


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Structural Health Monitoring for Bridges Using Metaheuristic 
Optimization Algorithms Combined with Artificial Neural Network

Ngoc Hoa Tran

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Civil Engineering

Prof. Magd Abdel Wahab, PhD* - Prof. Tien Thanh Bui, PhD** - Prof. Em. Guido De Roeck, 
PhD***

* Department of Electromechanical, Systems and Metal Engineering
Faculty of Engineering and Architecture, Ghent University

** Department of Bridge Engineering and Underground Infrastructure
Faculty of Civil Engineering, University of Transport and Communications, Vietnam

***Department of Civil Engineering
Faculty of Engineering Science, KU Leuven

Supervisors

February 2022



Wettelijk depot: D/2022/10.500/11
NUR 955, 956
ISBN 978-94-6355-570-8



Members of the Examination Board

Chair

Prof. Patrick De Baets, PhD, Ghent University

Other members entitled to vote

Samir Khatir, PhD, Ghent University
Yong Ling, PhD, Ghent University

Prof. Timon Rabczuk, PhD, Bauhaus Universität-Weimar, Germany
Yunlai Zhou, PhD, Xi'an Jiaotong University, China

Supervisors

Prof. Magd Abdel Wahab, PhD, Ghent University
Prof. Tien Thanh Bui, PhD, University of Transport and Communications, Vietnam
Prof. Em. Guido De Roeck, PhD, KU Leuven





 

 

 

 

 

 

 

 

 

 

 

Research Institute 
Ghent University 

Faculty of Engineering and Architecture 
Department of Electromechanical, Systems and Metal Engineering. 

Laboratory Soete http://www.soetelaboratory.UGhent.be 

Technologiepark 46, B-9052 Zwijnaarde, Belgium 

Tel: +32 9 331 0477 
Email: hoa.tran@ugent.be; ngochoa@utc.edu.vn 

 

 

 

 

 

I would like to dedicate this thesis to my loving parents, family 

For their endless love, support and encouragement 

 



 
 

Acknowledgements  

First, I would like to express my deep gratitude to Professor Magd 

Abdel Wahab, Professor Bui Tien Thanh, and Professor Guido De Roeck 

who gave me a great opportunity to participate in this wonderful research 

project (VLIR-UOS project) and to study at Ghent University. Thanks to 

their patient guidance and valuable advice through my research process. 

I feel extremely fortunate to have the chance to meet and work with them. 

To be honest, I have learned a lot from them, not only about knowledge 

but also about kindness and passion for science. Indubitably, without 

their dedicated help, I would not be able to complete this thesis. I also 

would like to thank committee members for supporting me in my defense 

and giving me brilliant suggestions.  

I sincerely express my special appreciation to my colleagues at the 

University of Transport and Communications (UTC) and especially my 

colleagues at the Department of Bridge Engineering and Underground 

Infrastructures, who have facilitated and helped me throughout my 

research. 

I am truly grateful to the VLIR-UOS project and the Bijzonder 

Onderzoeksfonds (BOF) scholarship of Ghent University. Without their 

financial support, it would be difficult for me to cover the costs of the 

research process.  



 
 

I would like to thank my colleagues at Laboratory Soete, Department 

of Electrical Energy, Systems and Automation, Faculty of Engineering and 

Architecture, Ghent University for their friendly help and encouragement. 

I would like to extend my sincere thanks to Mrs. Georgette D'Hont for her 

patience to help me deal with all administrative problems. In particular, I 

would especially like to thank Dr.Samir Khartir, MSc. Le Xuan Thang, Dr. 

Yong Ling, Ph.D. Ho Viet Long, Dr. Nguyen Huong Duong, Ph.D. Nguyen 

Tran Hieu, Ph.D. Nguyen Ngoc Lan…and other members of my research 
team for their discussions, advice, and encouragement. 

I also sincerely thank my best friends Nguyen Van Binh, Ho Khac 

Hanh, Pham Hong Tuyen, Nguyen Thanh Do,  Nguyen My Yen, Luong Ngoc 

Quang, Nguyen Hoang Yen, Dinh Tien Dung, Giang Pham... and other 

friends in Vietnam, and in Belgium for always encouraging and helping 

me overcome the most difficult times in the research process. 

I would also like to thank Prof Edwin Reynders, a researcher at the 

Department of Civil Engineering, KU Leuven University, Belgium, and  Dr. 

Leqia He, a researcher at Sustainable and Innovative Bridge Engineering 

Research Center College of Civil Engineering, Fuzhou University, PR China 

for providing the data of the measurement campaign used in my thesis. 

Finally, I would like to express my deepest gratitude to my family, 

parents (Tran Van Tan, Ta Thi Thuan), brothers (Tran Ngoc Dung), sisters 

(Tran Thi Tuyet, Tran Thi Nhung, Tran Thi Huong), brothers-in-law 

(Nguyen Manh Chien, Pham Van Thanh, Ngo Xuan Thi), sister-in-law (Vu 



 
 

Thi Oanh), and nephews. They love me unconditionally, always trust and 

encourage me to have more motivation to complete my Ph.D. program. 

 Hoa Tran 

 Ghent, 06 January 2022 



 
 

Contents (ALT+X) 

Acknowledgements ............................................................................................................. iv 

Contents (ALT+X) ............................................................................................................... vii 

Summary ................................................................................................................................... xi 

List of Figures .......................................................................................................................xxii 

Chapter 1 Introduction .................................................................................................. 1 

1.1 Problem outline ................................................................................................ 1 

1.2 Objectives and contributions ..................................................................... 3 

1.3 Thesis outline ..................................................................................................... 5 

Chapter 2 Literature review on SHM using MO algorithms and ANN ... 7 

2.1 Introduction .......................................................................................................... 7 

2.2 SHM- based on MO algorithms ................................................................... 8 

2.3 SHM- based on ANN .................................................................................... 12 

2.4 Conclusion of chapter 2 ................................................................................ 18 

Chapter 3 MO algorithms ...........................................................................................19 

3.1 Introduction..................................................................................................... 19 

3.2 MO algorithms ................................................................................................ 20 

3.2.1 GA .................................................................................................................... 20 



 
 

3.2.2 PSO .................................................................................................................. 24 

3.2.3 CS ..................................................................................................................... 26 

3.3 Improved MO algorithms ......................................................................... 29 

3.3.1 IPSO ................................................................................................................ 29 

3.3.2 ODIPSO ......................................................................................................... 31 

3.4 Conclusion of chapter 3 ............................................................................. 37 

Chapter 4 ANN .................................................................................................................38 

4.1 Introduction ....................................................................................................... 38 

4.2 ANN structure ................................................................................................. 39 

4.3 Methodology ................................................................................................... 41 

4.4 Shortcomings of traditional ANN ......................................................... 44 

4.5 Conclusion of chapter 4. ............................................................................ 48 

Chapter 5 A novel ANN based on the global search techniques .............49 

5.1 Motivation.......................................................................................................... 49 

5.2 Methodology of ANNCS1........................................................................... 50 

5.3 Conclusion of chapter 5. ............................................................................ 58 

Chapter 6 Applications to Bridges .........................................................................60 

6.1 Introduction ....................................................................................................... 60 

6.2 Nam O Bridge .................................................................................................. 60 

6.2.1. Bridge description .................................................................................. 60 



 
 

6.2.2. FEM................................................................................................................. 62 

6.2.3. Experimental measurements ............................................................ 69 

6.2.3.1. The AVT ................................................................................................ 69 

6.2.3.1.1. Test description................................................................................ 69 

6.2.3.1.2. Sensors placement .......................................................................... 70 

6.2.3.2. System identification by MACEC ............................................. 74 

6.2.3.2.1. Data pre-processing ....................................................................... 74 

6.2.3.2.2. Covariance based system identification (SSI-COV) ....... 76 

6.2.3.3. Modal analysis................................................................................... 77 

6.2.4. Model updating ........................................................................................ 80 

6.3 Guadalquivir railway bridge ................................................................... 86 

6.3.1. Bridge description .................................................................................. 86 

6.3.2. FEM ................................................................................................................ 87 

6.3.3. Measurements .......................................................................................... 92 

6.3.3.1. Instrumentation and test setup ............................................... 92 

6.3.3.2. Test results ......................................................................................... 96 

6.3.3.2.1. System identification and modal analysis .......................... 96 

6.3.3.2.2. Discussions on the identified mode shapes ....................... 99 

6.3.3.3. Validation of the numerical model ...................................... 102 

6.3.3.3.1. Transverse modes........................................................................ 102 



 
 

6.3.3.3.2. Vertical modes ............................................................................... 103 

6.3.3.3.3. Torsion modes ............................................................................... 104 

6.3.4. Model updating ....................................................................................... 104 

6.4 Chuong Duong bridge .............................................................................. 112 

6.4.1. Bridge description ............................................................................... 112 

6.4.2. FEM.............................................................................................................. 114 

6.4.3. Damage detection ................................................................................ 116 

6.4.3.1. Single damages .............................................................................. 116 

6.4.3.2. Multiple damages ......................................................................... 123 

6.5 Conclusion of chapter 6. ......................................................................... 132 

Chapter 7 Conclusions and Recommendations for Future Work ....... 133 

7.1 Conclusions ................................................................................................... 133 

7.2 Future Work ................................................................................................. 135 

Publications.......................................................................................................................... 138 

References ............................................................................................................................ 143 



 

Summary 

During service life, engineering infrastructures are inevitably 

subjected to loads of devastating effects, such as earthquakes, storms, 

extreme weather, overload or accidental loads, etc., all of which can 

significantly reduce the operational effectiveness and lifespan. Therefore, 

during recent decades, Structural Health Monitoring (SHM) systems have 

been widely deployed and captured much attention from researchers 

around the world. The task of the SHM system is to detect damages as 

early as possible based on the obtained data. This plays a crucial role in 

assessing structural behavior most accurately before arriving at any 

repair decision.  

The objective of this thesis is to deal with the shortcomings of 

traditional Metaheuristic Optimization (MO) algorithms and Artificial 

Neural Network (ANN), develop strong tools to increase the accuracy and 

effectiveness of  SHM. Specifically, this thesis conducts SHM for bridges 

using MO algorithms combined with ANN, which can be summarized in 

the following main points. 



 
 

Firstly, the thesis deals with an inverse problem to update and 

identify the stiffness conditions of typical joints of a large-scale truss 

bridge using Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA). For steel truss bridges, connections of truss members are the most 

complicated unknown parameters. The assumption of rigid or pinned 

joints has little effect on the result of static analysis. However, the result of 

dynamic analysis is extremely sensitive to this assumption. Most of the 

researchers have employed pin and rigid connections when predicting 

structural dynamic behavior. The results of this thesis demonstrate that 

both kinds of this connection cannot reflect exactly the dynamic 

characteristic of the bridge, because while rigid links overestimate the 

stiffness of the joint, pin links omit its stiffness. By contrast, the 

assumption of semi-rigid links (using rotational springs) can provide a 

good agreement between the numerical model and measurement. 

To overcome the drawbacks of traditional PSO, an Improved Particle 

Swarm Optimization (IPSO) is applied. PSO is a popular metaheuristic 

algorithm applied successfully in numerous fields over the last decades. 

However, since PSO applied fixed parameters directly relating to the 

velocity of particles, this may decrease its efficiency in tackling 

optimization problems. 

The thesis proposes coupling Orthogonal Diagonalization (OD) with 

IPSO (ODIPSO) to deal with the huge computational cost of PSO. The 

application of PSO and other MO algorithms is time-consuming since 

these algorithms employ all populations to seek the best solution through 



 
 

iterations. This makes them difficult to apply for optimization problems 

of large-scale structural models. For ODIPSO, OD is applied to arrange the 

position of particles and to select only particles with the best solution for 

the next iterations, which helps to reduce the computational cost 

dramatically. There are several significant features of ODIPSO: (1) IPSO is 

employed to make particles more flexible during the process of looking 

for the best solution; (2) only one guide is used to update the velocity of 

particles instead of utilizing both guides, consisting of the local best and 

the global best; and (3) in each iteration, only the velocity and the position 

of the best particles are updated. The results show that ODIPSO not only 

outperforms PSO, IPSO and OD combined with PSO (ODPSO) in terms of 

accuracy but also dramatically reduces the computational time compared 

to PSO and IPSO. 

This thesis also introduces the use of Wireless Triaxial Sensors 

(replacing Classical Wired Systems) to obtain structural dynamic 

characteristics. The appearance of Wireless Triaxial Transducers 

increases significantly the freedom in designing an Ambient Vibration 

Test (AVT). 

To deal with the local minimum problem of ANN, a novel ANN based 

on the search capacity of Cuckoo Search (CS) is proposed to detect 

damages for a truss bridge. With recent ground-breaking advances, ANN 

has been applied widely in numerous fields currently. However, because 

of the application of backpropagation algorithms based on Gradient 

Descent (GD) techniques, the network of ANN may be trapped in local 



 
 

minima, especially if its starting point is not on the same side of the global 

best or the network contains too many local minima. This drawback may 

reduce the accuracy and effectiveness of ANN. To transcend these 

limitations of ANN, numerous researchers have employed algorithms 

based on global search techniques to eliminate the initial local minima of 

the network by looking for a beneficial starting point. Nevertheless, those 

solutions are only valid under certain circumstances when the network 

only contains a few local minima, and they are distributed on the same 

side. With complex problems such as SHM, the network always exists of 

different error surfaces with numerous widely distributed local minima. 

The approach of the selection of a good starting position for the network 

may no longer be useful. In this thesis, CS algorithm based on the global 

search technique is employed to work parallel with ANN during the 

process of training the network. This win-win approach has both 

advantages of GD techniques (fast convergence) and stochastic search 

techniques (avoiding being trapped in local minima). The core idea of the 

proposed method is recapped as follows: (1) ANN using the GD technique 

is first applied to speed up convergence; (2) if the network gets stuck in 

local minima, CS with global search capability is applied to assist particles 

in escaping from local minima; (3) the GD technique is applied again to 

increase the convergence speed. Steps 2 and 3 are repeated until the 

target is achieved. The results showed that the proposed approach 

completely outperforms CS, ANN, and other hybrid ANN in terms of 

accuracy and considerably reduces calculational costs compared to CS. 



 
 

It is commonly acknowledged that a high computational cost is 

putting up a major barrier to the real application of optimization 

algorithms, as well as ANN. Optimization algorithms that rely on 

stochastic techniques during the searching process are extremely time-

consuming, whereas training data of ANN contains millions of matrices 

that need to be dealt with. Therefore, in this work, a vectorization 

technique is used for the training data to reduce the dimension of data. 

Hence, the computational time is significantly reduced. 

To consider the effectiveness of the proposed methods, both 

numerical models and measurements are employed. The proposed 

methods are evaluated through numerical models and then compared 

with the results from the experiments in which numerous large-scale 

bridges, with large Degrees Of Freedom (DOF), are used to evaluate the 

effectiveness of the proposed methods. 

 

 

 

 

 

 

 

 



 
 

Samenvatting 

Tijdens hun levensduur worden bouwkundige infrastructuren 

onvermijdelijk blootgesteld aan tal van verwoestende effecten (bijv. 

aardbevingen, storm, extreem weer, overbelasting, accidentele 

belastingen, enz.), die allemaal de operationele efficiency en levensduur 

aanzienlijk kunnen verminderen. Daarom zijn de afgelopen decennia 

systemen voor structurele gezondheidsmonitoring (SHM) op grote 

schaal ingezet en hebben ze veel aandacht getrokken van onderzoekers 

over de hele wereld. De taak van het SHM-systeem is om schade zo vroeg 

mogelijk op te sporen op basis van de verkregen gegevens. Dit speelt een 

cruciale rol bij het zo nauwkeurig mogelijk beoordelen van het structurele 

gedrag in voorbereiding van een mogelijke reparatie ingreep. 

Het doel van dit proefschrift is om de tekortkomingen van 

traditionele optimalisatie-algoritmen en machine-learning aan te pakken, 

en tevens sterke tools te ontwikkelen om de nauwkeurigheid en 

effectiviteit van SHM te vergroten. Dit proefschrift focust op SHM voor 

bruggen met behulp van Metaheuristic Optimization (MO) algoritmen in 

combinatie met artificieel neuraal netwerk (ANN), wat kan worden 

samengevat in de volgende hoofdpunten. 

Allereerst behandelt het proefschrift een invers probleem om de 

stijfheidseigenschappen van typische verbindingen van een grootschalige 

vakwerkbrug aan te passen en te identificeren met behulp van 

deeltjeszwermoptimalisatie (PSO) en genetisch algoritme (GA). Voor 



 
 

stalen vakwerkbruggen zijn verbindingen van vakwerkdelen de 

moeilijkst te modelleren onderdelen. De aanname van starre of 

scharnierende verbindingen heeft relatief weinig effect op het resultaat 

van een statische analyse. Het resultaat van een dynamische analyse is 

echter uiterst gevoelig voor deze aanname. De meeste onderzoekers 

hebben scharnierende of  starre verbindingen gebruikt bij het 

voorspellen van het structureel dynamisch gedrag. De resultaten van dit 

proefschrift laten zien dat beide soorten verbindingen niet precies de 

dynamische eigenschappen van de brug kunnen weergeven, omdat starre 

verbindingen de rotatiestijfheid van de verbinding overschatten in 

tegenstelling tot scharnierende verbindingen die deze stijfheid volledig 

negeren. Daarentegen kan de aanname van halfstijve verbindingen (met 

behulp van rotatieveren) in het rekenmodel een goede overeenkomst 

tussen numerieke resultaten en corresponderende metingen opleveren. 

Om de nadelen van traditionele PSO te overwinnen, An IPSO wordt 

voorgesteld. PSO is een bekend metaheuristisch algoritme dat de 

afgelopen decennia met succes op tal van gebieden is toegepast. PSO heeft 

echter grote nadelen die de efficiëntie bij het aanpakken van 

optimalisatieproblemen kunnen verminderen. Een mogelijk nadeel van 

PSO is voortijdige convergentie, wat leidt tot een laag convergentieniveau, 

met name bij complexe zoekproblemen met meerdere optima. Anderzijds 

hangt PSO niet alleen in grote mate af van de kwaliteit van de initiële 

populaties, maar is het bovendien onmogelijk om de kwaliteit van nieuwe 

generaties te verbeteren. Als de posities van de initiële deeltjes ver 



 
 

verwijderd zijn van het globale beste, kan het moeilijk zijn om de beste 

oplossing te vinden.  

Het proefschrift stelt voor om orthogonale diagonalisatie (OD) te 

koppelen aan IPSO (ODIPSO) om de zeer hoge rekenkosten van PSO aan 

te kunnen. Naast het probleem van voortijdige convergentie, is de 

toepassing van PSO en andere EA's tijdrovend omdat deze algoritmen alle 

populaties gebruiken om via iteraties de beste oplossing te zoeken. Dit 

maakt ze moeilijk toepasbaar voor optimalisatieproblemen van 

grootschalige structuurmodellen. Voor ODIPSO wordt OD toegepast om 

de positie van deeltjes te rangschikken en om alleen deeltjes met de beste 

oplossing te selecteren voor de volgende iteraties, wat helpt om de 

rekenkosten drastisch te verlagen. Er zijn verschillende belangrijke 

kenmerken van ODIPSO: (1) IPSO wordt gebruikt om het probleem van 

voortijdige convergentie van PSO aan te pakken; (2) Er wordt slechts één 

richtlijn gebruikt om de snelheid van deeltjes bij te werken in plaats van 

beide richtlijnen, bestaande uit de lokale beste en de globale beste; en (3) 

In elke iteratie worden alleen de snelheid en de positie van de beste 

deeltjes bijgewerkt. De resultaten laten zien dat ODIPSO niet alleen beter 

presteert dan PSO, IPSO en OD in combinatie met PSO (ODPSO) in termen 

van nauwkeurigheid, maar ook de rekentijd drastisch vermindert in 

vergelijking met PSO en IPSO. 

