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Nederlandse samenvatting

De vijfde generatie telecommunicatietechnologie (5G), in combinatie met andere

technologieën zoals kunstmatige intelligentie en internet-of-things (IoT), zal de

manier waarop we vandaag leven en met elkaar omgaan veranderen, zowel in

de industrie als in de samenleving. 5G maakt een bredere netwerkdekking, be-

trouwbare netwerkverbindingen en snellere gegevensoverdracht mogelijk, en het

langetermijnperspectief van 5G is enorm. Met de snelle toename van het aantal

apparaten en machines dat verbonden is met het internet, is een nieuw tijdperk

van informatie-gestuurde toepassingen en ecosystemen aangebroken. 5G zal deze

groei mogelijk maken, en zal samen met de hoeveelheid gegevens die hierdoor

wordt gegenereerd, het begin vormen van een tijdperk van “Massive IoT”. In de

komende jaren zal 5G zorgen voor een snellere netwerkverbinding via verbeterde

mobiele breedbanddiensten, met name dankzij hoogfrequente of millimetergolf-

banden (mmWave). Naast verbeteringen aan de bestaande functies van mobiele

netwerken, ondersteunt 5G nieuwe functies voor kritieke toepassingen zoals externe

bediening van infrastructuur, drones, robotica en voertuigen. Deze functies vereisen

een stabiele verbinding met een extreem lage wacht- en reactietijd.

Om de efficiëntie van het radiospectrum dat door dergelijke technologieën wordt

gebruikt, te vergroten, werken onderzoekers aan het nauwkeurig modelleren van het

radiokanaal tussen de zend- en ontvangstantennes. Het radiokanaal is het medium

waarin het draadloze signaal zich voortbeweegt en is verantwoordelijk voor de

veranderingen van de kenmerken van het signaal dat bij de ontvanger aankomt. Het

fenomeen van multipad-propagatie beschrijft de veelheid aan ontvangen signalen

die het resultaat zijn van verschillende interacties met de fysieke objecten in de

omgeving. Dergelijke interacties vinden plaats via verschillende propagatiemecha-

nismen zoals reflectie, diffractie en verstrooiing. Kanaalmodellering heeft dus tot

doel een wiskundige weergave te maken van de effecten die het communicatie-

kanaal heeft op de karakteristieken van de draadloze signalen, wat fading wordt

genoemd. Met behulp van nauwkeurige kanaalmodellen is een realistische evaluatie

van de prestaties mogelijk bij het ontwerp van communicatiesystemen, evenals

het optimaliseren van linkprestaties en datasnelheden. In dit werk richten we ons

enerzijds op kanaalmodellering voor communicatie tussen voertuigen, en anderzijds

op kanaalmodellering voor binnen-toepassingen, zoals het waarnemen van mensen

in een industriële ruimte.

Bij communicatie tussen voertuigen verandert de propagatieomgeving snel als

gevolg van de mobiliteit van de voertuigen, de relatief lage positie van de antennes

en het grote aantal objecten dat zich mogelijk rond de zender en ontvanger bevindt.
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Bijgevolg is het onderliggende fadingproces in deze kanalen selectief in zowel

de tijd als frequentie, en de statistische eigenschappen ervan blijven niet constant

(stationair) gedurende lange tijdsduur en over de volledige frequentiebandbreedte.

Met andere woorden, de propagatiekanalen van voertuigen verschillen aanzienlijk

van de bekende draadloze cellulaire netwerken, waardoor speciale meetcampagnes

en realistische modellen van radiokanalen nodig zijn om hun potentieel volledig

te benutten. Naast communicatie tussen voertuigen vormt ook draadloze commu-

nicatie in industriële binnen omgevingen een uitdaging. Terwijl typische binnen

omgevingen (bv. woningen en kantoren) dispersieve fading ervaren, kunnen omge-

vingen met veel metalen voorwerpen dispersie hebben op hogere niveaus. Sterk

reflecterende omgevingen worden gekenmerkt door een rijke elektromagnetische

verstrooiing, tijds- en hoekspreiding, en kunnen kenmerken van een complexe

caviteit vertonen. Het hoofddoel van dit werk is het modelleren van draadloze

radiokanalen voor verschillende scenario’s en toepassingen met betrekking tot toe-

komstige 5G-netwerken, die zullen helpen bij het ontwikkelen van efficiëntere en

robuustere communicatie- en detectieoplossingen. Het eerste deel is gewijd aan

het bestuderen van het gedrag van draadloze kanalen voor communicatie tussen

voertuigen met een focus op stochastische modellering van propagatieparameters

voor het niet-stationaire fadingproces. Het doel van het tweede deel is om het propa-

gatiekanaal binnenshuis te onderzoeken in sterk reflecterende industriële scenario’s.

De reflecterende kenmerken van dergelijke omgevingen zijn gemodelleerd op basis

van de theorie van elektromagnetische straling en worden gebruikt in toepassingen

voor het waarnemen van mensen in een ruimte.

In Hoofdstuk 2 wordt het onderzoek naar het niet-stationaire fadingproces gepre-

senteerd op basis van voertuig-naar-infrastructuur (V2I) mobiele kanaalmetingen in

een voorstedelijke omgeving. De stationariteit in de tijds- en frequentiedomeinen

wordt bepaald door de geldigheid van respectievelijk de wide-sense stationaire

(WSS) en ongecorreleerde verstrooiing (US) aannames. Het fading proces in kana-

len voor communicatie tussen voertuigen is niet-stationair, d.w.z. niet-WSSUS. Een

niet-stationair proces kan echter worden onderverdeeld in opeenvolgende stationa-

riteitsgebieden met een eindige uitbreiding in tijd en frequentie, waarbij de WSS-

en US-aannames geldig zijn, waardoor de statistische momenten kunnen worden

berekend. Daartoe wordt de niet-parametrische lokale verstrooiingsfunctieschatter

gepresenteerd en gebruikt om de stationariteits-tijd te schatten. De niet-stationaire

fadingparameters worden statistisch gemodelleerd voor verschillende polarisaties,

en de toepassingsrelevantie in termen van kanaalcapaciteit en diversiteitstechnieken

wordt besproken. Hoofdstuk 3 richt zich op het modelleren van het niet-stationaire

mobiele kanaal in tunnels. Het maakt gebruik van de stationariteits-analyse die in

Hoofdstuk 2 wordt gepresenteerd, naast een tweevoudig-gepolariseerde kanaalana-

lyse met meerdere ingangen en meerdere uitgangen. Op basis van V2I-metingen

in rechthoekige en gewelfde tunnels wordt de impact van verkeersdichtheid en

antennekarakteristieken (directiviteit en polarisatie) op de niet-stationaire fadingpa-

rameters onderzocht. Hoofdstuk 4 bespreekt de parametrische modellering van het

niet-stationaire fadingkanaal via een vector tijd-frequentie auto-regressieve benade-

ring. De benadering wordt toegepast om het gemeten propagatiekaneel in tunnels
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uit Hoofdstuk 3 te simuleren. De stabiliteit van een dergelijk model wordt onder-

zocht en het model wordt gevalideerd door de parametrische en niet-parametrische

spectra te vergelijken.

In reflecterende binnenomgevingen is diffuse verstrooiing een relevant pro-

pagatie mechanisme. Het omvat de dichte multipad-verstrooide velden alsook

zwakke gereflecteerde componenten nadat alle mogelijke gereflecteerde paden uit

de meetgegevens zijn verwijderd. De diffuse vermogensdichtheid kan tot 95%

van het totale vermogen vertegenwoordigen in omgevingen met veel verstrooiing

en kan worden gekarakteriseerd op basis van de ruimte-elektromagnetische (RE)

theorie. Net als bij ruimte-akoestiek, beschouwt RE de binnenomgeving als een

verlieslatende ruimte, waar alle effectieve verliezen kunnen worden beschreven

door de exponentiële afname van de diffuse velden in de tijd. De vervaltijdconstante,

ook wel de nagalmtijd (RT) genoemd, is een functie van het volume en het absorp-

tieoppervlak van de kamer. Een algemene beschrijving van de RT is gebaseerd op

de Sabine-nagalmtheorie. In Hoofdstuk 5 wordt de reflecterende binnenomgeving

van industriële schepen gemodelleerd op basis van de RE-theorie. Er wordt een

op RF gebaseerde methode voor het schatten van de bezetting geı̈ntroduceerd die

gebruik maakt van de RT-parameter. De methode is experimenteel gevalideerd in

een benedendeks scheepscompartiment met behulp van radiokanaal meetappara-

tuur en commerciële kant-en-klare ultra-breedband apparatuur. Daarnaast wordt

een op Doppler gebaseerde valdetectiemethode voorgesteld als een aanvullende

techniek voor veiligheids-, bewakings- en waarschuwingssystemen. In Hoofdstuk

6 wordt aandacht besteed aan de frequentieafhankelijkheid van de RT tot 40 GHz.

Binnenmetingen in een laboratoriumomgeving worden gebruikt om de RT, Q-factor

en de gemiddelde absorptiecoëfficiënt van de kamer te modelleren. Het model is

gevalideerd door vergelijking met gerapporteerde onderzoeken. Ten slotte besluit

Hoofdstuk 7 dit boek met een samenvatting van het volbrachte werk en enkele

mogelijkheden voor toekomstig onderzoek.





English Summary

The fifth generation of telecommunication technology (5G), in combination with

other technologies like artificial intelligence, internet-of-things (IoT), and more

will change the way we live and interact today, in industries as well as in societies.

5G has promised to provide wider network coverage, reliable network connections

and faster data transfer. In contrast to mobile network technologies so far, the

long-term perspective of 5G is tremendous. With the rapid increase in the number

of connected devices and machines, a new era of information-driven applications

and ecosystems has emerged. 5G will enable this growth along with the amount of

data generated by it, introducing an era of Massive IoT. Over the next few years,

5G will provide faster network connection through enhanced mobile broadband

services especially at high frequency or millimeter wave (mmWave) bands. Besides

the improvements to the existing features of mobile networks, 5G will support

mission critical control usage scenarios. These scenarios, such as remote control

for critical infrastructure, drones, robots and vehicles, require a stable connection

with an extremely low latency.

In order to increase the efficiency of the radio spectrum used by such tech-

nologies, researchers work to accurately model the radio channel between the

transmitting and receiving antennas. The radio channel is the medium through

which the wireless signal propagates, and is responsible for the changes of the

characteristics of the signal arriving at the receiver. The phenomenon of multipath

propagation describes the multitude of received signals resulting from several in-

teractions with the physical objects in the environments. Such interactions happen

through different propagation mechanisms like reflection, diffraction, and scattering.

Thus, channel modelling aims to make a mathematical representation of the effects

the communication channel has on the wireless signals characteristics, that is called

fading. Using accurate channel models, realistic evaluation of the overall perfor-

mance is possible in the design of communication systems, as well as optimizing

link performances and data rates. In this work, we focus on channel modelling for

vehicular communications and indoor applications such human sensing at mmWave

for IoT.

In vehicular communications, the scattering environment changes rapidly due

to the mobility of the vehicles, the relative low height of the antennas and the

large number of scatterers potentially located around the transmitter and receiver.

Consequently, the underlying fading process in these channels is time and frequency

selective, and its statistical properties do not remain constant (stationary) for long

time duration and frequency bandwidth. In other words, the vehicular propagation
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channels are significantly different from the well-known wireless cellular networks,

such that dedicated measurement campaigns and realistic radio propagation channel

models are required in order to fully exploit their potentials. On the other hand,

wireless propagation in indoor industrial environments is challenging. While

typical indoor environments (e.g. residential and office) experience dispersive

fading, highly metallic environments can have dispersion at much higher levels.

Highly reflective environments are characterized by rich electromagnetic scattering,

time and angular dispersion, and can exhibit features of a complex reverberant

cavity. The main aim of this work is the modelling of wireless radio channels

for different scenarios and applications related to 5G future networks, that will

help develop more efficient and robust communication and sensing solutions. The

first part is dedicated to studying the behavior of wireless channels for vehicular

communications with a focus on stochastic modelling of propagation parameters for

the non-stationary fading process. The goal of the second part is to investigate the

indoor propagation channel in highly reflective industrial scenarios. The reverberant

characteristics of such environments are modelled based on the theory of room

electromagnetics, and exploited for human sensing applications to highlight their

importance and utility.

In Chapter 2, the investigation of the non-stationary fading process is presented

based on vehicle-to-infrastructure (V2I) mobile channel measurements in a sub-

urban environment. The stationarity in the time and frequency domains are defined

by the validity of the wide-sense stationary (WSS) and uncorrelated scattering

(US) assumptions, respectively. The fading process in vehicular channels is non-

stationary, i.e., non-WSSUS. However, a nonstationary process can be divided

into consecutive stationarity regions with finite extension in time and frequency

where the WSS and US assumptions are valid, allowing to calculate its statistical

moments. To that end, the non-parametric local scattering function estimator is

presented and used to estimate the stationarity time based on the channel correla-

tion function. The non-stationary fading parameters are statistically modelled for

different polarizations, and application relevance in terms of channel capacity and

diversity techniques is discussed. Chapter 3 focuses on modelling the non-stationary

mobile channel in tunnels. It uses the stationarity analysis framework presented

in Chapter 2 in addition to dual-polarized multiple-input multiple-output channel

analysis. Based on V2I measurements in rectangular and arched tunnels, the impact

of traffic density and antenna characteristics (directivity and polarization) on the

non-stationary fading parameters are investigated. Chapter 4 discusses the para-

metric modelling of the non-stationary fading channel via a vector time-frequency

autoregressive approach. The approach is applied to simulate the measured tunnel

propagation channel from Chapter 3. Stability of such model is investigated and

the model is validated by comparing the parametric and non-parametric spectra.

In reflective indoor environments, diffuse scattering is a relevant propagation

mechanism. It includes the dense multipath scattered fields plus weak specular

components after removing all possible specular paths from the measurement data.

The diffuse power density may represent up to 95% of the total power in rich scat-

tering environments and can be characterized based on the room electromagnetics



ENGLISH SUMMARY xxv

(RE) theory. Similar to room acoustics, RE views the indoor environment as a

lossy cavity, where all the effective losses can be described by the exponentially

decaying tail of the diffuse fields in time. The decay time constant, also known as

the reverberation time (RT), is a function of the volume and the absorption area of

the room. A general description of the RT is based on Sabine’s reverberation theory.

In Chapter 5, the indoor reverberant environment of industrial ships is modelled

based on the RE theory. RF-based occupancy estimation method is introduced that

makes use of the RT parameter. The method is experimentally validated in a below-

deck ship compartment using radio channel sounder equipment, and commercial

off-the-shelf ultra-wideband devices. In addition, a Doppler-based fall detection

method is proposed as a complementary technique for safety monitoring and alert

systems. In Chapter 6, attention is paid to the frequency-dependency of the RT up

to 40 GHz. Indoor measurements in a lab environment are utilized to model the RT,

Q-factor, and the average absorption coefficient of the room. The model is validated

by comparison to reported studies. Finally, Chapter 7 concludes this book with a

summary of the accomplished work, and some opportunities for future research.





1
Introduction

1.1 Context and motivation

The recent years have seen a rapid increase in the number of wireless devices,

including smart phones, tablets, gadgets, vehicles and even machines, resulting

in a massive amount of accessible information. This opened the door for a new

level of emerging applications and innovative use cases as shown in Figure 1.1,

that are yet to be completely defined today. The new era of information led to the

development of 5G [1]. The fifth generation (5G) of mobile networks promises to

deliver a unifying connectivity that will take on a much larger role than previous

generations. It is a new kind of network that will not only interconnect people,

but also interconnect and control machines, objects, and devices. For the past

four decades, mobile networks have evolved to connect people in new and better

ways. Approximately, every 10 years a new generation of mobile technologies is

introduced that delivers a big leap in performance, efficiency and capability. While

the first four generations of mobile networks connected people by delivering better

voice and faster data services, it is envisioned that 5G will do much more [2]. It is a

platform for innovations that will redefine a wide range of industries by connecting

virtually everyone and everything, from workers and patients to robots and crops,

supporting the connectivity needs across a variety of world-changing use cases [3].

5G technology, along with technologies like Artificial Intelligence, Internet

of Things (IoT), and more will change the way we live and interact today, in

industries as well as in societies [4, 5]. It has promised to provide wider network



2 INTRODUCTION

Figure 1.1: Illustration of 5G main features and future prospects (Source: Gigabyte - What

is 5G?)

coverage, reliable network connections and faster data transfer [2]. In contrast to

mobile network technologies so far, the long-term perspective of 5G is tremendous,

as shown in Figure 1.1. Over the next few years, it will provide faster network

connection through Enhanced Mobile Broadband services. The number of IoT

devices is expected to grow by 145% to 75 billion devices until 2025 [6]. 5G will

enable this growth along with the amount of data generated by it, introducing an

era of Massive IoT. Besides the improvements to the existing features of mobile

networks, 5G will be especially ground-breaking in terms of mission critical control

usage scenarios. These scenarios, such as remote control for critical infrastructure,

drones, robots and vehicles, require a stable connection with an extremely low

latency.

5G is envisioned to support a multitude of service and devices, thus it needs

to be adaptable to a huge variance of requirements around coverage, throughput,

capacity, latency, reliability, etc. [2]. 5G must scale from supporting low data rate

sensors at kbps to new immersive mobile experiences at multi-Gbps. In addition,

5G will make the best use of the spectrum available across regulatory types and

spectrum bands. While previous generation networks primarily operated in licensed

spectrum bands below 3 GHz, 5G will bring the next level of integration with

support for licensed, unlicensed, and shared spectrum. Moreover, 5G will expand

spectrum usage to low bands below 1 GHz, mid-bands between 1 GHz and 6 GHz,

and high bands above 24 GHz. Making this 5G vision a reality will require a

unified, more capable air interface design that will bring new levels of flexibility,

scalability, and efficiency to meet the expanding connectivity needs in the next
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Figure 1.2: Illustration of 5G radio access technologies (Source: Qualcomm 5G-NR)

decade and beyond [7]. One of the enabling technologies of 5G new radio (5G NR),

shown in Figure 1.2, is millimeter wave (mmWave) communications. Benefiting

from the very large bandwidth, mmWave communication is able to provide a

data rate of several gigabits per second with ease. Higher frequency propagation

introduces severe path loss. However, if we consider small cells of 100–200 m

radius, the mmWave communication can achieve satisfactory performance. Another

approach to overcome high path loss is beamforming, which can be achieved along

with massive multiple-input multiple-output (MIMO) technologies. A high-gain

steerable antenna array is able to transmit or receive signals in specific directions,

get around obstructions, and compensate for severe path-loss. Besides, massive

MIMO can greatly increase the capacity and reliability of the system with respect

to the conventional MIMO [8].

5G should provide seamless coverage and high-quality connectivity between var-

ious devices and behave well under diverse network topologies, such as multi-hop

networks, moving networks, device-to-device, vehicular communications, etc [9].

Furthermore, 5G systems should be adapted to a wide range of scenarios, such

as indoor, urban, suburban, rural areas, etc. All the above-mentioned technolo-

gies set new requirements for 5G channel modelling [10]. Channel modelling is

very important for algorithm and system design, such as channel estimation and

compensation. It allows rapid and efficient testing and performance evaluation via

simulation or emulation. In this work, we focus on channel modelling for vehic-

ular communications and mmWave and indoor applications such as human
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Figure 1.3: Overview of the state-of-the-art and challenges of channel modelling for 5G and

beyond

sensing for IoT. The work combines efforts and findings from two separate research

projects, thus the organization of this work into two parts. The first part deals with

outdoor mobile channel modelling for vehicular applications, while the second part

focuses on indoor channel modelling at mmWave and human sensing in industrial

environments. Figure 1.3 gives an overview of the state-of-the-art and challenges

of channel modelling for 5G and beyond [10]. The main areas to which our work

contributes are highlighted in red. A new 5G channel model should support a wide

frequency range (e.g., 350 MHz to 100 GHz). The model at higher frequency

bands ( e.g., above 6 GHz) should maintain compatibility with the model at lower

frequency bands [10]. The parameters and statistics of the channel model should

vary smoothly with the frequency. Channel parameters and statistics at adjacent

frequencies should have strong correlations ensuring frequency dependency and

consistency. In vehicular scenarios, both the transmitter and receiver are equipped

with lower antennas and may interact with a larger number of scatterers. Channel

models have to take into account the mobility of both ends, which significantly

increases the modelling complexity. The relative speed between the two ends and

rapid-changing environments introduce extra Doppler frequency shift and result in

serious non-stationary channels. All of these make the vehicular channels differ

greatly from conventional cellular channels [11].
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1.2 Outdoor channel modelling for vehicular appli-

cations

Vehicular communications have recently attracted much interest due to the rapid

development of wireless communication technologies. Through the integration

of information and communication technologies, all road users can gather sensor

data and share information about traffic and road state dynamics with each other

and with the road infrastructure. This envisioned intelligent transportation system

(ITS) will improve the safety and efficiency of transportation by enabling a wide

range of applications [12]. Such systems require reliable low-latency vehicular-to-

vehicular (V2V) and vehicular-to-infrastructure (V2I) communication links that

provide robust connectivity at a fair data rate. An essential requirement for the

development of such vehicular systems is the accurate modelling of the propagation

channel in different scenarios and environments [13].

Some V2I propagation channels resemble existing cellular links, where one

node is stationary, while the other node is mobile. In urban areas, the roadside unit

(RSU) is placed at lamp post height, much lower than the rooftops of surrounding

buildings, and typically at intersections. In other areas, the RSU is placed at 1-

2 m height, making it similar to the V2V scenario from a propagation point of

view [14]. The unique placement height and surroundings of the nodes for vehicular

communication result in different dominant propagation mechanisms [14]. For

example, propagation over rooftops is dominant in cellular communications, while

scattering in the horizontal plane over short distances (<100m) is more important

for vehicular communications with surrounding scatterers of higher density and

mobility. One of the main challenges that strongly differs from cellular scenarios is

the rapidly time-varying radio propagation channel for vehicular communications.

Owing to the changing scattering environment and the mobility of the transmitter

(Tx) or the receiver (Rx), the vehicular communication channel is characterized by

a non-stationary fading process [15, 16]. One of the main challenges of V2I is the

expected large Doppler shift of the line of sight (LOS) path when the vehicle passes

by the RSU at high speed. This is due to the higher relative speed and smaller

LOS angle of arrival/departure of Rx/Tx in the V2I case. Such fast Doppler shifts

would increase the non-stationarity of the channel and cause serious performance

degradation to the communication system, if not carefully addressed via Doppler

planning and compensation [17].

1.2.1 Wireless channel models

In wireless propagation, the transmitted signal is modelled when arriving at the

receiving antenna as a collection of plane waves, also called propagation paths

or multipath components (MPCs). Each propagation path interacts with physical
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Figure 1.4: multipath propagation

objects in the environment while traveling through the propagation medium or the

radio channel. Multipath propagation is thus responsible for the changes of the

characteristics of the signal due to a multitude of possible interactions with realistic

objects via different propagation mechanisms. Figure 1.4 shows a schematic of

multipath propagation in the V2I scenario. Main propagation phenomena include:

reflection from a smooth specular surface like walls, vehicles, people, and ground,

scattering of rough surfaces in a non-coherent (diffuse) manner when the surface’s

irregularities are comparable to the wavelength of the traveling signal e.g. trees

foliage, and diffraction when the waves bend over edges into the shadowed regions

due to interference following the Huygens-Fresnel principle [18].

A channel model can be considered as a mathematical representation of the

radio channel impulse response (CIR). The generated CIRs are used for the purpose

of system performance simulation. The exact CIR is the result of solving the

Maxwell equations given a specific site and boundary conditions. However, it is

not practical to solve them on a large scale, and an approximated solution should

be obtained [13]. The wireless channel modelling approaches can be classified

according to the accuracy of their approximation into deterministic versus stochastic

models, shown in Figure 1.5. The most basic approach is the replay model, where

the CIRs collected in measurement campaigns are used as the channel in system

simulations. However, they are only valid for the very specific scenarios where

the measurements were taken. Ray-tracing models are based on the ray theory of

propagation, including interaction mechanisms such as shown in Figure 1.4. They

require the full description of the environment, including terrain data, materials,

and each object’s geometry, location and scattering properties [13]. The time and
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Figure 1.5: General classification of wireless channel models

computational demands of such models are often unrealistic owing to the very large

number of scatterers and the lack of exact material parameters knowledge.

For stochastic models, the fundamental distinction is between physical and ana-

lytical models. Physical channel models characterize an environment by describing

the physical parameters of the double-directional multipath propagation shown in

Figure 1.4. Physical models, which can be MPC-based or cluster-based, are usually

classified as geometry-based stochastic models (GBSM) and non-geometric stochas-

tic models, also known as parametric stochastic models (PSM). The term GBSM

refers to the fact that the modeled impulse response is related to the geometrical

location of Tx/Rx and other interacting objects. The regular-shaped GBSM places

the scattering points around the Tx and Rx in a shape of a circle or ellipse, while

the irregular-shaped GBSM only places scattering points on physically realistic

positions. Figure 1.6 shows an overview of the channel models commonly used

for vehicular scenarios, including the GBSM. The channel model is derived as

follows. Firstly, the GBSM gives a mathematical function of the CIR obtained

from the electromagnetic properties of environment, and then utilizes the proposed

stochastic distribution of the scatterers along with the geometrical knowledge to get

the statistical properties of the parameters. The PSM, on the other hand, describes

the statistical properties of the fading process based on the measured CIRs, without

assuming an underlying geometry. The most commonly used type is the tapped-

delay line (TDL), also shown in Figure 1.6. It is a wideband stochastic approach

that models the time and frequency selectivity of the fading process via a finite

number of delay taps, each following a given Doppler spectrum. The TDL model

has been widely adopted due to its flexibility and low complexity compared to the
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Figure 1.6: Overview of wireless channel models commonly used for vehicular scenarios:

a) regular-shaped GBSM, b) irregular-shaped GBSM, c) ray-tracing, d) stochastic tapped

delay line [13]

other approaches [13].

In contrast to physical models, analytical channel models characterize the CIR

between the individual Tx and Rx antennas in a mathematical/analytical way with-

out explicitly accounting for wave propagation. Analytical models are popular for

synthesizing MIMO matrices in the context of system and algorithm development

and verification. The most common type is the correlation-based models, such

as the Kronecker model and the Weichselberger model, which characterize the

MIMO channel matrix statistically in terms of the correlations between the matrix

entries [19].

1.2.2 The WSSUS channel

In this work, we use the PSM to describe the wireless propagation in terms of the

MPCs physical parameters. Various parameters can be associated with a propagation

path such as: directional parameters like the angles of arrival and departure (AoA,

AoD) which describe the spatial properties of the MPC, a delay parameter which

quantifies the amount of time it takes to travel the path distance, and a complex

amplitude parameter expressing the magnitude and phase of the MPC’s electric

field as seen at the receiving antenna. For the single-input single-output (SISO)
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channel, the channel parameters are further simplified by modelling the MPC only

through the time delay of arrival and the Doppler spectrum governing the time

variation, irrespective of their AoDs and AoAs. This results in the TDL model

shown in Figure 1.6. Hence, the wireless channel can be represented as a random

linear time-variant (LTV) system in the form of

r(t) =
∑

τ

h(t, τ)s(t− τ). (1.1)

The received signal r(t) is related to the transmit signal s(t) via the 2-D CIR

function h(t, τ) (neglecting noise and interference), where t is the time and τ is

the delay. Theoretically, the CIR is a continuous function of both τ and t, but for

a bandlimited system, the discrete form representation such as the TDL model is

widely used to match the symbol period of a given system. The system can also

be expressed in terms of frequency shifts by the spreading function SH(ν, τ) =

F
t→ν

{h(t, τ)} where F is the Fourier transform and ν is the Doppler frequency.

For most wireless communication systems, statistical descriptions of individual

system functions are sufficient, and these functions can be fully characterized by

their autocorrelation functions, e.g. E{h(t′, τ)h∗(t, τ ′)} or E{SH(ν
′, τ)S∗

H(ν, τ
′)},

where ∗ is the complex conjugate. Generally, the autocorrelation functions depend

on four variables. If the channel is wide-sense stationary (WSS), the autocorrelation

function depends on the relative time difference only. That is to say, we can drop

the time variables t and t′ and use their difference ∆t. The WSS assumption also

implies uncorrelated Doppler shifts due to the time-frequency duality of the Fourier

transform. Thus, the dependence on Doppler variables ν′ and ν shall be replaced

by a Dirac function δ(ν − ν′). The uncorrelated scattering (US) condition assumes

that the channel can be represented by uncorrelated MPCs, i.e., both amplitudes

and phases are uncorrelated for components with different delays. An US channel

will be WSS in the frequency domain, again because of the time-frequency duality.

