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Samenvatting

– Summary in Dutch –

Naarmate onze wereld meer en meer geconnecteerd en online wordt, worden men-

sen blootgesteld aan massa-informatie in verschillende vormen, met inbegrip van

(maar niet beperkt tot) teksten, afbeeldingen, geluid en video, vanuit verschillende

bronnen, zoals telefoons, tv’s en laptops. Als gevolg daarvan heeft de gedigita-

liseerde omgeving een sterke invloed op de opinie van de mensen op een manier

die sterk verschilt van vroeger, toen de verspreiding van informatie traag en ge-

ografisch beperkt was. Opinievorming is al lang een onderzoeksonderwerp in de

sociale wetenschappen. Het heeft de laatste jaren ook de aandacht gewekt van de

computerwetenschappen vanwege de populariteit van (online) sociale netwerken.

De studie van de opinievorming richt zich op het modelleren van hoe indivi-

duen hun opinie bijwerken en uiteindelijk vormen als gevolg van interne gedachten

en externe invloeden. Sociale media platformen zoals Twitter en Facebook hebben

de uitwisseling van standpunten online vergemakkelijkt, waardoor er een toename

kwam aan de hoeveelheid en soorten invloeden uit de omgeving op de opinie-

vorming. Controverse, onenigheid, conflict, polarisatie, en opiniedivergentie in

sociale netwerken zijn het onderwerp geweest van veel recent onderzoek. Onder-

zoekers hebben bestudeerd hoe deze concepten kunnen worden gekwantificeerd en

vervolgens geoptimaliseerd door het beı̈nvloeden van de opinies van een klein aan-

tal mensen, bv. influencers op sociale media, of het bewerken van de connectiviteit

van het netwerk, d.w.z. de blootstelling van mensen aan verschillende informatie-

bronnen. Dit betekent dat met strategische interventies marketing niet alleen viraal

kan gaan, maar ook dat het risico dat de publieke opinie wordt gemanipuleerd ook

groter wordt. Deze strategieën zijn niet ongewoon; het is dus belangrijk om een

meer expliciet inzicht te hebben van de bijbehorende processen.

Opinievormingsmodellen vormen het fundament van dit onderzoek. Zij de-

finiëren regels voor het modelleren van hoe mensen hun opinies bijwerken door

interacties met anderen. Bestaande modellen zijn verouderd, omdat ze niet in staat

zijn rekening te houden met sociale verschijnselen in de realiteit en ze hebben

problemen die kunnen resulteren in ongewenst gedrag. Er zijn dus inspanningen

nodig om de problemen aan te pakken en de modellen up-to-date te houden. On-

dertussen is het verkrijgen van de opinie van mensen als reële waarden al lang
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een zeer uitdagende taak gebleven. Zonder die opinies te kennen, kunnen we nog

steeds begrippen als controverse, conflict, en polarisatie kwantificeren en optima-

liseren door alleen gebruik te maken van de kanalen voor informatie-uitwisseling,

namelijk de connecties in sociale netwerken? We zullen deze vraag later in deze

thesis beantwoorden.

Connecties in sociale netwerken zijn van cruciaal belang voor de opinievor-

ming aangezien zij blootstelling aan informatie vertegenwoordigen, wat betekent

dat zij bepalen hoe opinies worden beı̈nvloed, namelijk door wie en in welke mate.

Die connecties zijn echter niet altijd bekend, omdat we in een wereld leven waarin

we bijna alles slechts gedeeltelijk waarnemen. Niet alleen in sociale netwerken,

maar ook in andere netwerken, zoals proteı̈ne-proteı̈ne interactienetwerken, net-

werken van neuronen, en netwerken van consumenten en producten, worden con-

necties meestal maar gedeeltelijk waargenomen. Verschillende methoden zijn ont-

worpen om connecties te voorspellen in netwerken die momenteel ontbreken of

die zich in de toekomst zullen vormen, wat in wezen een belangrijk netwerkpro-

bleem is genaamd connectievoorspelling. Connectievoorspelling heeft een breder

toepassingsgebied buiten de studie van de opinievorming. Veel problemen in de

echte wereld kunnen worden geformaliseerd als het voorspellen van connecties in

netwerken, bijvoorbeeld vriendschapssuggesties op Facebook, aanbevelingen in

e-commerce, en de voorspelling van proteı̈ne-proteı̈ne interacties.

Huidige methoden voor connectievoorspelling gaan ervan uit dat alle connec-

ties bekend zijn en beschouwen alle niet geziene connecties als niet verbonden,

terwijl voor veel knoop-paren het niet bekend is of de twee knopen verbonden

zijn. Bovendien zijn veel methoden voor connectievoorspelling niet transparant,

waardoor hun robuustheid tegen vijandelijke aanvallen de laatste tijd zorgen baart.

Daarom is het cruciaal om te focussen op de data-efficiëntie en betrouwbaarheid

van de methoden voor connectievoorspelling, wat betekent dat ze competitieve

prestaties moeten leveren met minder data, in minder tijd en terwijl ze robuust

moeten zijn tegen aanvallen.

Deze thesis bevat vijf bijdragen over opiniedynamica en methoden voor con-

nectievoorspelling om aan de eerder genoemde behoeften te voldoen. De eerste

twee hoofdstukken behandelen opinievormingsmodellen. We hebben een bekend

opinievormingsmodel uitgebreid uit om rekening te houden met twee sociale feno-

menen uit de realiteit in Hoofdstuk 2 en hebben een probleem opgelost dat bestond

in een populaire variant in Hoofdstuk 3. In Hoofdstuk 4 kwantificeerden en mi-

nimaliseerden we het risico van conflicten in sociale netwerken zonder specifieke

opinies te kennen. Dat betekent dat we ons puur richtten op die connecties in het

netwerk die bepalen hoe opinies worden bijgewerkt. In de laatste twee hoofd-

stukken hebben we gewerkt aan het verbeteren van een specifiek type van con-

nectievoorspelling gebaseerd op netwerk inbedding. In het bijzonder hebben we

enerzijds de aanpak van connectievoorspelling data-efficiënter gemaakt door ge-

bruik te maken van actief leren in Hoofdstuk 5 en anderzijds betrouwbaarder door

de robuustheid tegen aanvallen te onderzoeken in Hoofdstuk 6.

Opinievormingsmodellen. Een opinievormingsmodel definieert de regels voor
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het bijwerken van opinies, bijvoorbeeld hoe iemands opinie wiskundig kan worden

berekend als een functie van de eigen opinie en die van vrienden. Twee essentiële

elementen voor deze modellen zijn: (i) de opinies van de individuen en (ii) de

connecties in het sociaal netwerk, die vriendschappen vertegenwoordigen. Opi-

nievormingsmodellen worden bepaald door vele factoren, waaronder de bijwer-

kingsregels, de soorten opinies, en de voorwaarden voor de interacties. Wellicht

één van de meest bekende opinievormingsmodellen is het DeGroot model, dat het

gemiddelde blijft nemen van de opinies van individuen met hun vrienden tot een

convergentie. Ook de variant van het DeGroot model voorgesteld door Friedkin en

Johnsen is populair. Deze maakt een onderscheid tussen interne en geuite opinies

en zullen wij verder het FJ-model noemen.

In Hoofdstuk 2 introduceren wij het BEBA model, dat gebaseerd is op het

DeGroot model, om twee bekende sociale fenomenen mee te nemen in opinievor-

mingsmodellen. Het eerste fenomeen is het Backfire Effect: de nijging dat iemand

zich bij de blootstelling aan een tegenovergestelde mening juist verankert in zijn

eigen mening. Wat er voor zorgt dat hun opinie extremer wordt in plaats van mo-

dereert. Het tweede is Biased Assimilation: de nijging van individuen om opinies

vergelijkbaar met die van henzelf sneller over te nemen. Zover ons bekend is dit

het eerste DeGroot-type model dat het Backfire Effect mee neemt. We gaven een

grondige theoretische beschrijving en een empirische analyse van het voorgestelde

model. Hieruit bleek dat er intuı̈tieve voorwaarden zijn voor het onstaan van pola-

risatie en consensus en voor de eigenschappen van de resulterende opinies.

In Hoofdstuk 3 pakken we vervolgens een probleem van het FJ model aan door

een normalisatie te introduceren. Gemotiveerd door een observatie in het FJ-model

hebben wij een genormaliseerd Friedkin en Johnsen-model voorgesteld, namelijk

het NFJ-model. Voor elk individu gaat het FJ-model uit van zowel een onveran-

derlijke interne opinie als een geuite opinie die kan verschillen van maar meer in

overeenstemming is met wat de vrienden zeggen. In zijn elementaire vorm is het

FJ-model is niet echt realistisch omdat het aangeeft dat hoe meer vrienden men

heeft, hoe minder haar interne opinie van belang is in haar geuite opinie. Om dit

probleem aan te pakken, hebben wij een wijziging van het FJ-model voorgesteld,

namelijk het NFJ-model, die iemands externe invloed van vrienden normaliseert

en het gewicht op haar interne opinie constant houdt. Vervolgens onderzochten we

de gevolgen van de normalisatie, zowel theoretisch als empirisch.

Risico van Conflict. Het verkrijgen van de reëel-waardige opinies is al lang een

uitdagende taak, en opinies over verschillende onderwerpen komen niet noodza-

kelijk overeen met verschillende netwerkstructuren (we bespreken namelijk ver-

schillende onderwerpen met dezelfde vrienden). In Hoofdstuk 4 onderzoeken we

opinieverschillen in sociale netwerken zonder de eigenlijke opinies te kennen, na-

melijk door enkel de netwerktopologie te gebruiken. We kwantificeren en optima-

liseren het risico van conflict voor zowel de gemiddelde als de worst-case opinie-

vector over alle mogelijke distributies van opinies op het sociale netwerk. Voor

sommige maten van conflict (de divergentie van opinies) zijn de optimalisatiepro-

blemen voor de risico’s niet-convex, wat resulteert in vele lokale minima. Wij
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hebben een theoretische en empirische analyse gemaakt van de aard van sommige

van deze lokale minima en toonden aan hoe zij gerelateerd zijn aan bestaande orga-

nisatiestructuren. Het risico van conflicten hangt louter af van de banden in sociale

netwerken, die bepalen hoe informatie die van invloed is op de opinievorming zich

verspreidt.

Connectievoorspelling. De connecties in sociale netwerken, maar ook die in an-

dere netwerken, zoals biologische netwerken, zijn niet altijd bekend en moeten

dus worden voorspeld. Naast de eerder genoemde opiniedynamiek, is een ander

belangrijk onderwerp van deze thesis connectievoorspelling. Dit probleem wordt

steeds vaker opgelost door netwerkinbeddingsmethoden die recent zijn voorge-

steld vanwege hun state-of-the-art prestaties. Met de nadruk op deze klasse van

methoden voor connectievoorspelling met behulp van netwerkinbedding, bieden

we data-efficiënte en robuuste oplossingen. In Hoofdstuk 5 passen we actief leren

toe om de data-efficiëntie te verbeteren voor connectievoorspelling op gedeeltelijk

geobserveerde netwerken.

We richten ons op het verbeteren van de data-efficiëntie van de methoden

voor connectievoorspelling die voor ons van bijzonder belang zijn, namelijk die-

gene welke gebruik maken van netwerkinbedding, waarmee het probleem kan

worden opgelost met alleen de waargenomen netwerkinformatie. Voor het niet-

waargenomen deel kan de connectiviteit tussen twee knooppunten vaak worden

opgevraagd, hoewel tegen een kostprijs, wat bekend staat als actief leren. Om de

gegevensefficiëntie te verbeteren, hebben wij actief leren toegepast om het AL-

PINE (Active Link Prediction usIng Network Embedding) raamwerk te ontwikke-

len. ALPINE identificeert de meest informatieve connectie-status die naar schat-

ting de meest significante verbetering van de nauwkeurigheid van connectievoor-

spelling zal veroorzaken als deze wordt opgevraagd. Wij hebben ook verschillende

opvragingsstrategieën voor ALPINE voorgesteld, aangezien de opvragingen moe-

ten worden gedaan met de nodige overweging van de kosten van de opvraging.

Onze empirische resultaten op data uit de echte wereld toonden aan dat ALPINE

schaalbaar was en de nauwkeurigheid van de connectievoorspelling verbeterde met

veel minder opvragingen dan passief leren. We analyseerden ook de relatieve ver-

diensten van de strategieën, wat inzichtelijke richtlijnen oplevert voor mensen in

de praktijk.

In Hoofdstuk 6 bestudeerden we de robuustheid tegen aanvallen voor connec-

tievoorspelling om de betrouwbaarheid van de methode te verbeteren. Hoewel

connectievoorspelling met behulp van methoden voor netwerkinbedding state-of-

the-art prestaties bereikt, veroorzaakt het gebrek aan transparantie bezorgdheid

over de robuustheid van het model tegen aanvallen. Men kan zich afvragen of

kleine vijandelijke wijzigingen van het netwerk een significante invloed zullen

hebben op de connectievoorspellingen bij het gebruik van een netwerkinbeddings-

model, wat een onvoldoende onderzocht probleem is inzake robuustheid bij con-

nectievoorspelling. Dit hoofdstuk draagt bij tot het vullen van deze leemte. In het

bijzonder, gegeven een probabilistisch netwerkinbeddingsmodel en een netwerk,

meten we de gevoeligheid van de connectievoorspellingen van het model voor
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kleine verstoringen van de netwerkstructuur. Onze aanpak maakt het dus mogelijk

om de meest kwetsbare connecties en non-connecties voor dergelijke verstoringen

te identificeren. Wij analyseerden verder de kenmerken van de meest en minst

gevoelige verstoringen en bevestigden vervolgens empirisch dat onze aanpak met

succes de meest kwetsbare connecties en non-connecties op een tijdsefficiënte ma-

nier identificeert dankzij een effectieve benadering.

Hopelijk kunnen onze bijdragen en overeenkomstige resultaten in deze thesis

relevant onderzoek helpen, niet alleen voor computationele sociale wetenschap-

pen, maar ook voor machinaal leren en kunstmatige intelligentie. De opinievor-

mingsmodellen van BEBA en NFJ zijn onze pogingen om te zoeken naar redelijke

en up-to-date modellering van opiniedynamiek in sociale netwerken. De studie

van het risico van conflicten is een voorbeeld van hoe computerwetenschappen

kan helpen bij de reële sociale problemen van polarisatie en soortgelijke concep-

ten zoals diversiteit van opinies. We hopen dat dit het licht kan werpen op vele

andere mogelijkheden die bijdragen tot een meer diverse maar minder verdeelde

wereld. Tenslotte is er nood aan data-efficiënte en robuuste methoden om via ma-

chinaal leren verbanden te voorspellen. In het algemeen zou het interessant zijn

om te zien of, binnen een paar jaar, dit werk kan bijdragen aan het beantwoorden

van de vraag hoe machines opinies kunnen vormen, als een verdere stap op het

huidige machinaal leren en redeneren voor complexere kunstmatige intelligentie.
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As our world gets increasingly networked and connected, it exposes people to

mass information in various forms, including but not limited to text, image, audio,

and video, coming from different sources, such as phones, TVs, and laptops. As

a result, the digitized environment heavily influences people’s opinions in a way

that is very different from the old days when the spread of information was slow

and geographically limited. Opinion formation has long been the research sub-

ject in social sciences. It has also attracted attention from the computer science

community in recent years owing to the popularity of (online) social networks.

The study of opinion formation focuses on modeling how individuals update

and eventually form their opinions due to internal thoughts and external influences.

Social media platforms like Twitter and Facebook have facilitated the exchange of

views online, which increases the amount and the types of environmental impacts

on opinion formation. Controversy, disagreement, conflict, polarization, and opin-

ion divergence in social networks have been the subject of much recent research.

Researchers have studied how these concepts can be quantified and then optimized

by influencing the opinions of a small number of people, e.g., the influencers, or

editing the network’s connectivity, i.e., people’s exposures to different sources of

information. This means that with strategic interventions, not only can the market-

ing get viral, but the risk of having manipulated public opinion also gets higher.

These strategies are not uncommon; thus, it is vital to have a more explicit under-

standing of the corresponding processes.

Opinion formation models serve as the fundamental part of these studies. They

define rules for modeling how people update their opinions through interactions

with others. However, existing models are outdated as being unable to account for

real-world social phenomena, and they suffer from issues that result in undesired

behaviors. Thus, effort is required to keep the models up-to-date and address the

issues. Meanwhile, obtaining people’s opinions as real values has remained for a

long time a very challenging task. Without knowing those opinions, can we still

quantify and optimize concepts like controversy, conflict, and polarization with

only the channels for information exchange, i.e., the links in social networks? We

will answer this question later in this thesis.

Connections in social networks are crucial for opinion formation as they rep-

resent information exposures, meaning that they control how the opinions are in-
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fluenced, i.e., by whom and to what extent. However, those connections are not al-

ways known since we live in a world where we observe almost everything only par-

tially. Not only for social networks, links in other networks, e.g., protein-protein

interaction networks, networks of neurons, and consumer-product networks, are

usually partially observed. Several methods have been designed to predict links

in networks that are currently missing or those that will form in the future, which

is essentially a vital network problem called link prediction. Link prediction has

a broader range of applications outside the study of opinion formation. Many

real-world problems can be formalized as predicting links in networks, e.g., Face-

book friendship suggestions, e-commerce recommendations, and the prediction of

protein-protein interactions.

Current link prediction approaches assume that all connections are known and

treat unobserved as unlinked status, while for many node pairs, it is not known if

the two nodes are linked. Additionally, many link prediction methods lack trans-

parency, so their robustness against adversarial attacks has been causing concern

recently. Therefore, it is crucial to focus on the data efficiency and model reliability

of the link prediction methods, which means achieving competitive performance

with fewer data and in less time, and being robust against adversarial attacks.

This thesis includes five paper contributions on opinion dynamics and link pre-

diction methods to address previously mentioned needs. The focus of Chapters 2

and 3 is opinion formation models. We extend a classic opinion formation model

to account for two real-life social phenomena in Chapter 2 and address an issue of a

popular variant of it in Chapter 3. In Chapter 4, we quantify and minimize the risk

of conflict in social networks without knowing any specific opinions. That means

we focus purely on the links in the network that control how opinions are updated.

Then in Chapters 5 and 6, we work on improving a specific type of link prediction

approach based on network embedding. More specifically, we propose to make

the link prediction approach more data-efficient using active learning in Chapter 5

and more reliable through investigating its adversarial robustness in Chapter 6.

Opinion Formation Models. An opinion formation model defines the rule for

opinion updating, e.g., how one’s opinion can be computed mathematically as a

function of its own and friends’ opinions. Two essential elements for these mod-

els are: (i) the opinions of the individuals; (ii) the connections in the social net-

work representing friendships. Opinion formation models are distinguished by

many factors, including the updating rules, the types of opinions, and conditions

on the interactions. Arguably, one of the most well-known opinion formation mod-

els is the DeGroot model, which keeps averaging individuals’ opinions with their

friends until a convergence. The DeGroot model’s variant proposed by Friedkin

and Johnsen that differentiates the internal and expressed opinions, which we fur-

ther refer to as the FJ model, is also a popular choice of study.

In order to account for two known social phenomena, we propose a novel opin-

ion formation model called BEBA by extending the DeGroot model in Chapter 2.

The first phenomenon is the Backfire Effect: the cognitive bias that an opposite

opinion may further entrench people in their stances, making their opinions more
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extreme instead of moderating them. The second is Biased Assimilation: the ten-

dency of individuals to adopt other similar opinions to their own. To the best of our

knowledge, this is the first DeGroot-type opinion formation model that captures the

Backfire Effect. We provide a thorough theoretical and empirical analysis of the

proposed model, which reveals intuitive conditions for polarization and consensus

to exist, as well as the properties of the resulting opinions.

Then in Chapter 3, we address an issue of the FJ model by introducing a nor-

malization. Motivated by an observation in the FJ model, we propose a normalized

Friedkin and Johnsen model, namely the NFJ model. For each individual, the FJ

model assumes both an immutable internal opinion and an expressed opinion that

may differ but is more in agreement with what the friends say. The FJ model in

its elementary form might not be realistic in some scenarios because it indicates

that the more friends one has, the less her internal opinion matters in her expressed

opinion. To address this issue, we propose a modification of the FJ model, namely

the NFJ model, that normalizes one’s external influence from friends and keeps the

weight on her internal opinion a constant. Then we investigate the consequences

of the normalization, both theoretically and empirically.

Risk of Conflict. Getting the real-valued opinions has long been a challenging

task, and opinions on different issues do not necessarily correspond to distinct net-

work structures (i.e., we discuss various topics with the same friends). In Chap-

ter 4, we investigate the opinion differences in social networks without knowing

the actual opinions, meaning to use only the network topology. We quantify and

optimize the risk of conflict for both the average- and the worst-case opinion vector

over all possible distributions of opinions on the social network. For some mea-

sures of conflict (i.e., the opinion divergence), the optimization problems for the

risks are non-convex, thus resulting in many local minima. We provide theoretical

and empirical analysis on the nature of some of these local minima and show how

they are related to existing organizational structures. The risk of conflict depends

purely on the links in social networks, which control how information affecting

opinion formation diffuses.

Link Prediction. The links in social networks, as well as those in other networks,

such as biological networks, are not always known but need to be predicted. In

addition to opinion dynamics, link prediction is the other important subject of this

thesis. This problem is solved increasingly often by network embedding methods

proposed recently due to their state-of-the-art performance. Focusing on this class

of link prediction approaches, we provide data-efficient and robust solutions.

In Chapter 5, we apply active learning to improve data efficiency for link pre-

diction on partially observed networks. We focus on improving the data efficiency

of the link prediction methods of our particular interest, namely those using net-

work embedding, which can solve the problem with only the observed network

information. For the unobserved part, the connectivity between two nodes can

often be queried, although at a cost, which is known as active learning. To im-

prove data efficiency, we apply active learning to develop the ALPINE (Active

Link Prediction usIng Network Embedding) framework. ALPINE identifies the
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most informative link status estimated to cause the most significant improvement

of the link prediction accuracy if queried. We also propose several query strategies

for ALPINE as the queries must be made with due consideration, owing to the

cost. Our empirical results on real-world data show that ALPINE is scalable and

boost link prediction accuracy with far fewer queries than passive learning. We

also analyze the relative merits of the strategies, providing insightful guidance for

practitioners.

Lastly, in Chapter 6, we study the adversarial robustness for link prediction to

improve the method’s reliability. Although link prediction using network embed-

ding methods achieves state-of-the-art performance, its lack of transparency causes

concern about the model robustness against adversarial attacks. One could wonder

if minor adversarial modifications of the network will significantly impact the link

predictions when using a network embedding model. This is an insufficiently ex-

plored problem on robustness concerning link prediction. Our paper contributes to

filling this gap. More specifically, given a probabilistic network embedding model

and a network, we measure the sensitivity of the model’s link predictions to small

perturbations on the network structure. Thus, our approach allows one to identify

the most vulnerable links and non-links to such perturbations. We further analyze

the characteristics of the most and least sensitive perturbations and have empiri-

cally confirmed that our approach successfully identified the most vulnerable links

and non-links in a time-efficient manner thanks to an effective approximation.

Hopefully, our contributions and corresponding results in this thesis can help

relevant research in the community, not only for computational social science but

also for machine learning and artificial intelligence. The opinion formation mod-

els of BEBA and NFJ are our attempts to seek up-to-date and reasonable modeling

of opinion dynamics in social networks. The study on the risk of conflict is an

example of how computer science can help with the real social problems of po-

larization and similar concepts like opinion diversity. We hope it could shed light

on many other possibilities contributing to a more diverse but less divided world.

Finally, the work on link prediction calls for attention to building data-efficient and

robust machine learning methods. More broadly, it would be interesting to see if,

in a few years, our work can contribute to machine opinion formation, either as a

way to help understand human opinion formation or as a further step to the current

machine learning and reasoning for more complex artificial intelligence.
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1
Introduction

“Life is opinion1.”

–Marcus Aurelius, Meditations

This first chapter briefly introduces the conducted research, including the con-

text, the motivations, the problems investigated, and the resulting findings of the

main contributions on opinion dynamics and link prediction in networks. It also

contains an overview of the thesis, followed by a publication list.

1.1 Context and Motivation

Before the world started to become digitized, social scientists had been investigat-

ing how people form their opinions for decades since the last century [1, 2]. The

digital revolution not only brought electronics to the world but also changed infor-

mation dissemination significantly. As a result, it heavily influences the opinion

formation process of people due to the information explosion and their increasing

amount of exposure to unchecked ‘facts’ online, as well as offline. Online social

networks, such as those formed on platforms like Facebook and Twitter, have fa-

cilitated the opinion exchanges in society. The topics of the opinion exchanges

are not restricted, meaning that they can be the promotion of certain products and

the propaganda for political purposes, which might be risky. To prevent poten-

tial threats of opinion manipulation, we need to study this critical topic of opinion

1A personal choice of translation.
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dynamics in our current digitized era. In particular, we want to understand, com-

pared to the old days without the internet, how those added information exposures,

namely the connections in social networks, affect the process of public opinion

formation.

While the connections in social networks are essential, they are not always

detected. This corresponds to another significant network problem of link predic-

tion that focuses on predicting links not only for social networks but also for all

networks in general, such as biological networks. In this thesis, we study the opin-

ion dynamics on social networks, together with the problem of predicting links of

networks in general. More details will follow.

1.1.1 Opinion Formation Models

The formation of opinions is studied not only in the research field of social sciences

but also in other disciplines, from psychology to economics and physics [3, 4]. In

more recent years, the models for opinion formation and dynamics have also at-

tracted the attention of computer scientists in a relatively new area termed com-

putational social science [5], which focuses on investigating social and behavioral

relations and interactions with computational tools. For example, studies have

been done to quantify and optimize concepts of polarization, controversy, and con-

flict on social networks [6, 7] by manipulating a set of individuals’ opinions or by

changing the network connections via which the opinions are influenced [8–10].

The techniques are investigated further with applications in politics and brand per-

ception due to the observation of polarized views [9,11,12]. The models for opin-

ion formation are the fundamental element for relevant research.

People form their opinions through interactions with others, and opinion for-

mation models define how these communications impact their opinions. Several

models for opinion formation have been proposed and studied [13–18], which

are characterized by their assumptions for interactions to take place, the types of

opinions considered (i.e., internal and expressed opinions), as well as the linear-

ity of the model [3, 4, 19]. One of the most well-known models is the DeGroot

model [1] that serves as the basis for many of its variants, and one popular choice

of study among all its variants is the Friedkin-Johnsen (FJ) Model [2]. Other pop-

ular models include the Bounded Confidence Models [18, 20, 21] with which a

user is only influenced by other opinions that are within ǫ distance, and the Voter

Model [14, 22] in which the individual opinions are adopted from friends. Our

main contributions on the topic of opinion dynamics in this thesis are based on

the DeGroot model and the Friedkin-Johnsen model. We will give a more detailed

introduction to both after denoting some of the notations necessary here in this

chapter.

Notation. Let G = (V,E,w) be an undirected network with V = {1, . . . , n}
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the set of nodes, E ∈ V × V the set of m = |E| edges, where (i, j) ∈ E iff

(j, i) ∈ E and w is a function that maps an edge (i, j) ∈ E onto its weight

wij = wji > 0. We use N (i) to denote the set of nodes connecting to node i:

N (i) , {j ∈ V | (i, j) ∈ E}.
In the DeGroot model, opinions are formed via iterative averaging of the in-

dividual opinion and the opinions of friends until convergence [1]. Opinions in

the model are real-valued and dynamic such that they all have time steps. Every

person i ∈ V updates his/her opinion xi(t+ 1) at time t+ 1 as the weighted sum

of their own opinion weighted wii and those of the friends j weighted wij at time

t. While wii represents the node’s belief in its own opinion, wij stands for the

strength of the relationship. Given an undirected weighted graph G = (V,E,w),

the updating rule is defined as:

xi (t+ 1) =
wiixi (t) +

∑

j∈N(i) wijxj (t)

wii +
∑

j∈N(i) wij
. (1.1)

The Friedkin-Johnsen (FJ) Model [2] proposed in 1990 is a popular extension

of the DeGroot Model [1], which has been used in many studies [9, 10, 23]. The

FJ model assumes that every individual i ∈ V in the social network has two kinds

of opinions: a private and immutable internal opinion si, and a publicly expressed

opinion zi that can be different from si and more in agreement with what the

friends express. It indicates that if an individual i is influenced by no one (i.e., has

no friends), or the friends j ∈ N(i) have their expressed opinions zj the same as

the individual’s internal opinion si, i expresses the private opinion, i.e., zi = si.

However, the expressed opinions are usually affected by friends due to a desire for

social acceptance, and they can be modeled as the weighted sum of the node’s own

internal opinion and the expressed opinions of the friends:

zi =
wiisi +

∑

j∈N(i) wijzj

wii +
∑

j∈N(i) wij
. (1.2)

Same as the DeGroot model, the FJ model forms the opinions through averaging.

However, we consider the (expressed) opinions static here because, given the static

internal opinions, the vector of all expressed opinion zi in the social network,

i.e., i ∈ V , can be solved and interpreted as the Nash Equilibrium in the opinion

formation game [24].

1.1.2 Risk of Conflict in Social Networks

One of the hot discussion topics in recent years is the controversy and polarization

on social media platforms [12,25], such as Facebook and Twitter. These platforms

offer people unprecedented access to social interactions and communications, ex-

posing them to publicly expressed opinions on controversial issues. As opposing



4 CHAPTER 1

views become more accessible than before, differences of opinions become more

evident than in the pre-digital era when the world was much less connected. Prior

work has focused on political opinions [11,12,26], for example in elections. Later,

general opinions divergence independent of any topic are also investigated [10].

The measuring of the opinion differences can help evaluate how controver-

sial specific topics are, which can be done using sentiment analysis tools [27, 28],

such as the SentiStrength [29] that can give the sentiment score from −4 to 4 for

short text, and also by measuring the differences of known opinion distributions

on a given social network [11, 12, 30]. We focus on the latter approach and use

it to measure the amount of conflict within social networks. This type of study

suggests strategic interventions that will enable us to prevent and mitigate conflict

effectively and promote viral marketing campaigns. It has received much atten-

tion recently [8, 10, 31], in which two ways to intervene are investigated. The first

strategy aims at changing the network connections to affect the opinion formation

process, while the second strategy is to influence the values of a set of opinions

directly [8–10, 32].

However, getting people’s opinions on specific topics is not always easy. For

example, it is challenging to measure the two types of opinions in the FJ model.

Even though the expressed opinions can be obtained using sentiment analysis

tools, they cannot be verified as precise values. Moreover, getting the private in-

ternal opinions is beyond reach in practice as people may not always know what

they really think of things. Meanwhile, existing attempts to reduce the conflict

in social networks usually consider only a single or a specific set of issues, while

in the real world, different topics do not necessarily correspond to different social

networks. Thus, minimizing the conflict on one issue would potentially increase

the conflict on another. That asks for attention on solving the research problem of

minimizing the conflict without knowing any set of opinions, i.e., relying purely

on the network connections.

1.1.3 Link Prediction

Obtaining all the social network connections that control how neighbors influence

individual opinions is not always easy. It is not easy for other types of networks in

general, such as neural networks, consumer-product networks, and protein-protein

interaction networks. This problem is defined as the vital network task of link

prediction. It is a problem of predicting future interactions in temporal networks

(e.g., social relations to be formed in a social network) or to infer missing links

in static networks (e.g., existing but currently undiscovered protein-protein inter-

actions) [33]. Link prediction has a wide range of applications in the real world,

including the prediction of connections on LinkedIn, the recommendation for Net-

flix, the identification of hidden interactions in a crime network, and more. There-
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fore, data-efficient and reliable link prediction approaches will benefit many as-

pects of our daily life.

Several classical methods for link prediction have been proposed since the

problem was formed [34], and they mainly consider the similarity between pairs

of nodes, i.e., the more similar the two nodes, the more likely that they are linked.

While those approaches remain competitive for now, link prediction based on the

state-of-the-art network embedding methods already matches and regularly ex-

ceeds them in performance [35]. Thus, we focus on a specific class of link pre-

diction methods using network embedding. We will give a detailed introduction to

network embedding and how it can be used for link prediction.

Network Embedding, also known as graph representation learning, learns to

embed nodes in networks as real-valued vectors in low-dimensional space, or

equivalently, it represents the relational graph data into tabular form [36]. More

specifically, given an unweighted network G = (V,E) with V being the set of

nodes and E ⊆
(

V
2

)

the set of edges, a network embedding model aims at find-

ing a mapping f : V → R
d for nodes to be transformed into d-dimensional

real vectors. The resulting vectors are denoted as the embeddings of the nodes:

X = [x1,x2, . . . ,xn]
T ∈ R

n×d. Those node embeddings can be used further for

downstream tasks, such as graph visualization, link prediction, node classification.

We mainly study the important network task of link prediction.