Dit proefschrift illustreert ook het gebruik van draadloze triaxiale 

sensoren (ter vervanging van klassieke bekabelde systemen) om 

structurele dynamische eigenschappen te verkrijgen. Het inzetten van 



 
 

draadloze triaxiale sensoren vergroot aanzienlijk de vrijheid van ontwerp 

bij een operationele trillingstest (Ambient Vibration Test: AVT). 

Om het lokale minimumprobleem van ANN aan te pakken, wordt een 

nieuw ANN voorgesteld gebaseerd op de zoekcapaciteit van koekoek-

zoeken (Cuckoo Search: CS) om schade in en een vakwerkbrug te 

detecteren. Dank zij recente baanbrekende ontwikkelingen wordt ANN 

tegenwoordig op veel gebieden en op grote schaal toegepast. Vanwege de 

toepassing van achterwaartse propagatiealgoritmen op basis van 

gradiëntafdaling (GD)-technieken, kan het netwerk van ANN echter 

vastzitten in lokale minima, vooral als het startpunt niet aan dezelfde kant 

van het globale beste ligt of als het netwerk te veel lokale minima bevat. 

Dit nadeel kan de nauwkeurigheid en effectiviteit van ANN verminderen. 

Om deze beperkingen van ANN te overstijgen, hebben talrijke 

onderzoekers algoritmen gebruikt die gebaseerd zijn op globale 

zoektechnieken om de initiële lokale minima van het netwerk te 

elimineren via het zoeken naar een gunstig startpunt. Desalniettemin zijn 

die oplossingen alleen geldig onder bepaalde omstandigheden wanneer 

het netwerk slechts enkele lokale minima bevat en ze aan dezelfde kant 

worden verspreid. Bij complexe problemen zoals SHM bestaat het 

netwerk altijd uit verschillende fout oppervlakken met talrijke 

wijdverspreide lokale minima. De aanpak van het selecteren van een 

goede uitgangspositie voor het netwerk is dan wellicht niet meer zinvol. 

In dit proefschrift wordt een CS-algoritme, gebaseerd op de globale 

zoektechniek, gebruikt om parallel met ANN te werken tijdens het 



 
 

trainingsproces van het netwerk. Deze win-win-benadering heeft zowel 

de voordelen van GD-technieken (snelle convergentie) als van 

stochastische zoektechnieken (voorkomen om vast te zitten in lokale 

minima). Het kernidee van de voorgestelde methode wordt als volgt 

samengevat:  

(1) ANN met behulp van de GD-techniek wordt eerst toegepast om 

deconvergentie te versnellen;  

(2) Als het netwerk vastloopt in lokale minima, wordt CS met globale 

zoekmogelijkheid toegepast om deeltjes te helpen ontsnappen uit lokale 

minima;  

(3) De GD-techniek wordt opnieuw toegepast om de 

convergentiesnelheid te verhogen. Stappen 2 en 3 worden herhaald 

totdat het doel is bereikt. De resultaten toonden aan dat de voorgestelde 

aanpak CS, ANN en andere hybride ANN overtreft in termen van 

nauwkeurigheid en bovendien de rekenkosten aanzienlijk verlaagt in 

vergelijking met CS. 

Het wordt algemeen erkend dat hoge rekenkosten een grote barrière 

vormen voor de echte toepassing van optimalisatie-algoritmen en ook 

ANN. Optimalisatie-algoritmen waarvan het zoekproces gebaseerd is op 

stochastische technieken, zijn extreem tijdrovend, terwijl 

trainingsgegevens van ANN miljoenen matrices bevatten waarmee moet 

gewerkt worden. Daarom wordt in dit proefschrift voor de 

trainingsgegevens een vectorisatietechniek gebruikt om de 



 
 

gegevensdimensie te verkleinen. Hierdoor wordt de rekentijd aanzienlijk 

verkort. 

Om de effectiviteit van de voorgestelde methoden te beoordelen, 

worden zowel numerieke modellen als metingen gebruikt. De 

voorgestelde methoden worden geëvalueerd door middel van numerieke 

modellen en vervolgens vergeleken met de resultaten van de 

experimenten. Tal van grootschalige bruggen, met een groot aantal 

vrijheidsgraden (DOF) worden gebruikt om de effectiviteit van de 

voorgestelde methoden te evalueren. 
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Chapter 1 Introduction  

1.1 Problem outline 

Structures may be damaged because of different reasons, e.g., service 

loads, environmental loads and accidental actions. In particular, bridges 

endure millions of stress cycles during their service life, and they are 

expected to be highly vulnerable to fatigue. Any incidents that happen to 

the bridges may cause economic and life impacts, even threaten the safety 

of users. Proper SHM programs not only help to avoid or at least to 

minimize a long out-of-service time, but also enhance operational 

efficiency in structures [1]. 

In recent decades, SHM for large-scale bridges has attracted special 

attention from researchers and the scientific community. Numerous 

large-scale bridges worldwide are established monitoring systems to 

assess health conditions and ensure operational safety. Among solutions 

to SHM, model updating based on vibration measurements seems to bring 

considerable benefits to the structures because it is non-destructive, 
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effective, and able to detect damages located deeply in structures. This 

approach overcomes the drawbacks of other methods, for example, 

magnet field methods, acoustic methods, ultrasonic methods, and visual 

inspection, all of which require prior information of damage locations. On 

the other hand, visual inspection is impossible to detect damages that are 

invisible to human eyes. Vibration monitoring consists of field tests to identify structural 

dynamic characteristics, such as natural frequencies, mode shapes, and 

damping ratios. This technique is used in numerous fields such as damage 

detection [2] parameter estimation [3] and structural control purposes 

[4]. According to the excitation methods, vibration excitation can be 

subdivided into forced or ambient. A Forced Vibration Test (FVT) 

requires an artificial excitation force to measure and control. An AVT (or 

frequently referred to as an Operational Modal Analysis - OMA) relies on 

ambient (or natural) excitation sources, such as wind or micro-seismicity. Recently, system identification methods have been used for both operational excitation and artificial excitation [5]. This not only helps to 

conduct the identification of modal scaling factors inexpensively but also 

provides modal estimates with a very high degree of accuracy. However, using artificial excitation is not always possible, especially when the 

structure is difficult to access. For long-span bridges, AVT is considered 

the most effective vibration testing technique because ambient excitation 

is freely available. By contrast, FVT requires considerable efforts to install 
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actuators such as shakers to generate measurable responses. Moreover, 

using FVT not only pushes up the high cost of measurements but also 

obstructs traffic flow.  

On the other hand, nowadays, with the strong development of 

technology, especially the support of modern computer systems, many 

tools have been introduced to serve the SHM process. A clear illustration 

is that, over recent decades, MO algorithms such as GA, PSO, CS, or 

Machine Learning (ML) methods have been commonly used for SHM. 

However, traditional optimization algorithms and traditional ML still 

have fundamental shortcomings that may reduce their effectiveness and 

accuracy. 

Therefore, it is necessary to come up with workable solutions to 

overcome the drawbacks of traditional MO algorithms as well as 

traditional ML and make them more effective for SHM.  This target has 

been receiving special attention from the scientific community.  

From aforementioned analyzed concerns, this thesis will focus on 

SHM for large-scale bridges using improved MO algorithms and ML based 

on structural dynamic behaviors obtained from measurements. 

1.2 Objectives and contributions 

This thesis focuses on two main objectives that can be summarised 

as below: 
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1. Introduce up-to-date approaches to SHM for large-scale bridges 

using MO algorithms and ANN. 

2. This thesis will propose workable solutions to the 

aforementioned disadvantages of traditional MO methods and 

ANN, helping them become more effective and applicable to 

reality. Although both MO algorithms and ANN have 

demonstrated a high level of competence to deal with 

optimization problems and SHM over the last decades, they still 

expose fundamental shortcomings that may reduce their 

accuracy and restrict their applicability. For ANN, local minima 

might be the biggest problem that reduces its accuracy and 

effectiveness, whereas the application of MO is extremely time-

consuming because these optimization algorithms rely mainly on 

stochastic techniques during the process of searching for the best 

solution. 

Based on obtained results, some of the main contributions of the 

thesis are drawn below. 

Firstly, to overcome the drawbacks of traditional PSO, an IPSO is 

coupled with OD (ODIPSO) to increase the accuracy of obtained results as 

well as to reduce the computational cost. The proposed method is applied 

for model updating of a five-span truss bridge.  
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Moreover, a vectorization technique is used for the training data that 

plays a vital role in reducing the dimension of data. Hence, the 

computational time is significantly reduced. 

Finally, a significant contribution of this thesis is that a novel ANN 

based on the search capacity of CS is proposed to deal with the local 

minimum problem of ANN. 

1.3 Thesis outline 

Apart from the introduction part (Chapter 1), this thesis is 

split into six chapters organized as follows.  

Chapter 2.  A literature review of SHM using MO algorithms 

and ANN is presented.  

Chapter 3. This chapter introduces traditional MO algorithms 

consisting of GA, PSO, CS used for optimization problems. In 

addition, this chapter also proposes solutions to the shortcomings 

of traditional MO algorithms.  

Chapter 4. In this chapter, the definition, structure, 

methodology, and shortcomings of ANN are described in detail.  

Chapter 5. An efficient approach is proposed to overcome the 

drawbacks of traditional ANN and CS. The proposed method can 

deal with the local minimal problem of ANN, increase the accuracy 

and reduce computational cost compared to CS.  
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Chapter 6.  The proposed methods are applied to real bridges, 

with large DOF. Both numerical and experimental models are used. 

The structures are modelled and uncertain parameters are 

identified. In addition, damage identification problems are also 

evaluated.  

Chapter 7.  Conclusions and recommendations for future work 

are provided in this chapter. 
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Chapter 2 Literature review on 

SHM using MO algorithms and ANN 

2.1 Introduction 

SHM became a central research topic and has received increasing 

attention from the scientific community in recent decades. Numerous 

successful applications of SHM have been reported in the literature [7-

14]. 

In recent decades, non-destructive structural damage detection 

techniques based on s tructural dynamic characteristics, MO algorithms, 

and ANN have been developed. The application of MO algorithms and 

ANN to SHM provides enormous benefits such as reducing costs, fast 

process, without traffic suspension, and providing the results with high 

accuracy. In this case, this solution can provide an accurate assessment of 

structural behaviors, detect damages, predict the remaining life, and 

assure the safety of the structure in the operation process. Hence, over 

recent decades, MO algorithms and ANN have been commonly used for 

SHM that will be introduced in detail in sections 2.2 and 2.3. 
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2.2 SHM- based on MO algorithms 

The appearance of MO algorithms has extremely enhanced the 

efficiency of SHM [15-22]. Those algorithms help to minimize the 

differences of results between numerical model and measurements.  

Afterward, the calibrated model can predict the behaviors of the 

considered structures more accurately. Over the recent decades, 

numerous researchers have employed OM algorithms for SHM. For 

example. Jung et al. [23] applied a hybrid GA to update a small-scale 

bridge. The objective function included static deflections, mode shapes, 

and natural frequencies. However, the process of looking for the best 

solution of GA is time-consuming because this algorithm has to adjust too 

many parameters through each iteration. Moreover, GA does not possess 

an effective global search capacity as other MO algorithms. Zare 

Hosseinzadeh et al. [24] applied CS algorithm for damage identification in 

structures using an objective function of static displacement. Yildiz [25] 

employed CS to tackle manufacturing optimization problems. In order to 

compare with CS in terms of solving milling optimization problems, other 

optimization algorithms consisting of PSO, Ant Colony (AC) algorithm, 

and immune algorithm were applied. The results showed that CS was 

superior to the aforementioned algorithms. 

Na et al. [26] used GA to determine damages in a large-scale building. 

The proposed approach could identify damage locations and severity in 

the considered structures exactly, even though measured data was 
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incomplete. Khatir et al. [27] employed both PSO and GA to identify 

damage locations and severity in unidirectional graphite-epoxy 

composite beams based on measured vibration data. The results showed 

that PSO surpassed GA with regard to convergence rate and accuracy. 

Khatir et al. [28] combined PSO with measured natural frequencies to 

detect damages in beam-like structures. Qin et al. [29] updated a complex 

railway bridge by using GA combined with the Kriging model. While the 

Kriging model acted as a surrogate to reduce the deviation between 

structural parameters and responses, GA provided the opportunity for 

obtaining the global best solution. Liu et al. [30], Zordan et al. [31], and 

other authors also employed the mathematical power of optimization 

algorithms to update large-scale bridges. Khatir et al. [32] applied CS 

algorithm to determine the discrepancy of natural frequencies between 

experimental and theoretical analysis of Timoshenko beams based on 

Isogeometric Analysis (IGA). The outcomes indicated that CS provided a 

very high degree of accuracy to identify the best IGA parameters of 

Timoshenko beams. Xu et al. [33] used CS to identify damage locations 

and severity of a dual-span supported beam and a truss structure based 

on a nonlinear objective function of natural frequencies and Modal 

Assurance Criterion (MAC). The results demonstrated that CS could 

detect damages in the considered structures accurately even when the 

effect of noise was fully assessed.  Perera et al. [34] employed GA derived 

from Pareto optimality to identify damage in structures. Panigrahi et al. 
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[35] applied the residual force vector along with GA to determine the 

damage of multistory shear structures. While the input of the model was 

natural frequencies of modes without and with corresponding mode 

shapes, the outputs were damage location and level. 

Although MO algorithms have demonstrated their effectiveness in 

handling optimization problems, especially SHM problems, they still 

expose some fundamental shortcomings. For example, since PSO applied 

fixed parameters directly relating to the velocity of particles, this may 

decrease its efficiency in tackling optimization problems. Therefore, a 

creative solution to the aforementioned limitations of the traditional PSO 

is strictly necessary. On the other hand, PSO relies heavily on the quality 

of initial populations. If the positions of initial particles are far away from 

the global best, it may be difficult to find the most optimal solution.  

Over the recent decades, numerous researchers have proposed 

distinct types of IPSO used to tackle the drawbacks of PSO.  Løvbjerg et al. 

[36] proposed an IPSO based on the theory of reproductive and 

subpopulations making a significant contribution to the increase in the 

accuracy of the standard PSO. The gaussian mutation was employed to 

increase the search capacity of particles influencing convergence speed 

and accuracy of PSO [37]. Baskar et al. [38] adopted a new approach using 

two particle swarms that exchanged information and worked in parallel 

to remedy the shortcomings of PSO due to premature convergence. Clerc 

[39] increased the convergence rate of PSO by adding a constriction factor 
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taking the swarm gravity center into account. Wang et al. [40] enhanced 

the efficiency of the standard PSO by combining it with a simulated 

annealing algorithm. Parsopoulos et al. [41] proposed a nonlinear method 

derived from the initialization technique of PSO to expand the global 

search capacity of particles. Qin et al. [42] combined PSO algorithm with 

a surrogate model to update higher vibration modes for a continuous 

railway concrete bridge in Spain. They pointed out that combining PSO 

algorithm and a surrogate model could reduce the computational time. 

Shirazi et al. [43] proposed an adaptive multi-stage optimization 

derived from a modified PSO to determine multiple damage cases of the 

tested structures. Tran-Ngoc et al. [44] proposed a novel approach to SHM 

of a truss bridge using IPSO coupled with OD. IPSO was employed to make 

particles of PSO more flexible, whereas OD based on optimal selection was 

used to eliminate poor quality population and to reduce the dimension of 

the model. The results showed that the proposed method not only 

increased the accuracy of the model but also drastically decreased 

computational costs. 

The traditional CS algorithm also exists main drawbacks. The 

accuracy of CS is low if the initial position of populations is far away from 

the best solution. This algorithm does not possess crossover and mutation 

operators such as GA to improve the quality of the next generations. On 

the other hand, since CS look for the best solution based on stochastic 

techniques, this leads to a massive increase in computational cost. 
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Recently, many researchers have proposed different types of Improved 

Cuckoo Search (ICS) to deal with the issues of shortcomings. Mohapatra et 

al. [45] combined ICS with ML to classify medical datasets. ICS was 

employed to determine training parameters of ML consisting of input 

weights and hidden biases. In order to compare with the proposed 

approach, other algorithms including Online Sequential Extreme 

Learning Algorithm (OSELM), Multi-Layered Perceptron (MLP), and 

Radial Basis Function Neural Network (RBFNN) were also employed. The 

results demonstrated that the proposed approach outperformed OSELM, 

MLP, and RBFNN in terms of accuracy. Marichelvam et al. [46] employed 

ICS to deal with the multistage Hybrid Flow Shop (HFS) scheduling 

problems. ICS was applied to minimize the discrepancy between the start 

time and finish time of sequential tasks for the HFS scheduling problems. 

Simulations and comparisons indicated that ICS was superior to 

simulated annealing, GA, PSO, and AC algorithms in terms of accuracy. 

Zhou et al. [47] used ICS applying swap and inversion strategy, and greedy 

strategy to solve planar graph coloring problems. The results showed that 

ICS provided a higher correction to the coloring rate and required less 

computational time than PSO.  

2.3 SHM- based on ANN  

ANN is a sub-branch of Artificial Intelligence (AI) designed to mimic 

the way that the human brain processes information. With recent notable 
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advances, ANN has been commonly employed in a wide variety of fields 

[48-51]. For example, Nguyen-Thanh et al. [52] used neural networks 

combined with a high-dimensional model to generate a surrogate model 

for computational homogenization of elastostatics. Chau et al. [53] 

proposed employing Chebyshev polynomials for the activation function 

of neural networks to increase convergence speed when optimizing 

cross-sections for truss structures. Hyeon-JongHwang et al. [54] 

employed ANN to predict the bond performance of tension lap splices. 

The obtained results showed that the proposed method provided a higher 

level of accuracy compared to existing design equations. 

Sujith Mangalathu et al [55] presented a multi-parameter fragility 

methodology based on ANN to create fragility curves for skewed concrete 

bridges. This approach could determine uncertain parameters on the 

fragility curves. The results showed that the column longitudinal 

reinforcement ratio, the ground motion intensity measure, and span 

length made the main impact on the seismic fragility of the considered 

bridges. Eissa Fathalla et al [56] employed ANN to assess the remaining 

life of in-service bridge decks. The input data consisted of crack patterns 

and their widths. Although the obtained results could predict the 

remaining life of the structure, the risk of wrong assessment may be 

happened because of overfitting problems of the trained network. Ulrike 

Dackermann et al [57] identified damages in a two-storey framed 

structure using ANN combined with Frequency Response Functions 

https://www.sciencedirect.com/science/article/abs/pii/S0141029619321789#!
https://www.sciencedirect.com/science/article/abs/pii/S0141029617326275#!
https://www.sciencedirect.com/science/article/pii/S0141029618306163#!
https://www.sciencedirect.com/science/article/abs/pii/S0022460X13001491#!
https://www.sciencedirect.com/science/article/abs/pii/S0022460X13001491#!
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(FRFs). To verify the obtained results, measurement was also employed. 