The CIR is a WSSUS random process when h(t, τ) is stationary with respect

to t and mutually uncorrelated for different τ . Hence, the autocorrelation of the

scattering function simplifies to

E{SH(ν
′, τ)S∗

H(ν, τ
′)} = CH(ν, τ)δ(ν − ν′)δ(τ − τ ′), (1.2)

where CH(ν, τ) is known as the scattering function, i.e., the power spectral density

of the WSSUS process. For non-WSSUS channels, discussed in the following

sections, this simplification is only valid within certain time and frequency intervals,

known as the stationarity time and stationarity bandwidth, respectively [16]. The

local scattering function (LSF) CH(t, f ; ν, τ) becomes time and frequency depen-

dent, which then describes the power of MPCs with delay τ and Doppler shift

ν occurring at time t and frequency f [16]. This is true for doubly-underspread

channels, a condition satisfied by most practical wireless radio channels, as will
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be discussed later. It means that the amount of delay-Doppler correlation has to

be smaller than the amount of delay-Doppler dispersion. In other words, only the

neighboring MPCs are correlated [16].

1.2.3 Non-stationary fading channel

In the past, propagation channel models have adopted the WSSUS assumptions [20].

They imply that second-order channel statistics are independent of the absolute time

and frequency, and hence, allow for a simplified statistical description of channels;

this has formed the basis of many designs of wireless transceivers. However, the

WSSUS assumptions are not always fulfilled in practice, particularly in vehicular

scenarios, and thus must be accounted for [21]. The author in [22] has shown that,

in both single and multi-carrier systems, the WSS assumption in V2V channels

can lead to optimistic bit-error rate (BER) simulation results that are erroneous.

In reality, power, delay and Doppler associated with reflected MPC drift with

time (WSS-violation), and channels show correlated scattering due to several

MPCs that are close in the delay-Doppler domain resulting from the same physical

object, or delay/Doppler leakage due to bandwidth/time limitations at Tx or Rx

(US-violation).

The non-stationarity can be characterized by assuming a local stationarity for

a finite region in time and frequency. A definition of the stationarity time and

stationarity bandwidth is proposed in [16], where the author provides a theoretical

framework that extends the scattering function of the WSSUS to a time-frequency

(TF) dependent local scattering function. The LSF can be estimated within this

finite region where WSSUS assumptions approximately hold [23]. This stationarity

region is computed from the channel correlation function (CCF), which extends the

TF correlation function of the WSSUS [16, 20].

For WSSUS channels, the scattering function is the power spectrum of the chan-

nel transfer function (CTF) H(t, f), while for non-WSSUS channels, the scattering

function is not defined [20]. In [16], the author introduces the TF-dependent LSF

as an extension to the WSSUS scattering function. The CCF appropriate for the

non-WSSUS case is also defined, which extends the TF correlation function of

WSSUS channels. The LSF CTF and CCF ATF are given as

CTF(t, f, τ, υ) =

∫∫
RTF(t, f,∆t,∆f)e−j2π(υ∆t−τ∆f)d∆td∆f (1.3)

and

ATF(∆t,∆f,∆τ,∆υ) =

∫∫
RTF(t, f,∆t,∆f)e−j2π(t∆υ−f∆τ)dtdf (1.4)

where RTF(t, f,∆t,∆f) is the autocorrelation of the CTF for time lag ∆t and

frequency lag ∆f . It is shown in [16] that the LSF describes the mean power of
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effective scatterers causing delay-Doppler shifts (τ, υ) at time t, and frequency f .

However, it does not characterize the scatterers correlation, thus the introduction of

CCF. The following relation shows that the correlation of scatterers separated by

the lags (∆τ,∆υ,∆t,∆f) is measured by the integral CCF

ATF(∆t,∆f,∆τ,∆υ) =

∫∫∫∫
CTF(t, f, τ, υ) (1.5)

× e−j2π(t∆υ−f∆τ+τ∆f−υ∆t)dtdfdτdυ

1.2.3.1 Measuring non-stationarity

In order to evaluate how much the non-stationary models truly reflect the varying

nature of the vehicular channel, accurate characterization of the non-stationarity of

the channel is required. For a non-stationary channel, the fading statistics change

in time. Since communication algorithms often rely on the knowledge of second-

order statistics of the channel, appropriate measures of the similarity between

channel statistics are required, so that the fading parameters can be accurately

evaluated and the channel modelling becomes physically meaningful. For stochastic

modelling [24], the WSS region is first estimated and the time-varying parameters

(MPCs lifetime, birth, initial power, angle and delay as well as their dynamic

evolution) are modeled in terms of the WSS regions, while the small-scale fading

is characterized within each region. GSCM can incorporate non-stationarity via

varying some channel parameters over time (e.g. number of delay taps and angles of

propagation paths of regular-shaped GSCM in [25]), or via random mobility models

that use dynamic motion (e.g. changes of speed and moving direction in [26]).

The WSS region is then used as a measure of non-stationarity in order to validate

such models, by showing that the resulting CTF has the same WSS region as found

from realistic measurements [25]. Several measurement-based metrics have been

proposed to measure the size of the WSS region.

A traditional measure of the change in channel statistics is the shadow fading

correlation [27], where the decorrelation distance of shadowing can be considered as

an equivalent stationarity distance as proposed in [28]. Correlation matrix distance

(CMD) was proposed in [29, 30] to characterize the non-WSS behavior of MIMO

channels. Spectral divergence (SD) measures the distance between strictly positive

spectral densities and was applied to LSF measured at different times in [31].

However, since it is an unbounded pseudo-metric, it can only qualitatively assess

the non-WSS nature of channels. A comparison of the above metrics was provided

in [32], where it was suggested to use SD and shadowing metrics for a measurement

system with a small electrical array aperture, e.g. 4×4, and to use the CMD metric

for arrays with large electrical apertures. Authors in [33, 34] defined a statistical test

where the intervals of WSS are identified based on the evolutionary power-delay

profile (PDeP) estimated at different time instances. Another approach is based on
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Figure 1.7: Collinearity of LSFs over a 250 ms period and the local stationarity region (in

red) at a certain instance t = 100 ms for a 0.9 threshold value

the collinearity between spectral densities [15, 35], which can be calculated as

CL(t1, t2) =
cH(t1)

T cH(t2)

∥cH(t1)∥ ∥cH(t2)∥
, (1.6)

where cH(t1) is the power spectral density at time instance t1 stacked in a vector

form. Collinearity was calculated between consecutive PDePs in [36] and between

LSFs in [35], and the support of the region where it exceeds a certain threshold

was used as an estimate of the local region of stationarity (LRS). Figure 1.7 shows

the collinearity of LSFs over a 250 ms period and the LRS at a certain instance

t = 100 ms for a 0.9 threshold value.

While these metrics manage to capture the non-WSS behavior of the channel,

they are mainly empirical measures; they lack a theoretical framework that can

be used as an extension to the WSSUS in [20]. In addition, many of the existing

works have limitations, e.g. dependency on the spatial structure of the MIMO

channel which is not valid for single antenna systems, and measurements in cellular

scenarios that are different from vehicular scenarios.

1.2.3.2 Doubly-underspread channels

The channel’s non-stationarity in the TF domain corresponds to the delay-Doppler

correlations in the dual domain (i.e. to the CCF spread in (∆τ,∆υ) directions), as

shown in (1.5). The CCF spread about the origin can be measured by the following
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moment of the CCF

s
(w)
TF =

1

∥ATF∥1

∫∫∫∫
|w| |ATF(∆t,∆f,∆τ,∆υ)| d∆td∆fd∆τd∆υ (1.7)

where ∥ATF∥1 is the first norm of the CCF across all four dimensions. Setting

the weight factor w to ∆υ and ∆τ results in the CCF moments s
(∆υ)
TF and s

(∆τ)
TF ,

respectively. These moments quantify the Doppler and delay lag spans within which

there are significant correlations. Hence, the stationarity region can be defined via a

stationarity time and a stationarity bandwidth, respectively, as follows

Ts =
1

s
(∆υ)
TF

, Fs =
1

s
(∆τ)
TF

. (1.8)

According to [16], the channel can be approximated with good accuracy by a

WSSUS channel within this region. Hence, the stationarity region can be used to

meaningfully evaluate the fading parameters and their statistics.

The amount of delay and Doppler spread is determined by the extension of

the TF-varying LSF in (τ ,υ) directions. Since the LSF only changes significantly

from one stationarity region to another, we calculate the (local) TF-dependent RMS

delay spread στ and RMS doppler spread συ within each region as

σ2
τ (t, f) =

1

ρ2TF(t, f)

∫
(τ − τ)2 PTF(t, f, τ) dτ

σ2
υ(t, f) =

1

ρ2TF(t, f)

∫
(υ − υ)2 QTF(t, f, υ) dυ (1.9)

where ρ2TF(t, f) =
∫∫

CTF(t, f, τ, υ)dτdυ = E{|H(t, f)|2} is the local path gain,

PTF(t, f, τ) =
∫
CTF(t, f, τ, υ)dυ is the local PDeP, QTF(t, f, υ) =

∫
CTF(t, f, τ, υ)dτ

is the local power-Doppler profile (PDoP), and τ and υ are the local mean delay

and Doppler, respectively.

A measure of the channel selectivity is the coherence region, which quantifies

the time and frequency spans within which the CTF is considered constant, or at

least strongly correlated. The coherence region is defined by a coherence time

Tc and a coherence bandwidth Fc shown in Figure 1.8, that can be approximately

related to the delay and Doppler spreads as follows [14, 37]:

Tc ≈
1

2πσυ
, Fc ≈

1

2πστ
. (1.10)

The relation between the stationarity region and coherence region is of great im-

portance. According to [23], the LSF of non-WSSUS channels can be considered a

TF-dependent delay-Doppler power spectrum only if the channel is both dispersion-

underspread and correlation-underspread. These two underspreads constitute the
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Figure 1.8: Illustration of the coherence region (Tc, Fc) and stationarity region (Ts, Fs) at a

certain point (t,f) in the TF domain. The background represents the magnitude of the CTF in

grayscale.

doubly-underspread (DU) property. A simple way of describing this property is

using the following inequality

TsFs ≫ TcFc ≫ 1 (1.11)

which states that: the CTF is slowly varying (dispersion-underspread), and the

channel statistics variation is even slower (correlation-underspread). Thus, the

stationarity region is much larger than the coherence region for DU channels. An

illustration of a DU channel is shown in Figure 1.8 where the TF-selectivety of

the CTF is shown in grayscale. The figure shows the large stationarity region that

contains smaller coherence regions where the CTF is highly correlated. Further

practical implications are discussed in Chapter 2.

1.2.4 Vehicular channel modelling in tunnels

1.2.4.1 Models for tunnel propagation

An essential requirement for the development of vehicular communication systems

is the accurate modelling of the propagation channel in different scenarios and

environments [13]. One of the unexplored scenarios that needs more attention is

tunnels. Being a confined environment, propagation behavior in tunnels differs from

other environments as it plays the role of an oversized waveguide [38] as shown in

Figure 1.9. Deterministic channel models for tunnels include: waveguide models,

ray tracing models and numerical methods for solving Maxwell’s equations in tunnel
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environments [39]. These methods suffer from large computational complexity and

incomplete description of the propagation environment (scatterers, mobility, traffic,

etc.). In addition, the arbitrary shape of arched tunnels makes it hard to describe its

internal surface by a canonical coordinate system and, consequently, no analytical

formulation is currently available [40]. While various approximate approaches have

been proposed, they are more complicated to implement and the computation time

may not be acceptable for long-range communication [40, 41]. Another possibility

is to make a drastic simplification of the tunnel shape, assuming its cross-section to

be either rectangular or circular. Even though this simplification may give sufficient

accuracy for an empty tunnel by using modal theory, when the antennas are situated

very near the tunnel walls the prediction of the fading becomes less accurate [41].

On the other hand, empirical stochastic models that are obtained from mea-

surements in real traffic conditions describe the specific environment with less

computational cost [39]. As the propagation is influenced by many factors (e.g. tun-

nel geometry, obstacles, nodes setup, traffic), measurements in practical scenarios

are required to characterize and model the propagation in tunnels. Several studies

have been published based on propagation measurements in tunnels. Some of these

studies investigate propagation in subway tunnels [42], where the geometry and

traffic conditions are different from road tunnels. Others investigate road tunnels

in terms of only path loss [43]. Authors in [44] study the field distribution in the

transverse plane and the correlation in both transverse and longitudinal directions.

These studies investigate propagation under no traffic conditions and do not include

dispersion parameters like the delay spread. On the other hand, the work in [45]

suggests that a single-slope model is more adequate for the path loss when there is

traffic. Delay spread is measured in [46, 47] and compared to simulation results,

but no statistical models are presented. In addition, the delay and Doppler spreads

are evaluated in [48] for a V2V scenario in an empty tunnel, where a lognormal

model is used to fit their statistical distributions.

1.2.4.2 Multiple antennas and polarization

Multiple antennas can be used at both the mobile unit and the fixed unit to exploit

the spatial domain of the radio channel. This will increase the channel capacity and

reliability in tunnels. In multipath environments, the condition of low correlation of

paths between the Tx and Rx that leads to a good performance of MIMO systems is

typically due to the rich scattering environment with distributed obstacles, giving

rise to a wide angular spread of rays. However, the structure symmetry of tunnels

does not allow for a large spread in the directions of rays. According to the modal

theory [49], the superposition of the several hybrid modes supported by the structure

is what gives rise to decorrelation among channels. In this case, the maximum

degree of freedom of the channel is limited by the number of modes propagating

in the tunnel [50]. Thus, the capacity enhancement brought about by MIMO
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Figure 1.9: General transverse-electric (TE) and transverse-magnetic (TM) propagation

modes in a waveguide structure (Source: radartutorial.eu - waveguides)

techniques in tunnels depends on the wavelength, excitation location, transverse

dimensions and range of the tunnel, among others [40].

MIMO systems that exploit the polarization domain have recently gained in-

creasing attention. Orthogonally polarized antennas often have high decorrelation; a

major advantage for multiplexing systems. Making use of co-located dual-polarized

(DP) antennas allows for compact antenna array design, which is essential for

vehicular communications. The restrictions of equipment size, power, and cost can

make it difficult, if not impossible, to physically mount the antennas of the vehicle

far enough apart to achieve low correlation [51]. As the form factor of the antenna

array becomes larger, this causes other challenges in engineering that may restrict

MIMO technology (e.g. long cables or several distributed RF-chains). Moreover,

such mounting choices are driven not only by performance and cost, but also by

aesthetic design considerations [13]. Hence, DP antennas represent an attractive

option for vehicular communications. However, when multi-polarized antennas are

used, the choice of the polarization at the Tx and the Rx can result in substantially

different propagation conditions. Depolarization mechanisms caused by scatterers

and antenna design result in gain imbalance and correlation between channel matrix

elements; a big disadvantage of DP MIMO. For an extensive literature overview

of analytical and experimental studies related to DP channels, see [52–54] and

references within. Nonetheless, very limited results on tunnels can be found [39]. It

is thus important to explore the impact of antenna polarization on the propagation
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characteristics in tunnels.

1.2.5 Simulating the non-stationary fading process

In the literature, various modelling approaches have been proposed to simulate a

non-stationary fading channel:

• Different subsequent tap models depending on the delay spread and the BER

statistics [21], which lack smooth transitions between the different models.

• ”Birth/death” Markov process to account for the appearance and disappear-

ance of delay taps [55], which doesn’t account for the MPC drifting from

one tap to another.

• Stochastic modelling of the evolution of dynamic scatterers and their delay

and angular properties [24], which follows the birth/death approach but adds

linear tracking of MPCs in delay and angle domains.

• Geometry-based channel modelling that includes inherently the non-stationary

behavior of the channel via the dynamic nature of the scattering environment

geometry [25, 26], which has large generation and computation costs.

Another approach to describe the random fading process is parametric mod-

elling [56]. Such models involve a parametric representation of an innovations

system driven by white innovations noise. The statistics of the output process are

then characterized by the parameters of the innovations system. Sparse (parsimo-

nious, low-dimensional, low-rank) representations of the LTV radio channel have

been widely used [57]. We consider an autoregressive (AR) modelling approach

for the accurate generation of non-stationary vector (multivariate) processes. This

technique belongs to the class of parametric spectral estimation, and employs all-

pole infinite-impulse response (IIR) filtering to shape the spectrum of uncorrelated

Gaussian variates. An AR model is preferred over moving-average (MA) or hybrid

ARMA models, as the variations of the mobile channel response resemble a corre-

lated series with low peaks and deep fades [58]. An AR model for wideband indoor

radio propagation was first presented in [59] and later applied to UWB channel

modelling in [60] for indoor scenarios. Parametric modelling in the frequency

domain is also investigated in [61] for WSSUS wideband and UWB channels.

Most existing non-stationary models were extended from their stationary coun-

terpart. A vector time-frequency (VTF) AR model that describes non-WSSUS

multivariate processes has been proposed in [62]. The frequency shifts (Doppler

shifts), in addition to time shifts, provide an intuitive and physically motivated way

of capturing the spectral and temporal correlation of non-stationary vector processes

without a severe loss in parsimony. The model is parsimonious for the practically

relevant class of underspread vector processes (i.e., processes with rapidly decaying
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correlation in time and frequency). Based on a system of linear equations with

a two-level block-Toeplitz (2LBT) structure, a VTFAR parameters estimator is

also presented [62]. In our work, a framework is proposed for long-term vehicular

channel simulation based on the VTFAR model for a sparse parametric description

of non-stationary multivariate random processes.

1.3 Indoor channel modelling in metallic environ-

ments

With the rise of 5G technology, a fourth industrial revolution has emerged, known

as Industry 4.0. Industry 4.0 takes the digital technology to a whole new level with

the help of interconnectivity through the (industrial) IoT [63]. The IIoT is central to

how cyber-physical systems and production processes will transform with the help

of big data and analytics. Real-time data from sensors and other information sources

helps industrial devices and infrastructures in their decision-making, in coming up

with insights and specific actions. Machines are further enabled to automate tasks

that previous industrial revolutions could not handle. Hence, the IIoT is crucial to

use cases related to connected ecosystems e.g. smart factories. However, wireless

propagation in indoor industrial environments, such as shown in Figure 1.10, is

challenging. Highly reflective metallic environments are characterized by rich

electromagnetic scattering, time and angular dispersion, and can exhibit features of

a complex reverberant cavity. While typical indoor environments (e.g., residential

and office) show RMS delay spreads of 15-100 ns at 2.4 GHz, highly reverberant

environments can reach up to 1200 ns [64].

1.3.1 Reverberation and room electromagnetics

Diffuse scattering combined with the highly metallic surroundings gives rise to

electromagnetic reverberation, making this type of radio channel highly suited for

the application of the room electromagnetics theory. The room electromagnetics

model describes the time-dispersion of signal power, which directly affects the

signal quality. A lower signal quality may cause inter-symbol interference and

negatively affect communication throughput. There are additional reasons why

room electromagnetics is especially suited for radio channel modelling in enclosed

metallic environments. Firstly, room electromagnetics provides an elegant way of

calculating the signal loss through walls by modelling the two rooms that share the

wall as a pair of lossy but coupled electromagnetic reverberation chambers [65].

This can be useful for calculating the signal penetration loss through imperfectly

sealed doors. Secondly, the model can easily account for wireless signal absorption

and shadowing by persons present in the environment by increasing the ”absorption

area” parameter contained within the model equations. This feature in particular
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Figure 1.10: Rich scattering industrial indoor environments

will allow us to account for persons in the environment as will be discussed in the

following section.

1.3.1.1 Room electromagnetics theory

In reflective indoor environments, diffuse scattering is a relevant propagation mech-

anism in terms of the contribution of the dense multipath components to the total

power density. It includes the diffuse scattered fields plus weak specular compo-

nents after removing all possible specular paths from the measurement data. The

diffuse power density may represent up to 95% of the total power [66] in rich

scattering environments and can be characterized based on the room electromagnet-

ics theory [67]. Similar to room acoustics [68], room electromagnetics views the

indoor environment as a lossy cavity, where all the effective losses can be described

by the exponentially decaying tail of the diffuse fields in time. Figure 1.11 shows

the theoretical power-delay profile with the LOS and dense MPCs. The decay time

constant, also known as the reverberation time (RT), is a function of the volume and

the absorption area of the room [65, 69]. A general description of the reverberation

time is based on Sabine’s reverberation theory [67, 70], which can be expressed as

τ =
4V

α cA
(1.12)
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Figure 1.11: Theoretical model of room electromagnetics including a LOS and an

exponential tail with time constant τ

where V is the room volume, α is the average absorption coefficient of the room

surfaces, A is the total surface area and c is the velocity of light.

Several studies were conducted based on room electromagnetics, e.g. [65, 69,

71]. They validate the use of the acoustic reverberation models in electromagnetics,

and show that the reverberation is confined in the room where the Tx and Rx are

located, and that the RT is location and antenna independent. The RT has previously

been used to calculate the effective absorption coefficient as a single parameter that

characterizes a room [67]. In addition, the mean received diffuse power can be

determined everywhere by knowing RT and the volume of the room [69]. From

the assumption of diffuse scattering, the RT allows the determination of the path

loss and delay time parameters [71]. Specific absorption rate (SAR) as a basic

restriction for RF human exposure is often found numerically from knowledge of

the distribution of complex permittivity in the body, and experimental values are

scarce. A measurement-based approach based on the RT is a suitable alternative for

the assessment of the whole-body averaged SAR [65].

Nonetheless, reverberation models are derived based on several simplifications.

Sabine’s theory assumes homogeneous repartition of energy within the room, and

consequently uniformly distributed absorption, and that the field is completely

diffuse. Different approaches have been adopted to obtain more accurate approxi-

mations of the reverberation time. Among others, Eyring presented his paper that

described the reverberation in highly absorbent enclosures based on the mean free

path between reflections [72]. In other words, his approximation is that the number

of reflections is constant over time. This approximation can be further improved

by introducing a variance to the number of reflections at a given time [68]. In

addition, the RT has normally been investigated at a single frequency [65, 67, 69].

Whilst the RT can be estimated using computational-based methods [73], excessive

processing time and memory resources are needed especially at higher frequencies.
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The measurement-based method in [74] has been used to address the frequency

dependency of the RT in the 2-10 GHz band. It showed that the RT decreases for

increasing frequency and validated the model by measurement and by comparison

to reported results in the literature. At higher frequencies, other work [75] suggested

that the indoor scenario ceases to reverberate due to severe path-loss, and the room

electromagnetic theory is not applicable anymore at frequencies as high as 94 GHz.

1.3.1.2 Reverberation time and Q-factor

The RT can also be related to the quality factor (Q) of the room. Being regarded as

lossy cavities, residential rooms generally have low Q values [76]. In contrast with

indoor scenarios, Q is more frequently used to describe the capacity of reverberation

chambers (RCs) to store electromagnetic energy. Several works have addressed

the determination of Q in RCs [77]. Basically, Q can be obtained either from the

power-ratio method (frequency domain) or the decay-time method (time domain).

It was reported that the decay-time method produces better estimate of Q than the

power-ratio method [77]. Hence, the RT used in the decay-time method is regarded

as a very important parameter for the diffuse absorption [67]. From the theory of

electromagnetic fields in cavities, Q is defined as the ratio of the energy stored

to the energy dissipated in the cavity per cycle of duration 1/f [76]. This can be

formulated as

Qi =
2πfE

Pi
, (1.13)

where E, Pi and f are the energy stored, the power dissipated and the frequency,

respectively. Four types of mechanisms contribute to the dissipation of power in

cavities: (1) power lost in the walls of the cavity P1, (2) power absorbed by lossy

objects inside the cavity P2, (3) power dissipated due to aperture leakage P3, and

(4) dissipated power in the receiving antennas load P4. The overall Q can then be

expressed as [76]

Q =

[ 4∑

i=1

1/Qi

]−1

. (1.14)

The first three types of losses exhibit nearly no frequency dependence, while the last

type is inversely proportional to the frequency squared [76]. Consequently, at high

frequencies, the losses in walls, apertures and objects dominate the power dissipa-

tion and Q4 becomes large with little contribution to the overall Q. Alternatively,

the decay-time method relates Q to the RT by the following expression [76]

Q = 2πfτ (1.15)

1.3.2 Human sensing in a reverberant ship environment

An increasingly common requirement of smart systems is to extract information

about the people present in an environment in a device-free way, meaning that
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Figure 1.12: Industrial ship environments

humans are not expected to carry any dedicated devices or passive tags. Human-

sensing is of high importance in the context of IoT: from building automation to

surveillance and safety monitoring in the case of natural or man-made disasters.

Hence, deploying wireless networks in confined, reflective spaces such as found in

metallic warehouses, aircraft cabins, and below-deck ship compartments is essential

to the envisioned Industry 4.0 and ITS. In particular, below-deck spaces in ships,

such as shown in Figure 1.12, have been a primary focus of a number of studies,

exploring the wireless RF propagation and communication performance [78–81].

Current shipboard monitoring systems use extensive lengths of cables to connect

a massive number of sensors to control units. Wired installation during ships

construction results in a high cost and weight. In addition, ships represent a

harsh environment wherein wires are vulnerable to moisture, heat and hazardous

elements, making maintenance a very difficult task. On the other hand, wireless

communication is a serious challenge in such hostile environments [81] .
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1.3.2.1 Human sensing techniques

Human sensing is most commonly achieved by sensing a well-defined set of spatio-

temporal properties, namely: presence, count, activity, and identity. At the lowest

level, human sensing is equivalent to measuring, directly or indirectly, one or more

of the ways humans impact their environments (i.e. human traits) from which the

spatio-temporal properties can be inferred [82]. These physical traits can be static

(e.g. weight, shape, scent, reflectivity, attenuation, emissivity, internal motion) or

dynamic (e.g. gait, vibration, sound, external motion), each being the focus of a

single or multiple sensing methods. With regard to human counting or occupancy

detection, different types of sensing solutions are available today, each having its

advantages as well as limitations [82]. Solutions vary in the targeting approach (e.g.

counting people through doorways or within certain areas) or the sensing modality

(visual, thermal, RF, etc.). Image-based solutions, for example, are prone to blind

spots, sensitive to environmental condition like lighting, smoke etc., pose privacy

issues and are computationally expensive due to the image processing, which is

often based on machine learning algorithms. On the other hand, RF-based solutions

have a great potential in overcoming many of those drawbacks [82]. Using RF

signals such as Wi-Fi or Zigbee has the benefit of exploiting the deployed networks

for sensing as well, without additional infrastructure. RF sensing is mainly based on

received signal strength indication (RSSI) or channel state information (CSI). This

limits the accuracy of such methods in hostile propagation environments, even with

the use of probabilistic and machine learning algorithms [82]. Another limitation is

that they usually require extensive training, which must be performed in the same

targeted environment and for each number of the supported count range.

Another RF-based solution makes use of the ultra wideband (UWB) technology.

UWB is a technology that can be used for both communication and sensing. The

IEEE 802.15.4a is the international standard defining the UWB physical and MAC

layers. This standard is designed to deliver very accurate measurements of the

time of flight of the radio signal, leading to localization with centimeter accuracy.

Moreover, it provides simultaneous two-way communications up to 27 Mbps and

consumes low energy, making it a perfect fit for battery-powered devices [83]. In

2018, further security aspects are added to the physical layer, forming the 802.15.4z

standard. On the other hand, UWB sensing is based on multi-target detection via

radar transceivers [82]. An impulse radio (IR) UWB radar transmits a narrow

impulse signal that occupies a wide bandwidth in the frequency domain, with

fine resolution and high penetration. The radar then receives and analyses the

backscattered signal to infer the number of people and distances within the radar

range. While it has the best performace among the RF solutions, its need for a

dedicated radar sensor adds to the mentioned limitations [82].
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Figure 1.13: Impact of the number of people on the power decay rate

1.3.2.2 Room electromagnetics for occupancy estimation

A sensing solution that performs well in certain indoor scenarios, like in a lab or

office environment, can not guarantee the same performance in industrial envi-

ronments. The authors in [84], for example, used the IR UWB radar for people

counting in two environments: an indoor room and an elevator with metal structure,

and noticed a performance degradation in the elevator compared to the room. As

aforementioned, highly reflective environments cause rich multipath scattering.