To do link prediction, a network embedding model needs to find a function

g : Rd × R
d → R of xi and xj such that the probability of nodes i and j being

linked is computed. With X, the function g can be found by training a classifier on

some of the linked and unlinked node pairs. It can also follow naturally from the

network embedding model. We prefer the latter type and choose a method called

Conditional Network Embedding (CNE) [37] as our base model for improving the

data efficiency and robustness of link prediction methods. CNE is a method that

preserves the first-order proximity information between nodes by maximizing the

probability of the network conditioned on the embedding. Let A ∈ {0, 1}n×n

denote the adjacency matrix of the network G = (V,E), i.e., aij = 1 if {i, j} ∈ E

and zero otherwise. CNE aims at finding an optimal embedding, denoted as X∗,

that maximizes its objective function below [37]:

P (G|X) =
∏

{i,j}∈E

P (aij = 1|X) ·
∏

{k,l}/∈E

P (akl = 0|X), (1.3)

where P (aij = 1|X) = g(xi,xj) if evaluated at the optimal embedding X =

X∗. It uses two half normal distributions (i.e., N+(dij |σ2
1) and N+(dkl|σ2

2)) for

the distances between linked and unlinked node pairs, such that the parameters

0 < σ1 < σ2 ensures that connected nodes (i, j) will be embedded closer and the

disconnected nodes (k, l) will be farther. γ = 1
σ2
1
− 1

σ2
2

is a model parameter that

will be used often for derivations.
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Although link prediction based on network embedding has quite competitive

performance and thus has been applied increasingly often, it suffers from some is-

sues. These issues not only prevent it from being applied efficiently but also affect

the method’s reliability. The link prediction problem itself indicates that networks

are usually far from being fully observed, meaning that the network connections

used for training the model can be incomplete. Model training with incomplete or

wrongly labeled data is both time-consuming and ineffective. Thus there is a need

to develop data-efficient methods that use only the verified correct link informa-

tion, i.e., the observed part of the network. Meanwhile, the network embedding

methods are not as transparent as those classical and more straightforward link

prediction approaches, so their robustness against adversarial attacks cannot be

guaranteed, which also needs investigation.

We have given brief introductions and backgrounds of the two main research

topics: opinion dynamics and link prediction. Next, we can go into the specific

research problems investigated in each of the five contributions after showing an

overview of how they are organized in this thesis.

1.2 Research Contributions

This thesis contains five main research contributions on opinion formation and dy-

namics and the vital network task of link prediction. We start from the fundamental

element for studying opinion dynamics in social networks, i.e., the opinion forma-

tion models. In Chapter 2, we extend the DeGroot model to account for newly

observed social phenomena [38]. In Chapter 3, we address an issue of the popular

FJ model by introducing a normalization [39]. Then in Chapter 4, after realizing

the challenges in getting the real-valued opinions and identifying the correlations

among the opinions on different issues, we quantify and minimize the conflict in

social networks without any opinion information [23]. Our method addresses the

two challenges by proposing a novel notion called the risk of conflict, which de-

pends purely on the network connections. Then, departing from the context of

opinion dynamics, we turn to a more general network task of link prediction, fo-

cusing on improving a specific type of link prediction methods based on network

embedding. In Chapter 5, considering an often-ignored fact that networks are usu-

ally partially observed, we apply active learning to improve the data efficiency of

the link prediction method [40]. The work allows one to train the network em-

bedding model with only the available network information and query the most

informative unobserved link status for better performance. Chapter 6 presents a

study on the adversarial robustness of probabilistic network embedding for the link

prediction task, allowing the identification of any potential adversarial attacks that

will significantly influence the link prediction performance when using a network

embedding method [41].
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Overview. An overview of the contributions included in this thesis is shown in

Figure 1.1, illustrating the connections between them. The basic idea is that we

start from the opinion formation models on social networks in Chapters 2 and 3,

turn to the problem of investigating the risk of conflict when given no opinion in

Chapter 4, and then focus purely on the links of networks in Chapters 5 and 6,

which is a more general problem for all networks and broader than the domain of

opinion dynamics. What is worth mentioning is that, chronologically, the paper in

Chapter 4 was done firstly, and the study in Chapter 3 depends largely on it. How-

ever, for the transition from opinion dynamics to link prediction, we put Chapter 4

in the middle of the five contributions. Meanwhile, there is a certain extent of rep-

etition in these two chapters. While the results of Chapter 4 are only summarized

in Chapter 3, the relevant details will be referred to for clearer presentation.

Opinion Dynamics

!: Opinions of all individuals

": Links in the social network

Link Prediction

Chapter 2 BEBA Model
Chapter 3 NFJ Model

Chapter 4 Risk of Conflict

Chapter 5 ALPINE
Chapter 6 Robustness

Figure 1.1: Overview of the research contributions in this dissertation.

Chapter 2 Opinion Dynamics with Backfire Effect and Biased Assimilation.

The updating rule of the DeGroot model [1] defined in Eq. 1.1 reveals elegantly

and intuitively the fact that people form their opinions through social interactions.

The model guarantees convergence of opinions to a consensus [3], but it also re-

jects the possibility of opinion polarization, contradicting some empirical observa-

tions [42]. The DeGroot model has a long history, yet it is not up-to-date since it

cannot capture some social phenomena, such as biased assimilation. Biased assim-

ilation is called the confirmation bias or myside bias. It refers to the phenomenon

where people prefer to be influenced more strongly by the opinions that confirm

their own beliefs than those contradicting them [43]. A line of research has tried to

incorporate biased assimilation into the opinion formation models, which turned

out to lead to polarization [6] and opinion clustering [44].

Another social phenomenon known as the backfire effect in social psychology

is an extreme case of biased assimilation [45, 46]. It states that when faced with

opinions that contradict one’s beliefs strongly, she will not only discredit it but

also become more entrenched in her own opinion, thus termed as backfire. It has
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not yet attracted much attention and remains overlooked in the study of opinion

formation models. However, we show that the backfire effect could help explain

polarization that has emerged in our society, which is impossible in the DeGroot

model. Our research result is a novel DeGroot-type opinion formation model that

simultaneously models the Backfire Effect and Biased Assimilation: the BEBA

model. The theoretical analysis of the proposed model shows the conditions we

found for opinions in a social network to reach polarization and consensus. With

extensive experiments, we further confirm the theoretical results and evaluate the

influence of different factors on the opinions dynamics of the BEBA model.

Chapter 3 The Normalized Friedkin-Johnsen Model. Observing the updat-

ing rule of the FJ model in Eq. 1.2, we see that if a node i has more friends

or the stronger these friendships are, represented by the wij when j ∈ N(i),

the less important it values its own internal opinion because the ratio of wii in

wii+
∑

j∈N(i) wij decreases. This observation could be undesirable because peo-

ple do not have to lose their convictions due to having many friends. Thus, the

FJ model in its original form is not always realistic. We propose to normalize the

influence one receives from the expressed opinions of friends such that the self-

appraisal of wii [7] remains constant and independent of the number of friends

or the strength of the friendships. The authors of the FJ model had indicated our

proposed normalization. However, it is often ignored in recent work, which turns

out to be necessary, especially for studies on editing the network connections to

achieve specific optimization goals, such as influence maximization.

In Chapter 3, we propose the normalized variant of the FJ model, namely the

NFJ model, and then investigate how it differs from the vanilla FJ model. Theoreti-

cally, we analyze the qualitative differences between the NFJ and the FJ model, fo-

cusing on a recently discovered conservation law of conflict for the FJ model [23].

It is not a surprise that the conservation law no longer holds, and we are able to

identify a term for conflict elimination. The term has an interesting interpretation

that, to reduce conflict, opinionated people should be less influential. Experimen-

tal results also show how the two models led to different opinion formation and

quantification of conflict. One thing worth mentioning is that the normalized ver-

sion of the FJ model is also used in [47], which was published after our work had

been finished.

Chapter 4 Quantifying and Minimizing Risk of Conflict in Social Networks.

One challenge for validating the existing opinion formation models has been that

the real-valued opinions are not easily accessible. While the expressed opinions

might be obtained by analyzing the sentiment, the internal opinions (i.e., in the FJ

model) can be beyond reach in practice. Additionally, the studies along the line

of research on minimizing the conflict or controversy could fail the task because

they usually focus on a single or a few given issues, ignoring the risk of triggering

more significant amounts of conflict on other issues. To overcome these two short-
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comings, we depart from considering both the individual opinions and the social

network structure to propose the notion of risk of conflict, which depends purely

on the network. It essentially means how resilient a given network is against con-

flict on all possible issues. By editing the network structure to reduce the risk of

conflict, we can obtain a more robust network topology that is resilient against

conflict on all possible topics instead of just a single one.

The risk of conflict we propose applies to two cases: the worst and the aver-

age case over all possible distributions of opinions on the network, resulting in the

worst-case conflict risk (WCR) and the average-case conflict risk (ACR). Based on

a set of conflict measures we summarized from the literature, we show how WCR

and ACR could be reduced by local edits of the network links using two types of

algorithms of coordinate descent and conditional gradient descent. The empirical

results and theoretical analysis provide insights into the network structure with the

slightest risk of conflict. For example, one interesting remark is that the common

management structures in companies, i.e., a flat organization as a clique, or a hi-

erarchical organization as a tree, turned out to contain the smallest differences of

the expressed opinions over the links in a social network. That might help explain

why we have such structures in companies nowadays. The paper might also con-

tribute to inspiring more work in opinion dynamics without knowing the explicit

opinions.

Chapter 5 Active Link Prediction usIng Network Embedding. As the problem

of link prediction itself indicates, networks are usually partially observed. That

is because obtaining the complete information of network connectivity, especially

for the large-scale networks with millions of nodes, demands a heavy workload

that can be expensive or slow. In practice, networks are almost always only par-

tially observed, so many pairs of nodes still have unknown link status [48]. It is

an often-ignored fact affecting several existing link prediction methods due to the

lack of differentiation between the known unlinked and unknown link status, sim-

ilar to using unlabeled data points as negative examples. The influence of ignoring

unknown link status is more conspicuous in a specific class of link prediction meth-

ods we are interested in than others, i.e., those using network embedding, because

the network embedding models try to embed linked nodes closer while unlinked

nodes further in the embedding space. Treating the unknown link status as known

unlinked would cause less-efficient model training and less-effective performance

due to using wrongly labeled data. Thus, we argue that active learning can be ap-

plied here, with which we could query the most informative link status that has not

yet been observed to improve the link prediction performance with a limited cost

for querying.

In Chapter 5, we propose ALPINE (Active Link Prediction usIng Network

Embedding), the first method utilizing active learning for link prediction based on

network embedding. The ALPINE framework aims to improve the link prediction
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performance by identifying and querying the most informative link status that has

not yet been observed but is estimated to benefit the embedding algorithm maxi-

mally. Then the newly acquired link status can be used as additional information

for model training. The informativeness of the candidate link statuses is calcu-

lated by the utility functions of the query strategies we develop for ALPINE. Our

empirical results show that the differentiation between the known unlinked and un-

known link status improves the data efficiency of the network embedding model.

The quantitative experiments further confirm that ALPINE boosts link prediction

accuracy with far fewer queries than the random strategy. Moreover, they also

provide insights and actionable guidance for practitioners to apply our method in

real-world scenarios.

Chapter 6 Adversarial Robustness of Probabilistic Network Embedding for

Link Prediction. Machine learning methods are not guaranteed to be robust

against adversarial attacks [49] due to the lack of transparency. Network Embed-

ding algorithms, such as Graph Neural Networks (GNNs) [50], are no exception.

Studies have shown that imperceptible perturbations on the input data (i.e., the net-

work connection or node attribute) fed to GNNs can lead to a dramatic drop in the

node classification performance [51,52]. The relevant robustness has to be investi-

gated if we want to apply network embedding models for the link prediction task in

a reliable manner. More specifically, we want to know if there exist any minor ad-

versarial modifications to the network topology that will significantly influence the

link prediction performance when using a network embedding method. Robust-

ness for link-level tasks turns out to be an insufficiently explored topic because the

research attention for the robustness of graph learning methods has been focused

mainly on the classification task at either the node or the graph level [51–56]. To

fill the gap, we investigate the adversarial robustness of a probabilistic network

embedding model, called Conditional Network Embedding (CNE) [37], for link

prediction, in Chapter 6.

Given CNE and a network, we measure how sensitive the model is when flip-

ping the link between a single node pair (i.e., existing edge to non-edge, and vice

versa). The sensitivity is measured as the change in the link predictions due to

that edge flip. An intuitive way for explaining it is we measure the impact of an

edge flip, which is considered imperceptible, as the KL-divergence between the

link probability distributions before and after flipping. It allows one to identify

the links or non-links that are vulnerable to be adversarially perturbed such that

if attacked, the link predictions will change significantly. We illustrate with case

studies how structural perturbations influence the link predictions and then analyze

the characteristics of the perturbations according to their sensitivity. Moreover, to

avoid costly re-training of the model, we develop time-efficient approximations

based on the gradient information and empirically show that they are also of sig-

nificantly good quality.
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2
Opinion Dynamics with Backfire

Effect and Biased Assimilation

Abstract The democratization of AI tools for content generation, combined with

unrestricted access to mass media for all (e.g. through microblogging and social

media), makes it increasingly hard for people to distinguish fact from fiction. This

raises the question of how individual opinions evolve in such a networked envi-

ronment without grounding in a known reality. The dominant approach to study-

ing this problem uses simple models from the social sciences on how individuals

change their opinions when exposed to their social neighborhood, and applies them

on large social networks.

We propose a novel model that incorporates two known social phenomena: (i)

Biased Assimilation: the tendency of individuals to adopt other opinions if they are

similar to their own; (ii) Backfire Effect: the fact that an opposite opinion may fur-

ther entrench people in their stances, making their opinions more extreme instead

of moderating them. To the best of our knowledge, this is the first DeGroot-type

opinion formation model that captures the Backfire Effect. A thorough theoretical

and empirical analysis of the proposed model reveals intuitive conditions for polar-

ization and consensus to exist, as well as the properties of the resulting opinions.
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2.1 Introduction

Recent years have seen an increasing amount of attention from the computational

social science in the study of opinion formation and polarization over social net-

works, with applications ranging from politics to brand perception [9, 11, 12].

Much of this research leverages pre-existing opinion formation models that have

been studied for decades [3, 4]. These models formalize the fact that people form

their opinions through interactions with others. One of the best-known models is

the DeGroot model [1], which considers an individual’s opinion as dynamic and

updates it iteratively as the weighted average of the individual’s current opinion

and those of her social neighbors. The weights represent the strength of the social

connections.

The DeGroot model is elegant and intuitive, and it guarantees that the opinions

converge towards a consensus [1,3]. However, opinions formed with it cannot po-

larize, which contradicts empirical observations [42, 58]. Variants of the DeGroot

model have been proposed to incorporate biased assimilation [6,44], which is also

known as confirmation bias or myside bias and refers to the phenomenon where

information that corroborates someone’s beliefs affects those beliefs more strongly

than information that contradicts them [43]. Incorporating biased assimilation has

been shown to potentially lead to polarization [6] or opinion clustering [44].

An extreme manifestation of confirmation bias is a behavior known in social

psychology as the Backfire Effect [45, 46]. It refers to the fact that, when an in-

dividual is faced with information that contradicts her opinion, she will not only

tend to discredit it, but will also become more entrenched and thus extreme in her

own opinion. The backfire effect may help explain the emergence of polarization.

Yet, it has so far been overlooked by existing opinion formation models.

Motivated by these observations, we propose a novel opinion formation model

that simultaneously models the Backfire Effect and Biased Assimilation - the BEBA

model. BEBA depends on a single—intuitive, node-dependent—parameter βi,

which we call the entrenchment of node i. The parameter captures both the ten-

dency of node i to become more entrenched by opposing opinions and the bias

towards assimilating opinions favorable to its own. Our main contributions are:

• We propose the BEBA model of opinion formation, which accounts for both

the Backfire Effect and Biased Assimilation. To the best of our knowledge

BEBA is the first DeGroot-type opinion formation model that incorporates

the Backfire Effect.

• We theoretically analyze the BEBA model, studying conditions for reaching

consensus or polarization.

• We empirically evaluate, on real and synthetic data, the influence of the

entrenchment parameter, the initial opinions, and the network topology, on
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the opinion dynamics of BEBA.

2.2 Related Work

Opinion formation has been studied in diverse research fields, from psychology

and social sciences to economics and physics [3, 4]. The former mostly use em-

pirical methods to understand the factors that affect opinion formation, while the

latter mostly aim to understand emergent behavior implied by these theories.

Two observations from psychology and social sciences relating to our work

are the biased assimilation and backfire effect [59,60], which state that individuals

are more inclined to accept opinions closer to their own [43], and that, when ex-

posed to the opposite opinions, individuals entrench themselves in their own opin-

ions [45,61,62], respectively. The existence of the backfire effect is controversial.

It is observed in many studies, but there are also failures to find the evidence of

it [63, 64]. For example, it is reported negligible on Reddit in a recent study [65].

However, the result may not be robust because the expressed opinions gathered

on Reddit are not necessarily consistent with people’s intrinsic opinions [2]. The

backfire effect remains to be further investigated on improved measures and ex-

perimental designs [64], and our modeling of it serves that purpose.

We study the common setting where opinions are formalized as real values,

formed through social interactions (see [3] and [4] for surveys). Existing opin-

ion formation models can be described as linear or nonlinear depending on how

the opinions are represented [19]. The most popular models include the Voter

model [14, 22], the DeGroot model [1], and the Friedkin-Johnsen model [2]. Yet,

none of these account for the biased assimilation or backfire effect.

There is work on modeling the fact that users are more influenced by opinions

closer to their own. The bounded confidence models [18, 20, 21] assume that a

user is influenced only by opinions that are within ǫ of its own. With rewiring and

the relaxation of the bound, the variations of the bounded confidence model are

used to further model confirmation bias and polarization in the formation of public

opinion [66]. The work of Kempe et al. [67] assumes that there are different types

of opinions and users are influenced by opinions of similar types. Das et al. [68]

consider a biased version of the voter model that biases individuals to adopt similar

opinions.

The work most closely related to ours is that of Dandekar et al. [6], who pro-

pose a variant of the DeGroot model to capture the biased assimilation effect. Their

model is called the Biased Opinion Formation (BOF) model, and we treat it as our

baseline because both ours and the BOF model are DeGroot-type. In the BOF

model, the importance that a node attaches to the opinion of a neighbor depends

on their agreement. However, it cannot model the backfire effect and introduces

cognitive irrationality. We will contrast and highlight the differences between the
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two models with an illustrative example after formally introducing our model. Be-

fore that, the detailed definition of the baseline BOF model, together with that of

the vanilla DeGroot model will be introduced in the following section as back-

ground of our work.

2.3 Model Definition

In this section, we first describe the notations and two existing models that are

most relevant to our work (i.e., the DeGroot and the BOF model), then we for-

mally introduce our nonlinear opinion formation model - BEBA, which general-

izes the DeGroot model and accounts for both backfire effect and biased assimila-

tion. Finally, we provide a comparison between BEBA and the BOF model on an

illustrative example, to contrast and highlight their differences.

2.3.1 Preliminaries and Background

Notation. Let G = (V,E) denote a connected undirected network, with V =

{1, ..., n} the set of nodes, and E ⊆ V × V the set of m = |E| edges, where

(i, j) ∈ E iff (j, i) ∈ E. When the network is weighted, wij = wji represents

the weight of edge (i, j). We use N(i) to denote the set of neighbors of node i:

N(i) , {j ∈ V |(i, j) ∈ E}.
All models we include in this work can be defined as dynamical systems, where

opinions are real numbers updated iteratively within a fixed interval of [0, 1] or

[−1, 1]. To discriminate between the two intervals, we use x for opinions in [0, 1]

and y for opinions in [−1, 1]. We use xi(t) (resp. yi(t)) to denote the opinion

of node i at iteration/time t = 0, 1, 2, . . .; x(t) (resp. y(t)) to denote the opinion

vector of the network at time t; xi (resp. yi) to denote the opinion of node i

after convergence for t → ∞ (if that limit exists); and x (resp. y) to denote the

corresponding vector.

The DeGroot Model. This model [1] is an averaging opinion formation model,

where the individual’s opinion is determined by the average of her own opinion

and that of her neighbors. More specifically, the updating rule is:

xi(t+ 1) =
wiixi(t) +

∑

j∈N(i) wijxj(t)

wii +
∑

j∈N(i) wij
(2.1)

where wii represents the extent to which the node values her own opinion, and wij

is the strength of the connection/friendship between node i and j. Iterative opinion

updates will converge to a stationary state, where every node has the same opinion

xi = x∗ [3]. Therefore, the model always reaches consensus, and never polarizes.

Biased Opinion Formation - BOF. The BOF model [6] generalizes the DeGroot

model to incorporate biased assimilation. Given a weighted undirected graph G =
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(V,E,w), every node i ∈ V is assigned a bias parameter bi ≥ 0. Higher values of

bi means that node i is more biased towards her own opinion. The opinion value

xi(t) ∈ [0, 1] is interpreted as the degree of support for opinion position 1 (i.e.,

the highest possible opinion value), while 1 − xi(t) is the support for 0. BOF is

defined by

xi(t+ 1) =
wiixi(t) + (xi(t))

bisi(t)

wii + (xi(t))bisi(t) + (1− xi(t))bi(di − si(t))
(2.2)

where si(t) ,
∑

j∈N(i) wijxj(t) is the weighted sum of i’s neighbouring opin-

ions, and di ,
∑

j∈N(i) wij is the weighted degree of node i. During the updating

process, node i weighs confirming and disconfirming evidence in a biased way:

weighing the neighboring support for opinion 1 by (xi(t))
bi , and that for opinion

0 by (1 − xi(t))
bi . When bi = 0, the BOF model is identical to the DeGroot

model. However, when bi 6= 0, this model introduces cognitive irrationality since

an individual’s opinion will change even when the neighboring opinion is the same

to its own. We will show that our model does not suffer from this problem.

2.3.2 The BEBA Model

We now define the BEBA model, which also generalizes the DeGroot model to

incorporate not only biased assimilation but also the backfire effect. To capture

both phenomena, we adapt the DeGroot model by dynamically setting the edge

weights. For BEBA, the opinion vector at time t is y(t), with yi(t) ∈ [−1, 1].
Rather than using fixed weights as in the DeGroot model, we propose to let the

weights be determined by the opinions. Specifically, for an edge (i, j) ∈ E we

define the edge weight wij(t) at time t as

wij(t) = βiyi(t)yj(t) + 1. (2.3)

The product yi(t)yj(t) captures the degree of (dis)agreement between the opinions

of node pair (i, j). The parameter βi > 0, which we call the entrenchment param-

eter of node i, determines the level of the influence caused by that (dis)agreement

with node j on i’s updating with wij(t): the larger, the stronger the biased assimi-

lation and backfire effect.

Given the weights wij(t), the opinions in the BEBA model are updated simi-

larly to the DeGroot model:

yi(t+ 1) =
wiiyi(t) +

∑

j∈N(i) wij(t)yj(t)

wii +
∑

j∈N(i) wij(t)
(2.4)

Note that when βi = 0, the BEBA updating rule is identical to that of the DeGroot

model (Eq. (2.1)) for unweighted networks. When βi 6= 0, we discriminate two

cases depending on wij(t):
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1. Backfire Effect is modeled when wij(t) < 0. Negative weight means

βiyi(t)yj(t) < −1. Since βi > 0, yi(t)yj(t) < 0, that is, nodes i and j hold

opposing views. Multiplying yj(t) with this negative weight wij(t) in the

summation in the numerator leads to a contribution of the same sign as yi(t),

while adding the negative weight to the denominator reduces it, inflating the

resulting quotient. The combination of these two effects models the backfire

effect.

2. Biased Assimilation is modeled when wij(t) > 0. We consider two cases:

(a) −1 < βiyi(t)yj(t) < 0: Here nodes i and j hold opposing but not too

different opinions. Node i critically evaluates the conflicting opinion

of node j, but still assimilates it to a reduced extent.

(b) 0 < βiyi(t)yj(t): Since βi > 0, node i and j have both positive or

negative opinions here, resulting in an increased weight wij(t). In this

case, node i assimilates the opinion of neighbor j more strongly if the

extent of their agreement is stronger.

Note that the denominator in Eq. (2.4) can become 0 resulting in a diverg-

ing opinion, or negative causing an unnatural opinion reversal. We consider this

situation to be beyond the model’s validity region, and thus we refine the BEBA

updating rule as follows:

yi(t+ 1) =

{

sgn(yi(t)) if wii +
∑

j∈N(i) wij(t) ≤ 0,
wiiyi(t)+

∑
j∈N(i) wij(t)yj(t)

wii+
∑

j∈N(i) wij(t)
otherwise.

(2.5)

Moreover, for a small denominator, the resulting opinions may fall outside the

range [−1, 1]. To address this, we additionally clip negative and positive values at

−1 and 1.

2.3.3 Comparison between BEBA and BOF

There is a similarity between the BOF and our BEBA model, in that both alter

the weights in the DeGroot model. Comparing to the linear DeGroot model, both

BEBA and BOF are nonlinear. Now we study how the two nonlinear models differ

with an illustrative example. Using a star graph consisting of five nodes as illus-

trated in Fig 2.1, we update the opinion of the center node (i.e., node 1) with both

models for one iteration and observe how the resulting opinions for the two models

differ.

First, we deal with the fact that BOF assumes only positive opinion values,

while our model assumes opinions being both positive and negative. Note that the

value range of opinions is important in both models, since the BOF model weights

the opinion values, while our model exploits the disagreement in the sign. To
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Figure 2.1: The star graph of five nodes.

compare the models, we assume positive opinion xi(t) ∈ [0, 1] on all nodes for

the update of BOF; and we transform them to [−1, 1] by setting yi(t) = 2xi(t)−1

for BEBA. After computing y1(t + 1) with BEBA, we rescale the opinions back

to [0, 1].

In this experiment we assume xi(t) identical for nodes i = 2, 3, 4, 5, and

xi(t) ∈ [0, 1] for all nodes. We set w11 = 1 for both models, b1 = 1 for BOF, and

consider the values of 1 and 2.5 for β1 in BEBA. The opinion value x1(t+ 1) up-

dated with both models, as a function of x2,3,4,5(t) and x1(t) is shown in Fig 2.2.

The difference between the two models becomes clearer when x1(t) takes extreme

values (i.e., 0 or 1), and we study this below.

Fig 2.3(a) shows the curves for the two models when x1(t) = 0. In BOF, the

opinion x1(t+1) remains unchanged at value 0. This is true regardless of the value

of b1. Thus, extreme nodes never change their opinions, even a little, even when

they are not biased at all. However, according to biased assimilation, unbiased

individuals are influenced by similar opinions, and even extreme nodes assimilate

opinions that are close to their own. In contrast, our model better captures the

biased assimilation in this case. In Fig 2.3(a), for β1 = 1, which corresponds to a

mildly biased node, the opinion of node 1 can be moderated by that of her neigh-

bors to different extents, while x1(t + 1) never exceeds 0.5. Therefore, extreme

nodes are not stuck in the extremes.

To further highlight the difference between the two models and better under-

stand the backfire effect, we increase β1 to 2.5, and set x1(t) = 0.25 as shown in

Fig 2.3(b). In BOF, x1(t + 1) becomes smaller than x1(t) = 0.25 even when all

neighbors are holding the same opinion x2,3,4,5(t) = 0.25, which does not make

sense according to [46]. But in BEBA, we make sure that node 1 does not react

to persuasion that coincides with its own current opinion, see point (0.25, 0.25).

Meanwhile, we observe the backfire effect with BEBA that when the disagreement

between node 1 and her neighbors becomes large (i.e., when x2,3,4,5(t) > 0.9),

x1(t+ 1) drops under 0.25, until it takes the extreme at opinion 0.
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Figure 2.2: Opinion formation on the star graph.

(b)(a)

Figure 2.3: x1(t+ 1) as a function of x2,3,4,5(t). (a) β1 = 1, b1 = 1, x1(t) = 0; (b)

β1 = 2.5, b1 = 1, x1(t) = 0.25.

From the plots in Fig 2.3 we also observe that for the different combinations

of β1 and x1(t), there exists a value of the neighboring opinions that causes the

largest change in x1(t+1). For example, when β1 = 1 and x1(t) = 0, neighboring

opinion of around 0.75 is the most influential as shown in Fig 2.3(a); for β1 =

2.5 and x1(t) = 0.25, opinion around 0.7 is the most influential according to

Fig 2.3(b). This provides insight on influence maximization and misinformation

correction that a moderate opinion could be more effective than an extreme one.
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2.4 Theoretical Analysis

This section contains theoretical analysis of the BEBA model for two settings.

First we investigate the dynamics of opinions for a single agent in a fixed envi-

ronment, and secondly we study the dynamics of polarization for all nodes in a

connected social network.

2.4.1 A Single Agent in a Fixed Environment

Here we theoretically analyze the limit behavior of a single agent’s opinion in

an environment with a fixed opinion. An analysis of this type has been done for

the BOF model. The setup is admittedly somewhat artificial but helps to gain a

better understanding of BEBA. It has been deemed realistic in cases where the

fixed environment consists of the news media, billboards, etc [6]. It also models

the situation where the single agent is connected to a network that is large enough

such that adding that agent will not meaningfully affect the network.

For the agent i, we denote y(t) ∈ [−1, 1] its opinion at time t, β > 0 its

entrenchment parameter, and y its converged opinion - limt→∞ y(t). We assume

the agent weighs its own opinion with wii = w. For simplicity, we only consider

the situation where the environment contains one node, but it should be noted that

the analysis below can be easily generalized to several nodes (see Appendix 2.A).

Let p ∈ [−1, 1] be the fixed environmental opinion. Then, according to BEBA, the

agent updates its opinion as:

y(t+ 1) =

{

sgn(y(t)) if w + βpy(t) + 1 ≤ 0,
wy(t)+βp2y(t)+p

w+βpy(t)+1 otherwise.
(2.6)

Before stating a theorem that quantitatively characterizes the limit y, we con-

sider the behavior in two cases. The first case is for a sufficiently small β (i.e., not

biased), while the second is for a sufficiently large β (i.e., biased). In the first case,

the fixed environment’s opinion p will be sufficiently attracting such that y = p

regardless of y(t). The same is true when p = 0: the neutral opinion is never polar-

izing and thus always attracting. The second case can further be divided into three

sub-cases as the limit y will depend on the similarity between y(t) and the envi-

ronment’s opinion p: (a) if y(t) is similar to p, p should have an attracting effect

on y(t) such that y = p; (b) if y(t) is very different from p, however, the backfire

effect will cause the agent’s opinion to diverge from p, such that y = sgn(y(t));

(c) between the former two sub-cases there will be a ‘sweet spot’ where y(t) is

neither sufficiently similar to p for y(t) to converge to p, nor sufficiently different

for it to diverge to sgn(y(t)) - this is an unstable equilibrium where y(t) remains

constant through time, i.e., y = y(t).

This intuition is formalized in the following theorem (proofs in Appendix 2.A).
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For conciseness and transparency, we state it for the situation where p ≤ 0 as it is

trivial to adapt the theorem for p ≥ 0.

Theorem 1. For a single agent with opinion y(t) and entrenchment parameter

β in a fixed environment represented by opinion p, depending on the value of β

relative to p:

Case 1: When p = 0 or β < −1/p, the agent’s opinion always converges to p:

y = p.

Case 2: When p < 0 and β ≥ −1/p, there are three possibilities depending on

how similar y(t) is to p, as illustrated in Fig 2.4.

a: If y(t) < − 1
βp , y(t) will be sufficiently attracted to p such that y = p.

b: If y(t) > − 1
βp , y(t) will diverge away from p such that y = sgn(y(t)) =

1.

c: If y(t) = − 1
βp , y(t) will remain constant through time such that y =

− 1
βp .

Figure 2.4: Graphical illustration of Case 2 from Theorem 1 (i.e. p < 0 and

β ≥ −1/p). (a) For values of y(t) in the green range, y(t) will converge to y = p. (b) For

values of y(t) in the red range, y(t) will diverge to y = 1. (c) For y(t) = − 1

βp
, y(t) will

not change such that y = − 1

βp
.

Theorem 1 already suggests that opinions under the BEBA model evolve to

one of three possible states: consensus as in Case 1 and Case 2(a), polarization as

in Case 2(b), and an unstable state of persistent disagreement as in Case 2(c).

2.4.2 Polarization and Consensus for All Nodes in a Network

We now extend our analysis from the single agent to a group of individuals that can

update their opinions at any time step t. The dynamics of polarization are investi-

gated theoretically with respect to different values of the entrenchment parameter

β. It was argued by the authors of the BOF model that homophily alone, without

biased assimilation was not sufficient for polarization in the DeGroot model [6].
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As for BEBA, the backfire effect and biased assimilation are sufficient to lead to

polarization or consensus, depending on the parameters and the initial opinions,

even when there is no homophily. The theorem below (proofs in Appendix 2.B)

makes this clear, by providing easy-to-realize sufficient conditions for polarization

or consensus to occur.

Theorem 2. Let G = (V,E) be a connected unweighted undirected network. For

all i ∈ V , let yi(t) ∈ [−1, 0) ∪ (0, 1] be the opinion of node i at time t, wii = 1

and βi = β > 0 for all i ∈ V . Denote y(t) the opinion vector of G at time t,

|y(t)| the vector with the absolute values of all opinions. Then at convergence the

BEBA model can lead to the following states:

1. Polarization: When β > 1
[min|y(0)|]2 , ∀i ∈ V , |yi| = 1 and there exist both

opinion −1 and 1.

2. Consensus: When β < 1
[max|y(0)|]2 , there exists a unique y∗ ∈

[−max |y(0)| ,max |y(0)|] such that ∀i ∈ V , yi = y∗.