The results showed that the proposed method was reliable and accurate 

in determining damages in the considered structure.  

ANN and time-modal features were employed to identify damages for 

simply supported beams and free–free beams in the work of [58]. The 

damage identification consisted of two phases, in which the first one was 

to monitor damages based on time-domain features and the second one 

was to estimate damages based on modal-domain features. Eui-

YoulKim et al [59] combined ANN and Wavelet Packet Transform (WPT) 

to detect the fault in a moving transfer robot. WPT was used for feature 

extraction and ANN was used for fault classification. Input data was an 

abnormal operating sound occurring when the robots move. The results 

showed that abnormal operating sound was sufficient and reliable for the 

fault diagnosis of mechanical components. C.ZANG et al [60] employed 

measured FRFs and ANN to predict the actual state of the considered 

structure. When input data was measured FRFs, output data was the 

health state of structure (damaged or intact). To consider the robustness 

of the proposed approach under the effect of significant experimental 

noise, 5% random noise was added into the input data.  

In the work of [61], a counter-propagation neural network was used 

to control earthquake-induced vibrations in building structures. The 

authors concluded that the proposed method possibly determined the 

required control forces exactly without an unsupervised learning method. 

https://www.sciencedirect.com/topics/engineering/simply-supported-beam
https://www.sciencedirect.com/science/article/abs/pii/S0022460X12002027#!
https://www.sciencedirect.com/science/article/abs/pii/S0022460X12002027#!
https://www.sciencedirect.com/science/article/abs/pii/S0022460X0093390X#!
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R.M. Di Benedetto et al [62] employed ANN to predict the energy 

absorption capability of thermoplastic commingled composites. The 

results showed that the proposed method possibly predicted the impact 

energy with a high level of accuracy. Geng Chen et al [63] employed ANN 

to predict global material strengths of particulate reinforced metal matrix 

composites. Features obtained from direct method analyses were 

selected as input data, whereas global material strengths played a role as 

output data. Tam T.Truong et al [64] introduced ANN to optimize the 

material distribution of Bidirectional Functionally Graded (BFG) beams. 

In this research, ANN was used to predict responses of BFG beams and a 

differential evolution approach was applied to deal with optimization 

problems. A.G. Stamopoulos et al [65] used ANN and X-ray Computed 

Tomography data to assess the quality of porous CFRP specimens. The 

input data consisted of 30 porosity scenarios used to train the network. 

The obtained results showed that the predictions of the ANN had a close 

correspondence with those from measurements. Fabio Rizzo et al [66] 

employed ANN to estimate the flutter velocity of suspension bridges. 

Uncertain parameters including deck chord length, bridge weight, and 

structural damping were selected as input data.  Oğuzhan Hasançebi et al [67] adopted an efficient approach based on 

ANN to update a reinforced concrete bridge in Pennsylvania. A field 

experiment was employed to calibrate the numerical model. After that, 

both linear and non-linear analyses based on the calibrated numerical 

https://www.sciencedirect.com/science/article/pii/S0263822320330579#!
https://www.sciencedirect.com/science/article/pii/S0263822318346397#!
https://www.sciencedirect.com/science/article/pii/S0263822319328326#!
https://www.sciencedirect.com/science/article/pii/S0263822318305828#!
https://www.sciencedirect.com/science/article/abs/pii/S0045794920300390#!
https://www.sciencedirect.com/science/article/abs/pii/S0045794912003318#!
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model were used to create datasets to train the network. The outcomes 

indicated that the proposed method was reliable to predict structural 

responses under the significant effect of uncertainties that could occur 

during the service life of structures. Moreover, this study also concluded 

that non-linear analysis should be taken into account for structural model 

updating problems. Prasun Chokshi et al [68] developed a novel ANN 

model derived from a phase distribution prediction model to determine 

the suitable process of hot stamping. Thermal & mechanical history was 

used to generate datasets for the network, whereas advanced statistical 

techniques were also employed to deal with overfitting problems that 

may happen in the process of training the network. The results showed 

that the performance of the proposed method provided a considerable 

improvement over most of the existing methods.  

Luis García Esteban et al [69] employed ANN based on 

a feedforward multilayer perceptron network to identify the modulus of 

elasticity of timber structures. Input data consisting of ultrasonic 

wave propagation velocity, thickness, width, density, moisture content, 

visual grading, and moisture content used to train the network. Jia Ma et 

al [70] proposed a data-driven modelling framework derived from ANN 

to analyse the contact process between barrel and bourrelet of complex 

contacting surfaces. Different initial indentation velocities obtained from 

measurement were served as datasets for the training process. To gain an 

optimal network, hyper-parameters including the structure of the 

https://www.sciencedirect.com/science/article/abs/pii/S0045794909002132#!
https://www.sciencedirect.com/topics/engineering/feedforward
https://www.sciencedirect.com/topics/engineering/perceptron
https://www.sciencedirect.com/topics/engineering/modulus-of-elasticity
https://www.sciencedirect.com/topics/engineering/modulus-of-elasticity
https://www.sciencedirect.com/topics/computer-science/ultrasonic-wave
https://www.sciencedirect.com/topics/computer-science/ultrasonic-wave
https://www.sciencedirect.com/topics/engineering/propagation-velocity
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network (the number of neurons in each layer), training parameters 

(weight and bias) were tuned in the process of training the network. The 

obtained outcomes provided a good agreement between calculated and 

real targets. Y.S. Kong et al [71] adopted a new approach using Hybrid 

multilayer perceptron ANN to estimate the fatigue life of automotive coil 

springs. The measured acceleration signals were selected as input data of 

the network. The optimized ANN structure was determined by tuning the 

number of neuron in the hidden layer. The ANN structure that provided 

the lowest Mean Square Error (MSE) values was selected to train the 

network. The authors concluded that the proposed method provided a 

high accuracy and a good correspondence between predicted and 

experimental values.  

Khairul H.Padil [72] developed an efficient ANN based on a non-

probabilistic method to identify structural uncertainties. While natural 

frequencies and mode shapes were chosen as input data, output was 

the young's modulus that possibly represents changes in the stiffness 

parameter. To assess the robustness and applicability of the proposed 

method, the effect of noise on datasets was used. An experimental model 

was also employed to verify results obtained from the numerical 

model. In the work of [73], a combination between ANN and the Optimal 

Wavelet-Packet Transform (ANN-OWPT) was presented to recognize 

sound quality. ANN model was employed three-layer back-

propagation to train the network. To verify the effectiveness of ANN-

https://www.sciencedirect.com/science/article/abs/pii/S0888327016301893#!
https://www.sciencedirect.com/topics/engineering/youngs-modulus
https://www.sciencedirect.com/topics/engineering/backpropagation
https://www.sciencedirect.com/topics/engineering/backpropagation
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OWPT, vehicle noises were used for sound quality recognition. From 

achieved outcomes, the authors pointed out that the proposed approach 

was effective and could be utilized to simulate the critical bands in the 

human hearing system. S.L. Xie et al [74] proposed a novel method using 

the capacity of ANN to identify nonlinear hysteretic systems. All Bouc–
Wen model parameters were calculated in one step by utilizing Bouc–
Wen model-based ANN. To assess the efficiency of the proposed method, 

a wire cable experimental system was employed. The obtained results 

demonstrated that the presented identification approach possibly 

determined the nonlinear hysteretic systems accurately.  

2.4 Conclusion of chapter 2 

   This chapter introduces approaches to SHM using MO algorithms and 

ANN. It is acknowledged that numerous important achievements using 

MO algorithms and ANN for SHM have been represented in the last 

decades. However, there are still fundamental shortcomings that need to 

come up with workable solutions that will be introduced in the next 

chapters. 

https://www.sciencedirect.com/science/article/abs/pii/S0888327012003032#!


19 
 

 

Chapter 3 MO algorithms 

3.1 Introduction 

MO algorithms are designed to seek, build and choose heuristics that 

possibly provide solutions with a higher level of accuracy. Because MO 

algorithms employ few assumptions, they can be employed to deal with a 

wide range of optimization problems.  

MO algorithms often incorporate some form of randomness to 

overcome the problems of local minima. However, stochastic techniques 

may also cause a high computational cost. Hence, to make MO algorithms 

easy to apply for real-world problems, it is extremely necessary to employ 

other techniques to reduce computational time. 

In this thesis, some popular MO algorithms such as GA, PSO, CS are 

employed for SHM introduced in section 3.2. On the other hand, proposed 

approaches introduced in section 3.3 will be employed to remedy the 

shortcomings and increase the effectiveness of traditional MO algorithms. 
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3.2 MO algorithms 

3.2.1  GA  

GA is a MO algorithm commonly applied in numerous fields [75-76]. 

This algorithm employs a crossover operator to mate initial particles 

(parents) with each other, and a mutation operator to create the next 

generations that have better quality than the old ones. Each particle 

possesses a fitness function used to minimize the difference between the 

real and calculated results. Relying on the problems that need to tackle, 

the fitness function could apply to any structures. There are numerous 

types of GA applying for engineering problems in which real-coded GA is 

the most popular because of its simplicity and effectiveness.  

However, because of the lack of velocity coefficients, the global search 

capacity of GA is less effective. The accuracy of obtained results also 

depends crucially on the judicious selection of crossover and mutation 

operators. Moreover, because there are too many parameters that need 

to be adjusted through each step, the process of seeking the global best is 

extremely time-consuming. This makes GA difficult to apply for 

monitoring the health of large-scale structures that contain a large 

number of DOF.  The use of GA to look for the best solution is depicted in 

Figure 3-1 and from step 1 to step 6.   

Step 1. The generation of initial position (𝑋0), and the local best (𝑃0), 

respectively.  
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 𝑋0 = [𝑥01, 𝑥02, . . . , 𝑥0𝑗];  𝑗 = [1; 𝑚] (3.1) 

 𝑃0 = [𝑝01, 𝑝02, . . . , 𝑝0𝑗] (3.2) 

 𝑥0𝑗 = [𝑥01𝑗 , 𝑥02𝑗 , . . . , 𝑥0𝑛𝑗] (3.3) 

 𝑝0 = [𝑝01𝑗 , 𝑝02𝑗 , . . . , 𝑝0𝑛𝑗] (3.4) 

𝑚 is the number of uncertain parameters that need to be sound.  

Step 2. The local best of populations is calculated and put in an 

increasing order based on the objective function 𝑓(𝑋) 

 𝑃0 = [𝑃0𝑚𝑎𝑥 . . . 𝑃0𝑚𝑖𝑛] (3.5) 

Step 3. Choose the parents from the best particles 

 𝑃𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 = [𝑃0𝑚𝑎𝑥] (3.6) 

Step 4. Crossover 

 𝑃𝑡+1 = [𝑃𝑡𝑢1 + 𝑃𝑡𝑢2] (3.7) 𝑢1, and 𝑢2 are one of the best solution of particles at the step 𝑡.   

Step 5. Mutation 

 𝑃𝑡+1𝑞1 + 𝑃𝑡+1𝑞2  (3.8) 𝑞1, and 𝑞2 are particles after crossover. 
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Step 6. Choose the best offspring particles after crossover and 

mutation for the next iteration 

 𝑃𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡 = [𝑃𝑡+1𝑚𝑎𝑥] (3.9) 

Repeat steps 4-6 until termination criteria are satisfied (The number 

of iterations is 100 or the difference between calculated and real results 

is less than 10−6).  
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Figure 3-1–The use of GA to look for the best solution  
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3.2.2 PSO  

In 1995, Kennedy developed a MO, namely PSO derived from global 

search techniques to seek the optimal solution [77]. PSO was initially 

employed to simulate the process of seeking the food of some animals 

such as birds and fishes. By observing the behavior of birds and fishes 

seeking food, researchers found that communicating with each other was 

advantageous to the search for the optimal solution during evolution. PSO 

algorithm relies on two equations to seek the best solution. 

The first equation is to determine the position of each element: 

 𝑋𝑡+1𝑖 = (𝑋𝑡𝑖 +  𝑉𝑡+1𝑖 ); ;  𝑖 = [1, 𝑛] (3.10) 

        The second one is to determine the velocity of each element: 

   𝑉𝑡+1𝑖 = 𝑤 ∗ 𝑉𝑡𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑡𝑏𝑒𝑠𝑡 − 𝑋𝑡𝑖) +  𝑐2∗ 𝑟𝑎𝑛𝑑 ∗ (𝐺𝑡𝑏𝑒𝑠𝑡 − 𝑋𝑡𝑖) 
(3.11) 

Where 𝑋𝑡𝑖 , 𝑋𝑡+1𝑖  indicate the position, 𝑉𝑡𝑖 ,  𝑉𝑡+1𝑖  represent the velocity 

of element 𝑖 at time 𝑡 and 𝑡+1, respectively. 𝑛 indicates the number of 

population.  𝑐1 and 𝑐2 are the cognition learning factor and social learning 

factor, whereas ‘rand’ denotes random numbers (0 < rand < 1). While 𝑤 

is the inertia weight parameter, 𝐺𝑡𝑏𝑒𝑠𝑡and 𝑃𝑡𝑏𝑒𝑠𝑡  represent the global best, 

and the local best at the time 𝑡, respectively. After a step, each element 

compares its optimal solution with others to find the global best. The best 

optimal solution will be determined after all iterations are completed.  
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With the global search capacity and smart strategy for seeking the 

best solution, PSO has demonstrated its effectiveness to deal with 

optimization problems. However, since PSO applied fixed parameters 

directly relating to the velocity of particles, this may decrease its efficiency 

in tackling optimization problems. Moreover, the process of looking for 

the best solution is also time-consuming. The use of PSO to look for the 

best solution is depicted in Figure 3-2.   

 

Figure 3-2–The use of PSO to look for the best solution 
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3.2.3 CS 

CS is a kind of bionic optimization algorithm inspired by the obligate 

brood parasitism of cuckoo birds. Basically, cuckoos often choose the 

nests of other birds to spawn their eggs. If the host birds discover that the 

eggs are not their own, they may either leave their nest or throw parasite 

eggs away. CS algorithm is formed based on the following three idealized 

rules [96].  

1. The cuckoos select a stochastic nest to lay their eggs and 

only one egg is spawned at a time.  

2. The nests with the highest quality of eggs will be carried 

over into the next steps.  

3. The number of available host nests is fixed, whereas there 
is a 0-100% probability (𝑃𝑎) that the host possibly discovers the 

parasite eggs. If the host birds detect parasite eggs, they may 

either abandon their own nest or throw the eggs away. 

The best solution is determined as Eq (3.12):  

 𝑋𝑡+1𝑖 = 𝑋𝑡𝑖 + 𝒍𝒆𝒗𝒚(𝝀) ∗ 𝛼 (3.12) 

Where 𝑋𝑡𝑖  and 𝑋𝑡+1𝑖  are solutions of cuckoo 𝑖 at 𝑡𝑡ℎ  and 𝑡 +1𝑡ℎ  iteration, respectively, and 𝛼 represents the step size. Lévy flight (𝝀) is 

step length drawn from the following probability distribution :  
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 𝒍𝒆𝒗𝒚 (𝝀) = 1𝛿𝛽    (3.13) 

𝛽 is the coefficient of  Levy flight: 1 < 𝛽 < 3 [78]; parameter (𝛿) is 

determined based on a random walk via probability distribution function. 

Step length (levy (𝜆)) should be selected according to the scale of the 

problem of interest. If step length (levy (𝜆)) is chosen too short, the new 

generation may be very close to the previous one. If 𝜆 is too long, the next 

generation may jump extremely far from the old one.  

It is acknowledged that with the global search competence using Levy 

flights random walks and cuckoo's breeding strategy, CS has already 

proved its effectiveness to tackle optimization problems. Nevertheless, the 

accuracy of CS is low if the initial position of populations is far away from 

the best solution. This algorithm does not possess crossover and mutation 

operators such as GA to improve the quality of the next generations. On 

the other hand, like other swarm intelligence methods based on stochastic 

techniques, the process of finding the global best of CS is time-consuming. 

The use of CS to look for the best solution is depicted in Figure 3-3. 



28 
 

 

 

Figure 3-3–The use of CS to look for the best solution 
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3.3 Improved MO algorithms 

3.3.1 IPSO 

Due to the capability of dealing with complex constrained issues 

based on global search capacity, PSO has demonstrated its effectiveness in 

numerous engineering applications. However, since PSO applied fixed 

parameters directly relating to the velocity of particles, this may decrease 

its capability of handling optimization problems. Hence, some improved 

mechanisms comprising the solution to the premature convergence and 

the design of a novel formula for updating the velocity of particles should 

be applied. In this work, the two improved parameters of IPSO consist of 

functional inertia weight (𝑤) and constant constriction factor (𝑇) are used 

[79]. They play an integral part in enhancing the effectiveness of the 

standard PSO. While 𝑤 creates the biggest impact on the change of the 

velocity of particles, 𝑇 influences convergence speed. 

 Functional inertia weight (𝒘) 

In the search actions, if particles move close to the desired position, 𝑤 should keep a small value, which assists the elements in maintaining 

recent velocity for the next steps. If the position of particles is far from the 

optimal solution, 𝑤 should keep a larger value. This helps the particles 

avoid suboptimal regions and look for a better optimal solution. 

Therefore, the new value of 𝑤 is expressed in Eqs. (3.14)-(3.15) [79] 
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 𝑤 = 𝑤𝑒𝑛𝑑 + (𝑤𝑠𝑡𝑎𝑟𝑡 − 𝑤𝑒𝑛𝑑) (1 − (𝐾𝑄)) 𝑖𝑓(𝑃𝑖𝑡≠ 𝑋𝑖𝑡) 

(3.14) 

 𝑤 = 𝑤𝑒𝑛𝑑 ; 𝑖 𝑓(𝑃𝑖𝑡 = 𝑋𝑖𝑡) (3.15) 

 The constriction factor (𝑇) 

To keep IPSO away from premature convergence, in the early 

iterations, the constriction factor (𝑇) needs to choose a convex function 

and hold a larger value, which assists the elements in looking for the global 

best in a large area. In the later iterations, 𝑇 needs to choose a concave 

function and hold a small value so that 𝑇 can alter slightly to the minima. 

This strategy guarantees that PSO can converge to the best solution. 

According to the mentioned principle, the functional constriction factor 

(𝑇) needs to follow the rule of a cosine function shown in Eq (3.16) [79]. 

 𝑇 = 𝑐𝑜𝑠( 𝛱𝑄 ∗ 𝐾) + 144  
(3.16) 

The parameters obtained from Eqs (3.14)- (3.16) are put into Eq 

(3.11). The velocity of IPSO used to seek the new position becomes: 

 𝑉𝑡+1𝑖 = 𝑤 ∗ 𝑉𝑡𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑡𝑏𝑒𝑠𝑡 − 𝑋𝑡𝑖) + 𝑐2∗ 𝑟𝑎𝑛𝑑 ∗ (𝐺𝑡𝑏𝑒𝑠𝑡 − 𝑋𝑡𝑖) ; 𝑖 𝑓(𝐾 < 𝑄/2) 
(3.17) 
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 𝑉𝑡+1𝑖 = 𝑇 ∗ (𝑤 ∗ 𝑉𝑡𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑃𝑡𝑏𝑒𝑠𝑡 − 𝑋𝑡𝑖) +  𝑐2∗ 𝑟𝑎𝑛𝑑 ∗ (𝐺𝑡𝑏𝑒𝑠𝑡 − 𝑋𝑡𝑖)) ; 𝑖 𝑓(𝐾≥ 𝑄/2) 

(3.18) 

𝑄 indicates the total number of iterations, whereas 𝐾 represents 𝐾𝑡ℎ  

iteration, K ∈ (0, Q); 𝑤𝑠𝑡𝑎𝑟𝑡  is the value of initial functional inertia weight; 𝑤𝑒𝑛𝑑  indicates the value of functional inertia weight in the last iteration. 