Reflections from targeted humans can easily be buried in the scattered multipath

components that can contribute up to 95% of the total power density [66]. Nonethe-

less, the method proposed in this work exploits the diffuse multipath scattering in

such reflective environment to estimate the number of people indoors. The main

difference is that, as the environment becomes more reverberant, our technique’s

performance improves, while other RF techniques’ performance deteriorates.

Room Electromagnetics relates the RT to the absorption inside the room. The

presence of people in the room will alter the total absorption area, and hence, the

RT of the room. Figure 1.13 shows the decrease in the RT as the number of people

increases within a room. The inverse relation between the number of people and the

RT has been recorded in reverberation chambers using human phantoms [85] and

inside cars with real humans [86]. In this work, we exploit this relation to detect

the presence and number of people inside ship compartments. This should work

in the whole room where the reverberating field fills up. Wherever the person is

in the room (e.g. behind a pipe), he will perturb the reverberating field, and this

will show up in the RT. The PDeP is calculated based on the CIR, a quantity most

wideband communication systems measure via e.g. pilot symbols [87]. This gives
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Figure 1.14: Human sensing for occupancy and fall detection using RF signalling between

Tx and Rx

our solution the capability to be integrated in communication networks such as

UWB systems [83].

1.3.2.3 Doppler analysis for fall detection

Operation onboard ships for example sometimes requires crew members to work

alone in isolated rooms. With the lack of reliable communication below-deck,

a person falling on the ground can become a serious situation if not detected in

time. A complementary feature to occupancy sensing that detects if a person

alone has fallen from a standing position is highly desirable. Figure 1.14 shows

a schematic of an RF system that can be used for occupancy sensing and fall

detection. RF-based fall detection in the literature is mainly based on Doppler radar

sensors that scan the environment at rates higher than 1 KHz [88]. Other solutions

that use Wi-Fi signals are also available [89, 90]. They use machine learning by

extracting features from the CSI that are unique for the fall compared to other

normal activities. However, all these studies focus on residential environments,

which are far less hostile than industrial ones. In residential environments, it is

much easier to extract information from the phase or Doppler domain for velocity

or micro-Doppler signature analysis [88]. An example of how the environment can

impact the detection performance can be found in [90], where the fall detection

precision of a one-class support-vector machine classifier drops from 96% in an

anechoic chamber, to 83% in a dormitory room. Hence, this work explores the

possibility of fall detection in harsh environments using Doppler analysis of the
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CIRs available in wideband communication systems at a much lower rate than radar

solutions.

1.4 Measurement equipment

1.4.1 Radio channel sounding

In this work, we focus on stochastic empirical modelling, meaning that we will de-

rive the stochastic models (i.e. the fading parameters) through experimental results

based on a channel sounding measurement campaign in a certain environment. This

measurement procedure excites the wireless channel at the transmitter then captures

the received signal through the use of special measurement equipment such as a

channel sounder. In other words, channel sounding is the process of determining the

CIR of a transmission radio channel. The concept originated from classic acoustic

measuring methods for determining distance. The CIR provides complex, com-

prehensive information on the impact of the channel of interest on a radio signal,

including the magnitude and phase of the signal. As shown in Figure 1.4, signal

echoes caused by reflections, distortions due to diffraction and scattering effects,

shadow effects caused by buildings and trees, and even weather-related effects such

as rain and snow have an influence on the radio channel, which is called fading.

In a SISO system, multipath fading can degrade the signal quality. On the other

hand, with the development of MIMO systems, it can enhance channel capacity and

improve QoS. In order to model the fading process, channel sounding is used to

capture the multidimensional spatial-temporal channel characteristics and estimate

the fading parameters.

1.4.2 MIMOSA channel sounder

Channel measurements are performed with the Multi-input Multi-output System

Acquisition (MIMOSA) radio channel sounder [91]. Table 1.1 summarizes the main

specifications of MIMOSA. It uses a carrier frequency of 1.35 GHz. This carrier

frequency lies conveniently within the operating band of the LTE-V standard [92]

radio interface that supports V2I communications (named Uu-interface), which

operates in the licensed 2 GHz band (880-2690 MHz). Orthogonal frequency

division multiplexing (OFDM) is used to encode up to 8 parallel transmit channels,

and by connecting each to a two-port RF switch with 50 dB isolation, a total of

16×16 channels are measured at the cost of channel acquisition time. Therefore,

2 OFDM symbols are successively sent, the first one for one polarization and

the other one for the orthogonal polarization. At Rx, the signals measured at the

two outputs of each bi-polarized patch antenna are simultaneously stored. With a

symbol duration of ≈82 µs and by taking the duration of the preamble and of the
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Parameter Setting

center frequency 1.35 GHz

bandwidth 80 MHz

Tx and Rx polarization H/V

OFDM subcarriers per channel 819

OFDM symbol duration TS 81.92 µs

cyclic prefix duration TCP 0 ≤ TCP ≤ TS

full channel acquisition time 2 (TS + TCP ) ≤ 327.68 µs

Table 1.1: MIMOSA Channel Sounder Specifications

cyclic prefix into account, the acquisition time of a full polarimetric channel matrix

(deduced from the reception of 2 successive symbols) is about 300 µs.

The total number of subcarriers of the OFDM scheme is 8192 occupying a total

bandwidth of 100 MHz. However, a 200 Msamples/s analog-to-digital converter

(A/D) is used at Rx such that the transmitting band has been reduced to 80 MHz.

This is performed by suppressing the subcarriers situated at the lower and higher

frequency band of the spectrum. The subcarriers can be allocated either to only one

antenna or distributed among all Tx antennas. As an example with 8 Tx antennas,

Figure 1.15 shows the distribution of the 1024 subcarriers per antenna, their spacing

being equal to 97.66 kHz. The channel sounder is fully parallel; the data for all

transmit antennas are simultaneously modulated onto subcarriers using interleaved

frequency division multiplexing.

1.4.3 Hardware and antenna features

The Tx chain is presented in Figure 1.16. It consists of the following parts: 1) “time

and position records information such as the GPS position and 3D position of the

antenna array (yaw, pitch, roll). 2) ”signal manager” is a computer embedded into

a chassis that includes the FPGA-based digital processing cards to generate and

send the signals. The baseband Tx module consists of four FPGA-400 MHz cards,

each including two 500 Msample/s 16-bit digital-to-analog (D/A) converters and 1

GB RAM. 3) ”RF module” where the baseband signals are mixed at 1.3 GHz and

the different stages are all synchronized with the 10 MHz local oscillator. The RF

signals are sent to each antenna after being processed in the RF filters and mixers

with output power values between 0.01 W to 1 W per RF chain (maximum power

of 8 W for the 8 outputs). Figure 1.17 presents the Tx unit of the sounder.

Similarly, the Rx chain is composed of several parts illustrated in Figure 1.18.

The RF module transposes the received signals to baseband. The AGC adjusts the

signal strength to optimize the signals at the input of the analog-to-digital converter
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Figure 1.15: Subcarriers allocation for 8 Tx antennas [91]

Figure 1.16: schematic of the MIMOSA channel sounder Tx chain

(A/D). The digital signals are then processed by the digital processing unit to com-

pute in real-time the complex CTF H(f). The signal processing module includes

2 FPGA cards with eight 200 MSample/s converters, each FPGA simultaneously

processing 4 dual-port antennas. In the FPGAs, an OFDM symbol synchronization

algorithm is applied to the received preamble and FFTs are performed in parallel.

All modules are synchronized to a 10 MHz rubidium clock. The data is sent to

an embedded PC either for display or record on a 300 GB hard drive. The GPS

position and 3D antenna array orientation are tagged along the data. The receiver

has 16 inputs such that the processing is performed in parallel. The bandwidth

is 100 MHz and the automatic gain control (AGC) dynamic is 64 dB with 0.5

dB step. Figure1.19 shows pictures of the Rx unit. With such architecture, no

post-processing is needed and the binary-format files containing the MIMO chan-

nel matrices can be directly used for extracting the channel characteristics. Each
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Figure 1.17: MIMOSA channel sounder Tx hardware parts

Figure 1.18: schematic of the MIMOSA channel sounder Rx chain
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Figure 1.19: MIMOSA channel sounder Rx hardware parts

channel coefficient is corrected by the AGC gain and by the correction factors of

the Tx-Rx chains measured during a calibration procedure.

The channel sounder is equipped with different types of antennas. A dual-

polarized patch antenna of horizontal (H) and vertical (V) polarization is used

for directional propagation modelling. The peak gain is 7.4 dBi and the HPBW

is 120◦. The elementary dual-polarized patch antenna was designed with CST

Microwave Studio software. The length and width of the ground plane is 103 mm,

the dimension of the metallic patch being about 1.4 times smaller. The measured

bandwidth, for a |S11| of -10 dB, is 75 MHz, whereas the port isolation and cross

polarization are larger than 30 dB and 25 dB across the whole frequency band,

respectively. For the omni-directional propagation modelling, a wideband antenna

is used from Cobham Antenna Systems, model XPO2V-0.8-6.0/1441. It features

vertical polarisation, 0.8 - 6 GHz bandwidth, and 2 dBi gain. Figure 1.20 shows the

different types of antennas mounted on the top of the measurement van carrying

the MIMOSA Rx.

1.5 Outline and contributions

The main aim of this work is the modelling of wireless radio channels for different

scenarios and applications related to 5G future networks, that will help develop

more efficient and robust communication and sensing solutions. The first part of

this dissertation (Chapter 2-4) is dedicated to studying the behavior of wireless

channels for vehicular communications with a focus on stochastic modelling of

propagation parameters for the non-stationary fading process. The goal of the

second part (Chapter 5 and 6) is to investigate the indoor propagation channel
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Figure 1.20: omni-directional and patch antennas used for measurements with MIMOSA

in highly reflective industrial scenarios. The reverberant characteristics of such

environments are modelled based on the theory of room electromagnetics, and

exploited for human sensing applications to highlight their importance and utility.

In Chapter 2, the investigation of the non-stationary fading process is presented

based on V2I mobile channel measurements in a sub-urban environment. The non-

parametric LSF estimator is presented and used to estimate the stationarity time

based on the CCF. The non-stationary fading parameters are statistically modelled

for different polarizations, and application relevance in terms of channel capacity

and diversity techniques is discussed.

Chapter 3 focuses on modelling the non-stationary mobile channel in tunnels.

It uses the stationarity analysis framework presented in Chapter 2 in addition to DP

MIMO channel analysis. Based on V2I measurements in rectangular and arched

tunnels, the impact of traffic density and antenna characteristics (directivity and

polarization) on the non-stationary fading parameters are investigated.

Chapter 4 discusses the parametric modelling of the non-stationary fading

channel via a VTFAR approach. The approach is applied to simulate the measured

tunnel propagation channel from Chapter 3. Stability of such model is investigated

and the model is validated by comparing the parametric and non-parametric spectra.

In Chapter 5, the indoor reverberant environment of industrial ships is modelled

based on the room electromagnetics theory. RF-based occupancy estimation method

is introduced that makes use of the reverberation time parameter. The method is

experimentally validated in a below-deck ship compartment using radio channel

sounder equipment, and COTS UWB devices. In addition, a Doppler-based fall

detection method is proposed as a complementary technique for safety monitoring

and alert systems.

In Chapter 6, attention is paid to the frequency-dependency of the reverberation

time up to 40 GHz. Indoor measurements in a lab environment is utilized to model
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the RT, Q-factor, and the average absorption coefficient of the room. The model is

validated by comparison to previous reported studies.

Finally, Chapter 7 concludes this book with a summary of the accomplished

work, and proposes some directions for future research.
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Nicolai Czink, Charlotte Dumard, Fredrik Tufvesson, Andreas Molisch, and
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Part I

Outdoor Channel Modelling

for Vehicular Communications





2
Mobile channel modelling in a

sub-urban environment

In this chapter, we investigate the V2I channel measured in a suburban environment

using the local scattering function (LSF) framework discussed in Section 1.2. We

investigate the stationarity region in time based on the channel correlation function

(CCF), and compare it to the empirical measure of collinearity. To completely

characterize such doubly dispersive channels, the values of the coherence region

are obtained and used to investigate system design relevance, e.g., the effect of

non-stationarity on the assumption of ergodic capacity and effective diversity [1].

Based on the LSF, power profiles of the delay (PDeP) and Doppler (PDoP) can

be estimated, and subsequent analysis of the corresponding second central moments

can be performed. The RMS delay and Doppler spreads are evaluated in [2] for

several V2V scenarios, where a bimodal Gaussian mixture is used to model their

statistical distribution. Other studies show that the distributions of the spreads follow

a lognormal model [3–5]. However, these studies do not take channel polarization

into consideration. We statistically model the delay and Doppler spreads of the

channel across stationarity regions for horizontal and vertical polarization. In

addition, the small-scale fading of the wideband channel taps is modelled.

The chapter is structured as follows. We describe the characterization of the

stationarity region and omni-directional propagation modelling in Section 2.1. The

directional dual-polarized propagation modelling is presented in Section 2.2. We

draw conclusions in Section 2.3.
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Figure 2.1: Tx as a roadside unit (left) and the omnidirectional antenna used at both Tx and

Rx (right)

2.1 Omni-directional propagation modelling

2.1.1 Measurements setup and scenario

Channel measurements are performed with the MIMOSA radio channel sounder

presented in Section 1.4. It uses B = 50 MHz of transmission bandwidth for this

measurement campaign with a single wideband omni-directional antenna at both

the transmitter (Tx) and the receiver (Rx). Measurements have been carried out

at the campus of the university of Lille in France. Figure 2.1 shows the Tx as the

roadside unit. The environment can be categorized as suburban: the road is narrow

with one lane in each direction, and buildings and vegetation are set back 5-8 m

from the curb. In order to follow the V2I scenario, the Tx is placed on the curb with

the antenna at 2.5 m height. The Rx antenna is mounted on the rooftop of the van

carrying the Rx inside. The van moves along the road at 40 km/h speed, crossing

Tx position during a total route of 500 m shown in Figure 2.2. The radio channel is

sampled with a snapshot repetition time ts = 975.3 µs. With this parameters setting,

we capture a total number of snapshots X = 49536 snapshots, each with Y = 512

samples in frequency domain, and we achieve a maximum Doppler shift of 1/2ts =

512 Hz and a minimum resolvable delay resolution of 20 ns.
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Figure 2.2: Top view of measurement route at the university of Lille campus. Tx location is

marked with a yellow pin and Rx van moves from point B to A (Map data ©2018 Google).

2.1.2 Non-parametric local scattering function estimation

Due to the high mobility of Tx, Rx and scatterers in vehicular communications, the

environment is rapidly changing, and the observed fading process is non-stationary.

The channel sounder provides a sampled measurement of the continuous channel

transfer function (CTF) H(t, f) that is time-varying and frequency selective. We

consider the discrete CTF to be

H[m, q] = H(tsm, fsq) (2.1)

where the frequency resolution fs = B/Y , the time index m ∈ {0, ..., X − 1} and

the frequency index q ∈ {0, ..., Y − 1}

Since the environment changes with a finite rate, we can approximate the fading

process to be locally stationary for a region with finite extent in time and frequency.

This allows us to locally estimate the power spectral density of the non- wide-sense

stationary uncorrelated scattering (WSSUS) fading process, in order to describe its

TF-varying statistical behavior. This local region is defined by M samples in time

and N samples in frequency. Using a sliding window over the recorded CTF, we

estimate a discrete version of the TF-dependent LSF in (1.3). As aforementioned,

the observed fading process in vehicular channels shows a much stronger violation

of the WSS assumption than the US assumption. Hence, in this work, we focus on
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Figure 2.3: Illustration of the windowing used for the LSF estimation applied to the discrete

CTF H[m,q]

the time variation of the non-stationary fading channel and we assume the channel

to be stationary over the whole bandwidth, i.e. N = Y . This is in correspondence

with previous studies suggesting the stationarity bandwidth to have much larger

values in similar scenarios [6].

Estimating the power spectrum of a process requires statistically independent

realizations of the same process, which is very difficult to obtain using measure-

ments. When tapering the measurement data using multiple orthogonal windows,

we obtain multiple independent spectral estimates from the same measurement

by estimating the spectrum of each individual taper. The total estimated power

spectrum is thus calculated by averaging over all tapered spectra.

For the TF-sampled CTF H[m, q], we use the discrete version of the LSF

multitaper-based estimator proposed in [7, 8]. The applied orthogonal 2-D tapering

windows are computed from K and L orthogonal tapers in time and frequency

domains, respectively. We estimate the LSF for consecutive regions in time using a

sliding window with the size of M ×N samples in TF domain. The time index of

each region rt ∈ {0, ..., X−M
∆t

− 1} corresponds to its center, while ∆t denotes the

sliding time shift between consecutive estimation regions as shown in Figure 2.3.

The LSF estimate is formulated as

Ĉ[rt, n, p] =
1

KL

KL−1∑

w=0

∣∣H(Gw)[rt, n, p]
∣∣2 (2.2)

where n ∈ {0, ..., N − 1} denotes the delay index and p ∈ {−M/2, ...,M/2− 1}
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denotes the Doppler index. The tapered spectral estimate H(Gw) is calculated as

H(Gw)[rt, n, p] =

N/2−1∑

q′=−N/2

M/2−1∑

m′=−M/2

Gw[m
′, q′]

×H[m′ +∆trt +M/2, q′ +N/2] e−j2π(pm′−nq′) (2.3)

where the relative time and frequency indexes within each region are m′ and q′,

respectively, and the window functions Gw are localized within the [−M/2,M/2−

1]×[−N/2, N/2−1] region. The tapers are chosen as the discrete prolate spheroidal

sequences (DPSS) [9] for their optimal side-lobe suppression and pairwise orthogo-

nality.

2.1.3 Stationarity region estimation

For calculating the stationarity region, we first need to estimate the LSF assuming a

minimum region of stationarity. The size of this region should be small enough not

to include non-stationarity, while having enough resolution in time and frequency to

capture the correlation in the CCF. Previous studies suggest a stationarity frequency

range larger than the measured bandwidth (above 150 MHz according to [6]).

Hence, we focus in our analysis on the stationarity time. and include the whole

bandwidth of N = Y = 512 samples. We choose the dimension in time domain

M = 128 samples corresponding to 124.8 ms. This needs to be validated after

we calculate the stationarity time; that it is indeed larger than the assumed value.

The sliding time shift is selected to be half of the region dimension, i.e. ∆t =

64 samples, and the number of used tapers is K = 3 and L = 3 in both time and

frequency domains to balance the noise variance and the square bias [6]. With

these parameters, we obtain a LSF estimate every 62.4 ms of delay resolution

τs = 1/B = 20 ns, and Doppler resolution υs = 1/(Mts) = 8 Hz.

The stationarity region represents the region in time and frequency within which

the LSF is highly correlated. The stationarity time can be calculated from the spread

of the CCF about the origin in the Doppler lag direction, as shown in (1.7). We use a

discrete time implementation of the CCF in (1.4), omitting the explicit dependence

of CCF on ∆τ and only considering the ∆υ dependence. Hence, the discrete CCF

is the 3-D Fourier transform of the LSF estimate

Â[∆m,∆q, r∆υ] = F3{Ĉ[rt, n, p]} (2.4)

where ∆m,∆q and r∆υ are the time lag, frequency lag and Doppler lag indexes,

respectively. Similarly, we can write the CCF Doppler moment in discrete form as

ŝ(r∆υ) =
1

∥Â∥1

∑

r∆υ

∑

∆q

∑

∆m

|r∆υ| |Â[∆m,∆q, r∆υ]| (2.5)
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Figure 2.4: CCF spread in the Doppler lag direction over the entire route

from which the stationarity time can be evaluated as

Ts =
1

ŝ(r∆υ)
. (2.6)

The bound on LSF variation and the accuracy of approximating LSF to be constant

within the stationarity region are provided in [10].

Based on (2.4), the LSF correlation can be determined by the CCF spread. Fig-

ure 2.4 shows the marginal CCF as a function of the Doppler lag, by summing over

the other variables. As expected for a correlation function, the CCF is symmetric

and has its maximum at the origin. According to the calculations done to our mea-

surement data of 48 s, we estimate a stationarity time Ts = 567 ms. This is indeed

larger than the assumed minimum value of 124.8 ms used for LSF estimation.

In order to get an intuitive understanding regarding the influence of the sce-

nario, a simpler alternative definition of the stationarity time can be used as T s =

1/∆υmax, where the maximum Doppler correlation lag ∆υmax (i.e. the largest ∆υ

for which CCF is effectively nonzero) is used instead of the weighted summation in

(2.5). Consequently, this definition gives a lower bound of Ts [10]. The violation

of WSSUS assumptions can be associated with correlated scatterers correspond-

ing to the same physical object (e.g. building surface). Assuming a maximum

angular spread and Doppler shift of the scatterers in our scenario to be δ = 4◦ and

υmax = 50 Hz, respectively, implies ∆υmax ≈ 2υmaxsin(δ/2) = 3.49 Hz [10].

From Figure 2.5, the marginal CCF drops to 10% of its peak value at ∆υ = 3.9 Hz,
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Figure 2.5: Mean LRS versus the corresponding threshold applied to the collinearity of LSF

matching well with our assumptions. This yields T s = 287 ms < Ts. Hence, as the

relative speed increases or the scenario changes, e.g. to an urban area with denser

scatterers of larger angular spread, the stationarity time is expected to decrease

accordingly, which is evident in the results found in [6].

2.1.4 LSF collinearity comparison

Another method of measuring stationarity that is used in the literature is via the

collinearity of LSF. The collinearity is a bounded metric ∈ [0, 1] that compares

different power spectra. First, the collinearity between each two time instances

of the LSF is computed for the entire route as shown in (1.6). Secondly, the

local region of stationarity (LRS) is estimated as the time span during which the

collinearity exceeds a certain threshold. Being an empirical measure, collinearity

results are highly dependent on the selection of the threshold value. Figure 2.5

shows the mean LRS calculated from our measurement data versus the applied

threshold value. For the mean LRS to have the same value of Ts = 567 ms, the

threshold is found to be 0.95.

While Ts is estimated for the entire route, LRS on the other hand is estimated

per time instance. In order to compare both measures, we calculate a local CCF per

time instance over regions of 1.25 s. The local marginal CCF spread in the Doppler

lag direction is depicted in Figure 2.6 for the entire route. Notice the increase
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Figure 2.6: Local CCF spread in the Doppler lag direction per regions of 1.25 s
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Figure 2.7: Stationarity time and LRS for the entire route

in the CCF spread around the time Rx crosses Tx position (35 s), indicating a

smaller stationarity time. Figure 2.7 compares Ts and LRS with the 0.95 threshold

value over the entire route. The minimum values of Ts and LRS are 337 ms and

62.42 ms, respectively. Although some correlation can be observed between the

two metrics (Pearson correlation coefficient of 0.37), the variance of Ts around the

mean value is smaller compared to LRS (0.009 and 0.024, respectively). Indeed, the
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stationarity time represents a characteristic of the entire propagation environment.

While large-scale parameters like coherence time is expected to change over time,

Ts should not change much on a time instance basis. Another difference between

the two metrics is that LRS values are discrete, confined only to multiples of the

minimum time difference between instances of the LSF, while Ts can take any

value. Hence, we conclude that the stationarity time Ts based on the CCF gives a

more accurate characterization of the channel.

2.1.5 RMS delay and Doppler spreads modelling

The second-order central moments of the PDeP and PDoP are of great importance

and relevance to fading channels characterization and systems design. They have

been usually assumed constant for a certain environment. However, the non-

stationarity of vehicular channels allows such parameters to be defined only within

a local region of stationarity. Therefore, it is reasonable to characterize the delay

and Doppler spreads as time-varying channel parameters.

The PDeP P̂ and PDoP Q̂ are the projections of the LSF estimate on the delay

and Doppler domains, respectively. They can be regarded as the sampled estimate

of PTF and QTF from (1.9) as

P̂ [rt, n] =

M/2−1∑

p=−M/2

Ĉ[rt, n, p],

Q̂[rt, p] =

N−1∑

n=0

Ĉ[rt, n, p]. (2.7)

Based on the estimated profiles, the time-varying RMS delay and Doppler spreads

can be calculated, respectively as

σ̂τ [rt] =

√√√√√√√√√√

N−1∑

n=0

(nτs)
2P̂ [rt, n]

N−1∑

n=0

P̂ [rt, n]

−




N−1∑

n=0

nτsP̂ [rt, n]

N−1∑

n=0

P̂ [rt, n]




2

(2.8)

and

σ̂υ[rt] =

√√√√√√√√√√√

M/2−1∑

p=−M/2

(pυs)
2Q̂[rt, p]

M/2−1∑

p=−M/2

Q̂[rt, p]

−




M/2−1∑

p=−M/2

pυsQ̂[rt, p]

M/2−1∑

p=−M/2

Q̂[rt, p]




2

(2.9)
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For the non-stationary channel, the fading parameters can be accurately evalu-

ated within each stationarity region, so that the channel modelling becomes physi-

cally meaningful. Based on our estimation of the stationarity time, the correspond-

ing number of samples in time domain M = 580 samples. Hence, the LSF estimate

is recomputed using a sliding time shift of half the stationarity region dimension.

In Figure 2.8, the PDeP and PDoP from the measurements are depicted. From 0

to 35 s, Rx is approaching Tx with an average speed of 40 km/h, which can be seen

from the decreasing delay of the LOS in the PDeP and the positive Doppler shift

of 50 Hz in the PDoP. At 35 s, Rx crosses Tx position, resulting in the minimum

LOS delay and the Doppler shift from positive to negative 50 Hz. After that, Rx

starts to move away from Tx, hence the LOS delay starts to increase again while

the Doppler shift remains around negative 50 Hz. Several MPCs can be observed

in the profiles. Components from fixed scatterers are showing in the PDoP with

less power and Doppler shifts between +/- 50 Hz, while short lasting components

resulting from moving scatterers in both directions can reach higher positive and

negative Doppler shifts.

Based on the estimated profiles, the time-varying RMS delay and Doppler

spreads can be calculated using (2.8, 2.9). Before calculating the spreads, pre-

processing is carried out separately for each stationarity region. No significant

components are found with delay values larger than 3 µs, so we limit the LSF to

this value. In order to avoid spurious and noise components, we decide on a power

threshold below which we set all the components of the estimated LSF to zero. The

threshold is chosen to be 6 dB above the noise level [11].

The RMS delay and Doppler spreads are shown in Figure 2.9. The two pa-

rameters show quite similar behaviors, indicating a high correlation between both

spreads. The Pearson correlation coefficient is calculated as 0.45 over the entire

route. The mean of the spread values (48.91 ns and 11.82 Hz) are much smaller

than typical values in cellular scenarios (0.1-10 µs) due to the dominant LOS

condition [12]. Few studies of vehicular channels in the 2 GHz band are available

in the literature. The work in [13] reports a delay spread of 102 ns in an urban

T-intersection for obstructed LOS, and 53 ns in an expressway LOS scenario at

2.4 GHz. However, the mean values or statistics are not mentioned. The V2V

channel is characterized in an urban environment in [14] at 2.3 and 5.25 GHz. It

shows that the mean delay spread slightly decreases at the higher frequency (33.3 ns

to 28.3 ns), which can be considered insignificant. In the 5 GHz band, several

studies in similar scenarios report mean delay spread values that are in the same

range of our results (e.g. 40-50 ns in [2], 45 ns in [3], 47 ns in [5] and 35.8 ns

in [15]). As reported in [2], other vehicles driving beside Tx and Rx may not

represent relevant scatterers. This is because the placement of the antennas in our

setup is slightly above the other vehicles. Large scattering objects such as trucks,

buildings or metallic structures constitute more relevant MPCs.
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(a)

(b)

Figure 2.8: Time-varying PDeP (a) and PDoP (b) for the scenario of crossing Tx position at

35 s with constant speed of 40 km/h
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Figure 2.9: Time-varying RMS delay and Doppler spreads of the crossing scenario with

constant speed of 40 km/h

In order to statistically characterize the spreads over the entire route, we use

the Kolmogorov-Smirnov (KS) test [16] to select the distribution by comparing the

p-value of different models: lognormal, normal, Nakagami, Rayleigh, Weibull, and

Rician. It is found that the lognormal distribution gives the best fit to the measured

parameters among the candidate models. Table 2.1 summarizes the details of the

lognormal distribution for both parameters. We also include the maxima of the

spreads, as they represent critical values for communication systems.

A measure of the channel selectivity that is directly related to the delay and

Doppler spreads is the coherence region. Tc and Fc are calculated from the max-

imum RMS Doppler spread and delay spread, respectively, according to (1.10).