A special case of particular theoretical interest is when min |y(0)| = max |y(0)|.
Then there are only two different opinions in the network, with the same absolute

value but opposite signs (i.e. they could represent ‘for’ and ‘against’ an issue of

interest). In this case, a borderline situation emerges to which we refer as persis-

tent disagreement. It can be proved concisely by relying on Theorem 2, and thus

we state it as a Corollary:

Corollary 1. Let G = (V,E) be a connected unweighted undirected network

where V = V1 ∪ V2, V1 ∩ V2 = ∅. For all i ∈ V , let wii = 1 and βi = β > 0.

Assume for all i ∈ V1, yi(0) = y0 and for all i ∈ V2, yi(0) = −y0 for some

0 < y0 < 1. Then the BEBA model can result in the following states:

1. Polarization: When β > 1
y2
0

, ∀i ∈ V , |yi| = 1 and there exist both opinion

−1 and 1.

2. Persistent disagreement: When β = 1
y2
0

, ∀i ∈ V1, yi(t
′) = y0 and ∀i ∈ V2,

yi(t
′) = −y0, for all t′ ≥ 0.

3. Consensus: When β < 1
y2
0

, there exists a unique y∗ ∈ (−y0, y0) such that

∀i ∈ V , yi = y∗.

Intriguingly, these conditions in Theorem 2 and Corollary 1 are independent of

the network structure and depend only on the entrenchment parameter β and the

opinion vector at time 0. Yet, it should be noted that the value of the consensus

and the eventual polarized state do depend on the network structure. Moreover,

the network structure, and the distribution of the opinions over it, do determine

whether polarization or consensus will arise when neither of the sufficient condi-

tions of Theorem 2 are satisfied. These claims are confirmed in experiments in the

next section.
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2.5 Experimental Analysis

In the previous section, we provided sufficient conditions for our model to reach

consensus or polarization. We now perform an experimental analysis of how these

two phenomena manifest themselves on real and synthetic data. Our goal is to

answer the following questions:

• In the case when consensus is reached, what is the value of the consensus

opinion, and how does the entrenchment parameter β, the initial opinions

y(0), and the network structure affect this value?

• In the case when the opinions polarize, what is the state of the polarization,

and how is it affected by the entrenchment parameter β, the initial opinions

y(0), and the network structure?

We use both real-world and synthetic data in our experiments. The real datasets

include Zachary’s Karate Club network [69] where we use synthetic opinion vec-

tors, and six Twitter networks gathered with real opinions (computed using senti-

ment analysis) for different events ranging from political elections to sports [70,

71]. To fit our setting, we process the Twitter networks to make sure that their

adjacency matrices are symmetric. See Table 2.1 for network statistics. Mean-

while, following the way Abebe et al. used for processing the real opinions [47],

we normalize the first set of opinions for each event into range [0, 1]. After that,

we transform the opinions to [−1, 1] for BEBA.

Table 2.1: Real-world Network Summary

Network |V | |E| Event

Karate 34 78 Friendship among members of a university karate club.

Tw:Club 703 3322 Barcelona getting the 1st place in La-liga 2016.

Tw:Sport 703 3322 Champions League final 2015, Juventus vs Real Madrid.

Tw:US 533 13564 US Presidential Election 2016.

Tw:UK 231 905 British Election 2015.

Tw:Delhi 548 3638 Delhi Assembly Election 2013.

Tw:GoT 947 7922 The promotion on “Games of Thrones” 2015.

The synthetic networks, with which we use randomly generated opinions, are:

• Erdős-Rényi (ER) networks G(n, ρ) with binomial degree distributions, where

ρ is the edge probability [72];

• Watts-Strogatz (WS) networks G(n,K, σ) that have the small world prop-

erty [73] - with K being the average degree and σ the rewiring probability;

• Barabási-Albert (BA) networks G(n,M0,M) that are scale-free, where M0

is the number of initial nodes and M the number of nodes a new node is

connected to [74].
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2.5.1 The Influence of the Entrenchment Parameter β

From Theorem 2, we know the stationary opinion vector y of our model po-

larizes when β > 1
[min|y(0)|]2 , and reaches consensus when β < 1

[max|y(0)|]2 .

These thresholds are far away apart. In practice, the transition between consensus

and polarization occurs at a value much lower than 1
[min|y(0)|]2 and higher than

1
[max|y(0)|]2 . We now take the Karate network as an example and examine the

relation between β and polarization experimentally using random initial opinion

vectors.

Let βP denote the threshold between consensus and polarization for an opinion

vector - the smallest β that results in polarization. More specifically, what we

observe is that consensus is reached when β < βP and the stationary opinions

polarize when β ≥ βP . Since we do not restrict opinions to be only −y0 and y0
as in Corollary 1, there is no persistent disagreement observed in our experiments.

Also, note that even though we assume the identical entrenchment parameter for all

nodes in a network both in the theoretical and experimental analysis, the chances

are people will have different levels of entrenchment in the real world. Fig 2.5(a)

shows the distribution of the empirical βP values for 10,000 different random

opinion vectors, where each opinion is uniformly sampled between [−1, 1]. The

value of βP for each random opinion vector is found by grid search from 0 to 10

at a step size of 0.1. We observe that the threshold for polarization - βP is much

smaller than the theoretical value, which should be around 104 according to the

sampled opinions having the minimum value around 1e − 4. However, on the

Karate network, the empirical value of βP is below 5 for most of the random y(0),

and never exceeds 7.

We further study the opinion dynamics for one individual opinion vector from

the 10,000 samples. Fig 2.5(b) shows the variance of its stationary opinions as a

function of β. We observe that as β increases, the opinion vector converges from

consensus to polarized states. The variance stays zero if there is consensus, while

when the variance is greater than zero, polarization is obtained (i.e., different vari-

ances correspond to different polarized states). For this y(0), the transition from

consensus to polarization happens at βP = 2.2 and no persistent disagreement

was observed.

When consensus is reached, Fig 2.5(c) shows that the consensus value becomes

less neutral as β increases. This is true for 78.74% of the 10,000 random opinion

vectors on the Karate network. Meanwhile, different values of β do not necessarily

result in the same polarized state. The heatmap Fig 2.5(d) shows different polar-

ized states with different values of β for this y(0), where each column corresponds

to a specific value of β and each row to a specific node. The color indicates the

node opinions with the dark blue being −1 and yellow being 1.
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(b)

(d)(c)

𝒚(0)(a)

Figure 2.5: For the Karate network. (a) the distribution of βP for 10, 000 random

opinion vectors (uniform on [−1, 1]); For one of the opinion vectors, (b) the variance of all

converged y as β increases from 0 to 10; (c) consensus opinion values for β ∈ [0, 2.1]; (d)

final converged opinions for each of the nodes.

2.5.2 The Influence of the Initial Opinions y(0)

In this experiment, we investigate the influence of y(0) on the consensus opinion

value and the mean polarized opinion. We observed that the consensus value as

well as the mean polarized opinion are strongly correlated with the mean of y(0),

as shown in Fig 2.6. Meanwhile, in the case of polarization (Fig 2.6(b)), opinion

vectors with similar initial means may result in quite different polarized states

because the placement of the opinions on the graph nodes differs. Also, y(0)

with different means could result in similar polarized states with the same mean

polarized opinion.

We also investigate the influence of the initial opinions on real-world dataset.

Tw:Club with real opinions on whether Barcelona was getting the first place in

La-liga 2016, and Tw: Sport with opinions on whether Juventus or Real Madrid is

winning the Champions League final in 2015, have the same network but different

opinion vectors [70], thus suitable for this evaluation. We found that the βP is 11.7

for Tw:Club and 3.3 for Tw:Sport. The results indicate that the support behavior
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(a) (b)

Figure 2.6: For 1, 000 random y(0) on Karate network. (a) consensus opinion when

β = 1; (b) mean polarized opinion when β = 10.

for different football clubs in Tw: Sport gets polarized more easily than a single

YES/No question of Tw:Club. With BEBA, we are able to quantify how easily

people’s opinions on an event may get polarized.

2.5.3 The Influence of the Network G

In this experiment, we study how the network topology affects the βP value and

the stationary opinions of our model. To this end, we generate random networks

of the three models with the same number of nodes and similar number of edges,

and intialize the same (set of) opinion vectors y(0) for them.

We observe that different network properties result in different dynamics of

polarization. Shown in Fig 2.7(a) are the distributions of the βP values on the

three models for the same set of y(0). The BA model has a larger standard de-

viation of the βP values, which appears to be due to ‘hub’ nodes whose opinions

strongly affect the value of βP . The ER model has similar mean of βP to the BA

model, which is larger than that of the WS model. As the WS model with the

rewiring probability 1 essentially approaches the ER model, our WS network with

less randomness (i.e., a rewiring probability of 0.2) in Fig 2.7(a) shows a tendency

to get polarized more easily than the ER model. It indicates that, for the same

set of opinion vectors on different issues, the more randomness the network has,

the more robust the network is against polarization. To further verify this, we do

similar experiments with the same set of opinion vectors on the WS models with

more rewiring probabilities of 0.1, 0.3, and 0.8, see Fig 2.8(a). It shows that as the

rewiring probability of the WS model increases, the mean of βP becomes larger,

which confirms our observation that the randomness in networks correlates with

the networks’ resilience against polarization.
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Figure 2.7: Based on one ER model (n = 100, ρ = 0.0606), one WS model

(n = 100,K = 6, σ = 0.2), and one BA model (n = 100,M0 = 4,M = 3). (a)

distribution of βP for 1, 000 random opinion vectors; (b) for 1, 000 opinion vectors, the

relation between the consensus value and the mean y(0) when β = 1.

(a) (b)

Figure 2.8: Based on three WS models with different rewiring probabilities

(n = 100,K = 6, σ = 0.1, 0.3, 0.8). (a) distribution of βP for 1, 000 random opinion

vectors; (b) for 1, 000 opinion vectors, the relation between the consensus value and the

mean y(0) when β = 1.

The consensus values reached by the same set of opinion vectors on the three

types of networks are plotted in Fig 2.7(b). The shapes of scatter plots become

increasingly compact from the BA model, to the ER model, and then to the WS

model, indicating the largest and the smallest variance on the consensus opinions

for the BA and the WS network, respectively. The large variance for the BA mode

is caused by the ‘hub’ nodes. Comparing to the ER mode, the WS mode here does

not have much randomness, thus its consensus opinion varies the least. Fig 2.8(b)

also confirms that the WS model with a smaller rewiring probability (i.e., less

randomness) has a more compact shape. Similar to the results shown in Fig 2.6,
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we also compare the influence of y(0) on three different types of random networks.

The finding is consistent with that of Fig 2.7(b), see Fig 2.14 in Appendix 2.C.

The placement of the edges and the parameters in each model also affect the

opinion dynamics. We take the ER model as the example and investigate the in-

fluence of G with a fixed and a changing ρ for one random opinion vector. On

1, 000 ER networks with ρ = 0.4, the βP as well as the consensus opinion for

that opinion vector vary, see Fig 2.9. If we increase ρ from a small value, which

still guarantees a connected network, to 1, we observe quite different βP for that

opinion vector even with similar values of ρ. When ρ gets closer to 1, meaning

that the network gets more connected, βP becomes more stable, see Fig 2.10. The

results are similar for the consensus value, and the polarized opinion.

(b)(a)

Figure 2.9: For a random opinion vector y(0) with mean −0.0395, on 1, 000 ER

models with n = 100 and ρ = 0.4. (a) the value of βP for that y(0); (b) the consensus

opinion reach by y(0) when β = 1.

(b)(a)

Figure 2.10: For a random opinion vector y(0), on ER models with n = 100 and

ρ ∈ (0, 1]. (a) the value of βP for that y(0); (b) the consensus opinion reach by y(0)
when β = 1.
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2.5.4 Real-world Dataset Analysis

Using the six real-world twitter datasets [70, 71], we investigate how easily each

event gets polarized opinions, namely the value of βP . It is shown in Table 2.2

that political events concerning elections in the first row (Tw:UK for the British

election 2015, Tw:Delhi for the Delhi Assembly election 2013, and Tw:US for

the US Presidential election 2016) are less likely to polarize since they require a

relatively high βP . However, the 2016 US presidential election shows a tendency

to get polarized more easily than the other two elections with a lower βP . On

the other hand, the TV (Tw:GoT for the promotion of the TV show ‘Games of

Thrones’ in 2015) and sport (Tw:Sport) events are more likely to get polarized,

except when people have to bet on a result (Tw:Club) instead of supporting.

Table 2.2: βP for real-world twitter datasets.

Network βP Network βP Network βP

Tw:UK 7.5 Tw:Delhi 7.7 Tw:US 4.9

Tw:GoT 2.9 Tw:Sport 3.3 Tw:Club 11.7

2.5.5 Opinion Manipulation under BEBA.

We also investigate the following question as a potential application of BEBA on

opinion manipulation: how will the opinion dynamics be influenced by edge addi-

tion or deletion in networks? We use the Karate network to study it experimentally.

We observe that in order to maximally decrease the consensus opinion by edit-

ing one edge, adding the edge between the most opinionated disconnected negative

nodes is the best choice if allowed a single edge addition; while deleting the edge

between the most opinionated connected positive nodes is the best choice if al-

lowed a single edge deletion. Similarly, the maximal decrease of the consensus

value can be achieved by adding the edge between the most positively opinionated

nodes or deleting the edge between the most negatively opinionated nodes. See

Figs 2.11 and 2.12.

Another interesting finding is that the connections between nodes with oppos-

ing equivalent opinions (i.e., in terms of absolute value) have almost no influence

on the consensus value, see Fig 2.13. In contrast, when the network gets polarized,

the neighbors of the neutral nodes have more significant influence on the mean

polarized opinions.

2.6 Conclusion and Future work

Modeling how opinions evolve when individuals interact in social networks is an

important computational social science challenge that has received renewed atten-
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(a) (b)

Figure 2.11: Add one edge on Karate network to change the consensus opinion -

β = 1. Top 10 best choices are highlighted: green for increase and red for decrease.

(a) (b)

Figure 2.12: Delete one edge on Karate network to change the consensus opinion -

β = 1. Top 5 best choices are highlighted: green for increase and red for decrease.

tion recently. The availability of realistic models of this type may have substantial

real-life impact on a variety of applications, from political campaign design, to

conflict prevention and mitigation. A large number of models have been proposed

in the literature towards this end. To the best of our knowledge, however, none

of them model the so-called Backfire Effect: the fact that individuals, when ex-

posed to a strongly opposing view, will not be moderated, but rather become more

entrenched in their opinion.

Here we proposed the BEBA model, which models both Biased Assimilation

and Backfire Effect. It is governed by one parameter (which can vary over the

individuals), called the entrenchment parameter, determining the strength of both.

The BEBA model naturally generates different behaviors: from convergence to a

consensus, to polarization. Theoretical and empirical analyses demonstrate that

the resulting model is not only practical, its behavior also provides an interesting

view on the interplay between network structure, the entrenchment parameter, and

the opinions.

These properties make BEBA a useful tool for simulating the effect of inter-
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(a) (b)

Figure 2.13: Influence of edge edition on consensus. (a) Additions and (b) Deletions that

cause minor change (i.e., < 10−3) in consensus values on Karate network.

ventions, such as editing the network (e.g. by facilitating communication between

particular pairs of individuals), altering the initial opinions (e.g. through targeted

information campaigns), or affecting the entrenchment of particular individuals

(e.g. through education). It has the potential to help with correcting the misinfor-

mation in the real world.

However, BEBA has its limitations. For example, it would be interesting to

investigate a variant of the model where the updated opinions naturally fall into

the range [−1, 1] without the clipping we applied in Eq (2.5). Also, it would be

interesting to explore the different parameters for the Backfire Effect and Biased

Assimilation. We plan to explore these directions in the future.
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Appendices

2.A Proof of Theorem 1

Only one node in the environment

Recall that there is one node with a fixed opinion p ∈ [−1, 1] in the environment.

The opinion of the agent is updated as mentioned in Eq. (2.6),

Lemma 3. If w + βpy(t) + 1 ≤ 0, the opinion of the agent stays at sgn(y(t)) for

all t′ > t.

Proof. As shown in the updating rule that when w + βpy(t) + 1 ≤ 0, y(t+ 1) =

sgn(y(t)). w + βpy(t) + 1 ≤ 0 is equivalent to βpy(t) ≤ −w − 1 < 0. Knowing
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that |y(t+ 1)| = 1 ≥ |y(t)|,

βpy(t+ 1) ≤ −w − 1.

Therefore, y(t′) = sgn(y(t+ 1)) = sgn(y(t)) for all t′ > t.

Lemma 4. If w+βpy(t)+1 > 0, there exist two fixed points where y(t+1) = y(t):

p and − 1
βp . p is attracting while − 1

βp is repelling.

Proof. The converged opinion y of the agent should satisfy

f(y) =
wy + βp2y + p

w + βpy + 1
,

f(y)− y =
−βpy2 + (βp2 − 1)y + p

w + βpy + 1
=

u(y)

v(y)
= 0, (2.7)

where

u(y) = −βpy2 + (βp2 − 1)y + p,

v(y) = βpy + w + 1.

By solving u(y) = 0, which is equivalent to f(y)− y = 0 since u(y) > 0, the two

fixed points of f(y) are: p and − 1
βp .

Next, we prove that p is attracting and − 1
βp is repelling.

f ′(y) =
w(w + βp2 + 1)

(w + βpy + 1)2
≥ 0,

|f ′(y)| = f ′(y), then f ′(p) = w
w+βp2+1 < 1, thus attracting; while f ′(− 1

βp ) =
w+βp2+1

w > 1, thus repelling.

Lemma 5. If w + βpy(t) + 1 > 0 and py(t) ≥ 0, y = p.

Proof. If p = 0, y(t+ 1) = w
w+1y(t), as the iteration goes, limt→∞ y(t) = 0;

If py(t) > 0, e.g., they are both positive

• when 0 < y(t) < p, y(t + 1) − y(t) = u(y(t))
v(y(t)) > 0, thus y(t + 1) > y(t),

the agent’s opinion increases until it reaches p;

• when p < y(t) < 1, y(t+1)− y(t) < 0, the agent’s opinion decreases to p.

Lemma 6. If w + βpy(t) + 1 > 0 and py(t) < 0,
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1. If

∣

∣

∣

1
βp

∣

∣

∣
> 1, limt→∞ y(t) = p.

2. If

∣

∣

∣

1
βp

∣

∣

∣
≤ 1,

(a) If |y(t)| <
∣

∣

∣

1
βp

∣

∣

∣
, y = p;

(b) If y(t) = − 1
βp , y(t′) = − 1

βp for all t′ ≥ t;

(c) If

∣

∣

∣

1
βp

∣

∣

∣
< |y(t)| ≤ 1, y = sgn(y(t)).

Proof. Assume y(t) ∈ (0, 1] and p ∈ (−1, 0),

• if

∣

∣

∣

1
βp

∣

∣

∣
> 1, all y(t) ∈ (0, 1] < − 1

βp , y(t) is attracted to p as the updating

goes;

• if

∣

∣

∣

1
βp

∣

∣

∣
= 1, y(t) is repelled by the extreme point and goes to the attracting

one unless it starts with − 1
βp at time t;

• if

∣

∣

∣

1
βp

∣

∣

∣
< 1, when 0 < y(t) < − 1

βp , y(t + 1) − y(t) = u(y(t))
v(y(t)) < 0,

y(t + 1) < y(t), the agent’s opinion decreases to p; when y(t) = − 1
βp ,

y(t) stays there; when y(t) > − 1
βp , y(t + 1) > y(t), the agent’s opinion

increases to the extreme value on its side.

A group of nodes in the environment

Assume there is a set of m neighbour with different fixed opinions, p =

(p1, p2, ..., pm), m > 1. We denote

• q =
∑

j p
2
j the sum of the squares of the fixed opinions.

• s =
∑

j pj the sum of the fixed opinions.

• m =
∑

j 1 the number of nodes in the environment.

Lemma 7. mq − s2 ≥ 0, which is m
∑

j p
2
j ≥ (

∑

j pj)
2.

Proof.

m
∑

j

p2j − (
∑

j

pj)
2 =

1

2

∑

i

∑

j

(pi − pj)
2 ≥ 0.

The agent’s opinion is updated by

y(t+ 1) =

{

sgn(y(t)) if w + βsy(t) +m ≤ 0,
wy(t)+βqy(t)+s
w+βsy(t)+m otherwise.

(2.8)
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Lemma 8. If w + βsy(t) +m > 0, there exist two fixed points where y(t+ 1) =

y(t):

ya =
βq −m+

√
∆

2βs
, yr =

βq −m−
√
∆

2βs
,

where ∆ = (βq −m)2 + 4βs2. ya is attracting while yr is repelling.

Proof. The function is f(y) = wy+βqy+s
w+βsy+m . The two fixed points satisfy f(y) = y.

|f ′(y)| = f ′(y) since

f ′(y) =
(w + βq)(w +m)− βs2

(βsy + w +m)2

=
w(w +m) + βqw + β(qm− s2)

(βsy + w +m)2
> 0.

For ya = βq−m+
√
∆

2βs , f ′(ya) < 1 because

f ′(ya)− 1 =− 1

2

(m− βq)2 + 4βs2 + (2w +m+ βq)
√
∆

(βsya + w +m)2

<0.

For yr = βq−m−
√
∆

2βs , f ′(yr) > 1 because

f ′(yr)− 1 =− 1

2

(m− βq)2 + 4βs2 − (2w +m+ βq)
√
∆

(βsyr + w +m)2

=− 1

2

A

B
.

A
B < 0 since B > 0 and it can be proved as below that A < 0.

[

(m− βq)2 + 4βs2
]2 −

[

(2w +m+ βq)
√
∆
]2

=4
[

(m− βq)2 + 4βs2
] [

β(s2 − qm)− w(m+ w + βq)
]

<0.

Therefore, ya is attracting and yr is repelling.

2.B Proof of Theorem 2

Recall that yi(t) ∈ (−1, 0) ∪ (0, 1). Given any opinion vector y(0) of a given

connected network G = (V,E), the opinions can be divided into two groups V1

and V2 at any time t: a) ∀i ∈ V1, yi(t) > 0; b)∀i ∈ V2, yi(t) < 0, and V =
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V1 ∪ V2. Denote ns
i (t) the number of node i’s neighbors node that are in the same

group with i at time t, and nd
i (t) the number of neighbors in the different group.

Specifically, they are denoted as

ns
i (t) =|N(i)s|, N(i)s = {j|j ∈ N(i), and yi(t)yj(t) > 0} ,

nd
i (t) =|N(i)d|, N(i)d = {k|k ∈ N(i), and yi(t)yk(t) < 0} .

Lemma 9. For node i ∈ V fix βi = β > 0, if β > 1
[min(|y(0)|)]2 , limt→∞ |yi(t)| =

1.

Proof. For node i ∈ V , the opinion is updated with BEBA. If γ = 1 +
∑

j∈N(i) wij ≤ 0, yi(t + 1) reaches the extreme value in one iteration due to

strong backfire effect.

While when γ > 0, for any t > 0, yi(t+ 1) is updated as

yi(t)
1 +

∑

j∈N(i)s wij
yj(t)
yi(t)

+
∑

k∈N(i)d wik
yk(t)
yi(t)

1 +
∑

j∈N(i)s wij +
∑

k∈N(i)d wik
= yi(t)

C

D
. (2.9)

When β > 1
[min(|y(t)|)]2 , for all k ∈ N(i)d, wik = βyi(t)yk(t)+1 < 0. The sums

in Eq. (2.9) satisfy:
∑

j∈N(i)s wij
yj(t)
yi(t)

,
∑

j∈N(i)s wij ,
∑

k∈N(i)d wik
yk(t)
yi(t)

> 0,

and
∑

k∈N(i)d wik < 0.

Now we focus on the node that has the most moderate opinion, namely the

node with absolute value of opinion min |y(t)| at each time step, starting from

time 0. Knowing C,D > 0,

C −D =
∑

j∈N(i)s

wij(
yj(t)

yi(t)
− 1) +

∑

k∈N(i)d

wik(
yk(t)

yi(t)
− 1). (2.10)

Since yi(t) has the smallest absolute opinion value, for any j ∈ N(i)s,
yj(t)
yi(t)

≥ 1,

thus C > D, C
D > 1, and |yi(t+ 1)| > |yi(t)|.

After every iteration from time t to t + 1, the opinion of the most moderate

node becomes more extreme, until it reaches the absolute value of 1, thus for any

i ∈ V , limt→∞ |yi(t)| = 1.

Lemma 10. For node i ∈ V , if β < 1
[max(|y(0)|)]2 , there exists a unique y∗ ∈

[−max (|y(0)|) ,max (|y(0)|)] such that limt→∞ yi(t) = y∗ for all i ∈ V .

Proof. When β < 1
[max(|y(0)|)]2 , γ = 1 +

∑

j∈N(i) wij > 0 because for any

j ∈ N(i), wij = βyi(t)yj(t) + 1 > 0.

For any t > 1, yi(t + 1) is updated as in Eq. (2.9), however, the sums

have different values:
∑

j∈N(i)s wij
yj(t)
yi(t)

,
∑

j∈N(i)s wij ,
∑

k∈N(i)d wik > 0, and
∑

k∈N(i)d wik
yk(t)
yi(t)

< 0.
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Then we focus on the most opinionated node, which means the node has the

largest absolution value of its opinion max |y(t)|, starting from time 0. Knowing

D > 0,

• when C > 0, C − D is shown in Eq. (2.10). With i being the most opin-

ionated node,
yj(t)
yi(t)

≤ 1 for all j ∈ N(i)s;
yk(t)
yi(t)

< 0 for all k ∈ N(i)d.

Therefore, C < D, 0 < C
D < 1 and |yi(t+ 1)| < |yi(t)|.

• when C = 0, yi(t+ 1) = 0.

• when C < 0, −C − D is shown in Eq. (2.11). As −1 ≤ yk(t)
yi(t)

≤ 0 for

k ∈ N(i)d, −C −D < 0, 0 <
∣

∣

C
D

∣

∣ < 1, thus |yi(t+ 1)| < |yi(t)|.

−2−
∑

j∈N(i)s

wij(
yj(t)

yi(t)
+ 1)−

∑

k∈N(i)d

wik(
yk(t)

yi(t)
+ 1). (2.11)

At every time step, the most opinionated node get moderated until they reach

consensus - there is no such node and the updating process stops because consen-

sus is reached.

Lemma 11. For node i ∈ V1, yi(0) = y0, where 0 < y0 < 1; ∀i ∈ V2, yi(0) =

−y0. If β = 1
y2
0

, yi(t) = yi(0) for all t ≥ 0.

Proof. When β = 1
y2
0

, wij =
1
y2
0
yi(t)yj(t). At time 1,

yi(1) =
yi(0) + 2ns

i (0)yi(0)

1 + 2ns
i (0)

= yi(0).

For any t ≥ 1,

yi(t+ 1) =
yi(t) + 2ns

i (t)yi(t)

1 + 2ns
i (t)

= yi(t) = yi(0).
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Figure 2.14: For 1, 000 random y(0). (a) and (b) on a BA model

(n = 34,M0 = 3,M = 2); (c) and (d) on an ER model (n = 34, ρ = 0.139); (e) and (f)

on a WS model (n = 34,K = 4, σ = 0.2). The left column of (a), (c), (e) - the relation

between the consensus opinion and the mean y(0) when β = 1; the right column of (b),

(d), (f) - the relation between the mean polarized opinion and the mean y(0) when β = 10.



3
The Normalized Friedkin-Johnsen

Model

Abstract The formation of opinions in a social context has long been studied by

sociologists. A well-known model is due to Friedkin and Johnsen (further refer-

enced as the FJ model), which assumes that individuals hold an immutable internal

opinion while they express an opinion that may differ from it but is more in agree-

ment with the expressed opinions of their friends. Formally, the expressed opinion

is modeled as the weighted average of the individual’s internal opinion and the ex-

pressed opinions of their neighbors. This model has been used in recent research

originating from the computer science community, studying the origination and re-

duction of conflict on social networks, how echo chambers arise and can be burst,

and more.

Yet, we argue that the FJ model in its elementary form is not suitable for some

of these purposes. Indeed, the FJ model entails that the more friends one has, the

less one’s internal opinion matters in the formation of one’s expressed opinion.

Arguing that this may not be realistic, we propose a modification of the FJ model

that normalizes the influence of one’s friends and keeps the influence of one’s in-

ternal opinion constant. This normalization was in fact suggested by Friedkin and

Johnsen, but it has been ignored in much of the recent computer science literature.

In this chapter, we present the details of the normalized model, and investigate

the consequences of this normalization, both theoretically and empirically.
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3.1 Introduction and Motivation

How people form their opinions has long been the subject of research in the field

of social sciences [1, 2]. More recently, such models for opinion formation and

dynamics (e.g., [24]) have been used by computer scientists and computational

social scientists to study how to quantify and control notions of controversy, dis-

agreement, polarization and conflict on social networks [6,7], e.g. by manipulating

the opinions of a small set of particular individuals, or by locally changing the net-

work structure [8–10]. Opinion formation models serve as the fundamental part of

these studies.

Background. Many opinion formation models have been proposed and studied

based on the influence through social interactions [13–18]. The Friedkin-Johnsen

(FJ) Model [2] is a very popular extension of the DeGroot Model [1] that is used

often [9, 10, 23]. In the model, individuals are assumed to have two types of opin-

ions: the internal opinion and the expressed opinion. The internal opinions are

assumed to be immutable, and represent individuals’ innate opinion about mat-

ters. In the absence of any influence by others, this is the opinion an individual

would express. However, the actual expressed opinion will be affected by one’s

friends/neighbors (e.g. due to a desire for social acceptance), and is modeled as

the weighted average of the individual’s own internal opinion and their neighbors’

expressed opinions. The opinions are formed through continuous averaging in the

model. Later on, the expressed opinion vector in FJ Model was interpreted as the

Nash equilibrium in the social game of opinion formation, in which people get

social costs as payoffs [24].

Motivation. A feature of the FJ model is that an individual’s internal opinion

matters less the more friends that individual has (or the stronger those friendships

are). This may not be realistic, and for this reason Friedkin and Johnsen themselves

suggested that the influence of a friend’s expressed opinion on one’s own expressed

opinion should be normalized [2]. This would ensure that the relevance of one’s

internal opinion is independent on the number of friends and strength of these

friendships.

Yet, this normalization, which is important in particular in studies that investi-

gate how to engineer the connectivity of the network so as to achieve a certain goal

(e.g. reducing some measure of conflict, maximizing some measure of influence,

etc.), is often ignored in recent work.

In this chapter, we study the relevance of the normalization. First, we make

the normalization explicit by proposing a minor variant of the FJ model: the Nor-

malized Friedkin-Johnsen (NFJ) model. Then, we investigate theoretically how

NFJ Model differs qualitatively from the FJ model. In particular, we focus on a

recently discovered conservation law of conflict [23], which stated that for opin-

ions that follow the FJ model, the sum of measures for internal conflict, external
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conflict, and controversy sums to a constant. We show that this conservation law

no longer holds under the NFJ model, which provides an opportunity for eliminat-

ing conflict. Finally, we investigate empirically how the NFJ and FJ models yield

different quantifications for important measures of conflict.

3.2 The Normalized Friedkin-Johnsen Model, and a

Theoretical Analysis

This section contains the details of the proposed model, but first we need to intro-

duce some notation.

Notation. Let G = (V,E,w) be a network, where V = {1, . . . , n} is the set of

nodes, E ∈ V ×V is the set of m = |E| edges, and w is a weight function mapping

an edge e ∈ E onto its weight w(e) ≥ 0. We denote with W the weighted

adjacency matrix (with zero diagonal), defined by wij = w(i, j) iff {i, j} ∈ E

and wij = 0 otherwise. With N (i) we denote the set of neighboring nodes of

node i: N (i) , {j ∈ V | (j, i) ∈ E} (i.e., node j is a friend who has influence

on node i in social networks). Let e denote the vector of ones of appropriate

size. Furthermore, let d , WT e denote the vector containing the weighted (in-

)degrees of all nodes, and D , diag(d) the diagonal degree matrix. Then the

Laplacian matrix is defined as L , D−W. Note here the notations are related to

in-degrees of nodes in directed networks, and they correspond to degrees (either

in-degree or out-degree) for undirected networks.

3.2.1 The Normalized Friedkin-Johnsen model

Before discussing the NFJ model, we first discuss two logical predecessors: a

model due to DeGroot, and the vanilla FJ model.

The DeGroot model [1] formalizes opinion formation as a repeated averaging

process of one’s opinion with one’s neighbors. In the model, every person i ∈
V updates his/her opinion si(t + 1) at time t + 1 as the weighted sum of their

own opinion (with weight wii) and those of the neighbours (with weight wij for

neighbor j) at time t. Note that wii is independent from any wij , and represents

the node’s believe in its own opinion. Given an undirected weighted graph G =

(V,E,w), the updating rule is defined as:

si (t+ 1) =
wiisi (t) +

∑

j∈N(i) wijsj (t)

wii +
∑

j∈N(i) wij
. (3.1)

In 1990, Friedkin and Johnsen extended the DeGroot model to have two dif-

ferent kinds of opinions [2]: a fixed internal opinion si, which is private to each

individual, and a public expressed opinion zi. The expressed opinions are the
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weighted sum of the node’s own internal opinion and the expressed opinions of

the neighbors:

zi =
wiisi +

∑

j∈N(i) wijzj

wii +
∑

j∈N(i) wij
. (3.2)

Expressed in matrix-vector notation, and with wii = 1 (a common assumption in

the literature), this equation is solved by (3.3) below at equilibrium [24]:

z = (L+ I)
−1

s. (3.3)

When wii = 1, zi +
∑

j∈N(i) wij(zi− zj) = si, which is z+Lz = (I+L)z = s

in matrix-vector form. Therefore, given fixed s, z is solved as in Equation (3.3).

