower values of β indicate long intensive
searches, while higher values of β result in short intensive searches. Note
that setting β = ∞ recovers the unimodal Lévy search, where there does
not exist an intensive search and the forager simply searches the environ-
ment while maintaining α ≤ 3 (see Appendix 3.A). Further note that a
switch to an intensive search at resource encounter is only beneficial when
resources are clustered. Thus we implicitly make the assumption that for-
agers expect the resource landscape to be clustered to some degree. If this
assumption is false, composite random walks do not necessarily optimize
random searches [69].

3.2.3 Attraction to conspecifics

Next we describe attraction towards nearby conspecifics that are within
a perception range r. In general, conspecific perception ranges are larger
than resource perception [70, 81–85], i.e. r ≫ R. We model attraction to-
wards recently successful nearby conspecifics through aborting the current
search direction in favor of travel towards the closest attractor. Here, re-
cently successful foragers are those who are executing intensive searches,
i.e. foragers are attracted to those who have recently detected resources
and are thus likely to be within a patch. This type of attraction has been
observed in many natural systems, such as, but not limited to, worms [11],
fish [12], bats [20, 46], seabirds [14, 82, 86, 87] and gazelles [70]. It relies
on use of public information [83, 88, 89], where the information that is con-
sidered public in this work is the location and the search mode of nearby
conspecifics.

Attraction is modeled through sampling a travel angle from a wrapped
Cauchy distribution (WCD), making attraction to be modeled according to
a correlated Lévy random walk with parameter α [90]. Note here that at-
traction considers the same Lévy parameter α as exploration. The mean of
the WCD is the angle between the focal forager and the nearest successful
conspecific (the attractor). The shape parameter ̺ of the WCD depends on
the distance towards the nearest attractor dnear (see Fig. 3.2). More specifi-



GROUP SIZE AND RESOURCE FRACTILITY 83

0 π/2 π 3π/2 2π

θ

0.00

0.25

0.50

0.75

1.00

f W
C
(θ
;π

/2
,̺
)

A

̺ = 0.75

̺ = 0.50

̺ = 0.25

r

̺ ≈ 0.75

̺ ≈ 0.25

B

Figure 3.2: (A) Wrapped Cauchy distribution fWC for different shape parameters ̺
with center angle π/2. (B) Simplified typical attraction pattern for a focal forager
(•) getting attracted to a successful forager (◦) within the attraction radius r, with
initial angle of attraction θ = π/2. Travel direction is sampled according to the
wrapped Cauchy distribution with ̺ = (d/r)

1
2 , where d the distance between the

foragers. Typical values of ̺ are indicated. Note that as the attracted forager gets
closer, the more uniform the sampling of the travel angle becomes.

cally, we define

̺ =

(
dnear

r

) 1
2

. (3.4)

The attracted forager executes its Lévy search along this travel direction,
meaning that motion is guided towards the nearest conspecific who is cur-
rently executing an extensive search. The form of the shape parameter in
Eq. (3.4), ensures that the travel angle is sampled more uniformly the closer
the attracted forager is to its nearest successful neighbor. Hence, attraction
gradually fades the closer the focal forager is to the successful one, in turn
executing a localized search when in the vicinity of its nearby successful
conspecifics, since travel angles are effectively sampled (near) uniformly
as ̺ → 0. Attraction is truncated either when the successful conspecific
exits the extensive search (as per Eq. (3.3)), or when the attracted forager
detects a resource, after which it switches to an intensive search and be-
comes an attractor for other nearby conspecifics itself.

Effectively, the type of attraction studied here results in ‘follow-the-
leader’-type dynamics, which have been previously discussed, e.g. by San-
tos et al. [91]. Moreover, such hierarchical structures are indeed very com-
mon in natural systems [92–94], and leader-follower relationships have
been observed to naturally emerge [95–98]. Within our model, successful
foragers in the intensive search mode effectively assume a leader-type role,
and foragers attracted to them can be considered as followers. Therefore,
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our model of attraction results in ephemeral group formation with tem-
porary leader-follower dynamics. In particular, this contrasts with Santos
et al. [91] as they considered permanent groups with fixed leaders. Ad-
ditionally, our model carries much resemblance with fission-fusion dy-
namics, where ephemeral groups continuously split and merge, e.g. to
exchange information [99–101]. Note that while the specific model of at-
traction in natural systems might differ, we assume that the above descrip-
tion is a simplification of more complex decisions made at the individual
level.

3.3 Results
We employ a Monte Carlo approach by simulating separate foraging tasks
in different resource landscapes and initial conditions. The environment
size is set sufficiently large at L = 103, while the number of resources
within the environment M = 2048 is chosen as to reflect low resource den-
sity (ρM = M/L2 ∼ 10−3, Fig. 3.1). The number of foragers N is a variable
considered in ranges typical for (large) foraging systems (typically between
102 to 103 individuals, see e.g. [6, 70, 102–106]). All results presented be-
low are averages computed over 250 foraging tasks with different initial
conditions and random seeds, unless mentioned otherwise. In this work, a
foraging task consists of encountering a fixed number of resources within
the environment. Here, we consider experiments wherein 2 · 104 resources
have to be detected, ending immediately upon reaching that threshold.
Note that although this task truncation can influence optimal parameters
for the random searches [79], our choice of resource encounters is suffi-
ciently high to alleviate these effects. We have empirically established that
increasing the number of to be detected resources does not influence the
distributions of, or the numerical values of the to be presented metrics.

3.3.1 A single forager in a fractal landscape (N = 1)

To provide insight in the added value of composite random searches, let
us first study a single forager (N = 1) in a fractal landscape and extract
optimal values of α, for different resource distributions defined by γ. Note
that optimality here indicates a strategy (i.e., a particular choice of α) that
maximizes the search efficiency. In this work, we assume that the cost of
foraging for each individual is proportional to the distance traveled (see
also [2, 3]). This gives the search efficiency as

η =
k

d
, (3.5)

where k is the number of resources detected by the forager while traveling
a distance of d. Since we truncate the search when a fixed number of re-
sources have been detected, the search efficiency essentially captures how
much distance the forager had to traverse during the foraging task.
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Figure 3.3: Search efficiency η versus α for a single forager (N = 1) performing
an adaptive Lévy search for different values of β. Resources are placed using a
scale-free distribution with Lévy parameter γ. (A) η for the free Lévy walk, i.e. no
intensive search (see Appendix 3.A). (B) η for adaptive (bimodal) Lévy searches
with (relatively) short intensive searches, and (C) with longer intensive searches.
Note the difference of the value of η, where adaptive Lévy walks with finite β have
overall higher search efficiencies than when β = ∞. Error bars represent 1 standard
deviation.

Let us set β = ∞ and thereby recover the unimodal Lévy search that
does not adapt its parameter α, as the switching probability p∞ = 1 as per
Eq. (3.3) (see also Appendix 3.A). Results are indicated in Fig. 3.3A, and
display a cross-over from the widely encountered optimum at α ≈ 2 as the
resource landscape exhibits higher levels of clustering. As γ decreases, the
resource distribution becomes less clustered, leading to ballistic searches
with α→ 1 to be optimal. These results are in line with existing studies on
Lévy searches in fractal resource landscapes, e.g. [50].

In contrast, when the switching parameter β is finite, we observe that
more ballistic motion is favored by the forager (Fig. 3.3B,C). Most notably,
when the switching parameter β is sufficiently small, i.e. when intensive
searches are longer, the optimum shifts to pure ballistic motion α → 1 re-
gardless of the underlying structure of the resource landscape (Fig. 3.3C).
It is critical to note that the value of the search efficiency increases as inten-
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sive searches are sufficiently long, especially when the resource landscape
is highly clustered. This indicates that the adaptive search with finite β
is a more efficient strategy than the unimodal Lévy search with β = ∞.
Obviously, the switching behavior of the forager is only beneficial when
resources are sufficiently clustered, leading to foragers assuming a priori
that resources are clustered to some degree. Therefore, as previously men-
tioned, in environments where this assumption is false, the search effi-
ciency should decrease. Indeed, resource distributions that are not clus-
tered (γ → 1) display a decrease (albeit minor) in search efficiency as the
intensive searches increase in length, since the forager is expecting the re-
sources to be more clustered than they actually are.

This leads us to the following assumption that ballistic extensive
searches are always optimal if, (i) the environment is clustered to some sig-
nificant degree, and (ii) if the forager is changing its search behavior upon
resource detection. Thus, the optimal adaptive Lévy search consists of one
highly explorative mode (with α → 1) and a highly exploitative mode
(with α′ = 3). This result has analytically been verified in one-dimensional
systems [107], including the fact that such bimodal searches necessarily re-
quire some prior information, such as the expected clustering strength of
the resources. Our results consolidate this fact in a two-dimensional sys-
tem.

As a result, in further experiments we consider ballistic extensive
searches with α → 1, as less ballistic searches are less optimal provided
the resource landscape is sufficiently clustered. Therefore, β (to some de-
gree) represents the expected local resource density (cluster size) that the
forager uses to estimate when it has to leave the patch due to resource ex-
haustion. This additionally implies that there might exist an optimal value
of β, depending on the resource landscape defined by γ, and, as we shall
show in Fig. 3.5, these optima are indeed observed in our model. More
specifically, optimal values β∗ depends on the clustering tendency of the
resource distribution, where searches in highly clustered environments are
more efficient as the length of intensive searches grows. Most notably, due
to intraspecific competition, single foragers benefit more from longer in-
tensive searches than groups of foragers (see also Section 3.3.2).

It is important to note that most animals can estimate local resource
distributions to some degree [76, 108, 109], and can often react accordingly,
meaning that, in reality, the optimal value β∗ is not fixed. In this work,
we do not consider more intricate decision processes, but rather focus on
the interplay of static search strategies (with fixed parameters) and the re-
source landscape (with fixed density). Further specifications of the deci-
sion process that each individual forager undergoes is considered to be
out of the scope of this work.
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3.3.2 A non-communicating group of foragers (r = 0)

Next, let us consider the bimodal Lévy search in a group of foragers
(N > 1), wherein no attraction is included, i.e. r = 0. Such a system is
useful to consider, as it provides a baseline with which to compare when
studying the benefits of group behavior. Note that although such a sys-
tem does not directly imply competition, recall that there exists implicit
competition due to the destructive nature of the foragers and forced shar-
ing of the limited set of resources. Resource depletion (over time) reduces
the local resource density (not the global density, see Section 3.2.1), hence
resulting in foragers individually experiencing environments to be less-
clustered than they actually are (see also the discussion on the mean free
path in [50]).

3.3.2.1 Search efficiency in group foraging

What effect does the competition for resources have on the search effi-
ciency? To answer this question, we first need to define the group search
efficiency ηN . Since we are interested in the efficiency of the group, an
intuitive way of defining the group search efficiency is simply the group
average of individual search efficiencies

ηN =
1

N ∑
i

ki

di
, (3.6)

where ki and di are the number of detected resources and the distance trav-
eled by forager i (i = 1, 2, . . . , N), respectively. Again, the foraging task
pertains detection of K = ∑i ki = 2 · 104 resources by the group. The above
definition of group search efficiency has been used when studying collec-
tive systems [6], however it fails to capture individual differences. Most
notably, and as we shall show, resource encounters are not necessarily nor-
mally distributed, which makes the mean not reflective of the population.
Nonetheless, this metric is informative, provided one accompanies it with
detailed descriptions of individual search efficiencies and the variances.

The group search efficiency ηN depends heavily on the individual be-
havior and interactions between foragers, but additionally depends on the
relative resource density. This relative measure defines a level of resource
availability relative to the number of foragers in the environment. Since in
our experiments the number of resources remains fixed, we can change the
relative density by changing the group size N. Larger group sizes result in
lower resource availability per individual, and thus represent systems with
low relative resource density, while small group sizes indicate the contrary.

3.3.2.2 Effects of group size on search efficiencies

When studying the effects of implicit competition, we observe similar ef-
fects as when studying single foragers systems, in that the optimal ex-
tensive search becomes ballistic as β becomes sufficiently small (Fig. 3.4).
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Figure 3.4: Group search efficiency ηN for a non-communicating group of foragers
(r = 0) versus the Lévy parameter α for several switching parameters β and a fixed
clustered resource distribution with γ = 2.5. Dashed line with black bullets repre-
sents the search efficiency η of a single forager within the same resource landscape.
Note that ηN=1 > ηN>1 (see text) and that the absolute value of ηN increases as
β decreases, indicating that adaptive searches increase the group search efficiency.
Insets indicate optimal α∗ for the extensive search, where α∗ → 1 as β decreases.
Intensive searches were executed with α′ = 3. Error bars represent 1 standard
deviation.

More interestingly, group search efficiencies are lower across the entire
range of α compared to a single forager due to competition. Thus, as group
sizes increase, group search efficiencies decrease. Additionally, the search
efficiencies for unimodal searches (β = ∞, inset Fig. 3.4A) and bimodal
searches with short intensive searches (β = 10−2, inset Fig. 3.4C) for groups
with N > 1, display maxima at lower values of α than when N = 1. This
indeed implies that individuals experience resources to be more sparsely
distributed due to others simultaneously foraging destructively [50]. As a
result, more diffusive search strategies are, on average, more efficient.

As our results for a single forager (N = 1, see Section 3.3.1) indicate
that ballistic extensive searches with α → 1 are optimal, we are inter-
ested on the group foraging efficiency for N > 1 in this ballistic regime.
In Fig. 3.5, we plot the (group) search efficiency for a non-communicating
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Figure 3.5: Group search efficiency ηN for a non-communicating group of foragers
(r = 0) versus the switching parameter β, for several group sizes N and different
levels of resource clustering γ. Dashed line with black bullets represent a single
forager (N = 1) within the same resource landscapes. Note that the overall value
of the (group) search efficiency notably increases as the landscape becomes more
clustered for larger values of γ and that ηN=1 > ηN>1 (see text). Extensive searches
were executed with α = 1.1 and intensive searches with α′ = 3. Error bars represent
1 standard deviation. (A) Group search efficiency for low (γ = 1.5), (B) interme-
diate (γ = 2) and (C) strong (γ = 2.5) degrees of clustering. (D) Value of β that
maximizes the (group) search efficiency ηN versus γ, denoted as β∗. Optimal val-
ues β∗ are computed by fitting each curve in (A)-(C) with a polynomial of sufficient
degree, and use Newton-Raphson’s method to compute approximate optima of the
fits. Note that, as smaller values of β (and β∗) indicate longer intensive searches,
a shift towards shorter intensive searches is observed as group sizes increase and
resources become more clustered (see text).

group of foragers for different levels of resource clustering. These results
indicate that, when the environment displays little clustering (for γ = 1.5,
Fig. 3.5A), competition for resources is low and foraging efficiencies for
all studied values of N are the same. In contrast, when resources become
more clustered as γ increases, dependence of the group search efficiency
on group size becomes apparant. When γ increases while group sizes
are large, on-patch competition becomes more fierce, and as a result the
optimal value for β is larger compared to when group sizes are smaller
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(Fig. 3.5D). This indicates that group members benefit from shortening
their intensive searches, as patches are perceived to hold less resources
since more competitors are destructively feeding on the patch as well. The
fact that optimal strategies differ significantly depending on group sizes is
a clear indication of the effect of competition over the same set of resources.

3.3.2.3 Distribution over resources consumed

As previously mentioned, when computing the group search efficiency as
the group average, this average does not always reflect the underlying dis-
tribution of resource encounters. In reality, resource intake distributions
become increasingly skewed towards the lucky few who detected dense
patches early in the foraging task when resources are significantly clus-
tered (see Appendix 3.B, Fig. 3.B.1). We note that a log-normal distribu-
tion describes the individual resource intake distribution well, as long as
environments are not significantly clustered (γ . 1.5). However, the log-
normal distribution fails to describe resource intake rates when resources
are more clustered for γ & 2 (Fig. 3.6E and Fig. 3.B.1), making direct com-
parison between the group average and the mean of the distribution inac-
curate. The significant probability for a forager to find little to no resources
becomes apparent as γ increases, and subsequently increases the empirical
variation (standard deviation) over resource intake rates (Fig. 3.7B).

The skewed distribution further provides an explanation for the pre-
viously mentioned shift towards shorter intensive searches. Recall that
γ ≈ 3 results in highly clustered resource distributions, often consisting
of a single, large patch. Since foragers not on that patch greatly benefit
from shorter intensive searches on smaller patches (recall Fig. 3.1D), by
shortening their intensive searches they increase the likelihood to find the
largest patch and thereby profit the most. Additionally, due to the fact that
switching back from the intensive search to the extensive search is modu-
lated by the distance wherein no targets have been detected, the effects of
β diminish as patches become increasingly dense, as is the case for large
enough γ. Therefore, the foraging task effectively reduces towards detect-
ing the largest patch as quickly as possible; a task which is achieved by
ballistic motion (α → 1) and reduced exploitation of suboptimal patches
(smaller β).

Furthermore, we note that the rising inequality can be captured by com-
puting inequality measures [110]. We compute Gini coefficients (see Ap-
pendix 3.B for more details) and note that as γ increases, so does the Gini
coefficient (see Fig. 3.A.2A). More specifically, these high valued Gini coef-
ficients correspond to high inequality in resource intake (thus a large vari-
ation). Values of the Gini coefficient are larger when group sizes increase,
displaying increased inequality in resource intake rates in larger groups.
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3.3.3 A group of foragers with r > 0
Next, we introduce more explicit competition by including attraction to-
wards (nearby) conspecifics within a specific attraction radius r. Recall
that foragers are attracted to others within this radius, but only if the focal
forager is in the extensive search mode and the other forager (the attractor)
is in the intensive search mode. This adapts the bimodal Lévy search from
the previous sections to a trimodal one. Intuitively, when each forager as-
sumes the underlying resource landscape to be clustered, joining others in
the vicinity is essentially similar as a bout of guided motion towards an ex-
isting patch, making joining an effective strategy in sparse, patchy resource
landscapes. Therefore, the effectiveness of such opportunistic joining be-
havior depends heavily on the resource landscape, resource availability,
joining ranges and individual decision processes.

In all experiments where attraction is introduced we fix our trimodal
Lévy search with ballistic extensive searches (α = 1.1) and sufficiently long
intensive searches (β = 10−4) such that joining becomes feasible. Recall
that β modulates the duration of a foragers being attracted, thus choosing
large values of β can result in truncation of attracted bouts due to the at-
tractor exiting the intensive search before the focal forager has joined. This
implies to the attracted forager that there are no more resources, hence
stopping the attractive bout midway, making attraction less likely to result
in resource detection. Moreover, we are interested in finding quantitative
criteria for which joining becomes beneficial based on resource clustering
and resource availability. Obviously, when the durations over which in-
dividuals can be attracted decrease, the system converges to a system of
solitary foragers, and results will converge to those presented above for
r = 0. Therefore, we omit short lengths of attraction by choosing β such
that time ranges over which foragers can effectively join nearby neighbors
are sufficiently long. A more intricate study on the effects of β on the effec-
tive joining range is considered to be out of the scope of this work.

3.3.3.1 Competition and the group search efficiency
We compare the trimodal Lévy search with the bimodal one by computing
the relative group search efficiency

ηr =
ηN(r > 0)

ηN(r = 0)
, (3.7)

where ηN is the group search efficiency from the bimodal search with r = 0
as in Eq. (3.6), and ηN(r) the same group search efficiency of the trimodal
group of foragers, but with attraction radius r > 0. Values of ηr > 1 define
joining as being beneficial, where ηr < 1 makes individual strategies (i.e.
the bimodal search) more efficient.