Based on our measurements, we obtain Tc = 4.97 ms and Fc = 1.62 MHz. This

results in a coherence region TcFc ≈ 8×103 ≫ 1 indicating that the channel

is dispersion-underspread (i.e the channel’s dispersion spread in both delay and

Doppler is small). Mainly all real-world radio channels are dispersion-underspread,

because the delay and Doppler of any propagation path are both inversely propor-

tional to the speed of light. In order to verify the other part of the inequality in

(1.11), we need to calculate the stationary region. We use the estimated stationarity

time Ts = 567 ms. For the stationarity bandwidth, we adopt the minimum value

of Fs = 150 MHz reported for similar scenarios in [6]. Hence, the stationarity

region is considered to be TsFs ≈ 8.5×107, verifying that the channel is indeed
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Spread Mean Max. KS-test p-value µ(log) σ(log)

σ̂τ 48.91 ns 98.49 ns 0.092 3.86 0.24

σ̂υ 11.82 Hz 32.03 Hz 0.722 2.36 0.46

Table 2.1: Statistics of the rms delay and doppler spreads (σ̂τ , σ̂υ) log-normal distributions

doubly-underspread (DU).

2.1.6 Stationarity application relevance

The assumptions of WSSUS fading channel have lead to the simplification of

transceivers design, simulation, and evaluation of many communication systems.

Long-term channel properties are evaluated and assumed stationary, while disper-

sions are regarded as results of uncorrelated scatterers. Unfortunately, practical

channels, specially in vehicular communications, do not satisfy these assumptions;

this influences the performance of such systems. For example, the gain of trans-

mission methods utilizing adaptive modulation, channel coding, diversity in time,

frequency, delay or Doppler is limited by the amount of correlation in each domain

of the channel [17, 18]. In this section, we briefly discuss the relevance of the

non-stationarity characterization to some practical aspects as suggested in [10].

2.1.6.1 Ergodic capacity

It is well known that in order to achieve ergodic capacity, a very long Gaussian

codebook is required, where the length is dependent on the dynamics of the fading

process. In particular, it must be long enough for the fading to reflect its ergodic

nature, i.e. the coding should cover numerous independent identically distributed

(i.i.d.) fading realizations [1]. This can be formulated as

Cerg = E[B log2(1 + γ)] =

∫
B log2(1 + γ)P (γ) dγ (2.10)

where γ is the instantaneous signal-to-noise ratio (SNR) with the channel state

perfectly known to Rx. Whether sufficient averaging can be achieved for this

equality to hold depends on the number of i.i.d. fading coefficients offered by the

channel.

For double-selective channels, independent fading coefficients are obtained ev-

ery Tc in time and Fc in frequency, and the fading statistics remain constant over a

region of TsFs. Hence, the value Ni = TsFs/(TcFc) approximately characterizes

the number of i.i.d. fading coefficients offered by the channel. For the WSSUS

channels, TsFs → ∞ so that Ni is large enough and Cerg can be achieved. How-

ever, as the stationarity region decreases, Cerg can only be defined for sufficiently

large Ni. Based on our measurement, Figure 2.10 shows the value of Ni across
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Figure 2.10: Number of i.i.d. channel realizations per stationarity region across the entire

route

different regions of stationarity in time. It is important to note that the value of Ni

changes across different stationarity regions due to the variation of the size of the

coherence region.

In order to illustrate the (in-)validity of the ergodic assumption for this channel,

we simply calculate the capacity of a Rayleigh fading channel using different values

of Ni. This is not the ergodic capacity which is defined only as Ni → ∞, but rather

the capacity supported by the stationarity region’s i.i.d realizations. Calculating

the ergodic capacity in this case would span different staionarity regions and thus

would not equal the ensemble average over the Rayleigh distribution.

Figure 2.11 shows the capacity versus mean SNR by averaging over the maxi-

mum, mean and minimum values of Ni based on our measurements. We compare

these to the ergodic capacity (WSSUS channel) calculated from the ensemble av-

erage of the Rayleigh distribution. Table 2.2 lists the relative error of the capacity

between each case and the WSSUS channel. These results indicate that the channel

may not support coding schemes with enough averaging for the validity of the

ergodic capacity. Such scenarios can then be characterized using the outage capac-

ity [1]. Unlike the ergodic scenario, schemes designed to achieve outage capacity

allow for channel errors. The capacity-versus-outage performance is determined

by the probability that the channel cannot support a given rate, i.e. an outage

probability is associated to any given rate.
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Figure 2.11: Channel capacity averaged over different Ni values for several SNRs using

i.i.d. Rayleigh coefficients

WSSUS Min. Mean Max.

Ni ∞ 622 2020 7660

RE (%) 0 2.15 1.23 0.63

Table 2.2: Relative error (RE) between the capacity for several Ni values and the WSSUS

channel

2.1.6.2 Fading mitigation

The stationarity and correlation parameters influence the limitations of transmission

schemes that use the long-term properties and selectivity of the channel to combat

fading. For example, diversity techniques essentially aim at providing Rx with

multiple independently faded replicas of the signal. It is evident that diversity gain

improves monotonically with increasing the number of i.i.d. channel realizations.

In fact, as the number → ∞, the performance of coherent diversity reception

converges to the performance over a non-fading additive white gaussian noise

(AWGN) channel [18]. The dispersive wireless channel has inherent diversity that

can be exploited with appropriate schemes. Common techniques include time

diversity, frequency diversity, delay diversity and Doppler diversity, as well as joint

diversity between several domains [17].

Interleaving over several coherence times, often used with error correction cod-
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Figure 2.12: Effective diversity order of several techniques per stationarity region across the

entire route

ing, is a form of time diversity. With the vehicular channel being non-stationary, the

effective gain achieved will change depending on the varying coherence parameters

of the channel. For the multipath-Doppler RAKE receivers [18], the amount of

diversity order achievable will be limited by the amount of delay and Doppler

correlation in the channel. In addition, the variation of delay and Doppler spreads

will result in a varying effective diversity for the non-stationary channel. Hence, the

joint knowledge of stationarity and coherence/spread parameters and their statistical

behavior can be employed to improve the performance of such methods.

In order to quantify the influence of the non-stationarity assumption on the

effective diversity, we consider the maximum achievable diversity order of time,

frequency, Doppler and delay diversities, with the diversity orders given respectively

as

dt =
Ts

Tc
, df =

Fs

Fc
,

dυ =
συ

s
(∆υ)
TF

, dτ =
στ

s
(∆τ)
TF

. (2.11)

Figure 2.12 shows the effective diversity orders across different regions of station-

arity based on our measurement, where the delay correlation s
(∆τ)
TF is calculated

from the stationarity bandwidth value of 150 MHz. Since the diversity orders are

proportional to the RMS delay and Doppler spreads with only a scaling factor as

in (2.11), their statistical distribution should follow a lognormal model as well.

Note that the use of the maximum excess spread instead of the RMS spread for the
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Figure 2.13: MIMOSA channel sounder transmitter as a RSU with dual-polarized patch

antenna array

calculation of the delay and Doppler diversity orders would result in higher values

than the ones depicted in Figure 2.12.

2.2 Directional dual-polarized propagation modelling

2.2.1 Measurements setup and scenario

We use the MIMOSA channel sounder with 80 MHz of transmission bandwidth,

and dual-polarized (H/V) patch antenna arrays as shown in Figure 2.13. For this

measurement campaign, horizontal uniform linear arrays with 15 cm inter-element

spacing (0.7λ) are used at both Tx and Rx. Measurements have been carried out at

the same campus shown in Figure 2.2 using the same route and Tx and Rx locations.

For the Rx, we use two patch antenna, one in each lane direction, while the Tx

transmits using four patch antennas, two facing each direction. We only analyse the

co-polarized channels (VV, HH) and discard the cross-polarized ones (VH ,HV)

due to their lower power level.
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With more parallel channels, the sampling rate is decreased and the snapshot

repetition time ts = 3.92 ms. We achieve a maximum Doppler shift of 1/2ts = 128 Hz

and a minimum resolvable delay resolution of 12.5 ns. For the LSF estimation, the

number of used tapers is K = 2 and L = 2 in both time and frequency domains.

We choose the window dimension in time domain M = 64 samples and we include

the whole bandwidth of N = Y = 819 samples in frequency domain. The sliding

time shift is selected to be half of the frame size, i.e. ∆t = 32 samples. With these

parameters, we obtain a LSF estimate of delay resolution τs = 1/B = 12.5 ns, and

Doppler resolution υs = 1/(Mts) = 4 Hz.

2.2.2 Delay and Doppler spreads

The LSF is estimated for each Tx-Rx antenna pair, hence, a total of 4 × 2 = 8

links are evaluated per polarization. We consider the combined LSF to resemble a

bidirectional antenna radiation pattern by averaging the LSF estimates of all 8 links.

The PDeP P̂ and PDoP Q̂ are the projections of the combined LSF on the delay and

Doppler domains, respectively. Before calculating the spreads, pre-processing is

carried out for each LSF separately. No significant multipath components are found

with delay larger than 2 µs, so we limit the LSF to this value in the delay domain,

and align all LSFs to the same absolute mean delay. In order to avoid spurious and

noise components, we set all the components of the estimated LSF that are below

the noise level plus 6 dB to zero [11].

The RMS delay and Doppler spreads are depicted in Figure 2.14 for the V-polar

channel. The two parameters are showing quite similar behaviors, specially after

Rx crosses Tx position around 17 s, indicating a high correlation between both

spreads. The Pearson product-moment correlation coefficient is calculated as 0.49

over all frames. Spread values are smaller than the previous ones from the v-polar

omni-directional measurement shown in section 2.1.5. This is somehow expected,

since directional antennas give more weight to the LOS in the broadside, while

discarding reflections from wider angles.

In order to statistically characterize the spreads, we use the KS test to select

the distribution by comparing the p-value of different models. It is found that the

lognormal distribution gives the best fit to the measured parameters. Figure 2.15

shows the histograms of the RMS delay and Doppler spreads of the V-polar channel

and their corresponding best fit models. Similar characteristics are found for the

H-polar channel. Table 2.3 lists the details of the lognormal distributions for both

channels, where it shows that the H-polar channel has slightly larger mean delay

and Doppler spreads compared to the V-polar channel.
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Figure 2.14: RMS delay and Doppler spreads of the V-polar channel

Spread Mean KS-test p-value µ(log) σ(log)

σ̂τ V 33.39 ns 0.52 3.42 0.42

H 42.50 ns 0.36 3.66 0.42

σ̂υ V 7.31 Hz 0.80 1.92 0.37

H 10.26 Hz 0.82 2.25 0.38

Table 2.3: Statistics of the rms delay and Doppler spreads log-normal distribution

2.2.3 Small-scale fading amplitude modelling

The investigation of the small-scale amplitude is conducted in the delay domain

across consecutive time frames. For that purpose, we apply an inverse discrete

Fourier transform to the CTF in (2.1) using a Hann window to obtain the time-

varying channel impulse response (CIR). Then, we align the CIRs so that the

maximum LOS components have the same absolute delay. Finally, we can estimate

the small-scale fading by removing the path loss and large-scale fading using a

moving average filter of the same size as the LSF estimation window.

Traditionally, the Rayleigh fading is the common assumption in mobile com-

munications for worst-case performance analysis, while the Rician fading is used

when there exists a dominant path component (e.g. LOS). However, more severe

fading distributions have been reported, specially for vehicular communications

where WSSUS assumptions are no longer valid [19, 20]. In this section, we aim to

characterize the distribution of the small-scale fading amplitude per delay tap. Ac-
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Figure 2.15: Histograms of the (a) RMS delay spread and (b) RMS Doppler spread of the

V-polar channel and the corresponding lognormal models

cording to Table 2.3, the mean delay spread of both polarizations are well covered

by the first 4 delay taps (50 ns). We again use the KS-test with a 95% confidence

interval per frame to compare the most common distributions: Rician, Rayleigh,

Nakagami-m, and Weibull.

Table 2.4 lists the mean p-values of the H-polar channel frames that passed the

KS-test and the success rate of each candidate distribution for the H-polar channel.

Although all the p-values are satisfactory, deciding based on the p-values alone can

be misleading. For example, while the Rayleigh model has the highest p-value for

the first tap, it has the lowest success rate among the candidate models. Similar

fading behavior is observed for the V-polar channel.

To better understand the behavior of each delay tap, we use a flexible parametric

model to express the severity of fading. We estimate the Nakagami m-factor for the

first 4 taps using the maximum-likelihood estimator [21]. The m is also called the

shape factor, since a larger m means a smaller fading depth. The m estimate per

frame for the 4 taps of the H-polar channel is depicted in Figure 2.16. Indeed, the

first tap has large values of m > 1 indicating a better-than-Rayleigh fading, while

the other taps suffer from more severe fading with m = 1 (Rayleigh) and m < 1

(worse-than-Rayleigh).

Based on the previous analysis, we choose to model the first tap with a Rician

fading as it has the highest success rate. However, for the later taps, we select the

Nakagami-m fading. While both the Weibull and Nakagami models have higher
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Figure 2.16: m-factor estimate of the small-scale fading for the H-polar channel

Tap Rician Rayleigh Nakagami Weibull

(p) (%) (p) (%) (p) (%) (p) (%)

0 0.44 77.88 0.58 2.88 0.44 75.00 0.40 71.15

1 0.44 65.38 0.31 19.23 0.36 63.46 0.43 65.38

2 0.65 72.12 0.40 34.62 0.58 75.00 0.62 76.92

3 0.58 81.73 0.34 48.08 0.49 88.46 0.54 93.27

Table 2.4: Mean significance value (p) and success rate (%) of the KS-test for small-scale

fading amplitude of H-polar channel

success rates, the Nakagami distribution is widely studied in the literature and

can be treated more easily in theoretical investigations, compared to the purely

empirical Weibull distribution [3]. The K-factor of the first tap is estimated using

the method of moments [22]. Figure 2.17 shows the best fit lognormal model to

the statistical distribution of the estimated parameters for the H-polar channel, and

Table 2.5 lists the statistics of the lognormal models for H and V channels. We

notice that the mean K-factor of the first tap (tap 0) is slightly larger for the V-polar

channel than for the H-polar channel. This is consistent with the results in Table 2.3

that show larger mean delay and Doppler spreads for the H-polar channel. A reason

for that can be stronger scattering components in H-polar from ground and other

reflectors with larger horizontal geometry (e.g., vehicles).
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Figure 2.17: Cumulative distribution function (CDF) of the small-scale fading parameters

(K-factor for tap 0 and m-factor for later taps) and the corresponding lognormal models for

the H-polar channel

Tap Mean (dB) KS-test p-value µ(log) σ(log)

0 V 19.68 0.22 4.11 1.02

(K-factor) H 18.30 0.77 3.72 1.05

1 V 4.13 0.13 0.66 0.66

(m-factor) H 4.61 0.11 0.80 0.65

2 V 1.85 0.37 0.20 0.61

(m-factor) H 2.60 0.23 0.40 0.59

3 V 2.80 0.15 0.41 0.64

(m-factor) H 1.07 0.48 0.14 0.45

Table 2.5: Statistics of the small-scale fading parameters log-normal distribution

2.3 Conclusions

Due to rapid changes in the environment, vehicular communication channels no

longer satisfy the assumption of wide-sense stationary uncorrelated scattering. The

non-stationary fading process can be characterized by assuming local stationarity

regions with finite extent in time and frequency. In this chapter, the non-stationary

fading process of vehicular channels is analyzed based on V2I channel measure-

ments at 1.35 GHz in a suburban environment.
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We apply the framework of the local scattering function (LSF) and channel

correlation function to characterize the stationarity time and find it to be more

accurate than the empirical collinearity estimate. A stationarity time of 567 ms

is calculated for the crossing scenario at 40 km/h speed. Based on the LSF, time-

varying delay and Doppler power profiles are obtained and used to calculate the

corresponding second-order central moments. The empirical distribution of the

RMS delay spread and Doppler spread is best fitted by a lognormal model. Both

vertical and horizontal polarization show a similar behavior, with the mean spreads

of H-polar channel being slightly larger than V-polar channel.

In addition, the small-scale fading is investigated per delay tap. The small-

scale fading of the strongest path is found to be Rician distributed, while the

later delay taps show occasional worse-than-Rayleigh behavior. The parameters

of the Rician fading for the first tap and Nakagami fading for the later taps are

estimated and statistically modeled. The best fit is found to be the lognormal model.

Finally, practical relevance of the non-stationarity of the channel is briefly discussed.

Results show that as the assumption of WSSUS is violated, the assumption of

ergodic capacity and its application becomes unreliable. Moreover, the gain of

the effective diversity varies with the stationarity and coherence parameters of

the channel. Hence, the optimal performance of communication systems can be

obtained by considering the varying nature of such parameters via adaptive schemes.

In Chapter 3, we further analyse the wireless channel for vehicular communications

in other challenging environments like tunnels. We use the non-parametric LSF

and stationarity time estimators discussed in this chapter to characterize the non-

stationarity and statistically model the channel parameters of the tunnel scenario.
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3
Mobile channel modelling in tunnels

In this chapter, we extend the channel modelling for vehicular communications

from urban scenarios of Chapter 2 to the tunnel environment. We characterize the

non-stationary V2I channel measured in a rectangular tunnel in Antwerp, Belgium

under real traffic conditions. We explore the impact of antenna polarization on the

propagation characteristics by modelling the H/V dual-polarized (DP) propagation

channel. The power gain (G), co-polarization ratio (CPR), and cross-polarization

discrimination (XPD) are modelled. In addition to polarization, the impact of an-

tenna radiation pattern is also explored by comparing the results of omni-directional

and bi-directional antennas. It has been shown that directional antennas can poten-

tially increase the mean duration of a connection by a factor of 4 when connecting

from a vehicle to existing access points in suburban environment [1]. On the vehicu-

lar network level, the distribution of received frames over different angles of arrival

in city-wide simulations shows a dominance of angles around 0◦ and 180◦ [2]. This

indicates that most packets were received from vehicles in the front or in the back,

that is, vehicles on the same street or even lane. Hence, bi-directional antennas

provide a valid candidate for vehicular communications.

Moreover, we investigate the stationarity time based on the channel correlation

function (CCF) introduced in Chapter 2 for the tunnel scenario here in Chapter 3,

and statistically model the RMS delay and Doppler spreads in the channel across

stationarity regions. Few studies have measured the stationarity time of DP channels

[3, 4]; they use the empirical collinearity method in outdoor environments other than

tunnels. We model the small-scale fading of the channel, and point to the impact

of traffic conditions on the different channel parameters. Moreover, we investigate
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Figure 3.1: Entrance of the Beveren Tunnel in Antwerp.

the multiple-input multiple-output (MIMO) capacity for DP channels, and give

qualitative indications on the impact of different parameters like normalization,

CPR, XPD, and correlation coefficients.

Finally, we study the propagation of the MIMO channel in an arched road tunnel

in France. The measurements are carried out in two lanes: the open lane along the

center of the tunnel, and the closed lane near the tunnel wall. We first determine the

path loss, CPR, XPD, and delay spread. Then, we investigate the MIMO channel

for different scenarios of antennas spacing and polarization, and determine the

correlation level of the channel and its capacity performance along the tunnel.

The chapter is structured as follows. Section 3.1 includes the propagation

modelling in the rectangular tunnel, where we investigate the impact of traffic as

well as the antenna characteristics. The propagation in the arched tunnel is modelled

in Section 3.2, and conclusions are drawn in Section 3.3.

3.1 Rectangular tunnel environment

3.1.1 Measurements setup and scenario

Channel measurements are performed with the MIMOSA radio channel sounder,

shown in Section 1.4. It uses 80 MHz of transmission bandwidth, centered around

1.35 GHz. Identical sets of antennas are used at the Tx and Rx. For the omni-

directional measurement (OM), the wideband antenna is used from Cobham An-

tenna Systems, model XPO2V-0.8-6.0/1441. It features vertical polarisation, 0.8 -

6 GHz bandwidth, and 2 dBi gain. For the bi-directional measurement (BM), two

custom-made DP patch antennas of H/V polarizations are used back-to-back, with

one facing forward and the other facing backward. The peak gain is 7.4 dBi and the

half-power beam width is 120◦.
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Figure 3.2: Tx as a roadside unit with the antenna fixed inside the tunnel through an

emergency exit (left) and the van loaded with Rx and the antenna mounted on the rooftop

(right).

Measurements have been carried out in the Beveren tunnel in Antwerp, Belgium.

The one-kilometer tunnel has two rectangular tubes of approximately 15 m × 5 m

cross-section, with two lanes per direction, in addition to a roadside lane. Along

the tunnel, there are lights, pipes and concrete blocks on the sides, as shown in

Figure 3.1. In order to follow the V2I scenario, the Tx antenna is placed inside

around the middle of the tunnel through an emergency exit door at 2 m height, as

shown in Figure 3.2. The Rx antenna is mounted on the rooftop of a van carrying

the Rx inside. The van is driven through the tunnel at 90 km/h speed, crossing the

Tx position during a measured trip of 33 seconds.

Two types of trips are made for the OM: medium-traffic (MT) trip where 10 to 15

vehicles are present inside the tunnel during measurements, and low-traffic (LT) trip

where the number of vehicles is less than five. We obtain a snapshot repetition time

ts = 975.3 µs. With this parameters setting, we capture a total number of snapshots

S = 44032 snapshots, each with Q = 819 samples in frequency domain, and we

achieve a maximum Doppler shift of 1/2ts = 512 Hz and a minimum resolvable

delay resolution of 12.5 ns. For the BM, the radio channel is captured with a

snapshot repetition time of 3.92 ms. With this setting, we capture a total number of

8256 snapshots per DP subchannel (VV, HV, VH, and HH). Each snapshot has 819

samples in the frequency domain. We achieve a maximum Doppler shift of 128 Hz

and a minimum resolvable delay resolution of 12.5 ns.
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3.1.2 Impact of traffic density

In this section, we study the impact of traffic density on different channel parameters.

For that, we model the OM channel from the LT and MT trips.

3.1.2.1 LSF and stationarity time

The local scattering function (LSF) is a TF-dependent representation of the power

spectrum of the observed fading process in the delay and Doppler domains (τ, υ).

We use the discrete version of the LSF multitaper-based estimator presented in

Section 2.1.2. We estimate the LSF for consecutive regions in time, within which

the channel is assumed to be WSSUS. A sliding window is used with an extent

of M × N samples in time and frequency domains, respectively. We choose

M = 128 samples and include the whole bandwidth of N = Q = 819 samples in

frequency domain. The sliding time shift is selected to be half of the frame size,

i.e. 64 samples. With these parameters, we obtain a LSF estimate of 12.5 ns delay

resolution and 4 Hz Doppler resolution.

Figure 3.3 shows two LSF estimates at different instants during the trip: (a)

when Rx is approaching Tx, which can be seen from the positive Doppler shift of

the LOS component around 100 Hz, and (b) after Rx crosses Tx position, resulting

in the LOS Doppler shift from positive to negative 100 Hz. Several multipath

components can be observed; components from fixed scatterers are showing with

less power and Doppler shifts between +/- 100 Hz, while short-lasting components

resulting from moving scatterers can have different positive and negative Doppler

shifts.

As aforementioned, the stationarity time represents the region in time within

which the LSF is highly correlated. The LSF correlation can be determined by the

CCF spread about the origin in the Doppler lag direction [5]. According to (2.5),

the CCF Doppler moment measures the Doppler correlation, which is related to

the stationarity time Ts as shown in (2.6). Based on our measurement data of the

complete trip in the tunnel, we estimate a stationarity time Ts = 330 ms. This is

indeed larger than the assumed minimum value of 124.8 ms for the LSF estimation.

Both LT and MT trips have almost the same stationarity time, indicating that the

difference in traffic density is not enough to have an impact on the stationarity.

3.1.2.2 Delay and Doppler spreads

For the non-stationary channel, the fading parameters can be accurately evaluated

within each stationarity region, so that the channel modelling becomes physically

meaningful. Based on our estimation of the stationarity time, the corresponding

number of samples in time domain is M = 340 samples. Hence, the LSF estimate

is recomputed using a sliding time shift of half the stationarity region dimension.

By projecting the LSF in the delay and Doppler domains, we get the PDeP and
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(a)

(b)

Figure 3.3: LSF estimates at two instants before (a) and after (b) crossing the Tx position.

PDoP, respectively. Figure 3.4 depicts the PDeP and PDoP for the central parts of

the LT (upper) and MT (lower) trips inside the tunnel. The figure shows a strong

reflection (i) in the first half of the tunnel in the PDeP of both trips. This can be

related to the metal structure at the entrance of the tunnel, visible in Figure 3.1, that

would have a MPC with increasing delay as Rx goes into the tunnel. The tunnel

passes under the canal, hence, it goes downwards in the first half then upwards as

shown in Figure 3.5. This explains why the reflection from the entrance is only

visible during the first half of the trip. In addition, the difference in traffic densities

can be observed in the rich MPCs (ii) in the MT PDeP compared to the LT one.
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Figure 3.4: Time-varying (a) PDeP and (b) PDoP for different trips: LT (upper) and MT

(lower)

Figure 3.5: Blue print of the tunnel structure showing the change in elevation
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Figure 3.6: RMS delay and Doppler spreads for different trips: (a) LT and (b) MT

Based on the estimated profiles, the time-varying RMS delay and Doppler

spreads can be calculated from (2.8) and (2.9). Pre-processing is carried out for

each stationarity region separately before calculating the spreads. In order to avoid

spurious and noise components, we only consider components within 40 dB from

the peak level of the estimated LSF. All components below that power threshold

are set to zero [6]. The corresponding RMS delay and Doppler spreads are shown

in Figure 3.6. It can be seen that the spreads in the first half of the tunnel are larger

compared to the second half in both trips. This can be related to the reflection (i) in

Figure 3.4 (a) coming from the entrance of the tunnel. In addition, Figure 3.6 shows
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Spread Trip Mean KS-test p-value µ(log) σ(log)

Delay (ns) LT 130.02 ns 0.17 4.33 1.08

MT 184.29 ns 0.12 4.86 0.85

Doppler (Hz) LT 25.08 Hz 0.77 2.96 0.73

MT 27.57 Hz 0.78 3.18 0.53

Table 3.1: Statistics of the rms delay and Doppler spreads log-normal distribution

Trip First half Second half

LT 0.92 0.39

MT 0.69 0.38

Table 3.2: Pearson correlation coefficient between log(delay) and log(Doppler) for each half

of the tunnel

that the spreads in the MT trip (b) are relatively larger than in the LT trip (a). In order

to statistically characterize the spreads, we use the KS test to select the distribution

by comparing the p-value of different models: lognormal, normal, Nakagami,

Rayleigh, Weibull, and Rician. It is found that the lognormal distribution gives

the best fit to the measured parameters. Table 3.1 lists the details of the lognormal

distributions for both trips, where it shows that the MT trip has slightly larger mean

delay and Doppler spreads compared to the LT one.

In both trips, the delay and Doppler spreads are showing quite similar behaviors,

indicating a high correlation between the two parameters. The correlation seems

different in the first half of the tunnel compared to the second half. Hence, the

Pearson correlation coefficient is calculated separately for each half of the tunnel.

Figure 3.7 shows the scatter plots of the delay and Doppler spreads in log domain

for both trips. It clearly shows the difference between the two halves of the tunnel in

terms of parameters value as well as correlation. This is reflected in the correlation

values presented in Table 3.2, where the correlation is found to be larger in the first

half compared to the second half. Again, this can be related to the MPC reflected

from the tunnel entrance (i) in Figure 3.4, which is only showing during the first

half of the tunnel. In addition, the correlation is relatively larger in the LT trip

compared to the MT one, which is expected due to the less random scatterers (ii) in

Figure 3.4.

3.1.2.3 Small-scale fading amplitude

The investigation of the small-scale amplitude is conducted in the time domain

across consecutive stationarity regions. We remove the path loss and large-scale

fading using a moving-average filter of the same size as the LSF estimation window.
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Figure 3.7: Scatter plot of delay and Doppler spreads in log domain for different trips: (a)

LT and (b) MT

Trip Rician Rayleigh Nakagami Weibull

(p) (%) (p) (%) (p) (%) (p) (%)

LT 0.57 85.62 0.129 0.35 0.50 74.63 0.39 79.61

MT 0.56 89.95 0.064 0.23 0.49 76.45 0.41 87.29

Table 3.3: Mean significance value (p) and success rate (%) of the KS-test for small-scale

fading amplitude

This is then averaged over the whole frequency bandwidth. The fading distribution

is acquired by calculating the CDF of the channel amplitude and comparing it to

the classical fading distributions like Nakagami, Rayleigh, Weibull, and Rician [7].