In the proposed NFJ Model, we consider that the influence from neighbors

should be normalized by the number of neighboring nodes or the total strength of

the incident edges, because people’s internal opinions will not be less important

if they have more friends. We discuss it for directed graphs – undirected graphs

can be regarded as a special case (note that most of the existing literature focuses

on undirected networks only). In directed networks, only the incoming edges con-

tribute to the opinion formation process. We consider edge (i, j) ∈ E as the edge

from node i to node j, so the element di ,
∑

j 6=i wji of d is the (weighted)

in-degree of node i.

In the proposed NFJ Model, the expressed opinion is updated as follows:

zi =

{

si, if di = 0

asi+

∑
j∈N(i) wjizj

di

a+1 , otherwise.
(3.4)

Thus, in the NFJ model, it is assumed that each node puts the same weight wii = a

(instead of wii = 1) on its internal opinion, independently of the network weights,

i.e., independently of the number and weights of incoming edges. Note that when

di = 1, the node follows exactly the updating rule in the vanilla FJ Model. It

is worth mentioning that a similar updating rule is also used by Abebe et al. for

studying opinion dynamics with varying susceptibility to persuasion, which can be

interpreted as different values of a for each node [47, 75]. However, our assump-

tions and focuses are different.

Assuming that di 6= 0 for all i, the set of linear Equations (3.4) is solved by

Equation (3.5) in a similar way Equation (3.2) is solved, where K = 1
aD

−1
L

T is

a normalized Laplacian:

z = (K+ I)
−1

s. (3.5)



THE NORMALIZED FRIEDKIN-JOHNSEN MODEL 43

3.2.2 Implications of the Normalization on the Quantification

of Conflict in Networks

Based on FJ Model, several conflict measures have been proposed in the recent

computer science literature. Four measures in particular were highlighted in [23]:

• Internal Conflict ic (=
∑

i (si − zi)
2
) quantifies the extend to which indi-

viduals’ internal and expressed opinions differ.

• External Conflict ec (=
∑

(i,j)∈E wij (zi − zj)
2
) quantifies the extend to

which the expressed opinions of neighbors are in disagreement with each

other.

• Controversy c (=
∑

i z
2
i ) does not depend on the network structure, and

simply quantifies how much the opinion varies across the individuals in the

network.

• Resistance r (=
∑

i sizi) is the inner product between expressed and inter-

nal opinion vectors, and also the sum of external conflict and controversy.

Matrix expressions for these quantities in terms of s and z are shown in Table 3.1.

These measures were proposed for undirected networks. See more details of the

measures in Section 4.3.1 of the following chapter.

Table 3.1: Conflict Measures based on FJ Model

Name z s

ic zTL2z sT (L+ I)
−1

L2 (L+ I)
−1

s

ec zTLz sT (L+ I)
−1

L (L+ I)
−1

s

c zT z sT (L+ I)
−2

s

r zT s sT (L+ I)
−1

s

It was shown by Chen et al. that the first three together give rise to a conserva-

tion law of conflict [23], indicating that reducing one kind of conflict implies that

another must be increased. Formally:

ic+ 2ec+ c = sT s. (3.6)

Note that the expressions in the right column of Table 3.1 are all quadratic

forms sTM∗s for some middle matrix M∗ that depends on the conflict measure of

interest ∗ ∈ {ic, ec, c, r} (e.g., (L+ I)
−1

L (L+ I)
−1

for ec). The middle matri-

ces share the same eigenvectors with L, and their eigenvalues can be expressed as

a scalar function of the eigenvalues of L [23]. Figure 3.1 illustrates this relation,

with λ representing an eigenvalue of L while λ∗ is the eigenvalue of one of the
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Figure 3.1: Conservation Law of Conflict [23]

middle matrices. The conservation law is reflected in a similar relation amongst

the eigenvalues of the three middle matrices, and this for any eigenvalue λ of the

Laplacian.

This figure also illustrates that for a given s, a conflict measure will be larger

if s aligns better with an eigenvectors of L for which λ∗ is larger. Arguably the

most interesting measure is ec, which increases at first and then decreases when s

becomes less smooth (i.e., with larger eigenvalues)1. More intuitions concerning

this can be found in Section 4.3.2 of the next chapter. We will discuss this in

greater detail with experimental results in the next section.

As a first theoretical analysis of the NFJ model as compared with the FJ model,

it is interesting to investigate whether this conservation law still holds in the NFJ

model. We start from the conflict measures, and then investigate this only for

directed networks. Referring to their definitions based on the FJ model, we define

the three conflict measures in the conservation law as follows:

ic =
∑

i

(si − zi)
2
, ec =

1

a

∑

i,j

wij

dj
(zi − zj)

2
, c =

∑

i

z2i

In the NFJ model, the conflict measures are very similar to the ones in [23] (i.e.,

ic and c stay the same). However, ec is different because the importance of the

opinion differences over existing edges is also normalized by the in-degrees of the

incident nodes. Based on Equation (3.5), the three measures in the new model are

expressed in matrix-vector form as in Table 3.2, where Nec is

1Here smooth/low-frequency represents that the close-by nodes hold similar opinions - correspond-

ing to smaller eigenvalues, and high-frequency means nodes differ more with nodes around in their

opinions, which corresponds with larger eigenvalues.
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Table 3.2: Conflict Measures based on NFJ Model

Name z s

ic zTKT
Kz sT

(

KT + I
)−1

KT
K (K+ I)

−1
s

ec zTNecz sT
(

KT + I
)−1

Nec (K+ I)
−1

s

c zT z sT
(

KT + I
)−1

(K+ I)
−1

s

Nec =
1

a
diag

(

D−1WT e+WD−1e
)

− 1

a

(

D−1WT +WD−1
)

. (3.7)

The definition of ec in the new model is inspired by the conservation law of

conflict. After finding that the conservation law no longer holds in the NFJ model,

we introduce an additional term, denoted as x shown in Equation (3.8) below, such

that the law can be restored. It is equivalent to finding two matrices Nec and Nx,

which sum to KT +K.

ic+ ec+ c+ x = s
T
s (3.8)

So we have Nec as in Equation (3.7), and Nx below

Nx =
1

a
diag

(

D−1WT e−WD−1e
)

, (3.9)

x =zTNxz =
1

a

∑

i

z2i
∑

j 6=i

(

wji

di
− wij

dj

)

. (3.10)

If x cannot be interpreted as a relevant measure of conflict, it can be seen as

an opportunity for eliminating conflict: it is then conceivable that the network can

be edited (e.g. by adding or removing edges, or by changing weights) so as to

reduce all of ic, ec, and c while increasing x. I.e., the sum of the three conflict

measures can be minimized by maximizing x. According to Equation (3.8), x can

be expressed as in Equation (3.10). It shows that the network edits for conflict

optimization (i.e., maximizing x) should consider both how opinionated nodes

are (i.e., the values of z2i ) and the importance of the node’s influence on all its

neighbors (i.e., the value of
∑

j 6=i
wij

dj
since

∑

j 6=i
wji

di
= 1). Meanwhile, when it

comes to comparing the amount of conflict between networks of similar sizes, x

indicates that the more opinionated nodes are of minor importance in influencing

their neighbors (i.e., small
∑

j 6=i
wij

dj
), the less total conflict (i.e., ic+ ec+ c) there

will be. The interpretation of x, and on how it can be maximized, are subject of

our current research.

3.3 Discussion and Experiments

This section discusses the difference of the NFJ model to the original model, using

synthetic as well as real-world networks, which are of varying sizes.
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3.3.1 Opinion Formation

We start from a very simple network as shown in Figure 3.2, and assign each

node with internal opinions where green means si = 1 and red represents si =

−1. According to Table 3.3, node 1 and node 7, which are the centers of the two

star-subgraphs, have expressed opinions opposite to the internal ones in the old

model, while they remain on their “original side” in the new model. It is clear

that the normalization can have a big impact in this opinion formation model,

and it corresponds to the suggested assumption in the original FJ Model [2] as
∑

j wij = 1 and wij ∈ [0, 1]. Surprisingly, it is usually neglected in works based

on this model.

Figure 3.2: Network Example 1

Table 3.3: Expressed Opinions at Equilibrium (a = 1)

Node 1 2 3 4 5 6

s 1 -1 -1 -1 -1 -1

zFJ -0.27 -0.64 -0.64 -0.64 -0.64 -0.64

zNFJ 0.33 -0.33 -0.33 -0.33 -0.33 -0.33

Node 7 8 9 10 11 12

s -1 1 1 1 1 1

zFJ 0.27 0.64 0.64 0.64 0.64 0.64

zNFJ -0.33 0.33 0.33 0.33 0.33 0.33

The NFJ model ensures that people value their own internal opinions with an

importance independent of the environment, such that the number of friends or

the strength of these friendships will not affect people’s adherence to their own

opinions.
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3.3.2 Quantifying Conflict

In addition to the conflict eliminator in the conservation law, we will give evidence

that this normalized model is different from the original one in terms of conflict

measures (i.e., here we focus on external conflict ec as it was arguably the most

interesting measure [23]). This model seems to be better as it preserves the con-

troversial discussion within social networks, instead of “diminishing” it with too

much opinion averaging. We consider different sizes of synthetic random networks

and real-world social networks: 1) the Karate network of friendships between 34

members [69]; 2) a Watts-Strogatz random network with the small world prop-

erty of 500 nodes; 3) and a real-world Facebook social network containing friend

circles [76] of 4039 nodes.

In the original FJ Model, external conflict increases first and then it decreases

slowly as the eigenvalues of the Laplacian matrix L increases, shown in Figure 3.1.

In other words, when the vector of internal opinions s aligns with the eigenvectors

of increasing frequency, ec reaches the maxima at a certain point (i.e., λ = 1).

However, the higher the frequency on the graph for s, the more the conflicts there

should be in the network because this is how controversy arose. It shows the

real conflict between people holding “opposite” (potentially differing) opinions,

because high-frequency s means more differences over existing edges.

In the experiments, we follow [23] to use the signs of the eigenvectors of the

network Laplacian matrix L as the internal opinion vector s, which correspond

to different frequencies (i.e., eigenvalues). In order to make a clearer comparison

between both models, we scale the magnitude of the edge weights. We can see that

the old model has decreased amount of conflict for high-frequency s since every

node is influenced by more neighbors holding opposite opinions. This is due to

too much opinion averaging.

On the contrary, from Figure 3.3, we can see that the high-frequency inter-

nal opinions correspond to larger external conflict if we use the new model. This

is because the NFJ model limits the overall amount of external influence by the

normalization, thus the opinions are not over-averaged and the conflict measure

reflects the “real” (i.e., internal) opinion divergence to some extend. Note that ex-

ternal conflict is what exists between people holding opposite opinions internally.

It means even if they express themselves differently, one of them should realize

the other is on the same side with him/her internally. Therefore, the more peo-

ple differ from their neighbors on the graph in terms of internal opinions (i.e., s

shows higher frequency), the more conflict there should be. It is consistent with

the results of our proposed NFJ Model.

This chapter only presents a first look at the normalized Friedkin-Johnsen

(NFJ) Model, and there are a lot of interesting tasks to be done in the near future.

For example, the evolution of opinion dynamics, network conflict risk problems

under the new model, the discussion on the parameter a (i.e., the self-appraisal [7]),
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(a) Karate (n = 34, m = 78) (b) small world random network (n = 500,

m = 1500)

(c) Facebook Network (n = 4039, m = 88234)

Figure 3.3: Conflict Comparison in Networks

networks with different type of nodes (e.g., introducing stubborn nodes who only

express their own internal opinions), and so on.

Also, instead of doing nomalization, which discounts the neighboring influ-

ences, we can switch the sign of the moderation. In other words, one instance

could be that two very opinionated people who hate each other will never moderate

the opinions of the other person, on the contrary, their opinions will be reinforced

through the connection. Therefore, it leads to a non-linear model of opinion forma-

tion. Another study direction is considering higher dimensions of opinions because

different issues do not necessarily correspond to different social networks. People

within a social network communicate about various issues, and their attitudes on

one issue may have influence on other issues, which means minimizing conflict

on one issue might actually increase conflict on another. A higher dimensional

opinion vector seems to be closer to people’s daily life and is more interesting for

future study.



4
Quantifying and Minimizing Risk of

Conflict in Social Networks

Abstract Controversy, disagreement, conflict, polarization and opinion divergence

in social networks have been the subject of much recent research. In particular,

researchers have addressed the question of how such concepts can be quantified

given people’s prior opinions, and how they can be optimized by influencing the

opinion of a small number of people or by editing the network’s connectivity.

Here, rather than optimizing such concepts given a specific set of prior opin-

ions, we study whether they can be optimized in the average case and in the worst

case over all sets of prior opinions. In particular, we derive the worst-case and

average-case conflict risk of networks, and we propose algorithms for optimizing

these.

For some measures of conflict, these are non-convex optimization problems

with many local minima. We provide a theoretical and empirical analysis of the

nature of some of these local minima, and show how they are related to existing

organizational structures.

Empirical results show how a small number of edits quickly decreases its con-

flict risk, both average-case and worst-case. Furthermore, it shows that minimizing

average-case conflict risk often does not reduce worst-case conflict risk. Minimiz-

ing worst-case conflict risk on the other hand, while computationally more chal-

lenging, is generally effective at minimizing both worst-case as well as average-

case conflict risk.
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4.1 Introduction and Motivation

The study of how opinions form through social interactions with others with po-

tentially differing opinions has long been studied in the social sciences (see e.g.

[1, 2]). Today, online social networks offer unprecedented access to both social

interactions and publicly expressed opinions on controversial matters. This now

allows one to quantitatively study differences of opinions on a large scale, as well

as to moderate them through targeted interventions. This newfound ability offers

new opportunities for conflict prevention and mitigation, as well as for more effec-

tive marketing campaigns.1

Background. Much prior research has focused on opinions on political mat-

ters [11, 12, 26]. However, recent work has often studied the problem in a more

generic manner (independent of the topic of controversy) [10, 77, 78]. The identi-

fication of controversial issues has been studied using tools from sentiment anal-

ysis [27, 28], as well as by relying on the structure of the social network and the

distribution of opinions across it [11, 12, 30, 79]. Besides identifying or quantify-

ing controversy or conflict, the question of how it can be influenced has received

increasing amounts of attention [8, 10, 31]. Strategies that have been considered

include editing the graph (or even designing it from scratch), and attempting to

alter the opinions of a small number of individuals [8–10, 24, 32].

Most of these results are based on the opinion formation model by Friedkin

and Johnsen [2], which extended the DeGroot model of opinion averaging [1].

In Friedkin and Johnsen’s model, individuals are assumed to hold an (‘a priori’)

internal opinion, while they may express an opinion that may differ from it but that

is more socially acceptable (i.e. more similar to their friends’ opinions). To model

this, it is assumed that individuals are connected to each other in a social network,

and that individuals’ expressed opinion is a weighted average of their own internal

opinion and their neighbors’ expressed opinions, with weights representing the

strength of the connections in the network.

Shortcomings in the state-of-the-art. An important problem with Friedkin and

Johnsen’s model is that, while external opinions are hard to measure, access to

internal opinions is near-impossible in practice. Another shortcoming of the dom-

inant line of research attempting to reduce conflict by editing the social network is

that it tends to focus on a single or a given set of controversial topics. Yet, different

issues do not generally correspond to different social networks, such that editing a

social network to minimize conflict on one issue may actually increase conflict on

another.

Contributions in this paper. In this paper, we depart from the existing literature

1It also creates risks: it could allow oppressive governments to design more effective propaganda,

or hostile actors to incite conflict rather than prevent it. These risks are an additional reason for these

matters to be studied by the scientific community.
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in focusing on risk of conflict, rather than on conflict around one particular issue.

In this way, we overcome both shortcomings of prior work discussed above. We

still rely on Friedkin and Johnsen’s model of opinion formation to quantify the

risk of networks to conflict (which we discuss in detail in Sec. 4.2). However, the

proposed quantifications are independent of any particular set of internal (or exter-

nal) opinions, depending purely on the topology of the network. In this way, we

bypass the problem that quantifying internal opinions is beyond reach in practice.

Moreover, attempting to reduce the risk of conflict, leads to more robust network

editing strategies than reducing conflict for one particular assignment of internal

opinions.

More specifically, we propose two measures of conflict risk: the worst-case

conflict risk (WCR) and the average-case conflict risk (ACR), respectively quanti-

fying the amount of conflict in the worst-case, and on average, over all possible

internal opinions. Subsequently, we demonstrate how both WCR and ACR can be

minimized by locally editing the network. We do this for a number of pre-existing

measures of conflict and disagreement discussed in Sec. 4.3, most notably the

internal conflict (the extent to which individuals are torn by expressing an opin-

ion that differs from their internal opinion), external conflict (the extent to which

neighboring individuals express different opinions), and controversy (the overall

variation in expressed opinion). A side-result in this paper is an equality relat-

ing these different conflict measures, leading to what we refer as a conservation

law of conflict: the sum of the internal conflict, twice the external conflict, and

controversy is a constant.

In Sec. 4.4 we propose two types of algorithms (one coordinate descent, and

one conditional gradient descent) to locally edit the social network to reduce the

WCR and ACR for a number of these measures of conflict. Empirical results are

provided in Sec. 4.5, evaluating the effectiveness of the proposed algorithms at

reducing risk of conflict, providing additional insight into the local minima of the

measures, and discussing conflict risk in random network models.

We end with related work in Sec. 4.6 and conclusions in Sec. 4.7.

Notation. Let G = (V,E,w) be an undirected positive-weighted network with

V = {1, . . . , n} the set of nodes, E ∈ V × V the set of m = |E| edges

(with (i, j) ∈ E iff (j, i) ∈ E), and w a weight function mapping an edge

e ∈ E onto its weight w(e) > 0. We denote with A the (symmetric) adja-

cency matrix (with zero diagonal), defined by aij = w (i, j) iff (i, j) ∈ E and

aij = 0 otherwise. With N (i) we denote the set of neighboring nodes of node i:

N (i) , {j ∈ V | (i, j) ∈ E}. Let 1 denote the vector of ones of appropriate size.

Furthermore, let d , A1 denote the vector containing the weighted degrees of all

nodes, and D , diag(d) the diagonal degree matrix. Then the Laplacian matrix is

defined as L , D−A.
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4.2 Opinion Formation Models

Here we briefly discuss the models of opinion formation on social networks, as

formalized above, related to the present paper.

The dynamic model. According to the DeGroot model [1], people’s opinions are

updated gradually through repeated communication. In the model, every person

i ∈ V has an opinion si(t) at time t, and it is influenced by its direct neighbors

so as to evolve into a different opinion si(t + 1) in the next time step. More

precisely, their opinion is updated as the weighted sum of their own opinion (with

weight wii) and those of the neighbors (with weight wij for neighbor j). Given a

weighted graph G = (V,E,w), and the opinions si(t) of the nodes at time t, the

updating rule is defined as:

si (t+ 1) =
wiisi (t) +

∑

j∈N(i) wijsj (t)

wii +
∑

j∈N(i) wij
(4.1)

This model formalizes opinion formation as a repeated averaging process of one’s

opinion with one’s neighbors.

The static model. In 1990, Friedkin and Johnsen extended the model by DeGroot

to have two different kinds of opinions [2]: an internal opinion si and an expressed

opinion zi. The internal opinions of every person are assumed fixed, while the

expressed opinions are influenced by the node’s own internal opinion as well the

expressed opinions of the neighbors, as follows:

zi =
wiisi +

∑

j∈N(i) wijzj

wii +
∑

j∈N(i) wij
. (4.2)

Expressed in matrix-vector notation, and with wii = 1 (a common assumption

in the literature that we also make in this paper), this equation is solved by (4.3)

below at equilibrium [24], i.e., zi+
∑

j∈N(i) wij(zi−zj) = si thus (I+L)z = s:

z = (L+ I)
−1

s. (4.3)

In this model, the internal opinion si of node i is considered a constant, and

private to each individual, while the expressed opinion zi is public, and a compro-

mise between the internal opinion of node i and the expressed opinion of node i’s

neighbors.

Remark 1. In this paper, we will generally assume that the internal opinions are

mean-centered. Note that in that case, also z will be mean-centered. As opin-

ions are arguably relative, this assumption should not incur any loss of generality.

Rather on the contrary: some measures of opinions are affected by the mean of s

(as we will point out later), which is arguably undesirable, such that assuming s

has zero mean enhances the usability of the proposed measures.
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Table 4.1: Measures for conflict in undirected networks

Name z s

internal conflict: ic zTL2z sT (L+ I)
−1

L2 (L+ I)
−1

s

external conflict: ec zTLz sT (L+ I)
−1

L (L+ I)
−1

s

controversy: c zT z sT (L+ I)
−2

s

resistance: r zT s sT (L+ I)
−1

s

4.3 Conflict and Conflict Risk

In this paper, we rely on Friedkin and Johnsen’s model of opinion formation and

discuss a number of (previously known) measures of conflict in terms of the inter-

nal opinions s and expressed opinions z = (L + I)−1s. Note that we will often

use the term conflict in a more generic manner in this paper, to signify conflict,

controversy, or disagreement more generally.

In Sec. 4.3.1 we survey the measures of conflict and discuss how they can be

computed using matrix-vector operations. Section 4.3.2 introduces an intriguing

though intuitive connection between some of these measures. Finally, in Sec. 4.3.3

we discuss how the risk of conflict, as quantified by the proposed measures, can

be formulated, both in the worst case (WCR) and in the average-case (ACR).

4.3.1 Conflict Measures

Table 4.1 provides an overview of the proposed measures, which we will discuss

in greater detail below.

Internal Conflict ic. The internal conflict measure is designed to quantify the

extent to which individuals’ internal and expressed opinions differ.

Definition 4.3.1. The internal conflict ic is the sum of squares of the differences

between individual internal and expressed opinions:

ic =
∑

i

(zi − si)
2
.

The following proposition provides a convenient matrix-vector expression for

it. The proof is elementary:

ic = (z− s)T (z− s), z− s =
[

(L+ I)−1 − I
]

s = −L(L+ I)−1s = −Lz.

Proposition 4.3.1. ic = zTL2z = sT (L+ I)−1L2(L+ I)−1s.

External Conflict ec. Arguably the most relevant measure in practice, the external

conflict measure quantifies the extent to which the expressed opinions of neighbors

are in disagreement with each other. Formally:
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Definition 4.3.2. The external conflict ec is the weighted sum of squares of the

pairwise differences between the expressed opinions of neighbors in the network:

ec =
∑

(i,j)∈E

wij (zi − zj)
2
.

Again, it can be expressed conveniently in matrix-vector form:

Proposition 4.3.2. ec = zTLz = sT (L+ I)
−1

L (L+ I)
−1

s.

The proposed measure of external conflict is closely related to the so-called

Network Disagreement Index (NDI) in [6], except that there are two different opin-

ions in our work: it is equal to the NDI evaluated on the external opinions.

Controversy c. Given the expressed opinions, the controversy does not depend on

the network structure, and simply quantifies how much the opinion varies across

the individuals in the network:

Definition 4.3.3. The controversy c is the sum of the squares of the expressed

opinions:

c =
∑

i

z2i .

Again, this can be trivially expressed in matrix-vector form:

Proposition 4.3.3. c = zT z = sT (L+ I)
−2

s.

The controversy c is equivalent with the polarization index proposed by Matakos

et al. [10], although they normalized the measure by n, the number of nodes in the

network. For zero mean s (and hence zero mean z), as we assume in this paper, the

controversy is also equivalent to the Global Disagreement Index (GDI) [6], defined

as:

γ (x) :=
∑

i<j

(xi − xj)
2

(4.4)

More specifically, the GDI is a constant factor n times larger than the controversy.

Resistance r. The final measure we wish to discuss is the resistance.2

Definition 4.3.4. The resistance r is the inner product between expressed and

internal opinion vectors:

r =
∑

i

sizi.

2Its suggested name stems from its mathematical form, which is closely related to the effective

resistance in graphs [80]: Rij = (ei − ej)
T
L
+ (ei − ej), thus it is called resistance. In a graph,

the effective resistance between two nodes i and j is: (ei − ej)
T
L
+ (ei − ej). ei has one at position

i and zeros elsewhere. If s = ei − ej where only the opinions of the two nodes count,

r = s
T (L+ I)−1

s = (ei − ej)
T (L+ I)−1 (ei − ej) .
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It can again be expressed in matrix-vector notation:

Proposition 4.3.4. r = sT z = sT (L+ I)−1s.

The resistance was in fact introduced earlier by Musco et al. [8] (where it was

given no name). It was introduced there as the sum of the controversy and external

conflict:

Proposition 4.3.5. Resistance is the sum of external conflict and controversy: r =

ec+ c.

Their work included an algorithm for optimizing the network to reduce conflict

given a specified internal opinion vector s, and took advantage of the fact that

resistance is matrix-convex in L.

Summary. Thus, each of the measures can be written in the form

∗ = sTM∗s,

where ∗ is one of ic, ec, c, or r, and Mic = (L + I)−1L2(L + I)−1, Mec =

(L+ I)−1L(L+ I)−1, Mc = (L+ I)−2, and Mr = (L+ I)−1.

We note in passing that the matrices L and (L + I) obviously have the same

eigenspaces, such that they commute – i.e. the factors in the expressions for M∗
can be freely rearranged.

4.3.2 A Conservation Law of Conflict

In this section, we state an identity that implies that the different measures of

conflict act like communicating vessels: reducing one implies that another one

must be increased.

Theorem 12 (Conservation law of conflict). Given a network and an internal

opinion vector s, then the sum of ic, 2ec, and c is a constant equal to sT s:

ic+ 2ec+ c = sT s.

Proof. ic+2ec+c = sT (L+ I)
−1 (

L2 + 2L+ I
)

(L+ I)
−1

s = sT (L+I)−1(L+

I)2(L+ I)−1s = sT s.

Note that the constant sT s could be regarded as the internal controversy: the

inherent controversy on a particular topic. The conservation law essentially states

that in a social network, this inherent controversy is divided over external conflict,

internal conflict, and a remaining amount of controversy. The relative proportions

of each of these measures of conflict depend on the structure of the network in

relation to the internal opinion vector s.
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Figure 4.1: Eigenvalues in the Conservation Law.

To understand this better, let L = UΛUT be the eigenvalue decomposition of

L. It is known from graph signal processing [81] that eigenvectors corresponding

to small eigenvalues are slowly varying over the graph (i.e. the i’th and j’th entries

of such an eigenvalue tend to be similar if i and j are nearby in the graph), while the

large eigenvalues correspond to eigenvectors that fluctuate rapidly over the graph.

The eigenvalue decompositions of the diagonal matrices with eigenvalues M∗ are

then given by:

Mic = UΛ2(Λ+ I)−2UT , Mec = UΛ(Λ+ I)−2UT , Mc = U(Λ+ I)−2UT .

In other words, any eigenvalue λ of the Laplacian L yields a corresponding eigen-

value of the M∗ matrices as follows:

λic =
λ2

(λ+ 1)
2 , λec =

λ

(λ+ 1)
2 , λc =

1

(λ+ 1)
2 .

These eigenvalues are plotted as a function of the eigenvalue λ of the Laplacian in

Fig. 4.1.3

Note that λic increases with λ, λc decreases with λ, and λec first increases to

reach a maximum value of 0.25 at λ = 1 after which it decreases again.

For a fixed 2-norm of the internal opinion vector s, the measure of conflict

with M∗ is larger the more it is aligned with the eigenvectors corresponding to

3Note that the conservation law is reflected in this figure in the following equality, as can be visually

verified from Fig. 4.1: λic + 2λec + λc = 1.
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the largest eigenvalues of M∗. Figure 4.1 shows that this differs for the different

measures.

For s aligning with the smoothest eigenvectors of the Laplacian (i.e. those

corresponding to small eigenvalues λ of the Laplacian), the internal and external

conflicts are small, but the controversy is large as internal opinions remain unmod-

erated by dissenting neighbors. This situation would arise when the graph contains

different (nearly) disconnected communities, and within each community the inter-

nal opinion is constant, while between the communities the internal opinions differ.

As s becomes more aligned with less smooth eigenvectors (i.e. with larger eigen-

values), the external conflict starts to increase because conflicts between neighbors

are starting to arise. For the same reason, the internal conflict starts to increase,

and the controversy starts to decrease. The external conflict reaches its maximum

when s is aligned with eigenvectors of L with eigenvalue λ ≈ 1. As λ keeps

increasing, meaning s aligns with more high-frequency eigenvectors, the moderat-

ing effect of neighbors starts to become more important, resulting in a decrease of

external conflict as well as the controversy. Essentially, the conflict is increasingly

internalized in a network where neighbors often have different internal opinions.

4.3.3 Conflict Risk of a Network

The measures from Sec. 4.3.1 quantify the various types of conflict given an in-

ternal opinion vector s. Prior work (see Sec. 4.6) has focused on tweaking the

network or the opinions of a selection of individuals to reduce such measures. Of-

ten, however, the internal opinions are not accessible. More fundamentally, one

might wish to minimize conflict on more than one, including yet unknown contro-

versial issues. We therefore argue that it is more sensible to engineer a network

so as to reduce the risk of conflict, rather than the conflict for one specific internal

opinion vector s. We propose two ways of quantifying risk of conflict, discussed

in turn below.

Average-case Conflict Risk (ACR). The ACR is defined as the expected conflict,

where the expectation is taken w.r.t. the internal opinions. To evaluate this, a

probabilistic model for the internal opinions is needed, and we propose to use the

uniform distribution over all vectors from {−1, 1}n, such that E
[

ssT
]

= I. Thus:

ACR∗ = E
[

sTM∗s
]

= E
[

Tr
(

ssTM∗
)]

= Tr
(

E
[

ssT
]

M∗
)

,

= Tr(M∗).

Worst-case Conflict Risk (WCR). This is an alternative (and more robust) mea-

sure, defined as the maximum conflict over all possible internal opinion vectors

s ∈ {−1, 1}n:

WCR∗ = max
s∈{−1,1}n

sTM∗s.
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Note that M∗ � 0 for all measures, such that this is an instance of Boolean

Quadratic Maximization (BQM) problem [82,83]. While this problem is NP-hard,

it can be approximated by solving the following semidefinite programming (SDP)

relaxation of the problem (here, Σ is a symmetric real-valued matrix):

u∗ = max
Σ

Tr(ΣM∗),

s.t. Σ � 0,

diag(Σ) = 1.

Nesterov [83] proved that this strategy achieves a 2
π approximation:

2

π
u∗ ≤WCR∗ ≤ u∗.

To derive an estimate for the worst-case s ∈ {−1, 1}n from Σ, Goemans and

Williamson’s randomized rounding strategy [84] can be used: Let Σ = CCT be a

Cholesky decomposition of Σ, and let x ∈ R
n be a randomly sampled vector from

some rotation-invariant distribution. Then, for s = sign(Cx), it holds that (where

the expectation is over the random vector x):

2

π
WCR∗ ≤ E[sTM∗s] ≤WCR∗.

I.e., the estimated worst-case opinion vector achieves a conflict that is not smaller

than 2
π the actual worst-case conflict.

SDPs can be solved in polynomial time: O(n4.5). While this is still a high

complexity, in practice such SDPs can be solved without further optimizations for

thousands of nodes on commodity machines, and results for the Maximum Cut

problem suggest that scaling is possible much beyond that (to millions of nodes)

by exploiting tight approximations, further relaxations, or dedicated optimization

approaches [85, 86].

4.4 Minimizing the Conflict Risk

4.4.1 Algorithms

Here we discuss how the ACR and WCR can be optimized by adding or deleting

edges in the network. Note that only the resistance is known to be convex, such

that we should not hope for convergence to a global optimum. Yet, we argue that

the question of convexity is purely academic here: in practice, graph edits can

typically be made only in small amounts, either because of budget constraints, or

because of practical considerations. For example, a company may wish to increase

its productivity by organizing a team-building event or reorganizing office space so
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as to create new conflict-risk reducing connections, but such operations are costly

and cannot in practice redesign the complete network structure. Thus, what we

should be interested in is a fast decrease of the ACR or WCR given the number

of edges added or deleted, rather than eventual convergence to a possible local

minimum – let alone a global one.

The edits we consider are edge additions or deletions, or more precisely the

increase or decrease of edge weights as long as they remain in the range [0, 1]. We

keep them within this range because it makes no sense to talk about a negative edge

strength in social networks, and there is a bound on the strength of connections.

Our algorithms can easily be adapted to handle different bounds.

Below, we discuss two algorithmic approaches to this end: one is a conditional

gradient method, and suggests a number of edge additions or deletions simultane-

ously. The other is a coordinate descent method, and suggests adding or deleting

just a single edge.