We plot the relative group search efficiency for a clustered resource
landscape versus the joining range in Fig. 3.6A. We note that small popu-
lations of foragers have a wide range of γ over which joining is beneficial,
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due to the relative local abundance of resources when joining successful
conspecifics. When group sizes increase, joining becomes less beneficial
due to fast, local depletion of patches due to the destructive nature of the
foraging. More specifically, optimal joining ranges (insets Fig. 3.6A,B) de-
crease significantly as groups grow larger, indicating that joining others is
only beneficial if local resource availability is sufficient.

Additionally, we plot the relative search efficiency at a fixed value of
r against γ and N in Fig. 3.7B, where we would like to emphasize again
that N directly influences the relative resource availability. As expected,
if there is no significant degree of clustering (γ . 2), joining strategies
are disadvantageous regardless of relative resource density. The reason
is that joining others becomes highly inefficient as patches consist of few
resources, thereby resulting in attracted foragers arriving at an already de-
pleted patch. This effectively wastes search time, where the individual
would have been better off by ignoring the successful forager in favor of
an explorative search. In contrast, when resources become increasingly
clustered, we see that joining others increases the group search efficiency
depending on the relative resource availability. Larger groups need more
clustered resource landscapes (γ & 2.5) in order for joining to be group
beneficial than smaller groups (γ & 2).

To further differentiate between the effectiveness of joining others ver-
sus continuing individual exploration, we plot the relative effectiveness
of the explorative mode(s) of the bi- and trimodal Lévy searches. For the
bimodal Lévy search with r = 0, we record the efficiency of the exten-
sive search ηe. For the trimodal Lévy search, we combine the extensive
search with parts of the foraging task over which the forager is attracted to
a successful conspecific, which effectively captures all non-intensive search
modes, into ηs. By plotting the ratio of these efficiencies in Fig. 3.6C, we see
that joining others increases the efficiency of non-intensive searches signif-
icantly. For joining ranges r/L ≈ 0.1 we note that exploration with joining
others can be more than twice as efficient than individual exploration, but
only when group sizes are not too large (N = 64, 128). When group sizes
grow too large, the efficiency of joining others decreases, again due to in-
creased levels of intraspecific competition.

3.3.3.2 Joining promotes intake equality

While attraction to successful conspecifics might not always maximize the
groups search efficiency defined in Eq. (3.6), it is important to note that
the distribution over resource intake equalizes as the log-normal distribu-
tion becomes a better fit (Fig. 3.6E, Fig. 3.B.1), and variation in resource
intake rates decreases (Fig. 3.6F). This is also reflected by the Gini coeffi-
cients, as they decrease when attraction is introduced compared to a sys-
tem of non-interacting foragers (Fig. 3.A.2B,C). It is further substantiated
by noting that the group average, the expected value of the search effi-
ciency and the mode are closer to one another as joining ranges increase
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Figure 3.6: Influence of the joining range on several metrics. Foragers executed bi-
or trimodal searches, with fixed α = 1.1 and β = 10−4, in a clustered resource land-
scape with γ = 2.5. (A) The relative search efficiency ηr versus the joining range
for different relative resource densities modulated by group size N. (B) The ex-
pected value of the log-normal distribution over search efficiencies versus the join-
ing range. (C) Relative efficiency of joining ηs/ηe versus the joining range (see text).
(D) Differences between group averaged search efficiency ηN(r), expected value
from the log-normal distribution E(η) and the mode µ, versus joining range for
N = 256. Discrepancies between expected value and mode increase with increased
inequality in resource intake. (E) Change in distribution of individual search ef-
ficiencies ηi when joining ranges are introduced, with r = 0.1. The black line is a
log-normal distribution fitted to the data. Note that for r = 0 a log-normal distribu-
tion does not appropriately describe the underlying distribution and can therefore
not be fitted (see text). (F) Relative coefficient of variation (CV) versus the joining
range.
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(Fig. 3.6D). Full equality of these different metrics would be obtained by a
normal distribution, however we found no evidence for intake rates being
normally distributed. We further observe the empirical standard deviation
to be decreasing when joining ranges are introduced, as becomes visible
when plotting the relative coefficient of variation (CV) in Fig. 3.6F. Most
interestingly, while the relative CV is strictly smaller for any r > 0 than for
r = 0, we note that for large group sizes the CV increases as joining ranges
increase. This results directly from longer joining ranges being counterpro-
ductive, as distant arrivals at depleted patches become increasingly com-
mon (see the above discussion on group search efficiency). This illustrates
that, while any joining range decreases the variation in resource intake,
there exist optimal joining ranges that facilitate the smallest coefficient of
variation.

Overall, these results imply the following: joining others reduces vari-
ations in individual resource intake rates, i.e. increases group equality,
regardless of the joining range. We wish to emphasize that while joining
others from far away might not be optimal due to the increased costs of
traveling, it does result in more foragers finding at least something, hence
the group of foragers resorts to a low mean, low variance strategy, cf. [17].
Finally, we mention that joining ranges should not be too short, as the sys-
tem then converges to the non-interacting system for which results are as
discussed in Section 3.3.2.

3.3.4 When is joining beneficial for group foragers?

To arrive at a quantitative explanation of when joining is beneficial when
foraging in groups, we have to ask what constitutes beneficial search strate-
gies. Intuitively, a group benefits when each individual benefits, but in-
dividuals can benefit from group-level interactions while not increasing
group search efficiency. The main example to illustrate such behavior is
survival. In principle, survival rates are tightly interconnected with the
search efficiency, where higher (group) search efficiencies should result in
higher survival rates. However, when the threshold for survival is rela-
tively low, i.e. foragers do not need to optimize but just need to achieve a
minimum number of resources in order to survive, foragers benefit from
others simply by avoiding starvation. This, as mentioned above, can be
achieved by reducing the variation in resource intake rates, since individ-
uals rely on others for locating patches rich in resources [14, 17, 26, 111].
In such cases, while the group might not act optimally, the survival prob-
ability of individuals increases, which provides an ulterior incentive that
might motivate joining others as an attractive strategy.

In order to study when individuals within a group benefit from joining
others, we need to quantitatively determine under what environmental
conditions individual strategies are less effective than group-level strate-
gies. In Fig. 3.7A, we show the regions over which joining others be-
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Figure 3.7: Benefits of joining nearby conspecifics for different resource landscapes
γ and relative resource density facilitated by group size N. Search strategies are
fixed bi- and trimodal Lévy searches with α = 1.1, β = 10−4 and r/L = 0.1.
(A) The relative search efficiency ηr computed through Eq. (3.7). Dashed line de-
picts ηr = 1, where joining becomes group efficient above this line (ηr > 1), and
individual strategies (ignoring conspecifics) are preferred below (ηr < 1). (B) The
relative variation of the search efficiency, expressed as the relative empirical stan-
dard deviation. Lower values of σr indicate lower variation of intake rates during
the foraging task. Importantly, joining others always reduces variation in resource
intake rates for any r > 0 (see text). Note the contrast with (A), indicating that
regions where group efficiencies fall are regions with lowest (relative) variance.
Dashed line at σr serves as a guide to the eye, where the variation is half of a
non-communicating group. Results are obtained by averaging over 100 different
realizations for each combination of N and γ.

comes beneficial based on increased average search efficiencies. Individ-
uals within large groups only achieve higher average search efficiencies
when environments are significantly clustered for γ & 2.5, while in con-
trast small groups of foragers benefit from joining others (and others join-
ing) for γ & 2. The resource landscape that results in the largest increase in
group search efficiencies are obviously those who are highly clustered for
γ = 3 (and subsequently γ ≥ 3 as well), since resources can only be found
in a single, dense patch.

On the other hand, reducing the variation in order to avoid starvation
follows a completely contrasting trend. In Fig. 3.7B, we see that the rela-
tive variation decreases as environments become less clustered, and when
group sizes increase. Thus, effective survival probabilities might increase
since individuals are more likely to find the minimum number of resources
necessary for survival. Thus, whether foragers at the individual level ben-
efit from joining others in a specific environment with some fixed level of
fractality, depends critically on the current needs of the individual.
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What do these result imply for group foraging strategies in fractal
resource landscapes? These quantitative results show that multimodal
searches increase the individual search efficiency given that the resource
distribution is sufficiently clustered. This implies that individuals benefit
from approximating the local resource density and change their diffusion
rates accordingly. These adaptive strategies are still beneficial when the
single forager is a member of a larger group of foragers within the same
resource landscape. As group search efficiencies decrease due to rising in-
equalities in resource intake, groups (as well as most individuals) benefit
from joining ranges within which successful foragers will effectively share
the detected resource with nearby others. However, as joining ranges in-
crease, so does the level of intraspecific competition and thereby the ef-
ficiency of joining bouts, as patches become more likely to be depleted
upon arrival. The optimal joining range depends heavily on the relative
resource availability, as larger group sizes facilitate joining to be beneficial
only if the environment is sufficiently clustered (Fig. 3.7A). As a result, we
argue that foragers should be able to approximate both local resource den-
sity and conspecific density, and adapt their search strategies accordingly,
if they are to forage efficiently.

3.4 Discussion

In this work we have introduced an agent-based model where individuals
execute a trimodal Lévy search that consists of three distinct modes. The
first mode defines an explorative Lévy search with a fixed Lévy parame-
ter α. The second mode is triggered upon resource detection and defines
local exploitation by an exhaustive-like Brownian search with α = 3. The
third mode considers attraction to successful conspecifics within a radius r,
where the behavioral change upon resource detection by the other forager
acts as public information that can be exploited by others. Thus, foragers
who are currently executing an intensive search can serve as attractive con-
specifics due to each forager assuming the resource distribution to be clus-
tered to some degree.

By quantitatively determining the benefits of joining others compared
to a system where joining was not included, we illustrated a wide range of
efficient multimodal Lévy searches that depends critically on the resource
distribution and relative resource availability. In this work, we considered
resource-to-resource distances that follow an inverse power law distribu-
tion that generates fractal resource landscapes. We have shown that in
a system of non-interacting foragers, implicit intraspecific competition as
foragers compete for a limited set of resources, results in skewed distribu-
tions over resource intake levels when resources are significantly clustered.
Moreover, while more scattered resource distributions result in resource
intakes to follow a log-normal distribution, we showed that the variation
in resource intake rates grows as resources become increasingly clustered.
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When introducing the possibility of joining successful nearby others, a
group of foragers displayed more equalized resource intake distributions.
We showed that this resulted in resource intake rates being log-normally
distributed over the entire studied range of resource distributions.

Our model illustrates that small groups of foragers can benefit from
joining others by increasing the average search efficiency, over a wider
range of resource distributions than large groups, as larger groups expe-
rience higher levels of intraspecific competition. However, individuals
within a group do not necessarily need to optimize group-level search effi-
ciencies, but should rather ensure minimal resource intake in order to sur-
vive. By introducing joining ranges we showed that variation in resource
intakes decreased, regardless of the spatial distribution and availability of
resources. The reduction in variance was maximized in environmental
conditions where relative group search efficiencies were lowest, display-
ing that the benefits of joining conspecifics strongly depend on the ulterior
motive of each individual. Thus, our quantitative approach reinstates that
foraging behavior need not necessarily facilitate optimality by increasing
average search efficiencies, but might rather increase survival rates by de-
creasing variation in resource intakes.

Whereas we have studied the influence of a static switching parameter
β, more intricate adaptive strategies are observed in natural systems [21].
For example, β can be adapted based on the number of nearby foragers,
resembling quorum responses [112, 113] and consensus models [114, 115].
While such group-level responses correspond more to a collective system
rather than a competitive system, they are of importance to engineering ar-
tificial systems such as swarms [105, 116]. In this context, we have studied
homogeneous groups wherein each individual commits to the same strat-
egy, however within-group heterogeneity exists and is widespread across
different organisms [5, 104, 117–119], and as a result artificial systems as
well [120, 121]. Precisely how such within-group differences of individual
needs and preferences shapes both individual and group behavior is still
largely unknown.

In this study, we have purposely left out investigations into the diffu-
sion characteristics of the resulting motion of foragers. Since attraction to-
wards successful others truncates long Lévy flights, the resulting random
search might not have flight lengths sampled from a power-law distribu-
tion [122, 123], but rather follow different, less diffusive, distributions [54].
Such truncated Lévy searches have been studied in the context of attraction
[6] and memory [80]. Furthermore, diffusion characteristics, and thereby
foraging efficiencies, are highly influenced by the resource landscape [73].
A more thorough investigation into the walk characteristics of individuals
in the information sharing framework is therefore required.

Additionally, we wish to address that our model does not include a
spatial memory component that foraging individuals often posses [80,
109, 124–126], where intricate memory models were observed in multi-
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ple species such as bees [127], flower bats [128], and Capuchin monkeys
[129, 130]. We do wish to note that the distance in which no resources have
been detected used in the decision process (as in Eq. (3.3)), serves as an ex-
tremely primitive memory model that considers foragers that approximate
local resource densities (see also [50, 131]). Although in our experiments
more explicit spatial memory is not beneficial due to the destructive na-
ture of the foraging process, more intricate resource regeneration patterns
might provide benefits of more intricate memory components [132].

Finally, we should note that foraging benefits – as discussed in Sec-
tion 3.3.4 – are not expected to be the only driving forces behind group
formation [5]. For example, group size might increase foraging success
[10, 133], or a minimum group size is required when taking down large
prey [134, 135]. In contrast, hierarchical structures that increase compe-
tition might lead to individuals spreading out when resources are scarce
[136]. Furthermore, as foragers themselves might be subjected to preda-
tion, increased group sizes can reduce the individual predation risk while
foraging [137–141]. Moreover, predation, or a general exposure to risk of
dying, is seemingly tightly connected with landscape fragmentation [142–
144]. As an effect, larger groups often exhibit higher survival and repro-
duction rates than smaller groups [145, 146]. Within the context of our
model, as lower levels of resource fractality mediated by low values of γ
result in grouping to be disadvantageous, thus most likely leading to de-
creased group sizes. Hence, our model appears to suggest that increased
resource fragmentation can negatively impact survival and reproduction
rates, a result which can have profound ecological consequences. There-
fore, while individuals might forage more efficiently alone, survival re-
lated aspects outside of resource intake are likely to be a driving force be-
hind group foraging as well and can greatly impact the survival of foraging
species and should therefore undoubtedly be included in future models.

In this chapter, we introduced an agent-based model for group foraging
in fractal resource landscapes. Depending on group sizes and resource dis-
tributions, we have showed that joining others is not necessarily beneficial.
However, joining does decrease variation in resource intakes across all lev-
els of fractility, thus possibly impacting survival rates of species foraging
in groups. This illustrates that driving forces other than increased foraging
efficiency cannot be ignored in future models on foraging in groups.
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tent search processes: An alternative to Lévy flight strategies. Physical Review E, 74(2):
020102, 2006.
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Appendices

3.A Influence of β on intensive searches

Recall the switching probability defined in Eq. (3.3) as

pβ(L0) = 1− exp

[
−βL0

ℓ0

]
(3.8)

To further consolidate the effects of β on the expected lengths of the in-
tensive search, we can write the probability of exiting the intensive search
after having traveled a distance L0 without resource detection, as

p̂β(L0) = pβ(L0)
L0

∏
ℓ=ℓ0

(
1− pβ(ℓ)

)

=

(
1− exp

[
−βL0

ℓ0

]) L0

∏
ℓ=ℓ0

exp

[
−βℓ

ℓ0

]

let t = L0/ℓ0, s = ℓ/ℓ0

⇒ p̂β(t) = (1− exp [−βt])
t

∏
s=1

exp [−βs]

= (1− exp [−βt]) exp

[
−

1

2
β(t− 1)t

]
. (3.9)

In this form, t represents the (discrete) time, i.e. number of steps, needed
to travel a distance of L0 with increments of ℓ0. Then, the cumulative of
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Figure 3.A.1: Plots on the influence of β on the length (number of steps) of in-
tensive searches. (A) Probability of switching from intensive search to extensive
search after t steps of no resource detection. (B) Cumulative density function of
taking at most t steps until truncation of the intensive search. Note that (relatively)
large values of β result in fast truncation of intensive searches, while smaller values
facilitate longer intensive searches.
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Figure 3.A.2: Gini coefficient G versus the resource Lévy parameter γ, for different
group sizes N. (A) G for a group of non-interacting foragers, while (B) includes
attraction over a distance r/L = 0.1. As illustrated in (C), Gini coefficients are lower
overall when attraction is introduced, resulting in a more equal distribution over
resource intake (and foraging efficiencies, see also Fig. 3.B.1). Results are obtained
for fixed bi- and trimodal Lévy searches with α = 1.1 and β = 10−4.

this distribution defines the probability of needing at most t steps before
truncation

q(s ≤ t) =
∫ t

0
ds (1− exp [−βs]) exp

[
−

1

2
β(s− 1)s

]
. (3.10)

We note that as t → ∞ we have q → 1 for any β > 0, but also q → 1 as
β → ∞ for any t > 0. Hence, long distances without resource encounter
will (eventually) truncate the intensive search, while β = ∞ completely
removes the intensive search mode since foragers immediately switch back
to the extensive search mode at the next step.
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Figure 3.B.1: Distribution over search efficiencies of individuals for different group
sizes, in resource landscapes with different levels of clustering (see Fig. 3.1). For
each forager i, the search efficiency ηi is computed as in Eq. (3.5), and subsequently
the distribution p(ηi) can be determined. Solid lines are fitted log-normal distribu-
tions, where fits are only displayed if they explain the data points. When resources
are not significantly clustered for γ . 2, shown in (A) and (D), search efficiencies
are log-normally distributed regardless of joining ranges. Furthermore note lower
mean search efficiencies as joining ranges are introduced in (D). In (E) and (F),
joining ranges result in log-normal distributions when environments are clustered,
where the absence of joining ranges skews the distribution due to a large fraction
never finding little to no resources visible in (B) and (C). Results are obtained for
fixed bi- and trimodal Lévy searches with α = 1.1 and β = 10−4.

3.B Details on the resource intake distribution

Recall that intraspecific competition manifests itself in rising inequal-
ity within the distribution of resource intake among foragers (see Sec-
tions 3.3.2 and 3.3.3). As a way of measuring this inequality, we use the
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well-known Gini coefficient [110, 147], defines as

G =

N

∑
i=1

N

∑
j=1
|ki − k j|

2N
N

∑
i=1

ki

. (3.11)

Such a measure of inequality has been previously used in ecological frame-
works [148]. Essentially, values of G → 1 represent heavily skewed distri-
butions, where a small subpopulation has access to the most resources. In
contrast, values of G → 0 indicate high equality among group members,
where G = 0 is achieved when each individual has equal resource intake.
We plot the Gini coefficient versus the degree of clustering defined by γ
in Fig. 3.A.2A,B. As seen, G increases as the resource landscape becomes
increasingly clustered, reinstating that a lucky subpopulation discovers
the dense patch early in the foraging process and thereby accounting for
the majority of resources consumed. When introducing a joining range of
r > 0, we note that income inequality decreases through decreased values
of G. We additionally compute relative income inequalities by comparing
Gini coefficient of groups of interacting and non-interacting groups. In-
terestingly, intermediate values of γ ≈ 2 seem to promote lowest relative
income equality when joining foragers join successful others.