In order to decide on the best fitting distribution, we use the KS test.

Table 3.3 lists the mean p-values of the stationarity regions that passed the

KS-test and the success rate of each candidate distribution for the complete trip.

The Rician distribution appears to best fit the experimental results for both trips,

similar to the results reported in [8, 9]. This is mainly due to the LOS conditions.

The K-factor per region is depicted in Figure 3.8 for the two trips, where the LT trip

is shown to have a larger mean value (17.54 dB) compared to the LT one (15.1 dB).

Using the KS test again with a 5% significance level against the most common

distributions, the K-factor is found to follow a lognormal distribution for the MT

trip with p-value = 0.19. However, the LT trip did not pass the test of several

candidate distributions, with the best p-value = 0.016 for the lognormal model.

Figure 3.9 shows the CDF of the K-factor and the lognormal model parameters for

the two trips.
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3.1.3 Impact of antenna characteristics

Next, we investigate the impact of the antenna characteristics on the channel

parameters. We model the DM and OM channels from the same MT trip.

3.1.3.1 Path gain and polarization power ratios

The channel gain is calculated from the CTF h(d, f) by averaging the power gain

over the 819 frequency subcarriers for each polarization as a function of distance

Gij = E{|hij |
2}, (3.1)
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Figure 3.10: Path gain versus distance for different polarization combinations.

OM VV HV VH HH

G0 -42.6 -37.00 -49.22 -48.84 -39.54

n 1.19 1.24 1.23 1.20 1.27

σ 3.47 4.66 4.12 4.30 3.38

Table 3.4: Path Gain Model Parameters

where i, j ∈ {V,H} is the polarization at Tx and Rx, respectively. According

to [10], a one-slope model can be used to fit the path loss in tunnels with road traffic

conditions. Hence, we use the following log-distance path loss model

G (d) = G0 − n 10 log10 (d) +Xσ, (3.2)

where G (d) is the path gain in dB at distance d from Tx, G0 is the reference

value at 1 m, n is the path loss exponent, and Xσ is a random variable with

normal distribution of zero mean and σ standard deviation. These parameters are

determined by a least-squares fit to the measurement data. Figure 3.10 shows the

measured channel gain versus distance during the second half of the tunnel, i.e.

after Rx crosses Tx, and the corresponding model for different polarizations of

the BM. Table 3.4 summarizes the model parameters, where the results of the OM

model is also included for comparison.

A general observation is that the path loss exponent is smaller than in free-

space and typical outdoor environments. This is due to the guiding effect of the

tunnel, making it closer to indoor scenarios like industrial environments [11]. We
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also notice a periodic pattern in the fading over distance. In empty tunnels, the

field fluctuations are mainly related to the richness in terms of propagating modes.

According to the modal theory [12], the superposition of several hybrid modes

supported by the structure of the tunnel is what gives rise to large pseudo-periods

with distance on the large scale. However, the traffic condition and structure irregu-

larities disturb the propagating modes, making the pseudo-periods in Figure 3.10

less clear than in empty tunnels [13].

Regarding the polarization dependence, we see that the cross-polarized sub-

channels have lower reference gain than the co-polarized subchannels, as expected.

While the two cross-polarized models are almost identical, the co-polarized models

show some differences: the HH subchannel has a slightly lower path gain than the

VV channel. According to [14], a deterministic ray approach for empty smooth

walled tunnels composed of uniform material predicts the opposite; the H path gain

is higher than the V path gain. Since the geometry of the tunnel is such that the

width is larger than the height, the H waves reflected from the ground and ceiling

are stronger than the V waves reflected from the walls of the tunnel, due to the

Brewster’s angle phenomenon [15, 16]. However, this effect can not be observed

in the measurements. The reason is likely the non-uniformity of materials and

shapes present in the propagation path (e.g. traffic condition, side pipes, trays and

emergency exits), resulting in more scattering for the HH subchannel and a lower

path gain.

We also investigate the effect of the antenna pattern by comparing the directional

VV and OM models of same polarization. Due to the gain difference between the

two antennas, the reference gain for the OM is 5.6 dB lower compared to the BM.

In fact, the average gain within the HPBW of the BM is calculated as 5 dBi, and

with a gain of 2 dBi for the OM, the gain difference = 2× (5− 2) = 6 dB. This is

quite similar to the difference in the reference gain of the two models. This implies

that, while the OM has a wider angle into the propagation environment, most of the

multipath components with significant power arrive within the HPBW. Indeed, only

rays impinging the tunnel walls with a grazing angle of incidence play a leading

part in the propagation at large distance [13].

We further investigate the polarization dependence over distance in terms of

CPR and XPR. The CPR is the power ratio between the two co-polarized subchan-

nels gain, given by the following formula in dB

CPR = 10 log10

(
GVV

GHH

)
. (3.3)

The XPD is the power ratio between a co-polarized subchannel gain and the corre-

sponding cross-polarized subchannel gain. It shows the amount of depolarization

or power leakage that each of the H and V subchannel goes through. The following
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Figure 3.11: CPR and XPD versus distance for different polarization combinations.

mean (dB) σ (dB) R0 (dB) Rn (dB/100m)

CPR 3.53 3.57 0.35 1.0

XPDV 12.03 2.93 10.9 0.1

XPDH 11.29 3.49 10.6 -0.6

Table 3.5: Statistical Model and Distance-dependent Model Parameters of CPR and XPD

formula represents XPD in dB

XPDV = 10 log10

(
GVV

GVH

)
, (3.4)

XPDH = 10 log10

(
GHH

GHV

)
. (3.5)

Figure 3.11 shows the CPR and XPD over the second half of the tunnel. It

shows a slow increase in the CPR with distance, which can be related to the

small difference in the path loss exponent of VV and HH in Table 3.4. On the

other hand, the XPD does not drop at far distances and the waves remain highly

polarized, confirming previous results [13, 17]. The ray theory of propagation

in tunnels predicts that depolarization only happens at small range, where the

waves impinging the tunnel walls are not polarized along the direction parallel or

perpendicular to the plane of incidence [18].

Table 3.5 includes the mean values and the distance-dependence parameters of
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Ts (ms) OM VV HV VH HH

overall 330 400 367 375 380

mean 428 435 432 427 436

std. 53 48 48 47 47

min. 268 325 315 299 303

Table 3.6: Stationarity Time statistics in ms for Different Radiation Patterns and

Polarizations

the power ratios (PR), where a linear dependence in dB is assumed as

PR = R0 +Rn d. (3.6)

In addition, the CPR and XPD are statistically modeled. Based on previous measure-

ments and ray-tracing simulations, there is quite an agreement in the standardized

models that both parameters follow a lognormal distribution [19, 20], hence the

estimated standard deviation is included in Table 3.5. The results match with the

values found in the literature for similar scenarios [19]. We notice that, while

the instantaneous XPDV and XPDH are not identical, their models are similar, on

average.

3.1.3.2 Stationarity region

As aforementioned, the stationarity time represents the region in time within which

the LSF is highly correlated. The LSF correlation can be determined by the CCF

spread [5]. The CCF Doppler moment in (2.5) measures the CCF spread in the

Doppler lag dimension, which is related to the stationarity time Ts in (2.6). For

calculating the stationarity time, we first need to estimate the LSF assuming a

minimum stationarity region. This initial region should be small enough not to

include non-stationary variations, and large enough to include sufficient resolution

in the delay and Doppler domains. We choose the region’s dimension in time

domain M = 32 samples, corresponding to 125 ms or 15λ, approximately. The

sliding time shift is selected to be half of the window size, i.e. 62 ms in this case.

With these parameters, we obtain a LSF estimate of 12.5 ns delay resolution and

8 Hz Doppler resolution. It is worth noting that the CCF estimate from (2.4) may

vary depending on the time interval of estimation. We choose to calculate it over

the complete duration of the trip, thus, characterizing the degree of non-stationarity

of the entire scenario. This is more practical from an operational perspective since

it gives an estimate for the stationarity region that represents the environment in an

average sense, i.e., a single value per type of environment.

Based on our measurement data of the overall trip in the tunnel, Table 3.6 lists

the estimated stationarity time in ms for each case. In addition, we add the mean,
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minimum and standard deviation statistics of the stationarity time calculated per

a 2 s period (240λ). It is clear that the stationarity time is indeed larger than the

assumed minimum value of 125 ms for the LSF estimation. The results show that

the co-polarized subchannels have longer stationarity times compared to the cross-

polarized subchannels. This is expected as reported in [3], since the depolarized

waves would undergo more variations due to reflection and scattering. We also no-

tice that the HH subchannel has a shorter stationarity time than the VV subchannel.

This can again be related to the conclusion that the HH subchannel experiences

more scattering, and thus more time variation. The same conclusion can be drawn

when comparing the OM with the VV subchannel; since the OM antenna has a

wider angle of uniform gain, it captures more significant multipath components,

contributing to a faster fading [21]. This results in the shortest stationarity time for

the OM, compared to all subchannels of the BM.

3.1.3.3 Delay and Doppler spreads

Based on our estimation of the stationarity time, the corresponding number of

samples in the time domain is about M = 100 samples. Hence, the LSF estimate

is recomputed using a sliding window of the stationarity region dimensions. By

integrating the LSF over the Doppler and delay domains, we get the PDeP and PDoP,

respectively. Figure 3.12 depicts the PDeP and PDoP for the VV subchannel. The

LOS component can be easily recognized; the delay decreases as Rx approaches Tx

with positive Doppler shift, then after crossing the Tx position around 11 s, the delay

starts increasing again and the Doppler shift becomes negative. Several multipath

components can be observed; components from fixed scatterers are showing similar

pattern to the LOS, i.e. Doppler shifts between +/-100 Hz as Rx passes by, but with

less power. Components resulting from moving scatterers in the same movement

direction have different Doppler shifts that are more consistent, depending on their

relative speed and position.

The corresponding RMS delay and Doppler spreads are shown in Figure 3.13

for the VV and HH subchannels. The delay spread in the first half of the tunnel is

larger compared to the second half. As aforementioned, this can be related to the

reflection coming from the metallic structure at the entrance of the tunnel, visible in

Figure 3.1. In addition, Figure 3.13 shows that the spreads in the HH subchannel are

relatively larger than in the VV subchannel. This confirms the previous conclusion,

that the channel is more dispersive in the H polarisation, resulting in smaller path

gain and stationarity time.

Previous studies find that a lognormal distribution is the best fit for the delay

spread in tunnels [6]. We verify this using the Lilliefors test [22]. It is a two-

sided goodness-of-fit test when the parameters of the tested normal distribution are

unknown and must be estimated, thus is suitable for our case. With 5% significance

level, the test shows that both the delay and Doppler spreads from the measurements
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Figure 3.12: Time-varying PDoP (a) and PDeP (b) for the VV subchannel in dB.

follow the lognormal distribution. An example of the delay spread histogram for

the VV and HH subchannels is shown in Figure 3.14. Table 3.7 lists the estimated

parameters of the lognormal distributions for different polarization combinations of

the BM, in addition to the OM.

Looking at the BM results, the co-polarized subchannels have a larger delay

spread but slightly smaller Doppler spread relative to the cross-polarized subchan-

nels. Additionally, the HH subchannel has larger delay and Doppler spreads than

the VV subchannel, as already mentioned. To show the impact of the antenna

pattern, we compare the values of the OM and VV subchannel. The OM has larger

delay and Doppler spreads, indicating that an antenna with wider angle captures

more multipath components that increase dispersion. Hence, the impact of the
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Figure 3.13: RMS delay (a) and Doppler (b) spreads for VV and HH subchannels with Tx

location in red.

Delay (ns) Doppler (Hz)

mean µ (dB) σ (dB) mean µ (dB) σ (dB)

OM 184.29 4.86 0.85 27.57 3.18 0.53

VV 87.96 4.2 0.74 18.88 2.73 0.63

HV 71.74 4.1 0.59 26.34 3.15 0.5

VH 72.1 4.1 0.63 23.28 3.02 0.5

HH 109.74 4.46 0.69 23.1 2.99 0.54

Table 3.7: Statistics of The RMS Delay and Doppler Spreads Lognormal Distribution
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Figure 3.14: Histograms of the RMS delay spread for the VV (a) and HH (b) subchannels

and the corresponding lognormal models.

antenna pattern on the spreads is larger than its impact on the power gain mentioned

in Section 3.2.3.1. The reason is that the RMS spread includes the effect of both the

power and the delay/Doppler of the multipath components, while only the average

power is accounted for when calculating the gain.

3.1.3.4 Dual-polarized MIMO channel capacity and normalization

MIMO technology offers multiplexing and diversity gains without increasing the to-

tal system power and bandwidth, thus offering substantial improvements in channel

capacity and spectral efficiency. DP MIMO has the benefit of reducing the antennas’

form factor by having co-located DP antennas while maintaining low correlation, a

condition usually required by MIMO systems [23]. However, in order to compare

DP systems to other MIMO or even SISO systems, normalization is needed. The

main idea is to isolate the small-scale characteristics of the channel from the effects

of path loss and other large-scale fading, so that the intrinsic characteristics of

the MIMO matrix are compared at certain SNR. We will discuss three types of

normalization below. The goal is to investigate the effect of normalization on the

accuracy of the DP channel capacity calculation, and propose a more accurate

normalization approach.

For a narrowband system of nT Tx antennas and nR Rx antennas, the maximum

capacity expressed in bits/s/Hz, with uniform power allocation and the presence of
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additional white Gaussian noise is given by the generalized formula

C = log2 det
(

InR
+

SNR

nT
HH†

)
, (3.7)

where InR
is the identity matrix of size nR, SNR is the average signal-to-noise ratio

per Rx antenna, H is the nT × nR CTF matrix, and (.)† is the Hermitian transpose.

The wideband capacity is calculated by averaging C over the frequency bandwidth.

In our scenario, the CTF matrix is expressed as

H =

[
hVV hVH

hHV hHH

]
. (3.8)

Since the actual SNR varies as a function of Rx location, channel normalization

is required to facilitate comparison of the results at a constant SNR. One common

normalization is to scale the channel matrices such that the average power transfer

between a single Tx and single Rx antenna is unity. The unity power gain constraint

is equivalent to setting the squared Frobenius norm of the normalized matrix as

E{∥H∥2F} = nRnT [24–26].

The Frobenius normalization, as already mentioned, would result in an average

SISO SNR of unity on all the subchannels for a spatial array configuration. On

the other hand, DP configurations suffer from power imbalances, which need to

be accounted for in their capacity calculations. If the same normalization is used,

the performance of these systems is overestimated [25, 26]. While some studies

did use the Frobenius normalization for DP systems [4, 17, 24], others suggested

normalizing the power of co-polarized subchannels [3, 25], or only one of the

co-polarized subchannels (e.g. VV [27]) to unity.

To investigate the effect of normalization on the DP capacity, we calculate the

capacity at 10 dB SNR using the different normalization approaches. Figure 3.15

shows the DP capacity CDF when normalizing the CTF matrix to the power of the

co-polarized subchannels and the VV subchannel. The plots also include the SISO

capacity of each subchannel, in addition to the DP capacity using the Frobenius

normalization. We add the capacity of a 2×2 i.i.d. complex Gaussian MIMO

channel as well for comparison. The theoretical average capacity at 10 dB SNR =

log2(1 + 10) = 3.46 b/s/Hz for SISO, and 6.92 b/s/Hz for any 2×2 MIMO system.

It is clear from the figures that the Frobenius normalization of the DP channel gives

unrealistic results, as its capacity is larger than that of the i.i.d. Gaussian channel.

The effect of the power imbalance among the subchannels can be seen in the SISO

capacity; the cross-polarized subchannels capacity is much lower than that of the

co-polarized subchannels. That is because their SNR is lower than 10 dB due to the

XPD. The effect of the CPR can be seen in the co-polarized subchannels capacity;

in Figure 3.15 (a) where the SNR is normalized to the co-polarized power, both

VV and HH average capacities are around the theoretical value. Figure 3.15 (b)
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Figure 3.15: CDF of the channel capacity when normalizing the power of the co-polarized

subchannels (a) and the VV subchannel (b) to 10 dB SNR.

shows the average VV capacity exactly at the theoretical value as expected, since

its power is normalized. On the other hand, the HH capacity curve is more gradual,

as its SNR deviates from the 10 dB of the VV subchannel due to the CPR.

Comparing the DP capacity of the two normalization approaches, we see that

they do not overestimate the performance like the Frobenius normalization, as

shown in Figure 3.15. However, the power imbalance of the DP channel is still

impacting the effective SNR, hence, the intrinsic MIMO matrix characteristics are

not truly isolated. To show this, we need a parameter that describes the MIMO

performance but does not depend on the channel normalization. The condition

number is defined as the ratio of the maximum to minimum singular value of the

channel matrix. The lower the condition number, the more potential the channel has
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Figure 3.16: The condition number during the second half of the tunnel, with the average in

red.
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Figure 3.17: Scatterplot of the condition number versus the DP capacity when normalizing

the power of the co-polarized subchannels (a) and the VV subchannel (b) to 10 dB SNR, with

the average condition number in red.

for large multiplexing gains [26]. Figure 3.16 shows the condition number of the

CTF matrices during the second half of the tunnel. The average condition number is

5.5 dB, which is good for having multiplexing gain in practice [28, 29]. We notice

that the condition number remains relatively low as the SNR drops with distance.

Figure 3.17 shows the scatterplot of the condition number versus the capacity of the
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Figure 3.18: CDF of the channel capacity (a) and its scatterplot versus the condition

number (b) using the proposed normalization to 10 dB SNR.

DP channel using the two normalization approaches. It is clear that the capacity is

not correlated with only the condition number, indicating the impact of the power

imbalance on the effective SNR.

3.1.3.5 Power conservation approach for normalization

The problem with these normalization approaches is that they do not assume a

conservation of power or energy, where the channel cannot output more power

than what is transmitted [23]. When normalizing to one or both of the co-polarized

subchannels, the power imbalance due to CPR, and leakage from one polarization to

the other due to XPD are not compensated for in the effective SNR. This makes the

channel introduce more energy which is good for the performance, but unfortunately

is unrealistic. Hence, we propose to normalize the channel matrix such that

E{∥H̃∥2F} =
nRnT

2
. (3.9)

In this normalization, the power is conserved by subtracting from the co-polarized

subchannels SNR the corresponding amount of power that has leaked into the cross-

polarized subchannels, i.e. we use E{|hVV|
2}+ E{|hVH|

2} = 1 and E{|hHH|
2}+

E{|hHV|
2} = 1 as constraints. Figure 3.18 shows the capacity CDF and the

scatterplot with the condition number using the proposed normalization. We notice

that the capacity is fully correlated with the condition number, and has an average

value of 4.82 b/s/Hz. This implies that the proposed approach gives more accurate

results, as it reflects the intrinsic MIMO gain, while insuring that the effective SNR

is not overestimated.
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3.1.3.6 Dual-polarized subchannels correlation

Finally, we investigate the correlation among DP subchannels. In spatial MIMO,

low correlation between antenna elements is often desired to enhance system

capacity [30]. It was shown that DP waves in many NLOS scenarios fade almost

independently, and they remain orthogonal throughout the channel in LOS scenarios

[23]. We calculate the full correlation matrix using the following expression for its

elements

ρi,j =
E{hih

∗
j} - E{hi}E{h∗

j}√
E{|hi|2- |E{hi}|2}E{|hj |2- |E{hj}|2}

, (3.10)

where i, j ∈ {VV,VH,HV,HH} are the subchannels under consideration. The

correlation matrix R is calculated as

R =




1.00 0.86 0.87 0.90
0.86 1.00 0.85 0.86
0.87 0.86 1.00 0.87
0.90 0.86 0.87 1.00


 . (3.11)

The results indicate high correlation values for the tunnel scenario. Similar results

were observed for LOS scenarios in [4].

An alternative way to describe the channel correlation is to utilize the Kronecker

model. In that model, the MIMO system is decomposed into two interconnected

subsystems, with one having the correlation matrix at Tx side and the other at Rx

side. The model approximates the correlation matrix as the Kronecker product of

correlation matrices at Tx and Rx separately. It works well at large Tx-Rx distances

where the propagation at Tx and Rx can be considered independent [30, 31]. Since

the Kronecker model is merely an approximation, the difference between the model

and the measured results can be quantified using the second order error statistics

given by [32]

ϵ =
∥RK − R∥F

∥R∥F

, (3.12)

where RK and R are the correlation matrices from the Kronecker model and

measurements, respectively.

The Kronecker model is used to re-calculate the correlation matrix as

RK =




1.00 0.86 0.86 0.75
0.86 1.00 0.75 0.86
0.86 0.75 1.00 0.87
0.75 0.86 0.87 1.00


 . (3.13)

The model provides lower correlation values compared to the measurement results.

The introduced error is evaluated using the second order statistics ϵ = 7.58%, which

implies that the Kronecker model may not be suitable for this scenario. Same

conclusions are found in [26, 30, 31].
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Figure 3.19: Subchannels correlation coefficients during the second half of the tunnel.

These results appear to be in contradiction with those presented in Figure 3.16,

where the condition number remains relatively low throughout the tunnel. We

further calculate the correlation coefficients per stationarity region and plot them

versus distance in Figure 3.19. Indeed, the correlation coefficients remain high

throughout the tunnel and no correlation is found between them and the condition

number. This suggests that the main source of the multiplexing gain (i.e. having

singular values of similar power representing parallel orthogonal subchannels) is

not the decorrelation of the DP subchannels, but rather the DP orthogonality or

diagonalization of the channel matrix that is maintained by high XPD and CPR close

to unity. Figure 3.20 depicts the scatterplots of the condition number versus CPR and

XPDH. The plots are split into three parts according to the CPR level: CPR>3 dB

(red), CPR< −3 dB (blue), and in between (green). Figure 3.20 (a) shows that

there is a correlation between the CPR and the condition number, especially in the

high CPR regions (red and blue) where the condition number decreases as CPR

approaches 0 dB. It also shows that the condition number is lower-bounded by the

magnitude of the CPR. Figure 3.20 (b) shows that the condition number decreases

as XPDH increases in the green and red regions. In other words, even when the

power of VV is higher than HH (red), having less leakage from the HH (higher

XPDH) improves the channel multiplexing gain. For the red and green regions

combined, the Pearson coefficient of correlation is calculated between the condition

number and the magnitude of the CPR and XPD, and is found to be 0.8 and -0.6,

respectively.
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Figure 3.20: Scatterplots of the condition number versus CPR (a) and XPDH (b).

3.2 Arched tunnel environment

Few studies investigate arched tunnels; they model the channel in terms of path

loss for SISO propagation [8, 33, 34]. In [35], authors study the narrowband

propagation in arched tunnels using switching antennas, by measuring the capacity

and correlation over distance for different polarizations. Authors in [17] use virtual

arrays to study the wideband propagation in arched tunnels, again by investigating

the path loss and capacity over distance for different polarizations. The same

authors study the field distribution in the transverse plane and the correlation in both

transverse and longitudinal directions in [36]. However, these studies investigate

propagation under no traffic condition and do not include dispersion parameters

like delay spread as in [37]. In addition, the Tx is usually placed at or near the

center of the tunnel’s cross-section.

In this section, we study the propagation of DP MIMO channels in an arched

road tunnel under real traffic conditions. The measurements are carried out in

two lanes. Hence, we investigate the influence of the Rx transversal location on

propagation while the Tx is fixed near the tunnel wall, representing a realistic V2I

scenario.

3.2.1 Measurements setup and scenario

Channel measurements are performed with the MIMOSA radio channel sounder

by the TELICE group from the University of Lille, France. The transmission

bandwidth is 80 MHz, centered around a carrier frequency of 1.35 GHz. For this

measurement campaign, uniform linear arrays of four DP (H/V) patch antennas
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Figure 3.21: Cross-section of the tunnel with Tx in the closed lane (left) and Rx in the van in

the open lane (right) (Source: TELICE, University of Lille)

with 34 cm inter-element spacing (1.5 λ) are used at both Tx and Rx, giving rise to

8 parallel Tx and Rx channels. The acquisition time of the 8×8 channel snapshot

each of 819 sub-carriers takes up 163.84 µs.

Measurements have been carried out in an arch-shaped road tunnel located in

Le Havre, France. The tunnel has two separate tubes in opposite directions. Since

the two tubes are identical, only one direction was investigated. This straight tunnel

is 590 m long and has approximate transverse dimensions of 9.7 m width and 4.63

m height. Along the tunnel, there are lights, pipes and reflective poles as shown

in Figure 3.21. Two emergency exits on the closed lane side with metal fence and

small parking space exist at one-quarter and half the distance along the tunnel. The

tunnel has two lanes: the lane along the center is open for traffic, while the lane on

the left side is closed.

For capturing the propagation channel along the tunnel, the Rx was mounted on

the roof-top of a measurement van at a height of 2 m as shown in Figure 3.21. The

van moved along the open lane with a 50 km/h speed limit and then made another
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Figure 3.22: Average channel gain and the deduced model for the closed lane

round along the closed lane with almost half the speed. In both rounds, there was

traffic along the open lane, and the Tx was mounted at the same height in the closed

lane next to the tunnel wall, maintaining LOS with Rx. Hence, we captured for the

closed lane double the data size of the open lane (600 and 292 frames for the closed

and open lane, respectively). During the measurements, one of the Rx antenna

cables was found defected and as a result, the corresponding data captured is not

included in the analysis. Hence, for each measurement point along the tunnel, we

capture a CTF matrix of size 4 Tx antennas × 3 Rx antennas × 4 polarizations ×

819 subcarriers. The four polarizations are VV, VH, HV and HH, where the first

polarization refers to Tx and the second to Rx. In addition, the sounding snapshot

mode used for this measurement campaign resets the phase every symbol. As a

result of not tracking the phase, no Doppler analysis is possible.

3.2.2 Path gain and polarization power ratios

The path loss is deduced from the CTF matrix by averaging the power gain over

all antennas and frequencies. As mentioned in Section 3.1.1, a one-slope model

is used to characterize the path loss for both lanes of the tunnel. Figure 3.22 and

3.23 plot the measured channel gain of different polarizations versus distance for

the closed and open lane, respectively. The corresponding curves for the deduced

models are also plotted along with the free space model. Table 3.8 summarizes the

model parameters in (3.2) for different polarizations, where the standard deviation

σ of the measured gain from the predicted model values has been added to indicate

the level of field fluctuation in dB.

The power ratios between polarizations are shown in Figure 3.24 and 3.25 for
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Figure 3.23: Average channel gain and the deduced model for the open lane

VV VH HV HH

Closed lane G0 -34.97 -43.81 -42.15 -39.10

n 0.89 1.03 1.17 0.70

σ 3.76 1.70 1.36 4.42

Open lane G0 -28.42 -38.71 -43.68 -33.70

n 1.25 1.33 1.11 1.01

σ 2.80 2.04 1.84 2.19

Table 3.8: Path Loss Parameters

the closed and open lanes, respectively. Both CPR (VV/HH) and XPD (VV/VH

and HH/HV) are plotted versus distance. The mean CPR averaged over distance

is 0.19 dB in the open lane and 0.27 dB in the closed one. The average XPD of

H-polar channel is larger than that of V-polar channel in the closed lane (16.7 dB

compared to 13.7 dB), while it is almost the same in the open lane (13.16 dB).

These results show that the guiding effect of the tunnel results in a smaller path

loss exponent than typical outdoor and indoor environments [38]. From Table 3.8,

we notice that the attenuation rate of H-polar channel is less than V-polar channel

(0.7 and 1.01 compared to 0.89 and 1.25). This comes from the fact that the wave

polarized normal to the plane of incidence is reflected more than the one polarized

parallel to the plane of incidence, in a phenomenon known as the Brewster’s angle.

Since the geometry of the tunnel is such that the width is larger than the height,

the H-polar wave reflected from the ground and ceiling are more than the V-polar

one reflected from the walls of the tunnel, which is also observed in previous
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Figure 3.24: XPD and CPR versus distance for the closed lane
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Figure 3.25: XPD and CPR versus distance for the open lane

studies [17, 39]. This explains the decrease in CPR that can be seen at far distances

in the curves of both the closed and open lanes.

On the other hand, XPD does not drop at far distances and the waves stay

highly polarized, confirming previous results [13, 31]. This can be related to

Table 3.8, where the co-polar channels have smaller reference attenuation and

path loss exponent than the cross-polar channels. The ray theory of propagation

in tunnels predicts that depolarization only happen at small range, where the

waves impinging the tunnel walls are not polarized along the direction parallel

or perpendicular to the plane of incidence [40]. At large distances, only the rays

reflecting with a grazing angle, polarized along these directions, play a leading part

in the propagation and thus no depolarization occurs [13]. Also, if the difference

between H and V reflection coefficients is large, the depolarization increases and

the XPD drops. This difference is largest for medium angles of incidence, which

explains the drop in the XPD at the equivalent medium distances of the tunnel.