The optimization problems. Let A0 be the initial adjacency matrix, and A the

optimized adjacency matrix with corresponding matrix M∗. With ‖·‖1 the entry-

wise one-norm, the optimization problems for ACR and WCR are thus:

ACR: min
A

Tr(M∗),

s.t. 0 ≤ A ≤ 1, and ‖A−A0‖1 ≤ 2k.

WCR: min
A

max
s∈{−1,1}n

sTM∗s,

s.t. 0 ≤ A ≤ 1, and ‖A−A0‖1 ≤ 2k,

where k is a bound on the sum of absolute values of weight changes (the factor 2

stems from the fact that A is symmetric). The entry-wise one-norm on A − A0

ensures this difference tends to be sparse, such that only few edge weights tend to

be updated at the minimum.

For the WCR, this problem is complicated by the inner maximization. We han-

dle this optimization problem by alternating optimization: before each conditional

gradient or coordinate descent step, we solve the inner maximization as detailed

in the previous section, and then assume s to be fixed. We found however, that

robustness of this strategy can be increased by using not a single s, but a small set

of ℓ vectors s all obtained by randomized rounding. More specifically, written in

terms of S ∈ {−1, 1}n×ℓ containing these different s vectors as its columns, we

solve:

Robust WCR: min
A

Tr(STM∗S),

s.t. 0 ≤ A ≤ 1, and ‖A−A0‖1 ≤ 2k.

Thus, rather than minimizing the risk of conflict for one given worst-case opinion

vector, the average over a set of approximately worst-case opinion vectors is min-
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imized. The added robustness of this strategy stems from the fact that different

approximately worst-case opinion vectors can be similarly bad, such that editing

the graph to reduce risk for one can increase risk for another. In this case, the

alternating minimization would fail. Minimizing the risk averaged over a set ap-

proximately worst-case opinion vectors thus increases robustness. Note that for

S = I, the WCR reduces to the ACR. Thus, it suffices to discuss the optimization

of the WCR in what follows. Both conditional gradient and coordinate descent

first compute the gradient of the ACR and WCR. The gradients for the different

measures are summarized in Table 4.2.

Conditional gradient descent [87, 88]. The conditional gradient method seeks a

step ∆ most aligned with the gradient, while respecting the constraints after taking

a finite step along that direction. More specifically, this step direction is found by

solving:

min
∆

Tr

(

∂Tr
(

STM∗S
)

∂L
· (diag(∆1)−∆)

)

,

s.t. 0 ≤ A+∆ ≤ 1, and ‖∆‖1 ≤ 2k′,

where k′ << k limits the step size. Here, the objective computes the inner product

between the gradient with respect to L and diag(∆1) − ∆, as changing A by

adding ∆ amounts to a step of diag(∆1) −∆ on the Laplacian. Note again that

these constraints induce sparsity in the solution vector. The experiments indeed

confirmed that often ∆ contains exactly 2k′ 1’s or -1’s.

Coordinate descent. The coordinate descent method first computes the gradient

with respect to the (symmetric) adjacency matrix from the gradient with respect to

the Laplacian (as listed in Table 4.2):

∂Tr
(

STM∗S
)

∂aij
=

∂Tr
(

STM∗S
)

∂lii
+

∂Tr
(

STM∗S
)

∂ljj
− 2

∂Tr
(

STM∗S
)

∂lij
.

Positive
∂Tr(STM∗S)

∂aij
means that reducing aij > 0 will reduce the objective. Con-

versely, negative
∂Tr(STM∗S)

∂aij
means that increasing aij < 1 will reduce the ob-

jective. Thus, the algorithm takes the
∂Tr(STM∗S)

∂aij
with largest absolute value

for which either aij > 0 and
∂Tr(STM∗S)

∂aij
> 0, or for which aij < 1 and

∂Tr(STM∗S)
∂aij

< 0. In the former case, the algorithm sets aij = aji = 0, and

in the latter it sets aij = aji = 1.

Conditional gradient versus coordinate descent. The coordinate descent method

is computationally obviously easier, but convergence may be slower than with the

conditional gradient method. They are compared with each other in the empirical

results section.
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Table 4.2: Middle Matrices and Gradients

∗ M∗ ACR:
∂Tr(M∗)

∂L WCR:
∂Tr(STM∗S)

∂L

ic (L+ I)
−2

L2 2 (L+ I)
−2 − 2 (L+ I)

−3
L(L+ I)−2SST (L+ I)−1

+(L+ I)−1SST (L+ I)−2L

ec (L+ I)
−2

L − (L+ I)
−2

+ 2 (L+ I)
−3

(L+ I)−2SST (L+ I)−2

−L(L+ I)−2SST (L+ I)−2L

c (L+ I)
−2 −2 (L+ I)

−3 −(L+ I)−1SST (L+ I)−2

−(L+ I)−2SST (L+ I)−1

r (L+ I)
−1 − (L+ I)

−2 −(L+ I)−1SST (L+ I)−1

Table 4.3: Gradient matrix elements for size n complete graph

Matrix Diagonal Off-diagonal

− (L+ I)
−2 − n+3

(n+1)2
− n+2

(n+1)2

−2 (L+ I)
−3 −2n2+3n+4

(n+1)3
−2n2+3n+3

(n+1)3

− (L+ I)
−2

+ 2 (L+ I)
−3 n2+2n+5

(n+1)3
n2+3n+4
(n+1)3

4.4.2 Local Optima of the ACR for Different Risk Measures

As pointed out, only the resistance is known to be convex, such that the ACR and

WCR are prone to local minima. Relying on the gradients in Table 4.2, we can

prove the following proposition.

Proposition 4.4.1. The complete graph forms local minimum for the ACR of con-

flict measures ec, c, and r.

Proof. The adjacency matrix of a size n complete graph consists of 0 on the diag-

onal and 1 elsewhere, thus the corresponding Laplacian matrix has n − 1 on the

diagonal and −1 elsewhere. In Table 4.3, the elements in the corresponding ACR

gradients with respect to the Laplacian are shown. We will show from these that

no feasible step can be found that improves the objectives for a complete graph.

Indeed, for a complete graph (with all weights equal to 1), edge weights can

only be decreased. However, decreasing the weight of the edges increases the ob-

jective: for a step of −δ on wij , the external conflict is increased by 2 n−1
(n+1)3

δ, the

controversy by 4
(n+1)3

δ and the resistance by 2
(n+1)2

δ. For n > 1 these changes

are strictly positive, such that the ACR would be increased after decreasing any

wij by 1 ≥ δ > 0.

Derivative results. A number of results immediately follow from this proposi-

tion. Recall that resistance is convex on L [8], so this local minimum is a global

one. Furthermore, note that from the conservation law, it follows directly that the
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Table 4.4: Risks for complete graph of size n

∗ ic ec c r

Tr (M∗)
n2(n−1)

(n+1)2
n(n−1)

(n+1)2
n(n+3)

(n+1)2
2n
n+1

Table 4.5: Dataset summary statistics.

Network Karate Facebook ER BA WS

Nodes 34 4039 n n n

Edges 78 88234 m m1
nK
2

Avg degree 4.5882 43.6910 2m
n

2m1

n K

gradient of ic + 2ec + c is equal to 0. Thus, it is trivial to show that for ic, a

complete graph is a local maximum of the ACR. Finally, for a complete graph of

size n (i.e., the number of node is n, n > 1), the values of ACR for different con-

flict measures are given in Table 4.4. Using this table, it can be shown that larger

complete graph has smaller conflict risks than two smaller complete graphs with

the same total number of nodes. For complete graphs of size n1, n2, and n1 + n2

(n1, n2 ≥ 3, n1, n2 ∈ Z),

Tr [Mec (n1)] + Tr [Mec (n2)] > Tr [Mec (n1 + n2)] .

(As long as n1n2 − n1 − n2 − 3 ≥ 0, the above inequality holds, which can be

proved using Tr (Mec) in Table 4.4.)

We also showed empirically that for the ec a set of disconnected components

are optimal where each component is either a clique, a sufficiently long chain, or

a tree where each leaf node is separated by at least two edges from a bifurcation

node (see Sec. 4.5 for details).

4.5 Empirical Evaluation

4.5.1 Datasets

We use real social networks as well as synthetic data shown in Table 4.5. The

real-world datasets we use are the Karate network with 34 nodes and a Facebook

network consisting of 4039 users. The Karate network is a social network of

friendships between 34 members of a Karate club [69]. The Facebook network

contains friend circles and was collected through the Facebook app surveys [76].

The synthetic data includes three random network models: Erdős-Rényi (ER)

random networks with binomial degree distribution; Barabási-Albert (BA) ran-

dom networks with power-law degree distribution; and Watts-Strogatz (WS) small

world random networks.
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Table 4.6: ACR for random networks of size n = 1000,m ≈ 5000.

ACR ic ec c r

ER 796.6 94.1 15.3 109.3

BA 759.3 109.7 21.2 131.0

WS 804.2 91.2 13.3 104.5

4.5.2 Experimental Findings

We investigate the following questions: (1) What types of networks have the high-

est risks for what types of conflict measures; (2) What are the local minima of the

ACR for the various measures; (3) For the external conflict: how do the actual

conflict, ACR, and WCR evolve as the ACR or WCR is being minimized; (4) How

do the coordinate and conditional gradient descent methods compare for the ex-

ternal conflict. Note that some results are summarized, and our implementation is

available for reproducibility. 4

4.5.2.1 Conflict risk for different measures in random networks

We investigated how the ACR for different conflict measures compare to each

other across ER, BA, and WS models. We generated random networks of very

similar sizes and densities according to these models, and we compared their ACR

for different conflict measures.

Across a wide range of graph densities, the WS network is consistently the

most high-risk for ic, while the BA network is consistently the most high-risk for

ec. For c and r the most high-risk network depends on the density, although usually

the BA or ER networks carry the highest risk. Table 4.6 gives an example.

These findings can be interpreted in terms of the properties of the random

network models. In the WS network, the ic is probably high due to the short

path lengths and high clustering coefficient, which causes opinions to be strongly

moderated. In the BA network, the existence of high-degree hubs along with a fat

tail of small-degree nodes may cause considerable ec between these hubs (which

are strongly moderated) and their surrounding nodes (which are moderated only

by very few nodes).

4.5.2.2 Empirical study of the local optima of ACR with different conflict

measures

We used the coordinate and conditional gradient descent methods to optimize the

ACR (i.e., Tr (M∗)) until convergence, to investigate the structure of the network

4All code is available at https://github.com/aida-ugent/conflictrisk-public
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at the local minima. The following findings complement and corroborate the the-

oretical analysis of the local minima from the previous section.

Internal Conflict In our experiments, after convergence the network always con-

tains no edges. As in that case internal and expressed opinions coincide, the

ic is then equal to zero, this is obviously the global minimum.

External Conflict In our experiments, the local minima always contained sets of

disconnected subgraphs that are cliques, trees, and chains, and sometimes

cliques with a chain attached to one of its nodes. Yet, the particular local

minimum found differs for different initial graphs, and also slightly for the

different algorithms and choices of k′.

Controversy The local minimum found is always the completely connected graph.

While this problem is not known to be convex, we conjecture that it has only

one local minimum.

Resistance We know from theory that this ACR minimization for resistance is a

convex problem. Thus, the minimum found is always the global minimum,

namely the complete graph.

Clearly the ec, which is arguably the most relevant among the conflict measures

in practice, also exhibits the most complex behavior. One example of how the

network changes when minimizing the ec is shown in Fig. 4.2, where the bottom

network is the local minimum for the network on the top. Typical adjustments

during both the coordinate descent and the conditional gradient algorithm are: a

chain of three nodes always forms a triangle (see node 25, 48, 50); two nodes at the

same end of a chain/tree will always be connected (see node 14, 27); connections

that are not strong enough will break (see node 36 between node 12 and 15).

Remark 2. Interestingly, the structures at the local optima of the ACR for ec seem

to correspond with common management structures in companies: a flat organi-

zation corresponds to a clique, while a hierarchical organization corresponds to

a tree. Management practice may well have evolved this way in part because it

minimizes conflict.

In the sequel, for conciseness we focus on the ec alone, as this is arguably the

most useful and most interesting measure.

4.5.2.3 Effectiveness of minimizing ACR versus WCR for ec

Here we investigate the effectiveness of both ACR and WCR. In particular, we

investigated on one ER network and the Karate network how the ACR, WCR, and

the conflict for three different internal opinion vectors, evolved over consecutive

iterations. The three fixed opinion vectors include a random vector s1, and two
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Figure 4.2: Optimization of the ACR of ec on an ER network (n = 50, p = 0.03) with

gradient descent (k′ = 2).

vectors found as sign(v) where v is an eigenvector of the Laplacian: the 10th

smallest (i.e. low-frequency on the graph, s2) as well as the n − 10th (i.e. high-

frequency on the graph, s3).

Figure 4.3 shows that the optimization for ACR will not necessarily improve

the WCR, and also does not improve the ec for the low-frequency vector s2, while

the optimization over the WCR always decreases also the ACR and the risks for all

three given opinion vectors. The fact that the WCR is an upper bound for the ACR

as well as for the conflict for any given internal opinion vector probably explains

this. Yet, it is remarkable that minimizing the more robust measure WCR does not

seem to reduce much the rate at which also the ACR reduces.
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Figure 4.3: The ACR, WCR, and conflict for the three described internal opinion vectors

over consecutive iterations. (a), (b) are based on an ER model (n = 50,m = 60) with

gradient descent k′ = 1; (c), (d) on Karate with coordinate descent.

4.5.2.4 How does the performance of conditional gradient descent compare

to that of coordinate descent?

The following experiment illustrates our observation that conditional gradient de-

scent typically converges to a better local minimum than coordinate descent. This

may be because conditional gradient descent can make larger steps at each itera-

tion, thus allowing it to escape bad local minima more easily. Figure 4.4 shows an

example of their different performances, which is consistent with our theoretical

conclusion in Sec. 4.4 about local optima structures, i.e., larger complete graphs

contains less external conflict ACR than smaller ones adding to the same size.

4.5.2.5 Real-world networks

We now summarize the main findings here. The ACR for the Karate network is

minimized by forming a complete network for ec, c and r, and the network without
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Figure 4.4: Optimal results using the two algorithms. (a) is the original graph; (b) is the

result of coordinate descent; (c) is the result of gradient descent with k′ = 5 at each

iteration; (d) is the result of gradient descent with k′ = 25.

edge for ic. Connections within the ‘friend circles’ in the Facebook network are

found to be strengthened when minimizing the ec ACR, while those between cir-

cles are gradually deleted: the originally connected network is ultimately divided

into several connected components as the optimization continues. It takes 3 to 5

seconds for one coordinate step on Facebook dataset at the beginning and the time

increases as edges are added, which is acceptable in practice.

4.6 Related Work

Social network analysis research almost invariably relies on data from online social

media and microblogging sites. In particular Twitter [11, 25, 26, 77] is often the

scene of controversial debates. Notable studies are Conover et al., who performed
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research on the retweet and mention networks from Twitter, and differentiated

between the two mechanisms [11], and Garimella et al., who used conversation

graphs obtained from twitter to quantify controversy for any topic [25]. While

online social media expose the users to various kinds of opinions, the effects of

‘filter bubbles’ and ‘echo chamber’ have attracted increasing amounts of attention

in recent years [89, 90]: when people only get information that corroborates their

own opinions and communicate only with like-minded people, there is a risk that

society will be increasingly fragmented and polarized, although there is an ongoing

debate about this issue [89].

Research about polarization and controversy has so far mostly focused on po-

litical issues. Morales et al. studied the emergence of political polarization and

quantified its effects by a polarization index [26]. Akoglu quantified the politi-

cal polarity of individuals and political issues by doing classification and ranking

tasks [12]. It defines a node classification task on edge-signed (+/-) bipartite opin-

ion network, then predicts latent political classes of people and opinion subjects

and ranks people and issues.

Opinion formation models are not always used; some prior work focuses on

the underlying structure of the social network, or assumes there are only two

groups for ‘pro’ and ‘contra’. Coletto et al. used only local patterns of user in-

teractions (motifs) [79]. Guerra et al. focused on the nodes in the community

boundaries [77]. Random Walk Controversy (RWC) scores are used to quantify

controversy in [25] as the difference between the properties of a random walk end-

ing in different opinion partitions. Amin et al. studied the problem of identifying

and separating polarization using a matrix factorization based gradient descent al-

gorithm [30].

Different measures have been proposed for quantifying polarization or contro-

versy. Modularity is regarded as a traditional measure for polarization [78], but

Guerra et al. argue that it is not a good measure since non-polarized networks may

also be divided into modular communities in [77]. Then they proposed their novel

polarization metric P based on boundary nodes and found that polarized networks

tend to have low concentration on high-degree nodes in the boundary between

two communities. The Social Network Distance (SND) is a distance measure that

quantifies the likelihood of evolution of one snapshot of a social network into

another snapshot under a chosen opinion dynamic model in [91]. To quantify con-

troversy in social networks in any topic domain, a three-step pipeline is proposed

in [25]. It was found that the RWC outperformed many other controversy mea-

sures, including the betweenness, embedding, boundary connectivity, and dipole

moment.

A major and increasingly important focus of research is whether polarization

and controversy can be engineered, e.g. by editing the graph or affecting opin-

ions of a selected set of individuals. In [31], the edge-recommendation problem is
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studied based on the endorsement graph, with the goal to reduce the controversy

score (namely the RWC), and the acceptable probability of the recommended edge

is taken into account. The addition of edges is discussed in [24] in order to reduce

the social cost, namely the lack of agreement in the network, and it is argued as

intuitive because the exposure to opposite opinions can reduce disagreement. The

expressed opinion vector z above is obtained at the Nash Equilibrium in the so-

cial game of opinion formation [24]. Moreover, they firstly studied the problem

of moderating people’s opinions to reduce the polarization. Based on the same

opinion formation dynamics, the promotion problem called the CAMPAIGN was

studied in [9]. It aimed to promote a product by setting the expressed opinions of

k nodes to 1 such that the overall opinions g (z) over the network can be maxi-

mized. The expressed opinion zi represents the affection of node i for the product,

and it lies in the range from 0 to 1. This work provides a good example of shift-

ing from the problem of measuring opinion differences to the area of influence

maximization.

4.7 Conclusions and Further work

Research into the formation of conflict, disagreement, and related concepts was

until recently the subject of the social sciences only. Today however, the fact

that opinion formation takes place increasingly on online social platforms creates

new possibilities to address related issues from a computer science perspective,

building on models of opinion formation from the social sciences. Specifically, it

creates the potential to quantify, mitigate, and reduce conflict and disagreement.

Prior research on this topic has focused on a single issue of controversy, and the

reduction of conflict on this issue, in particular by manipulating the structure of

the network.

In this paper we included a small survey of existing measures, and identified

an insightful identity between them that amounts to a conservation law of conflict.

However, we also argued that reducing one of these measures of conflict for a

single issue is problematic, reducing conflict on a single issue may increase it for

another. Indeed, in practice a network is not tied to a single issue, and even when

it is, the individual opinions may be hard to gauge. To resolve this, we take a

novel perspective on this problem, focusing on identifying a limited number of

edges to add or remove in the network so as to reduce the risk of conflict, both on

average and in the worst-case over all possible opinions. We have demonstrated

the usefulness of these characterizations of conflict risk, studied their behavior

in a range of networks, developed effective algorithms for optimizing them, and

confirmed that their minimization minimizes actual risk on some random opinion

assignments.

In further work, we plan to investigate further the theoretical properties of these
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measures, in particular of the worst-case risk. Additionally, we plan to improve

our implementations and investigate other algorithmic improvements for enhanced

scalability.



5
ALPINE: Active Link Prediction using

Network Embedding

Abstract Many real-world problems can be formalized as predicting links in a

partially observed network. Examples include Facebook friendship suggestions,

the prediction of protein–protein interactions, and the identification of hidden re-

lationships in a crime network. Several link prediction algorithms, notably those

recently introduced using network embedding, are capable of doing this by just

relying on the observed part of the network. Often, whether two nodes are linked

can be queried, albeit at a substantial cost (e.g., by questionnaires, wet lab exper-

iments, or undercover work). Such additional information can improve the link

prediction accuracy, but owing to the cost, the queries must be made with due con-

sideration. Thus, we argue that an active learning approach is of great potential

interest and developed ALPINE (Active Link Prediction usIng Network Embed-

ding), a framework that identifies the most useful link status by estimating the

improvement in link prediction accuracy to be gained by querying it. We proposed

several query strategies for use in combination with ALPINE, inspired by the op-

timal experimental design and active learning literature. Experimental results on

real data not only showed that ALPINE was scalable and boosted link prediction

accuracy with far fewer queries, but also shed light on the relative merits of the

strategies, providing actionable guidance for practitioners.
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5.1 Introduction

Network embedding and link prediction: Network embedding methods [36], also

known as graph representation learning methods, map nodes in a graph onto low-

dimensional real vectors, which can then be used for downstream tasks such as

graph visualization, link prediction, node classification, and more. Our focus in

this paper was on the important downstream task of link prediction.

The purpose of link prediction in networks is to predict future interactions

in a temporal network (e.g., social links among members in a social network)

or to infer missing links in static networks [33]. Applications of link prediction

in networks range from predicting social network friendships, consumer-product

recommendations, citations in citation networks, to protein–protein interactions.

While classical approaches for link prediction [34] remain competitive for now,

link prediction methods based on the state-of-the-art network embedding methods

already match and regularly exceed them in performance [35].

Active learning for link prediction: An often-ignored problem affecting all

methods for link prediction, and those based on network embedding in particu-

lar, is the fact that obtaining information on the connectivity of a network can be

challenging, slow, or expensive. As a result, in practice, networks are often only

partially observed [48], while for many node pairs, the link status remains un-

known. For example, an online consumer-product network is far from complete as

the consumption offline or on other websites is hard to track; some crucial relation-

ships in crime networks can be hidden intentionally; in biological networks (e.g.,

protein interaction networks), wet lab experiments may have established or ruled

out the existence of links between certain pairs of biological entities (e.g., interac-

tions between proteins), while due to limited resources, for most pairs of entities,

the link status remains unknown. Moreover, in many real-world networks, new

nodes continuously stream in with very limited information on their connectivity

to the rest of the network.

In many of these cases, a budget is available to query an “oracle” (e.g., human

or expert system) for a limited number of as-yet unobserved link statuses. For

instance, wet lab experiments can reveal missing protein–protein interactions, and

questionnaires can ask consumers to indicate whether they have seen particular

movies before or have a friendship relation with a particular person. Of course,

the link statuses of some node pairs are more informative than those of the others.

Given the typically high cost of such queries, it is thus of interest to identify those

node pairs for which the link status is unobserved, but for which knowing it would

add the most value. Obviously, this must be performed before the query is made

and thus before the link status is known.

This kind of machine learning setting, where the algorithm can decide for

which data points (here: node pairs) it wishes to obtain a training label (here:
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link status), is known as active learning. While active learning for the particular

problem of link prediction is not new [92–95], it has received far less attention than

active learning for standard classification or regression problems, and the use of

active learning for link prediction based on network embedding methods has to the

best of our knowledge remained entirely unexplored. Studying this is the main aim

of this paper: Can we design active learning strategies that identify the node pairs

with unobserved link status, of which knowing the link status would be maximally

informative for the network embedding-based link prediction? To determine the

utility of a candidate node pair, we focused on the link prediction task: querying

a node pair’s link status is deemed more useful if the embedding found with this

newly obtained link status information is better for the important purpose of link

prediction.

Partially observed networks: To solve this problem, a distinction should be

made between node pairs that are known to be unlinked and node pairs for which

the link status is not known. In other words, the network should be represented

as a partially observed network, with three node pair statuses: linked, unlinked,

and unknown. The node pairs with unknown status are then the candidates for

querying, and if the result of a query indicates that they are not linked, actual

information is added. This contrasts with much of the state-of-the-art in network

embedding research, where unlinked and unknown statuses are not distinguished.

Thus, the active learning strategies proposed will need to build on a network

embedding method that naturally handles partially observed networks. Given such

a method, we then need an active learning query strategy for identifying the un-

known candidate link statuses with the highest utility. After querying the oracle

for the label of the selected link status, we can use it as additional information

to retrain the network embedding model. In this way, more and more informative

links and non-links become available for training the model, maximally improving

the model’s link prediction ability with a limited number of queries.

The ALPINE framework: We proposed the ALPINE (Active Link Prediction

usIng Network Embedding) framework, the first method using active learning for

link prediction based on network embedding, and developed different query strate-

gies for ALPINE to quantify the utilities of the candidates. Our proposed query

strategies included simple heuristics, as well as principled approaches inspired by

the active learning and experimental design literature. ALPINE was based on a

network embedding model called Conditional Network Embedding (CNE) [37],

whose objective function is expressed analytically. There are two reasons why we

chose to build our work on CNE. The first is that, as we will show, CNE can be

easily adapted to work for partially observed networks, as opposed to other pop-

ular network embedding methods (including those based on random walks). The

second reason is that CNE is an analytical approach (not relying on random walks

or sampling strategies), and thus allowed us to derive mathematically principled
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active learning query strategies. Yet, we note that ALPINE can be applied also to

other existing or future network embedding methods with these properties.

Illustrative example: To illustrate the idea of ALPINE, we give an example on

the Harry Potter network [96]. The network originally had 65 nodes and 223 ally

links, but we only took its largest connected component of 59 characters and 218

connections. Note that enemy relation was not considered. We assumed that the

network was partially observed: the links and non-links for all characters except

“Harry Potter” (the cyan star) were assumed to be fully known, and for Harry

Potter, only his relationship with “Rubeus Hagrid” (the green plus) was observed

as linked and with “Lord Voldemort” (the red x) as unlinked. The goal was to

predict the status of the unobserved node pairs, i.e., whether the other nodes (the

circles) were allies of “Harry Potter”. Suppose we have a budget to query five

unobserved relationships. We thus want to select the five most informative ones.

ALPINE can quantify the informativeness of the unknown link statuses, using

different query strategies. Shown in Table 5.1 are the top five queries selected by

strategies max-deg., max-prob., and max-ent., which are defined in Section 5.4.

Nodes mentioned in the table are highlighted with character names in Figure 5.1.

Strategy max-deg. suggests to query the relationships among Harry and the high-

degree nodes—those who are known to have many allies. Strategy max-prob.

selects nodes that are highly likely to be Harry’s friends based on the observed

part of the network. Finally, max-ent. proposes to query the most uncertain re-

lationships. A more detailed discussion of these results and a thorough formal

evaluation of ALPINE are left for Section 5.5, but the reader may agree that the

proposed queries are indeed intuitively informative for understanding Harry’s so-

cial connections.

Table 5.1: Top-5 Query Selections for the Three Strategies of ALPINE.

Strategy max-deg. max-prob. max-ent.

1 Ron Weasley Ron Weasley Albus Dumbledore

2 Albus Dumbledore Hermione Granger Grawp

3 Hermione Granger Albus Dumbledore Minerva McGonagall

4 Ginny Weasley Grawp Severus Snape

5 Sirius Black Minerva McGonagall Aragog

Contributions: The main contributions of this paper are:

• We proposed the ALPINE framework for actively learning to embed par-

tially observed networks by identifying the node pairs with an as-yet un-

observed link status of which the link status is estimated to be maximally

informative for the embedding algorithm (Section 5.3).

• To identify the most informative candidate link statuses, we developed sev-

eral active learning query strategies for ALPINE, including simple heuris-
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Sirius Black

Albus Dumbledore

Hermione Granger

Minerva McGonagall

Severus Snape

Ginny Weasley

Ron Weasley

Aragog

Grawp

Harry Potter

Rubeus Hagrid

Lord Voldemort

other nodes

Figure 5.1: Harry Potter network with suggestions from Table 5.1 highlighted.

tics, uncertainty sampling, and principled variance reduction methods based

on D-optimality and V-optimality from experimental design (Section 5.4).

• Through extensive experiments 1, (1) we showed that CNE adapted for par-

tially observed networks was more accurate for link prediction and more

time efficient than when considering unobserved link statuses as unlinked

(as most state-of-the-art embedding methods do), and (2) we studied the

behaviors of different query strategies under the ALPINE framework both

qualitatively and quantitatively (Section 5.5).

5.2 Background

Before introducing the problem we studied and the framework we proposed, in

this section, we first survey the relevant background and related work on active

learning and network embedding.

1The source code of this work is available at https://github.com/aida-ugent/alpine public, accessed

on 17 October, 2020)
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5.2.1 Active Learning and Experimental Design

Active learning is a subfield of machine learning, which aims to exploit the situa-

tion where learning algorithms are allowed to actively choose (part of) the training

data from which they learn, in order to perform better. It is particularly valuable

in domains where training labels are scarce and expensive to acquire [97–99], and

thus where a careful selection of the data points for which a label should be ac-

quired is important. The success of an active learning approach depends on how

much more effective its choice of training data is, when compared to random ac-

quisition, also known as passive learning. Mapped onto the context of our work,

the unlabeled “data points” are node pairs with an unknown link status, and an

active learning strategy would aim to query the link statuses of those that are most

informative for the task performed by the network embedding model. Of particular

interest to the current paper is pool-based active learning, where a pool of unla-

beled data points is provided, and a subset from this pool may be selected by the

active learning algorithm for labeling by a so-called oracle (this could be, e.g., a

human expert or a biological experiment). In the present context, this would mean

that the link status of only some of the node pairs can be queried.

Active learning is closely related to optimal experimental design in statis-

tics [100], which aims to design optimal “experiments” (i.e., the acquisition of

training labels) with respect to a statistical criterion and within a certain cost bud-

get. The objective of experimental design is usually to minimize a quantity related

to the (co)variance matrix of the estimated model parameters or of the predictions

this model makes on the test data points. In models estimated by the maximum

likelihood principle, a crucial quantity in experimental design is the Fisher infor-

mation: it is the reciprocal of the estimator variance, thus allowing one to quantify

the amount of information a data point carries about the parameters to be estimated.

While studied for a long time in statistics, the idea of estimator variance min-

imization first showed up in the machine learning literature for regression [101],

and later, the Fisher information was used to judge the asymptotic values of the

unlabeled data for classification [102]. Yet, despite this related work in active

learning and the rich and mature statistical literature on experimental design for

classification and regression problems, to the best of our knowledge, the concept

of variance reduction has not yet been studied for link prediction in networks or

network embedding.

5.2.2 Network Embedding and Link Prediction

The confluence of neural network research and network data science has led to

numerous network embedding methods being proposed in the past few years.

Given a (undirected) network G = (V,E) with nodes V and edges E ⊆
(

V
2

)

,

the goal of a network embedding model is to find a mapping f : V → R
d from
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nodes to d-dimensional real vectors. The embedding of a network is denoted as

X = [x1,x2, . . . ,xn]
T ∈ R

n×d. In short, network embedding methods aim to

find embeddings such that first-order [37] or sometimes higher order [103, 104]

proximity information between nodes is well approximated by some distance mea-

sure between the embeddings of the nodes. In this way, they aim to facilitate a

variety of downstream network tasks, including graph visualization, node classifi-

cation, and link prediction.

For the link prediction task, a network embedding model uses a function g :

R
d × R

d → R evaluated on xi and xj to compute the probability of nodes i and

j being linked. In practice, g can be found by training a classifier (e.g., logistic

regression) on a set of linked and unlinked node pairs, while it can also follow

directly from the network embedding model. The method CNE, on which most of

the contributions in the present paper were based, belongs to the latter type. With

A ∈ {0, 1}n×n the adjacency matrix of a network G = (V,E) (i.e., aij = 1 if

{i, j} ∈ E and zero otherwise), the goal of CNE is to find an embedding, denoted

as X∗, that maximizes the probability of the network given that embedding [37]:

P (G|X) =
∏

{i,j}∈E

P (aij = 1|X) ·
∏

{k,l}/∈E

P (akl = 0|X), (5.1)

where P (aij = 1|X) = g(xi,xj) for a suitably defined g (see [37] for details).

A problem with all existing network embedding methods we are aware of is

that they treat unobserved link statuses in the same way they treat unlinked sta-

tuses. For example, in methods based on a skip gram with negative sampling, such

as DeepWalk [103] and node2vec [104], the random walks for determining node

similarities traverse via known links, avoiding the unobserved node pairs and thus

treating them in the same way as the unlinked ones. Similarly, the more recently

introduced Graph Convolutional Networks (GCNs) [105] allow nodes to recur-

sively aggregate information from their neighbors, again without distinguishing

unobserved from unlinked node pair statuses. We argue that this makes existing

methods suboptimal for link prediction in the practically common situation when

networks are only partially observed. This has gone largely unnoticed in the liter-

ature, probably because partially observed networks do not tend to be used in the

empirical evaluation setups in the papers where these methods were introduced.

The failure to recognize the crucial distinction between unobserved and un-

linked node pair statuses has also precluded research on active learning in this

context. Indeed, the pool will be a subset of the set of unobserved node pairs, and

an unlinked result of a query will add value to the embedding algorithm only if the

unobserved status was not already treated as unlinked. Thus, in order to do active

network embedding for link prediction, it is essential to distinguish the two links’

status.

While CNE was not originally introduced for embedding partially observed

networks, it is easily adapted for this purpose (this is not the case, e.g., for skip
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gram-based methods based on random walks). We will show how this is performed

in Section 5.3.1. This is an important factor contributing to our choice for using

this model in this paper.