Details of the individual search efficiencies are illustrated in Fig. 3.B.1,
where distributions over search efficiencies are plotted for different group
sizes and degrees of resource clustering. First, when considering the bi-
modal group search with r = 0, log-normal distributions of resource intake
are a good fit only if environments are not clustered. When resource distri-
butions become more clustered, the log-normal distribution fails to explain
the data due to the existence of a large fraction of foragers finding little to
no resources (high G, see Fig. 3.A.2A). When foragers join successful oth-
ers however, the log-normal distribution provides a good fit over a wide
range of clustering degrees. Deviations indicative of a significant propor-
tion of foragers finding little to no resources arise only when resources are
densely clustered (γ & 2.5, see Fig. 3.B.1C,F).
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4
Resource ephemerality influences

effectiveness of altruistic behavior in

collective foraging

Abstract
In the previous chapter, we studied group foraging in a competitive system. How-

ever, groups of foragers are not always competitive, but can display collective be-

havior instead. In this chapter, we shall discuss collective foraging by introducing

an agent-based model wherein foragers can exhibit altruism by actively recruit-

ing others to feed on ephemeral patches, instead of exploiting these individually.

Such altruistic behavior is only beneficial when recruiters can efficiently locate con-

specifics, a condition that is often not met due to to the short interaction ranges

that many collective systems exhibit. We let foragers assume Lévy searches and

show that the recruitment strategies that optimize conspecific encounter rates are

those that contrast the dispersal characteristics of conspecifics. Additionally, as

patches only persist for some limited time, we show that recruitment is only ad-

vantageous for the collective if enough conspecifics are recruited before the patch

disappears. Therefore, patches with durations below a certain threshold should not

trigger recruitment behavior, while patches that persist for longer should. We ex-

amine the effectiveness of such threshold-based recruitment behavior by varying

patch ephemerality, and measure the foraging efficiency of the collective system.

Our results indicate that active recruitment is beneficial to the collective, but only

when patches are scarce and sufficiently persistent. Additionally, we show that

collective foraging efficiencies increase when effective forager densities are high,

as high densities increase conspecific encounter rates. Moreover, when effective

densities are high, we show that a simple passive strategy is much more effective
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than active recruitment. However, as many collective systems exhibit short inter-

action radii, and thus low effective densities, the recruitment scheme presented in

this chapter is more likely to be advantageous for realistic collective foraging sys-

tems. Finally, we show that choosing suboptimal values has rather limited impact,

whereas the choice whether to recruit is critical. This can have profound conse-

quences for future applications in artificial foraging systems, as the results pre-

sented in this chapter indicate that complex decisions on patch detection are not

required for a collective system to benefit from altruistic behavior.

4.1 Introduction

Collectively foraging for resources is critical to the survival of many animal
species. In principle, foraging entails the entire process of searching for re-
sources whose locations within the environment are often unknown. To
detect these resources, foragers must resort to random searches. Whereas
individual random searches can be optimized over a wide range of en-
vironmental constraints [2–6], a collective system can potentially exploit
interactions to further increase the foraging efficiency [7–11]. While the im-
pact of foraging efficiency with respect to survival is evident, collective for-
aging additionally provides an important source of inspiration for design-
ing artificial systems [12, 13]. In general, collective systems rely on possibly
intricate communication patterns that are essential to spread information
within the system. This is a crucial aspect for the emergence of many types
of collective dynamics, with applications ranging from understanding and
controlling epidemiology [14, 15] to sensor networks [16–19]. Identifying
and understanding essential parts of the decision processes that underlie
collective foraging, therefore, proves largely beneficial for designing effi-
cient artificial systems.

Many foraging environments contain ample resources distributed ac-
cording to fragmented, or patchy, distributions [20–26]. In such systems,
locating patches rich in resources is difficult for individuals. Rather obvi-
ously, groups and collective systems can benefit from interactions between
conspecifics [27], effectively parallelizing the search [28]. Then, for ex-
ample, by joining successful conspecifics, aggregations on salient patches
can occur [29–33]. However, when the number of foragers feeding on the
patches increases, foraging efficiencies might fall due to competition for
resources on the patches [34]. This on-patch competition introduces an im-
portant distinction between groups and collective systems. However, the
terms used to describe these inherently distinct systems are often used in-
terchangeably (see e.g., [9, 27], among others).

In particular, we argue that group (or social) foraging should describe
groups of foragers wherein individuals do not necessarily display behav-
ior that maximizes group foraging efficiencies. Instead, they often favor
individually optimal behavior, as hypothesized by the selfish herd hypoth-
esis [35]. Group foraging has been extensively studied using numerous
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decision processes, interaction models, and resource landscapes [9, 36–
39]. While it has been observed that grouping provides individual advan-
tages such as reduced predation risk [40–42] and reduced risk of starvation
[43, 44], these advantages do not necessarily translate to higher group for-
aging efficiencies [44–48]. This indicates that it is important to distinguish
between individuals living in groups and individuals who are part of a
collective, especially in the context of foraging.

In contrast with groups, we argue that collective systems should ex-
hibit traits that aim to maximize collective benefits. This effectively elimi-
nates the on-patch resource competition encountered in group foraging, as
it is not a disadvantage that resources need to be shared. As an effect, it
allows individuals to instead favor behavior that is advantageous for the
collective, but importantly not necessarily advantageous for the individual
itself. Such behavior includes altruistic behavior that has been observed
in collective systems, such as active inhibition of visitation to exhausted
patches [49], optimal task allocations [50–52], and (active) recruitment to-
wards salient patches [51, 53–58], the latter of which is studied in this work.

Benefits of collective behavior depend strongly on resource distribu-
tion. Static resource distributions wherein patch locations and their re-
spective qualities are known result in ideal free distributions that optimize
foraging efficiencies [59, 60]. However, patch locations and qualities are
most often not known. In addition, resource distributions are not static
but possess potentially complex dynamics, expressed by resource locations
changing over time. Precise resource locations are often tied to seasonal-
ity [61], other periodic changes [62], or more complex resource dynamics,
possibly leading to random patch durations [63]. Additionally, resource
consumption, akin to destructive foraging [64], in combination with spatial
characteristics of the resource distribution, can lead to ephemeral resource
aggregations [9, 65, 66].

Patchy and ephemeral resource landscapes imply that full global infor-
mation, e.g., global knowledge about salient patch locations, is not neces-
sarily beneficial for a collective system [67]. For example, if the informa-
tion on patches rich in resources is disseminated across vast distances, it is
highly likely that these patches have already disappeared once the infor-
mation reaches eligible conspecifics. Moreover, when rapid decision mak-
ing is concerned, lower levels of connectivity are preferred [68–70]. These
types of collective systems have also been observed in swarming animals,
where social interactions were purposely limited to enhance collective re-
sponses [71–74]. Despite the obvious disadvantages, highly connected sys-
tems that facilitate global information dissemination have been extensively
studied in the context of group and collective foraging (e.g., [9, 10, 75]). Ad-
ditionally, previous work has studied the effect of (static) topological net-
works, such as scale-free networks [10, 76–79]. However, foraging systems
with reduced information dissemination caused by short communication
ranges have not been thoroughly discussed, even though these limitations
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are encountered in many artificial collective systems [80–84].
In this work, we study collective foraging in patchy and ephemeral

resource landscapes wherein foragers can only interact with conspecifics
over short distances. We study altruistic systems with active recruitment,
as foragers that have detected a patch can choose to recruit others over in-
dividually exploiting the resources on the patch. Such recruiting schemes
have been mostly observed in ants [51, 53, 55–57] and bees [54, 58] and
embody the underlying premise of a collective system: altruism. Note that
since the individual that detected the patch does not consume resources
itself, recruitment represents pure altruistic behavior. It carries similari-
ties with resource sharing [79], which, besides in swarming insects, has
been observed in social mammals such as primates [85] and wolves [86].
Obviously, and as we shall show, recruitment should only be viable if the
expected net gain of the collective is positive [87]. In other words, when
patches are ephemeral, and the recruiter does not encounter conspecifics
before the patch disappears, it would have been better – both at the in-
dividual and collective level – if it had individually exploited the patch.
Therefore, at patch detection, each forager needs to assess whether the
patch is of sufficient quality to deem recruiting others as efficient behav-
ior.

To make this decision, we argue that each forager needs to be able to
estimate conspecific encounter rates. In this work, we show that under
some reasonable assumptions, encounter rates can be estimated, by which
individuals can decide whether to recruit or not. When designing arti-
ficial systems, these estimates can be given as prior information. More
specifically, we shall show that our model effectively describes a threshold
foraging model [39, 87, 88], where only patches above a certain threshold
provide a positive gain by recruiting others. Following observations from
natural systems [89], we consider ephemeral resource landscapes wherein
the patches containing resources have durations sampled from an inverse
power law. By studying different levels of resource ephemerality and re-
source availability, we show that recruiting others increases collective for-
aging efficiencies, but only if patches are both difficult to locate and per-
sistent. Thus, our results show that altruistic behavior can decrease for-
aging efficiencies when patches are readily available or when patches per-
sist over time scales shorter than those over which others can be recruited.
Additionally, while we present a rudimentary scaling analysis that reveals
optimal choices of thresholds, we show that precise computation of these
thresholds is not necessary for altruistic behavior to be beneficial. Interest-
ingly, the choice of whether to recruit at all is a far more important decision.
Finally, we show that the benefits of recruitment depend strongly on for-
ager density and communication ranges. More specifically, simple group
strategies, which are not necessarily altruistic, can outperform collective
strategies when random conspecific encounter rates are high, which oc-
curs when forager density is high. This illustrates the complexity of the
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decision process that individuals within a collective might undergo, as the
most efficient strategy can critically depend on the many variables present
in the system.

4.2 Model description

4.2.1 Environment description

We model our environment as a two-dimensional area of dimension L× L
with periodic boundaries. This design reflects environments that are much
larger than the individual and allows us to study the macroscopic proper-
ties of the collective in isolation of more invasive boundary effects. Within
the environment, we spatially distribute M patches uniformly. We couple
patch quality and patch duration by assuming that higher quality patches
are available for longer times. This assumption is largely based on the fact
that foragers spend more time in high quality patches than in low quality
ones [90–95], as foraging in patchy environments is often understood as an
evidence accumulation process [96–98]. We let the duration of a patch τ
follow an inverse power law with parameter γ as

p(τ) =

{
Aτ−γ tmin ≤ τ ≤ tmax,

0 otherwise,
(4.1)

where A = (γ − 1)/(t1−γ
min − t

1−γ
max) a normalization constant. Note the

lower truncation at tmin that indicates patches exist at least for some period
of time. As we are interested in realistic ephemeral landscapes, patches
should not be of extremely long (potentially infinite) duration, as ensured
by the upper truncation at tmax. These scale-free, inverse power law distri-
butions have been widely observed in natural systems [65, 89, 99–101]. In
the asymptotic limit of tmax → ∞, we have for γ → 1, that the patch dis-
tribution is rather broad, implying that patches of almost all possible du-
rations will appear within the environment. In contrast, when γ increases
the inverse power law loses its heavy tail and converges to a normal dis-
tribution for γ ≥ 3. Most notably, for γ ≫ 1, the environment consists of
patches of duration tmin, since the probability of patches of longer duration
appearing becomes negligible in practice. In order to preserve overall sta-
tistical properties of environments patch density is kept constant through-
out the experiments by respawning a new patch at a random location each
time a patch disappears (see below).

We assume patches to be of infinite capacity, but of finite duration, as
to model an ephemeral landscape wherein short-term (over) consumption
does not deplete patches. While this assumption might appear counter-
intuitive, systems wherein (small) groups of individuals cannot fully ex-
haust ephemeral patches are widespread [63]. Examples are bats preying
on insect swarms [102] or fish [103, 104], whales foraging on seasonally
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available krill [105, 106], birds feeding on vast swarms of insects [107],
and fish feeding on mobile prey [108]. Moreover, having (potentially) infi-
nite patch density, but limited patch availability, effectively captures effects
similar to patch exhaustion due to resource consumption. It allows us to
model ephemeral resource landscapes without having to take into account
short-term resource competition on the patches.

We should mention that the spatial distribution of resources (and sub-
sequently the patches wherein they reside) often follow fractal distribu-
tions [9, 24, 65, 66] (and see Chapter 3), where intra-resource distances are
distributed according to an inverse power law similar to Eq. (4.1). How-
ever, fragmented environments wherein resources are contained in uni-
formly distributed fixed size patches are observed in natural systems as
well [109, 110] and subsequently extensively studied in the context of for-
aging [4, 10, 89, 111, 112]. Since we focus on large-scale systems, we omit
more complex within-patch resource distributions and dynamics by as-
suming that times between subsequent resource encounters are negligible.
This assumption allows us to study the (dis)advantages of collective be-
havior in isolation of other, possibly intrusive, effects. We consider more
detailed spatial resource distributions and dynamics to be out of the scope
of this work.

4.2.2 Individual behavior

We consider a homogeneous collective system of N foragers. Each indi-
vidual forager is able to detect patches within a detection radius R ≪ L.
Foragers are able to observe patch duration (i.e. patch quality) instanta-
neously. They can interact with conspecifics within an interaction radius
r > R (but r ≪ L, see Appendix 4.A). More specifically, we focus on in-
teraction ranges below a critical value r < rc as values above this critical
value result in fully connected communication networks. Fully connected
networks enable formation of global information, whereas information is
most often locally bound in collective systems (see Appendix 4.A for a
more detailed discussion). Additionally, we consider foragers with con-
stant velocities (see below).

We discretize time into steps of fixed size, initialize foragers uniformly,
and have them explore the environment using a Lévy walk. Recall that
Lévy walks have been extensively studied in foraging literature as recent
advances in data logging techniques highlight them as efficient random
searches when patches (or resources) are sparsely distributed [2, 65, 113–
115]. Whereas the robustness of Lévy walks in a foraging context has been
widely established [4, 5, 64, 66, 111], it is currently debated whether an-
imals truly execute Lévy walks [116–119]. Despite the ongoing debate,
many empirical foraging studies have established the existence of Lévy
walks in natural systems (see, e.g., [120–122]).

Lévy walks are characterized by having flight lengths sampled from an
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inverse power law with parameter α, i.e.

p(ℓ) =

{
Zℓ−α ℓ0 ≤ ℓ ≤ L,

0 otherwise,
(4.2)

where ℓ0 is the minimum step size, L the environment size, and

Z = (α− 1)/(ℓ1−α
0 − L1−α) the normalization constant. Lower and upper

truncation ensure that displacements occur on spatial scales that are rele-
vant to the problem [119]. After sampling a flight length, foragers move
in a straight line, with fixed step size (velocity) ℓ0, until its full length has
been traversed. The travel angle is randomly sampled between 0 and 2π.
Note that convergence of the above inverse power law towards a Gaussian
process is ultraslow, hence the general characteristics of Lévy distributions
are conserved throughout the collective foraging process [123].

In the limit L → ∞, Lévy walks encompass several distinct modes de-
pending on the Lévy parameter α. These modes characterize spatial dis-
placement and range from ballistic (straight line) motion for α → 1, to
anomalous diffusion for 1 < α < 3, and normal diffusion (Brownian mo-
tion) for α ≥ 3. As Lévy walks encompass several distinct modes of dif-
fusion they serve as a useful tool from a more practical perspective. Due
to their simplicity and robustness for maximizing foraging efficiencies in
sparse resource landscapes they have been applied extensively in artificial
systems (see e.g., [11, 124–126]). For a more detailed description of Lévy
walks and their characteristics we refer the interested reader to more de-
tailed descriptions (e.g., [114, 115]).

While searching the environment, foragers can encounter both patches
and conspecifics. A rudimentary scaling analysis (Appendix 4.B) shows
that, in order to maximize group search efficiencies, the decision at patch
detection is equal to a threshold decision model [39, 87, 88]. Thus, on en-
countering a patch, individual foragers commence to recruit conspecifics
when the (remaining) duration τ exceeds a threshold τc. Interestingly,
we find that heavy tailed patch distributions drastically reduce the neces-
sity for choosing optimal thresholds (see Section 4.3.3). In other words,
while individual decisions can follow a threshold model, the binary deci-
sion whether to recruit is more impactful than following a strategy with a
precise threshold value.

Inspired by Bartumeus et al. [127], we consider active recruitment to
be a random search as well, but for conspecifics instead of patches. We let
recruiting foragers additionally follow a Lévy walk, but with a different
parameter α′. Diffusion of individuals within our system of foragers will
therefore be described by a vector α = (α, α′), where α is the parameter for
the random search and α′ for the recruiting search. The goal of recruiting
is to encounter conspecifics and subsequently communicate the location
of the previously detected patch. Then, encountered conspecifics travel to
the advocated patch and proceed to feed on the resources residing on the



118 CHAPTER 4

patch. To facilitate this, the recruiting forager has access to a simple, finite-
length memory component wherein the location and the duration (quality)
of the patch are stored. Note that memory formation occurs only at patch
detection. The recruiting forager effectively acts as an advocate for the
patch and induces ephemeral aggregations of multiple foragers onto the
patch. More specifically, since we consider interaction radii larger than the
patch detection range (r > R), recruiters effectively enlarge patch detection
ranges such that others, that would otherwise not be aware of the patch,
can benefit (and subsequently the collective as a whole).

Individual foragers apply the following set of rules, given a prior
threshold τc:

(i) When detecting a patch, if τ > τc, try to recruit others by executing
a Lévy search with parameter α′. Recruiting stops when the time
needed to travel towards the advocated patch exceeds the remaining
duration of the patch.

(ii) When detecting a patch, if τ ≤ τc, stay and feed on the patch by
continuously consuming resources with rate ǫ. Feeding stops when
the patch disappears.

(iii) When detecting a recruiting conspecific, travel towards the advo-
cated patch and, once on the patch, feed with rate ǫ until the patch
disappears.

(iv) When neither a patch nor a recruiting conspecific is detected, con-
tinue the Lévy search with parameter α.

(v) This rule pertains to the regeneration of patches once depleted. After
the duration τ of the patch has been expired, the patch is replaced
by a new patch at a random location with a new duration sampled
from the inverse power law with parameter γ (see Eq. (4.1)). Thus,
the total number of available patches M remains fixed.

Note that once a patch has been detected, only the forager that first de-
tected it will try to recruit others. As a result, recruited foragers in (iii)
proceed to feed on the patch and not subsequently start recruiting as well.
While more complex systems most likely do not display such binary modes
of behavior, we assume a more simplified model as to keep our numerical
approach and the accompanying scaling analysis tractable. Furthermore,
information on patch duration and location is forgotten after the patch has
disappeared, thus memory duration, and subsequent recruiting behavior,
has finite lengths. Finally, while flights can be truncated upon both patch
and conspecific detection, we do not study (group) diffusion characteris-
tics in this work. A more thorough investigation in potential crowding
effects, by additionally taking finite-size effects into account, is warranted
when one aims to implement our model in more realistic artificial systems,
or when studying different scales over which foraging takes place.
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4.3 Results
We study a system of N = 256 foragers in the L × L environment with
L = 1000. We consider equal step size and patch detection radius
ℓ0 = R = 1 and normalize consumption rate ǫ = 1. Interactions with

conspecifics can occur when the distance is smaller than r = 0.0375L ≈ 1
2 rc

(Appendix 4.A). While the interaction radius and forager density influence
the metrics that will be presented, we found that general characteristics did
not change when properly accounting for the number of foragers (but see
the discussion on density-related effects in Section 4.3.4). Patch durations
are distributed according to the inverse power law with minimum dura-
tion tmin = 10 and maximum duration tmax = L/ℓ0 = 1000. While the
minimum patch duration ensures patches exist at least for some time that
they can be detected, the maximum duration is fixed at L/ℓ0 as we assume
patches for which recruiting distances can be longer than the environment
size unrealistic. Unless mentioned otherwise, we compute statistical aver-
ages over 250 different foraging instances of duration T = 105 steps.