3.3.2 ODIPSO  

      In this thesis, to increase the accuracy and reduce the 

computational cost of traditional PSO, a novel algorithm referred to as 

ODIPSO is proposed in this section. OD is applied to arrange the best local 

position of particles in the form of an OD matrix and only select particles 

providing better solutions (located on the diagonal line of the OD matrix) 

for the next iterations. The populations (𝑛) are split into two groups 

including active group (𝑎) and passive group (𝑛 − 𝑎). The active group 

comprises the better solution of (𝑎) particles, whereas the passive group 

includes the results of (𝑛 − 𝑎) remaining ones. This algorithm is 

developed based on the idea that only particles of the active group are 

selected for the next step. By contrast, particles of the passive group are 

not updated since their contributions to the search for the optimal 

solution are insignificant [80]. This strategy helps to decrease the 

dimension of the model extremely, and the computational time is also 

reduced. In each step, matrix (𝐶) is constructed from particles of the active 
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group. After that OD matrix (𝐸0) is determined. The objective function 𝑓(𝑋) is applied to reduce the differences between calculated and real 

results. The process of searching for the best solution using OD combined 

with IPSO is given as follows:  

Step 1: . The generation of initial position (𝑋0), velocity (𝑉0), the local 

best (𝑃0), and the global best of particles (𝐺0𝑏𝑒𝑠𝑡), respectively.  

 𝑋0 = [𝑥01, 𝑥02, . . . , 𝑥0𝑗];  𝑗 = [1; 𝑚] (3.19) 

 𝑉0 = [𝑣01, 𝑣02, . . . , 𝑣0𝑗] (3.20) 

 𝑃0 = [𝑝01, 𝑝02, . . . , 𝑝0𝑗] ; 𝐺0𝑏𝑒𝑠𝑡  (3.21) 

 𝑥0𝑗 = [𝑥01𝑗 , 𝑥02𝑗 , . . . , 𝑥0𝑛𝑗] (3.22) 

 𝑣0𝑗 = [𝑣01𝑗 , 𝑣02𝑗 , . . . , 𝑣0𝑛𝑗] (3.23) 

 𝑝0 = [𝑝01𝑗 , 𝑝02𝑗 , . . . , 𝑝0𝑛𝑗] (3.24) 

𝑚 is the number of uncertain parameter that needs to be sound.  

Step 2: Select the objective function 𝑓(𝑋) for model updating of the 

considered structures including natural frequencies and mode shapes. 

 𝑓(𝑋) = ∑ (�̃�𝑙 − 𝑓𝑙)2(�̃�𝑙)2𝑧
𝑙=1 + ∑ [1 − (𝛿𝑙𝑇 . 𝛿𝑙)2(𝛿𝑙𝑇 . 𝛿𝑙) ∗ (𝛿𝑙𝑇 . 𝛿𝑙)]𝑧

𝑙=1  
(3.25) 
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While (𝑓𝑙 , 𝛿𝑙), 𝑎𝑛𝑑 (�̃�𝑙,   𝛿𝑙  ) denote calculated and measured 

natural frequencies and mode shapes, 𝑧 represents the number of mode.  “𝑙” is the modal order.  

Step 3: Calculate the values of the objective function 𝑓(𝑋) of particles 

at the iteration 𝑡𝑡ℎ  

Step 4: Arrange the local best of particles in an increasing order 

based on 𝑓(𝑋) 

Step 5: Construct matrix 𝐾1 consisting of the best local solution of 

particles in which each row keeps the local best of each particle based on 

the results obtained from step 4.   

 𝐾1 = 𝑋𝑡𝑖  (3.26) 

 𝑓(𝑋𝑡𝑝) < 𝑓(𝑋𝑡𝑢) … < 𝑓(𝑋𝑡𝑣 ) (3.27) 𝑝, 𝑢, … , 𝑣 are the particles 𝑝, 𝑢, 𝑣, respectively.  

Step 6: Convert matrix 𝐾1 to square matrix 𝐶 with the size 𝑎 ∗ 𝑎.  𝐹𝑜𝑟 𝑘 = 1: 𝑎;  𝑞 = 2: 𝑎  

 𝐶(1, 𝑘) = 𝐾1(1, 𝑘) (3.28) 

 𝐶(𝑘, 1) = 𝐾1(1, 𝑘) (3.29) 

 𝐶(𝑞, 𝑘) = 𝐾1(𝑞, 𝑘) (3.30) 



34 
 

 

  End 

   For 𝑘 = 2: 𝑎 

 𝐶1(𝑞, 𝑘) = 𝐶(𝑞, 𝑘) (3.31) 

 𝐶(𝑘, 𝑞) = 𝐶1(𝑞, 𝑘) (3.32) 

End   

Step 7: Calculate OD matrix 𝐸0  from matrix 𝐶 

 𝐸0 = 𝑀−1 ∗ 𝐶 ∗ 𝑀 (3.33) 

Where: Matrix 𝑀 includes eigenvectors and matrix 𝐸0 consists 

of the corresponding eigenvalues of matrix 𝐶. 

Step 8: Control the search areas of particles: (𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥)                
Step 9: Update the position and velocity of particles at 𝑡 + 1𝑡ℎ  

iteration 

 𝑉𝑡+1𝑖 = 𝐾 ∗ (𝑤 ∗ 𝑉𝑡𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝐸0 − 𝑋𝑡𝑖) ) (3.34) 

 𝑋𝑡+1𝑖 = (𝑋𝑡𝑖 + 𝑉𝑡+1𝑖 ) (3.35) 

 𝐼𝑓(𝑋𝑡+1𝑖 > 𝑋𝑚𝑎𝑥) (3.36) 

 𝑋𝑡+1𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑚𝑖𝑛  (3.37) 

 𝐼𝑓(𝑋𝑡+1𝑖 < 𝑋𝑚𝑖𝑛) (3.38) 
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 𝑋𝑡+1𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑚𝑖𝑛  (3.39) 

Step 10: Update the locally optimal position of each element and the 

globally optimal position to use for the next iterations based on the 

objective function 𝑓(𝑋). 𝐼𝑓 𝑓(𝑋𝑡+1𝑖 ) < 𝑓(𝑋𝑡𝑖) (3.40) 

  𝑓(𝑋𝑡+1𝑖 ) = 𝑓(𝑋𝑡+1𝑖 ) (3.41) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑓(𝑋𝑡+1𝑖 ) = 𝑓(𝑋𝑡𝑖) (3.42) 

Step 11. Repeat the process steps 3-10 until termination criteria are 

satisfied.  

Step 12: The iteration is completed and the best solution is obtained.       𝑓(𝐺𝑏𝑒𝑠𝑡 , 𝑚0 ) = 𝑚𝑖𝑛  𝑓(𝑋)   (3.43) 𝐺𝑏𝑒𝑠𝑡 = 𝑋𝑚0   (3.44) 

The combination of IPSO and OD used for model updating is shown 

in Figure 3-4 
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Figure 3-4– Methodological approach to model updating utilizing 

ODIPSO 
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3.4 Conclusion of chapter 3 

In this chapter, common MO algorithms such as GA, PSO, CS are 

introduced in detail. Although those algorithms have demonstrated their 

capacity to deal with many optimization problems, they still have some 

fundamental shortcomings. To remedy those shortcomings and increase 

the effectiveness of traditional MO algorithms, some algorithms 

consisting of IPSO, and ODIPSO are introduced.  These algorithms will be 

used for SHM of large-scale structures that are introduced in section 6. 
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Chapter 4 ANN 

 

4.1 Introduction 

 ANN is a sub-branch of AI that has been commonly applied for SHM 

in the last decades. Zhou and Abdel Wahab [81] employed an auto-

associative neural network combined with transmissibility to identify 

damage location and severity in a ten-floor building structure. In their 

study, the effect of noise (2%) on natural frequencies was assessed. Maity 

and Saha [82] applied the change of static properties (strain and 

displacement) for damage detection in a simple cantilever beam using a 

back-propagation algorithm in ANN. Nguyen et al. [83] proposed a 

method using Principal Component Analysis (PCA) combined with 

residual FRFs to identify damage in a concrete arch bridge. Damage 

features were obtained from PCA and FRFs used as input data for the 

network. They demonstrated that the proposed approach successfully 

identified damage location and level in the considered bridge. Janssens et 

al. [84] applied a feature learning model based on Convolutional Neural 

Networks (CNN) for bearing fault diagnosis. Elshafey et al. [85] proposed 

a method based on the feed-forward backpropagation, and the radial 

basis neural networks to predict crack width for both thick and thin 

concrete elements. Cascardi et al. [86] used ANN to estimate the strength 

of FRP-confined concrete. The study showed that the proposed model 
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could provide a good agreement between the numerical model and 

measurement.  

4.2 ANN structure 

ANN methodology has been built in the shape of parallel distributed 

network models inspired by biological nervous systems. One of the 

outstanding properties of ANN is the ability to learn identification from 

experience to improve its performance. Therefore, the trained network 

can be utilized to classify and examine new data sets that are similar to 

the characteristics of trained data sets. Because of the potential capability 

of ANN for modeling both simple linear and complex nonlinear functions, 

this algorithm can be applied to tackle a wide range of complex issues, 

whose solutions are difficult to obtain by only applying common methods. 

These applications consist of identification, classification, pattern 

recognition, control system, and image processing.  With ANN, setting up 

the network have dramatic effects on the obtained results. A network of 

ANN includes three main components, namely the input layer, the hidden 

layer, and the output layer. Each layer consists of sets of neurons 

connected by training parameters (weight and bias). Each neuron 

comprises a processing element with synaptic input connections based 

on the number of the processing neuron in the previous layer. Among the 

different types of neural networks, multilayer perceptron neural 

networks are the most commonly used models. Multilayer perceptron 

neural networks include one or more hidden layers of cells (or neurons) 
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connected between the input and output layers. The number of neurons 

in each hidden layer, and the number of hidden layers in a network create 

significant influences on the generalization capability of the network. The 

question of how to choose the number of nodes in the hidden layer and 

the number of hidden layers in a network to obtain optimal results is still 

an open topic today. For numerical data, there is no persuasive evidence 

that the network of ANN with two or more hidden layers may outperform 

networks with one hidden layer. By contrast, using more hidden layers 

may lead to a higher computational cost. Therefore, only one hidden layer 

is utilized for ANN in this work, and the structure of a three-layer neural 

network is shown in Figure 4-1. 

 

Figure 4-1– Three-layer neural network architecture 
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4.3 Methodology  

Figure 4-1 shows the signal transmission process between neurons 

in layers. The input layer receives input patterns and then transmits the 

signal to the hidden layer. The hidden layer includes a certain number of 

neurons playing a vital role as a bridge between the input layer, and the 

output layer. Each neuron in the preceding layers is fully connected to the 

following ones, and the connections are based on training parameters 

(weight and bias). The signal transmission is based on two Eqs.  

The first equation is a summation function computed as the sum of 

bias, weight ratios, and output signals of the previous layers. 

∑𝑖21 = ∑  𝒘𝑖1𝑖21 ∗ 𝑓𝑖1
𝑛1,𝑛2
𝑖1,𝑖2 + 𝒃𝑖21  ; 𝑖1 = (1: 𝑛1); 𝑖2 = (1: 𝑛2) 

(4.1) 

𝒘𝑖1𝑖21 , 𝒃𝑖21  are weight and bias coefficients connecting the input layer 

and the hidden layer, whereas 𝑓𝑖1  indicates input data of the 𝑖1𝑡ℎ  neuron; 𝑛1, and 𝑛2 are the number of neuron in the input layer and the hidden 

layer, respectively; ∑𝑖21  denotes the input of the 𝑖2𝑡ℎ  neuron of the hidden 

layer. 

After the summation function (4.1) is conducted. The second 

equation is an activation function (4.2) applied to limit the value range of 

the output. The activation function can be a monotonically increasing 
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linear or nonlinear function. In this study, in order to deal with nonlinear 

problems, a sigmoid activation function is employed.  

𝑂𝑖2 = 11 + 𝑒−∑𝑖21  
(4.2) 

This process of transmitting signal is similar to that between the 

hidden layer and output one shown in Eqs (4.3)-(4.4). 

∑𝒊𝟑𝟐 = ∑ 𝒘𝑖2𝑖32 ∗ 𝑂𝑖2
𝑛2, 𝑛3
𝑖2, 𝑖3 + 𝒃𝑖32 ;  𝑖3 = (1: 𝑛3) 

(4.3) 

∑𝒊𝟑𝟐  denotes the input of the 𝑖3𝑡ℎ  neuron of the output layer; 𝑛3 

indicates the number of neuron in the output layer. 

𝑂𝑖3 = 11 + 𝑒−∑𝒊𝟑𝟐  
(4.4) 

The discrepancy between predicted and real outputs is determined.  

Ϯ(𝒘, 𝒃) = ∑ 12 (𝑂𝑖3𝑘 − �̅�𝑖3𝑘 )2𝑁𝑘
𝑁𝑘

k=1  

(4.5) 

𝑂𝑖3𝑘  and �̅�𝑖3𝑘  in turns are predicted and real outputs of the 𝑘𝑡ℎ  output 

data, respectively; 𝑁𝑘 is the number of output data. To minimize the 

difference between calculated and real outputs Ϯ(𝒘, 𝒃), training 
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parameters are turned applying a backward process based on GD 

techniques described in Eqs (4.6)-(4.14).  𝜕∑𝒊𝟑𝟐𝜕𝒘𝑖2𝑖32   ∗ 𝜕𝑂𝑖3𝜕∑𝒊𝟑𝟐 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝑂𝑖3 = 𝜕Ϯ(𝒘, 𝒃)𝜕𝒘𝑖2𝑖32   
𝜕∑𝒊𝟑𝟐𝜕𝒃𝑖32   ∗ 𝜕𝑂𝑖3𝜕∑𝒊𝟑𝟐 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝑂𝑖3 = 𝜕Ϯ(𝒘, 𝒃)𝜕𝒃𝑖32  

(4.6) 

𝜕Ϯ(𝒘, 𝒃)𝜕𝑂𝑖3 = −(𝑂𝑖3̅̅ ̅̅ − 𝑂𝑖3) 
(4.7) 

𝜕𝑂𝑖3𝜕∑𝒊𝟑𝟐 =  𝑒−∑𝒊𝟑𝟐(1 + 𝑒−∑𝒊𝟑𝟐 )2 
(4.8) 

𝜕∑𝒊𝟑𝟐𝜕𝒘𝑖2𝑖32 = 𝑂𝑖2;  𝜕∑𝒊𝟑𝟐𝜕𝒃𝑖32   = 1; (4.9) 

New training parameters connecting the hidden layer and the output 

layer are obtained. 

𝒘𝑖2𝑖32 + = 𝒘𝑖2𝑖32 − 𝜏 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝒘𝑖2𝑖32  

 𝒃𝑖32  + = 𝒃𝑖32  − 𝜏 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝒃𝑖32   

(4.10) 



44 
 

 

Training parameters connecting the input layer and the hidden layer 

are also adjusted; 𝜏 is the learning rate. 𝜕∑𝑖21𝜕𝒘𝑖1𝑖21 ∗ 𝜕𝑂𝑖2𝜕∑𝑖21 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝑂𝑖2 = 𝜕Ϯ(𝒘, 𝒃)𝜕𝒘𝑖1𝑖21   
𝜕∑𝑖21𝜕𝒃𝑖21 ∗ 𝜕𝑂𝑖2𝜕∑𝑖21 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝑂𝑖2 = 𝜕Ϯ(𝒘, 𝒃)𝜕𝒃𝑖21   

(4.11) 

𝜕𝑂𝑖2𝜕∑𝑖21 =  𝑒−∑𝑖21(1 + 𝑒−∑𝑖21 )2 
(4.12) 

𝜕∑𝑖21𝜕𝒘𝑖1𝑖21 = 𝑓𝑖1 ;  𝜕∑𝑖21𝜕𝒃𝑖21   = 1; (4.13) 

𝒘𝑖1𝑖21 + = 𝒘𝑖1𝑖21 − 𝜏 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝒘𝑖1𝑖21  

  𝒃𝑖21  + = 𝒃𝑖21  − 𝜏 ∗ 𝜕Ϯ(𝒘, 𝒃)𝜕𝒃𝑖21   

(4.14) 

The process of training the network shown in Eqs (4.1)-(4.14) is 

repeated until the objective is achieved or the number of iteration is 

finished.  

4.4 Shortcomings of traditional ANN 

GD algorithms are local optimization techniques applying the 

principle of a downward slope to reduce the difference between real and 
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desired outputs. Although this deviation is significantly reduced after 

each iteration, GD algorithms still have drawbacks. The global best of GD 

algorithms is the solution of the differential equation of the objective 

function (loss function). However, seeking the global best of the objective 

function in ANN is complicated or even impossible in some cases. This is 

due to the complexity of the form of the objective function. The most 

common approach for seeking the best solution in ANN is that the 

network starts from a random point and then iteratively moves closer to 

the target. The search process ends when the target is achieved (the 

derivative of the objective function at the obtained point goes to 0). The 

methodology of GD algorithms is described below. 

  - Select a starting point 𝜕 =  𝜕0 

  - Update 𝜕 using Eq (4.15) until the derivative goes to 0 𝜕 = 𝜕 − 𝜏∇𝜕𝐽(𝜕) (4.15) 

With ∇𝜕𝐽(𝜕) is the derivative of the objective function at 𝜕. 

The obtained results of ANN rely heavily on whether or not the 

network gets stuck in local minima. A clear illustration is given in Figure 

4-2 that describes the process of training the network to determine the 

best solution. In Figure 4-2 (a), if the network only contains just one global 

best (𝑨𝟎), whether the starting point is A or B, the best solution is always 

obtained. In Figure 4-2 (b), the network contains both local best and 

global best. If the starting point is B, the network can determine the global 
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best (𝑨𝟎). By contrast, if the starting point is A, the network is trapped in 

the local best (𝑨𝟏).  Nevertheless, a network often contains a large number 

of local minima, especially for complex problems as shown in Figure 4-2 

(c). In this case, even the network starts from A or B, it still gets stuck in 

local minima during the training process. Therefore, the approach of the 

selection of good starting positions may no longer be useful. 

 

(a) 

 

(b) 

 

(c) 

Figure 4-2– The process of looking for the global minima of GD 

technique (a) the network with only global best; (b) the network with 

both local best and global best; (c) the network with numerous local 

minima. 

In fact, some researchers have also proposed methods to overcome the 

local minimum drawbacks and improve the efficiency of ANN. The core 

idea of these approaches is to choose beneficial starting points to remove 

initial local minima. For example, Khatir et al. [87] employed Teaching-

Learning-Based Optimization to determine training parameters (weight 
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and bias coefficients) of ANN used to detect damages for a laboratory 

beam with free-free boundary conditions. Rajendra et al. [88] employed 

GA to evaluate the fitness of training function in ANN when predicting 

optimized parameters to reduce free fatty acids of sunflower oil. 