Comparing between the two lanes of the tunnel, we see from Table 3.8 that

cross-polar channels have similar behavior in both lanes. On the other hand, co-
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Figure 3.26: Time-varying PDeP of HH channel in the open lane

polar channels have larger reference attenuation and smaller path loss exponent in

the closed lane compared to the open lane. Also the standard deviation is larger

in the closed lane compared to the open lane. According to the modal theory and

depending on the geometry and excitation conditions of the tunnel, the farther you

move away from the center towards the sides of the tunnel, the larger the average

and standard deviation of the attenuation [41, 42].

3.2.3 Delay spread

We measure the time dispersion along the tunnel by calculating the RMS delay

spread as in (2.8). We first deduce the PDeP by taking the inverse Fourier transform

of the CTF and calculating the power of each delay component. The CTF at each

distance point is averaged over all the antennas, normalized by a moving-average

filter to remove large-scale fading, and then windowed using a Hanning window

before applying the transform. In order to avoid spurious and noise components, we

decide on a power threshold below which we set all the components to zero. The

threshold is chosen to be 6 dB above the noise level. Figure 3.26 shows the time-

varying PDeP along the tunnel for HH channel in the open lane. We notice that the

PDePs are aligned in the delay domain due to the aforementioned snapshot mode of

the measurements. We also notice the different components comprising the PDeP:

the LOS being the strongest component, components with constant delay which

probably come from the other vehicles moving at similar speed, and components

with increasing or decreasing delay indicating reflecting objects moving away from

or towards Rx, respectively. Since Rx antennas are facing the opposite direction of

movement, the components moving away from Rx appear stronger.

We then calculate the RMS delay spread for different polarizations after ap-

plying the threshold. Figure 3.27 and 3.28 plot the RMS delay spread versus the

distance for the co-polar channels in the closed and open lanes, respectively. It is
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Figure 3.27: RMS delay spread along the closed lane
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Figure 3.28: RMS delay spread along the open lane

observed that the delay spread slightly increases as the distance increases. After a

certain distance, the higher order modes are attenuated in the far region and fewer

modes are left. As a result, the delay spread decreases again according to [39, 42].

However, we notice the local increase in RMS spread at almost one quarter and

half the tunnel range, which are more severe in the closed lane compared to the

open lane. This can be related to the two emergency exit areas located at the same

distances along the tunnel.

To decide on the distribution of the RMS delay spread, we again use the

Kolmogrov-Smirnov test to compare it with theoritical distributions, as shown
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Figure 3.29: RMS delay spread of HH channel in the open lane (a) CDF compared to

theoretical distributions (b) histogram with log-normal best fit distribution

mean spread (ns) VV VH HV HH

Closed lane 12.94 22.17 23.57 15.35

Open lane 12.35 21.10 19.42 14.07

Table 3.9: Mean RMS Delay Spread

in Figure 3.29 (a) for the HH channel. We find the best fit to be a lognormal

distribution [6] shown in Figure 3.29 (b). The parameters for the fitted log-normal

distribution are (µ = -18.10, σ = 0.18) for the open lane, and (µ = -18.05, σ = 0.33)

for the closed lane. Table 3.9 lists the mean RMS spread values over the tunnel

in nanoseconds. They are relatively larger than the values found in [37], since

our scenario represents larger frequency, tunnel geometry, obstacles and traffic

conditions. It can be observed that the cross-polar channels have larger average

spread than the co-polar channels, while the HH channel spread is larger than VV

channel for both lanes. This can be again related to the Brewster angle phenomenon,

where the width of both the tunnel and vehicles being larger than the height allows

for stronger reflections of the H-polar rays compared to V-polar rays [42]. On

the other hand, we see that the closed lane being closer to the tunnel walls has

no significant impact on the average spread, compared to the open lane along the

center of the tunnel.
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Figure 3.30: Correlation coefficient amplitude rij between Rx antennas i and j for the VV

channel in (a) the closed lane and (b) the open lane

3.2.4 Channel correlation and singular values

Subchannel correlation along the tunnel strongly influences the performance of

MIMO systems. It depends on the antenna spacing and is related to the channel

capacity which varies along the tunnel [43]. It is thus of interest to investigate the

variation in subchannel correlation along the tunnel range. From the symmetry of

the tunnel structure, it is enough to study the correlation at either Tx or Rx [35].

Figure 3.30 plots the correlation coefficient amplitude of the VV channel calculated

between Rx antennas along both lanes of the tunnel using (3.10). It can be observed

that correlation fluctuates rapidly around a mean value at close distances and then

moves towards 1 at far distances of the tunnel. This can be explained according

to the modal theory, where the uncorrelation in tunnel is attributed to the different

hybrid modes propagating in the tunnel, giving rise to amplitude and phase variation

of the fields in the transverse plane [12]. At large distances, high-order modes are

subject to strong attenuation and hence only few number of modes result in the high

correlation at far distances.

To capture the effect of antenna spacing on correlation, Figure 3.31 shows

the average correlation coefficient amplitude along the tunnel as a function of Rx

antennas inter-element spacing for different polarizations in both lanes of the tunnel.
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Figure 3.31: Average correlation coefficient amplitudes along the tunnel in (a) the closed

lane and (b) the open lane

It is highlighted that the correlation at Rx decreases as antenna spacing increases.

We also notice that the average correlation of the co-polar channels is larger than

that of the cross-polar channels, with the H-polar correlation being higher than

V-polar correlation. This can be attributed again to the geometry of the tunnel.

A low spatial correlation of the MIMO subchannels does not guarantee a high

capacity performance. This is because the capacity also depends on the number of

equivalent independent parallel subchannels and the weights of these subchannels.

This is accurately represented by the singular value decomposition of the CTF

matrix. The matrix H can be expressed as a function of its singular values as

follows

H =
∑

k

ukskv∗k (3.14)

where sk, uk and vk are the kth singular values, right and left singular vectors of H,

respectively. Hence, the rank of H, representing the number of non-zero singular

values, and the condition number of H, representing the ratio between these singular

values, both affect the MIMO channel performance gain.

It is possible to have a rank deficient matrix with high condition numbers,

even if correlation among antennas is low. Therefore, it is important to investigate

the condition numbers of the CTF matrix along the tunnel range. For the 4x3

configuration, the CTF matrix has 3 singular values. Figure 3.32 plots the ratios of

the first singular value to the second and third values versus the distance in both

lanes of the tunnel for the VV channel. We observe that at small distances the
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Figure 3.32: Variation of the singular values ratios for the VV channel in (a) the closed lane

and (b) the open lane

ratios are low indicating a high capacity gain. However, as the distance increases,

the ratios begin to increase as well, resulting in a lower capacity gain. This shows

that the attenuation of the higher order modes at far distances is large enough to

degrade the MIMO channel performance. Similar behavior was observed for other

polarizations.

3.2.5 MIMO channel capacity

We investigate the channel capacity for MIMO systems in the tunnel by calculating

the CDF of the capacity for a mean SNR of 10 dB. We consider 2x2 and 4x3

MIMO configurations. The measurement setup allows us to capture the influence

of the inter-element spacing of Tx and Rx antennas on the capacity of the 2x2

MIMO system. The capacity CDF for spacing of 1.5λ, 3λ and 4.5λ are plotted for

the closed and open lanes in Figure 3.33 and 3.34, respectively. We also add the

performance using a single antenna (SISO) for comparison.

It is evident that, as the inter-element spacing increases, the MIMO capacity

increase. However, there is no much difference after a spacing of 3λ. This can

be related to the subchannel correlation as observed in Figure 3.31, where the Rx

correlation decreases with the Rx antennas spacing and starts to saturate at 3λ.
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Figure 3.33: Capacity CDF for 2x2 MIMO system with different antenna spacing in the

closed lane
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Figure 3.34: Capacity CDF for 2x2 MIMO system with different antenna spacing in the open

lane

Comparing the two lanes, we observe that for an outage probability of 0.5, the

capacity reaches 5.8 bits/s/Hz in the open lane and 5.2 bits/s/Hz in the closed lane,

compared to the SISO capacity of 3.3 bits/s/Hz. The effect of polarization on the

capacity performance is insignificant as observed in the figures.

To investigate the maximum achievable capacity with our system, we consider

the 4x3 MIMO configuration. Figure 3.35 compares the 4x3 configuration with

the theoretical 4x3 Rayleigh channel in both lanes. We notice again the open lane
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capacity being larger than the closed lane (7 bits/s/Hz compared to 6.5 bits/s/Hz

for an outage probability of 0.5 in the VV channel). This can be attributed to the

singular values ratios reaching higher levels in the closed lane compared to the open

lane as observed in Figure 3.32. The results in Figure 3.35 also indicate that the

V-polar channel capacity slightly exceeds the H-polar channel capacity [17, 35].

This is expected from Figure 3.31, which shows the VV channel having less average

Rx correlation than the HH channel.

3.3 Conclusions

Accurate characterization of radio propagation in tunnels is needed, specially in

real traffic conditions and arbitrary tunnel shapes. In this chapter, we present a

measurement-based analysis of the non-stationary V2I DP wireless channel in

different road tunnel environments. The first measurement is performed at 90 km/h

in a rectangular tunnel under low and medium traffic conditions. We investigate the

impact of antenna polarization and radiation pattern, as well as the traffic condition,

on the non-stationary V2I channel. Basic channel evaluation metrics are examined

including path gain, CPR, and XPD. In addition, the stationarity region is estimated

using the channel correlation function approach, and used to calculate the time-

varying delay and Doppler power profiles. The path gain is modeled using the

one-slope model. Statistical models are presented for CPR, XPD, RMS delay and

Doppler spreads, where the lognormal distribution is found to provide the best fit.

The traffic density is found to have no effect on the stationarity time. On

the other hand, it increases the delay and Doppler spreads, while reducing the
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correlation between them, as well as the average K-factor of the fading amplitude.

Investigating the impact of antenna polarization shows that the V polarization is

more advantageous, as it provides higher path gain and longer stationarity time by

5%, in addition to smaller delay and Doppler spreads (by 19% and 18% on average,

respectively) compared to the H polarization. As for the impact of antenna radiation

pattern, a more directional antenna is found to provide a longer stationarity time by

21%, as well as smaller delay and Doppler spreads (by 52% and 32% on average,

respectively), thus proving to be more beneficial than a wide-angle type of antenna

pattern. Moreover, the impact of normalization on the DP capacity is investigated,

and a new approach is proposed that maintains the conservation of energy.

The second measurement is conducted in an arched tunnel at 50 km/h. The

MIMO channel was measured for different polarizations in the open lane along

the center of the tunnel and in the closed lane on the side next to the tunnel

wall. We investigated channel parameters related to path loss, time dispersion and

MIMO capacity. Our analysis shows that a single-slope model describes well the

attenuation in a tunnel under road traffic conditions. The guiding effect of the tunnel

results in a path loss exponent smaller than typical indoor and outdoor environments.

Waves are highly polarized even at far distances, with a measured XPD of about 13

dB. The RMS delay spread remains around the mean values in the range of 12 ns to

24 ns, with the mean RMS spread of the H-polar channel being larger than that of

the V-polar channel. The distribution of the spread variation along the tunnel can

be fitted to a log-normal distribution, with larger standard deviation in the closed

lane than in the open lane.

Finally, the main conclusions for the MIMO system performance are as follows.

Subchannel correlation increases at farther distances in the tunnel, with H-polar

channel correlation being higher than V-polar channel correlation. The condition

number of the MIMO channel matrix increases slightly with distance. The increase

of the singular values ratio and the decrease of the Rx correlation amplitude, both

indicate a decrease of MIMO capacity with distance in the tunnel for a constant

SNR. The capacity CDF of 2x2 MIMO system is investigated for different antenna

elements spacing at a constant SNR of 10 dB. It is found that the capacity increases

for larger inter-element spacing, with insignificant difference after 3λ. For an

outage probability of 0.5, capacity reaches 5.7 bits/s/Hz compared to 3.3 bits/s/Hz

for SISO. The open lane along the center of the tunnel provides higher capacity

than the closed lane near the tunnel wall. In Chapter 4, the simulation of the

non-stationary fading process is investigated using an autoregressive modelling

approach for the vehicular channels. Measurements in the rectangular tunnel from

this chapter will be used in Chapter 4 to model the non-stationary V2I channel in

tunnels.
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4
Auto-regressive modelling for

non-stationary channel simulation

The mobile radio channel poses significant challenges to the design of communica-

tion systems due to time and frequency dispersions. In previous chapters 2 and 3,

the non-stationarity of vehicular channels was measured and used to statistically

model the large-scale fading parameters in different environments. Nevertheless, an

accurate and concise channel model to regenerate or predict the measured channel

behavior is useful for channel simulation, performance evaluation, and further

design of communication systems [1]. In this chapter, a framework is proposed

for long-term vehicular channel simulation based on the vector time-frequency

autoregressive model for a sparse parametric description of nonstationary multi-

variate random processes. Based on the V2I tunnel measurements presented in

Chapter 3, we estimate the vector time-frequency auto-regressive (VTFAR) model

parameters and validate the model by comparing the parametric and non-parametric

spectra of the measured channel in terms of the delay spread and stationarity time.

In addition, the VTFAR model stability is investigated and an approximation for

the correlated scattering channel is proposed. Hence, the novelty of this chapter

includes the framework and parameterization of the VTFAR model for a high-speed

tunnel environment with stable correlation approximation.

The chapter is organized as follows. Section 4.1 briefly explains the VTFAR

model and the parameters estimation. Section 4.2 presents the measurement cam-

paign and the simulation framework for the measured channel response. Section 4.3

discusses the correlated scattering channel and VTFAR model stability. Section 4.4
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Figure 4.1: Block diagram of the VTFAR model where T is a time shift operator, D is a

Doppler shift operator, and the diamond shape is a matrix multiplication

includes the model validation. Finally, conclusions are drawn in Section 4.5.

4.1 Methodology of modelling

4.1.1 VTFAR model

The non- wide-sense stationary (WSS) uncorrelated scattering (US) channel can

be described by an innovation system, shown in Figure4.1, where the 2-D channel

impulse response (CIR) is obtained by passing white innovations noise e[n] into a

nonrandom linear time-variant (LTV) system V[n,m] as follows

h[n] =
∑

m

V[n,m]e[n−m]. (4.1)

Here, the CIR is expressed in a vector form as h[n] = [h[n, 0]...h[n, τm − 1]]T ,

where τm is the number of delay taps and n = 0, 1, .., N − 1 is the innovations

index, which can then be up-sampled to a desired sampling rate, i.e. n = Kt. This

can be done as the channel variation is limited to slower Doppler rates. According to

the VTFAR model [2], the innovations IIR filter V[n,m] is represented by Doppler

shifts (l) in addition to the time shifts (m). Rewriting (4.1) in the VTFAR form

gives

h[n] = −

M∑

m=1

L∑

l=−L

Am,l e
j 2π

N
nl h[n−m] + e[n], (4.2)
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where M and L denote the (temporal and spectral) model order, the τm × τm
matrices Am,l contain the AR model parameters, and e[n] is the complex Gaus-

sian, temporally uncorrelated, circularly symmetric innovations noise vector with

correlation matrix E{e[n]e∗[n′]} = C[n]δ(n− n′). The model is depicted in Fig-

ure 4.1. According to (4.2), elements of the V[n,m] matrices are constrained to

lie in the subspace spanned by the complex exponentials with Doppler frequencies

l = −L, .., L. A similar restriction is imposed on the innovations correlation matrix

C[n] =

2L∑

l=−2L

Cl e
j 2π

N
nl, (4.3)

such that a matrix square root C1/2[n] with Doppler order L can be found [2].

Another restriction in the VTFAR(M ,L,B) is band-limiting the matrices Am,l

and Cl, i.e., elements of these matrices with indices (τ, τ ′) are zero for |τ−τ ′| > B,

where B denotes the (one-sided) matrix bandwidth (B ∈ {0, 1, .., τm − 1}). This is

motivated by the fact that correlation decays with delay taps in doubly-underspread

(DU) channels (for US channels B = 0). Consequently, the number of parameters

characterizing the banded VTFAR model is shown to be N = (M + 1)(2L +

1)(τm(2B+1)−B(B+1)) [2]. Thus, the parsimony of the VTFAR model is better

for smaller M,L, τm, and B, making it particularly suited for the DU channels

where ML ≪ N . This plays an important role in developing computationally

efficient parameter estimators for Am,l and Cl [2].

4.1.2 VTFAR parameters estimation

We consider the estimation of VTFAR model parameters from a single channel

realization h[n] obtained from a measurement campaign. Estimation of the Am,l

involves solving a system of multichannel time-frequency Yule–Walker (TFYW)

linear equations, similar to the classical YW equations. An approximation for the

DU channels derived from (4.2) reads as follows [2]

M∑

m=1

L∑

l=−L

Am,lFh[m
′ −m, l′ − l] = −Fh[m

′, l′], (4.4)

where Fh[m, l] is the average expected ambiguity function (EAF). In practice, the

EAF is usually unknown and has to be estimated from a given observation of h[n].

When multiple observations are available, the EAF can be estimated as [2]

Fh[m, l] = E
{N−1∑

n=0

h[n]h∗[n−m] e−j 2π

N
nl
}
. (4.5)

In order to efficiently solve (4.4) for Am,l, the matrix equations are rewritten

element-wise and re-stacked with a suitable order to reach a single matrix equation
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involving a two-level block-Toeplitz (2LBT) matrix as [2]

Z a = −z. (4.6)

Here, the matrices Z and z contain the Fh[m, l] elements , and a contains the

Am,l elements. The 2LBT structure of Z is the basis for a fast solution algorithm

developed in [2], called the multichannel Wax-Kailath algorithm, from which the

VTFAR parameters can be extracted. Once Am,l are estimated, the evaluation of

the innovations matrices Cl can be derived as [2]

Cl =
1

N

M∑

m=0

L∑

l′=−L

Am,l′F
∗
h [m, l′ − l]. (4.7)

The correlation matrices C[n] can then be obtained from (4.3) via an iterative

scheme that alternately enforces positive definiteness and Doppler and matrix

band-limitations [2].

4.2 Simulation Framework for Vehicular channels

In this section, we propose a framework for simulating vehicular radio channels

using the VTFAR model. The parameters estimator requires at least one realization

of the channel in order to calculate the EAF. The framework is thus applied to the

CIR from a V2I measurement campaign. As a long-term simulation, we use a 8 s

duration of the measured channel, corresponding to approximately eight thousand

snapshots over 900λ.

4.2.1 Measurement campaign

Measurements of the V2I channel in the Beveren tunnel presented in Section 3.2.1

are used. The sounder uses 80 MHz of transmission bandwidth centered around

a carrier frequency of 1.35 GHz. The Tx antenna is placed around the middle of

the tunnel through an emergency exit door at a 2 m height. The Rx antenna is

mounted on the rooftop of a van carrying the Rx inside. The van moves through the

tunnel at a 90 km/h speed, crossing the Tx position halfway. During the trip, the

radio channel is sampled with a snapshot repetition time of 975.3 µs, each with 819

frequency samples. Further details can be found in Section 3.2.1, where the setup

is shown in Figure 3.2.

4.2.2 Proposed framework

4.2.2.1 Pre-processing

The channel sounder captures the channel transfer function (CTF) in the time and

frequency domains. It includes both large-scale (path loss, shadowing,..) and
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small-scale fading effects. We first apply an inverse Fourier transform to the CTF

using a Hann window to obtain the time-varying CIR. Then, we align the CIRs

so that the maximum LOS components have the same absolute delay. Finally, we

remove the large-scale fading using a moving-average filter with a window size of

10λ. This results in normalised CIRs that preserve the small-scale fading like what

is commonly used for link-level simulations.

4.2.2.2 Bandwidth

The ITS spectrum for V2X communications supports direct low-latency connections

over short distances, without the involvement of the cellular network. Standards

like C-V2X and 802.11p can co-exist in the ITS spectrum by employing different

channels within the band, where just 10 MHz of spectrum is required to support

essential safety services [3, 4]. This makes V2X channels particularly suitable for

the VTFAR model, since a small bandwidth means fewer delay taps and thus fewer

model parameters. Consequently, we divide the measured CTF into 8 channels

of 10 MHz bandwidth. The CIR is then calculated as mentioned above for each

channel, from which the average EAF is estimated as in (4.5) by averaging over the

8 channels.

4.2.2.3 Sampling rate

The sampling rate used for link simulation and performance evaluation is typically

orders of magnitude larger than physical Doppler frequencies, i.e. the delay tap

processes are very narrowband. In that sense, a subsampled VTFAR model at

an intermediate sampling rate that is close to the maximum Doppler frequency

is followed by an optimum multistage interpolator in order to match the actual

system sampling rate. In our scenario, the multi-path components (MPCs) Doppler

frequencies span up to 128 Hz. Thus, we sample the CIR at 256 Hz, which gives

h[n].

4.2.2.4 Number of taps

The number of delay taps τm directly impacts the parsimony of the VTFAR model.

It is desirable to include the minimum number of taps that is sufficient to model the

channel. To that aim, we propose to set τm based on the second-order statistics of

the channel, namely, the RMS delay and Doppler spreads. These parameters play

a vital role in system performance and design, making them a relevant criterion.

Figure 4.2 shows the CDF of the RMS delay spread for different number of delay

taps. Only MPCs within 30 dB from the peak value are considered for calculating

the delay spread. The 100-tap CDF represents the full channel since no MPCs

exist beyond that. In order to decide on the number of taps, we use the two-sample

Kolmogorov-Smirnov test and compare the p-values at 5% significance level. The
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Figure 4.2: CDF of the RMS delay spread for different number of taps

Taps 2 3 4 5 6 7 8

Delay 0 0 0 0 0.225 0.271 0.59

Doppler 0 0.005 0.06 0.225 0.225 0.81 0.98

Table 4.1: KS-test p-values of the delay and Doppler spreads CDFs for different number of

taps

test checks whether the spread of a certain τm comes from the same distribution as

that of the full channel. The same procedure is done for the RMS Doppler spread,

and the minimum number of taps whose spreads’ distributions pass the tests is

chosen to represent the channel. Table 4.1 shows the p-values for the delay and

Doppler spreads at different number of taps, where it is clear that the distributions

with 6 taps pass both tests.

4.3 Correlated Scattering and VTFAR Stability

In the previous section, we explained how to extract the CIR, calculate from it the

average EAF Fh[m, l], and use it to estimate the matrices Am,l and Cl. We can then

generate the channel coefficients h[n] by passing the innovations vector e[n] with

the correlation matrix C[n] into the VTFAR model depicted in Figure 4.1. However,

the AR model is an IIR filter that is not guaranteed to be stable.
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4.3.1 Stability analysis

A stable process is one that will not diverge to infinity (blow up). This means that

the characteristic polynomial in the denominator of the transfer function vanishes

only within the unit circle in the complex frequency plane (z-plane). From (4.2),

the stability condition can be formulated as [5]

det(Iτm + A1,nz
−1 + ...+ AM,nz

−M ) ̸= 0 for |z| ≥ 1, (4.8)

where Am,n =
∑L

l=−L Am,l e
j2 2π

N
nl are the time-varying filter matrices at time n

and Iτm is a unitary matrix, all of size τm.

For the case of US channels (B = 0), all system matrices become diagonal. This

means that the vector process V[n,m] can be modeled as τm scalar processes in

parallel. This simplifies the stability condition, as the characteristic polynomial per

process is now a scalar function rather than a matrix function. It is shown in [6] that

such a system can be stabilized using an iterative algorithm based on the concept of

root reflection/shrinkage known from the time-invariant case by applying it to the

time-varying instantaneous roots of (4.8).

4.3.2 Correlation analysis

According to [7], the observed fading process in vehicular channels shows a much

stronger violation of the WSS assumption than the US one. Channels show corre-

lated scattering due to several MPCs that are close in the delay-Doppler domain

reflecting off the same physical object, or leakage due to bandwidth/time limitations

at Tx or Rx. This happens when the signal’s bandwidth is larger than the stationarity

bandwidth. It is observed in [7] that the stationarity bandwidths from a large set of

measurements in different vehicular scenarios are above 150 MHz on average. This

is very much larger than the required 10 MHz communication bandwidth for V2X

systems. It is thus expected that the taps correlation will not be significant in our

scenario.

We investigate the correlation as a function of the delay taps separation. Fig-

ure 4.3 shows the CDF of the correlation coefficient between delay taps up to 5

taps apart. It is clear that a correlation of 0.7 on average can be found only with the

adjacent tap, while taps separated by two taps or more have insignificant correlation

(below 0.3 on average). Moreover, it shows that there is no much variation around

the mean value, only a standard deviation of 0.07 for the adjacent tap.

4.3.3 Correlation approximation for stable modelling

In order to simulate the correlated scattering channel with a stable AR model, we

propose to set B = 0, resulting in a diagonal (uncorrelated) matrices Am,n and

C[n]. The model can now be stabilized as aforementioned in the US case. Then,
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Figure 4.3: CDF of the correlation coefficient for different taps separation

we approximate the taps correlation to the mean value, since its time-variation is

limited as depicted in Figure 4.3. The correlation is introduced to the innovations

matrix as follows

Ĉ[n] = C1/2[n] R C1/2[n], (4.9)

where R is the τm × τm correlation matrix calculated from the measurements by

averaging over the total duration. In other words, instead of passing uncorrelated

multivariate innovations, e[n] are now correlated based on R, thus Ĉ[n] is no longer

diagonal.

We simulate the 6-tap channel with the proposed approximation, where the

model orders (M ,L) per tap are estimated using the minimum description length

information criterion presented in [6]. The simulated channel is upsampled to

have the same sampling rate as the measurement, i.e. K = 4. Figure 4.4 compares

segments of the CIR power from both measurements and simulation. It shows

that the model generates a stable process that resembles the measured channel. To

check the validity of the correlation approximation, we compare the measured and

simulated 1-tap separation correlation coefficient, which is the most significant one.

Figure 4.5 shows that the correlation of the generated channel approximates that of

the measurement quite well over a long duration with RMSE of 0.08.

4.4 Model Validation

Non-stationary channels can be characterized by the local scattering function (LSF),

which is the time-varying second order statistics of the channel. We validate the
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Figure 4.4: CIR power in dB from measurements (a) and simulation (b)
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Figure 4.6: Non-parametric power profiles in delay (a) and Doppler (c) versus the

parametric profiles in delay (b) and Doppler (d) in dB

VTFAR model by comparing the parametric LSF of the model to a non-parametric

LSF calculated from the measurement as shown in Chapter2.

4.4.1 Parametric vs. non-parametric spectra

Since we are more interested in the non-WSS nature of the channel, we discard

the LSF’s dependency on frequency and only consider the time dependency. This

makes the LSF a 3-D function in time, delay and Doppler. The time evolution can

be investigated by projecting the LSF on the delay and Doppler domains, resulting

in the delay and Doppler power profiles or spectra. The model validation is based

on comparing the spectra estimated from the non-parametric multi-tapers approach

presented in Chapter2, to the parametric spectra of the VTFAR model. According

to [2], the parametric LSF is expressed as

ĈH[n; ν, τ ] =
Ĉ[n]

|F−1

l→n
F

m→ν
{Am,l}|2

. (4.10)

Figure 4.6 shows the parametric spectra versus the non-parametric spectra for an

8 s duration of the 6-tap channel. The parametric spectra are evaluated by summing

the LSF from (4.10) in the delay and Doppler dimensions. The details of estimating
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Figure 4.7: Model validation in terms of the RMS delay spread (a) and stationarity time (b)

the non-parametric spectra from the measurement can be found in Section 2.1.1.

The finite-dimensional spaces of the parametric model can be clearly noticed in the

smooth nature of its spectra, compared to the sample-based non-parametric spectra.

Nonetheless, we notice the similarity between the two spectra in both delay and

Doppler domains. The power-delay profiles are aligned to have the LOS component

at zero delay as discussed in the pre-processing step, while the Doppler spectra

show the LOS component’s shift from positive to negative Doppler frequencies as

the Rx crosses the Tx position in the tunnel.