4.3.1 Conspecific encounter rates
Let us first briefly discuss a non-interacting group of N foragers forag-
ing in an ephemeral landscape. This is achieved by considering both
τc = ∞ and r = 0. Such systems define group foraging in a selfish sys-
tem where foragers do not take others into account. Patch distribution and
patch ephemerality define a destructive foraging instance for uniformly
distributed targets for which it is known that the optimal Lévy parameter
αopt → 1 [2, 3, 66]. In other words, ballistic motion provides the highest
patch encounter rates and therefore the highest search efficiencies.

When foragers are able to interact with conspecifics (τc ≤ tmax, r > 0)
we also expect the patch detection rate to be maximum for αopt → 1.
Hence, recruiters should aim to choose α′ to accommodate the highest pos-
sible encounter rates with conspecifics who execute Lévy walks with α→ 1.
Previous work on Lévy searches for dynamic targets who were executing
Lévy walks with a different parameter concluded that the most contrast-
ing diffusion optimized search efficiencies [127], i.e. α′opt ≥ 3 as α → 1, or

vice versa. However, we study forager densities higher than those studied
by Bartumeus et al. [127]. Additionally, we consider a different timescale
as patches are of (relatively) short and finite duration (T ≫ tmax). There-
fore, recruiters need to encounter conspecifics within a relatively short time
scale, which contrasts with the long time scale discussed in Bartumeus
et al. [127]. Finally, we study perception ranges for conspecifics to be larger
than detection ranges for patches (i.e., r > R), while these ranges are equal
in Bartumeus et al. [127], as they focus on predator-prey type relations be-
tween foragers and resources.

To study what parameters maximize the number of encounters we in-
troduce the conspecific encounter rate ζ as an analogue to the target search
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Figure 4.1: Conspecific encounter rates ζ for systems with a single recruiter and
α = (α, α′). Encounter rates are obtained for t = 500, i.e. in the short timescale
1≪ t≪ L/ℓ0 (see text and Appendix 4.B). Recall that α is the stable parameter for
searching foragers and α′ of the recruiter(s). (A) The encounter rate normalized by
the total distance traversed d (see Eq. (4.3)). (B) The encounter rate normalized by
the displacement from the patch δ, i.e. ζδ = ne/δ (see Eq. (4.16)).

efficiency [2]

ζ =
ne

d
, (4.3)

where ne is the number of unique conspecifics encountered within travel
distance d. To study encounter rates in more detail, let us temporarily con-
sider a system of N foragers where only a single forager, the recruiter, is
recruiting conspecifics. Note that although forager density N heavily in-
fluences the rate of conspecific encounters, we found overall characteristics
to be similar for different values of N (Appendix 4.C). Results for systems
with N = 256 are presented in Fig. 4.1A. We see that when α, α′ → 1,
conspecific encounter rates are maximized. Note that this contrasts with
Bartumeus et al. [127], due to the above described reasons. However, one
should be careful not to normalize by the travel distance, as it is actually
the displacement from the advocated patch δ that is of importance. If re-
cruiters can recruit others while remaining close to the advocated patch,
the efficiency of recruiting should, in principle, be higher. The reason is
that encountered conspecifics need not travel long distances to arrive on
the patch and are therefore able to feed for longer. As seen in Fig. 4.1B,
contrasting strategies with α′ = 3 as α→ 1 are maximizing encounter rates
when normalizing by the displacement (Appendix 4.B). Importantly, en-
counter rates are maximal when α → 1. This is desired as ballistic motion
provided maximum patch detection rates as well. Therefore, in following
experiments, we study systems with fixed α = (1.1, 3.0).
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Figure 4.2: Group search efficiency η versus the stable parameter γ for differ-
ent patch availability M. (A) Group search efficiencies for fully altruistic col-
lective systems (τc = 0). Inset displays group search efficiency for individ-
ual groups of (selfish) foragers (τc = ∞). (B) Relative group search efficiency
ηr = η(τc = 0)/η(τc = ∞). Points above the dashed line at ηr = 1 depict envi-
ronmental constraints wherein recruitment (altruistic behavior) results in a positive
gain in the group search efficiency. Points below the dashed line indicate environ-
ments wherein individual searches (selfish behavior) is preferred.

We would briefly like to discuss that, while we have studied Lévy walks
with stable parameters 1 ≤ α, α′ ≤ 3, the above results indicate that the
best strategies are those at the extremes of the studied parameter range.
Recall that in the asymptotic limit of L → ∞, these values represent ballis-
tic motion for α → 1 and Brownian motion for α′ = 3. Hence, one might
argue why we do not study ballistic searchers and Brownian recruiters in
favor of more complex Lévy searches with parameters α and α′. We argue
that Lévy walks serve as an extremely useful tool to study the influence
of movement characteristics, as a single parameter encompasses multiple
distinct scales of movement (see Section 4.2.2). Therefore, even though we
encounter measures to be maximized at the extremes of the studied param-
eter range, we argue it is worthwhile to use Lévy walks as the movement
model. Finally, when spatial resource distributions are non-uniform, inter-
mediate values of α have been found to optimize Lévy searches (see, e.g.,
[4, 66, 111]). Hence, using Lévy walks as a prior movement strategy ap-
pears appropriate over a wide range of systems as it is both efficient and
flexible.

4.3.2 Collective search efficiency

Next, we study collective foraging for homogeneous systems with τc ≥ 0
and r > 0. Note that all foragers can start recruiting others when patch
durations exceed the threshold ensuring decentralized behavior typical of
swarm systems [81, 82]. To study the foraging efficiency of the collective
system, we define the group search efficiency as the average foraging effi-



122 CHAPTER 4

ciency of its members [9, 11]

η =
1

N ∑
i

ki

di
, (4.4)

with ki and di the number of resources consumed respectively the total
distance traversed by forager i.

Let us first discuss two contrasting systems, where one is comprised of
purely altruistic foragers with τc = 0 and the other a selfish system with
τc = ∞. Note that when τc = 0, all patch detections lead to recruiting be-
havior, whereas recruiting behavior is never induced for τc = ∞. We see in
Fig. 4.2 that both the number of patches M and the stable parameter of the
resource distribution γ heavily influence both the group search efficiency
η and the benefits of recruitment. Fig. 4.3 provides a more detailed view of
the effects of γ on distributions over individual search efficiencies ηi.

As γ increases, group search efficiencies for both systems decrease re-
gardless of the value of M. The reason is that resources become increas-
ingly ephemeral and, as such, the search for patches becomes increasingly
difficult. This is highlighted by noting that selfish systems with τc = ∞

have low search efficiencies as well. Thus, when patch encounters are al-
ready rare, a system of collective foragers does not benefit from recruiting
as patches are too short-lived to effectively recruit others (Fig. 4.2A). As
a result, the relative group search efficiency decreases as γ increases from
γ ≈ 3 onward (Fig. 4.2B). This effect is additionally observed in the indi-
vidual distributions (Fig. 4.3). For low γ, individual efficiencies for altru-
istic groups are distributed around means higher than for selfish groups.
High γ, in contrast, results in systems wherein most individuals consume
little to no resources. This effect is exacerbated when M is small (inset
Fig. 4.3C).

Search efficiencies increase as γ decreases since patches of longer du-
ration become more readily available. Evidently, larger number of patches
result in higher search efficiencies for both selfish and altruistic systems.
However, when patches are less numerous, benefits of recruiting others in-
crease for γ . 3. In this range of γ, lifetimes of some patches are relatively
long due to the dominance of heavy tails in the distribution. If patches
are relatively sparse, recruiting others to these rich patches becomes much
more beneficial as conspecifics are less likely to encounter patches by them-
selves. In contrast, when M increases, the relative search efficiency de-
creases as γ → 1. The reason for this is twofold. First, due to a high
number of available resources, individuals are more likely to encounter
patches by themselves, reducing the number of ‘free’ foragers (Fig. 4.4A).
Here, ‘free’ foragers are those who are eligible to be recruited as they are

1Note that R2 here pertains to the statistical measure, not the square of the patch detection
radius R.
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Figure 4.3: Probability density function p(ηi) of individual search efficiencies
ηi = ki/di for different stable parameters γ and resource availabilities M. Empty
markers and solid lines indicate altruistic systems with τc = 0. Filled markers
and dashed lines indicate selfish systems with τc = ∞. Lines (both solid and
dashed) are fitted log-normal distributions. We found R2 > 0.98 for all fitted
curves1 (see Appendix 4.D and Table T.4.D.1). (A) Density for high resource per-
sistence. (B) Density for intermediate resource persistence. Note that distributions
for τc = 0 and τc do not differ significantly for all M, indicating ηr ≈ 1, as expected
from Fig. 4.2. (C) Density for low resource persistence. Inset displays details on the
(skewed) fitted log-normal distribution for γ = 5 and M = 256, 512.

not feeding, recruiting, or already being attracted, i.e. those who are ac-
tively searching for patches. Hence, recruiting instances are less likely to
result in patch encounters by conspecifics thereby decreasing the group
search efficiency. This is additionally reflected in Fig. 4.4B, as the number
of conspecifics per recruit instance decreases as M and γ increase. Second,
for large M, the distance needed to travel towards the advocated patch
when a forager is being recruited approaches the mean free path λ of the
environment. Here, λ indicates the average distance between subsequent
patch encounters and its value decreases as M increases. If the travel dis-
tance towards the advocated patch approaches (or exceeds) λ, it becomes
just as (or more) beneficial to search for patches individually, as is the case
for large M (Fig. 4.4C). As a result, altruistic group search efficiencies fall
below values of selfish groups.
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Figure 4.4: Effectiveness of recruiting behavior for an altruistic system (τc = 0).
(A) Fraction of the number of ‘free’ foragers N of the total population N at each
recruit instance (see text). (B) The effectiveness of recruiting as the total number
of conspecifics recruited divided by the total number of recruit instances. Inset
displays the absolute number of recruit instances. (C) Average distance needed
to travel towards the patch upon being recruited ∆, normalized by the mean free
path λ = L2/2RM. Environments wherein ∆ < λ indicate (potential) benefits of
recruiting instances, whereas environments where ∆ & λ have individual searches
equally, to more, efficient than being recruited (see text).

4.3.3 Threshold decision making

Having established that recruitment is only beneficial when patches are
sparse and persistent, we would like to discuss effects of the threshold τc.
Recall that foragers only start recruiting others when the patch duration is
higher than a specific threshold τc (see Section 4.2.2 and Appendix 4.B). As
visible in Fig. 4.5, the effect of the threshold on the group search efficiency
is not significant when resource distributions are either fully dominated by
the heavy tail (γ ≈ 1), or when the heavy tail is suppressed (γ≫ 1).

In the former, decreases in search efficiencies become significant as τc

approaches the maximum patch duration. The reason for this observation
is that, when γ ≈ 1, foragers will try to recruit others for (often occurring)
patches with long duration regardless. Hence, it does not matter if τc is
much smaller, and ephemeral aggregations still occur on these long dura-
tion patches. Since these aggregations account for a large portion of the to-
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Figure 4.5: Influence of threshold τc on the group search efficiency η. Note that
τc = tmin = 10 corresponds to a fully altruistic system and τc = tmax = 1000 to
a selfish one. Results are obtained for M = 512, but similar results are obtained
for other values of M. Lines are a guide to the eye. (A) Normalized group search
efficiency η versus the threshold τc. Note the optimal value for γ = 3 at τc ≈ 100
(see text). (B) The standard deviation of η. Standard deviation is largest when
γ = 3 due to high variation in the resource ephemerality.

tal group search efficiency, the effect of τc on η is small as long as τc < tmax.
Only when τc approaches tmax do foragers stop recruiting others to patches
with long durations, thereby reducing the group search efficiency.

In contrast, for γ ≫ 1, τc influences the search efficiency only when it
approaches the minimum patch duration. In this regime, the heavy tails
of the inverse power law distribution are suppressed and extremely few
patches with durations τ ≫ tmin are present in the environment. Hence,
for γ = 5, we see that when τc is sufficiently large to ensure recruiting be-
havior for (almost) all encountered patches, the search efficiency becomes
independent of τc. Interestingly, recruiting does not provide a beneficial
strategy in this regime anyways, regardless of the choice of τc (Fig. 4.2).

More interestingly, effects of τc are more pronounced for distributions
where the heavy tail is suppressed, but only to some extent, i.e. for γ ≈ 3.
Here, we observe an optimal threshold at τc ≈ 100. Patch durations below
this threshold are of relatively small duration such that the expected num-
ber of conspecifics encountered in that time is small (Fig. 4.B.1). Hence, the
collective is better off by individually exploiting these patches, as trying
to recruit others will most likely lead to a negative gain. Patches above
this threshold do provide a net gain, which is why search efficiencies are
maximized for this precise choice of threshold. However, note that the
variation of the search efficiency is additionally maximized for these in-
termediate values of γ, because variation in resource ephemerality is high
when heavy tails are only partially suppressed.

Finally, we would like to emphasize that precise (optimal) computation
for τc is not a necessity for the collective system to benefit from the de-
scribed altruistic behavior. As long as patches are difficult to locate (small
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Figure 4.6: Group search efficiencies for active and passive recruiters versus the
normalized interaction radius r/ℓ0 for different forager numbers N. Results are
obtained for M = 256 and γ = 1.1 in order to simulate environmental conditions
under which recruitment is known to be beneficial (see Fig. 4.2). (A) The group
search efficiency η for active recruitment (with α′ = 3). Inset shows the group
search efficiency for passive recruitment (static recruiter). (B) The relative efficiency
as ηactive/ηpassive. Dashed line at 1 indicates the threshold and individual dotted
vertical lines indicate interaction radii r′ above which passive recruitment becomes
more efficient.

M) and persistent (γ . 3), recruiting others increases group search effi-
ciencies. This has possible far-reaching implications for designing artificial
systems, as these results appear to indicate that prior beliefs do not deter-
mine whether altruistic behavior is advantageous or not. Additionally, as
priors for more complex collective systems are often difficult to estimate,
our results seem to imply that these are not necessary. While more in-
tricate patch or forager dynamics might necessitate more precise threshold
approximations, or even updating current beliefs as estimates deviate from
their initial values [128–130], we argue that simply always trying to recruit
others is an advantageous strategy given that patches are persistent and
interaction radii are small.

4.3.4 Effect of forager density on recruitment behavior

Finally, we would like to address the effect of forager density on the ef-
fectiveness of active recruitment. While the above results consider sys-
tems that actively recruit for conspecifics, searching conspecifics can be in-
formed more passively by having the recruiter remain on the patch while
continuously announcing its location to passersby, here called passive re-
cruitment. Increased foraging efficiency of such a strategy is implied by
noting that, when searching for conspecifics, a recruiter should not stray
far from the patch (see Section 4.3.1 and Fig. 4.1). Note that these strate-
gies effectively reduce the system to a group foraging system (see our dis-
cussion in Section 4.1), where foragers join successful nearby foragers that
have detected a patch (as in, e.g., [9, 38, 87]).
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To appropriately compare active and passive recruitment strategies, let
us consider an environment with conditions such that altruistic systems
(with τ = 0) outperform selfish systems (with τ = ∞). Under these condi-
tions, passive recruitment outperforms active recruitment only when inter-
action radii are sufficiently large, i.e. r > r′ (Fig. 4.6). Here, r′ is the inter-
action radius above which passive recruitment results in higher foraging
efficiencies than active recruitment. As N increases and r > r′, random en-
counter rates increase, reducing potential advantages of active recruitment.
Furthermore, passively announcing becomes more efficient due to weak
decreases in encounter rate (Fig. 4.B.2A) being compensated by strong de-
creases in total travel distance (Fig. 4.C.1A). Indeed, our results indicate
that r′ is smaller for higher forager densities (Fig. 4.6B).

For r < r′, we find that active recruitment outperforms passive recruit-
ment due to increased recruit efficiencies (Fig. 4.C.1C,D). Here, recruit effi-
ciencies are computed by measuring the number of resources consumed
by recruited foragers, i.e. it acts as an indication of the remaining time
upon patch arrival. Hence, higher recruit efficiencies indicate that ac-
tive recruitment results in conspecifics arriving earlier on the ephemeral
patches, thus consuming more resources per distance traveled when com-
pared with passive recruitment strategies. Moreover, for r small and ap-
proaching the patch detection radius (r ≈ R), we find active recruitment
to outperform passive recruitment substantially. The reason for this can be
understood when considering that recruitment effectively transforms the
search for difficult to detect patches to a search for more easily detectable
conspecifics. When interaction radii decrease, it becomes more difficult to
detect searching foragers. If r ≤ R, passive recruitment cannot be consid-
ered beneficial as it becomes more likely (or just as likely for r = R) to
encounter patches than conspecifics. In contrast, active recruitment, while
displaying decreased foraging efficiencies as r decreases (Fig. 4.6A), dis-
plays higher relative foraging efficiencies compared to passive recruitment.
The reason is that the patch itself remains exploitable, while the recruiter
effectively simulates an additional patch detection opportunity with some
radius r > R. In this regime, patch detection can result from detecting the
patch itself or by detecting the active recruiter, thus increasing the patch
detection probability significantly and leading to higher relative foraging
efficiencies.

We would like to emphasize that, while passive recruitment strategies
appear enticing due to increased foraging efficiencies for sufficient r > r′,
many collective systems exhibit small interaction radii. For example, hon-
eybees recruit others by touch [58, 131, 132], i.e. r ≈ ℓ0. Additionally,
scalable collective robot systems exhibit interaction radii that extend only
several body lengths [82, 124, 133]. Thus, despite the simplicity of passive
recruitment strategies, which one might desire over more complex active
recruitment strategies, the above results indicate that active recruitment
is more likely to be advantageous for realistic collective foraging systems
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with small interaction ranges.
These density related effects display that, while (active) recruitment can

be considered beneficial for the collective, the recruitment strategy itself
should critically depend on individual and collective variables, such as the
interaction radius and the forager density. Further investigation into opti-
mal recruitment strategies is considered to be a topic for future research.

4.4 Discussion

In this work, we have studied a collective system capable of altruistic be-
havior. Foragers that detected patches could, instead of feeding individu-
ally, decide to recruit others to increase the overall resource intake of the
collective. We showed that, by coupling patch quality and patch duration,
recruiting times of individuals could be estimated by performing a scal-
ing analysis of the underlying Lévy random search. Our analysis showed
that this effectively reduces the decision on patch detection to a thresh-
old decision. Patch qualities above this threshold are expected to have
a positive net gain when actively recruiting others. Indeed, our agent-
based model displayed increased collective search efficiencies, but only
when patch ephemerality was not too high and patches were difficult to
locate. Moreover, we showed that the influence of the threshold is small
compared to the decision of whether to recruit or not. Only when patch
ephemerality was intermediate, i.e. when high quality patches appeared
sporadically, did a more fine-tuned threshold result in higher collective for-
aging efficiencies, although increases in search efficiencies were relatively
small. Therefore, always recruiting remained a valid strategy that resulted
in increased group search efficiencies, potentially alleviating the necessity
for individuals to determine optimal thresholds.

We considered patch quality (duration) to be instantaneously available
and an objective measure identical for all individuals. Realistically, this
assumption does not necessarily hold since patch quality can be subjec-
tive or change over time depending on the needs of the individual or the
collective [75, 134, 135]. Additionally, satiation might influence individual
decisions, as individuals tend to change behavior based on their internal
state [136, 137]. Thus, while including yet more crucial pieces of natural
foraging behavior into a model might prove difficult, it is critical to under-
stand the decision process that members of a collective undergo.