Yazdanmehr et al. [89] also coupled GA with ANN to look for the optimal 

chemical composition used to produce a nanocrystalline powder with 

minimum coercion. Tran-Ngoc et al. [90] used CS to improve ANN by 

determining initial training parameters consisting of weight and bias. The 

results showed that this combination outperformed ANN alone and other 

optimization algorithms in terms of accuracy. Nevertheless, because CS 

was only applied to determine initial training parameters, the network 

may be still trapped in local minima during the training process. With the 

same approach, Samir et al. [91] combined PSO with ANN to detect 

damages in a laminated composite. In their research, PSO was employed 

to determine an optimal starting point for the training network. This 

strategy assisted the network in avoiding local minima in the first steps of 

the training process. Azadeh et al. [92] used a flexible algorithm based on 

GA and ANN (GA-ANN) to evaluate and optimize complex production 

units. They pointed out that GA-ANN was superior to GA alone and 

conventional ANN in terms of optimizing machine productivity. 

However, this combination was time-consuming because GA had to adjust 

too many parameters in the training process. Moreover, the global search 
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capacity of GA is also less superior than other MO algorithms such as PSO, 

CS.  

It is easily seen that the above-mentioned approaches applied 

solutions to local minima by choosing a beneficial starting position based 

on the global search capability of other algorithms. This strategy may help 

the network to avoid the first local minima (first valley). However, a 

network often has many local bests distributed everywhere, especially if 

the network contains a complex error surface. Hence, the particles of the 

network may be still trapped into other local minima (other valleys) 

during the process of training the network.  

4.5 Conclusion of chapter 4.   

The structure and methodology of ANN are presented clearly in this 

chapter. Moreover, the fundamental shortcoming of ANN relating to local 

minima is analysed in detail. Over the last decades, some researchers have 

proposed some solutions to local minimum problems of ANN by choosing 

a good starting point. However, this solution seems to be infeasible if the 

network contains many local minima and is distributed at different sides 

of the network. This acts as a premise to come up with workable solutions 

introduced in the next section. 
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Chapter 5 A novel ANN based on 

the global search techniques 

5.1 Motivation 

To overcome the drawbacks of those mentioned approaches, this 

thesis proposes a novel ANN based on the global search techniques of CS 

that is referred to as ANNCS1. ANNCS1 is employed to deal with the 

problems of local minima during the process of training the network 

rather than only depending on the luck of having a good starting point. 

The proposed approach is depicted in Figure 5-1.   

 

Figure 5-1– Escaping the network from local minima using CS. 

The core idea of ANNCS1 is that the network firstly applies the GD 

technique to increase the speed of convergence. Figure 5-1. shows that if 
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the network is trapped in local minima (𝐴1), CS based on the global search 

technique is employed to escape elements from local minima. After that, 

the GD technique is applied again. This parallel working process is 

repeated until the objective function is reached. This win-win approach 

provides the network with the highest opportunity for obtaining the 

global best. 

To consider the effectiveness of the proposed method, this thesis will 

compare the results obtained from ANNCS1 with traditional ANN and 

approaches mentioned in ref [87-92] which is referred to as ANNCS2.  

5.2 Methodology of ANNCS1 

Normally, the outputs of ANN obtained from the forward process are 

then propagated backward using backpropagation algorithms. 

Nevertheless, since backpropagation algorithms employ GD techniques, 

ANN may face a high risk of getting stuck in local minima if the network 

creates complex error surfaces with too much of the local best. To deal 

with this problem, CS based on global search techniques is employed to 

escape elements from local minima. This means that CS replaces 

backpropagation algorithms to determine training parameters (weight 

and bias). 

Training parameters (𝑤𝑖1𝑖21 , 𝑏𝑖21 , 𝑤𝑖2𝑖32 and 𝑏𝑖32 ) are transferred to a 

form of a single vector that then becomes initial population (𝑋0) of CS.  
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𝑋0 = [𝑤01,  𝑤02, ⋯ ,  𝑤0𝑗], 𝑗 = [1: 𝑚] (5.1) 

𝑤0𝑗 = [𝑤01𝑗 ,  𝑤02𝑗 , ⋯ ,  𝑤0𝑛𝑗]𝑇      (5.2) 

𝑛 denotes the number of population; 𝑚 denotes the number of 

training parameters (𝑤𝑖1𝑖21 , 𝑏𝑖21 , 𝑤𝑖2𝑖32 and 𝑏𝑖32 ). 

The objective function is chosen as Eq. (5.3). 

𝑓(𝑋) =   √∑(𝑀𝑘)2𝑁𝑘
𝑘=1 − (�̅�𝑘)2 

(5.3) 

𝑀𝑘  and �̅�𝑘 are vectorization matrices employed to reduce the 

dimension of output matrices 𝑂𝑖3𝑘 and �̅�𝑖3𝑘  

𝑀𝑘 = 1𝑁𝑘 − 1 ∑ |𝑂𝑖3𝑘 − 𝛼1|2𝑁𝑘
𝑘=1  

(5.4) 

�̅�𝑘 = 1𝑁𝑘 − 1 ∑ |�̅�𝑖3𝑘 − 𝛼2|2𝑁𝑘
𝑘=1  

(5.5) 

 𝛼1 and 𝛼2 are the mean of 𝑂𝑖3𝑘  and �̅�𝑖3𝑘 , respectively 

𝛼1 = 1𝑁𝑘 ∑ 𝑂𝑖3𝑘
𝑁𝑘

𝑘=1  

(5.6) 
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𝛼2 = 1𝑁𝑘 ∑ �̅�𝑖3𝑘
𝑁𝑘

𝑘=1  

(5.7) 

Get cuckoos randomly based on Levy flights   𝑋1 = 𝑋0 + 𝒍𝒆𝒗𝒚(𝝀) ∗ 𝛼𝑛  (5.8) 

Where 𝛼𝑛  is the step size 𝑙𝑒𝑣𝑦(𝜆) is identified from Levy flight [78]. 

𝑙𝑒𝑣𝑦 (𝜆) = 𝜃𝛽 −1
 (5.9) 

𝜃 is calculated using a probability distribution function. 

𝜃 = (𝛾(1 + 𝛽) ∗ 𝑠𝑖𝑛 (𝛱 ∗ 𝛽2 )𝛾 (1 + 𝛽2 ) ∗ 𝛽 ∗ 2(𝛽−1)2 )1𝛽
 

(5.10) 

Where 𝜸 is the gamma function used for both positive integers and 

complex numbers. With complex numbers, 𝛾 is identified in a form of an 

integral function.  

𝛾(𝑑) = ∫ 𝑞𝑑−1𝑒−𝑞𝑑𝑞∞
0  

(5.11) 

With positive integers (𝑗0), 𝛾 is determined in the form of a factorial  

https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Positive_integer
https://vi.wikipedia.org/wiki/Giai_th%E1%BB%ABa
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𝛾(𝑗0) = (𝑗0 − 1)! (5.12) 

Apply the upper and lower bound of the search area 𝐼𝑓 𝑋1 > 𝑋𝑚𝑎𝑥    (5.13) 𝑋1 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑚𝑖𝑛  (5.14) 𝐸𝑙𝑠𝑒 𝑖𝑓 𝑋1 < 𝑋𝑚𝑖𝑛  (5.15) 𝑋1 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑚𝑖𝑛  (5.16) 

Identify the best nest based on the objective function 𝑓(𝑋) 𝑓(𝑋1) <  𝑓(𝑋0) (5.17) 𝑓(𝑋1) =  𝑓(𝑋1); 𝑋1 =  𝑋1 (5.18) 

Otherwise  𝑓(𝑋1) = 𝑓(𝑋0); 𝑋1 =  𝑋0 (5.19) 

Determine new solutions based on selective random walks 𝑲 =  𝑟𝑎𝑛𝑑 (𝑋1) > 𝑃𝑎 (5.20) 

Where 𝑃𝑎  is the probability that the host can detect the parasite eggs 

Get cuckoos based on Levy flights at 𝑡𝑡ℎ  iteration 𝑋𝑡+1 = 𝑋𝑡 + 𝛼𝑛 ∗ 𝐾 (5.21) 
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𝐼𝑓 𝑋𝑡+1 > 𝑋𝑚𝑎𝑥  (5.22) 𝑋𝑡+1 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑚𝑖𝑛  (5.23) Else if  𝑋𝑡+1  < 𝑋𝑚𝑖𝑛  (5.24) 𝑋𝑡+1 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑚𝑖𝑛  (5.25) 

Calculate 𝑓(𝑋) of particles at 𝑡𝑡ℎ  iteration 

Identify the best nest 𝑓(𝑋𝑡+1) <  𝑓(𝑋𝑡) (5.26) 𝑓(𝑋𝑡+1) = 𝑓(𝑋𝑡+1); 𝑋𝑡+1 =  𝑋𝑡+1   (5.27) 𝑓(𝑋𝑡+1) =  𝑓(𝑋𝑡); 𝑋𝑡+1 =  𝑋𝑡  (5.28) 

Determining the best solution. 𝑓(𝐺𝑏𝑒𝑠𝑡) = min( 𝑓(𝑋)) (5.29) 𝑿 = 𝐺𝑏𝑒𝑠𝑡 (5.30) 

The best solution determined by CS is converted into training 

parameters to train the network by using pseudocode (Figure 5-2) . 
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𝑘0=0; 𝑤𝑖1𝑖2=zeros (𝑛1, 𝑛2); 

for 𝑖1=1: 𝑛1 

    for 𝑖2=1: 𝑛2 

    𝑘0=𝑘0+1; 𝑤𝑖1𝑖2  (𝑖1, 𝑖2)= 𝑋(𝑘0); 

    End                        

end 𝑤𝑖2𝑖3=zeros (𝑛2, 𝑛3); 

for 𝑖2=1: 𝑛2 

    for 𝑖3=1: 𝑛3 

    𝑘0=𝑘0+1;  𝑤𝑖2𝑖3  (𝑖3, 𝑖2)= 𝑋(𝑘0); 

    end 

end 𝑏𝑖2=zeros (𝑛2, 1); 

for 𝑖2=1: 𝑛2 

    𝑘0=𝑘0+1; 𝑏𝑖2  (𝑖2, 1)= 𝑋(𝑘0); 

end 𝑏𝑖3=zeros (𝑛3,1); 

for 𝑖3 =1: 𝑛3 

    𝑘0=𝑘0+1; 𝑏𝑖3  (𝑖3, 1)= 𝑋(𝑘0); 

end 
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Assigning new weight and bias parameters for the network of ANN 

net.IW{1,1}=𝑤𝑖1𝑖2; % weight ratios connecting the input – hidden layer 

net.LW{2,1}=𝑤𝑖2𝑖3; % weight ratios connecting the hidden – ouput layer 

net.b{1,1}=𝑏𝑖2 ; % bias ratios connecting the input – hidden layer 

net.b{2,1}=𝑏𝑖3 ; % bias connecting the hidden – ouput layer 

Figure 5-2– Pseudocode is used to convert the best solutions of CS to 

weight, bias ratios of ANN. 

k indicates neuron order of the neurons of the network (𝑁𝑛). k ∈ (1; 𝑁𝑛).  𝑁n = 𝑛1 ∗ 𝑛2 + 𝑛2 ∗ 𝑛3 + 𝑛2 + 𝑛3 (5.31) 

Where 𝑛1, 𝑛2, 𝑛3 indicate the number of neuron in the input layer, the 

hidden layer, and the output layer, respectively.   

This process is repeated until the objective function is achieved or the 

number of iteration is completed. The proposed approach is also 

described in detail in Figure 5-3 
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Figure 5-3– The diagram of ANNCS1 
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The damages are used as the output of the network. Damage 

locations are determined using the stiffness reduction coefficient (𝑅𝑑) as 

in Eq. (5.32)  [93]. 

𝑅𝑑 = (1 − 𝐸𝐼 ∗ 𝐸𝐼0𝐸𝐼0 ) ∗ 100% 
(5.32) 

Where 𝐸𝐼0 and 𝐸𝐼 denote initial stiffness and damaged stiffness of 

the structures.  

To consider the effect of noise on input data,  Gaussian white noise is 

applied [94].  

Noise = √1010∗𝑙𝑜𝑔10
∑ (𝑓𝑖)2𝑁𝑖𝑛𝑝𝑢𝑡𝑏=1𝑁𝑖𝑛𝑝𝑢𝑡 −𝑅0 ∗ Rand (0 < Rand< 1)   

(5.33) 

Input_datanew = Input_dataold + Noise      (5.34) 𝑁𝑖𝑛𝑝𝑢𝑡  is the number of input data; 𝑓𝑖  is input data; 𝑅0 is the noise 

ratio; b is the order of input data. 

5.3 Conclusion of chapter 5.  

This chapter proposes a novel approach (ANNCS1) to deal with local 

minimum problems of ANN. ANNCS1 employs both advantages of ANN 

(gradient descent technique) and CS (global search technique) to look for 
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the best solution. This win-win approach provides the network with the 

highest opportunity for obtaining the global best. The effectiveness of 

ANNCS1 will be considered by applying it for damage detection of a large-

scale bridge in section 6.  
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Chapter 6 Applications to Bridges 

6.1 Introduction  

In this section, proposed algorithms will be applied for model 

updating, damage detection for a wide range of bridges as shown in Table 

6.1. 

Table 6.1. List of bridges applying the proposed algorithms. 

Order Bridge Problems Applied method 

1 Nam O Bridge Model 

updating 

PSO and GA 

2 Guadalquivir 

Bridge 

Model 

updating 

ODIPSO 

3 Chuong Duong 

Bridge 

Damage 

detection 

ANNCS1 

6.2 Nam O Bridge  

6.2.1. Bridge description 
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The Nam O Railway Bridge is a large-scale steel truss bridge, located 

in Da Nang city in the middle of Vietnam. The bridge plays a vital role in 

connecting train traffic from the North to the South. The Nam O Bridge 

was constructed in 2011, with funding from the Hanoi – Ho Chi Minh City 

Line Bridge Safety Improvement Project. The bridge includes 4 simply 

supported spans of equal length (75 m). The rail track is placed directly 

on the stringers of the bridge deck. The abutment on the Hai Van side is 

referred to as 𝑨𝟎, whereas the three piers are numbered as 𝑷𝟏, 𝑷𝟐, 𝑷𝟑, 

starting from the 𝑨𝟎 side. The last (fourth) span goes from 𝑷𝟑 to the 

abutment 𝑨𝟏 on the Da Nang city side. Some views of the bridge are given 

in Figure 6.1. 

 

(a) 

 

(b) 

Figure 6-1–Some views of Nam O Bridge: (a) Upstream side; (b) 

Downstream side 

Truss members were made from steel with a variety of section types 

such as 𝐼, 𝐿, Box (Figure 6-2), and connected to each other by bolts. 
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Figure 6-2– Main structural elements 

    The measured span (the first span from the Hai Van side) is put on 

rocker and pin bearings. Rocker bearings permit translation and rotation 

in one direction, while pin bearings only allow rotational movement. The 

characteristics of rocker and pin bearings (size, stiffness) are collected 

from catalogues of manufacturers to calculate the parameters of the 

equivalent springs.  

6.2.2. FEM 

   In order to predict structural dynamic behaviors, and compare 

them with those obtained from measurement, a FEM of Nam O Bridge was 

built by using the MATLAB toolbox StaBil [95] (see Figure 6-3). 
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Figure 6-3–FEM of the Nam O Bridge 

 

The following details describe the FEM: 

 The bridge is modeled by 137 nodes, 227 elements, and 9 section 

types of truss members are used (see Table 6.2). 

 Main structural members are shown in Figure 6-2: upper chords, 

lower chords, vertical chords, diagonal chords, stringers, upper wind 

bracings, lower wind bracings, and struts, are modeled using three 

dimensional (3𝐷) beam elements. The beam element is based on 

Timoshenko beam theory. The element provides options for unrestrained 

warping and restrained warping of cross-sections. This element has six 

DOFs at each node including translations in the 𝑥, 𝑦, and 𝑧 directions and 

rotations around the 𝑥, 𝑦, and 𝑧 directions. The transverse girders (of the 

deck system) are also modeled using beam elements. 
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 The global 𝑋-axis is in the longitudinal direction of the bridge; the 𝑌-axis is in the transverse direction (to the river flow direction) and the 𝑍-axis is in the vertical direction. The left main truss is on the downstream 

side. Likewise, the right main truss is on the upstream side. Both trusses 

represent the side view of the bridge (Figure 6-1). 

 Bearings are modeled by using spring elements. 

 Section and material properties of structural members are listed 

in Table 6.2 and Table 6.3 

Table 6.2 – Cross-sectional properties of truss members 

Members    Area(𝑚2) 
Moment of Inertia 𝐼𝑦  (𝑚4) 

Moment of 

Inertia 𝐼𝑧  (𝑚4) 

Upper chord 0.056 6.70×10−04 3.1×10−03 

Lower chord 0.020 2.10×10−04 6.30×10−04 

Vertical chord 0.010 5.49×10−05 1.15×10−04 

Diagonal chord 0.014 1.24×10−04 2.78×10−04 

Stringer 0.020 2.07×10−04 6.27×10−04 

Transverse Beam 0.026 2.03×10−04 3.61×10−03 

Strut 0.020 6.25×10−04 2.80×10−03 

Upper wind bracing 0.0036 8.00×10−06 1.09×10−05 

Lower wind bracing 0.0049 2.38×10−06 4.38×10−06 

 

Note: 𝐼𝑦 is the moment of inertia of the weak axis (the same direction 

with global 𝑌), 𝐼𝑧  is the moment of inertia of the strong axis (the same 

direction with global 𝑍). 
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Table 6.3 – Material properties of truss members 

Components Value Unit 

Young’s modulus  2×1011  N/𝑚2    

Volumetric mass 

density 
7850 Kg/𝑚3 

Poisson’s ratio  0.3 / 

 

 The connection between truss joints: due to the 

uncertainty of the actual joint stiffness, three possible models of link 

types are considered: a) pin, b) rigid, and c) semi-rigid. This process 

can be considered as a trial step to analyze and determine some 

unknown parameters (material properties, section properties, or 

joint conditions and so on.).  

Case 1: Pin connection 

    In order to simplify the calculation, researchers as Duerr [96], Saka 

[97] assumed truss members linked to each other by pin connections 

(Figure 6-4 a). In this case, the influence of rotational stiffness is 

neglected, and no moments are transferred between truss members. In 

the static analysis of truss structures, this link is often applied for node 

joints, which has little effect on the result of the force of truss members 

because moment transfer is rather insignificant with dominant axial 

forces (compression and tension). 
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(a) (b) 

 

(c) 

Figure 6-4–Connection types of truss joints: (a) Pin connection; (b) 

Rigid connection; (c) Semi-rigid connection (rotational springs)              

 

Case 2: Rigid connection. 

   Duerr [98], and other authors have also applied rigid links (Figure 

6-4 b) for truss joints. Basically, a rigid joint can transfer axial forces 

(compression, tension) as well as moments between members. 

Case 3: Semi-rigid connection. 

   This link type has recently been applied by many researchers. 