5.2.3 Related Work

Our work sits at the intersection of three topics: active learning, network em-

bedding, and link prediction. There exists work on the combinations of any two,

but not all three of them. Most prominently, link prediction is a commonly con-

sidered downstream task of network embedding [36], but active learning has not

been studied in this context. Research on active network embedding has focused

on node classification [98, 106, 107], but link prediction was not considered as a

downstream task in this literature. Finally, active learning for link prediction is not

new either [92, 93, 95], but so far, it has been studied in combination with more

classical techniques than network embedding. Thus, to the best of our knowledge,

the present paper is the first one studying the use of active learning for network

embedding with link prediction as a downstream task. Given the promise network

embedding methods have shown for link prediction, we believe this is an important

gap to be filled.

Work on active learning for graph-based problems has focused on node and

graph classification, as well as on various tasks at the link level [99, 108]. The

graph classification task considers data samples as graph objects, useful, e.g., for

drug discovery and subgraph mining [109], while the node classification aims to

label nodes in graphs [110–113]. Active learning has also been used for predict-

ing the sign (positive or negative) of edges in signed networks, where some of

the edge labels are queried [92]. Similarly, given a graph, Jia et al. [94] studied

how edge flows can be predicted by actively querying a subset of the edge flow

information, to help with sensor placement in water supply networks. All these

methods are only laterally relevant to the present paper, in that their focus is not

on link prediction.

The methods most strongly related to our work are the ActiveLink frame-

work [93] and the approach called HALLP [95].

ActiveLink is designed for link prediction in knowledge graphs and has as its

aim to speed up the training of the deep neural link predictors by actively selecting

the training data [93]. More specifically, the method selects samples from the

multitriples constructed according to the training triples. As link prediction in a

knowledge graph with only one relation (one predicate) is equivalent with link

prediction in a standard graph as considered in this paper, ActiveLink appears to

be a meaningful baseline for our paper. However, when applied to a standard graph

in this way, ActiveLink would work by querying all node pairs involving a set of

selected nodes (or, in terms of the adjacency matrix, it would query entire rows or
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columns). Thus, this strategy would learn the entire neighborhood of the selected

nodes, but very little about the rest of the network. While this strategy may be

sensible in the case of a knowledge graph where information about one relation

may also be informative about other relations, it is clearly not useful for standard

graphs. This excludes ActiveLink as a reasonable baseline.

HALLP (Hybrid Active Learning approach for Link Prediction), on the other

hand, proposes an active learning method for link prediction in standard net-

works [95], demonstrating a benefit over passive learning. However, both HALLP’s

link prediction method (based on a Support Vector Machine (SVM) [114]) and its

active learning query strategy utilize a pre-determined set of features rather than a

learned model such as a network embedding. The query strategy attempts to select

node pairs for which the link prediction is most uncertain. Specifically, HALLP

considers two link prediction models for calculating these uncertainties for the

candidate node pairs, defining the utility of a candidate node pair as follows:

uA(i, j) = c1ulocal(i, j) + c2uglobal(i, j). (5.2)

Here, ulocal(i, j) is the so-called local utility that measures the uncertainty

of a linear SVM link prediction model, uglobal(i, j) is the so-called global utility

based on the hierarchical random graph link predictor [115], and c1 and c2 are two

coefficients. Interestingly, HALLP uses all unlinked node pairs as candidate node

pairs. Thus, HALLP also does not distinguish between the unlabeled and unlinked

statuses, and the discovery of non-links is of no use because they will continue

to be treated as unlinked. Despite these qualitative shortcomings, HALLP can be

used as a baseline for our work, and we included it as such in our quantitative

evaluation in Section 5.5.3.

5.3 The ALPINE Framework

In this section, we first show how CNE can be modified to use only the observed

information, after formally defining the concept of a partially observed network.

Then, we introduce the problem of active link prediction using network embedding

and propose ALPINE, which tackles the problem.

5.3.1 Network Embedding for Partially Observed Networks

Network embedding for partially observed networks differs from general network

embedding in the way it treats the unknown link statuses. It uses only the observed

links and non-links to train the model, where the unobserved part does not partici-

pate. We defined an (undirected) Partially Observed Network (PON) as follows:

Definition 1. A Partially Observed Network (PON) is a tuple G = (V,E,D)

where V is a set of n = |V | nodes and E ⊆
(

V
2

)

and D ⊆
(

V
2

)

the sets of
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node pairs with observed linked and observed unlinked status, respectively, where

E ∩ D = ∅. Thus, K , E ∪ D represents the observed (known) part, and

U ,
(

V
2

)

\K is the set of node pairs for which the link status is unobserved.

For convenience, we may also represent a PON by means of its adjacency

matrix A, with A ∈ {0, 1, null}n×n and aij at row i and column j equal to null if

{i, j} ∈ U , to one if {i, j} ∈ E, and to zero if {i, j} ∈ D.

Most network embedding methods (and methods for link prediction more gen-

erally) do not treat the known unlinked status differently from the unknown status,

such that the networks are embedded with possibly wrong link labels. This ap-

pears almost inevitable in methods based on random walks (indeed, it is unclear

how one could, in a principled manner, distinguish unlinked from unknown sta-

tuses in random walks), but also many other methods, such as those based on

matrix decompositions, suffer from this shortcoming. We now proceed to show

how CNE, on the other hand, can be quite straightforwardly modified to elegantly

distinguish unlinked from unknown status, by maximizing the probability only for

the observed part K of the node pairs:

P (G|X) =
∏

{i,j}∈E

P (aij = 1|X) ·
∏

{k,l}∈D

P (akl = 0|X). (5.3)

In this way, we do not have to assume that the unobserved links are absent, as

state-of-the-art methods do. Note that we only consider the known information in

E and D (rather than /∈ E), and the unknowns represented by U are not used for

training, as defined by Equation (5.3). Furthermore, the link probability in CNE

is formed analytically because the embedding is found by solving a Maximum

Likelihood Estimation (MLE) problem: X∗ = argmaxX P (G|X). Based on this,

later in Section 5.4, we will show how it also allows us to quantify the utility of an

unknown link status for active learning.

5.3.2 Active Link Prediction using Network Embedding—The

Problem

After embedding the PON, we can use the model to predict the unknown link

statuses. Often, however, an “oracle” can be queried to obtain the unknown link

status of node pairs from U at a certain cost (e.g., through an expensive wet lab

experiment). If this is the case, the query result can be added to the known part

of the network, after which the link predictions can be improved with this new

information taken into account. By carefully querying the most informative nodes,

active learning aims to maximally benefit from such a possibility at a minimum

cost. More formally, this problem can be formalized as follows.

Problem 1 (ALPINE). Given a partially observed network G = (V,E,D), a

network embedding model, a budget k, a query-pool P ⊆ U , and a target set
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T ⊆ U containing all node pairs for which the link statuses are of primary interest,

how can we select k node pairs from the pool P such that, after querying the link

status of these node pairs, adding them to the respective set E or D depending

on the status, and retraining the model, the link predictions made by the network

embedding model for the target set T are as accurate as possible?

The pool P defines the candidate link statuses, which are unobserved but ac-

cessible (i.e., unknown but can be queried with a cost), while the target set T is

the set of link statuses that are directly relevant to the problem at hand. Of course,

in solving this problem, both the link prediction task and the active learning query

strategy should be based only on the observed information K = E ∪D.

The problem is formalized in its general form and can become specific de-

pending on the data accessibility (represented by P ) and the link prediction task

(represented by T ). The pool P may contain all the unobserved information or

only a small subset of it. Sets T and P may coincide, overlap non-trivially, or be

disjoint, depending on the application. We experiment with various options in our

quantitative evaluation in Section 5.5.3.

5.3.3 The ALPINE Framework

To tackle the problem of active network embedding for link prediction, we pro-

posed ALPINE, a pool-based [99] active link prediction approach using network

embedding and, to the best of our knowledge, the first method for this task. Our im-

plementation and evaluation of ALPINE was based on CNE, but we stress that our

arguments can be applied in principle to any other network embedding method of

which the objective function can be expressed analytically. The framework works

by finding an optimal network embedding for a given PON G = (V,E,D), select-

ing one or a few candidate node pairs from the pool P ⊆ U with U =
(

V
2

)

\(E∪D)

to query the connectivity according to a query strategy, updating the PON with the

new knowledge provided by querying the oracle, and re-embedding the updated

PON. The process iterates until a stopping criterion is met, e.g., the budget is ex-

hausted or the predictions are sufficiently accurate.

The PON can be embedded by the modified CNE, and the active learning query

strategy, which evaluates the informativeness of the unlabeled node pairs, is the

key to our pool-based active link prediction with network embedding. Defined by

a utility function uA,X : V × V → R, the query strategy ranks the unobserved

link statuses and selects the top ones for querying. The utility quantifies how

useful knowing that link status is estimated to be for the purpose of increasing the

link prediction accuracy for node pairs in T . Specifically, each query strategy will

select the next query for an appropriate uA,X as:

argmax
{i,j}∈P

uA,X(i, j).
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In practice, not just the single best node pair (i.e., argmax) is selected at each

iteration, but the s best ones, with s referred to as the step size.

In summary, given a PON G = (V,E,D), a network embedding model, a

query strategy defined by its utility function uA,X, a pool P ⊆ U , a target set

T ⊆ U , a step size s, and a budget k (number of link statuses in P that can be

queried), ALPINE iteratively queries an oracle for the link status of s node pairs,

selected as follows:

• At iteration i = 0, initialize the pool as P0 = P , and the set of node pairs

with known link status as K0 = E ∪D, and initialize G0 = G and A0 = A;

• Then, repeat:

1. Compute the optimal embedding X∗
i for Gi;

2. Find the set of queries Qi ⊆ Pi of size |Qi| = min(s, k) with the

largest utilities according to uAi,X∗

i
(and T );

3. Query the oracle for the link statuses of node pairs in Qi, set Pi+1 ←
Pi \ Qi, and set Gi+1 equal to Gi with node pairs {i, j} ∈ Qi added

to the set of known linked or unlinked node pairs (depending on the

query result), then set Ai+1 accordingly;

4. Set k ← k − |Qi|, and break if k is zero.

In this formulation, ALPINE stops when the budget is used up. An optional

criterion is surpassing a pre-defined accuracy threshold on T .

5.4 Query Strategies for ALPINE

Now, we introduce a set of active learning query strategies for ALPINE, each of

which is defined by its utility function uA,X. For reference, an overview of all

strategies is provided in Table 5.2.

The first four (page-rank. max-deg., max-prob., and min-dis.) are heuristic

approaches that use the node degree and link probability information. The fifth

(max-ent.) is uncertainty sampling, and the last two (d-opt. and v-opt.) are

based on variance reduction. These last three strategies are directly inspired by the

active learning and experimental design literature for classical prediction problems

(regression and classification). From the utility functions in the last column of the

table, we see that the first two strategies do not depend on the embedding model,

while the other five are all embedding based. Only for the last strategy (v-opt.) is

the utility function a function of the target set T .



THE ALPINE FRAMEWORK 83

Table 5.2: Summary of the Query Strategies for ALPINE.

Strategy Definition Utility Function

page-rank. PageRank score sum uA(i, j) = PRi + PRj

max-deg. Degree sum uA(i, j) =
∑

k:(i,k)∈E aik +
∑

l:(j,l)∈E ajl
max-prob. Link probability uA,X∗(i, j) = P (aij = 1|X∗)
min-dis. Node pair distance uA,X∗(i, j) = −||x∗

i − x∗
j ||2

max-ent. Link entropy uA,X∗(i, j) = −∑aij=0,1 P (aij |X∗) logP (aij |X∗)

d-opt. Parameter variance reduction uA,X∗(i, j) = ux∗

i
(i, j) + ux∗

j
(i, j)

v-opt. Prediction variance reduction uA,X∗(i, j) =
∑

k:(i,k)∈T uik(i, j) +
∑

l:(j,l)∈T ujl(i, j)

5.4.1 Heuristics

The heuristic strategies includes the degree- and probability-based approaches for

evaluating the utility of the candidate node pairs. Intuitively, one might expect

the connections between high-degree nodes to be important in shaping the net-

work structure; thus, we proposed two degree-related strategies: page-rank. and

max-deg. Meanwhile, as networks are often sparse, queries that result in the dis-

covery of new links—rather than the discovery of non-links—are considered more

informative, and this idea leads to the max-prob. and min-dis. strategies.

With strategy page-rank., each candidate node pair is evaluated as the sum

of both nodes’ PageRank scores [116]: uA(i, j) = PRi + PRj , while for max-

deg., the utility is defined as the sum of the degrees: uA(i, j) =
∑

k:{i,k}∈E aik +
∑

l:{j,l}∈E ajl. The probability-based strategies both tend to query node pairs

that are highly likely to be linked. This is true by definition for max-prob.:

uA,X∗(i, j) = P (aij = 1|X∗) and approximately true for min-dis.: uA,X∗(i, j) =

−||x∗
i − x∗

j ||2, as nearby nodes in the embedding space are typically linked with a

higher probability.

5.4.2 Uncertainty Sampling

Uncertainty sampling is perhaps the most commonly used query strategy in active

learning [99]. It selects the least certain candidate to label, and entropy is widely

used as the uncertainty measure. In active network embedding for link prediction,

a node pair with an unknown link status can be labeled as unlinked (zero) or linked

(one). According to the link probabilities obtained from the learned network em-

bedding model, the entropy of a node pair’s link status is:

uA,X∗(i, j) = −P ∗
ij log(P

∗
ij)− (1− P ∗

ij) log(1− P ∗
ij),

where P ∗
ij = P (aij = 1|X∗). It defines the max-ent. strategy that selects the most

uncertain candidate link status to be labeled by the oracle. Intuitively, knowing the

most uncertain link status maximally reduces the total amount of uncertainty in

the unobserved part, although indirect benefits of the queried link status on the

model’s capability to predict the status of other node pairs are not accounted for.
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5.4.3 Variance Reduction

In the literature on experimental design, a branch of statistics that is closely re-

lated to active learning, the optimality criteria are concerned with two types of

variance: the variance of the parameter estimates (D-optimality) and the variance

of the predictions using those parameter estimates (V-optimality) [100]. We pro-

pose to quantify the utility of the candidate link statuses, based on how much they

contribute to the variance reduction that was of our interest. D-optimality [117]

aims to minimize the parameter variance estimated through the inverse determi-

nant of the Fisher information. V-optimality [118, 119] minimizes the average

prediction variance over a specified set of data points, which corresponds to the

target set T for our problem. Since both optimality criteria largely depend on the

Fisher information matrix, we give details on the Fisher information for CNE first.

Then, the two variance reduction query strategies is formally introduced.

5.4.3.1 The Fisher Information for the Modified CNE

In ALPINE, the modified CNE finds a locally optimal embedding X∗ as the Max-

imum Likelihood Estimator (MLE) for the given PON G = (V,E,D), i.e., X∗

maximizes P (G|X) in Equation (5.3) w.r.t. X. The variance of an MLE can be

quantified using the Fisher information [120]. More precisely, the Cramer–Rao

bound [121] provides a lower bound on the variance of an MLE by the inverse of

the Fisher information: Var(X∗) � I(X∗)−1. Although the Fisher information

can often not be computed exactly (as it requires knowledge of the data distribu-

tion), it can be effectively approximated by the observed information [122]. For

the modified CNE, this observed information for the MLE x∗
i , the embedding of

node i, is given by (proof in Appendix 5.A):

I(x∗
i ) = γ2

∑

{i,j}/∈U

P ∗
ij(1− P ∗

ij)(x
∗
i − x∗

j )(x
∗
i − x∗

j )
T , (5.4)

where γ is a CNE parameter. Thus, the variance of node i’s MLE embedding x∗
i

is bounded: Var(x∗
i ) � I(x∗

i )
−1.

5.4.3.2 Parameter Variance Reduction with D-Optimality

D-optimality stands for the determinant optimality, with which we want to min-

imize the estimator variance, or equivalently maximize the determinant of the

Fisher information, through querying the labels of the candidate node pairs [100,

117]. The estimated parameter in CNE is the embedding X. The utility of each

candidate node pair {i, j} is determined by the estimated variance reduction it

causes on the estimator—in particular the embeddings of both nodes i and j. As

those estimated variances are lower bounded by the inverse of their Fisher informa-
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tion, the d-opt. strategy seeks to minimize the bounds by maximizing the Fisher

information.

Intuitively, the determinant of the Fisher information measures the curvature of

the likelihood with respect to the estimator. A large curvature means a small vari-

ance as Var(xi) � I(xi)
−1, corresponding to a large value of D-optimality. The

smaller the bound of the parameter variance, or equivalently the more information,

the more stable the embedding, and thus, the more accurate the link predictions.

This motivates the d-opt. strategy.

The estimated information increase of knowing a candidate link status, which

we also called the informativeness of that link status, can thus be quantified by the

changes in the determinants of the Fisher information matrices of the embeddings

of both nodes. Querying the link status of node pair {i, j} ∈ P will reduce the

variance matrix bounds I(x∗
i )

−1 and I(x∗
j )

−1, as it creates additional information

on their optimal values. For x∗
i , its new Fisher information assuming {i, j} ∈

P has a known status, is denoted as Ij(x∗
i ) in Equation (5.5), and similarly for

x∗
j leading to Ii(x∗

j ). Using Equation (5.4), it is easy to see that Ij(x∗
i ) can be

calculated as an additive update to I(x∗
i ):

Ij(x∗
i ) = I(x∗

i ) + γ2P ∗
ij(1− P ∗

ij)(x
∗
i − x∗

j )(x
∗
i − x∗

j )
T . (5.5)

That estimated information increase is caused by the difference of determinants

between the old and the new Fisher information of x∗
i (and similarly for x∗

j ), shown

in Equation (5.6). As it is a rank one update in Equation (5.5), we can apply the

matrix determinant lemma [123] and write this amount of information change as

in Equation (5.7):

ux∗

i
(i, j) = det

[

Ij(x∗
i )
]

− det [I(x∗
i )] , (5.6)

= γ2P ∗
ij(1− P ∗

ij)(x
∗
i − x∗

j )
TI(x∗

i )
−1(x∗

i − x∗
j )det [I(x∗

i )] . (5.7)

Combining the information change from both nodes, the utility function of

d-opt. for a node pair {i, j} ∈ P is formally defined as:

uA,X∗(i, j) = ux∗

i
(i, j) + ux∗

j
(i, j). (5.8)

Finally, using Equation (5.7), the estimated information increase caused by

knowing the status of {i, j} ∈ P proves to be always positive and equal to:

uA,X∗(i, j) =

γ2P ∗
ij(1− P ∗

ij)(x
∗
i − x∗

j )
T
[

det [I(x∗
i )] I(x∗

i )
−1 + det

[

I(x∗
j )
]

I(x∗
j )

−1
]

(x∗
i − x∗

j ).

5.4.3.3 Prediction Variance Reduction with V-Optimality

V-optimality aims to select training data so as to minimize the variance of a set

of predictions obtained from the learned model [100, 118, 119]. The definition
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naturally fits the active network embedding for link prediction problem definition,

where we only care about the predictions of the target node pairs in T . Therefore,

the goal of the v-opt. strategy is to minimize the link prediction variance for the

target set T .

With CNE, the link prediction function g follows naturally from the model

P ∗
ij , g(x∗

i ,x
∗
j ) = P (aij = 1|X∗). What the V-optimality utility function quan-

tifies is then the estimated reduction that a candidate link status in the pool can

have on all the target prediction variance—Var(P ∗
ij) for (i, j) ∈ T . The challenge

to be addressed is thus the computation of the reduction in the variance Var(P ∗
ij).

We outline how this can be performed in two steps:

1. First, generate the expression of the prediction variance;

2. Then, define the query strategy as the utility function that quantifies the

variance reduction.

The prediction variance Var(P ∗
ij) can be computed using the first-order anal-

ysis (details in Appendix 5.B) and decomposed into contributions from both end

nodes, as in Equation (5.9):

Var(P ∗
ij) = Varx∗

i
(P ∗

ij) + Varx∗

j
(P ∗

ij) + 2Covx∗

i
,x∗

j
(P ∗

ij). (5.9)

Then, the bounds on the parameter variance can be used to bound the variance

on the estimated probabilities—Varx∗

i
(P ∗

ij)—as in Equation (5.10):

Varx∗

i
(P ∗

ij) ≥
[

γP ∗
ij(1− P ∗

ij)
]2

(x∗
i − x∗

j )
TI(x∗

i )
−1(x∗

i − x∗
j ), (5.10)

and similarly for Varx∗

j
(P ∗

ij).

Now, we can quantify the reduction caused by knowing the link status of a

candidate node pair. As discussed before, knowing the link status of a node pair

{i, j} ∈ P , represented by Equation (5.5), leads to a reduction of the bounds

I(x∗
i )

−1 and I(x∗
j )

−1, thus on Varx∗

i
(P ∗

ij) and Varx∗

j
(P ∗

ij), and on Var(P ∗
ij) due

to Equation (5.9). The last term Covx∗

i
,x∗

j
(P ∗

ij) in Equation (5.9) does not result in

any variance change, so it can be ignored. Putting things together allows defining

the V-optimality utility function for v-opt. and proves a theorem for computing it.

Definition 2. The V-optimality utility function uA,X∗ evaluated at {i, j} ∈ P

quantifies the reduction in the bound on the sum of the variances Var(P ∗
kl) (see

Equation (5.9) and (5.10)) of all P ∗
kl for {k, l} ∈ T , achieved by querying {i, j}.

Theorem 1. The V-optimality utility function is given by:

uA,X∗(i, j) =
∑

k:{i,k}∈T uik(i, j) +
∑

l:{j,l}∈T ujl(i, j),

where:

uik(i, j) = (γP ∗
ik(1− P ∗

ik))
2(x∗

i − x∗
k)

T (I(x∗
i )

−1 − Ij(x∗
i )

−1)(x∗
i − x∗

k),

ujl(i, j) = (γP ∗
jl(1− P ∗

jl))
2(x∗

j − x∗
l )

T (I(x∗
j )

−1 − Ii(x∗
j )

−1)(x∗
j − x∗

l ).
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Due to the fact that the Fisher information update in Equation (5.5) is rank one,

we can apply the Sherman–Morrison formula [124] to I(x∗
i )

−1 − Ij(x∗
i )

−1 and

rewrite uik(i, j) (and similarly for ujl(i, j)) as:

uik(i, j) =
γ4P ∗

ij(1− P ∗
ij)

1 + γ2P ∗
ij(1− P ∗

ij)djj(x
∗
i )

[P ∗
ik(1− P ∗

ik)]
2
dkj(x

∗
i )

2,

where djj(x
∗
i ) = (x∗

i −x∗
j )

TI(x∗
i )

−1(x∗
i −x∗

j ), dkj(x
∗
i ) = (x∗

i −x∗
k)

TI(x∗
i )

−1

(x∗
i − x∗

j ). Unsurprisingly, the variance reduction is always positive.

5.5 Experiments and Discussion

To evaluate our work, we first studied empirically how partial network embedding

with the modified CNE benefited the link prediction task. Then, we investigated

the performance of ALPINE with the different query strategies qualitatively and

quantitatively. Specifically, we focused on the following research questions in this

section:

Q1 What is the impact of distinguishing an “observed unlinked” from an “un-

observed” status of a node pair for partial network embedding?

Q2 Do the proposed active learning query strategies for ALPINE make sense

qualitatively?

Q3 How do the different active learning query strategies for ALPINE perform

quantitatively?

Q4 How can the query strategies be applied best according to the results?

Data: We used eight real-world networks of varying sizes in the experiments:

1. The Harry Potter network (used also in Section 5.1) is from the corre-

sponding novel. We used only the ally relationships as edges and its largest

connected component, which yielded a network with 59 nodes for the most

important characters and 218 ally links among them [96];

2. Polbooks is a network of 105 books about U.S. politics among which 441

connections indicate the co-purchasing relations [125];

3. C.elegans is a neural network of C.elegans with 297 neurons and 2148

synapses as the links [73];

4. USAir is a network of 332 airports connected through 2126 airlines [126];
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5. MP cc is a Twitter network we gathered in April 2019 for the Members of

Parliament (MP) in the U.K., which originally contained 650 nodes. We only

used its largest connected component of 567 nodes and 49,631 friendship

(i.e., mutual follow) connections;

6. Polblogs cc is the largest connected component of the U.S. Political Blogs

Network [125], containing 1222 nodes and 16,714 undirected hyperlink

edges;

7. PPI is a protein–protein interaction network with 3890 proteins and 76,584

interactions [127], and we used its largest connected component PPI cc of

3852 nodes and 37,841 edges after deleting the self-loops;

8. Blog is a friendship network of 10,312 bloggers from BlogCatalog, contain-

ing 333,983 links [128].

5.5.1 The Benefit of Partial Network Embedding

An important hypothesis underlying this work is that distinguishing an “observed

unlinked” status of a node pair from an “unknown/unobserved” status, as opposed

to treating both as absent, which is commonly performed, will enhance the perfor-

mance of network embedding. We now empirically investigated this hypothesis by

comparing CNE with its variant that performs partial network embedding: (1) the

original CNE defined by its objective function in Equation (5.1), which does not

make this distinction, and (2) the modified version that optimizes Equation (5.3),

which we called CNE K (i.e., CNE for the Knowns), which does make the dis-

tinction. Specifically, we compared the model fitting time and the link prediction

accuracy for both:

1. CNE: fit the entire network where the unobserved link status is treated as

unlinked;

2. CNE K: fit the model only for the observed linked and unlinked node pairs.

Setup: To construct a PON, we first initialized the observed information by

randomly sampling a node pair set K0 = E ∪ D that contained a proportion r0
of the complete information. The complete information means the total number

of links in the complete graph for a given number of nodes. For example, r0 =

10% means that 10% of the network link statuses are observed as either linked or

unlinked: if the network has n nodes, |K0| = 10% × n(n−1)
2 . The differentiation

between the observed unlinked (D) and the unobserved (U ) for CNE K is made

by not using node pairs outside K0 for training. The observed K0 is guaranteed

connected as this is a common assumption for network embedding methods. Then,
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we embedded the same PON using both CNE and CNE K on a machine with an

Intel Core i7 CPU 4.20 GHz and 32 GB RAM.

Results: From the results shown in Figure 5.2, we see that CNE K was not

only more time efficient, but also provided more accurate link predictions. The

ratio r0 of observed information varied for datasets because the larger the network,

the more time consuming the computations are. The time differences for a small

observed part were enough to highlight the time efficiency of CNE K. The two

measures examined were: AUC U—the prediction AUC score for all unobserved

node pairs (i, j) ∈ U containing 1− r0 network information; and t(s)—the model

fitting time in seconds. Both values are averaged—for each r0 averaged over 10

different PONs and each PON with 10 different embeddings (i.e., CNE has local

optima) for the first four datasets—while it is 5×5 for the fifth and sixth and 3×3

for the last dataset.

5% 10% 20% 30% 40%
0.66

0.9Polbooks

AUC_U
CNE CNE_K

5% 10% 20% 30% 40%
-0.09

0.15
Seconds (log10)

1% 3% 5% 10% 20%
0.56

0.82C.elegans

1% 3% 5% 10% 20%
0.38

0.83

1% 3% 5% 10% 20%
0.67

0.96USAir

1% 3% 5% 10% 20%
0.51

0.94

0.5% 1% 3% 5% 10%
0.53

0.93MP_cc

0.5% 1% 3% 5% 10%
0.55

1.29

0.3% 0.5% 1% 3% 5%
0.58

0.87Polblogs_cc

0.3% 0.5% 1% 3% 5%
0.94

1.95

0.1% 0.3% 0.5% 1% 3%
0.55

0.76PPI_cc

0.1% 0.3% 0.5% 1% 3%
1.28

2.88

0.05% 0.1% 0.3% 0.5% 1%
r0

0.59

0.86Blog

0.05% 0.1% 0.3% 0.5% 1%
r0

1.57

3.52

Figure 5.2: Comparison of CNE K and CNE.
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It is not surprising that the fitting time of CNE K was almost always shorter

than the original CNE as CNE K only fits the observed information. One exception

was the Polbooks network, on which both methods used similar amounts of time,

because the network size was not large. However, as the network size increased,

CNE K showed increasing time efficiency. Especially for the Blog network: with

r0 = 0.05%, CNE K was 76 times faster than CNE. CNE K thus enabled network

embedding to scale more easily to large networks.

In addition to time efficiency, CNE K always achieved a higher AUC than

CNE, since CNE will try to model the absence of an edge even where there might

actually be an (unobserved) edge. In other words, CNE was trained on data with

a substantial amount of label noise: 0 labels (absent edge) that actually must be

a 1 (present edge), while CNE K only used those labels that were known to be

correct. Partial network embedding for the knowns is especially useful in settings

where only a small part of a large network is observed and the goal is to predict

the unobserved links.

5.5.2 Qualitative Evaluation of ALPINE

In Section 5.1, we used the Harry Potter network to illustrate the idea of ALPINE

with three of our query strategies, which focused on predicting the unknown links

for a target node—“Harry Potter”—who has very limited observed information to

the rest of the network. Now, we complete this qualitative evaluation with the same

setting for other strategies: page-rank., d-opt., and v-opt.; min-dis. was omitted

as it approximates max-prob..

Table 5.3 shows the top five suggestions, and the relevant characters are high-

lighted in Figure 5.3 with their names. Since CNE achieved different local op-

tima, here, we used a different two-dimensional visualization to better display the

names. All the suggestions were reasonable and could be explained from different

perspectives, proving that ALPINE with those query strategies made sense qual-

itatively. Similar to max-deg. and max-prob., page-rank. and d-opt. had the

same top three suggestions: Hermione, Ron, and Albus, which are essential allies

of Harry. Knowing whether Harry is linked to them will give a clear big picture of

his social relations. The results can further be analyzed according to the strategy

definitions.

Table 5.3: Top-5 Query Selections for the other Three Strategies of ALPINE.

Strategy page-rank. d-opt. v-opt.

1 Ron Weasley Hermione Granger Arthur Weasley

2 Albus Dumbledore Ron Weasley Fluffy

3 Hermione Granger Albus Dumbledore Charlie Weasley

4 Vincent Crabbe Sr. Severus Snape Albus Dumbledore

5 Neville Longbottom Ginny Weasley Ron Weasley
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Vincent Crabbe Sr.

Albus Dumbledore

Hermione Granger

Neville Longbottom

Severus Snape

Arthur Weasley

Charlie Weasley
Ginny Weasley

Ron Weasley

Fluffy

Harry Potter

Rubeus Hagrid

Lord Voldemort

other nodes

Figure 5.3: Harry Potter network with suggestions from Table 5.3 highlighted.

Strategy page-rank., as max-deg., aims to find out Harry’s relationships with

the influencers—nodes that are observed to have many links. With this type of

strategy, we learned which influencers Harry is close to, as well as his potential

allies connecting to them; and conversely for his unlinked influencers.

The d-opt. strategy selects queries based on the parameter variance reduction.

It implies that by knowing whether Harry is linked to the suggested nodes, the node

embeddings will have a smaller variance, such that the entire embedding space is

more stable, and thus, the link predictions are more reliable. For example, Severus,

who ranks the fourth here (also the fourth with max-ent.), was not an obvious ally

of Harry, but he helps secretly and is essential in shaping the network structure.

The suggestions were considered uncertain and contributed to the reduction of the

parameter variance.

The v-opt. strategy quantifies the informativeness of the unobserved link sta-

tuses by the amount of estimated prediction variance reduction they cause. It sug-

gests that Harry’s relationships to the Weasley family are informative for minimiz-

ing the prediction variance for him. It makes sense as this family is well connected

with Rubeus, who is Harry’s known ally, and also connects well with other nodes.
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As for Fluffy, it was observed to be connected only to Rubeus and unlinked to all

other nodes except Harry. Knowing whether Fluffy and Harry are linked greatly

reduced the variance on the prediction for the unobserved, because there was no

other information for it.

We concluded that, intuitively, the query strategies resulted in expected behav-

ior, although we caution against overinterpretation of this subjective qualitative

evaluation. The next quantitative evaluation provided an objective assessment of

the merits of the query strategies, relative to passive learning, to each other, and to

the single pre-existing method of which we are aware.

5.5.3 Quantitative Evaluation of ALPINE

In the quantitative evaluation, we mainly wanted to compare the performance of

different query strategies from Section 5.4 with passive learning, as well as with

the state-of-the-art baseline method HALLP [95]. Passive learning is represented

by the random strategy that uniformly selects node pairs from the pool. As for

HALLP, we implemented its query strategy shown in Equation (5.2) (since the

source code is not publicly available), and set c1 and c2 both to one. Note that,

as we wanted to compare query strategies in the fairest possible way, the link

prediction was performed using CNE K also for HALLP.

Setup: As before, we constructed a PON by randomly initializing the observed

node pair set K0 with a given ratio r0, while making sure K0 was connected. Then,

we applied ALPINE with different query strategies for a budget k and a step size s.

More specifically, we investigated three representative different cases depending

on the pool P and the target set T :

1. P = U and T = U : all the unobserved information was accessible, and we

were interested in knowing all link statuses in U ;

2. P ⊂ U and T = U : only part of U was accessible, and we still wanted to

predict the entire U as accurately as possible;

3. P ⊂ U , T ⊂ U , and P ∩ T = ∅: only part of U was accessible, and we

were interested in predicting a different set of unobserved link status that

was inaccessible.

For all datasets, we investigated four values of r0: [3%, 10%, 30%, 80%], to see

how the percentage of the observed information affected the strategy performance.