Furthermore, in this work, we assumed that individuals were only able
to communicate over short distances. While we argued that information
being only locally available is not necessarily detrimental, studies on natu-
ral systems have found that animals can transfer information across poten-
tially large distances [67, 76, 138–140] or form ephemeral groups that can
lead to vastly different communication networks [141], such as topological
distances [72, 142] or scale-free networks [10, 77, 78]. Further investigation
into the ranges over which collective systems can communicate, and the
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effect on decision processes, should therefore be considered.
As widely observed in swarming insects, such as ants [143] and bees

[144], nest formation can circumvent the lack of long communication
ranges. This type of foraging, called central place foraging, has been ob-
served in other animal species as well [145–148]. Specifically, it considers
individuals that frequently return to a single nesting site whereon all com-
munication takes place. This work studies a system where the spatial for-
ager distribution is essentially uniform and only results in higher forager
densities when ephemeral aggregations form on the patches. Although it
is known that spatiality affects decision making [149], how exactly differ-
ent behavior can induce more efficient spatial distributions is not yet fully
understood. Nonetheless, we believe that the model presented here may
help the design of more efficient artificial systems, as well as potentially
help to explain empirical data on collective foraging.
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282–289, 2000.

[151] M. Vahabi, J. H. Schulz, B. Shokri, and R. Metzler. Area coverage of radial lévy flights
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Appendices

4.A Details on the interaction graph
Here, we aim to get an understanding of the effect of the interaction ra-
dius r on the macroscopic behavior of the collective system. Possible in-
teractions between individuals, and thereby their collective behavior, are
fully characterized by the resulting proximity graph given this interac-
tion radius. In this interaction graph interpretation, each individual rep-
resents a vertex where edges between vertices denote interaction and only
exist when the distance between two vertices is smaller than r. The for-
agers’ positions define a random geometric graph albeit that the distribu-
tion over time is not necessarily uniform due to the ephemeral aggrega-
tions on patches. Below, we illustrate that an initial uniform distribution
makes certain values of the interaction radius uninteresting to (artificial)
collective system studies.

Let us consider a uniform distribution of vertices (forager positions).
Formally, one can define the connectivity (or degree) of a random geomet-
ric graph as the average number of connections per vertex:

κ = 2E/N, (4.5)

where E is the number of edges within the graph. Let us furthermore de-
fine the size of the giant component to be NG(κ), where G indicates the
fraction of vertices present in the giant component. It is known that there
exists a critical connectivity κc for which, in the limit of N → ∞, we have
that G → 1 for any κ > κc [17]. In two-dimensional systems, the value of
κc can be numerically computed to be κc ≈ 4.5. Even though this behavior
formally only holds in the limit of N → ∞, the phase transition is apparent
even at relatively small N (Fig. 4.A.1).

In this work, individual foragers can be thought of as circles within the
environment, each occupying an area of V = πr2, which is related to the
connectivity through

κ = NV. (4.6)

From these equations, we can express the interaction radius in terms of the
connectivity

r

L
=

√
κ

πN
, (4.7)

where we have substituted r ← r/L to express the interaction radius in
terms of the environment size L. From this equation, we can immediately
compute the critical radius by simply substituting κ = κc, and can therefore
extract a critical interaction radius rc above which the network has a giant
component containing all individuals.
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Figure 4.A.1: Numerically computed connectivity κ and giant component param-
eter G for different vertex numbers N. (A) The normalized connectivity of the
resulting random geometric graphs. Note that all vertex numbers collapse onto
the same value where κ/N = π(r/L)2 as per Eq. (4.6). (B) The resulting giant
component parameter G as a function of the normalized interaction radius. Dotted
vertical lines correspond to the critical radius defined by Eq. (4.5). (C) The same gi-
ant component parameter expressed in terms of the connectivity. Note the collapse
of the distinct vertex numbers onto the same curve for which any κ > κc ≈ 4.5 the
resulting giant component contains all vertices. In all plots error bars represent 1
standard deviation computed over 1000 separate random geometric graphs.

When the communication network is fully connected, information (e.g.
on patch locations) is not locally bound. Therefore, a fully connected net-
work can be assumed to posses global information properties. This regime
is out of our current interest, since both natural systems and artificial sys-
tems do not possess global information, but instead rely on locally avail-
able information to base their decisions on (see e.g., [81, 82]). Therefore,
we focus solely on systems with interaction radii r < rc. In particular, we

choose r = 1
2 rc ≈ 0.0375L (see Section 4.3).

4.B Optimal recruitment for Lévy searchers

Below, we perform a scaling analysis and show that the decision to recruit
upon patch detection is a threshold decision where patches with qualities
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above the threshold result in an expected positive gain and should there-
fore encourage recruiting. We shall show that the threshold depends on
both the forager density, the movement of others, and the range at which
foragers can perceive one another.

Let us consider a system of N foragers where one of the foragers detects
a patch at time t0. Without loss of generality, we set t0 = 0, and the forager
has to decide whether to recruit others or exploit the patch individually.
Since we consider collective foraging in this study, we assume that suc-
cessful foragers only start recruiting if the expected net gain by recruiting
is positive. Recall (see Section 4.2.1) that the quality of the patch is defined
by its (remaining) duration τ. Then, assuming a fixed consumption rate ǫ,
we define the net gain g as the difference between individual exploitation
and the expected intake rate by recruiting conspecifics:

g = −gexploit + grecruit

= −ǫτ + ǫ

∫ τ

0
n(t, α)dt, (4.8)

where n(t, α) is the expected (average) number of conspecifics feeding on
the detected patch at time t > 0. Note the dependence on the vector
α = (α, α′), where α and α′ the Lévy parameters of the searchers respec-
tively the recruiter(s) (see Section 4.3.1). The first term in Eq. (4.8) is sim-
ply the resource intake for a single forager feeding on the patch. The sec-
ond term describes the expected number of resources consumed (by oth-
ers) over the remaining time before the patch disappears. We can rewrite
this term by considering the fact that only conspecific encounters up to
some time s(τ) are ‘successful’ encounters, wherein the recruited forager
has enough time to still feed on the patch. Thus we find that

grecruit = ǫ

∫ s(τ,α′)

0
n(t, α)dt, (4.9)

where s(τ, α′) depends on the distance the focal forager displaces itself
from the detected patch. We would like to emphasize that, for estimating
n(t, α), one not only needs to consider the expected encounter rate with
conspecifics, but also the expected displacement from the patch for the re-
cruiter (Section 4.3.1).

4.B.1 Scaling analysis

The expected time over which the message on the patch location should be
disseminated depends on both the remaining time τ and the Lévy param-
eter of the recruitment search α′. If we consider the focal forager having a
displacement δ(t, α′) after some time t < τ, we find that

s(τ) = τ − δ(t, α′)/ℓ0, (4.10)
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where ℓ0 (the step size) the constant velocity of the forager. When assum-
ing time scales are relatively short, i.e. 1 ≪ t ≪ L/ℓ0, we know that the
spatial moments of the Lévy walk scale as2 [150, 151]

〈
|x|k(t)

〉
≃





tk/(α−1), 1 < α < 3 and 0 < k < α− 1,

t, 1 < α < 2 and k ≥ α− 1,

tk/2, α = 3 and k > 0

(4.11)

Note that the appropriate timescale wherein the above results hold are ap-
plicable to ephemeral landscapes, assuming patch duration is finite and
truncated (see Section 4.2.1). One recovers the expected displacement with
α′ for k = 1,

δ(t, α′) = 〈|x|(t)〉 ≃





t1/(α′−1), 2 < α′ < 3,

t, 1 < α′ ≤ 2,

t1/2, α′ ≥ 3

(4.12)

We find our results to match this type of scaling (Fig. 4.B.1A).
The expected number of conspecifics feeding at the patch due to having

been recruited can be estimated as

n(t, α) ≃ ne(t− δ(t, α′)/ℓ0, α), 0 < t < s(τ, α′) (4.13)

where ne(t, α) is the expected number of conspecifics encountered within
some time t. In other words, the number of foragers feeding on the patch
at time t, is approximately equal to the number of encountered foragers at
time t− t′, with t′ = δ(t, α′)/ℓ0 the time needed to travel to the patch from
distance δ(t, α′). Estimating the number of conspecific encounters requires
one to estimate search efficiencies for other Lévy searchers, which to the
best of our knowledge has not been done analytically. Numerical simula-
tions reveal linear scaling ne ≃ t for all values of α that we have studied
(Fig. 4.B.1B), and subsequently n ≃ t (Fig. 4.B.2A). A more thorough ana-
lytical scaling analysis is considered to be out of scope of this work.

Having established how conspecific encounter rates scale, let us con-
sider the conspecific search efficiency (see Section 4.3.2)

ζ(t, α) =
ne(t, α)

ℓ0t
(4.14)

as the number of conspecifics found per distance traveled. It acts as a
primer for the choice of α′, i.e. what kind of diffusion should a forager
that aims to maximize the number of conspecifics encountered within the
remaining patch duration τ. As is known (see e.g., [2, 3]), ballistic motion
for α∗ → 1 maximizes the search efficiency in ephemeral landscapes where

2note that here α depicts the parameter for any Lévy search
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Figure 4.B.1: Scaling analysis of the conspecific encounter efficiency. The appro-
priate scaling is valid in the asymptotic limit 1 ≪ t ≪ L/ℓ0 (see text). (A) The
displacement δ(t, α′) from a patch detected at t = 0 for different stable recruit-
ment parameters α. (B) The number of conspecifics encountered ne within a time
t for α = (α, α′). Here, searchers execute ballistic motion with α = 1.1 and re-
cruiters walk with Lévy parameter α′ = 3 (see text and Section 4.2.2). We find
ne ≃ t for all values of α, α′ that we studied. (C) The conspecific search efficiency
ζ = ne/ℓ0t ≃ t−1 (see text). (D) The normalized conspecific search efficiency
ζδ = ne/δ. In all figures, dashed lines are fits obtained with non-linear least squares
analysis. Scaling of the quantities with time is indicated. Results are obtained by
averaging over 250 realizations of an appropriately sized system with L = 1000,
N = 256, ℓ0 = 1 and r = 0.0375L (see Section 4.3).

patch locations are uniform. When assuming the remainder of the collec-
tive is executing a Lévy search with α∗, we find that a parameter leading
to contrasting diffusion, i.e. α′ ≥ 3, optimizes search efficiencies for con-
specifics in the short timescale (Fig. 4.1). Using this and the above scaling
analysis for the displacement and expected number of encountered con-
specifics, we find ζ(t, α) ≃ t−1 (Fig. 4.B.1C).

However, recall that we are not interested in the number of conspecifics
encountered per distance traveled, rather as a function of the displacement
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Figure 4.B.2: (A) The number of recruited conspecifics feeding on the patch at time
t for different Lévy parameters α′ and passive recruitment (static recruiter, see Sec-
tion 4.3.4). Dashed lines are linear fits obtained with non-linear least squares anal-
ysis. Averages are obtained over 250 realizations. (B) The expected number of con-
specifics feeding on the patch due to having been recruited, n(t, α), as a function
of α = (α, α′) with fixed α = 1.1. Different colors indicate different forager densi-
ties, as the number of available foragers depends greatly on the patch distribution
(Fig. 4.4). Dotted lines indicate passive recruiters, effectively approximating group-
like foraging (see Section 4.3.4). Note that for α′ & 3 the number of foragers feeding
on the patch displays a plateau due to the Lévy walk asymptotically converging to
Brownian motion as per the central limit theorem. Averages are obtained over 1000
realizations for t = 500. Lines are a guide to the eye.

from the patch, i.e.

ζδ =
ne(t, α)

δ(α′)
. (4.15)

The reason being that recruiting conspecifics while close to the advocated
patch results in faster exploitation rates, because recruited foragers arrive

at the patch earlier. Since we know the displacement scales as δ ≃ t1/(α′−1)

for α′ > 2 (Eq. (4.12)), and encounters as ne ≃ t, we find the properly
normalized conspecific search efficiency scales as

ζδ(t, α
∗) ≃ t1/2, (4.16)

where α∗ = (1.1, 3.0). In contrast, values of α′ < 2 result in linear scal-
ing of the displacement, δ ≃ t, hence ζδ(t, α) ≃ const., i.e. the nor-
malized conspecific search efficiency approaches a constant value as t in-
creases. Our numerical results indeed verify this behavior, as can be seen
in Fig. 4.B.1C,D.

The difference in scaling for α′ ≤ 2 and α′ > 2 explains why the con-
specific search efficiency is maximized with contrasting diffusion charac-
teristics (α′ ≥ 3 as α → 1). While for α′ ≤ 2 the rate of new conspecific en-

counters approaches a constant value, it grows with t1/(α′−1) when α′ > 2,
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hence resulting in increased ζ (Fig. 4.1B and Fig. 4.B.1D). It additionally
raises the question if different strategies, such as simply announcing while
remaining on the patch (i.e., δ = 0), might be more efficient. We compare
active recruitment via Lévy walks with a passive strategy in Section 4.3.4
and below in Appendix 4.C.

4.B.2 Threshold decision making

Here, we wish to illustrate that the foragers can be equipped with an ef-
fective threshold for which patches with qualities above this threshold
should have an expected positive net gain and thus should trigger (ac-
tive) recruitment. As a result, our model effectively resembles a threshold
model, where recruiting others occurs only when the forager expects the
collective to benefit (see Section 4.2.2). Recall that we assume that foragers
can estimate the optimal recruiting time s(τ, α′) for a given patch dura-
tion τ by estimating its displacement following the above scaling analy-
sis. As the coefficients of both the displacement and the number of con-
specifics encountered can be numerically computed, we can pre-compute
s(τ, α′) from Eq. (4.10) and Eq. (4.12), and subsequently the expected net
gain from Eq. (4.8), s(τ, α′) and Eq. (4.13). Since n(t, α) ≃ t, we can write
n(t, α) = d1t + d2. Then net gain g becomes

g = −ǫτ + ǫ

∫ s(τ,α)

0
n(t, α)dt

= ǫ

(
1

2
d1s2(τ, α) + d2s(τ, α)− τ

)
, (4.17)

where we have simply integrated the linear approximation of n(t, α). By
determining the coefficients, which in artificial systems can be computed
beforehand (i.e. be assumed prior knowledge to the forager), one can find
critical durations for which g(τc) = 0, τc > 0. Existing numerical schemes,
such as the Newton-Raphson method, can be applied to find these roots.

Then, at patch detection, foragers should recruit when τ > τc and ex-
ploit individually when τ ≤ τc. Therefore, advantages of collective be-
havior depend heavily on the distribution over patch durations (see Sec-
tion 4.3.2). The threshold τc ensures that foragers are not recruiting others
towards patches that are not worth the effort and therefore serve as a fil-
ter on the individual level. In turn, thresholds greatly simplify decisions
of recruited foragers, since instead of a (potentially complex) decision they
should simply always travel towards the advocated patch.

We would like to emphasize that our results (see Section 4.3.3 and
Fig. 4.5) appear to indicate that the specific choice of threshold does not sig-
nificantly influence the resulting group search efficiency. This is possibly
an artifact of the ephemeral patch distribution that we study here. Hence,
different patch distributions might result in more precise estimations of τc
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to be far more beneficial for recruiting foragers than the one studied in this
work.

4.C Density effects

Forager density affects patch encounter rates and subsequently the num-
ber of recruit instances. As a result, passive strategies can become more
beneficial (increase foraging efficiency) as interaction radii increase (Sec-
tion 4.3.4). Note that, despite the apparent increase in foraging efficiency,
active recruitment result in more conspecific encounters than passive re-
cruitment (Fig. 4.B.2). Therefore, we compare active and passive recruit-
ment in more detail to investigate when passive recruitment might be more
efficient.

To this end, we study a system of N foragers in environmental condi-
tions wherein altruistic recruitment (τ = 0) outperforms selfish systems
(τ = ∞). This is realized for persistent patches (γ = 1.1) and low patch
densities (M = 256), as indicated in Fig. 4.2. In such environments, we
observe that total travel distances are lower for passive recruitment, as
the passive recruiter is always on the patch (δ = 0). In contrast, active
recruiters increase the distance towards the patch (as δ ∝ t1/2, see Sec-
tion 4.B and Fig. 4.B.1) and thereby increasing distances towards the patch
upon recruitment. Note that total travel distances increase with the inter-
action radius as expected. The (small) decrease for high forager densities
as r increases results from the approximately uniform forager distribution
on patch detection, leading to instantaneous attraction at distances shorter
than r. This induces an overall reduction in the total travel distance.

While larger distances towards the patch seem counter-productive, as
the search efficiency is inversely related to the travel distance (Eq. (4.4)),
simulations reveal that foraging efficiencies are higher when actively re-
cruiting, but only when interaction radii are sufficiently small (Fig. 4.6).
The reason is twofold. First, the recruit effectiveness is larger for active re-
cruitment (Fig. 4.C.1B) as the encounter probability is higher for active re-
cruiters than passive recruiters (Fig. 4.B.2A). Second, for sufficiently small
interaction radii, the recruit efficiency is larger when actively recruiting con-
specifics. The recruit efficiency is computed by the number of resources
consumed after being recruited, divided by the total distance traveled, and
is shown in Fig. 4.C.1C,D. When actively recruiting, conspecifics arrive on
ephemeral patches earlier than when passively recruiting, thus increasing
the total number of resources consumed on the patch before it disappears
(see also Section 4.3.4).

The benefits of active recruitment depend strongly on the forager den-
sity and their interaction radius, because, when interaction radii are suf-
ficiently large, advantages of active recruitment disappear. Travel dis-
tances in systems with passive recruitment decrease, due to the recruiter
not moving and decreased distances towards the patch upon being re-
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Figure 4.C.1: Comparison of the effect of forager density on the effectiveness and
efficiency of recruitment between active and passive recruitment strategies. Results
are obtained for M = 256 and γ = 1.1 in order to simulate environmental condi-
tions under which recruitment is known to be beneficial (see text and Fig. 4.2). Solid
lines indicate active recruitment with Lévy walks with α′ = 3 for searching foragers
with α = 1.1. Dashed lines in (B) and (C) indicate passive recruitment. (A) Total
relative travel distance, computed by dividing total travel distance d = ∑i di for ac-
tive recruitment by total travel distance for passive recruitment. Note that relative
travel distance is always greater than 1, indicating that passive recruitment car-
ries lower total travel distances (see text). (B) The recruit effectiveness as the total
number of conspecifics recruited divided by the total number of recruit instances.
(C) The recruit efficiency as the total number of resources consumed divided by the
travel distance (see text and Section 4.3.4). (D) The relative recruit efficiency as the
recruit efficiency of active recruitment divided by the recruit efficiency of passive
recruitment. Dotted vertical lines indicate interaction radii above which passive
recruitment has higher recruit efficiencies than active recruitment. Note that in-
teraction radii for which this occurs are (approximately) equal to those where the
forager efficiency indicates similar effects (Fig. 4.6).
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cruited (Fig. 4.C.1A), hence increasing the foraging efficiency. This effect is
amplified when forager densities are high, resulting in active recruitment
being only beneficial when interaction radii are smaller than several body
lengths (see Fig. 4.6B, Fig. 4.C.1D and our discussion in Section 4.3.4).

4.D Fitting of the distribution over individual

search efficiencies
To measure distributions over individual search efficiencies presented in
Fig. 4.3, we numerically compute histograms by computing search efficien-
cies for each individual forager and attributing them to 50 logarithmically
spaced bins between ηi = 0 and ηi = ηmax. Here, ηmax is the greatest mea-
sured individual foraging efficiency encountered during our simulations
for a specific parameter setting and can be empirically determined.

For generating the fits of the individual search efficiencies in Fig. 4.3,
we use non-linear least squares to fit a log-normal distribution to the em-
pirically obtained histograms using the SciPy Python package [152]. To
measure the statistical accuracy of the fitted curves, we compute the coef-
ficient of determination R2, and found R2 > 0.98 for all curves shown in
Fig. 4.3 (Table T.4.D.1).