Luong et al  [98] determined the stiffness of node joints, when updating a 

truss structure in the laboratory, and found that a semi-rigid connection 

represents the most accurately the dynamic characteristics of the 

considered truss structure. Dubina et al. [99], Csébfalvi [100], and other 

researchers applied semi-rigid links (rotational springs) for truss 

structures. However, most of the aforementioned authors only applied 

this type of joint in the static analysis, whereas a few others employed it 

to analyze the dynamic analysis of scale models in the laboratory. 
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Rotational springs (Figure 6-4 c) are often used to present semi-rigid links 

at truss joints. 

This study also applies the aforementioned three scenarios of joint 

conditions to predict the structural dynamic behaviors of the Nam O 

Bridge. Linear elastic rotational springs with three DOFs at each node: 

rotations around the 𝑥, 𝑦, and 𝑧 directions are used for vertical chords and 

diagonal chords as Figure 6-4 c. The original stiffness of rotational springs 

is estimated according to reference [98]. The results are given in Table 6.4 

and Figure 6-5.  

Table 6.4 – The natural frequencies from the FEM for three 

connection cases, and from measurement. 

 

Mode 

Pin 

connection 

(Hz) 

Rigid 

connection 

(Hz) 

Semi-rigid 

connection 

(Hz) 

Measuremen

t (Hz) 
Mode types 

1 
1.18 

(18.6%) 
2.05 

(29%) 
1.47 

(1.4%) 
1.45 First lateral 

2 
2.76 

(11.3%) 

4.36 

(29%) 
3.14 (1%) 3.11 First torsion 

3 
3.11 

(5.18%) 
4.44 

(26%) 
3.32 

(1.2%) 
3.28 

Second 
lateral 

4 
3.79 

(17.7%) 

7.18 

(36%) 

4.80 

(3.7%) 
4.62 

First vertical 

bending 

5 
3.94 

(34.9%) 

8.15 

(26%) 

6.96 

(13%) 
6.05 

Second 

torsion 
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(a) 

 

(b) 

Figure 6-5–MAC values of mode shapes before model updating: (a) 

Rigid connection, (b) Semi-rigid connection 

Table 6.4 demonstrates that the FEM of the bridge with pinned 

connection does not predict the behaviors of the bridge properly. Natural 

frequencies of the first five modes are lower than those of measurement. 

The result of the FEM with rigid connection is also not satisfactory in 

comparison to the experimental one. Specifically, there are deviations 

between natural frequencies calculated from FEM and measurement 

(from 26% to 36%). Natural frequencies from the FEM are higher than 

those from the experiment. Rigid links make the structure stiffer than in 

reality, while the truss members in Nam O Bridge are linked with each 

other by bolts. Additionally, MAC values (Figure 6-5 a) lower than 0.9 

indicate the significant difference between mode shapes of FEM and 

measurement. The model with a semi-rigid connection provides 

improved simulated modal results in comparison to the experimental 

ones. There is a small deviation between natural frequencies calculated 
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from FEM and measurement (around 1%, apart from mode 5 having 

13%). The MAC values (Figure 6-5 b) higher than 0.9 indicate consistent 

correspondence between the numerical model and measurement [101-

102]. However, it is necessary to update some uncertain parameters such as Young’s modulus, the stiffness of springs at bearings and truss joints to 
get the best correspondence between theoretical and experimental 

results. 

6.2.3. Experimental measurements 

6.2.3.1. The AVT 

6.2.3.1.1. Test description 

The modal identification test was performed on the first span 

between abutment 𝐴0 and pier 𝑃1. Span length is 𝑙𝑛=75 m, maximum 

height at mid-span ℎ𝑛=13 m. In total, there were 32 truss connections. 

The dynamic response was due to ambient wind forces or the free 

vibration of the bridge after train passage. In order to obtain sufficient 

data for vibration-based system identification as well as to be compatible 

with FEM analysis, ideally, all nodes and all directions (longitudinal- 𝑥, 

transversal- 𝑦, and vertical- 𝑧) from the bottom to the top of the arch-

truss type should be included in the measurement grid. However, by 

neglecting deformation due to normal forces, several displacement 

components (DOFs) can be linked (slaved nodes) to DOFs of other 

(master) nodes. Therefore, in the measurement layout 64 (= 32 x 2) DOFs 
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are configured in either of two directions (𝑥 and 𝑦 or 𝑦 and 𝑧 depending 

on measurement positions: see Figure 6-6), of which 40 DOFs were real 

measurements and 24 DOFs virtual (slave) results. An overview of the 

sensor layout is shown in Figure 6-6. 

 

Figure 6-6–The measurement grid: accelerometers at 40 DOFs;  

red: reference points-106, 206, 302 and 402; blue: roving points. 

6.2.3.1.2. Sensors placement 

On the bridge, ten accelerometers (PCB-393B12) with high 

sensitivity from 965 to 1,083 mV/m/𝑠2, were employed for response 

signal acquisition. However, the sensitivity of accelerometers need to be 

carefully considered in this case. It is well known that modal properties, 

especially the natural frequencies, are influenced by environmental 

conditions, mainly temperature. Hence, the calibration was valid for the 

(constant) temperature during the AVT. If the measurements would be 
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repeated as part of an SHM program (to detect structural damages) 

definitely, this dependency has to be taken into account. In practice, this 

kind of bridge will have a high amplitude vibration during the train 

passage. Therefore, using a high sensitivity sensor can lead to distortion 

or clipping the response. For this reason, besides the ambient response 

measurement, the vibration of the bridge was only considered after a 

train passage. 

The vibration measurement grid was divided into 8 setups; each 

setup included a maximum of 10 accelerometers as in Table 6.5. From 

these 10 ones, 4 served as references while the remaining accelerometers 

were roving over the bridge. The 4 reference sensors were presently 

placed at the lower and upper nodes of the two bays (see Figure 6-6). An 

optimal reference was a sensor where all lower modes of vibration were 

present. Therefore, modelling the structure beforehand was a reliable 

basis to allocate where the reference sensors should be located. Division of sensors in “reference” and “roving” was necessary when the number of 

the available sensor was less than the number of DOF that need to be 

measured. In this case, a multi-setup measurement campaign was 

employed. Reference sensors were placed in nodes where all lower 

vibration modes had non-zero modal displacements. The position was 

selected based on the modal results of a preliminary FEM. It was also possible to generate “optimal positions” of the reference sensors when 
applying Optimal Sensor Placement algorithms [103]. In practical 
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measurements (on bridges), there will be as many reference sensors as 

possible dependent on the existing instrumentation. Preferably, there is 

more than one reference sensor. In the case of multiple setups, the other 

(roving sensors) cover all the remaining positions in the measurement 

grid. 

Table 6.5 – Overview of setups used for data acquisition and 

corresponding DOFs 

Setup Reference channels Roving channels 

setup 1 106𝑧 206𝑦 302𝑧 402𝑦 101𝑧 103𝑧 301𝑧 303𝑧 305𝑧  

setup 2 106𝑧 206𝑦 302𝑧 402𝑦 102𝑧 104𝑧 107𝑧 304𝑧 306𝑧 307z 

setup 3 106𝑧 206𝑦 302𝑧 402𝑦 102𝑦 103𝑦 104𝑦 304y 306𝑦 307𝑦 

setup 4 106𝑧 206𝑦 302𝑧 402𝑦 101𝑦 105𝑦 107𝑦 301𝑦 303𝑦 305𝑦 

setup 5 106𝑧 206𝑦 302𝑧 402𝑦 102𝑦 103𝑦 104𝑦 304𝑦 306𝑦 307𝑦 

setup 6 106𝑧 206𝑦 302𝑧 402𝑦 100x 100𝑦 300𝑦 300𝑥 308𝑥  

setup 7 106𝑧 206𝑦 302𝑧 402𝑦 403𝑦 404𝑦 405𝑦 406𝑦   

setup 8 106𝑧 206𝑦 302𝑧 402𝑦 201𝑦 207𝑦 401𝑦 407𝑦   

    In order to identify the real operational conditions of the bearings, 5 

sensors were placed at bearings. Four sensors at two nodes (100 and 

300) in direction 𝑥 and 𝑦, and the remaining one at node 308 in direction 
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𝑥). As the bearing at node 108 was a fixed one, no sensor was placed at 

this node. 

6.2.3.1.3. Data acquisition process 

    A 12-channel data acquisition system (Figure 6-7), using three NI 9234 

modules from National Instruments was employed to record the voltage 

signals from the sensors and to convert these analog signals after 

conditioning to digital data. A portable computer was used to command 

the data acquisition system and to read and save the digital data.  

 

Figure 6-7– Data acquisition process 

The total acquisition time was at least ten to twenty minutes (approx. 

900 - 1200 s) for one output-only setup at a sampling rate of 1651 Hz. It 

meant that each channel had 1485900 - 1981200 data points. The 

envisaged acquisition time was 20 minutes for the AVT. For some setups, 

this was shortened because of the passage of a train during the 

measurement. However, a measurement duration of 10 minutes was 

considered to be sufficient, considering the natural frequencies of the 
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lowest modes. As the system identification was done for each setup 

separately, time lengths had not to be identical. The measurement 

campaign took place on two successive days. Figure 6-8 shows the 

installation of the equipment on site. 

 

(a) 

 

(b) 

Figure 6-8–Field measurement instrumentation: (a) DAQ system 

(Compact DAQ Chassis NI 9178 and 3 vibration modules NI 9234) and 

portable computer; (b) Transversal accelerometer (PCB-393B12) at 

truss connection. 

6.2.3.2. System identification by MACEC 

6.2.3.2.1. Data pre-processing 

   In this stage, MACEC software developed by Edwin Reynders et al. 

[104] was employed to process the measured data. Some parameters in 

MACEC had to be set up for treating the acquired acceleration data from 
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8 setups in a systematic manner. The procedure of data pre-processing is 

as follows:  

 The first step was to construct a grid of measured nodes, 

then connecting these nodes by lines to create a visualization of the 

structure.  

 Input required parameters include labels, data types, 

sensitivities, amplification factors, and measurement units, 

corresponding to each channel. 

 A pure ambient response measurement in a period of 

approximately ten minutes was extracted. 

 There was always an offset on the measured signal data, 

therefore, the DC component needs to be removed from the time 

series of all channels.  

 A “FILT-FILT” function was applied to pass signals with 

a frequency higher than a cutoff frequency of 0.5 Hz 

and attenuated signals with frequencies lower than 0.5 Hz. The 

purpose of this step was to remove low natural frequency blurring or 

noise by highlighting frequency trends, i.e. higher than 0.5 Hz [105]. 

      The frequency range of interest in bridge structure 

often lies between 0-20 Hz. Therefore, to facilitate the System 

https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Cutoff_frequency
https://en.wikipedia.org/wiki/Attenuate
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Identification, first digital filtering was applied to the measurement 

signals, followed by resampling them to achieve a Nyquist frequency of 20 Hz by the “DECIMATE” function with a decimation factor of 40. 
6.2.3.2.2. Covariance based system identification (SSI-COV) 

After the pre-processing stage, a measurement model of the 

structure was identified. The Stochastic Subspace Identification (SSI) 

method is often employed to perform system identification for the 

output-only or OMA of structures. There are two implementations of the 

SSI: the data-driven (SSI-data) option and the covariance (SSI-cov) 

option. Reynders et al. [105] pointed out that the implementation of the 

SSI-cov was more straightforward, as well as, computationally less 

expensive than the SSI-data. In comparison with SSI-data, the SSI-cov 

implementation also obtains a similar accuracy. Therefore, the dynamic 

system identification of the tested bridge was performed by SSI-cov. 

The system identification was started by specifying the number of 

block that the raw time data was divided into. The number of block was 

used for computing sample covariance of the output correlation matrices. 

In general, half the number of block rows 𝑖0, could be chosen based on the 

relationship between the lowest frequency of interest and the Nyquist-

frequency. In practice, the value of 𝑖0 has a significant influence on the 

quality of the identified system model. Its value should be as large as 

possible, however, the excessiveness of calculation time and memory 
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usage should be considered [105]. For this case, the value of 𝑖0 was chosen 

as 250.  

Another parameter that needs to be considered was the maximum 

system order. In the theoretical aspect, observing the number of non-zero 

singular value of the block Toeplitz can identify the system order 𝑛𝑠. In 

practice, it is not easy to inspect this number of non-zeroes because of the noise from modelling inaccuracies, measurement noise…etc., the higher singular values do not equal zero exactly. Therefore, a maximal “gap” 
between two successive singular values becomes important evidence to 

find the system order. Peeters et al  [106] stated that the gap was not clear 

to find out, especially in large structures. For system identification of the 

Nam O bridge, the considered system order was ranged from 2 to 140 in 

increasing steps of 2 i.e., [2:2:140].  

6.2.3.3. Modal analysis 

To obtain a clear stabilization diagram when model orders ranged 

from 2 to 140, some criteria need to be specified. The criteria were 1% for 

frequency stabilization, 5% for damping ratio stabilization, and 1% for 

mode shape stabilization. These values were selected based on 

experience with many other similar structures [105]. The stable poles 

appeared systematically in certain frequency sub-intervals, from 0 to 15 

Hz. The stabilization diagram with SSI-cov of setup 1 is shown in Figure 

6-9 for illustration purposes. 
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Figure 6-9–The stabilization diagram of setup 1 in the interval from 0 

to 20 Hz. The used symbols are:  for a stable pole, (.v) for a stable 

frequency and mode shape vectors pole, (.d) for a stable frequency 

and damping pole and (.f) for a stable frequency pole 

Theoretically, a bridge has a multitude of vibration modes. However, 

all the modes of vibration do not contribute equally to the response of a 

structure. Normally only the first few modes, which have higher 

participation factors are considered to get the dynamic response of 

structures. Those main lower modes are enough to solve the model 

updating problem. In this case, only the first 5 modes within the frequency 

interval from 1.45 Hz to 6.05 Hz, as shown in Figure 6-10 were used for 

model updating. For a detailed explanation about the construction and the 
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interpretation of the stabilization diagram in Figure 6-9, the reader is 

referred to [106]. 

 

Mode 1, first lateral, 𝑓 = 1.45 Hz, 𝑥𝑖=0.82% 

 

Mode 2, first torsion, 𝑓 = 3.11 Hz, 𝑥𝑖 =0.19% 

 

Mode 3, second lateral, 𝑓 = 3.28 

Hz, 𝑥𝑖 =0.27% 

 

 

Mode 4, first vertical bending, 𝑓 

= 4.62 Hz, 𝑥𝑖 =2.54% 
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Mode 5, second torsion, 𝑓 = 6.05 Hz, 𝑥𝑖 =0.28% 

Figure 6-10– identified modes 

6.2.4. Model updating 

A FEM updating is applied in the Nam O Bridge. Eight uncertain parameters, including Young’s modulus of truss members (𝐸), the 

stiffness of 6 springs under bearings (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6) as shown in 

Figure 6-11, and the stiffness of rotational springs at truss joints (𝑘7) are 

chosen to update. The approach for determining the original stiffness of 

rotational springs is referred from [98], whereas the stiffness of springs at 

the bearings is calculated based on bearing types.  
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(a) 

 

(b) 

Figure 6-11–Uncertain structure parameters are selected to update in 

the model: (a) The springs at truss joints; (b) The springs at bearings. 

The objective function is built based on both mode shapes and 

natural frequencies. PSO and GA algorithms are used to look for the best 

solution. In PSO, a population size of 50 individuals is used. The inertia 

weight parameter (𝑤) is 0.3, and the values of the cognition learning 

factor and the social learning factor are 𝑐1 = 2 and 𝑐2= 2. In order to 

compare with PSO, for GA, the population size of 50 individuals is also 

applied, crossover and mutation coefficients are 0.8 and 0.1, respectively. 

The stop criteria of loops in both PSO and GA are established as follows: 

the deviation of objective function (fitness) value between two 

consecutive iterations is lower than 10−6, or the maximum number of 

iterations is 100. 
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(a) 

 

(b) 

Figure 6-12–Fitness tolerance (a) GA; (b) PSO 

Figure 6-12 shows that the convergence rate of PSO is faster than GA. 

With the same population, PSO can find the result of the global best (the 

best solution) after only 30 iterations, Whereas GA needs approximately 

80 iterations to obtain the global best. Besides, the convergence level of 

PSO outperforms that of GA. The tolerance of the objective function of PSO 

is lower than 0.1, while the result of GA is about 1.2. That means that the 

deviation between numerical model and measurement after model 

updating using PSO was lower than GA. This result can be explained based 

on the approach for finding the best solution in the two algorithms. While 

in PSO, only the best global position of particles (the best solution) is given 

out, in GA, information of all particles is shared with each other after each 

iteration.  

 A summary of the analysis and the experimental results is given in   

Table 6.6 and Figure 6-13.  
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 Apart from mode 5 (the difference of natural frequency 

between FEM and measurement is 7.6%), the natural 

frequencies of mode 1, mode 2, mode 3, and mode 4 

calculated by FEM and measurement do perfectly match. 

 The MAC values from 0.99 to 0.90 (Figure 6-13) demonstrate 

a close correspondence between the mode shapes of FEM 

and measurement. 

 The results of both calculated frequencies and mode shapes 

applying PSO are closer to those of the measurement than GA. 

After model updating, the FEM is applied to validate higher modes 

that were not included in the objective function. Table 6.6 and Figure 6-13 

show that the model updating also reduces the deviation between the 

measured and calculated natural frequencies, mode shapes of the higher 

modes (mode 6 to mode 10).  

Table 6.6 – The modal natural frequencies from the FEM after model 

updating compared to the measurement 

Mode 
Before model 

updating (Hz) 

Model updating-

GA(Hz) 

Model updating-

PSO(Hz) 

Measurement 

(Hz) 

1 1.47 (1.4%) 1.47 (1.3%) 1.45 (0%) 1.45 

2 3.14 (1%) 3.06 (1.6%) 3.10 (0.3%) 3.11 
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3 3.32 (1.2%) 3.29 (0.3%) 3.27 (0.3%) 3.28 

4 4.80 (3.7%) 4.70 (1.7%) 4.66 (0.8%) 4.62 

5 6.96 (13%) 6.53 (7.3%) 6.55 (7.6%) 6.05 

6 7.21 (1.35%) 7.11 (0.2%) 7.15 (0.4%) 7.12 

7 7.50 (2.74%) 7.35 (0.7%) 7.33 (0.5%) 7.30 

8 8.33 (14,1) 8.21 (10%) 8.10 (8.57%) 7.46 

9 9.18 (10.81%) 9.05 (9.2%) 9.00 (7.94%) 8.29 

10 9.79 (10.16%) 9.64 (8.5%) 9.57 (7.10%) 8.89 

 

 

(a) 

 

(b) 

Figure 6-13–MAC values of mode shapes after model updating: (a) GA; 

(b) PSO 
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Table 6.7 gives the range of variation of the uncertain parameters 

based on experience or estimated according to reference [98]. The model 

updating process also adjusts uncertain parameters of the bridge (Table 

6.8). The changes in Table 6.8 show that the parameters before and after 

updating are not too much different. This is easy to explain since the Nam 

O bridge has been in operation for about 7 years. Therefore, the bridge is 

in a good situation. The stiffness of the bearing and rotational springs 𝑘1, 𝑘2, 𝑘3, 𝑘4𝑘5,𝑘6,and 𝑘7 have a decreasing trend with lower levels for 

GA compared to that of PSO. This proves that the stiffness of bearings and 

rotational springs is overestimated. Therefore, to get consistent 

correspondence between theoretical and experimental results, the 

stiffness of bearings and rotational springs should be adjusted. 