All quantitative experiments used a step size depending on the network size: 1%

of the network information. For a network with n nodes, it means that s = 1% ∗
n(n−1)

2 unobserved candidate link statuses will be selected for querying in each

iteration. Then, the budget k, pool size |P |, and target set size |T | were multiples

of s for different cases. The random strategy was a baseline for all three cases,
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while the HALLP strategy was only used in the first case because it was designed

only for this setup.

Below, we first discuss our findings for each of the three cases on the five

smallest datasets. After that, we discuss some results on the two larger networks

for the most scalable query strategies only.

5.5.3.1 Case 1: P = U and T = U

In the first case, we had the pool of all unobserved link statuses and wanted to

predict all the unknowns. Shown in Figure 5.4 are the results, in which each row

represents a dataset with its step size and each column corresponds to one r0 value.

For every individual subplot, the AUC U is the AUC score for all the initially un-

observed link statuses—those not included in K0. The budget k was set to 10

steps, i.e., k = 10s, resulting in 10 iterations. Iteration 0 was the initial perfor-

mance before the active learning, so there were always k
s + 1 scores. In other

words, given the budget k = 10s, even for r0 = 80%, we did not query the entire

pool and reached only 90% of the network information. The AUC scores were

averaged over several different random PONs, and each PON defined by a K0 was

initialized with different random embeddings (10 × 10 for the first four networks

and 5 × 5 for the last and largest one). Each random strategy score was further

averaged over three runs.

In general, the active learning strategies outperformed the rand. strategy. We

saw that when the observed part was relatively small—3% or 10%— the degree-

related strategies that did not depend on the embedding usually performed very

well, and the random strategy was not always the worst. As more information

was observed when r0 increased (see the plots from the left to the right in each

row), we did not only see that the active learning strategies, such as v-opt. and

max-ent., began to dominate and passive learning became the worst, but also the

increase of the starting AUC U . Zooming in to individual subplots, we saw that

ALPINE boosted link prediction accuracy with far fewer queries for the active

learning strategies, compared to passive learning. Overall, when the observed in-

formation was very limited, the embedding-independent strategies page-rank. and

max-deg. outperformed the others; while for sufficiently enough information, v-

opt. and max-ent. were the better choices. We speculated that this was the case as

the embedding must be of sufficient quality for the embedding-dependent strate-

gies to work, which requires a certain minimum amount of data. Worth noticing is

that d-opt. showed similar performance across different values of r0, which will

be discussed further in Section 5.5.4.

As for the HALLP strategy, which aimed to query the most uncertain node-

pairs and thus was similar in spirit to max-ent., the performance was very variable.

In some cases, it performed quite well, as shown in the top right subplot, beating

v-opt. in the first few iterations, while on the MP cc network, it was one of the
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Figure 5.4: ALPINE: P = U and T = U . Row 1: Polbooks (s = 54); Row 2: C. elegans

(s = 439); Row 3: USAir (s = 549); Row 4: MP cc (s = 1604); Row 5: Polblogs cc

(s = 7460).

worst strategies. In addition to that, the runtime of HALLP was much longer than

that of the other strategies; thus, some of the subplots do not have the HALLP

result. The runtime analysis for one iteration of the query process on a server with
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an Intel Xeon Gold CPU 3.00 GHz and 256 GB RAM is shown in Table 5.4 below.

The results were averaged in the same way as in Figure 5.4 for the four values of

r0 and then further averaged over the r0 values. Across different datasets, HALLP

was by far the most computationally expensive strategy as it had to run two link

predictors.

Table 5.4: Runtime for one query in seconds - Case-1.

Data rand. page-rank. max-deg. max-prob. min-dis. max-ent. d-opt. v-opt. HALLP

Polbooks 0.001 0.031 0.008 0.004 0.027 0.004 0.093 0.482 12.33

C.elegans 0.005 0.108 0.042 0.028 0.18 0.029 0.675 5.469 148.4

USAir 0.006 0.134 0.052 0.035 0.231 0.036 0.881 7.309 232.6

MP cc 0.016 0.707 0.16 0.117 0.693 0.125 2.746 28.90 1074

Polblogs cc 0.092 1.153 0.707 0.675 3.264 0.709 12.31 226.0 12022

5.5.3.2 Case 2: P ⊂ U and T = U

In the second case, we applied ALPINE with a smaller pool, while we were still

interested in predicting all the unknown link statuses. The experiment setting was

similar to the previous case, but the pool size |P | was set to 10 times the step

size—10s—and the budget k = 5s, i.e., only five iterations were performed. The

candidates in the pool were randomly sampled from the unobserved part for each

PON in our experiments.

Figure 5.5 shows the results for this case. Compared to the first case, the

AUC U was lower for each individual subplot as the accessible information in

the pool was more limited. The results confirmed again that all active learning

strategies were better than passive learning, Shown more clearly in the last row

in Figure 5.5 on the Polblogs cc network is that the three strategies page-rank.,

max-deg., and d-opt. were the winning group for the first two r0 values. However,

in the third and fourth subplot in the same row, v-opt., max-ent., and d-opt. per-

formed best. The d-opt. strategy stayed as one of the top strategies across different

percentages of the observed information.

5.5.3.3 Case 3: P ⊂ U , T ⊂ U , and P ∩ T = ∅

We imposed further constraints in the third case: not only the pool P of node

pairs that could be queried was limited, but also the set T of target node-pairs for

which we wanted to predict the status was limited. Moreover, both sets were not

intersecting. As in the second case, the budget was set to k = 5s and |P | = 10s.

The target set size was now taken to be |T | = 5s. Both P and T were sampled

randomly from U before the querying started.

The results in Figure 5.6 confirmed again that active learning outperformed

passive learning. One might expect v-opt. to perform the best in this case because

it was the only strategy that explicitly considered T . Although it was shown to
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Figure 5.5: ALPINE—P ⊂ U and T = U . Row 1: Polbooks (s = 54); Row 2: C. elegans

(s = 439); Row 3: USAir (s = 549); Row 4: MP cc (s = 1604); Row 5: Polblogs cc

(s = 7460).

perform quite well in some subplots especially for the first iteration, the quality

of the embedding affected its performance. Indeed, as we observed before, the

reliability of all embedding-based strategies depended largely on how well the
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network was embedded, which became much better as r0 increased.
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Figure 5.6: ALPINE: P ⊂ U , T ⊂ U , and P ∩ T = ∅. Row 1: Polbooks (s = 54); Row

2: C. elegans (s = 439); Row 3: USAir (s = 549); Row 4: MP cc (s = 1604); Row 5:

Polblogs cc (s = 7460).

Compared to the previous two cases, the results here were not as smooth even

after averaging. The reason was that the score AUC T depended not only on P ,
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but also largely on T , which were both randomly sampled. Whether P contained

candidate node pairs that were informative for T affected the score. Overall, the

embedding-independent strategies—page-rank. and max-deg.—had the top per-

formance when r0 was small; and the embedding-based strategies became increas-

ingly competitive if more information was observed.

5.5.3.4 Evaluations on Two Larger Networks

Finally, we conducted a quantitative evaluation on two larger networks: PPI cc and

Blog. The results are shown in Figures 5.7 and 5.8 and confirmed the observations

we made on the five smaller networks. Figure 5.7 shows the PPI cc results for

the three cases with seven query strategies, excluding v-opt. and HALLP, as they

were computationally too expensive. The AUC scores were averaged over five

sets of random initial K0, P , and T , and each set with five initial embeddings.

The last column looks bumpy since the score was already very high and small

randomness in the embedding could cause a slight difference. Figure 5.8 shows

the results for the second and third case with three values of r0. Case 1 was omitted

because embedding the Blog network with a large observed part was already quite

expensive, and evaluating all the unobserved candidates when r0 was small made

it computationally too demanding.

5.5.4 Discussion

Our experiments showed that ALPINE in its general form can be adapted for vari-

ous problem settings, and active learning performed consistently and substantially

better than passive learning regardless of which of the investigated query strategies

was applied. Now, we discuss how the strategies can be optimally applied based

on our observations, with advice and insights that may help a practitioner select

the best query strategy given the properties of the data and available computational

resources.

Among the seven active learning query strategies we developed, page-rank.

and max-deg. did not depend on the network embedding while the other five

were embedding based. Thus, as with limited observed information, the network

embedding might be of poor quality, in such cases, page-rank. and max-deg.

were seen to outperform the others.

The embedding-based strategies began to dominate when more information

was observed and the embedding quality improved. The max-ent. and v-opt. had

the top performance, but d-opt. had a more stable high performance across dif-

ferent values of r0. Based on those observations, we recommend a mixed strategy

that starts from the degree-related and then switches to other embedding-based

strategies.
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Figure 5.7: ALPINE on PPI cc with s = 74170. Row 1: Case 1; Row 2: Case 2; Row 3:

Case 3.

The complexity of the utility computation depended on the sizes of P and T , as

well as the network. Normally, the larger the pool, the more expensive the compu-

tations were, as we had to consider more candidate node pairs. All query strategies,

including rand., required a similar computing time when given the same size of P .

A notable exception is v-opt., which was computationally more expensive. Yet, if

we had a sufficiently accurate network embedding model, e.g., see the last columns

in Figures 5.4–5.6, v-opt. was almost always the most accurate, especially for the

first few iterations. Thus, when the cost of querying was high as compared to the

cost of computations, v-opt. was preferable as soon as enough data were avail-

able such that the embedding was sufficiently accurate. If computational cost was

a bottleneck though, max-ent. and d-opt. were computationally less expensive

substitutes for v-opt., with comparable accuracies.
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Figure 5.8: ALPINE on Blog with s = 531,635. Row 1: Case 2; Row 2: Case 3.

The experiments aimed to show how active learning, compared to passive

learning, benefited the network embedding based link prediction, namely CNE.

Therefore, following the line of research in active learning, we restricted our base-

lines to only the random and the state-of-the-art active learning strategies for link

prediction [93, 95, 99, 110]. However, it would also be interesting to compare

ALPINE with CNE against other types of link prediction methods to gain more

insights. For example, a comparison of our work with a state-of-the-art link pre-

diction approach (e.g., SEAL [129] according to [130,131]) could be used to show

whether the differentiation between the unknown and the unlinked status together

with active learning would improve the link prediction accuracy in general. Note

that this type of comparison can be biased as we had three types of link statuses,

while other link prediction methods usually have only two. There are also other

network embedding methods that can be used in combination with the ALPINE

framework; thus the comparison among CNE and other base models can be con-

sidered. That leaves many possible opportunities for research to be built on this

work.

5.6 Conclusions

Link prediction is an important task in network analysis, tackled increasingly using

network embeddings. It is particularly important in partially observed networks,
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where finding out whether a node pair is linked is time consuming or costly, such

that for a large number of node pairs, it is not known if they are linked. We pro-

posed to make use of active learning in this setting and studied the problem of

active learning for link prediction using network embedding in this paper.

More specifically, we proposed the ALPINE framework, a method that ac-

tively learns to embed partially observed networks to achieve better link predic-

tions, by querying the labels of the most informative unobserved link statuses. We

developed several utility functions for ALPINE to quantify the utility of a node

pair: some heuristically motivated and some derived as variance reduction meth-

ods based on D-optimality and V-optimality from optimal experimental design.

We implemented ALPINE in combination with Conditional Network Embed-

ding (CNE). To accomplish this, we first adapted CNE to work for partially ob-

served networks. Through experimental investigation, we found that this modified

version of CNE was not only more time efficient, but also more accurate for link

prediction—an important side-result of the present paper.

We then empirically evaluated the performance of the utility functions we de-

veloped for ALPINE, both qualitatively and quantitatively, providing insights into

the merits of ALPINE and advice for practitioners on how to optimally apply this

method to different problem settings.

More broadly, the application of active learning to the link prediction problem

in general, which is usually for partially observed networks, could help us to build

more realistic and practical methods. Taking this work as a starting point, we see

interesting future directions, including the investigation of a mixed strategy, batch

mode active learning for ALPINE, and the application of ALPINE to the cold-

start problem in recommender systems. Meanwhile, a thorough comparison of

ALPINE with CNE against general link prediction methods, as well as the choice

of the base network embedding model to be used with the ALPINE framework

remain to be further investigated.
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Appendices

5.A The Observed Fisher Information Matrix

CNE is defined as in Equation (5.1), aiming to find an embedding that maximizes

the graph probability. To compute the Fisher information of CNE, we first need

to compute the score, which is the partial derivative of the log likelihood function
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logP (G|X) with respect to the parameter. The parameters in CNE is the embed-

ding matrix X ∈ R
n×d, thus the score for one node embeddings xi for i ∈ V

is [37]:

s(xi) =
∂ logP (G|X)

∂xi
= γ

∑

j 6=i

(Pij − aij)(xi − xj), (5.11)

where γ = 1
σ2
1
− 1

σ2
2

is a parameter in CNE, and Pij represents P (aij = 1|X).

Then the Fisher Information, defined as the variance of the score is I(xi) =

E
[

s(xi)s(xi)
T
]

:

I(xi) = γ2
∑

j 6=i

Pij(1− Pij)(xi − xj)(xi − xj)
T . (5.12)

The observed Fisher information that take into account only the observed part

is thus,

I(xi) = γ2
∑

{i,j}/∈U

Pij(1− Pij)(xi − xj)(xi − xj)
T . (5.13)

Full Hessian. When considering the entire embedding matrix X, its Fisher Infor-

mation is its full Hessian H ∈ R
nd×nd consisting of n×n blocks of size d×d. The

diagonal blocks Iii(X) = I(xi), and the off-diagonal blocks Iij(X) are defined

as

Iij(X) = E

[

∂ logP (G|X)

∂xi

∂ logP (G|X)

∂xj

T
]

= γ2Pij(1−Pij)(xi−xj)(xj−xi)
T .

(5.14)

5.B The Prediction Variance

As mentioned, the prediction variance is computed via a first-order analysis of the

prediction, and we provide the details here. The prediction Pij = P (aij = 1|X)

is a function of xi and xj , denoted f(xi,xj), and it can be approximated by its

first-order Taylor expansion at the MLE X∗:

f(xi,xj) = f(x∗
i ,x

∗
j ) +

∂f(x∗
i ,x

∗
j )

∂xi
(xi − x∗

i ) +
∂f(x∗

i ,x
∗
j )

xj
(xj − x∗

j ).

(5.15)

Therefore, the prediction variance Var(Pij) is

Var(Pij) =
∂f(x∗

i ,x
∗
j )

∂xi

T

Var(xi)
∂f(x∗

i ,x
∗
j )

∂xi
+

∂f(x∗
i ,x

∗
j )

∂xj

T

Var(xj)
∂f(x∗

i ,x
∗
j )

∂xj

+ 2
∂f(x∗

i ,x
∗
j )

∂xi

T

Cov(xi,xj)
∂f(x∗

i ,x
∗
j )

∂xj
.

(5.16)
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According to Var(Pij), Var(P ∗
ij) at the MLE then is

Var(P ∗
ij) =

∂P∗

ij

∂xi

T

Var(x∗
i )

∂P∗

ij

∂xi
+

∂P∗

ij

∂xj

T

Var(x∗
j )

∂P∗

ij

∂xj
+ 2

∂P∗

ij

∂xi

T

Cov(x∗
i ,x

∗
j )

∂P∗

ij

∂xj
.

(5.17)

If we write the three terms in the equation above in a simpler form for brevity, i.e.,

as Varx∗

i
(P ∗

ij), Varx∗

j
(P ∗

ij), and Covx∗

i
,x∗

j
(P ∗

ij), we get the expression of Var(P ∗
ij)

in Equation (5.9). Now we look at the bounds and take the first term for example,

for which we first need to compute
∂Pij

∂xi
[37].

∂Pij

∂xi
= Pij

∂ logPij

∂xi
= γPij(1− Pij)(xi − xj). (5.18)

Then we have the first term Varx∗

i
(P ∗

ij) as follows, and it comes to the bound in

Equation (5.10).

Varx∗

i
(P ∗

ij) =γ2
[

P ∗
ij(1− P ∗

ij)
]2

(x∗
i − x∗

j )
T Var(x∗

i )(x
∗
i − x∗

j ), (5.19)

≥γ2
[

P ∗
ij(1− P ∗

ij)
]2

(x∗
i − x∗

j )
TI(x∗

i )
−1(x∗

i − x∗
j ). (5.20)





6
Adversarial Robustness of

Probabilistic Network Embedding for

Link Prediction

Abstract In today’s networked society, many real-world problems can be formal-

ized as predicting links in networks, such as Facebook friendship suggestions,

e-commerce recommendations, and the prediction of scientific collaborations in

citation networks. Increasingly often, link prediction problem is tackled by means

of network embedding methods, owing to their state-of-the-art performance. How-

ever, these methods lack transparency when compared to simpler baselines, and as

a result their robustness against adversarial attacks is a possible point of concern:

could one or a few small adversarial modifications to the network have a large im-

pact on the link prediction performance when using a network embedding model?

Prior research has already investigated adversarial robustness for network embed-

ding models, focused on classification at the node and graph level. Robustness

with respect to the link prediction downstream task, on the other hand, has been

explored much less.

This paper contributes to filling this gap, by studying adversarial robustness of

Conditional Network Embedding (CNE), a state-of-the-art probabilistic network

embedding model, for link prediction. More specifically, given CNE and a net-

work, we measure the sensitivity of the link predictions of the model to small

adversarial perturbations of the network, namely changes of the link status of a

node pair. Thus, our approach allows one to identify the links and non-links in the
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network that are most vulnerable to such perturbations, for further investigation by

an analyst. We analyze the characteristics of the most and least sensitive perturba-

tions, and empirically confirm that our approach not only succeeds in identifying

the most vulnerable links and non-links, but also that it does so in a time-efficient

manner thanks to an effective approximation.

6.1 Introduction

Networks are used to model entities and the relations among them, so they are

capable of describing a wide range of data in real world, such as social networks,

citation networks, and networks of neurons. The recently proposed Network Em-

bedding (NE) methods can be used to learn representations of the non-iid network

data such that networks are transformed into the tabular form. The tabular data can

then be fed to solve several network tasks, such as visualization, node classifica-

tion, recommendation, and link prediction. We focus on link prediction that aims

to predict future or currently missing links [33] as it has been widely applied in

our lives. Examples include Facebook friendship suggestions, Netflix recommen-

dations, predictions of protein-protein interactions, etc.

Many traditional link prediction approaches have been proposed [34], but the

task is tackled increasingly often by the NE methods due to their state-of-the-art

performance [35]. However, the NE methods lack transparency, e.g., Graph Neu-

ral Networks (GNNs) [50], when compared to simpler baselines. Thus, similar to

many other machine learning algorithms [49], they could be vulnerable to adver-

sarial attacks. It has been shown that simple imperceptible changes of the node

attribute or the network topology can result in wrongly predicted node labels, es-

pecially for GNNs [51,52]. Meanwhile, adversarial attacks are easy to be found in

our daily online lives, such as in recommender systems [132–134].

Robustness of NE methods for link prediction is important. Attacking link

prediction methods can be used to hide sensitive links, while defending can help

identify the interactions hidden intentionally, e.g., important connections in crime

networks. Moreover, as links in online social networks represent the information

sources and exposures, from the dynamic perspective, manipulations of network

topology can be used to affect the formation of public opinions on certain topics,

e.g., via exposing a targeted group of individuals to certain information sources,

which is risky. The problem we want to investigate is: Could one or a few small

adversarial modifications to the network topology have a large impact on the link

prediction performance when using a network embedding model?

Existing adversarial robustness studies for NE methods mainly consider clas-

sification at the node and graph level, which investigates whether the labels will

be wrongly predicted due to adversarial perturbations. It includes semi-supervised

node classification [51,53,54,135–142], and graph classification [52,55,56]. Only
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a few works consider the link-level task [131, 143–145], leaving robustness of NE

methods for link prediction insufficiently explored.

To fill the gap, we study the adversarial robustness of Conditional Network

Embedding (CNE) [37] for the link prediction task. CNE is a state-of-the-art prob-

abilistic NE model that preserves the first-order proximity, of which the objective

function is expressed analytically. Therefore, it provides mathematically princi-

pled explainability [146]. Moreover, compared to other NE models, such as those

based on random walks [103, 104], CNE is more friendly to link prediction be-

cause the link probabilities follow directly from the model so there is no need to

further train a classifier for links with the node embeddings. However, there has

been no study on the adversarial robustness of CNE for link prediction.

In our work, we consider only the network topology as input, meaning that

there is no node attribute. More specifically, given CNE and a network, we mea-

sure the sensitivity of the link predictions of the model to small adversarial per-

turbations of the network, i.e., the changes of the link status of a node pair. The

sensitivity is measured as the impact of the perturbation on the link predictions. In-

tuitively, we quantify the impact as the KL-divergence between the two link proba-

bility distributions learned by the model from the clean and the corrupted network

through re-training. While the re-training can be expensive, we develop effective

and efficient approximations based on the gradient information, which is similar

to the computation of the regularizer in Virtual Adversarial Training (VAT) [147].

Our main contributions are:

• We propose to study the adversarial robustness of a probabilistic network

embedding model CNE for link prediction;

• Our approach allows us to identify the links and non-links in the network that

are most vulnerable to adversarial perturbations for further investigation;

• With two case studies, we explain the robustness of CNE for link prediction

through (a) illustrating how structural perturbations affect the link predic-

tions; (b) analyzing the characteristics of the most and least sensitive pertur-

bations, providing insights for adversarial learning for link prediction.

• We show empirically that our gradient-based approximation for measuring

the sensitivity of CNE for link prediction to small structural perturbations is

not only time-efficient but also significantly effective.

6.2 Related Work

Robustness in machine learning means that a method can function correctly with

erroneous inputs [148]. The input data may contain random noise embedded, or

adversarial noise injected intentionally. The topic became a point of concern when
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the addition of noise to an image, which is imperceptible to human eyes, resulted

in a totally irrelevant prediction label [49]. Robustness of models against noisy

input has been investigated in many works [149–151], while adversarial robustness

usually deals with the worst-case perturbations on the input data.

Network tasks at the node, link, and graph level are increasingly done by net-

work embedding methods, which include shallow models and GNNs [152]. Shal-

low models either preserve the proximities between nodes (e.g., DeepWalk [103],

LINE [153], and node2vec [104]) or factorize matrices containing graph informa-

tion [154,155] to effectively represent the nodes as vectors. GNNs use deep struc-

ture to extract node features by iteratively aggregating their neighborhood informa-

tion, e.g., Graph Convolutional Networks (GCNs) [105] and GraphSAGE [156].

Adversarial learning for networks includes three types of studies: attack, de-

fense, and certifiable robustness [157–159]. Adversarial attacks aim to maximally

degrade the model performance through perturbing the input data, which include

the modifications of node attributes or changes of the network topology. Examples

of attacking strategies for GNNs include the non-gradient based NETTACK [51],

Mettack using meta learning [136], SL-S2V with reinforcement learning [52], and

attacks by rewiring for graph classification [55]. The defense strategies are de-

signed to protect the models from being attacked in many different ways, e.g., by

detecting and recovering the perturbations [138], applying adversarial training [49]

to resist the worst-case perturbation [139], or transferring the ability to discrimi-

nate adversarial edges from exploring clean graphs [142]. Certifiable robustness

is similar in essence to adversarial defense, but it focuses on guaranteeing the re-

liability of the predictions under certain amounts of attacks. The first provable

robustness for GNNs was proposed to certify if a node label will be changed un-

der a bounded attack on node attributes [141], and later a similar certificate for

structural attack was proposed [54]. There are also robustness certifications for

graph classification [56, 160] and community detection [161]. The most popular

combination is GNNs for node or graph classification, while the link-level tasks

have been explored much less.

Early studies on robustness for link-level tasks usually target traditional link

prediction approaches. That includes link prediction attacks that aim to solve spe-

cific problems in the social context, e.g., to hide relationships [162, 163] or to

disguise communities [164], and works that restrict the perturbation type to only

adding or only deleting edges [165–167], which could result in less efficient at-

tacks or defenses. The robustness for NE based link prediction is much less inves-

tigated than classification, and is considered more often as a way to evaluate the

robustness of the NE method, such as in [144,168,169]. To the best of our knowl-

edge, there are only two works on adversarial attacks for link prediction based on

NE: one targeting the GNN-based SEAL [129] with structural perturbations and

one targeting GCN with iterative gradient attack [143].
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6.3 Preliminaries

In this section, we provide the preliminaries of our work, including the notations,

the probabilistic network embedding model CNE that we use for link prediction,

and the virtual adversarial training method to which the our idea is similar.

6.3.1 Link Prediction with Probabilistic Network Embedding

Network embedding methods map nodes in a network onto a lower dimensional

space as real vectors or distributions, and we work with the former type. Given a

network G = (V,E), where V and E are the node and edge set, respectively,

a network embedding model finds a mapping f : V → R
d for all nodes as

X = [x1,x2, ...xn]
T ∈ R

n×d. Those embeddings X can be used to visualize

the network in the d-dimensional space; classify nodes based on the similarity

between vector pairs; and predict link probabilities between any node pair.

To do link prediction, a network embedding model requires a function g of

vectors xi and xj to calculate the probability of nodes i and j being linked. This

can be done by training a classifier with the links and non-links, or the function

follows naturally from the model. Conditional Network Embedding (CNE) is the

probabilistic model on which our work is based, and of which the function g di-

rectly follows [37]. Suppose there is an undirected network G = (V,E) with its

adjacency matrix A, where aij = 1 if (i, j) ∈ E and 0 otherwise, CNE finds an

optimal embedding X∗ that maximizes the probability of the graph conditioned on

that embedding. It maximizes its objective function:

P (G|X) =
∏

(i,j)∈E

P (aij = 1|X)
∏

(k,l)/∈E

P (akl = 0|X). (6.1)

To guarantee that the connected nodes are embedded closer and otherwise farther,

the method uses two half normal distributions for the distance dij between nodes

i and j conditioned on their connectivity. By optimizing the objective in Eq. (6.1),

CNE finds the most informative embedding X∗ and the probability distribution

P (G|X∗) that defines the link predictor g(xi,xj) = P (aij = 1|X∗).
Many network embedding methods purely map nodes into vectors of lower di-

mensions and focus on node classification, such as the random-walk based ones [103,

104, 153] and GCNs [105]. Those methods require an extra step to measure the

similarities between the pairs of node embeddings for link prediction. Comparing

to them, CNE is a better option for link prediction. Moreover, CNE provides good

explainability for link predictions as g can be expressed analytically [146].

6.3.2 Virtual Adversarial Attack

Adversarial training achieved great performance for the supervised classification

problem [49], and Virtual Adversarial Training (VAT) is better for the semi-supervised
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setting [147]. By identifying the most sensitive ‘virtual’ direction for the classifier,

VAT uses regularization to smooth the output distribution. The regularization term

is based on the virtual adversarial loss of possible local perturbations on the input

data point. Let x ∈ R
d and y ∈ Q denote the input data vector of dimension d and

the output label in the space of Q, respectively. The labeled data is defined asDl =
{

x
(n)
l , y

(n)
l |n = 1, ..., Nl

}

, the unlabeled data as Dul =
{

x
(m)
ul |m = 1, ..., Nul

}

,

and the output distribution as p(y|x, θ) parametrized by θ. To quantify the influ-

ence of any local perturbation on x∗ (either xl or xul), VAT has the Local Distri-

bution Smoothness (LDS),

LDS(x∗, θ) := D
[

p(y|x∗, θ̂), p(y|x∗ + rvadv, θ)
]

(6.2)

rvadv := argmaxr;||r||2≤ǫD
[

p(y|x∗, θ̂), p(y|x∗ + r, θ)
]

, (6.3)

where D can be any non-negative function that measures the divergence between

two distributions, and p(y|x, θ̂) is the current estimate of the true output distribu-

tion q(y|x). The regularization term is the average LDS for all data points.

Although VAT was designed for classification with tabular data, the idea of

it is essentially similar to our work, i.e., we both quantify the influence of local

virtual adversarial perturbations. For us, that is the link status of a node pair. As

we have not yet included the training with a regularization term in this work, we

now focus on finding the rvadv in Eq. (6.3). That is to identify the most sensitive

perturbations that will change the link probabilities the most.

6.4 Quantifying the Sensitivity to Small Perturba-

tions

With the preliminaries, we now formally introduce the specific problem we study

in this paper. That is, to investigate if there is any small perturbations to the net-

work that have large impact on the link prediction performance. The small pertur-

bations we look into are the edge flips, which represent either the deletion of an

existing edge or the addition of a non-edge. It means that we do not restrict the

structural perturbations to merely addition or merely deletion of edges.

Intuitively, that impact of any small virtual adversarial perturbation can be

measured by re-training the model. But re-training, namely re-embedding the

network using CNE, can be computationally expensive. Therefore, we also in-

vestigate on approximating the impact both practically with incremental partial

re-embedding, and theoretically with the gradient information.
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6.4.1 Problem Statement and Re-Embedding (RE)

The study of the adversarial robustness for link prediction involves identifying

the worst-case perturbations on the network topology, namely the changes of the

network topology that influence the link prediction results the most. For imper-

ceptibility, we focus on the small structural perturbation of individual edge flip in

this work. Thus, our specific problem is defined as

Problem 1 (Impact of a structural perturbation). Given a network G = (V,E), a

network embedding model, how can we measure the impact of each edge flip in the

input network on the link prediction results of the model?

Intuitively, the impact can be measured by assuming the edge flip as a vir-

tual attack, flip the edge and retrain the model with the virtually corrupted net-

work, after which we know how serious the attack is. That means we train CNE

with the clean graph G = (V,E) to obtain the link probability distribution P ∗ =

P (G|X∗(A)). After flipping one edge, we get the corrupted graph G′ = (V,E′),
retrain the model, and obtain a different link probability Q∗ = Q(G′|X∗(A′)).
Then we measure the impact of the edge flip as the KL-divergence between P ∗

and Q∗. In this way, we also know how the small perturbation changes the node

embeddings, which helps explain the influence of the virtual attack.

If the virtual edge flip is on node pair (i, j), a′ij = 1 − aij where aij is the

corresponding entry in the adjacency matrix of the clean graph A and a′ij of the

corrupted graph A′. Re-embedding G′ with CNE results in probability Q∗(i, j),
then the impact of flipping (i, j), which we consider as the sensitivity of the model

to the perturbation on that node pair, denoted as s(i, j), is:

s(i, j) = KL [P ∗||Q∗(i, j)] . (6.4)

Measured practically, this KL-divergence is the actual impact for each possible

edge flip on the predictions. The optimal embeddings X∗(A) and X∗(A′) not

only explain the influenced link predictions but also exhibit the result of the flip.

Ranking the node pairs in the network by the sensitivity measure for all node

pairs allows us to identify the most and least sensitive links and non-links for

further investigation. However, re-embedding the entire network can be computa-

tionally expensive, especially for large networks. The sensitivity measure can be

approximated both empirically and theoretically, and we will show how this can

be done in the rest of this section.

6.4.2 Incremental Partial Re-Embedding (IPRE)

Empirically, one way to decrease the computational cost is to incrementally re-

embed only the two corresponding nodes of the flipped edge. In this case, our as-

sumption is that the embeddings of all nodes except the two connecting the flipped
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edge (i.e., node i and j) will stay unchanged since the perturbation is small and

local. We call it Incremental Partial Re-Embedding (IPRE), which allows only the

changes of xi and xj if (i, j) is flipped. It means that the impact of the small per-

turbation on the link probabilities is restricted within the one-hop neighborhood of

the two nodes, resulting in the changed link predictions between node i and j with

the rest of the nodes. The definition of the impact in Eq. (6.4) still holds and only

the ith and jth columns and rows in the link probability matrix have non-zero val-

ues. Comparing to RE, IPRE turns out to be a faster and effective approximation,

which we will show with experiments.

6.4.3 Theoretical Approximation of the KL-Divergence

Incrementally re-embedding only the two nodes of the flipped edge is faster but it

is still re-training of the model. Although our input is non-iid, in contrast to the

tabular data used in VAT [147], we can form our problem as in Eq. (6.5), of which

the solution is the most sensitive structural perturbation for link prediction.

∆A := argmax∆A;||∆A||=2KL
[

P (G|X∗(Â)), P (G|X∗(Â+∆A))
]

. (6.5)

CNE has its link probability distribution expressed analytically, so the impact

of changing the link status of node pair (i, j), represented by the KL-divergence

in Eq. (6.4) can be approximated theoretically. Given the clean graph G, CNE

learns the optimal link probability distribution P ∗ = P (G|X∗(A)) whose entry is

P ∗
kl = P (akl = 1|X∗). Let Q∗(i, j) be the optimal link probability distribution of

the corrupted graph G′ with only (i, j) flipped from the clean graph. The impact

of the flip s(i, j) can be decomposed as,

s(i, j) = KL [P ∗||Q∗(i, j)] =
∑

[

p log
p

q
+ (1− p) log

1− p

1− q

]

, (6.6)

where p and q are entries of P ∗ and Q∗(i, j) respectively. We can approximate

s(i, j) at G, or equivalently, at P ∗, as G is close to G′ thus P ∗ is close to Q∗(i, j).