γ = 1.1 γ = 3 γ = 5

M R2
τ=0 R2

τ=∞ M R2
τ=0 R2

τ=∞ M R2
τ=0 R2

τ=∞

256 0.996 0.999 256 0.999 0.986 256 0.998 0.998
512 0.998 0.999 512 0.999 0.993 512 0.999 0.992

1024 0.999 0.999 1024 0.999 0.996 1024 0.999 0.998
2048 0.999 0.999 2048 0.999 0.998 2048 0.999 0.999
4096 0.999 0.999 4096 0.999 0.999 4096 0.999 0.999

Table T.4.D.1: R2 values for fitted log-normal distribution shown in Fig. 4.3 for all
shown values of γ and M. R2

τ=0 corresponds to altruistic (collective) systems that

always recruit and R2
τ=∞ are for selfish (group) systems without interaction (see

Section 4.3.2).
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5
Foraging behavior and patch size

distribution jointly determine population

dynamics in fragmented landscapes

Abstract
In all previous chapters, we did not consider the finite lifetime of foragers. Ob-

viously, natural systems exhibit birth and death processes and populations of for-

agers are nearly never of fixed sizes, but instead fluctuate. These so-called demo-

graphic fluctuations depend strongly on the foraging behavior of species that, in

turn, depends on characteristics of the resource distribution. Critically, population

sizes influence the resource distribution as well, bringing about a complex interac-

tion between population dynamics and the landscape configuration. In this chap-

ter, we focus on environments that are, or are becoming, increasingly fragmented,

as patches are becoming smaller and more spatially separated. Such fragmentation

effects are often the result of habitat loss and present a major threat to the longevity

of animal populations. Whereas it is well-established that habitat loss itself neg-

atively affects biodiversity, fragmentation per se, i.e. the spatial configuration of

habitat, additionally affects population dynamics and ecosystem stability. Within

these landscapes, movement between fragments has been put forward as critical

to species persistence. However, how optimal foragers respond to the process of

fragmentation, and how these adaptations subsequently induce changes in habitat

configuration has been largely ignored. To this end, we develop a spatially ex-

plicit predator-prey model and study how fragmentation, foraging behavior and

demographic rates influence species persistence in fragmented landscapes. In this

model, foragers and resources represent the predators and prey, respectively. We

study fragmentation by restricting prey to inhabit spatially separated fragments

147



148 CHAPTER 5

while, in contrast, predators disperse using Lévy walks and thus induce demo-

graphic fluctuations by traveling in between fragments. Our results show that

both dispersal rates and fragmentation jointly influence population stability. In-

creased fragmentation reduces the range of demographic parameters that result in

stable coexistence states, thereby suggesting a stronger selective pressure on for-

aging behavior. Moreover, our results indicate that local prey populations can go

extinct, as they are highly sensitive to demographic fluctuations. Because prey is

sessile, habitat regeneration is further inhibited by fragmentation, thereby resulting

in irreversible loss of habitat. Our results indicate that habitat loss is exacerbated in

highly fragmented systems, as smaller fragments are more prone to local extinction

events. However, our results also indicate that predator dispersal can reduce, but

not prevent, loss of habitat, emphasizing the critical role of dispersal for ecosystem

stability in fragmented landscapes.

5.1 Introduction

Habitat fragmentation typically results from habitat loss [2] and results in
decreased sizes and increased spatial separation of habitable zones [3, 4].
However, there is a subtle, but distinct, difference between fragmentation
resulting from habitat loss and fragmentation per se, and the effects of the
former and the latter on population dynamics and biodiversity should be
discussed separately. As it is well-established that fragmentation induces
changes in demographic rates and drifts in population genetics [5, 6], it
is therefore critical to assess effects of fragmentation per se on population
dynamics and ecosystem stability.

In general, fragmentation per se (hereafter; fragmentation) has weaker
effects on biodiversity than habitat loss [7]. It has been suggested that posi-
tive effects of fragmentation are just as likely as negative effects (e.g., [8, 9],
but see [10]). Theoretical and experimental studies indicate that fragmenta-
tion could favor species persistence by increasing immigration rates, patch
connectivity, and habitat diversity (for a review, see [11]). Negative effects,
however, are that fragmentation results in increased frequency of local ex-
tinction events due to demographic fluctuations and inhibition of regen-
erative processes, as species become restricted to inhabit only the (small)
fragments [12–14]. However, whether, and how, fragmentation impacts
population persistence strongly depends on the spatial geometry of the
landscape [15, 16]. Furthermore, whereas dispersal of organisms is cru-
cial for the longevity of populations, especially in fragmented landscapes
[17, 18], how species respond to and possibly induce changes in habitat
configuration has been largely ignored.

On the one hand, studies regarding optimal foraging behavior consider
short time scales and assume no demographic events. Instead, they focus
on determining a relationship between movement characteristics, search
times, and correlations between population and resource density [19]. In-
dividual movement is often modeled using scale-free random searches,
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known as Lévy walks, wherein displacement lengths are sampled from
inverse power laws with varying exponent [20]. This particular choice of
random walk originates from observations that reported scale-free charac-
teristics in movement in different species [21–25]. In general, Lévy walks
optimize foraging for sparse resource landscapes [26–29], including frag-
mented landscapes [30, 31].

On the other hand, studies regarding population dynamics regard
longer time scales and often assume simplified movement of individu-
als [32, 33]. Few studies have integrated optimal foraging behavior into
population-based models, and, to the best of our knowledge, only one
study has additionally incorporated spatial heterogeneity [34]. However,
they did not discuss potential effects of spatial structure of fragmented
landscapes. Here, we address such effects by using techniques from land-
scape ecology that allows for the generation of lattices with varying de-
grees of fragmentation [35, 36].

To study the interplay between foraging behavior, landscape fragmen-
tation and population dynamics, we develop a spatially explicit predator-
prey model. In this model, predators and prey are represented by foragers
and resources, respectively. Prey individuals are restricted to inhabit spa-
tially separated fragments, whereas predators are regarded as optimal for-
agers and thus disperse following a Lévy walk. By varying habitat frag-
mentation and predator dispersal, we quantitatively investigate the role of
dispersal and its effects on ecosystem stability.

5.2 Model description

We develop a stochastic predator-prey model in a two-dimensional land-
scape with fragmented prey habitat. The landscape is represented by a
square lattice of which only a fraction ρ ∈ [0, 1] of the sites provide prey
habitat. To investigate how predator movement and the spatial distribu-
tion of prey habitat jointly determine predator-prey population dynam-
ics, we fix the amount of prey habitat ρ and vary the statistical properties
of patch size. These statistical properties are determined by the spatial
correlations in the distribution of prey habitat. We generate fragmented
prey habitat using neutral landscape models [37], which have previously
been used to study landscape connectivity and its effects on dispersal (e.g.,
[38–40]). We generate lattices with periodic boundary conditions from an
underlying fractional Brownian motion (fBm) characterized by the Hurst
exponent H ∈ (0, 1), which controls the spatial correlation between adja-
cent sites [41]. More specifically, we generate lattices of two-dimensional
fBm generated by means of spectral synthesis (see, e.g., [41–43]). In gen-
eral, for H → 0, adjacent sites are not correlated, resulting in landscapes
with several small fragments (high fragmentation). In contrast, H → 1 sig-
nifies high correlations between adjacent sites, thus generating few large
fragments (low fragmentation). As we are interested in landscapes with a
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specific habitat density ρ, we transform the fBm lattice into a binary lattice
by selecting ρL2 sites with the highest values of fBm to belong to the inhab-
itable fragments, while the remaining sites are uninhabitable for prey (the
matrix). Typical landscapes using this method are illustrated in Fig. 5.1.

It is important to note that fragmentation effects are weaker when habi-
tat density is high (as apparant in Fig. 5.A.1). This is further exemplified
by noting that increased fragmentation decreases average patch sizes, as
smaller patches become more frequent as H decreases, while large patches
become (near) nonexistent (Fig. 5.1B). We consider landscape connectivity
to be defined by percolation as the probability p of fragments connecting to
either side of the lattice. For large ρ we find p → 1 regardless of the value
of H (Fig. 5.1) and as such, the largest patches contain most of the avail-
able habitat, effectively reducing our predator-prey model to one without
habitat restrictions for prey (i.e. an homogeneous landscape, as in, e.g.,
[44, 45]). However, recall that we are interested in the effects of optimal
foraging behavior. As such, we examine here landscapes with low habitat
density ρ = 0.2 as percolation theory predicts disconnected patch struc-
tures for all values of H in this regime (see e.g., [38], and Fig. 5.A.1), defin-
ing predator dispersal – thus foraging behavior – as a critical component
driving population dynamics. Moreover, as Lévy foragers maximize for-
aging efficiencies only when resource (prey, thus habitat) densities are low
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Figure 5.1: (A) L× L fragmented landscapes of prey habitat used in our model im-
plementation with L = 512. Habitat density ρ = 0.2 and fragmentation increases
with the Hurst exponent, H. Black and white regions depict prey habitat and ma-
trix, respectively. (B) Normalized maximum patch size xmax for different H versus
habitat density ρ. (C) Percolation probability p as a function of ρ. Dotted vertical
line indicates the habitat density below the percolation threshold (p ≈ 0) used in
our experiments ρ = 0.2.



POPULATION DYNAMICS IN FRAGMENTED LANDSCAPES 151

[26], only in landscapes with ρ small would one expect foragers to diffuse
anomalously.

5.2.1 The stochastic lattice Lotka-Volterra model

We study a stochastic lattice Lotka-Volterra model (SLLVM) wherein prey
habitat is restricted due to the effects of fragmentation, as they cannot in-
habit any site belonging to the hostile matrix. Prey is sessile and thus can-
not disperse between the spatially separated fragments, whereas predators
are allowed to disperse freely and therefore can travel in between frag-
ments. Each site within the lattice can either be empty (∅), contain a preda-
tor (X) or prey (Y), or both (XY). Multiple occupation (i.e., XX or YY) is
not allowed outside of the predator-prey coexistence state. We consider
systems that have the following state transitions with corresponding rates:

X∅
D̃
−→ ∅X predator movement (foraging behavior), (5.1a)

X
µ̃
−→ ∅ predator death, (5.1b)

XY
Λ̃
−→ ∅(XY) predator-prey null interaction (5.1c)

XY
λ̃
−→ XX predator reproduction, (5.1d)

XY
λ̃′
−→ ∅X prey consumption, (5.1e)

Y∅
σ̃
−→ YY prey reproduction, (5.1f)

where D̃, µ̃, Λ̃, λ̃, λ̃′, σ̃, the predator dispersal (diffusion) rate, predator
death rate, predator-prey interaction rate, predator reproduction rate, pre-
dation rate and the prey reproduction rate, respectively. Note that predator
death represents a single-site reaction, whereas all other processes describe
nearest-neighbor two-site reactions.

The above stochastic model describes the time evolution of a predator-
prey system subjected to demographic fluctuations. We define the spa-
tially averaged predator and prey densities N and M as the number of
predators and prey per unit area, i.e. N = n/L2 and M = m/L2 with n
and m the number of predators and prey on the lattice with L2 sites. We
identify two simple stationary fixed points of interest, namely the two ex-
tinction fixed points. First, the zero-abundance fixed point (N, M) = (0, 0)
where both predator and prey have gone extinct. This fixed point results
from overconsumption of prey by predators, which leads to prey and sub-
sequently predator extinction. Second, the prey-proliferation fixed point
(N, M) = (0, ρ) where only predators have become extinct. This stable
state is an effect of underconsumption that leads to predator extinction,
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followed by prey proliferating on the available habitat due to lack of pre-
dation. Other stable coexistence fixed points with N, M > 0 exist when
predators neither over- nor underconsume (Fig. 5.2).

5.2.2 Monte Carlo simulations of the restricted SLLVM

We consider a Monte Carlo approach for simulating the rates of Eq. (5.1).
A single Monte Carlo time step corresponds to selecting all occupied sites
once on average. We randomly select occupied sites and subject them to
the following rules:

• (predator death) If the selected site contains a predator, it dies with
probability µ;

• If the predator survived;

– (predator dispersal) if the adjacent site is empty, move there and con-
tinue the current relocation (see below);

– (relocation truncation) if the adjacent site contains a predator, trun-
cate the current relocation and do not move;

– if the adjacent site contains prey, either

* (double occupancy) move there, but do not interact with the prey
with probability Λ;

* (predator reproduction) truncate the current relocation, and repro-
duce by adding a predator that replaces the prey with probability
λ;

* (prey consumption) truncate the current relocation, and consume
(replace) prey with probability λ′ = 1−Λ− λ. Upon prey con-
sumption (i.e., no reproduction) the selected site is emptied and
the prey is replaced with a predator;

• (prey reproduction) If the selected site contains prey, choose a habitable
adjacent site randomly, and if the chosen site is empty, place a prey
there with probability σ.

Here, µ, Λ, λ and σ are the probabilities for predator death, predator-
prey interaction, predator reproduction and prey reproduction respec-
tively. Note that we have λ + λ′ + Λ = 1, thus prey consumption with-
out predator reproduction occurs with probability λ′. As we shall have
the predator-prey interaction probability Λ depend on predator dispersal
lengths (see below), it is convenient to introduce the following relations:

λ = Λ̂λ̂, λ′ = Λ̂(1− λ̂), Λ = 1− Λ̂, (5.2)

where Λ̂, λ̂ ∈ [0, 1] the conditional probabilities of the corresponding state

transitions in our Monte Carlo implementation. More specifically, λ̂ is
the predator reproduction probability given that it interacts with prey and

predator-prey interaction occurs with probability Λ̂. For example, consider
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Λ̂ = 1, thus λ = λ̂ and hence λ′ = 1− λ̂ = 1− λ, i.e. λ̂ corresponds to prey

consumption with predator reproduction and 1− λ̂ to consumption with-
out reproduction. In contrast, when predators never interact with prey for

Λ̂ = 0, there is no reproduction nor consumption, and we find λ = λ′ = 0.
Importantly, our SLLVM differs with existing studies using similar

methods (e.g., [34, 44]), as our scheme contains a null-interaction wherein
prey consumption does not necessarily lead to predator reproduction. Ad-
ditionally, our model contains an explicit spatio-temporal coupling by hav-
ing predators perform Lévy walks (see below). Critically, both these differ-
ences arise from our empirical observations that truncation effects (see be-
low) resulted in non-Lévy predator dispersal. As such, the null-interaction
ensures that predator dispersal in our model displays similar characteris-
tics as optimal forager movement in sparse resource landscapes.

5.2.3 Predator dispersal
Predator dispersal on the lattice follows a Lévy walk with parameter α. In
Lévy walks, foraging predators sample dispersal lengths, from a discrete
inverse discrete power law [34, 46]

p(ℓ) = ℓ−α/ζ(α), (5.3)

where ζ(α) = ∑
∞
l=1 l−α the Hurwitz-ζ function that acts as the normaliza-

tion constant. Recall from previous chapters that for α ≤ 1, the probability
distribution function cannot be normalized. Different types of dispersal
are characterized by different values of α > 1 [20]. For α ≥ 3, predators
diffuse normally (Brownian motion), whereas α → 1 results in ballistic
(straight line) motion as dispersal lengths diverge. For intermediate val-
ues 1 < α < 3 predators exhibit superdiffusive (Lévy) behavior. Upon
sampling a dispersal length (see Appendix 5.B), one of the cardinal direc-
tions (up, down, left, right) is randomly sampled, and the predator follows
along this direction with steps of unit length (nearest neighbor hopping
corresponding to fixed-velocity dispersal) until it either has traversed the
sampled distance or the displacement is truncated. The latter can occur
upon predator death, prey encounter, and predator encounter due to for-
bidden double occupation. For a more detailed description on the sam-
pling procedure of dispersal lengths, please see Appendix 5.B.

5.3 Results
We simulate the predator-prey model on a square L × L lattice with
L = 512 and prey habitat density ρ = 0.2. We distribute predators ran-
domly on the matrix and prey individuals fully occupy habitat patches.
Note that our results do not depend on the specific initial conditions. Mea-
surements are taken when the system has converged to a quasi-stationary
stable state after T = 104 Monte Carlo time steps (see Fig. 5.2). Unless
mentioned otherwise, our results are reported as averages over 250 seeds.
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Parameter Symbol Value

System lateral length L 512
Monte Carlo time steps T 104

Hurst exponent (spatial correlation) H (0, 1)
Prey habitat amount ρ 0.2
Predator death probability µ 1/L

Predator-prey interaction probability Λ̂ 1/ℓ

Predator reproduction probability λ̂ 0.1
Prey reproduction probability σ 0.1
Predator Lévy parameter α [1, 3]
Predator displacement length ℓ p(ℓ) ∝ ℓ−α

Table T.5.1: Overview of model parameterization

5.3.1 Ecosystem fragility and choice of demographic rates

First, we motivate the choices of specific values of the demographic rates
as to reflect systems of interest. As we let predator follow Lévy walks, the
probability of predator death µ should be such that dispersal ranges are
not exponentially truncated due to predator death. As such, in order to
maintain characteristic length scales whereover Lévy walks optimize for-
aging behavior, we let µ = 1/L. This effectively ensures that dispersal
lengths can be sufficiently long, but do not often exceed environment sizes
(cf. [47]), as we deem such behavior unnatural.

Next, we choose predator and prey reproduction rates such that sys-
tems with little fragmentation (H → 1) are most fragile. Here, fragile sys-
tems are those wherein markedly different predator dispersal rates result
in the system converging to an extinction fixed point. These occur due to
prey extinction followed by predator extinction through overconsumption
(nearest neighbor random walks for α → ∞) or through predator extinc-
tion due to underconsumption (ballistic motion for α→ 1) [34]. Results in-
dicate that, regardless of the prey reproduction probability σ, systems are

most fragile for the conditional predator reproduction probability λ̂ = 0.1
(Fig. 5.1). It should be noted that rates within these regions represent eco-
logically relevant predators that are long-lived, slowly reproducing and
highly motile. For the prey reproduction rate we choose σ = 0.1.

For predator-prey encounters, we consider that, when predators cross

a site occupied by prey, the probability that they interact Λ̂ decays with

the current dispersal length, i.e. Λ̂ = 1/ℓ, where ℓ the current length as
sampled from Eq. (5.3). This assumption models intermittent search be-
havior, in which foragers interchange phases of non-reactive long, straight
line displacements with reactive phases featuring shorter displacements
and more frequent turns (see Section 1.3.1.3, Chapter 3 and, e.g., [48, 49]).
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Figure 5.1: Influence of prey reproduction rate σ on population densities in the

quasi-stationary stable state versus the predator reproduction probability λ̂. Preda-

tor reproduction rate is given by λ = Λ̂λ̂ with predator-prey interaction probability

Λ̂ = 1/ℓ and predator mortality rate µ = 1/L. To determine demographic rates
for which the landscape is most fragile, we compare ballistic predators (solid lines,
α → 1, Λ → 1) with predators that do nearest neighbor random walks (dashed
lines, α → ∞, Λ = 0). Environments are generated with ρ = 0.2 and little to no
fragmentation with H → 1 (see Fig. 5.1). (A) Predator density N. Inset displays
more detailed predator densities for predators with α → ∞. (B) Prey density M.
Vertical dotted lines in (A) and (B) at λ ≈ 0.1 indicate the predator reproduction
rate for which the ecosystem is most fragile as markedly different movement strate-
gies bring the system (close to) an extinction fixed point (see text).

An overview of the used parameters and their specific values is pre-
sented in Table T.5.1 and typical population dynamics of our model are
shown in Fig. 5.2. Next, we study how predator foraging strategies, rep-
resented by the Lévy exponent α and habitat spatial structure, defined by
the Hurst exponent H, impact population dynamics and result in patterns
of irreversible habitat loss.