Table 6.7 – The range of variation of the uncertainty parameters 

 𝑘1 𝑘2 𝑘3  𝑘4 𝑘5 𝑘6 𝑘7 E 

Lower   1.0  1.0  1.0  1.0   1.0   1.0  7  1.9 

  Upper   2.0  2.0  2.0  2.0   2.0   2.0  9  2.2 

Table 6.8 – Values of uncertain parameters before and after updating. 

 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 E 

Before 1.3 1.3 1.3 1.3 1.5 1.5 8 2 
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After(GA) 1.27 1.22 1.19 1.21 1.45 1.38 7.8 1.99 

After(PSO) 1.20 1.16 1.12 1.16 1.40 1.33 7.6 1.98 

Note: unit of 𝑘1, 𝑘2, 𝑘3, 𝑘4 is 1010 N/m, unit of 𝑘5, 𝑘6 is 107 N/m, unit 

of 𝑘7is 105 N.m/rad, unit of 𝐸 is 105 MPa.      

6.3 Guadalquivir railway bridge  

6.3.1. Bridge description 

The Guadalquivir railway bridge (Figure 6-14) located in Seville city 

(Spain) is a twin steel truss bridge with one rail track in each direction. 

The bridge includes five continuous truss spans: two side spans 51 m long 

and three intermediate spans of 50.94 m. While the two abutments are 

labeled as 𝐸1 and 𝐸2, the four piers are referred to as 𝑃1, 𝑃2, 𝑃3, and 𝑃4. 

The right main span represents the downstream side of the river, whereas 

the left main one is located at the upstream side of the river. The bridge 

was opened to traffic in 1929 and has been reinforced on several 

occasions by adding reinforcements to its members. It seems that the 

condition of the bridge is fairly good by visual inspection but several local 

defects exist in connection bolts and the structural members. 
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Figure 6-14–The Guadalquivir railway bridge [108]. 

6.3.2. FEM 

A FEM (Figure 6-15) is built using the MATLAB toolbox Stabil [95] 

based on the geometry obtained from design drawings and site visits and 

inspections.   

 

(a) 

 

(b) 
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Figure 6-15–(a) FEM of Guadalquivir railway bridge; (b) Details of 

beam element cross-sections and connections. 𝑋𝑌𝑍 is the global 

coordinate system, 𝑥𝑦𝑧 is the local axis system of the beam elements. 

The main structural members consist of top chords, bottom chords, 

stringers, portal frames, verticals modeled using three-dimensional beam 

elements. The beam element is based on Timoshenko beam theory which 

includes shear-deformation effects. The element provides options for 

unrestrained warping and restrained warping of cross-sections. The 

counter braking truss, the bracing members, and the transverse beams 

are modeled utilizing a beam element type. The rail track and non-

structural components such as handrail, maintenance path, and power 

line, etc. are included in the model as added mass. The counter braking 

truss is connected to truss members by translational constraints to the 

node joints. The global 𝑋-axis is in the longitudinal direction of the bridge; 

the 𝑍-axis is in the vertical direction, and the 𝑌-axis is in the transverse direction (to the river flow direction). Pier 𝑃2 and abutment 𝐸2 use pin 

bearings (fixed bearings), and others apply roller ones. Roller bearings 

allow translational and rotational displacement in the longitudinal 

direction, whereas pin ones only permit rotation. Bearings are modeled 

using spring elements. 

Figure 6-16 shows the cross-section of the different beam members. The connection between the transverse floor beams of the portal frames 
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with the main truss is modeled as fully constrained, i.e., all six DOFs are fixed (detail A in Figure 6-16). The connection between the upper 

transverse beams of the portal frames with the main truss is also modeled 

as fully constrained except for the rotation of the upper transverse beam 

along its beam axis (global 𝑌 direction). This choice is based on a visual 

inspection of the bridge. Likewise, the same type of constraint is used for the connection between other floor beams to the main truss (detail 𝐵). The stringer (longitudinal floor beam) is discontinuous at the cross floor 
beam positions. Its connection with the floor beams also permits the 
rotation around its local longitudinal axis, which is parallel to the global 𝑋 

direction.  

Table 6.9 – Summary of the first twenty-two modes from FEM.  

Modes 
𝑓 (Hz) Mode 

types 
Modes 

𝑓 (Hz) Mode 

types 

1 2.81 1st ↔ 12 6.96 5th ↕ 

2 2.95 2nd ↔ 13 7.13 8th ↔ 

3 3.70 3rd ↔ 14 7.35 9th ↔ 

4 3.91 4th ↔ 15 7.85 10th ↔ 

5 4.38 1st ↕ 16 8.18 11th ↔ 

6 4.49 5th↔ 17 8.59 1st  

7 4.69 2nd ↕ 18 8.65 2nd  
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8 5.43 3rd ↕ 19 8.73 3rd  

9 5.70 6th ↔ 20 8.96 4th  

10 5.96 7th ↔ 21 9.72 5th  

11 6.31 4th ↕ 22 10.02 6th  

Note:  transverse;  vertical;  torsion; The first twenty-two modes within the frequency range from 2.81 Hz 

to 10.02 Hz as shown in Table 6.9. In this frequency interval, all modes are 

global, i.e., not localized in a part of the structure. Some modes have very 

close natural frequencies, which may present a challenge to separate them from the identified modes of the experimental data. Modes 1-4, 6, 9-

10, and 13-16 are transverse bending modes. Mode 1 (2.81 Hz) has its main deformation in the first span, whereas mode 2 (2.95 Hz) is similar 
but has its main deformation in the last span. Modes 5, 7-8, 11, and 12 are 

vertical bending modes. Most of them exhibit longitudinal modal 

displacements. Mode 17 and higher modes are torsional modes. In fact, 

they are rather a combination of transversal and torsional frame 

deformation. Figure 6-16 shows some selected mode shapes from the 

FEM. 
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Mode 1 (2.81 Hz) Mode 2 (2.95 Hz)  

 

Mode 3 (3.70 Hz) 

 

Mode 5 (4.38 Hz) 

 

Mode 8 (5.43 Hz) 

 

Mode 11 (6.31 Hz) 

 

Mode 12 (6.96 Hz) 

 

Mode 18 (8.65 Hz) 
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Mode 21 (9.72 Hz) Mode 22 (10.02 Hz) 

Figure 6-16–Selected mode shapes from FEM of the Guadalquivir 

bridge. Modes 1, 2, 3 are transverse; modes 5, 8, 11, 12 are vertical; 

modes 18, 21, 22 are torsion.  

6.3.3. Measurements 

6.3.3.1. Instrumentation and test setup 

The AVT was carried out by the Structural Mechanics section of KU 

Leuven on one of the two bridges located on the upstream side of the river 

(for train traffic from Alcazar to Seville). In order to speed up the roving 

process between test setups, wireless triaxial sensors (Figure 6-17) were 

used instead of a classical wired system.  

 

Figure 6-17. wireless triaxial sensors 
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Twelve triaxial wireless acceleration sensor units (GeoSIG GMS-

18) [109] were connected by a time-synchronous Wi-Fi network. The data quality and operational efficiency make wireless acceleration 

sensors increasingly common in civil engineering practice. The 

application of wireless triaxial sensors avoided the use of cables, 

permitted to cover all the length of this very large structure. This 

supported the field measurements in becoming more convenient by 

reduced equipment installation time. 

Ideally, this kind of truss structure would have the same 

measurement grid as the truss joints on the bottom and the top levels. 

However, due to safety reasons, systematic measurement of the node 

joint DOFs only performed on the bottom chords.  The upper chords only 

contained a limited number of nodes measured, at portal frames 0; 86, 

and 90 (see Figure 6-18 for the portal frame numbers). This ideal solution 

facilitated the organization of the AVT without reducing the quality of the 

results. The measurements were divided into successive test setups. Four fixed reference sensors were placed on the right main truss at bay 

numbers 9, 27, 43, and 63. These reference sensors were positioned at 

locations where most modes with relatively large modal displacements as 

obtained from the preliminary numerical model. The fifth fixed reference 
sensor was placed at node 63 on the left main truss. A well-chosen 

selection of the reference sensors was extremely essential to guarantee a 
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proper identification of all the vital mode shapes. Figure 6-18 shows the 

measurement grid design for the AVT. 

The remaining seven sensors were employed as roving sensors. 

Table 6.10 shows the location of the roving sensors among setups on the 

right main truss. They were distributed in a way that, at each particular 

setup, there was at least one sensor in each span. Setups 14 to 26 were 

identical to setups 1 to 13. However, they were situated at the left main 

truss. There were twenty-seven setups in total. The last setup (setup 27) 

was designed to measure the vibration of the transversal portal frame and 

helped afterwards to distinguish between the global modes. In this setup, 

four sensors were installed on a few accessible upper chord nodes at the 

bridge ends. 

 

Figure 6-18– The measurement points (●) and the location of the fixed reference sensors (▲). 
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Table 6.10 – Roving sensor positions for all setups. Superscript 𝑙𝑒  
indicates positions on the left main truss; superscript 𝑡𝑒  indicates 
positions on the upper chord. 

Set ups Node numbers to be measured 

1 0 1333 266 39 52 65 788 

2 1 14 27 40 53 66 79 

3 2 15 28 41 54 67 80 

4 3 16 29 42 55 68 81 

5 4 17 30 43 56 69 82 

6 5 18 31 44 57 70 83 

7 6 19 32 45 58 71 84 

8 7 20 33 46 59 72 85 

9 8 21 34 47 60 73 86 

10 9 22 35 48 61 74 87 

11 10 23 36 49 62 75 88 

12 11 24 37 50 63 76 89 

13 12 25 38 51 64 77 90 

27 1𝑡𝑒  86𝑙𝑒  86𝑡𝑒  90𝑙𝑒  90 90𝑡𝑒  90𝑡𝑒  

 

The sampling frequency was 200 Hz. The measurement duration was about fifteen minutes per setup. It took about 30 minutes on average to 
complete one setup including the time to relocate roving sensors. Train 
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traffic operated normally with up to 5 train passages per hour during rush 

hours. The whole in-situ test was done in less than two working days. 

6.3.3.2. Test results 

6.3.3.2.1. System identification and modal analysis 

A pure ambient measurement period of about 10 to 15 minutes was 

extracted for each setup. OMA was performed using the 

MATLAB toolbox MACEC 3.2 [95]. A high pass filter was applied with 

a cut-off frequency of 0.1 Hz to remove the low drift frequency. Next, low pass digital filtering of the data was employed in both forward and 

reverse directions and the data was down-sampled to 50 Hz. By applying 

the reference-based implementation of the Covariance-Driven Stochastic Subspace Identification Method (SSI-cov/ref), a model of the tested 

structure was determined from the data in the system identification 
process. 

 

(a) 

 

(b) 
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Figure 6-19–The MAC-values of identified modes. (a) transverse 

modes; (b) vertical modes. 

The reference signals were taken as the pre-processed time histories from the channels connected to the fixed reference sensors. The 
considered model order range was from 2 to 250 in steps of 2 and half the 

number of block row was 120. The main stabilization criteria were taken 

the same as in [105], the differences in two consecutive natural 
frequencies and damping ratios were 𝑑𝑓𝑖 ≤ 1% and 𝑑𝜉𝑖 ≤ 5%, 

respectively; MAC values between two successive mode shapes were 

lower than 1% and the Modal Phase Collinearity (MPC) was larger than 

0.5. These values were chosen based on experience with numerous other 

similar structures. Thirty-seven modes were identified within a 

frequency range from 2.78 Hz to 14.21 Hz.  The identified modal characteristics are given in Table 6.11. The identified modes are all characterized by a low damping ratio. Most of 
them have a mode shape that is almost purely real, as evidenced by high 

MPC and low Mean Phase Deviation (MPD) values, which ensures a very 

high degree of accuracy. Mode 3 (2.99 Hz) has lower quality (as seen from 

the lower MPC and higher MPD values), possibly because it was not well stimulated. Its identified frequency is very close to that of mode 2 (2.90 
Hz). Another explanation could be that mode 3 has its largest modal 

displacements in span 5 where no fixed reference sensor was located. 
Modes 14, 19, 22, 28, 29, 36, and 37 have an MPC value less than 0.85, 
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indicating a lower accuracy. These modes are either transverse modes or 

torsional modes of a high order.  Modes 15 and 28 also have MPD values 

that are larger than 10𝑂 . 

Table 6.11 – Summary of the first thirty-seven modes from the 

measurement.  

Modes 
 𝑓 (Hz) 

MPC 

[-] 

MPD 

[o] 
Modes 

 𝑓 (Hz) 

MPC 

[-] 

MPD 

[o] 1 ↔ 2.78 0.976 5.7 

 

20↔ 7.37 0.791 15.2 2 ↔ 2.90 0.985 5.1 21↔ 8.46 0.854 12.5 3 ↔ 2.99 0.876 13.0 22↔ 8.52 0.847 12.1 4 ↔ 3.13 0.962 6.5 23 8.90 0.945 6.7 5↔ 3.24 0.972 5.7 24 9.11 0.95 6.4 6↔ 3.36 0.912 12.9 25  9.33 0.933 7.8 7 ↕ 4.36 0.984 3.5 26  9.44 0.951 7.3 8 ↕ 4.48 0.98 3.8 27  9.65 0.936 7.5 9 ↔ 4.65 0.878 10.6 28  9.87 0.835 13.9 10 ↕ 4.78 0.89 10.4 29  10.02 0.837 12.6 11↔ 5.16 0.907 12.7 30  10.48 0.926 8.2 12↔ 5.22 0.953 9.8 31  10.55 0.878 11.1 13 ↕ 5.36 0.961 6.4 32  10.79 0.935 7.9 

14↔ 5.51 0.844 9.1 33 11.09 0.947 7.1 15↔ 5.59 0.842 12.9 34  11.61 0.914 7.6 16 ↕ 6.06 0.961 6.8 35  12.02 0.905 8.2 17↕ 6.70 0.935 8.5 36  12.59 0.841 13.0 18↔ 7.04 0.921 16.3 37 14.21 0.843 11.7 19↔ 7.19 0.811 13.4     

Note:  transverse;  vertical;  torsion 
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All modes with a natural frequency between 2.78 and 3.36 Hz are 

transverse modes. In the frequency range from 4.36 to 7.37 Hz, eight 

vertical modes are determined. The other five modes in this frequency 

range are either transverse modes or transverse modes combined with 

vertical displacements. Modes of some pairs with closely spaced 

frequencies can be obtained, which demonstrates that the proposed technique separates the close modes well. The first two modes in the 
frequency range from 8.46 to 14.21 Hz also belong to the combination 

mode including vertical mode coupled with transverse modal 

deformation. Almost all modes from 23 onward (from 8.90 Hz to 14.21 

Hz) are torsional modes. Modes 29 and 30 can also be assessed as 

combination modes. It is reminded that only four sensors were located on 

the upper chords of the bridge. However, the information provided by 

these sensors is really useful to identify the modal displacements of the 

portal frames. With this modal information of the three frames at sections 

0 (on top of the abutment 𝐸1), 86, and 90 (close to and on top of the 

abutment 𝐸2), some of the measured modes, for instance, measured 

modes 2 and 3 in Table 6.11 could be related to known modes from the 

FEM. 

6.3.3.2.2. Discussions on the identified mode shapes 

Figure 6-20 shows some of the identified mode shapes. The 
longitudinal displacements of the nodes at the lower chords (in the 𝑋-

direction) are fairly small compared to those in other directions. There 
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are very small modal displacements in the longitudinal direction 

especially at the bearings since bearings on the pier 𝑃2 and abutment 𝐸2 are fixed in the longitudinal direction. It seems that the roller supports 
permit free longitudinal displacements for the service loads and thermal 

expansion but restrain longitudinal displacements under small amplitude 

vibrations. 

 

Mode 1 (2.78 Hz) 

 

Mode 2 (2.90 Hz) 

 

Mode 3 (2.99 Hz) 

 

Mode 8 (4.48 Hz) 

 

Mode 13 (5.36 Hz) 

 

Mode 16 (6.06 Hz) 
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Mode 17 (6.70 Hz) 

 

Mode 24 (9.11 Hz) 

 

Mode 29 (10.02 Hz) 

 

Mode 30 (10.48 Hz) 

Figure 6-20–Selected mode shapes identified from the modal test. 

Modes 1, 2, 3, are transverse; modes 8, 13, 16, 17 are vertical; modes 

24, 29, 30 are torsion. 

Mode 8 (4.48 Hz) is the second vertical mode having the maximum modal displacement in the fifth span. Figure 6-19 indicates MAC values 

among different identified transverse and vertical modes, respectively. 

For the measured vertical modes, the high values of the MAC between 

modes 7 and 8 are obtained since the linear dependence of the modal 

displacements in the lower chords of the bridge.  



102 
 

 

6.3.3.3. Validation of the numerical model 

The identified modes are compared with the modes of the numerical 

model. The modes are separated into three groups including transverse, 

vertical, and torsional modes. 

6.3.3.3.1. Transverse modes 

The discrepancy of natural frequencies and MAC-values between 

numerical and experimental modal analysis results are listed in Table 

6.12.  

Table 6.12 – Comparison between measured and FEM results for the 

transverse modes.  
Measurement FEM  Difference (%) Mac 

values 
Modes  𝑓 (Hz) Modes  𝑓 (Hz) 

1 2.78 3 3.70 24.8 0.85 
2 2.90 1 2.81 3.20 0.86 
3 2.99 2 2.95 1.35 0.87 
4 3.13 4 3.91 19.9 0.90 
5 3.24 N/A N/A   
6 3.36 N/A N/A   
9 4.65 6 4.49 3.56 0.85 

11 5.16 N/A N/A   
12 5.22 N/A N/A   
14 5.51 9 5.70 3.33 0.90 
15 5.59 10 5.96 6.20 0.90 
18 7.04 13 7.13 1.26 0.94 
19 7.19 N/A N/A   
20 7.37 14 7.35 0.27 0.94 
21 8.46 15 7.85 7.77 0.93 
22 8.52 16 8.18 4.15 0.91 
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Table 6.12 shows that apart from mode 1 and mode 4, numerical and 

measured natural frequencies have a close correspondence. However, the 

identified mode shapes do not match very well with the corresponding 

analysis ones (MAC values of modes 1-3 and mode 9 are lower than 0.9) 

6.3.3.3.2. Vertical modes 

Table 6.13 compares the identified and the calculated modes. 

Generally, the quality of the experimental vertical modes is good, which is 

demonstrated by the MAC- values shown in Figure 6-19 b. The 

comparison between natural frequencies and MAC-values between 

numerical and experimental modal analysis results is given in Table 6.13. 

The MAC values are close to 1 indicating that a good correspondence 

between FEM and measurement is obtained. 