The first-order approximation of s(i, j) is a constant because at G its gradient
∂KL[P∗||Q∗(i,j)]

∂aij
= 0, so we turn to the second-order approximation in Eq. (6.7),

which, evaluated at G, is s̃(i, j) in Eq. (6.8). That requires the gradient of each

link probability w.r.t the edge flip, i.e., ∂p
∂aij

=
∂P∗

kl

∂aij
. Now we will show how to

compute it with CNE.

s(i, j) ≈∂KL [P ∗||Q∗(i, j)]

∂aij
∆A+

1

2

∂2KL [P ∗||Q∗(i, j)])

∂a2ij
∆A2, (6.7)

s̃(i, j) =
1

2

∑ 1

p (1− p)

[

∂p

∂aij

]2

. (6.8)
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The gradient. At the graph level, the gradient of a link probability P ∗
kl for node

pair (k, l) w.r.t the input graph A is
∂P∗

kl

∂A =
∂P∗

kl

∂X∗(A)
∂X∗(A)

∂A . While at the node

pair level, the gradient of P ∗
kl w.r.t. aij is

∂P ∗
kl

∂aij
=

∂P ∗
kl

∂x∗(A)

∂x∗(A)

∂aij
(6.9)

= x∗T (A)EklE
T
kl

[ −H
γ2P ∗

kl(1− P ∗
kl)

]−1

EijE
T
ijx

∗(A), (6.10)

where for clearer presentation we flatten the matrix X to a vector x that is nd× 1,

Ekl is a column block matrix consisting of n blocks of size d × d where the k-th

and l-th block are positive and negative identity matrix I and −I of the right size

respectively and 0s elsewhere, and H is the full Hessian below

H = γ
∑

u 6=v

[

(P ∗
uv − auv)EuvE

T
uv − γP ∗

uv(1− P ∗
uv)EuvE

T
uvx

∗(A)x∗T (A)EuvE
T
uv

]

.

The gradient reflects the fact that the change of a link status in the network

influences the embeddings x∗, and then the impact is transferred through x∗ to the

link probabilities of the entire graph. In other words, if an important relation (in a

relatively small network) is perturbed, it could cause large changes in many P ∗
kls,

deviating them from their predicted values with the clean graph.

The gradient in Eq. (6.10) is exact and measures the impact all over the net-

work. However, the computation of the inverse of the full Hessian can be expen-

sive when the network size is large. But fortunately, H can be well approximated

with its diagonal blocks [146], which are of size d × d each block. So we can

approximate the impact of individual edge flip with s̃(i, j) at a very low cost using

∂P ∗
kl

∂aki
= (x∗

k − x∗
l )

T

[ −Hk

γ2P ∗
kl(1− P ∗

kl)

]−1

(x∗
k − x∗

i ), (6.11)

where Hk = γ
∑

l:l 6=k

[

(P ∗
kl − akl)I− γP ∗

kl(1− P ∗
kl)(x

∗
k − x∗

l )(x
∗
k − x∗

l )
T
]

is

the kth diagonal block of H. Here P ∗
kl is assumed to be influenced only by xk and

xl, thus only the edge flips involving node k or l will result in non-zero gradient

for P ∗
kl. It essentially corresponds to IPRE, where only the attacked nodes are

allowed to move in the embedding space. In fact, as the network size grows,

local perturbations are not likely to spread the influence broadly. We will show

empirically this theoretical approximation is both efficient and effective.

6.5 Experiments

For the purpose of evaluating our work, we first focus on illustrating the robustness

of CNE for link prediction with two case studies, using two networks of relatively

small sizes. Then we evaluate the approximated sensitivity for node pairs on larger

networks. The research questions we want to investigate are:
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• How to understand the sensitivity of CNE to an edge flip for link prediction?

• What are the characteristics of the most and least sensitive perturbations for

link prediction using CNE?

• What are the quality and the runtime performance of the approximations?

Data. The data we use includes six real world networks of varying sizes. Karate

is a social network of 34 members in a university karate club, which has 78 friend-

ship connections [69]. Polbooks network describes 441 Amazon co-purchasing

relations among 105 books about US politics [125]. C.elegans is a neural network

of the nematode C.elegans with 297 neurons linked by 2148 synapses [73]. USAir

is a transportation network of 332 airports as nodes and 2126 airlines connecting

them as links [126]. MP is the largest connected part of a Twitter friendship net-

work for the Members of Parliament (MP) in the UK during April 2019, having

567 nodes and 49631 edges [40]. Polblogs is a network with 1222 political blogs

as nodes and 16714 hyperlinks as undirected edges, which is the largest connected

part of the US political blogs network from [125].

Setup. We do not have train-test split, because we want to measure the sensitivity

of all link probabilities of CNE to all small perturbations of the network. The

CNE parameters are σ2 = 2, d = 2 for the case studies, d = 8 for evaluating the

approximation quality, learning rate is 0.2, max iter = 2k, and ftol = 1e− 7.

6.5.1 Case Studies

The first two research questions will be answered with the case studies on Karate

and Polbooks, which are relatively small thus can be visualized clearly. Both

networks also have ground-truth communities, which contributes to our analysis.

With Karate, we show how the small perturbations influence link probabilities via

node embeddings. On Polbooks, we analyze the characteristics of the most and

least sensitive perturbations. Note that we use the dimension 2 for both the visual-

ization of CNE embeddings and the calculation of the sensitively.

Karate. To show the process of attacking CNE link prediction on Karate, we

illustrate and analyze how the most sensitive edge deletion and addition affect the

model in predicting links. With the RE approach, we measure the model sensitivity

to single edge flip and find the top 5 sensitive perturbations in Table 6.1. The most

sensitive deletion of link (1, 12) disconnects the network, and we do not consider

this type of perturbation in our work because it is obvious and easy to be detected.

We see the other top sensitive perturbations are all cross-community, and we pick

node pairs (1, 32) and (6, 30) for further study.

Fig. 6.1 shows the CNE embeddings of the clean Karate and the perturbed

graphs, where the communities are differentiated with green and red color. CNE
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Table 6.1: The Top 5 Sensitive Perturbations

Rank Node Pair s(i, j) A[i, j] Community?

1 (1, 12) 12.30 1 within

2 (1, 32) 2.52 1 cross

3 (20, 34) 1.96 1 cross

4 (6, 30) 1.75 0 cross

5 (7, 30) 1.75 0 cross

embeddings might have nodes overlap when d = 2, such as node 6 and 7, because

they have the same neighbors, but this will not be a problem if d is higher.

(a) Clean graph (b) After deleting (1, 32) (c) After adding (6, 30)

Figure 6.1: Case study on Karate with the most sensitive perturbations.

The deletion of edge (1, 32) is marked with a cross in Fig. 6.1 (a), after which

the changed node embeddings are shown in Fig. 6.1 (b). Although being rotated,

the relative locations of the nodes change a lot, especially node 1, 32, and those

in the boundary between the communities, e.g., node 3 and 10. Node 1 is pushed

away from the red nodes, and as the center of the green nodes, it plays an es-

sential role in affecting many other link probabilities. Comparing to other cross-

community edges, (1, 32) is the most sensitive because both nodes have each other

as the only cross-community link. So the deletion largely decreases the probability

of their neighbors connecting to the other community. Moreover, node 1 has a high

degree. Therefore, it makes sense that this is the most sensitive edge deletion.

The addition of edge (6, 30) is marked as a dashed arc in Fig. 6.1 (a), and the

case is similar for (7, 30). Adding the edge changes the node locations as shown in

Fig. 6.1 (c). The distant tail in green that ends with node 17 moves closer to the red

community. Note that both node 6 and 30 had only the within-community links

before the perturbation. Even though their degrees are not very high, the added

edge changes the probabilities of many cross-community links from almost zero

to some degree of existence, pulling nodes to the other community.

Polbooks. Polbooks has three types of political books, which are liberal (L), neu-
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Table 6.2: The Top Sensitive and Non-Sensitive Perturbations

Edge Deletion - S Edge Deletion - Non-S

Rank Node Pair s(i,j) Community Rank Node Pair s(i,j) Community

1 (46, 102) 16.91 N-L 5460 (72, 75) 0.033 L-L

15 (7, 58) 14.64 N-C 5459 (8, 12) 0.034 C-C

Edge Addition - S Edge Addition - Non-S

Rank Node Pair s(i,j) Community Rank Node Pair s(i,j) Community

2 (3, 98) 15.53 C-L 5458 (37, 39) 0.035 C-C

3 (3, 87) 15.42 C-L 5454 (8, 47) 0.036 C-C

4 (28, 33) 14.98 N-C 5451 (33, 35) 0.038 C-C

5 (25, 98) 14.96 C-L 5449 (30, 71) 0.039 L-L

6 (25, 91) 14.92 C-L 5438 (66, 75) 0.042 L-L

tral (N), and conservative (C), marked with colors red, purple, and blue, respec-

tively. Shown in Table 6.2 are the most and least sensitive perturbations, where

the left column are the Top 2 deletions and the middle and right columns are the

top 5 additions. We do so as real networks are usually sparse. The rank is based

on the sensitivity measure, thus the non-sensitive perturbations are ranked bottom

(i.e., 5460). Then we will mark the those perturbations in the CNE embeddings,

for edge deletions and additions separately.

The edge deletions are marked in Fig. 6.2, and we see the most sensitive ones

are cross-community while the least sensitive ones are within-community. Similar

to the Karate case, node pair (46, 102) has each other as the only cross-community

link, after deleting which the node embeddings will be affected significantly. Edge

(7, 58) is in the boundary between liberal and conservative nodes, and it has a

neutral book. As the predictions in the boundary are already uncertain, one edge

deletion would fluctuate many predictions, resulting in high sensitivity. The least-

sensitive edge deletions are not only within-community, but are also between high-

degree nodes, i.e., d72 = 22, d75 = 16, d8 = d12 = 25. These nodes have already

been well connected to nodes of the same type, thus they have stable embeddings

and the deletions have little influence on relevant predictions.

We mark the edge additions separately for the sensitive and non-sensitive per-

turbations in Fig. 6.3, to contrast their difference. The left Fig. 6.3 (a) shows the

top 5 sensitive edge additions are all cross-community, and all include at least one

node at the distant place from the opposing community, i.e., nodes 33, 91, 87, 98.

Being distant means those nodes have only the within-community connections,

while adding a cross-community link would confuse the link predictor on the pre-

dictions for many relevant node pairs. Meanwhile, as the sensitive perturbations

involve low-degree nodes, they are usually unnoticeable while weighted highly by
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those nodes. The non-sensitive edge additions are similar to the non-sensitive dele-

tions in the sense that both have the pair of nodes embedded closely. As long as the

two nodes are mapped closely in the embedding space, it makes little difference if

they are connected and the node degree does not matter much.

46
102

7

58

72
75

8
12

Figure 6.2: Case study on Polbooks with the most and least sensitive edge deletion.

(a) Sensitive (b) Non-sensitive

Figure 6.3: Case study on Polbooks with the most and least sensitive edge addition.

Interestingly, our observations in the case studies agree only partially with a

heuristic community detection attack strategy called DICE [164], which has been

used as a baseline for attacking link prediction in [143]. Inspired by modularity,

DICE randomly disconnect internally and connect externally [164], of which the

goal is to hide a group of nodes from being detected as a community. Our analy-
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sis agrees with connecting externally, while for link prediction the disconnection

should also be external, meaning that disconnecting internally might not work for

link prediction. If the internal disconnection are sampled to node pairs that are

closely positioned, the attack will have the little influence. Therefore, it might not

be suitable to use DICE for link prediction attacks.

6.5.2 Quality and Runtime of the Approximations

We use the sensitivity measured by re-embedding (RE) as the ground truth impact

of the small perturbations. The quality of an approximation is determined by how

close it is to the ground truth. As the sensitivity is a ranked measure, we use the

normalized discounted cumulative gain (NDCG) to evaluate the quality of the em-

pirical approximation IPRE and the theoretical approximation with the diagonal

Hessian blocks Approx. The closer the NDCG value is to 1, the better. We do

not include the theoretical approximation with the exact Hessian because it can

be more computationally expensive than RE for large networks. To show the sig-

nificance, the p-value of each NDCG is found with randomization test of 1,000

samples. The runtime for computing the sensitivity of one edge flip is recorded on

a server with Intel Xeon Gold CPU 3.00GHz and 1024GB RAM.

Shown in Table 6.3 are the quality of the approximations on five real-world

networks. The first two columns show how well IPRE and Approx approximate

RE, and the third column shows how well Approx approximates IPRE. We see the

NDCG values in the table are all significantly high. Comparing to Approx, IPRE

better approximates RE, and as the network size gets relatively large, the NDCG

is alway larger than 0.99, indicating that the larger the network, the more local

the impact of a small perturbation. For Approx, the NDCG for approximating RE

are high across datasets, but it is even higher for IPRE. The reason is that both

Approx and IPRE essentially make the same assumption that the influence of the

perturbation will be spread only to the one-hop neighborhood.

Table 6.3: Quality of the Approximations - NDCG

ground truth RE IPRE

approximation IPRE Approx Approx

NDCG p-value NDCG p-value NDCG p-value

Polbooks (n = 105) 0.9691 0.0 0.9700 0.0 0.9873 0.0

C.elegans (n = 297) 0.9977 0.0 0.9880 0.0 0.9905 0.0

USAir (n = 332) 0.9902 0.0 0.9697 0.0 0.9771 0.0

MP (n = 567) 0.9985 0.0 0.9961 0.0 0.9960 0.0

Polblogs (n = 1222) 0.9962 0.0 0.9897 0.0 0.9899 0.0

The approximations are not only effective, but also time-efficient. We see in



ADVERSARIAL ROBUSTNESS FOR LINK PREDICTION 119

Table 6.4 that RE is the slowest, IPRE is faster, and Approx is significantly much

faster than the previous two empirical approaches, especially for larger networks.

On the Polblogs network, Approx is 36k times faster than RE and 22k times faster

than IPRE. It shows that our method also scales to large networks.

Table 6.4: Runtime in seconds

RE IPRE Approx

Polbooks 0.889 0.117 0.00012

C.elegans 2.819 0.568 0.00045

USAir 6.206 0.781 0.00043

MP 8.539 2.289 0.00116

Polblogs 45.456 27.648 0.00124

6.6 Conclusion

In this work we study the adversarial robustness of a probabilistic network em-

bedding model CNE for the link prediction task by measuring the sensitivity of the

link predictions of the model to small adversarial perturbations of the network. Our

approach allows us to identify the most vulnerable links and non-links that if per-

turbed will have large impact on the model’s link prediction performance, which

can be used for further investigation, such as defending attacks by protecting those.

With two case studies, we analyze the characteristics of the most and least sensi-

tive perturbations for link prediction with CNE. Then we empirically confirm that

our theoretical approximation of the sensitivity measure is both effective and ef-

ficient, meaning that the worst-case perturbations for link prediction using CNE

can be identified successfully in a time-efficient manner with our method. For

future work, we plan to explore the potential of our theoretical approximation to

construct a regularizer for adversarially robust network embedding and to develop

certifiable robustness for link prediction.





7
Conclusion

In this last chapter, we conclude the main research outputs of the thesis, summarize

the findings of each problem investigated, and interpret how they can be used to

contribute to our lives. Then, we discuss potential research directions for the future

that can be built on the presented work.

7.1 Conclusion

This thesis consists of five research works on the two main topics: opinion for-

mation and dynamics; and the vital network task of link prediction. Starting from

the opinion formation process happening on social networks, we turn to the task

of predicting links of networks in general because of the challenges in dealing

with opinions on different issues. To better model the opinion formation process,

we proposed the BEBA model to account for the backfire effect and biased as-

similation simultaneously in Chapter 2 and the NFJ model that can normalize the

influence one receives from friends in Chapter 3. These models can be used as the

fundamentals for research works that measure opinion differences to quantify con-

troversy, polarization, and conflict. Then we presented a new way of optimizing

conflict in social networks that requires no opinions on specific issues in Chapter 4.

That is to consider how resilient specific network topologies are to opinions over

any set of topics. Our method can be applied to minimize the risk of conflict in or-

ganizations, companies, or any social media platform, preventing the community

or even society and nation from being more divided. Lastly, we delve into the links
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of networks and focus on building more data-efficient and robust link prediction

methods using the network embedding approach in Chapters 5 and 6. The detailed

findings and how they can be applied will be concluded in the remainder of this

chapter.

The BEBA model proposed in Chapter 2 is the first DeGroot-type model that

considers both the backfire effect and biased assimilation. The model uses one

parameter, which we call the entrenchment parameter, as well as the opinion dif-

ference over the existing edges, to control the extent to which an individual opinion

is influenced by a neighboring opinion. Theoretical results showed that the model

naturally leads to opinion convergence from consensus to polarization. The em-

pirical results demonstrated that the model not only makes sense for real-world

data but also provides insights on how the opinion formation process is influenced

by three factors: the initial opinion distribution over the network, the network

topology, and the entrenchment parameter. Thus, our work is of potential help

for designing effective intervention strategies on public opinions when there is the

need to correct misinformation or fake news, Moreover, it can be used to defend

malicious public opinion manipulation through changing the opinions, the net-

work connections, or the individual entrenchment degree. However, the model in

its current form has its limitations. Like many existing opinion formation models,

BEBA considers opinions for each individual in the network on only one topic,

while people usually communicate with each other on various issues. Those issues

are not independent of each other. It is possible to incorporate opinion vectors of

higher dimensions. However, the correlation among the issues remains a point of

concern, which is one of the challenges we address in Chapter 4.

With the NFJ model studied in Chapter 3, we found a conflict eliminator via the

theoretical analysis. The empirical investigation also showed that the NFJ model

preserves controversy, which we could observe in reality, because it avoids too

much opinion averaging. One interpretation of the normalization we introduced

could be that people have limited energy and attention, so the portion allocated

to the environmental information does not necessarily increase with the number

of friends. Instead, as one makes more friends, each of them would get less op-

portunity to communicate with the person. Similarly, it would be interesting to

investigate how the inner source of influence in the form of self-appraisal [7], rep-

resented as wii in the FJ model definition, will change and differ for people with

different personalities because it also influences the formation of opinions. Many

other exciting studies are also possible. One of the most interesting ideas, in our

opinion, was to discount the environmental influence by the similarity of the opin-

ions instead of the number of neighbors (i.e., the normalization). Essentially, both

methods avoid over-averaging opinions, but the similarity-based approach might

be more realistic. Similar people are more likely to be friends. Likewise, similar

opinions on the same topics can trigger more significant influence. In contrast,



CONCLUSION 123

opposing opinions that are too different might backfire, which can be observed

as arguing or fighting, meaning that the moderation of relatively extreme opin-

ions rarely happens. This type of model is non-linear, while NFJ stays linear.

The non-linear opinion formation model is what we investigated in Chapter 2 as

chronologically BEBA was proposed later than the study of NFJ .

In Chapter 4, we tackled the problem of quantifying and minimizing conflict,

namely the opinion divergence, in social networks without knowing any opinions.

The work was motivated by two shortcomings of the state-of-the-art: the difficulty

in obtaining opinions in practice and the fact that minimizing the conflict on one

issue could lead to the rise of conflict on another in the same social network. Along

the way of solving the problem, we discovered an interesting conservation law of

conflict after summarizing existing literature. It indicates that conflict on one sin-

gle issue remains a constant in a social network. Observing this, we departed from

the literature to focus on the resilience of the network topology against conflict on

all possible issues, which corresponds to a novel notion we introduced as the risk

of conflict. Then we developed two algorithms for optimizing the risk of conflict in

the average and the worst case over all opinion distributions of the network. Our

theoretical and empirical results demonstrated the characteristics of the network

structure with minimal conflict (for different kinds of measures). The experiments

also showed that optimizing the worst-case conflict risk by editing the network

structure is more effective for both cases, albeit more computationally expensive.

Therefore, it could be meaningful to delve deeper into the risk of conflict in the

worst case, both theoretically for more properties and empirically for higher ef-

ficiency. In that chapter, our research focus changed from the opinion formation

process on the network to the topology of the network. To effectively reduce the

risk of conflict, it is essential to know all the link information in the social network

of interest. However, networks are usually partially observed, which turns out to

be a vital network problem of link prediction, That problem is our focus for the

subsequent two research contributions presented in Chapters 5 and 6.

Based on a state-of-the-art link prediction method using network embedding,

namely CNE, we developed an active learning framework for link prediction on

partially observed networks in Chapter 5 — the ALPINE framework, for improv-

ing data efficiency. In ALPINE, we first adapted the CNE model to embed the

network with only the observed links and non-links, meaning that the observed

non-links and unknown link status are treated differently. Experiments showed that

the modified CNE using only the known information is both more time-efficient

and effective for the link prediction task. With a set of query strategies we de-

veloped for use in combination with ALPINE, the most informative unknown link

status can be identified, queried, and added into the training data to improve the

link prediction performance. Qualitative evaluation of ALPINE confirmed that our

method indeed identified the most informative unknown link status. Results of our
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quantitative experiments further illustrated the merits of ALPINE and shed light

on how to apply the proposed query strategies to real-world problems suitably. In

practice, we regularly deal with partial information for problem-solving, so we

hope that ALPINE can contribute to real-world problems that have already been

formalized as link prediction, calling for more effective and efficient solutions.

Besides the data efficiency of link prediction methods, it is also important to

ensure reliable link prediction results. Therefore, we investigated the adversarial

robustness of the same probabilistic network embedding model CNE in Chap-

ter 6. More specifically, the last paper chapter focused on measuring the model’s

sensitivity to small adversarial perturbations of the network connections, i.e., the

change of the link status. With the proposed method, the most vulnerable links and

non-links can be identified; thus, if they are verified or protected, the link proba-

bilities provided by the model can be trusted. Because if they are ensured to have

the correct signs (i.e., 1 for links and 0 for non-links), other link statuses are not

significantly impacting the model performance. We illustrated with two case stud-

ies that our sensitivity measure is reasonable and empirically confirmed that the

theoretical approximation we developed for it could also identify the most sensi-

tive perturbations successfully, which saves much more time and is of significantly

good quality. In its current form, the paper is ready for an extension for develop-

ing an adversarially robust version of CNE. If we can construct a regularizer using

the theoretical approximation as in Virtual Adversarial Training (VAT) [147], the

most sensitive perturbations would be taken into consideration during the model

training. In this way, the robustness is embedded in the model and independent

of the network. It is also possible to develop a robustness certification for link

prediction based on our theoretical approximation. While certified robustness for

node classification has been investigated, there is no mention of a similar notion

for link prediction. More details concerning this direction will be discussed later

in future work.

Chapters 5 and 6 use the same network embedding method CNE [37], and

they have similar mathematics as both considered the gradient information of the

model. However, the ideas are not the same, and the gradients are used for different

purposes. In Section 5.4.3 of Chapters 5, the two variance reduction strategies used

the fisher information, which can be derived as the Hessian of the log-likelihood

w.r.t. the embeddings (X). So we computed the partial derivative of the log-

likelihood function (i.e., logP ) w.r.t. the parameter as in Appendix 5.A. While

in Section 6.4.3 of Chapter 6, we calculate the gradient of the link probability

(i.e., not logP ) with respect to the edge flip aij , during which we need a similar

derivation as in Eq. (6.9): first the gradient of a link probability to x, then the

gradient of x to aij .

Limitations. That being said, our methods are far from perfect. Now we list the

limitations for each contribution, which await future work.
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• The BEBA model. The BEBA model suffers from a common issue for all

opinion formation models; that is, there lacks the opinion data for validating

if it accurately models the opinion formation process. In fact, the backfire

effect is not supported by solid evidence due to non-robust experimental

results. Without solid validation, we are still skeptical: are we modeling a

real social phenomenon or just our feelings? Thankfully, our real-world data

analysis showed promising results on the validity of the BEBA model. We

hope to get more opinion data with the help of studies in natural language

processing for opinion formation model validation. Another issue we want

to address is the clipping in the current BEBA. It would be great to develop a

variant of the model where the updated opinions fall naturally into the range

of [−1, 1]. Moreover, we have only used a uniform entrenchment parameter

for all nodes in a social network, so it would be more realistic to incorporate

different values of β for the nodes.

• The NFJ model. Although the normalization has led to more sensible behav-

ior than the FJ model, it is still not clear if the weights people put on their

own internal opinions, i.e., wii, are constant. It is not realistic for wii to de-

creas as |N(i)| increase. However, wii might change due to other reasons,

such as reading, of which the measuring could be even more challenging

than getting real-valued opinions. Meanwhile, that change of wii, as well as

the value of wii itself, could differ among people. So the NFJ model still has

a long way to go, and the primary focus could be the investigation on wii.

• Risk of conflict in social networks. One issue of the work is the scalability

of the implemented algorithms. The largest network we experimented with

is the Facebook network of 4039 nodes. Suppose we want to apply it to min-

imize the risk of conflict for a big company or a university whose network

sizes are undoubtedly larger; our method might not work efficiently. In par-

ticular, if we want to optimize for the worst case, which performs better but

is more computationally expensive. Therefore, developing more efficient

solutions for the two optimization problems is necessary.

• ALPINE. Our work of ALPINE also suffers from the scalability issue, es-

pecially for the two query strategies that stem from D-optimality and V-

optimality. The computations for evaluating the utilities of the candidate

link statuses are indeed quite demanding in large-scare networks. It would

be beneficial to improve the efficiency on this. Meanwhile, we used a com-

mon assumption for network embedding methods to initialize the PONs as

connected. However, the realistic problem setting might not guarantee the

initial connectivity. So it is worth investigating a mixed strategy that can

cope with disconnected PONs, which could be similar to the cold-start prob-

lem. It would also be interesting to see the performance of ALPINE with
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other network embedding models besides CNE. In principle, our framework

works for any network embedding that can be expressed analytically, but

its compatibility with different NE models waits to be studied. Lastly, tak-

ing into account that the datasets we experimented with are not necessarily

ground truth, we might consider applying ALPINE to the signed networks,

which are naturally suitable here. There are three types of connections in

signed networks, i.e., the positive, negative, and unlinked, so we can embed

node pairs with positive links closer, negative links farther, and query from

the unlinked pairs. Many other possible cases can also be explored, such as

four types of link statuses of positive, negative, unlinked, and unknown.

• Robustness for link prediction. For the simplicity of studying robustness for

link prediction, we assumed the imperceptibility of the perturbations as a

single edge flip on the networks. However, this might not be precise. As

we can see in the case studies, those sensitive links and non-links could be

pretty evident, i.e., they cross communities. It is tricky that although they are

conspicuous in relatively small networks, they can be imperceptible in large

networks (i.e., of millions of nodes). Thus, we need to define the notion of

imperceptibility in our context with due consideration.

7.2 Directions for Future Work

With the five contributions from Chapters 2 to 6, we present our research on opin-

ion dynamics and link prediction in this thesis, which are two important problems

in computational social science and network science. Of course, there are many

other exciting research directions for future work, including the search for more

realistic and up-to-date opinion formation models; the study of emerging phenom-

ena in our digital world (e.g., echo chamber or filter bubbles) using computational

tools; the detection of malicious intervention on public opinion formation; the

investigation of the interplay between opinion dynamics and link formation in net-

works (i.e., people that are more like-minded are more likely to be friends, and it

is also true that friends tend to have similar opinions); and more. Among all, the

ideas below are of most interest to us.

Opinion Embedding. Graph representation learning methods are capable of learn-

ing the representations of the nodes in networks [170], such as the CNE model we

have been using for link prediction [37]. In addition to individuals in a social net-

work who hold opinions, their opinions on different topics can also be represented

as nodes, resulting in a heterogeneous network with two types of nodes (i.e., one

for people and one for opinion) and links (i.e., for friendship and opinion). Usually,

an opinion on a particular topic is within the range [−1, 1], i.e., −1 for ‘against’,

1 for ‘for’, and the absolute value stands for the support level. It means that, for
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each issue, we can introduce two nodes for the extreme opinions on both sides,

e.g., node topic1 against and topic1 for, and the connections between people and

the opinion nodes represent their opinions with the edge weights controlling the

support level. Illustrated in Figure 7.1 is the basic idea of opinion embedding for

a single topic.

against for

opinion node

individuals friendship

opinion link

Figure 7.1: Illustration of Opinion Embedding for a single topic.

There are at least two advantages of opinion embedding. The first one is that

the visualization of the network not only shows the supporting groups for both

sides of each topic, but also reveals the correlations among different topics (i.e.,

suggested by the distances between the opinion nodes in the embedding space). It

helps us understand and keep track of the social changes happening at a faster pace

today due to the internet. The second benefit is that, by tracking the trajectory of

the opinion nodes dynamically, the method is of potential help for defending mali-

cious opinion manipulation, especially during political elections. If any abnormal

or significant change of the node embeddings is detected, people will be warned of

the risk that there might be malicious intervention. However, there is a challenge

we face here. Unlike the nodes representing people, the two opinion nodes for each

issue have ordinal differences (i.e., from −1 to 1). So we plan to find ways to en-

code the difference into the network structure or the network embedding procedure

in the future.

Opinion Formation with Graph Neural Networks. Another way to address the

challenge of high dimensional opinion vectors over a social network could be

to use Graph Neural Networks (GNNs) [50], which is a class of network rep-

resentation learning methods. Designed mainly for the network task of semi-

supervised node classification, GNNs iteratively aggregate the neighborhood infor-

mation (e.g., the node features) to represent the nodes as a set of real vectors. The



128 CHAPTER 7

feature propagation in GNNs is essentially an averaging process over the (local)

network connections. The process is similar to opinion formation on social net-

works if we consider the node opinions over different issues as the node features.

Recent research has shown that while most GNNs are good at the semi-supervised

node classification on networks with strong homophily (i.e., where similar nodes

are linked), they achieve much less satisfying performance on graphs with het-

erophily (i.e., where most linked node pairs belong to different classes) [171,172].

The assumption of GNNs on the network homophily may be problematic when

they are applied to heterophilous networks. However, this is not a problem for

social networks with homophily [173]. Therefore, it would be interesting to use

learning methods like GNNs to investigate opinion formation, in contrast to the

traditional ways of using mathematically defined updating rules. Furthermore,

current research on how opinions are formed and information is diffused on social

networks might help explain the patterns of feature propagation in GNNs.

Robustness Certification for Link Prediction. Last but not least, following our

study on the robustness for link prediction in Chapter 6, we discuss how the re-

sults can be used to develop robustness certification for link prediction. Relevant

research has been done for the classification of nodes or graphs, in which a target

node or graph is certified to have always the true label under bounded perturba-

tions [54,56,141,160], while for community detection, a set of nodes are certified

to be grouped into the desired communities under limited attacks [161]. However,

similar concepts have not been considered for link prediction yet.

The robustness certification on classifications studies the worst-case margin

between the true label and the predicted label under bounded attacks, e.g., on the

network structure [54]. Given a network G = (A,X) where A and X are its

adjacency and node feature matrices, respectively, the robustness certification of a

model (e.g., GCN [105]), represented by its parameter θ, on a target node t can be

given by first calculating the worst-case margin as:

mt(y∗, y) :=minimizeÃf t
θ(X, T (Ã))y∗ − f t

θ(X, T (Ã))y, (7.1)

subject to Ã ∈ A(A), (7.2)

where f t
θ(X, T (Ã))y is the probability that the target node t is predicted to be

in class y under the admissible perturbation Ã within the considered perturbation

space defined as A(A). Then if the margin mt(y∗, y) > 0 for all classes y 6= y∗,

the target node t is certified to be classified correctly by the model under A when

the ground truth network structure A∗ can be reached via A. It means that any

possible perturbations within A will not lead to the change in the predicted class

for node t, i.e., the probability of the node belonging to y∗ is always the largest.

Similarly, the link prediction performance can be certifiable robust to bounded

perturbations on the network structure. It turns out to be a much simpler problem

than that for node classification because link prediction is basically a binary clas-
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sification as a link can only exist or not. Therefore, the target to certify can be

extended from a single link to a set of link statuses of our interest. To be specific,

given a node pair set T , the certification is to ensure that under admissible pertur-

bation within space A, the link prediction results from our model on T can still be

trusted. To do that, we need to define a similar worst-case margin as:

mT :=max(AUCT (Ã))−min(AUCT (Ã)), (7.3)

subject to Ã ∈ A(A). (7.4)

If mT ≤ ǫ, the predictions of link statuses in T are certifiable robust with a margin

of error up-bounded by ǫ. Therefore, this method can provide a quantification of

reliability for link prediction on a set of node pairs, which is transferred from the

uncertainty in data inputs as the perturbation space A. We plan to figure out the

mathematics for this idea in the future so the theoretical and empirical analysis can

both be done.

Concerning data efficiency, there are many trendy machine learning approaches

using transfer learning [174] or self-supervise learning [175], together with pre-

training [176] that have achieved excellent performance in recent years [177–180].

For the link prediction task, they could be of help. For example, we might use the

knowledge extracted from graphs of similar types and domains for predicting links

on a new network such that the method can be more general. Based on it, further

general models across domains might also be worth investigating. Alternatively,

we could explore more on applying self-supervised learning for link prediction

when no ground truth data is available because most relevant research focuses on

the classification task of nodes or graphs.

We hope that this thesis can contribute to the research community and help us

understand how our digitized societies affect our opinions and social relationships.

Meanwhile, as recent decades have witnessed the rapid growth of Artificial Intel-

ligence (AI), one could wonder: Can machine form opinions? If machine opinion

formation for more complex AI is too far away or even impossible, can we use ma-

chines for investigating human opinion formation via controlling the information

exposures? Let us wait together to see what surprise the future will bring us.
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