4.4.2 Comparing spectra for model validation

We validate the model by investigating how well it matches the time-varying

behaviour of the non-stationary channel. Hence, we compare the parametric and

non-parametric spectra at two levels: (i) the channel’s coherence level, represented

by the delay spread, and (ii) the channel’s stationarity level, represented by the

stationarity time. While the delay spread measures the time dispersion of the

channel, which may cause inter-symbol interference, the stationarity time measures

how often this dispersion varies in time. The stationarity time is estimated as in

(2.6).

For validation, we compare the time evolution of both parameters to measure
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how well the model matches the time-varying behaviour of the channel. Figure 4.7

shows the RMS delay spread and stationarity time for the parametric vs. non-

parametric spectra. We discard the first second to provide enough initialization time

for the IIR filter’s transient response to settle [8]. We see that both parameters show

good similarity between the two spectra. We quantify the RMSE to be 0.01 for the

delay spread and 0.4 for the stationarity time.

4.5 Conclusion

In the previous chapters, the non-stationary V2I channel was characterised in terms

of stationarity region and large-scale parameters, where the relevance to commu-

nication systems design was explained. Channel simulation is also needed for the

performance evaluation of such systems. In this chapter, parametric modelling

of non-stationary processes is applied to simulate the measured V2I channel in a

tunnel in Belgium. We propose a framework for long-term simulation based on

the vector time-frequency autoregressive (VTFAR) model. We analyse the stability

of the model and propose an approximation for the correlated scattering channel

that guarantees stability. A 6-tap channel is simulated based on the measurement,

where the VTFAR model parameters are estimated using the proposed approach.

Moreover, the parametric spectra of the model are compared to non-parametric

spectra of the measured channel from Chapter 3. We validate the model in terms

of the delay spread and stationarity time. The model is found to simulate the

measured channel very well with RMSE of 0.01 for the delay spread and 0.4 for

the stationarity time. This measurement-based and computationally inexpensive

approach provides an efficient alternative for non-stationary channel simulations.

This chapter concludes Part I of our work. In the coming chapters, we focus on

the indoor channel in industrial scenarios and characterise the reverberation at the

mmwave bands for such reflective environments. Applications for human sensing

in such environments are also proposed, including occupancy and fall detection in

ships.
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Part II

Indoor Channel Modelling in

Metallic Environments





5
Human sensing in a reverberant ship

environment

In the first part of this work, we studied the outdoor propagation channel and

modelled the fading parameters related to vehicular communications in different

environments. Here, we shift the focus to the indoor channel and particularly

to enclosed metallic environments that can be found in industrial scenarios and

applications. This chapter investigates the reverberating nature of confined metallic

environments such as those found in ships. The design of an algorithm for device-

free occupancy detection is presented in reverberant environments based on room

electromagnetics and the reverberation time (RT). The algorithm uses the channel

impulse responses (CIR) and thus can be integrated in wideband communication

systems. In addition, the experimental validation of the algorithm in a realistic

ship environment is provided using a radio channel sounder as well as commercial

off-the-shelf (COTS) devices for UWB communications. The possibility of fall

detection in reverberant environments based on the CIRs is explored and a Doppler-

based method is experimentally evaluated as a complementary technique for safety

monitoring and alert applications.

The outline of this chapter is as follows. Section 5.1 is dedicated to the RT-

based occupacy detection. The measurement setup and scenario are described in

Section 5.2.1. Section 5.2.2 describes the methodology to extract the RT, while in

Section 5.2.3 processing of the measurement data is presented. Section 5.2.4 shows

the estimation results for the number of people, while the fall detection is discussed

in Section 5.3. Finally, conclusions are drawn in Section 5.4.
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Figure 5.1: The rectangular antenna array of the channel sounder (left) and the equivalent

UWB nodes array (right)

5.1 RT-based occupancy estimation

5.1.1 Measurement setup and scenarios

Channel measurements are first performed with the MIMOSA radio channel

sounder. The multidimensional polarimetric CIR is measured in the spatial and

polarization dimensions to investigate the reverberant behavior of the room. It is

then used to test the occupancy detection algorithm when the people are standing

still. The next step is to verify the algorithm performance with COTS products that

provide the CIR. Hence, UWB devices are used for the occupancy detection when

the people move in the same room, which is a more realistic scenario. This section

includes the details of the measurement configurations and scenario.

5.1.1.1 Standing-people scenario with channel sounder

The sounder operates with a carrier frequency of 1.35 GHz and the transmission

bandwidth is 80 MHz as mentioned in Section 1.4. It uses dual-polarized patch

antenna arrays with horizontal (H) and vertical (V) polarization. For this measure-

ment campaign, 8-element rectangular arrays are used at both Tx and Rx as shown

in Fig. 5.1 (left) , thus measuring the total 16×16 channels. The measurement

campaign is carried out in the steering gears room of a bulk carrier vessel, shown in

Fig. 5.2. The Tx and Rx of the channel sounder are placed inside the room and the
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Figure 5.2: Below-deck ship compartment with rectangular antenna arrays of the channel

sounder

door is kept closed during the measurement. The room has a height of 4 m and a

floor area of 150 m2, approximately. The Rx antenna array is fixed at 2 m height,

pointed towards the corner of the room [1]. The reverberating nature of the room is

first investigated by comparing the RT at different locations inside the room. This

is done by placing the Tx antenna array at 6 random locations to measure the CIRs.

Then, the Tx is fixed and the CIRs are recorded for different numbers of people

inside the room, ranging from 0 to 6 persons standing still at different random

locations. The channel in each case is measured 200 times in static conditions

and averaged to reduce measurement noise. Hence, a total of 7×64×4 averaged

power-delay profiles (PDeP) are calculated, where the value 64 results from the

8×8 antenna elements, and 4 from the TxRx polarization combinations (VV, HV,

VH, HH).

5.1.1.2 Moving-people scenario with COTS devices

UWB is one of the most promising technologies for real-time location systems

indoors due to its accurate positioning capabilities, immunity against multipath fad-

ing, and excellent resilience against narrowband interference [2]. In our experiment,

we use a newly developed open source hardware platform based on Decawave’s

DW1000 UWB transceiver chips with support of both long-range sub-GHz and

2.4 GHz back-end communication between nodes [3]. An external omni-directional
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antenna with vertical polarization is connected to each node as shown in Figure 5.1.

To calculate the distance between 2 nodes based on the time-of-flight, asymmetric

two-way ranging protocol [4] is used at a rate of 25 Hz. One of the optional out-

comes of this protocol is the CIR estimate of size equal to 1016 samples. Hence, the

CIRs are recorded with 900 MHz bandwidth around 4 GHz center frequency using

channel 4 of the DW1000 chip [4]. The same scenario with the channel sounder

is repeated using the UWB nodes with the difference that the people are allowed

to move inside the room. A setup of 8x8 UWB nodes is used to measure the 64

spatially uncorrelated CIRs 200 times for each number of people. The Rx antennas

setup is shown in Fig. 5.1 (right).

5.1.2 Methodology of occupancy detection

In order to predict the number of people inside the room, we first need to extract the

RT. In indoor propagation, multiple reflections and scattering lead to an exponential

decay of power with a decay constant τ representing the RT. The diffuse scattering

model in Fig. 1.11 of Chapter 1 can be expressed as

P (t) = P (0) exp (−t/τ) (5.1)

where t is the time of arrival on the delay axis and P (t) is the corresponding

received power. According to room electromagnetics, the RT can be expressed

as [5]

τ =
4V

cAn
(5.2)

where V is the room volume, An is the total absorption area and c is the velocity of

light. In a fixed environment, where the contents of the room do not change except

for the number of people inside, the total absorption area can be written as

An = A0 + n×ACS (5.3)

where A0 is the absorption area of the room without people, n is the number of

people in the room and ACS is the whole-body absorption cross-section area of the

human body [6]. Each additional person in the room increases the total absorption

area by the amount of the ACS of the human body. The PDeP is calculated as

PDeP =
1

N

∑

N

|CIR|2 (5.4)

where N is the number of CIRs aligned to the same LOS delay as in [7]. Once the

RT is extracted from the PDeP, it is possible to assess the absorption area An from

(5.2). Assuming the ACS is known, the number of people n can then be calculated

from (5.3).
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Figure 5.3: PDeP and linear regression for different polarizations in case of an empty room

For the extraction of the RT, the slope of the PDeP exponential decay needs to

be calculated. However, the tail of the PDeP is not perfectly linear due to noise,

LOS and specular components. A least squares regression line is thus used to fit the

PDeP over a delay range, and the choice of this range is done automatically. First,

to avoid LOS, the starting point is taken as the mean arrival time Tm given by

Tm =

∑
tP (t)∑
P (t)

(5.5)

Second, the noise level is calculated by averaging the power values at large delays

from the PDeP where no multipath components above the noise are expected.

Finally, in order to avoid the noise floor, the ending point of the delay range is taken

when the power level reaches 6 dB above the calculated noise level.

5.1.3 Pre-processing experimental data

5.1.3.1 RT extraction

In order to investigate the reverberating nature of the environment, the RT is

calculated at six different locations in case of an empty room. The PDeP per

location is measured using the channel sounder and spatially averaged over all the

antenna elements before extracting the RT, to remove small-scale fading. Figure 5.3

shows the PDeP at one location for different polarizations. The figure shows the

identical diffuse power level of the co-polar and cross-polar channels, suggesting

that the polarization states in the room are uniformly distributed (XPD of one),
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as is expected in a reverberating environment. To further validate the assumption

of reverberating fields, the RT is compared at six random locations in the room.

Figure 5.4 shows the RT at each location for different polarizations. It is clear

that the RT value is independent of the location as well as the polarization of the

antennas, with a relative standard deviation of 0.99%. This verifies the reverberating

nature of the room, in accordance with [8].

With the Tx fixed, the RT is calculated when the room is occupied by people,

starting from 1 up to 6 persons. Figure 5.5 shows the RT versus the number of people

for different polarizations. The figure clearly indicates that the RT is inversely

proportional to the number of people. This validates the relation between the RT,

absorption area, and the number of people in the room for different polarizations.

Figure 5.5 also shows that the RT for VV is slightly lower than the average of

all polarizations, suggesting that the human body is more prone to absorbing

vertically polarized waves. Nevertheless, the RT values for different polarizations

are aggregated to form a larger sample size to be used for the occupancy detection

in the next section, as they are similar enough with relative standard deviation of

0.61%.

5.1.3.2 Absorption area and calibration

Since the average ACS of the people inside the room is assumed to be known,

it would be of interest to first calculate the ACS based on our measurements

and compare it to prior studies. From (5.3), the ACS is the slope of the linear



CHAPTER 6 139

0 1 2 3 4 5 6

persons

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

re
v
e
rb

e
ra

ti
o
n
 t
im

e
 (

u
s
)

VV

HV

VH

HH

Avg

Figure 5.5: RT versus the number of people inside the room for different polarizations

Full data Calibration set (20%)

ACS/V 22.17 21

A0/V 607.33 609.5

Table 5.1: Parameters Calibration in (10−4/m)

regression of different absorption areas An related to different numbers of people

(n = 0, 1, .., 6). The calculation of An is given in (5.2) by averaging the PDePs of

all polarizations before extracting the RT. This gives an ACS of 1.3 m2 based on

our experiment. The whole-body ACS was measured in a reverberation chamber

in [6] and found to be 1.11 m2 for a 1.73 m and 63 kg person. A reason for this

small deviation is the complex structure of the room in our scenario, making the

calculation of the exact volume a difficult task. Moreover, the value from our

experiment is the average ACS of all six persons. It is thus expected to be different

from the one reported in [6] of only one human subject.

In order not to require the exact volume of the room, the parameters ACS

and A0 used for estimation based on (5.2) and (5.3) can be replaced by the scaled

versions ACS/V and A0/V , respectively. This requires a measurement-based

calibration of these ratios to be able to estimate the number of people from the RT

with optimal performance. To that end, the measurement data are randomly split

into two sets: a calibration set of 20% of the data for calculating the ACS/V and

A0/V , and a testing set of 80% to actually estimate the number of people based on

the calibrated values. Table 5.1 summarizes the calculated calibration values from
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Figure 5.6: Occupancy detection algorithm with 2-point calibration

both the full data set and the calibration set of the channel sounding. The small

difference between the values of the two sets indicates how well the estimation

performance is expected to be. Since this is a regression model with two unknown

parameters, a basic occupancy detection algorithm can be used in practice that only

requires two measurement points, that is, RT for two different number of people in

the room. Figure 5.6 depicts the algorithm where calibration is based on measuring

the RT when no person and Ncal persons are in the room.

5.1.4 Occupancy estimation analysis

In this section, the number of people inside the room is estimated. The performance

is measured in terms of the estimation error e defined as the absolute difference

between the estimate and the actual number of people

e = |n− n̂| (5.6)
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Figure 5.7: Estimation error (e = 0-6 persons) histogram of the number of people in the

room for different spatial averaging sizes via channel sounding

5.1.4.1 Results of channel sounding

Table 5.1 lists the calibrated ratios to be used for estimation, while An/V is

calculated based on the measured RT from (5.2) for each case. From (5.3), the

estimate number of people is obtained as

n̂ =

[
An/V −A0/V

ACS/V

]
(5.7)

where a simple round operator [.] is used to get the integer estimate. The estimation

performance depends on the RT calculation as aforementioned. For a more accurate

RT calculation, averaging of PDePs from several spatial links is used beforehand.

Since the antenna elements capture uncorrelated CIRs of the same environment,

averaging PDePs of the same number of people will smooth the decaying tail. This

results in a more accurate regression line for the RT calculation.

Figure 5.7 presents the estimation error histogram for m number of averaged

PDePs from the testing set. For only a single spatial link (m=1), the estimation

error can reach up to 6 persons with an estimation success rate of only 21.4%. As

m increases, the estimation performance improves in terms of higher success rate

and smaller number of persons as estimation error. With m=16, the success rate is

88% with only a 1-person error of 12%. Figure 5.8 shows the confusion matrix for

m=16. It gives the details of the estimation percentage for each case of the observed

number of people. This clearly shows the good performance of the estimation

algorithm, where all the cases have a success rate above 81%, and all the estimation
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Figure 5.8: Confusion matrix for the estimation percentage of the number of people in the

room with spatial averaging m=16 via channel sounding

error larger than 1-person is 0%. It is worth noting that while the persons inside

the room may not be identically exposed to the propagating waves, nor having the

same physical surface area, this method assumes they are. This is clear from (5.3),

which directly influences the estimation performance. By increasing the number

of antennas and the spatial averaging size, the accuracy of the RT calculation, and

hence, the overall estimation performance can be further improved.

5.1.4.2 Results of COTS UWB

The MIMOSA channel sounder is a dedicated device for measuring the CIR with

high accuracy and precision. In order to test the feasibility of our method, we use

COTS products of a radio access technology that is available in communication

networks. UWB nodes, usually deployed for RTLS and communication networks,

are used to measure the CIRs in the same scenario. Figure 5.1 (right) shows the

UWB nodes array used to have the same 8×8 MIMO setup. The Rx and Tx arrays

are placed at the same locations as those of the channel sounder. The 6 people

are again introduced into the room one by one, with the difference that they are

allowed to move freely while capturing the CIRs. Hence, the 200 CIRs measured

per number or people can be considered uncorrelated, and consequently, PDePs

averaging over time can enhance the accuracy of RT extraction, as an addition to

spatial averaging.

Another difference that impacts the RT extraction is the characteristics of the

CIRs. MIMOSA captures around 10 us of delay range with 12.5 ns resolution, of
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Figure 5.9: Estimation error (e = 0-6 persons) histogram of the number of people in the

room for different spatial averaging sizes m via UWB

Figure 5.10: PDeP and linear regression from UWB nodes

which only the first 5 us are plotted in Figure 5.3. The used UWB chip records

around 1 us of delay range starting from the LOS, with 1 ns resolution as shown in

Figure 5.10. Figure 5.3 shows that the PDeP in our scenario spans almost 2.5 us

from the LOS. Thus, only the first 40% of the PDeP following the LOS is used for

calculating the regression line in the case of UWB. This is expected to degrade the

accuracy of the RT calculation. Figure 5.9 shows the estimation error histogram for
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Figure 5.11: Confusion matrix for the estimation percentage of the number of people in the

room with spatial averaging m=64 via UWB

different sizes of only spatial averaging. Although a larger averaging size results in

a higher success rate, the performance is lower compared to the channel sounder.

With m=16, the success rate is about 53% with up to 3-person errors in the case

of UWB. In order to reach the channel sounding performance of 88% success rate

and only 1-person error, the spatial averaging size should increase to 64, as shown

in Figure 5.9. The confusion matrix for the estimation percentage with m=64 is

shown in Figure 5.11. It again shows the good performance of the algorithm using

UWB, where all the errors above 1-person are 0%.

In addition to spatial averaging, time averaging of PDePs can be used to enhance

the estimation performance as aforementioned. Figure 5.12 shows the estimation

error histogram for spatial averaging size m=32 and different time averaging sizes w.

With only w=8, the same performance of the 64 spatial averaging can be achieved

with less number of antennas (m=32). Increasing the time averaging size results in

higher success rate, reaching 95% with w=40 as shown in Figure 5.12. While it is

easier to reach higher time averaging size compared to having more antennas for

spatial averaging, the performance enhancement of time averaging highly depends

on the scenario. In a stationary environment, where movement is limited, having

uncorrelated CIRs over time is difficult. Thus, spatial averaging is considered more

robust compared to time averaging, even though it requires more antennas.
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Figure 5.12: Estimation error (e = 0-1 person) histogram of the number of people in the

room for spatial averaging m=32 and different time averaging sizes w via UWB

5.2 Doppler-based fall detection

Knowledge of the location of people on ships has a wide range of applications

in commercial solutions and during the duty of state officials. In the previous

section, we showed that the number of people inside reverberant environments

like ship compartments can be accurately estimated using CIRs available in many

communication systems. A highly critical situation is when a crew member working

alone in isolated areas falls on the ground. In this section, we investigate the

possibility of detecting a fall from a standing position in a reverberant environment

using CIRs of communication systems, which are measured at a much lower rate

compared to radar sensors.

5.2.1 Measurement setup

The MIMOSA channel sounder is used in the same below-deck chamber as shown

in Figure 5.13. The Tx is fixed to face the Rx in a LOS condition, and a mattress is

located in the middle so that the plane of the fall is perpendicular to the LOS. This

represents a worst-case scenario since the fall movement is in the plane orthogonal

to the LOS direction, reducing the effective Doppler shift. The impact of the fall

orientation has been studied in many papers. Doppler signature is sensitive to the

direction of motion defined by the aspect angle, which is the angle between target

motion trajectory and the radial LOS path between the radar and the target. The

most distinctive signatures appear when target is moving towards or away from
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Figure 5.13: Measurement setup for fall detection via MIMOSA channel sounder

the radar, leading to the maximum Doppler shift. As the aspect angle increases,

the Doppler effect also decreases. When the aspect angle approaches 90o, Doppler

signal becomes strongly attenuated. It is reported that the fall detection performance

can drop approximately to below 50% for target directions with angles close to

90o [9]. This is in case of non-reverberating environments, where diffuse scattering

is not dominant and the Doppler paths can be distinguished.

5.2.2 Methodology of fall detection

The experiment consists of a person walking, sitting (squatting down) and falling

on the mattress. Each activity is repeated 3 times of 5 s measurement duration.

Eight dual-polarized antenna elements at the Tx and one at the Rx are used to

measure the CIRs while the person is doing the activity, thus making use of the

parallel transmission to have a larger sample size. Motion in the environment can

be detected using the power-Doppler profile (PDoP); faster movements result in

larger Doppler spreads. A person can fall to the ground at 4 m/s, with the head

impact velocity exceeding 6 m/s from standing [10]. This corresponds to around

18 Hz of Doppler shift. Thus, CIRs are captured at a 64 Hz rate, providing Doppler
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Figure 5.14: Time evolution of power-Doppler profiles in dB for a fall event. The blue region

indicates the Doppler components resulting from the fall

frequencies up to 32 Hz, according to the Nyquist theorem. Each PDoP is calculated

by applying the Fourier transform to 64 consecutive CIRs averaged over the whole

bandwidth per polarization per antenna. Figure 5.14 shows the time evolution of

PDoPs in dB, over the 5 s duration of one fall activity. It shows the constant LOS

component with zero Doppler, since both Tx and Rx are fixed. The components

representing the fall are in the area marked by the blue lines, which are below 20 Hz

as expected. Two constant components at +/-21 Hz can be seen, probably due to

the vibration caused by the ship’s engine.

Figure 5.15 shows the RMS Doppler spread calculated from the PDoP over the

5 s duration. PDoPs per event are first averaged over all antennas and polarizations

to have three records per activity. To calculate the RMS Doppler spread, the PDoPs

are clipped to remove components above 20 Hz unrelated to the fall event. A fall

can be detected when a peak in the Doppler spread is captured, which marks the

increasing and then decreasing velocity of the fall. This differentiates the fall from

other activities like walking and sitting. Figure 5.15 clearly shows that the Doppler

spread for the fall has higher peak values compared to the other normal activities.

5.2.3 Features extraction and classification results

After verifying that a fall can be differentiated by the Doppler spread pattern, a

classifier is needed to detect a fall event based on certain features. We choose a

Naive Bayes classifier with only one feature for simplicity [11]. The feature is
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Figure 5.15: RMS Doppler spread for fall, walk and sit activities, each performed 3 times

extracted from each Doppler spread pattern of 5 s duration. These patterns are

calculated from the PDoP per antenna, per polarization, and per event resulting in

a total of 48 patterns per class of activity, shown in Figure 5.16. Several features

are investigated, e.g., the mean, peak, peak-to-mean ratio, maximum gradient, and

variance of the Doppler spread patterns. It is found that the variance of the Doppler

spread over the 5 s duration gives the best separation among the 3 classes, namely

fall, walk and sit shown in Figure 5.17.

The sample data are split into a training set for the classifier model development

and a testing set for the model validation. Since the data size is limited to 48 samples

per class, the k-fold cross-validation method is used with k=3. The data are split

into 3 folds where each fold is used as the testing set while the others as the training

set, as shown in Figure 5.18. Finally, the classification results are averaged over the

3 splits. Even though we have 3 classes, our main aim is to detect only the fall event.

Thus, performance metrics for binary classification (positive/negative) are used.

These include detection accuracy (ratio of true to total predictions), precision (ratio

of true positive to total positive predictions) and sensitivity (ratio of true positive

predictions to total positive observations). Figure 5.19 shows the confusion matrix

for the class predictions as percentage of the observations, averaged for k=3 folds.

It shows that 100% of the fall events are detected, and only 4.17% of the sit events

are mispredicted as falling. It also shows that this classifier can not differentiate

between sit and walk events, since 62.5% of the sit events are mispredicted as

walking.

Table 5.2 lists the performance metrics for the fall detection. With k=3 folds,
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(a)

(b)

(c)

Figure 5.16: Aggregation of Doppler spread patterns over antennas, polarizations and

events of (a) falling, (b) walking, and (c) sitting
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as a classification feature with good separation

Figure 5.18: K-fold method for classifier model development and validation for k=3

one third of the data are used for validation, while 66% (32 samples per class)

are for training. This gives a very good performance as the metrics consisting

of accuracy, precision and sensitivity (recall) are all above 96%. The table also

includes performance metrics when only 17% of the data (8 samples per class)

are used for training. While the sensitivity is still 100%, a small degradation in

accuracy and precision can be noticed. Nevertheless, all metrics are above 94%,

which is a good performance for a single feature classifier with only 8 training

samples per class.
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Figure 5.19: Confusion matrix for the classification of the testing set with k = 3 folds, with

prediction types indicated

Training set per class 32 samples (66%) 8 samples (17%)

Accuracy 98.61% 97.92%

Precision 96% 94.12%

Sensitivity 100% 100%

Table 5.2: Fall Detection Performance Metrics

5.3 Conclusions

Industrial environments are characterized by high temporal and angular dispersion

due to scattering from complex metallic structures. Such environments experi-

ence reverberation behaviour similar to cavities. Based on the theory of room

electromagnetics, this chapter explores the feasibility of estimating the number

of people inside a reverberant ship compartment by means of only measuring the

reverberation time. We observe that the reverberation time is the same, independent

of the antenna or the location used for measurement inside the room. Our findings

verify that there is an inverse relation between the number of people inside the

room and the reverberation time. More people absorb more energy, decreasing

the reverberation time. A calibration of the absorption parameters of the empty

room and the average human body is needed before performing the estimation,

which is done via measurements. While the estimation performance is very low in

case of a single antenna, it can be enhanced via spatial averaging from multiple

antennas. In addition, time-averaging can be used to further enhance the estimation

performance when the measured channel is non-stationary due to the movement of
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people. The estimation algorithm depends on the CIR, a metric that can be found in

wideband communication systems. With COTS UWB nodes that are originally used

for localization and communication, we estimated the number of people ranging

from 0 to 6 persons with a success rate of 95% and only a 1-person error.

Moreover, the CIRs can be used to detect when a person alone has fallen to the

ground via Doppler analysis. Doppler frequencies up to 20 Hz are used, so the radio

channel can be sampled at only 40 Hz rate. While most studies on fall detection

use micro-Doppler signatures extracted with sampling rates above 1 kHz, they only

focus on residential environments where such signatures can be easily detected.

In a reverberant scenario, we found that the RMS Doppler spread has a peak that

differentiates a fall from sitting or walking. A simple Bayes classifier is used for

fall detection, with the variance of the Doppler spread as its feature. Using 3-fold

cross-validation, the fall is detected with 98.6% accuracy, 96% precision, and 100%

sensitivity. In Chapter 6, we discuss the different approximations used to model the

reverberation according to room electromagnetics. The frequency-dependency of

the RT is experimentally evaluated and modelled up to 40 GHz.
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6
Frequency-dependency of reverberation

time up to 40 GHz

6.1 Introduction

Room electromagnetics theory was investigated in a ship environment in Chapter 5,

where the reverberation model of Sabine was utilized to estimate the number

of people in a metallic compartment. Such highly reflective environments are

characterised by a reverberation behaviour similar to a lossy cavity. In this chapter,

a novel model for the reverberation time (RT) is proposed, based on the room

electromagnetics theory summarized in Section 1.3.1. An indoor lab environment is

hence considered, where radio channel measurements up to 40 GHz are carried out.

A general description of the reverberation time is based on Sabine’s reverberation

theory [1]. It assumes homogeneous repartition of energy within the room, and

consequently uniformly distributed absorption, and that the field is completely

diffuse. In general, the field will be sufficiently diffuse if the basic dimensions of

the room are almost the same, walls are not parallel, and most absorbing surfaces are

divided into parts and uniformly distributed. In practice, most of these requirements

are not fulfilled simultaneously [2]. In the case of a room in which absorption is not

uniformly distributed, the RT characteristics cannot be predicted accurately using

classical reverberation theories.

Different approaches have been adopted to obtain more accurate approximations

of the reverberation time. Among others, Eyring described the reverberation in

highly absorbent enclosures based on the mean free path between reflections [3].



156 FREQUENCY-DEPENDENCY OF REVERBERATION TIME UP TO 40 GHZ

While his model considers absorption based on a constant rate of wall interactions

within a given time, the model proposed in this chapter takes the variance of

interactions into account. Moreover, the frequency-dependency of electromagnetic

reverberation characteristics in indoor environments is experimentally investigated

from 1 to 40 GHz. The reverberation time is found to be a decreasing function

of frequency. A model is then developed to predict the room’s quality factor (Q)

and average absorption coefficient. Good agreement is obtained with the limited

results reported in the literature for similar scenarios. This approach aims to be an

accurate alternative to the reverberation time measurements and computations in

indoor environments by linking it to the theory of electromagnetic fields in cavities.

The chapter is structured as follows. Section 6.2 introduces the proposed

reverberation model. Measurement setup and scenario are presented in Section

6.3. The frequency-dependency of the RT is modelled in Section 6.4 along with

the quality factor. Section 6.5 discusses the average absorption coefficient, and

conclusions are drawn in Section 6.6.

6.2 Proposed reverberation model

The original work of Sabine for room acoustics relies on the assumption of a

diffuse field that is homogeneously distributed inside the room [2]. However,

Sabine’s model is not appropriate for rooms with high absorption rate, as pointed

out by Eyring [3]. For low-Q or ”dead” rooms, Eyring proposed another model

that is based on the mirror source theory. For cavities, the received energy is the

incoherent summation of rays from infinitely many mirror sources representing

multiple wall reflections [2]. Energy received from each mirror source is reduced by

the absorption coefficient α when crossing a boundary of an image room. Therefore,

the average energy density W (t) received at time t is approximately equal to [4]

W (t) =
E0

V
(1− α)nt =

E0

V
exp(−t/τ) (6.1)

where V is the volume of the room, E0 is the initial energy generated by mirror

sources, and n is the average rate of wall interactions or boundary crossings as

aforementioned. The assumption of a diffuse field reveals that n = cA
4V [2]. Hence,

the decay rate of the energy density, which defines the RT, can be expressed as

τ =
− 4 V

c A ln(1− α)
(6.2)

where A is the surface area of the room and c is the speed of light. This represents

Eyring’s formula for the RT in dead rooms.