5.3.2 Population densities and species richness

Recall that we measure population sizes in the quasi-stationary stable state.
Since prey reproduction rate is fixed in our simulations, equilibrium popu-
lation sizes are determined by predator-prey encounter and predator re-
production rates. The long-time prey population size decreases mono-
tonically as predators move from ballistic to Brownian foraging (Fig. 5.3).
Predator density, however, is maximal for an intermediate value of the
Lévy exponent for which its optimal value depends on the degree of frag-
mentation. For each degree of fragmentation H we distinguish three dif-
ferent regimes in population dynamics that result in different outcomes for
the predator-prey interaction (Fig. 5.2).

First, due to our choice for the predator-prey interaction probability,
ballistic predators (α → 1) rarely consume prey and thus go extinct. Upon
predator extinction, prey proliferate until they reach their maximum popu-
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Figure 5.2: Time evolution of population densities for several Lévy parameters
α and Hurst exponents H. The number of Monte Carlo time steps is T = 2 · 104.
Insets show early time dynamics up to t = 2 · 103 Monte Carlo time steps. Note how
quasi-stationary stable states are attained for t ∼ 104. In general, stable population
densities are lower than the initial densities.

lation size. Notice, however, that this population size does not correspond
with prey habitat density ρ in fragmented landscapes because small habi-
tat patches become irreversibly uninhabited (see below). Second, in the
Brownian limit, α → 3, predation is intense and prey are overexploited
regardless of the level of landscape fragmentation. This results in prey ex-
tinction followed by predator extinction due to lack of prey (Fig. 5.2). Note
that predator extinctions are asymptotic due to our choice of the predator
death rate and we still observe few individuals in our simulations when
they are stopped. Third, for intermediate values of the Lévy exponent, our
model predicts stable species coexistence at different population sizes that
are jointly determined by predator movement, α, and habitat fragmenta-
tion, H.

For landscapes that display little fragmentation (H → 1), habitat
patches are large and predator relocations intersect with prey often. As
a result, predation still occurs during the non-reactive phases represented
by long displacements and predators maximize population densities with
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Figure 5.3: Effect of the Lévy parameter α and Hurst exponent H on population
densities. Note that, for α → 1, we have N → 0 as prey encounter rates fall since

Λ̂ = 1/ℓ → 0. Additionally, for α & 3, we have M → 0 due to overconsumption.
As a result, these values of α are not shown. Other rate parameters are µ = 1/L,

σ = 0.1 and λ̂ = 0.1. (A) Predator density N as a function of α for different H.
Dashed vertical line shows optimal Lévy parameter α∗H→1 ≈ 1.2 for H → 1 and in-
dicates predator extinction if predators cannot rapidly adapt to significant increases
in fragmentation. (inset) Relative predator densities Nrel = NH/NH→1 displays
decreases in N when predators forage with the same α in landscapes with higher
fragmentation. Note that for some ranges of α there exists a preferred intermediate
spatial correlation H (see text). (B) Prey density M as a function of α for different
H. Prey density declines as predators are less dispersive for higher α. (C) Preda-
tor density as a function of H for different α. For sufficiently high dispersal rates
(low α), we observe maximized predator densities for intermediate fragmentation.
(D) Prey density as a function of α for different H. Note that for sufficiently high
dispersal rates (low α) prey densities are highest in highly fragmented landscapes
with H → 0 (see text).

near ballistic foraging for α ≈ 1.2. In contrast, for highly fragmented
landscapes (H = 0.01), the model tradeoff between displacement length
and prey detection probability becomes more important because predator-
prey encounters are more rare. It is thus more critical that predators adopt
strategies that increase predation rates while ensuring sufficient encoun-
ters with prey. Balance is attained when short displacements are frequently
interspersed with long-range relocations, leading to maximum predator
population sizes for α ≈ 1.6.

Our results furthermore show that the range of foraging strategies that
ensures predator survival becomes more narrow as habitat fragmentation
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increases (inset Fig. 5.3A). This result suggests a stronger selective pres-
sure on the foraging strategy in highly fragmented landscapes or potential
extinction of predator species due to increased fragmentation if they are
unable to rapidly adapt.

Interestingly, in the intermediate α regime, our model suggests that
habitat fragmentation does not necessarily negatively affect population
densities. Predator populations with α < 2 display maximal densities
for intermediate values of H (Fig. 5.3), although it should be noted that
densities do not significantly decrease when fragmentation effects are less
pronounced. Prey populations can benefit from high levels of fragmenta-
tion when predators are dispersive, approximately for α ≤ 2 (Fig. 5.3D).
This benefit results from highly diffusive predators displaying low prey
interaction rates and, as such, prey can avoid predation by taking advan-
tage of fragmentation and spreading thinly. However, it is critical to note
that for this to occur prey needs to initially inhabit these fragments. More-
over, they become more prone to demographic fluctuations (e.g., localized
extinction) that can occur (see Section 5.3.3).

Next, we determine ecosystem health using a weighted species richness
R that captures how numerous predator and prey are relative to each other
as well as the total population size within the environment. We define the
species richness as

R =
(

D1 − 1
)(

N + M
)
, (5.4)

where 1 ≤ D1 ≤ S the entropy-based diversity index with S = 2 being the
total number of species in the system (see, e.g., [50] and Appendix 5.C for
more details). Species richness mainly follows predator density. However,
due to the effect of prey density, the predator foraging strategy α that max-
imizes species richness is consistently more ballistic than that maximizing
predator density α∗R < α∗N (inset Fig. 5.6).

5.3.3 Fragmentation induces irreversible habitat loss

As mentioned above, predators may induce irreversible prey habitat loss
in (highly) fragmented landscapes. Due to demographic fluctuations, prey
goes extinct in patches that are not recolonized, as they are sessile. As
a result, following predator extinction, prey population density does not
converge to habitat density ρ (Fig. 5.3A). To investigate this further, we
compute the patch depletion probability Pd as a function of patch size x by
checking if the unique, separated patches (fragments) on the lattice contain
prey at the end of our simulations. If they do not contain prey, we consider
them depleted, which, in conjunction with their size (the number of sites)
is registered.

Our results indicate that small patches have a higher probability of be-
coming depleted regardless of the predator foraging strategy α (Fig. 5.4),
because they host smaller prey populations and are thus more sensitive
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Figure 5.4: Influence of α and H on the probability of patch depletion, Pd, as a func-
tion of patch size x. All other parameters are as in Fig. 5.3. Solid lines are a guide
to the eye. (A) The effect of α on patch depletion for intermediate fragmentation
with H = 0.5. Dotted vertical lines indicate minimum patch sizes at x = 1 (single
site). Dashed vertical line indicates maximum patch size for this particular level of
fragmentation and patches with x > xmax do not exist, hence Pd(x > xmax) = 0.
Red curve displays Pd for the optimal response to maximize species richness for
comparison (α = 1.2, see inset Fig. 5.6). Note that less diffusive foraging strategies
(small α) result in less depletion as ρeff remains high. (B) Patch depletion when
predators respond optimally as to maximize species richness (i.e. α = α∗R), for dif-
ferent levels of fragmentation H. Specific values for α are indicated and have been
extracted from Fig. 5.6. Note the normalization by xmax as landscapes with low H
contain patches of smaller sizes (Fig. 5.1, Appendix 5.A).

to demographic fluctuations. The effect of α on the depletion probabil-
ity is stronger for intermediate patch sizes as higher values of α lead to
more local predation and, as a consequence, higher patch depletion prob-
ability (Fig. 5.4). Importantly, significant patch depletion occurs even
when predators adopt foraging strategies that maximize species richness
(Fig. 5.4).

To evaluate the impact of patch depletion on habitat loss, we define the
effective habitat density ρeff as the fraction of initial habitat ρ that poten-
tially remains available to prey in the quasi-stationary stable state (Fig. 5.5).
Ballistic foragers result in low levels of habitat loss, because predators
rapidly go extinct and only few small patches are depleted (Fig. 5.4 and
see also Fig. 5.3B). When α increases and short predator displacements be-
come more frequent, depletion probability is higher for a broader range
of patch sizes (compare, for example, curves for α = 1.1 and α = 1.5 in
Fig. 5.4). As a result, effective habitat density is a monotonically decreas-
ing function of the Lévy exponent and Brownian foragers minimize the
effective habitat density regardless of the level of fragmentation (Fig. 5.5).
However, in already fragmented landscapes, how much habitat is lost will
depend on the level of fragmentation. Brownian foragers in slightly frag-
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of the Lévy parameter α for different H. Landscapes with higher fragmentation
(low H) suffer greater losses of habitat. (B) ρeff as a function of the Hurst exponent
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mented landscapes (H → 1) eliminate approximately 25% of the initial
habitat. In highly fragmented habitats, this percentage is approximately
90% and most of the prey-predator dynamics occurs in the few, relatively
large patches (but see Fig. 5.1B) that remain available for prey.

Next, we measure how habitat fragmentation affects effective habi-
tat loss for different foraging strategies, α. As expected, ballistic preda-
tors minimize effective habitat loss because they minimize predation rates.
In contrast, Brownian predators maximize effective habitat loss because
they overexploit prey patches locally. Intermediate values of α maximize
the difference between effective habitat loss at low and high fragmenta-
tion (Fig. 5.5B). For foraging strategies that maximize species richness and
predator densities, increased fragmentation may result in an effective habi-
tat loss of 40%. Importantly effective habitat loss is a nonlinear function of
the fragmentation level with much faster decay when landscapes transition
from slightly to highly fragmented (Fig. 5.6). Population sizes, however,
decay much slower in response to increased fragmentation, illustrating the
importance of foraging strategies in maintaining the stability of ecological
communities in response to increased fragmentation and habitat loss.

5.3.4 Predator dispersal can reduce habitat loss

Finally, we emphasize on the stabilizing effects of dispersal by noting that
habitat loss mainly results from small patches becoming irreversibly de-
pleted, while only large patches remain inhabitable (Fig. 5.4). Therefore,
effective fragmentation decreases (increased H) as spatial correlation on
the fragments increases. Assuming predators can rapidly respond to such
a change in fragmentation, our results indicate that α should decrease as
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to maintain maximal population sizes (inset Fig. 5.6A). As a result, fur-
ther habitat loss is inhibited, as habitat loss is less severe when α decreases
(Fig. 5.5). Hence, our results conform to previous work that indicated that
predator dispersal can stabilize irreversible habitat loss and population de-
clines [34, 51–54].

5.4 Discussion

We have introduced a stochastic predator-prey model that allowed us to
examine how fragmentation per se, foraging behavior and demographic
rates influence population dynamics. Our model reveals that foraging be-
havior, as mediated by different dispersal strategies, and fragmentation
jointly influence the stability of populations. We found that predator and
prey populations, and the resulting species richness, are maximal for a spe-
cific dispersal strategy α that strongly depends on the level of habitat frag-
mentation H. Species richness was, however, maximized for consistently
smaller values of α than predator densities, as lower values of α resulted in
overall larger prey populations due to long-range dispersal reducing pre-
dation rates. Our results further indicated that increased fragmentation re-
duced the range of possible α-values that result in stable coexistence fixed
points, suggesting a stronger evolutionary pressure on foraging strategies
in highly fragmented environments. Moreover, optimal dispersal rates in
landscapes with little fragmentation could result in predator extinction if
fragmentation effects become significantly more severe if predators could
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not rapidly adapt. Furthermore, as fragmentation increases, the effective
habitat decreases regardless of the choice of α, resulting in spatially sepa-
rated metapopulations that are more sensitive to local demographic fluc-
tuations. This increased sensitivity results in irreversible habitat loss, even
when predators respond optimally as to maximize species richness. How-
ever, our results indicate that predator dispersal can reduce, but not pre-
vent, loss of habitat by adopting optimal demographic foraging rates.

In general, possible predator adaptations that resulted in the reduction
of the amount of lost habitat were those that lead to increased dispersal
rates. However, whereas such high dispersal rates might provide ecosys-
tem stability, some species, such as small mammals [55] and amphibians
[56], are instead characterized by their low dispersal abilities. Within the
context of our model, these species effectively represent predators with
high α, for which our results indicate major extinction events and habi-
tat loss when environments become increasingly fragmented. Therefore,
within highly fragmented landscapes, species with limited dispersal pos-
sibly induce severe population instability within their niche and, subse-
quently, in their entire trophic network [57]. It is therefore of critical im-
portance to assess species-specific dispersal rates and how it affects their
specific habitat in future models [58].

In this work, we did not consider possible responses that prey popula-
tions could display to counteract decreases in (local) populations. Within
the context of our model, the only possible response by prey to prevent
local extinction events is to greatly increase their reproduction rate. There-
fore, our results suggest that evolutionary pressure in fragmented land-
scapes favors fast-reproducing species if they are unable to travel to dis-
tant fragments. In natural systems, however, prey is often not sessile but
can instead disperse and thereby respond to increased predator densities
[59]. Additionally, it has been suggested that refuges, i.e. areas where prey
can avoid predation, increase population stability (see, e.g., [60, 61]). As
prey dispersal and refuge stability depends critically on the spatial struc-
ture of prey habitat, further investigation into predator-prey responses to
increased fragmentation is much needed.

To the best of our knowledge, we are the first to present a spatially
explicitly stochastic predator-prey model wherein predators are assumed
to exhibit optimal foraging behavior. Our investigation as to how land-
scape structure, foraging behavior and demographic rates determine pop-
ulation stability, cements the critical role of foraging patterns on popula-
tion stability and provides motivation for including spatially explicitly and
individual-based movement into population future models.
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J. A. Tobias. Habitat fragmentation narrows the distribution of avian functional traits
associated with seed dispersal in tropical forest. Perspectives in ecology and conservation,
16(2):90–96, 2018.

[15] R. A. Briers. Incorporating connectivity into reserve selection procedures. Biological
conservation, 103(1):77–83, 2002.

[16] J. C. Williams, C. S. ReVelle, and S. A. Levin. Spatial attributes and reserve design mod-
els: a review. Environmental Modeling & Assessment, 10(3):163–181, 2005.

[17] P. R. Armsworth and J. E. Roughgarden. The impact of directed versus random move-
ment on population dynamics and biodiversity patterns. The American Naturalist, 165(4):
449–465, 2005.

[18] B. B. Niebuhr, M. E. Wosniack, M. C. Santos, E. P. Raposo, G. M. Viswanathan, M. G.
Da Luz, and M. R. Pie. Survival in patchy landscapes: the interplay between dispersal,
habitat loss and fragmentation. Scientific reports, 5:11898, 2015.

[19] G. M. Viswanathan, M. G. Da Luz, E. P. Raposo, and H. E. Stanley. The physics of foraging:
an introduction to random searches and biological encounters. Cambridge University Press,
2011.

[20] V. Zaburdaev, S. Denisov, and J. Klafter. Lévy walks. Reviews of Modern Physics, 87(2):
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Appendices

5.A Fragmentation and patch sizes

Here, we discuss the effects that fragmentation per se (hereafter; fragmen-
tation) has on the habitat distribution. Notably, fragmentation effects are
weaker when habitat density is high (as apparant in Fig. 5.A.1, left). This
is exemplified by noting that increased fragmentation decreases average
patch sizes, as smaller patches become more frequent as H decreases, while
large patches become (near) nonexistent (Fig. 5.A.1, right). We consider
landscape connectivity to be defined by percolation as the probability p of
fragments connecting to either side of the lattice. For large ρ we find p→ 1
regardless of the value of H (Fig. 5.1) and as such, the largest patches con-
tain most of the available habitat, effectively reducing our predator-prey
model to one without habitat restrictions for prey (i.e. a homogeneous
landscape, as in, e.g., [44, 45]).

5.B Sampling of Lévy walks on a lattice

As our lattice corresponds to discrete spatial locations for both prey and
predators, predators sample flight lengths from a discrete inverse power
law. Clauset et al. [46] provides sampling methods for discrete, power law
distributed variables. However, when the Lévy parameter indicates ballis-
tic motion for α→ 1, practical implementations of their methods might fail
due to integer overflows as flight lengths grow increasingly large. To cir-
cumvent this, we instead sample from a truncated power law [62], where
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Figure 5.A.1: (left) Fragmented landscapes of different prey habitat densities ρ for a
fixed spatial correlation H = 0.1. The effect of fragmentation reduces as ρ increases
(see text and Fig. 5.1). (right) Influence of H on distribution of patch sizes x for
ρ = 0.2. P(X ≥ x) is the complementary cumulative distribution function of patch
sizes being equal or larger than x. Results are obtained for 512× 512 landscapes.
Vertical dashed (dotted) line indicates maximum (minimum) possible patch size.



POPULATION DYNAMICS IN FRAGMENTED LANDSCAPES 167

our lower truncation is ℓmin = 1, the unit lattice spacing. For choosing
the upper truncation, one has to take care to ensure long flights are those

wherein predator-prey interactions are rare, i.e. Λ̂ = 1/ℓ, cf. intermit-
tent random searches (for an overview see [49]). To this end, we choose
ℓmax such that the probability of a predator that is executing ballistic mo-
tion with α → 1 is, in practice, negligible. As we take averages over a
number of experiments in the order 102–103, we choose ℓmax such that the
probability of detecting prey when α → 1 is smaller than 10−3. As the
predator-prey interaction probability is a Bernoulli trial with the average
number of prey encounters for a ballistic predator equal to ρL, we can con-
clude that ℓmax ∼ 105 leads to the desired result. Note that in this regime,
as we choose µ = 1/L, it becomes unlikely that predator flight lengths
reach ℓmax, as both the probability to survive for this long is very small
and our number of Monte Carlo steps is not sufficient as T = 104. As a re-
sult, ballistic foragers, in practice, do not interact with prey for ℓmax ∼ 105,
as desired by having Λ = 1/ℓ (see Fig. 5.3). More specifically, we choose
ℓmax = 200L = 102400 in all of our experiments, with L = 512.

As for the sampling procedure, we define the complementary cumula-
tive distribution P(ℓ) as the probability of a sampled length L to be larger
or equal to ℓ, i.e.

P(ℓ) = Pr(L ≥ ℓ) =
ℓmax

∑
y=ℓ+1

p(ℓ), (5.5)

where

p(y) = y−α/
(
ζ(α, ℓmin)− ζ(α, ℓmax)

)
, (5.6)

with ℓ is the flight length of predator dispersal and ζ(α, l) = ∑
∞
n=0(n+ l)−α

the Hurwitz-ζ function. To sample predator displacement lengths, we
draw a random number r and and compute ℓ that satisfies P(ℓ) = 1− r. As
P(ℓ) cannot be inverted in closed form, we execute a binary search within
the interval [ℓmin, ℓmax] to solve for ℓ [46, 62]. Because we are interested
in discrete samples, we continue the binary search until the value of ℓ is
narrowed down to k ≤ ℓ < k + 1, for some integer k. Then, we dis-
card the non-integer part of ℓ to be used as the discrete sample. Binary
search is implemented in many standard libraries, and can be efficiently
performed as to draw many sampled efficiently. Even so, one profits from
pre-computing the Hurwitz-ζ functions for all values ℓ ∈ [ℓmin, ℓmax] since
computation of these values can be computationally expensive.

5.C Species richness and ecosystem health
While population densities are of relevance to determine ecosystem health,
it can be worthwhile to additionally discuss ecosystem ‘health’. In ecol-
ogy, diversity indices are often used to indicate ecosystem health, where
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primers such as biodiversity (i.e., the number of species) are often of in-
terest. Additionally, species richness can measure the number of species
relative to the total number of individuals. In this work, we consider
the effective species diversity, Hill number, or ‘true diversity’, Dq , to cap-
ture ecosystem health (see e.g., [50]). The effective species diversity is an
entropy-based measure and defined as

Dq =

(
S

∑
s=1

p
q
s

)1/(1−q)

, (5.7)

where S is the total number of species, and ps the probability of sampling
species s when random sampling from the total population of all individ-
uals, i.e. the proportional abundance of species s. q defines the sensitivity
of the true diversity, where q > 1 weights the more abundant species more
heavily and q < 1 weights given to rare species are exaggerated. For q = 1,
weights for all species are equal and the true diversity can be defined by
using the well-defined the limit

D1 = exp

[
−

S

∑
s=1

ps ln ps

]
. (5.8)

However, the diversity index with q = 1 does not take into account the
total population size and is effectively biased towards systems with equal
species numbers. For example, a two-species systems, as the predator-
prey system studied here with numbers N and M, is equally ‘diverse’ for
N = M = 1 as for N′ = M′ = 100, while we argue here that the second
system is more ‘healthy’ as it contains more organisms. To account for this
bias, we define the species richness asR as

R = ( D1 − 1) ·
S

∑
s=1

Ns, (5.9)

where Ns the spatially averaged density of species s per unit area. We
subtract 1 from the true diversity to bring its value between 0 and 1. R = 0
conforms to systems where there is only one species remaining or when
there are no organisms within the system, whereas R = 1 corresponds to
a fully occupied system with equal abundance of all its species.

For our particular system, we plot the species richness R in Fig. 5.C.1.
Clearly, species richness predominantly follows the characteristics of
predator populations (Fig. 5.3), however the optimal predator responses
are consistently smaller due to the influence of prey population. In effect,
when α decreases, prey populations increase as predator-prey interaction
rates fall (Fig. 5.3). Therefore, species richness increases as α (slightly) de-
creases, as those systems support more prey.



POPULATION DYNAMICS IN FRAGMENTED LANDSCAPES 169

1.0 1.5 2.0 2.5 3.0

α

0.0

0.1

0.2
R

A

H = 0.01
H = 0.10
H = 0.20
H = 0.50
H → 1

0.0 0.2 0.4 0.6 0.8 1.0

H

B

α = 1.5
α = 1.8

α = 2.0
α = 2.3
α = 2.5

Figure 5.C.1: Influence of α and H on the species richness R. Note that R mainly
follows predator density (Fig. 5.3) but effects of prey density results in consistently
more ballistic dispersal to maximize R when compared to predator density (inset
Fig. 5.6). All other parameters are as in Fig. 5.3.

We would like to emphasize here that other definitions of species rich-
ness exist and that its definition should depend strongly on the context
wherein it is applied (cf. Gorelick [63]). For our intended purposes, i.e.
a two species predator-prey model, the definitions of Eqs. (5.8) and (5.9)
serve as a simple indicator of the biodiversity – thus ecosystem health –
in our systems. We did not observe qualitative changes in maxima (i.e.,
optimal responses) to different entropy-based measures.





6
Conclusion and outlook

This dissertation has discussed optimal foraging and its dependence on
various factors such as individual complexity, interactions with other for-
agers and environmental conditions. More specifically, we addressed four
main research questions which we shall revisit and critically review below.

Research question 1. How can an individual forager benefit from spatial mem-
ory when resources are distributed within patches?

In Chapter 2, we discussed a single forager that employed spatial memory
to learn a distribution over patch locations to improve foraging efficien-
cies. We introduced a hybrid foraging strategy, wherein random searches
following a Lévy walk were interchanged with informed relocations by
sampling goal states from the learned memory. We presented spatial mem-
ory as an ensemble of Gaussian mixture models (GMMs), as (i) GMMs are
universal function approximators, thus able to learn, in principle, any (spa-
tial) distribution; (ii) GMMs can be learned incrementally, thereby making
it possible for the forager to adapt its memory based on novel experiences;
and (iii) an ensemble of GMMs provides a measure of uncertainty that al-
lowed the forager to make decision based on the estimated correctness of
the learned spatial distribution. We presented a system wherein the ran-
dom search could be truncated when the forager had not encountered re-
sources in some time. The longer the forager traveled without resource
encounter, and the lower the uncertainty of the learned distribution, the
more likely the forager was to stop exploring, by random search, in favor
of exploiting, by informed movement. Using this hybrid foraging strategy,
we studied how the rate of memory exploitation influenced the foraging
efficiency.
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As we considered the foraging efficiency depending on the inverse of
the traversed distance, our results indicated that non-destructive foraging
was optimized when memory exploitation rates were high. This was the
result from frequent revisitation of known patch locations, effectively pe-
nalizing exploration as it resulted in increases in travel distances. How-
ever, extensive memory exploitation restricted the forager to explore very
little of the environment, thereby significantly reducing the diversity of
visited patches. Most interestingly, we showed that this spatial restriction
leads to a change in diffusive properties of the foraging task, suggesting
that memory can significantly affect observed motion patterns in foraging
species. Our results thus indicate that spatial memory introduces a trade-
off between high foraging efficiency, through exploitation with low diffu-
sion, and high patch diversity, through exploration with high diffusion;
a trade-off, called the exploration-exploitation trade-off, that is not trivially
solved.

Possible solutions that optimize this trade-off depend strongly on the
characteristics of the resource distribution. Whereas we assumed non-
destructive foraging, i.e. static resource distributions, many environments
posses some dynamics, either through interactions (e.g. destructive for-
aging) or intrinsically (e.g. seasonal availability). Evidently, memory is
not expected to be useful in rapidly changing environments [1]. How-
ever, memory might still be useful when resources regenerate over specific
timescales known (or estimated) by the forager, effectively allowing for-
agers to revisit patches once these have recovered [2, 3]. Interestingly, con-
secutive relocations to known patches, i.e. deterministic displacements,
have been shown to exhibit the scale-free characteristics typical for Lévy
walks [4], suggesting that Lévy walks can result from interactions with
the environment, similar to how our model influences the spatial charac-
teristics of forager displacement. How exactly optimal foraging behav-
ior is influenced by spatial characteristics and cognitive capabilities, and
how the trade-off between exploration and exploitation can, under some
circumstances, be solved, remains an open question that warrants further
research.

Furthermore, we discussed environments with a single type of re-
source, yet our results might extend beyond this particular case. As many
foraging animals rely on a diverse set of resources in order to survive [5, 6],
e.g. food and water, our results highlighted that the type of foraging strat-
egy should depend strongly on the current state and needs of the forager
[7]. Despite our study into optimal foraging with memory lacking an in-
ternal state or preference, we believe that the ensemble of mixture models
remains an excellent candidate for decision making during foraging. In
particular, each component of the mixture can be weighted differently as
to reflect patch contents, or separate components of the mixture can be es-
tablished to represent different types of memory, such as short-term and
long-term memory. Therefore, whereas we did not explore potential ef-
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fects of state-dependent weightings, we believe that we have highlighted
a potential spatial memory candidate, and have identified strengths and
weaknesses of this approach.

Finally, we would like to mention that we did not discuss biological
relevance of our particular choice for the spatial memory model. As spatial
memory is critical to understand movement, and thus foraging behavior,
of animals [8], we argue that more research into the specific type of spatial
memory that foragers exhibit is needed in order to fully understand how
foraging behavior and cognition interact.

Research question 2. How does resource fractility determine the effectiveness of
group foraging strategies on groups subjected to intraspecific competition?

Many foragers are not solitary but forage in groups. We presented an
agent-based model to quantitatively study the effect of the resource dis-
tribution on the effectiveness of simple group foraging strategies. We con-
sidered a group of foragers that exhibited intermittence in their random
searches, by changing their foraging behavior on resource detection. More
specifically, intensive searches were triggered when a resource was de-
tected, as it indicated encounter of a patch rich in resources. This switch in
behavior, from an extensive (global) to an intensive (local) search, signified
high local resource densities and could be detected by nearby conspecifics
that subsequently joined the forager in their successful foraging efforts.
However, as foraging was destructive, increased forager densities on the
patches lead to competition for the limited resources within the patch.

By controlling the degree of clustering (‘patchiness’) of the resource dis-
tribution, we quantitatively determined the benefits of joining, both at the
individual and at the group level. At the group level, our results indicated
that joining others was only advantageous if resources are sufficiently clus-
tered and competition rates were low. Effectively, this indicates that group
foraging is only beneficial when patches contain sufficient resources to fa-
cilitate a fair distribution of resource intake rates for all foragers on that
patch. When patches contain little resources instead, or when group sizes
(thus forager densities on the patches) grew, we showed that joining oth-
ers is, in general, not a good strategy. In contrast, on the individual level,
foragers might benefit from these large aggregations when their incentive
differs from optimizing their average foraging efficiencies. We considered
a particularly important alternative incentive: survival. By computing the
variation in resource intake rates, we found parameter regions wherein
group foraging resulted in lower foraging efficiencies, individual advan-
tages were highest. Interestingly, our results conform with empirical obser-
vations that many foragers resort to so-called low mean, low variance strate-
gies [9], instead of optimizing average (group level) foraging efficiencies.

Whereas an underlying assumption in OFT is that foragers, either in-
dividual foragers or group foragers, solely strive to optimize foraging effi-
ciency [10], several arguments against this viewpoint have been discussed
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in the literature [11, 12]. In our case, increased survival rates by reduced
variation in resource intake is a prime example of other objectives that
real-world foragers might pursue. Additionally, foragers might be sub-
jected to predation themselves, and thus traveling and foraging in groups
reduces individual predation risk [13–15]. In general, reasons to aggre-
gate on patches or forage in groups can be plentiful, and should not be
assumed to necessarily originate from OFT. It would therefore be of inter-
est to extend our model to include more incentives for joining others, such
as predation, or discuss foraging in, e.g., fixed-size groups [16].

Finally, we assumed individual foragers to posses relatively simple cog-
nitive capabilities. As an example, we did not consider foragers to take
into account forager densities when at the verge of joining, while these are
known to influence decision making during group foraging [17]. Addition-
ally, our model corresponds to a homogeneous system of foragers, wherein
foragers do not posses a preference and therefore do not base their deci-
sions on internal states such as hunger. However, realistic groups of for-
agers are often inhomogeneous instead [18, 19], and individual traits (e.g.,
preference to be a producer or scrounger, as discussed in Section 1.4.1) are
important to include in future models on group foraging.

Research question 3. How can altruistic behavior increase collective foraging
efficiencies, and how does it depend on the patch persistence?

In contrast to competitive systems, e.g., resulting from competition for lim-
ited resources, many systems instead display feats of altruism, bringing
about collective behavior. To investigate how the effectiveness of altruistic
behavior depends on the spatial distribution of resources, we introduced
a system wherein foragers could actively recruit others towards patches
instead of exploiting the patch by themselves. More specifically, we stud-
ied foragers that could estimate conspecific encounter rates and, using this
estimation, foragers could decide whether to start recruiting others when
detecting a patch. We focused on systems wherein resource density (patch
quality) and patch duration were positively correlated. As a result, within
our framework, foragers resorted to a threshold-based decision on patch
detection. Only patches of sufficient duration provided enough time to
recruit others, thereby triggering (active) recruitment behavior.

Our results indicated that active recruitment increased collective for-
aging efficiencies, but only when patches were difficult to locate (sparse)
and sufficiently persistent. When patch durations were, on average, short,
recruiting behavior was unlikely to lead to conspecific encounters and it
would have been more beneficial if the recruiting forager exploited the
patch by itself instead. Our results further supported this notion by show-
ing that advantages of active recruitment depended strongly on effective
forager densities. We compared active recruitment, by active search for
conspecifics, with passive recruitment, by simple broadcasting of the patch
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location, and showed that active recruitment is only beneficial when effec-
tive forager densities were low. When interactions with conspecifics were
frequent, i.e. when forager numbers were high or when interaction radii
were large, passive recruitment was more efficient. However, as many col-
lective systems exhibit short interaction radii [20–22], our results indicated
that collective systems benefit from active recruitment, provided patches
were sufficiently persistent. Most interestingly, our results furthermore in-
dicated that specific choice of the recruitment threshold was less impor-
tant than the decision whether to recruit at all. This can have profound
influences to applications in artificial systems, as it appears that intricate
decisions and high cognitive capabilities are not necessary to gain benefits
from recruitment behavior.

It should be noted that there do exist collective systems that can trans-
fer information across potentially large distances, e.g. using sound [23–
25]. Additionally, central nesting sites can be used for information transfer
[26, 27]. As we considered ephemeral aggregations wherein only informa-
tion on a single patch location was transferred, higher interaction complex-
ity could potentially unveil more efficient foraging behavior. Addition-
ally, we did not take into account more intricate collective decision making
models that are observed across many taxa (see, e.g., [28–35]). Therefore,
we believe that further study on how information is processed by a collec-
tive system is needed to elucidate advantages and disadvantages of collec-
tive foraging.

Research question 4. How does landscape fragmentation influence populations
of optimal foragers and how can optimal foraging responses lead to changes in
spatial configurations affect the landscape?

Finally, we addressed how foraging behavior translates to population dy-
namics and how it interacted with landscape structure. To this end, we
transformed our forager-resource system, without population dynamics,
to a predator-prey system, with population dynamics. assumed to be ses-
sile and could only inhabit spatially separated patches, representing a frag-
mented landscape, while foragers could instead disperse and move in be-
tween the patches using a Lévy walk. Our results predicted that the effects
of fragmentation per se on population densities were mostly negative, how-
ever effects depend strongly on forager dispersal rates. More specifically,
landscapes that displayed little fragmentation resulted in optimal forager
movement to be highly diffusive, as to both visit far away patches while
not overexploiting them upon arrival. Increases in fragmentation were as-
sociated with decreases in optimal dispersal rates, as highly diffusive for-
agers were much more likely to miss potential prey encounters compared
to less diffusive movement. Furthermore, we discussed species richness as
a measure of ecosystem health, and showed that it predominantly followed
forager densities and not prey densities. Most importantly, however, our
results show irreversible habitat loss resulted from local predation and that
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this decline in effective habitat was exacerbated in highly fragmented envi-
ronments. As we considered prey to be sessile, highly fragmented systems
contained numerous barriers between habitat patches that prey could not
cross. Our results indicated that small patches were much more likely to
become depleted and that subsequent habitat loss generally lead to reduc-
tions in population densities. However, most interestingly, we showed that
optimal responses to decreases in available habitat could reduce, but not
prevent, habitat loss, highlighting the importance of dispersal on the sta-
bility of ecosystems [36, 37].

Whereas our results appeared to indicate that fragmentation nearly al-
ways results in negative effects for population persistence and biodiversity,
it should be noted that our model considered prey as sessile species. Evi-
dently, for such species, barrier effects are larger than when prey is motile.
As an example, if two patches within our model were separate by only a
very small distance, prey could not move from one patch to the other. In
more natural settings, prey might react to forager densities (i.e. avoidance,
see e.g. [38, 39], or might itself forage using specific dispersal characteris-
tics (i.e. multi-species systems, see e.g., [40]). Within our model, this can be
realized both by letting prey disperse, e.g. by having prey disperse using
a Lévy walk as well, or by allowing prey to inhabit sites in between the
fragments by reducing the mortality rate induced by barriers. Especially
the latter is of interest for conservation efforts, as the areas in between frag-
ments greatly influence population persistence [41, 42].

Additionally, movement between separated fragments can be con-
trolled by placement of so-called corridors [43]. This effectively increases
the connectivity of fragmented landscapes, which is crucial to stability of
many ecosystems across the globe [44]. To this end, it would be interest-
ing to extend our model to include such an increased connectivity, as it
might provide stabilizing effects by slowing down rates of habitat loss and
thereby prevent significant decreases in population densities.

Finally, the results presented in this dissertation highlight that decisions
underlying optimal foraging are incredibly complex and, as such, are likely
to affect entire populations. In particular, demographic parameters, such
as reproduction and mortality rates, are undoubtedly a function of, e.g.,
group size, resource availability and foraging strategy. Therefore, we argue
that going forward, population models should integrate individual-based
models, such as OFT, with population models (see, e.g., [45]).
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Future perspectives
Obviously, this dissertation does not provide definitive answers to the
posed research questions, nor was it intended to. Below, we shall present
a general outlook on optimal foraging and identify future avenues that we
argue are worthwhile of further study.

Optimal foraging behavior The value of understanding optimal forag-
ing behavior is derived from its ubiquity: almost all organisms need to
search in order to survive. While several significant contributions towards
understanding this process have occurred in the last few decades, we are
still far from knowing how optimal foraging behavior emerges. Interest-
ingly, optimal foraging is of interest to scientists from vastly different back-
grounds, as it integrates mathematical theories and physical properties of
random walks with behavioral characteristics of (collective) decision mak-
ing. Therefore, we argue that, going forward, understanding optimal for-
aging behavior will require an interdisciplinary approach.

Current advances on the study of optimal foraging, including the ones
presented in this dissertation, often resort to identifying how and when
specific foraging behavior is optimal. However, very little research has
been done on elucidating the biological mechanisms that generate optimal
foraging behavior [46] (but see [47]). As even simple organisms display
complex, adaptive foraging strategies, we argue that researchers should
now focus on developing explainable models for such model organisms as
to gain a grasp on the mechanisms underlying optimal foraging behavior.
Potentially, study of these mechanisms might uncover a universal frame-
work that can explain how optimal foraging characteristics came to be.

Foraging from an evolutionary standpoint Whereas the work in this dis-
sertation addresses optimal foraging strategies, it does not contain any dis-
cussion on how foraging success might result in evolutionary pressure to-
wards evolving complexity. For example, it has been suggested that for-
aging benefits of spatial memory in predictable environments might have
acted as a stimulus for improved cognition [48, 49]. Similarly, why many
animals choose, or do not choose, to live in groups could also have orig-
inated from foraging arguments, and could perhaps have been an under-
lying factor in the history of human civilization [50]. Therefore, we argue
that future studies into how observed foraging behavior can be shaped
by an evolutionary pressure to forager efficiently will provide incredible
amounts of insights on why animals forage as they do.

From a more practical standpoint, this means that evolutionary mod-
els, e.g. foraging systems with birth and death processes subjected to evo-
lutionary pressure, and optimal foraging models should be integrated. Re-
search into such systems might isolate what fitness function foragers opti-
mize, how emerging optimal strategies depend on critical parameters such
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as forager density and resource availability, and how these insights might
explain the foraging behavior that is observed in natural systems.

Ecological consequences of optimal foraging Finally, we would like to
address foraging from a more conservational viewpoint. As ecosystems
all over the the world are rapidly changing, most often due to anthro-
pogenic influences, it becomes of utmost importance to understand how
these changes affect the animals living within. To predict how animals will
respond to these negative effects, such as habitat loss, we first need to know
how their behavior depends on the environmental conditions. Whereas the
work presented in Chapter 5 explores how landscape fragmentation might
influence foraging behavior, much more work is needed to fully under-
stand the influences of our own actions before it is too late. Additionally,
it has recently become apparant that species experience intricate trophic
interactions [51], indicating that effects on populations of many interact-
ing species are incredibly difficult to predict [52, 53]. Therefore, we should
now start to include these complex interactions into population models,
and discuss the influence of rapid changes to ecosystem health and stabil-
ity. In doing so, we might possibly discover potential solutions to suppress
the current rate of biodiversity decline.

Final remarks

At the very least, we hope to have introduced some to optimal foraging
theory as a means to find their lost items just a little quicker. Going for-
ward, we argue that despite the fact that the open challenges regarding
optimal foraging are difficult to address, the research contained in this dis-
sertation contributes to this debate and hopefully assists some to continue
studying foraging behavior, its origins and its future.
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