One of the simplifications (6.1) is based on is the replacement of the actual

number of wall interactions N in a given time by its average E[N ] = nt [2]. This
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approximation can be improved by introducing the probability Pt(N) of exactly

N wall interactions occurring in a time t and calculating the energy density as the

expectation with respect to this probability distribution. This can be formulated as

W (t) =
E0

V

∞∑

N=0

Pt(N) exp(−Na) (6.3)

where the absorption exponent a = −ln(1 − α) is introduced. Using a series

expansion of the exponential term and truncating it after the second order, we

obtain [2]

W (t) =
E0

V
exp(−nta)(1 +

1

2
σ2
Na2) (6.4)

where σ2
N =

∑
N (N−nt)2Pt(N) is the variance of N . The number of interactions

N in a given time can be related to the actual free path length l traveled between

the interactions, whose distribution around the mean l and its variance depend on

the shape of the room. According to [2], it can be assumed that

σ2
N = ntγ2 (6.5)

where γ2 = l2−(l)2

(l)2
is the relative variance of the path length l. As long as

1
2σ

2
Na2 < 1, substituting (6.5) in (6.4) approximately yields

W (t) =
E0

V
exp

[
− nta(1−

1

2
γ2a)

]
(6.6)

Accordingly, the modified RT can be expressed as

τm =
− 4 V

c A ln(1− α)

[
1 + γ2

2 ln(1− α)

] (6.7)

On the other hand, the decay-time method relates Q to the RT by the expression

in (1.15). Since the RT is a function of V/A, It would be useful to work with a

Q density that is independent of the room’s dimensions. Hence, the Q per unit

(volume per area) can be defined as [5]

Qd = 2πfτ
A

V
(6.8)

which describes the frequency-dependency of the RT as a function of the Q density

τ(f) =
Qd

2πf
×

V

A
. (6.9)



158 FREQUENCY-DEPENDENCY OF REVERBERATION TIME UP TO 40 GHZ

Figure 6.1: The lab environment for measurements

6.3 Measurements setup and scenario

6.3.1 Scenario

The scenario for the channel sounding measurements is a laboratory in Universidad

Politécnica de Cartagena, Spain shown in Figure 6.1. The measurement scenario is

depicted in Figure 6.2 (a), in which Rx is fixed in one position, while Tx positions

are uniformly distributed across the room (marked 1 to 14). For all positions, a

0.8 m (1.2 m) distance was selected between each Tx row (column). All distances

were measured with a laser to obtain the most accurate precision possible. The

laboratory size is approximately 9.1×4.8×4.1 m3. It is furnished with several

cupboards, chairs, and shelves. The walls are typical interior plasterboard, while

the floor and ceiling are made of concrete.

6.3.2 Measurements

In order to perform the channel sounding, a vector network analyzer of type Rohde

& Schwarz (R&S ZVA67 10 MHz - 67 GHz) and a radio-over-fiber link (EMCORE

Optiva OTS-2, 50 MHz - 40 GHz) are used to measure the complex gain of

the indoor UWB channel ranging from 1 GHz up to 40 GHz. UWB antennas

(STEATITE Q-par Antennas, 0.8-40 GHz) at the Tx and Rx sides are used, with

vertical polarization and omnidirectional radiation pattern in the horizontal plane.

All elements are calibrated, and the antenna patterns are measured in an anechoic

chamber from 1 to 40 GHz [6]. Figure 6.3 shows the antenna patterns at four

different frequencies in that range. The antenna gains range from -2.2 dBi to

6.9 dBi and the 3-dB beam width from 20 to 140 degrees. A scheme of the full

measurement setup is shown in Figure 6.2 (b).

At both ends of the measurement system, a virtual antenna array was created by

an automated positioning system on which the antennas were mounted. This virtual

MIMO measurement system consists of a 10-element uniform linear array at the Tx

and a 6×6 uniform rectangular array at the Rx. The separation of the array elements
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(a)

(b)

Figure 6.2: (a) Top view of the laboratory used as measurement scenario (b) Measurement

setup scheme [6]
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(a) (b)

(c) (d)

Figure 6.3: Measured radiation patterns in dB for different frequencies: (a) 10 GHz,

(b) 20 GHz, (c) 30 GHz, (d) 40 GHz [6]

was 3 mm (less than half the wavelength at 40 GHz, i.e. 3.7 mm). Hence, a total

of 360 complex transfer functions have been recorded within a duration of around

20 hours for each measured snapshot. During that time, the doors remained closed

to prevent entry, thus guaranteeing static conditions. At each position, the VNA

measured the complex gain by sampling the 39 GHz span over 8192 uniformly

spaced frequency points with intermediate frequency of 100 Hz.

6.3.3 Processing

According to the theory of room electromagnetics [7], the decay rate of the power

density is independent of the position of measurement. The power-delay profile
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(PDeP) per Tx position is calculated by averaging the square of the channel impulse

response over all the elements of the Tx and Rx antennas. Since we only care for

the slope of the PDeP, a more accurate RT can be estimated by spatially averaging

the PDePs over all the Tx positions [4]. Hence, The averaged PDeP (APDP) used

for the RT estimation is calculated as

APDP =

14∑

p=1

10∑

tx=1

36∑

rx=1

∣∣∣IDFT{H[f ]}
∣∣∣
2

(6.10)

where IDFT{.} is the inverse discrete Fourier transform, H[f ] is the measured

channel transfer funcion, and rx, tx and p are the indexes for the Rx antenna

element, Tx antenna element and Tx position, respectively.

The slope of the APDP is determined automatically by fitting a least-square

regression line to the values of the APDP within a certain delay interval. The fitting

interval was chosen between the mean excess delay and the delay corresponding

to 6 dB above the noise level, in order to minimize the influence of the LOS and

noise components on the slope estimate [8]. The RT can then be experimentally

determined as [4]

τ =
−10 log(e)

slope
(6.11)

6.4 RT frequency-dependent models

The frequency range of 1-40 GHz is divided into sub-bands of 900 MHz bandwidth

each, where the RT is estimated at each center frequency using (6.11). The estimated

values are then used in (6.8) to obtain the quality factor density Qd, where V =

160 m3 and A = 195 m2 in our scenario. Figure 6.4 presents the experimental

Qd and the proposed fitting model as a function of frequency. The model for

frequencies below 10 GHz in [5] was chosen as a cubic polynomial fit, motivated

by the fact that Q is a cubic function of frequency. However, our measurements

suggest that a simpler quadratic model can be a good fit for frequencies up to 40

GHz, since Q4 becomes of minor contribution at high frequencies as discussed in

Section 1.3.1.2.

The dependence of the RT, and thus Qd, on the bandwidth was discussed

in [5]. It showed insignificant relative variation over bandwidths from 100 MHz

till 900 MHz and concluded that τ can be considered constant over bands up to

900 MHz or more. Similar behavior is observed in our scenario, and hence, a

bandwidth of 900 MHz is considered for the rest of the study, which provides

enough samples for the APDP slope regression as well as the Qd model fitting.

Therefore, the model of Qd is formulated as

Qd(f) = −0.86 f2 + 109.25 f + 29.49 (6.12)
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Figure 6.4: Experimental estimate of Q density and the proposed model as a function of the

center frequencies with 900 MHz bandwidth

Ref. V (m3) A (m2) Freq. (GHz) RT (ns) RE (%)

[9] 335.6 299.6 1.5 21.8 4.2

[5] 94.5 132 7.5 - 8.5 - 9.5 14.3 - 13 - 12.2 9.5

[5] 169 195 8 - 9 - 10 14.2 - 12.1 - 13 9.3

Table 6.1: RT Model Validation From The Literature

where f is the frequency in GHz and the goodness of fit in terms of the coefficient of

determination (R2) equals 0.99. By substituting in (6.9), the frequency-dependent

RT model is obtained

τ(f) =
(−0.86 f2 + 109.25 f + 29.49) V

2πfA
[ns] (6.13)

The RT model is depicted in Figure 6.5 (a) where it clearly shows that the RT is

inversely proportional to the frequency. To validate our model, we compare the

RT values to results reported in the literature. Since the RT also depends on the

absorption rate of the environment, we consider the studies where the environment

is similar to our scenario. However, a limited number of studies provide the

dimensions of the indoor scenario, and most of them are at lower frequencies. Table

6.1 summarizes the collected data and the relative error (RE) to the proposed model,

where small deviations have been obtained.
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Figure 6.5: Frequency-dependent models for (a) reverberation time and (b) average

absorption coefficient and the experimental estimates with 900 MHz bandwidth

6.5 Average absorption coefficient

Most of the results for the average absorption coefficient reported in the literature

are based on the models of Sabine and Eyring [4] where the assumption of a constant

wall interaction rate is adopted. The modified RT in (6.7) takes the variance of

the number of interactions into account by relating it to γ2. The latter can only

be calculated analytically for a limited number of room shapes [2], while other

shapes can be determined by computer simulation. Hence, for our scenario, γ2 is

computed via ray-tracing simulation and is found to be 0.325. This matches well

with the results in [2], indicating that, for most rectangular rooms, γ2 is close to 0.4.

The frequency-dependent model of the average absorption coefficient α(f) can

easily be determined from (6.7) and (6.9) and is shown in Figure 6.5 (b) along
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Figure 6.6: Overview of reverberation models performance for our scenario

with the experimental values. To show the improvement gained using the modified

model, Figure 6.6 shows the RT calculated based on (6.7) versus α and compares

it to the models of Sabine and Eyring for our scenario. It shows that the modified

RT is generally smaller than that obtained from Sabine’s model, but larger than

Eyring’s.

The difference between the models can be attributed to the underlying assump-

tions. Sabine assumes a steady-state uniform isotropic diffuse field [10] (i.e. one

energy value everywhere), which is not valid for high absorption. During energy

decay, the room is not in steady-state, and the higher the absorption, the less it

is in steady-state [2]. This results in a smaller effective energy loss and, thus,

larger RT. On the other hand, Eyring assumes a constant rate of wall interactions

and a step-wise energy decay [3] (i.e. all rays lose energy at the same time) as

shown in (6.1). This is valid for a 1-dimensional enclosure, where all paths have

exactly the same length [2]. For a more accurate RT, we modified the model to

take the variance of wall interactions into account. As the variance increases, the

energy decay transitions from the step-wise assumption of Eyring to the continuous

assumption of Sabine, and hence, the RT increases.

6.6 Conclusions

In Chapter 5, the room electromagnetics theory was investigated in a ship en-

vironment and the classical Sabine’s model for reverberation time was used for
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estimating the number of people in below-deck compartments. This chapter extends

the reverberation modelling, where the frequency-dependency of the electromag-

netic Q-factor and reverberation time is experimentally investigated in an indoor

lab scenario from 1 to 40 GHz. The results demonstrate that the reverberation

time decreases smoothly as the frequency increases, indicating that the higher the

frequency, the faster the fading of diffuse fields. Models that predict the Q-factor

and reverberation time are presented based on the theory of electromagnetic fields

in cavities. These models extend the results found in the literature to new higher

frequencies up to 40 GHz. Moreover, a model that predicts the average absorption

coefficient from the reverberation time is proposed. The model that is based on the

mirror source theory takes the variance of the rate of interactions into account, thus

is considered theoretically more accurate than the commonly used models.
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7
Conclusions

This final chapter presents the overall conclusions based on the accomplished work

in this dissertation, and proposes some opportunities for future research.

7.1 Conclusions

In this dissertation, we focus on the modelling of wireless radio channels for

different scenarios and applications, that will help develop more efficient and

robust communication and sensing solutions. The first part is dedicated to studying

the behavior of wireless channels for vehicular communications with a focus

on stochastic modelling of propagation parameters for the non-stationary fading

process. The goal of the second part is to investigate the indoor propagation channel

in highly reflective industrial scenarios. The reverberant characteristics of such

environments are modelled based on the theory of room electromagnetics, and

exploited for human sensing applications.

7.1.1 Outdoor vehicular channel modelling

Due to rapid changes in the environment, vehicular communication channels no

longer satisfy the assumptions of wide-sense stationary uncorrelated scattering

process. Classical cellular wireless networks have been designed based on these

assumptions, which say that the statistics of the underlying radio propagation

channels do not change neither over time nor frequency. Most of the algorithms that

are currently used, especially regarding the feedback of information from Rx to Tx
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side, are designed under this assumption of stationarity. Hence, by modelling the

non-stationarity of rapidly time-varying channels as in vehicular communications,

already existing algorithms could be improved by taking into account the varying

description of radio propagation channel statistics. The non-stationary fading

process can be characterized by assuming local stationarity regions with finite

extent in time and frequency. Once the stationarity region has been characterized,

the non-stationary fading parameters can be accurately evaluated and the channel

modelling becomes physically meaningful.

To that end, several measurement campaigns are conducted in this work to

investigate the vehicle-to-infrastructure (V2I) radio channel at 1.35 GHz in dif-

ferent environments, including sub-urban, rectangular and arched tunnels under

road traffic conditions. The MIMOSA channel sounder allows us to capture the

channel transfer function of the mobile radio channel that is used to model each

scenario. We first measure the stationarity time by applying the framework of

the local scattering function (LSF) and channel correlation function (CCF). We

find it to be more accurate than the empirical collinearity metric to characterize

the stationarity region. Then, the time-varying channel parameters are evaluated

and stochastically modelled across the different stationarity regions. Based on the

LSF, fading parameters like the RMS delay and Doppler spreads, and K-factor

are modelled for different polarizations. More specifically, the impact of traffic

density and antenna characteristics on these parameters are investigated in the

tunnel environment. In addition, the modelling of MIMO channel parameters such

as capacity, normalization and correlation is discussed. A summary of the main

conclusions is as follows.

Stationarity

The overall stationarity time of 567 ms is calculated in the sub-urban scenario, with

a minimum value of 337 ms. For the rectangular tunnel, the overall stationarity time

is 330 ms and the minimum is 268 ms. The same V-polar omni-directional antennas

are used for both measurements. The difference in the stationarity time can be

partially attributed to the difference in speed. While the sub-urban scenario is a

low-speed campus environment (40 km/h), the tunnel scenario represents a high-

speed highway environment (90 km/h). Another factor is that in the tunnel, being a

closed environment, reflected components do not need to travel far, and thus have

higher power compared to the open campus scenario. The variation of the LSFs is

thus stronger and has more contribution to the correlation calculated by the CCF. In

addition, the traffic density is found to have no effect on the stationarity time in the

tunnel scenario. So larger traffic densities may be required to impact the stationarity

time. On the other hand, investigating the impact of the antenna polarization shows

that the V polarization provides longer stationarity time by 5% compared to the H

polarization. As for the impact of the antenna radiation pattern, a more directional
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antenna is found to provide a longer stationarity time by 21%, thus proving to be

more beneficial than a wide-angle type of antenna pattern. Moreover, the practical

relevance of the non-stationarity of the channel is briefly discussed. Results show

that as the assumption of WSSUS is violated, the assumption of ergodic capacity

and its application becomes unreliable. Moreover, the gain of the effective diversity

varies with the stationarity and coherence parameters of the channel. Hence, the

optimal performance of communication systems can be obtained by considering

the varying nature of such parameters via adaptive schemes.

Delay and Doppler spreads

Based on the LSF, time-varying delay and Doppler power profiles are obtained and

used to calculate the corresponding second-order central moments. The empirical

distribution of the RMS delay and Doppler spreads is best fitted by a lognormal

model in all the investigated scenarios. For the sub-urban scenario, both vertical

and horizontal polarization show a similar deviation behavior in the spread values,

with the mean spreads of the H-polar channel (42.5 ns, 10.3 Hz) being slightly

larger than that of the V-polar channel (33.4 ns, 7.3 Hz). While these values are

measured with a directional patch antenna, an omni-directional antenna captures

slightly larger values (48.8 ns, 11.82 Hz). This is expected since more MPCs of

wider angles are included, which may have larger delay and Doppler. For the tunnel

scenario, larger mean values are observed for delay and Doppler spreads (130 ns,

25 Hz). This can be attributed again to stronger MPCs due to the tunnel’s reflective

materials and enclosure, compared to the sub-urban scenario. It is also found

that higher traffic density in the tunnel increases the delay and Doppler spreads,

while reducing the correlation between them. Investigating the impact of antenna

polarization shows that the V polarization is more advantageous, as it provides

smaller delay and Doppler spreads (by 19% and 18% on average, respectively)

compared to the H polarization. As for the impact of antenna radiation pattern, a

more directional antenna is found to provide smaller delay and Doppler spreads (by

52% and 32% on average, respectively), thus proving to be more beneficial than a

wide-angle type of antenna pattern.

Fading

For the sub-urban scenario, the small-scale fading is investigated per delay tap.

The small-scale fading of the strongest path is found to be Rician distributed,

while the later delay taps show occasional worse-than-Rayleigh behavior. The

parameters of the Rician fading for the first tap and Nakagami fading for the later

taps are estimated and statistically modeled. Both V and H polarizations have

similar mean values and the best fit is found to be the lognormal model. The traffic

density in the tunnel scenario is found to reduce the average K-factor of the fading



170 CONCLUSIONS

amplitude, due to more scattering resulting from the traffic. In addition, channel

power evaluation metrics are examined including path gain, CPR, and XPD in

the tunnel environments. Our analysis shows that a single-slope model describes

well the attenuation in a tunnel under road traffic conditions. The guiding effect of

the tunnel results in a path loss exponent smaller than typical indoor and outdoor

environments (<2). The impact of antenna polarization depends on the geometry of

the tunnel as well as the traffic condition. while the H-polar has a higher reference

path-loss, the path-loss exponent is smaller compared to the V-polar, based on the

arched tunnel measurements. The rectangular tunnel measurements show that the

difference in the path-loss exponent can become insignificant. Deterministic ray

approach for empty smooth walled tunnels composed of uniform material predicts

that the H-polar loss is lower than the V-polar loss. Since the geometry of the tunnel

is such that the width is larger than the height, the H wave reflected from the ground

and ceiling are stronger than the V one reflected from the walls of the tunnel, due

to the Brewster’s angle phenomenon. However, this effect can be reduced due to

the non-uniformity of materials and shapes present in the propagation path (e.g.

traffic condition, side pipes, trays and emergency exits), resulting in more scattering

for the H-polar channel and a higher path-loss exponent. Nevertheless, waves are

highly polarized even at far distances, with a measured XPD of about 13 dB in the

arched tunnel and 12 dB in the rectangular tunnel. Statistical models are presented

for CPR and XPD using the lognormal distribution.

Tunnel lanes

For the arched tunnel, the channel is measured in the open lane along the center

of the tunnel and in the closed lane on the side next to the tunnel wall. Co-polar

channels have larger reference path-loss and smaller path-loss exponent, and the

standard deviation of the fading is larger in the closed lane compared to the open

lane. Also, the XPD is larger in the closed lane than in the open lane. Conclusions

regarding the time dispersion include the following. The RMS delay spread remains

around the mean values in the range of 12 ns to 24 ns, with the co-polar channels

spread being smaller than cross-polar channels spread. The mean RMS spread

of the H-polar channel is larger than the V-polar channel, which is similar to the

rectangular tunnel case. However, mean values is much lower that the rectangular

tunnel. This can be attributed again to the differences in geometry (e.g. the arched

tunnel is smaller) and materials (e.g. metallic structure at the entrance of the

rectangular tunnel) of the tunnel structure. The closed lane has several rises in the

delay spread at the middle of the tunnel compared to the open lane, since it is more

sensitive to the variation in the tunnel walls structure. The distribution of the spread

variation along the tunnel can be fitted to a log-normal distribution, with larger

standard deviation in the closed lane than in the open lane configuration.



CHAPTER 7 171

MIMO performance

The MIMO channel was measured for the arched tunnel in the open lane along

the center of the tunnel and in the closed lane on the side next to the tunnel

wall. The main conclusions of the spatial MIMO system performance for different

polarizations are as follows. Subchannel correlation increases at farther distances

in the tunnel, which is attributed to the attenuation of the higher-order propagating

modes according to the waveguide modal theory. The average Rx correlation

amplitude decreases as the inter-element spacing of Rx antenna increases. The

co-polar channels are more correlated than the cross-polar channels, with the H-

polar channel correlation being higher than the V-polar channel correlation. The

condition number of the MIMO channel matrix increases slightly with distance.

The increase of the singular values ratio and the decrease of the Rx correlation

amplitude, both indicate a decrease in MIMO capacity with distance in the tunnel

for a constant SNR. The capacity of 2×2 MIMO increases for larger inter-element

spacing, with insignificant difference after 3λ. For an outage probability of 0.5 and

10 dB SNR, capacity reaches 5.7 bits/s/Hz compared to 3.3 bits/s/Hz for SISO. The

open lane along the center of the tunnel provides higher capacity than the closed

lane near the tunnel wall. The V-polar channel provides slightly higher capacity

than the H-polar channel. This is shown in the 4×3 MIMO capacity of the open

lane, reaching 7 and 6.6 bits/s/Hz for V-polar and H-polar channels respectively,

compared to the Rayleigh channel capacity of 8.8 bits/s/Hz for an outage probability

of 0.5. On the other hand, the dual-polarized (DP) MIMO channel is investigated

based on the rectangular tunnel measurements. The impact of normalization on

the DP capacity is investigated, and a new approach is proposed that maintains the

conservation of energy. The DP channel is found to have a low condition number on

average (5.5 dB), which is good for multiplexing gain. The correlation properties

are measured using the full correlation matrix, while the Kronecker model is found

to provide less accurate results by 7.58%. Large correlation (>0.7) among DP

subchannels is observed, and no correlation is found with the condition number.

The condition number is found to depend on the orthogonality rather than the

decorrelation of the DP subchannels, giving DP MIMO an advantage over spatial

MIMO in LOS scenarios.

Autoregressive modelling

Accurate channel simulation is needed for the performance evaluation of wireless

systems, especially when dealing with non-stationary channels. The parametric

modelling of non-stationary processes is applied to simulate the measured V2I

channel from the rectangular tunnel. We propose a framework for long-term

simulation based on the vector time-frequency autoregressive (VTFAR) model. We

analyse the stability of the model and propose an approximation for the correlated
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scattering channel that guarantees stability. A 6-tap channel is simulated based

on the measurement, where the VTFAR model parameters are estimated using the

proposed approach. Moreover, the parametric spectra of the model are compared to

non-parametric spectra estimated from the measured channel using the multi-taper

approach. We validate the model in terms of the delay spread and stationarity time.

The model is found to simulate the measured channel very well with RMSE of

0.01 for the delay spread and 0.4 for the stationarity time. This measurement-based

and computationally inexpensive approach provides an efficient alternative for

non-stationary channel simulations.

7.1.2 Indoor reverberant channel modelling

Industrial environments are characterized by high time and angular dispersion due

to scattering from complex metallic structures. Such harsh environments experience

reverberation behaviour similar to cavities, which can be explained by the room

electromagnetics theory. The reverberation time (RT), being a principal parameter

in characterizing the reverberation behaviour, is studied and exploited for human

sensing applications in ships. Additionally, its frequency-dependency is modelled

up to 40 GHz bands in an indoor lab environment.

Human sensing in ships

Based on the theory of room electromagnetics, we explored the feasibility of

estimating the number of people inside a reverberant ship compartment by means

of only measuring the reverberation time. An inverse relation between the number

of people inside the room and the reverberation time is verified. More people

absorb more energy, decreasing the reverberation time. The reverberant nature of

the room is also verified by showing that the reverberation time is independent of

the antenna or the location used for measurement inside the room. Measurements

are used first to calibrate of the absorption parameters of the empty room and

the average human body before performing the occupancy estimation. While the

estimation performance is very low in case of a single antenna, it can be enhanced

via spatial averaging from multiple antennas. Such rich scattering environments

produce large angular dispersion, hence antennas with enough separation in space

are uncorrelated. In addition, time-averaging can be used to further enhance the

estimation performance when the measured channel is non-stationary, e.g., due to

the movement of people.

The estimation algorithm depends on the channel impulse response (CIR), a

metric that can be found in wideband communication systems. With commercial

off-the-shelf UWB nodes originally used for localization and communication, we

estimated the number of people ranging from 0 to 6 persons with a success rate of

95% and only 1-person error. Moreover, the CIRs can be used to detect when a
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person alone has fallen to the ground via Doppler analysis. Doppler frequencies

up to 20 Hz are used, so the radio channel can be sampled at a rate of only 40 Hz.

Even in the reverberant scenario, we found that the RMS Doppler spread has a

peak that differentiates a fall from sitting or walking. A simple Bayes classifier is

then used for fall detection, with the variance of the Doppler spread as its feature.

The variance showed a good separation between the different classes compared to

other features of the Doppler behaviour. Using 3-fold cross-validation, the fall is

detected with 98.6% accuracy, 96% precision, and 100% sensitivity. Hence, the

reverberation time proves to be a very practical parameter in industrial reverberant

environments.

Reverberation at mmWave frequencies

The frequency-dependency of the electromagnetic Q-factor and reverberation time

is experimentally investigated in an indoor lab scenario from 1 to 40 GHz. The

results demonstrate that the reverberation time decreases smoothly as the frequency

increases, indicating that the higher the frequency, the faster the fading of diffuse

fields. Models that predict the Q-factor and reverberation time are presented based

on the theory of electromagnetic fields in cavities. These models extend the results

found in the literature to higher frequencies up to 40 GHz. They are used to estimate

the average absorption rate of the environment based on the room electromagnetics

theory. Moreover, a model that predicts the average absorption coefficient from

the reverberation time is proposed. The model that is based on the mirror source

theory takes the variance of the rate of interactions into account, thus is considered

theoretically more accurate than the commonly used models. With the rise of

industrial IoT and industry 4.0, modelling the radio channel at high frequency

bands is considered essential for the design of the communication and sensing

solutions.

7.2 Future work

Directions for the future work are as follows. For the stationarity assessment of

vehicular channels, multiple antennas can be used to fully capture the double-

directional polarimetric channel characteristics. This will allow us to more accu-

rately estimate the stationarity region by including the space domain, especially

with the new version of the MIMOSA channel sounder (MaMIMOSA) for massive

number of antennas. The channel transfer function becomes a function of time, fre-

quency and space which leads to a LSF that is also 3-dimensional in delay, Doppler

and angle. With the new LSF, the stationarity time and bandwidth can be accurately

estimated using the channel correlation function taking also the spatial/angular

correlation into account. Moreover, with the introduction of massive MIMO, the
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statistical channel properties becomes important in the space dimension, giving

rise to space or array non-stationarity. Array non-stationarity refers to the fact that

clusters may appear or disappear from the viewpoint of one antenna element to the

next one, which means different antenna elements could see different cluster sets.

It also means that parameters, such as power and delay drift, are to be considered

over different antenna elements. Hence, measuring the 3-dimensional stationarity

region will prove to be very useful for future wireless systems.

Another aspect to consider is intelligence-enabling radio communications and

channel modelling. Propagation models may be able to predict radio environments

and hence provide accurate-enough channel state information (CSI) at link ends

to aid radio communication systems and applications. As an example, a few stud-

ies have addressed the real-time use of deterministic propagation models to help

estimating CSI. Their real-time use in localisation, beamforming and resource allo-

cation algorithms is still in its infancy. Artificial intelligence and machine learning

(ML) are expected to play a pivotal role towards the provision of such intelligent

operation. Prediction of channel parameters like path-loss, NLOS identification,

delay and angle spreads and clusters, etc. can be done based on ML algorithms,

which can deduce the mapping relationship between physical environment infor-

mation and the channel characteristics. That is because the channel parameters are

highly correlated with the network layout, including Tx and Rx locations, carrier

frequency, and scatterers distribution.

Extending the work on human sensing further, we propose to conduct several

measurement campaigns for different scenario in order to characterize the perfor-

mance of the RT-based occupancy estimation algorithm. Factors like, frequency,

number of antennas, number of people, room material, size, etc., will be studied

to measure their impact on the estimation performance. In addition, the fall detec-

tion algorithm needs to be further validated in different environments and across

different human activities. Different ML techniques will be investigated with more

features extracted from the radio channel characteristics. An interesting direction

is to explore the wideband delay-Doppler channel response to further detect the

activity in delay/distance and well as speed/Doppler dimensions.