Table 6.13 – Comparison between measured and FEM results for the 

vertical modes.  
Measurement FEM  Differences 

(%) 

Mac 

values 
Modes  𝑓 (Hz) Modes 𝑓 (Hz) 

8 4.48 5 4.38 2.28 0.98 

10 4.78 7 4.69 1.92 0.97 

13 5.36 8 5.43 1.29 0.96 

16 6.06 11 6.31 3.96 0.96 

17 6.70 12 6.96 3.73 0.95 
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6.3.3.3.3. Torsion modes 

The identified torsional modes do not match very well with the 

corresponding analysis modes. This deviation occurs due to several 

factors, such as the coupling constraints between the stiffness of the 

members themselves, and the condition of the bearings. Table 6.14 

compares the FEM modes 17-22 with the experimental modes 23-26, 29, 

and 30, respectively. Identified mode 23 is found to be close to FE mode 

17. The natural frequencies of those modes almost coincide with each 

other, whereas the mode shapes are very similar.  

Table 6.14 – Comparison of measured and FEM results for the torsion 

modes.  

Measurement  FEM  Differences 

(%) 

Mac 

values 
Modes  𝑓 (Hz) Modes 𝑓 (Hz) 

23 8.90 17 8.59 3.61 0.92 

24 9.11 18 8.65 5.32 0.94 

25 9.33 19 8.73 6.87 0.87 

26 9.44 20 8.96 5.36 0.89 

29 10.02 21 9.72 3.08 0.94 

30 10.48 22 10.02 4.59 0.93 

 

6.3.4. Model updating 
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In order to update uncertain parameters (𝑚) consisting of the 

stiffness of 8 springs under bearings (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8 ) as 

shown in Figure 6-21 and Young’s modulus of truss members (𝐸), a 

FEM updating is applied for the Guadalquivir railway bridge. 

 

Figure 6-21–Springs under bearings are selected for model updating 

 

ODIPSO coupling IPSO with OD is used for seeking the global best. For 

IPSO, while the population (𝑛) is 100, the values of the learning factors 𝑐1, 

and 𝑐2 are 2. To assess the performance of the proposed algorithm, PSO, 

IPSO, and ODPSO are also applied for model updating of the bridge. The 

population size, and the values of 𝑐1, and 𝑐2 applying for PSO, IPSO, and 

ODPSO are the same as those of ODIPSO. The inertia weight 𝑤 using for 

PSO and ODPSO is selected equally 0.3. The best solution will be obtained 

if the discrepancy in two consecutive iterations of the objective function 𝑓(𝑋) is lower than 10−6 or the maximum number of iterations is 100. The 



106 
 

 

first ten modes (numerical modes 1-10) are selected for model updating. 

To assess the effectiveness of the proposed approach, after model 

updating, the FEM is employed to consider the higher modes (modes 11-

22) that were not taken into account for the objective function. 

 

Figure 6-22–Fitness tolerance of PSO, ODPSO, IPSO, and ODIPSO 

Table 6.15 – Some evaluation criteria used to compare the considered 

algorithms 
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From Figure 6-22 and Table 6.15, PSO and ODPSO converge faster 

than IPSO and ODIPSO. PSO can find the best solution after only 16 

iterations, whereas ODPSO, IPSO, and ODIPSO need 23, 43, 55 iterations 

to look for the best solution, respectively. For convergence level, while the 

tolerance of objective function of ODIPSO is 0.083, those of PSO, IPSO, and 

ODPSO are 0.091, 0.183, and 0.188, respectively. In terms of 

computational cost, PSO and IPSO spend a large amount of time (1045623 

s, and 1052135 s on a PC with an Intel I7 Processor 1.91 GHz and 16 GB 

RAM) to find the best solution. This is a big drawback of applying those 

algorithms for tackling optimization problems of large-scale structures.  

Table 6.16 – Measured and analyzed natural frequencies before and after 

model updating 

Modes Before 

model 

updating 

(Hz-%) 

PSO 

(Hz-%) 

ODPSO 

(Hz-%) 

IPSO 

(Hz-%) 

ODIPSO 

(Hz-%) 

Measure

ment - 

modes 

(Hz) 

Evaluation criteria PSO ODPSO IPSO ODIPSO 

The number of 

iteration 
100 100 100 

100 

Speed of 

convergence 
16 23 43 

55 

Total CPU time (s) 

1045623 

(12.1 

days) 

213456 
(2.47 

days) 

1052135 
(12.2 

days) 

214316 

(2.48 

days) 

Convergence level 0.188 0.183 0.091 0.083 
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1 
2.81 

(3.20%) 

2.83 

(2.41%) 

2.84 

(2.11%) 

2.86 

(1.40%) 

2.89 

(0.35%) 

2.90 (2) 

2 
2.95 

(1.35%) 

2.97  

(0.67%) 

2.98 

(0.34%) 

2.99 

(0.00%) 

3.00 

(0.33%) 

2.99 (3) 

3 
3.70 

(24.8%) 

3.51 

 (20.8%) 

3.42 

(18.7%) 

3.28 

(15.2%) 

3.21 

(13.3%) 

2.78 (1) 

4 
3.91 

(19.9%) 
3.78  

(17.1%) 
3.72 

(15.8%) 
3.58 

(12.5%) 
3.46 

(9.53%) 
3.13 (4) 

5 
4.38 

(2.28%) 

4.42 

 (1.38%) 

4.43 

(1.13%) 

4.46 

(0.44%) 

4.49 

(0.22%) 

4.48 (8) 

6 
4.49 

(3.56%) 

4.52  

(2.88%) 

4.53 

(2.64%) 

4.56 

(1.97%) 

4.57 

(1.72%) 

4.65 (9) 

7 
4.69 

(1.92%) 

4.72  

(1.27%) 

4.73 

(1.05%) 

4.77 

(0.21%) 

4.79 

(0.21%) 

4.78 (10) 

8 
5.43 

(1.29%) 
5.41  

(0.92%) 
5.40 

(0.74%) 
5.37 

(0.19%) 
5.36 

(0.00%) 
5.36 (13) 

9 
5.70 

(3.33%) 

5.67  

(2.99%) 

5.64 

(2.65%) 

5.61 

(1.95%) 

5.58 

(1.61%) 

5.51 (14) 

10 
5.96 

(6.20%) 

5.93  

(5.73%) 

5.90 

(5.25%) 

5.83 

(4.12%) 

5.80 

(3.62%) 

5.59 (15) 

11 
  6.31 

(3.96%) 

6.27  

(3.34%) 

6.25 

(3.04%) 

6.20 

(2.26%) 

6.18 

(1.94%) 

6.06 (16) 

12 
6.96 

(3.73%) 

6.93  

(3.32%) 

6.90 

(2.90%) 

6.83 

(1.90%) 

6.80 

(1.47%) 

6.70 (17) 

13 
7.13 

(1.26%) 
7.11  

(0.98%) 
7.09 

(0.71%) 
7.05 

(0.14%) 
7.03 

(0.14%) 
7.04 (18) 

14 
7.35 

(0.27%) 

7.40  

(0.41%) 

7.42 

(0.67%) 

7.47 

(1.33%) 

7.49 

(1.60%) 

7.37 (20) 

15 
7.85 

(7.77%) 

7.91  

(6.95%) 

7.92 

(6.81%) 

7.97 

(6.15%) 

7.99 

(5.88%) 

8.46 (21) 

16 
8.18 

(4.15%) 

8.25  

(3.27%) 

8.27 

(3.02%) 

8.32 

(2.40%) 

8.34 

(2.11%) 

8.52 (22) 

17 
8.59 

(3.61%) 

8.65  

(2.89%) 

8.67 

(2.65%) 

8.73 

(1.95%) 

8.75 

(1.71%) 

8.90 (23) 

18 
8.65 

(5.32%) 

8.71  

(4.59%) 

8.73 

(4.35%) 

8.79 

(3.64%) 

8.80 

(2.36%) 

9.11 (24) 

19 
8.73 

(6.87%) 

8.79  

(6.14%) 

8.82 

(5.78%) 

8.88 

(5.07%) 

8.90 

(4.83%) 

9.33 (25) 

20 
8.96 

(5.36%) 

9.01 

 (4.77%) 

9.03 

(4.54%) 

9.06 

(4.19%) 

9.08 

(3.81%) 

9.44 (26) 
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21 
9.72 

(3.08%) 

9.76  

(2.66%) 

9.78 

(2.45%) 

9.82 

(2.03%) 

9.89 

(1.31%) 

10.02 

(29) 

22 
10.02 

(4.59%) 

10.08 

(3.97%) 

10.2 

(2.74%) 

10.3 

(1.65%) 

10.4 

(0.77%) 

10.48 

(30) 

 

 

(a) 

 

(b) 

Figure 6-23–MAC values of mode shapes (a) before model updating 

(b) after model updating (ODIPSO) 
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The results presented in Table 6.16 and Figure 6-23 indicate that 

after model updating the achieved correlation between numerical and 

experimental modal analysis results is remarkable.  

 Natural frequencies of modes obtained by numerical 

model and measurement do perfectly match except for transverse 

mode 3 (FEM mode), which is probably due to the boundary 

conditions in the transverse direction.  

 The MAC values after model updating improved 

considerably (Figure 6-23). This demonstrates a close 

correspondence between the mode shapes of FEM and 

measurement. 

 After model updating, the FEM is employed to consider 

other modes (numerical modes 11-22) that do not belong to the 

objective function.   Table 6.16 and Figure 6-23 show that the model 

updating also reduces the discrepancy between the numerical and 

experimental results of other modes. 

 The results demonstrate the superiority of ODIPSO 

algorithm over PSO, IPSO, and ODIPSO in terms of accuracy. This can 

be explained based on two main reasons:  
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1. Because ODIPSO employs IPSO to make particles of PSO 

more flexible. 

2. OD is employed to arrange and only select the best quality 

particles for the next steps, this strategy helps to control the 

search space and to increase the effectiveness of ODIPSO.  

Table 6.17 presents the initial estimated values of the uncertain 

parameters based on experience or estimated according to Ref. [110]. 

After model updating, uncertain parameters of the bridge are obtained as 

shown in Table 6.18 

Table 6.17 – The range of variation of the uncertain parameters 

 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑘7 𝑘8  𝐸 

Lower 1,0 1,0 1,0 1,0 1,0 1,0 7 7 1,94 

Upper 3,0 3,0 3,0 3,0 3,0 3,0 9 9 2,2 

Table 6.18 – Values of uncertain parameters before and after updating 

 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5  𝑘6 𝑘7 𝑘8  𝐸 

Initial 

values 
1,5 1,5 1,5 1,5 1,5 1,5 8,5 8,5 

2,05 

PSO 1,47 1,58 1,52 1,63 1,72 1,46 8,0 7,8 2,09 

ODPSO 1,45 1,67 1,56 1,68 1,76 1,43 7,8 7,6 2,10 

IPSO 1,41 1,69 1,57 1,72 1,82 1,38 7,5 7,4 2,12 

ODIPSO 1,39 1,72 1,59 1,75 1,84 1,35 7,4 7,2 2,13 
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Note: unit of 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 is ×1010N/m, unit of  𝑘7, 𝑘8  is ×107 N/m, unit of 𝐸 is ×105  MPa     

6.4 Chuong Duong bridge 

6.4.1. Bridge description 

This section will deal with simulations of damages (single and 

multiple) and the capability of different methods to find the simulated 

damages. An old large-scale steel truss bridge is employed. Chuong Duong 

Bridge (Figure 6-24) was built in 1983 across the Red River, connecting 

Hoan Kiem district with Long Bien district in Hanoi (Vietnam). The bridge 

consists of 11 simple spans with almost equal length (90m). Due to a long 

exploitation period of dense traffic flow and heavy loads with less 

maintenance, the bridge has been severely degraded with many damages 

appearing in truss members. Hence, a preliminary numerical model is 

needed for a proper design of the measurement campaign. 
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(a) (b) 

Figure 6-24– Chuong Duong bridge; (a) General layout; (b) Cross-

section of the bridge 

Truss members consist of bottom lateral bracing, top lateral bracing, 

struts, diagonal chords, vertical chords, top chords, bottom chords shown 

in Table 6.19, and Figure 6.25 a [111]. 

 

(a) Truss members 

 

(b) FEM 

Figure 6.25. (a) Truss members, (b) FEM of Chuong Duong bridge 

Table 6.19 – Cross-sectional properties of truss members 

Truss members 
Area 

(𝑚2) 

Moment of 

inertia 𝐼𝑦  (𝑚4) 

Moment of 

inertia 𝐼𝑧  (𝑚4) 

Bottom lateral 

bracing 
0,0080 0,00036 0,00065 
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Note: 𝐼𝑦 is the moment of inertia of the weak axis (the same direction 

with global 𝑌), 𝐼𝑧  is the moment of inertia of the strong axis (the same 

direction with global 𝑍). 

6.4.2. FEM 

A FEM of the span on piers 𝑃1 and 𝑃2 (Figure 6.25 b) is built using 

the Stabil toolbox of MATLAB [95]. This model consists of 45 nodes and 

146 beam elements with six DOFs at each node including translational 

displacements in 𝑋, 𝑌, and 𝑍 - axes and the rotational displacements 

around 𝑋, 𝑌 and 𝑍 - axes. Pier 𝑃1 uses a pin bearing that only allows 

rotational displacements, whereas 𝑃2 applies a roller one that allows 

translational and rotational displacements. 

Top lateral 

bracing 
0,0081 0,00038 0,00071 

Struts 0,067 0,01368 0,02194 

Diagonal chords 0,067 0,01368 0,02194 

Vertical chords 0,067 0,01368 0,02194 

Top chords 0,067 0,01368 0,02194 

Bottom chords 0,067 0,01368 0,02194 
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The 𝑋-axis coincides with the longitudinal direction, while the 𝑍-axis 

corresponds to the vertical direction and the 𝑌-axis is in the horizontal 

axis of the bridge.  

Modal analysis is performed by using a baseline model to generate 

input and output data for the network. The architecture network includes 

3 layers (one input layer, one hidden layer, and one output layer). Input 

data consists of natural frequencies of the first fifteen modes as shown in 

Table 6.20, whereas output data includes damage locations and levels. 

Table 6.20 – Natural frequencies of the first fifteen modes. 

Modes 

Natural 

frequencies 

(Hz) 

Modes 

Natural 

frequencies 

(Hz) 

Modes 

Natural 

frequencies 

(Hz) 

1 1,23 6 6,21 11 8,89 

2         2,41 7 7,78 12 9,58 

3 4,19 8 8,03 13 9,99 

4 4,26 9            8,24 14 10,22 

5 4,59 10 8,84 15 10,83 

The number of neuron in the hidden layer heavily influences the 

results of the process of training the network. It is assumed that the choice 
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of how many neurons depends on the specific problems that need to be 

solved. Hence, the number of neuron in the hidden layer is selected 

differently for each specific case by using iterations to determine the most 

optimal solution for the network. The data is split into three datasets 

including 70% for training, 15% for validation, and 15% for test. 

To evaluate the effectiveness of the proposed method, both single 

and multiple damages are taken into account. The effect of noise is also 

assessed for all cases with a level of 2 % for natural frequencies. A 

computer with an Intel I7 Processor 1.91 GHz and 16GB RAM is employed 

to conduct all calculation tasks. To compare with ANNCS1, CS, ANN, and 

ANNCS2 are also applied to identify damages in the beam. For CS, the 

population number is 200 and the probability of detecting an alien egg is 

0.25. ANN, ANNCS1, and ANNCS2 employ the Levenberg-Marquardt (LM) 

backpropagation algorithm to train the network. 

6.4.3. Damage detection 

6.4.3.1. Single damages 

The stiffness of the elements decreases from 0% to 50% with an 

interval of 1%. Because the considered bridge is a large-scale model with 

numerous elements as well as DOFs, to reduce computational time, only 

truss members on one plane are employed for damage detection. The 

number of input data used to train the network is calculated as Eq. (6.1). 
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                      𝑁𝑠1 = 𝑛𝑒 ∗ 𝑛𝑠      (6.1) 

Where 𝑛𝑒  is the number of considered elements, 𝑛𝑠 is the number of 

damage scenarios occurring at one element. Totally, there are 2100 

samples (𝑁𝑠1=𝑛𝑒 ∗ 𝑛𝑠 = 42 ∗ 50 = 2100) are used for input data. 

 

(a) 

 

(b) 
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(c) 

Figure 6-26. Regression values: (a) ANN; (b) ANNCS2; (c) 

ANNCS1 

Figure 6-26 shows that the regression values of all cases are higher 

than 0.99 and the data in the datasets including training, evaluation, and 

test are along the target line (the 45-degree line). With linear regression 

models, the regression values (𝑅) always range from 0 to 1. If the 𝑅 is close 

to the upper bound (1), calculated and target results are exactly 

equivalent. This demonstrates that the network is trained successfully. 
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(a) 

 

(b) 

 

(c) 

Figure 6-27. Error histogram: (a) ANN; (b) ANNCS2; (c) ANNCS1 

Figure 6-27 indicates the histogram of the errors of the calculated 

and the desired outputs. The total data of the histogram is divided into 20 

samples. While the 𝑌-axis represents the number of sample, the 𝑋-axis 

denotes the error value. The zero-error line locates the position where 

calculated and target results are analogous. As observed in Figure 6-28 

most of the errors of datasets are close to the zero-error line. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-28. Tolerance: (a) CS; (b) ANN; (c) ANNCS2; (d) ANNCS1 

Table 6.21 – Performance indices of algorithms – single damages.  

 

As observed in Figure 6-29 and Table 6.21, ANNCS1 is superior to 

ANNCS2, and ANN in terms of MSE-values and 𝑅-values. ANN applies the 

GD technique to train the network that significantly reduces 

Algorithms MSE-values 
𝑅- Values Total CPU time 

(second - s ) 

CS   41245 

ANN 1.1056 0.997 69 

ANNCS2 1.8475 0.995 539 

ANNCS1 0.4822 0.998 135 
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computational time. However, the accuracy is reduced because the 

network gets stuck in local minima. ANNCS2 applies CS to determine the 

starting point for the network, but the network still gets stuck in local 

minima in the process of training the network. In some cases, ANNCS2 

may provide worse results than ANN and becomes counterproductive if 

the process of finding the starting point of CS transfers the network to the 

other side of the global best. ANNCS2 also has no strategy to deal with this 

issue in the process of training the network since ANN and CS work 

independently. To deal with this problem, ANNCS2 can adjust some 

parameters of CS and network architecture of ANN but this solution is 

time-consuming. ANNCS1 contains the advantages of both ANN of CS. 

ANN is used to speed up convergence and improve the performance of the 

network through each iteration and CS is applied to help the network to 

escape from local minima. Hence, the results have the highest accuracy.  

In terms of computational time, ANN, ANNCS2, and ANNCS1 spend 

69 s, 539 s, and 135 s to find the optimal solution, whereas CS spends too 

much time on this process (41245 s). Because the application of the 

vectorization technique helping to reduce the dimension of data, ANNCS1 

spends less time on training the network than ANNCS2. The process of 

looking for the best solution for CS is time-consuming since CS seeks 

global solutions based on stochastic search techniques. Moreover, CS has 

to adjust many parameters in each iteration, which is the main reason for 

the huge increase in computational cost. 
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(a) 

 

(b) 

 

(c) 

Figure 6-29. Damage level identification at element 4: (a) ANN; (b) ANNCS2; (c) 

ANNCS1 

Figure 6-29 shows the result of detecting damage levels at element 4 

using ANN, ANNCS2, and ANNCS1. While 𝑌-axis represents the actual 

damage levels of element 4 (%), the 𝑋-axis denotes the predicted damage 

levels corresponding to the 𝑌-axis, and the diagonal line represents 
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calculated values. ANNCS1 shows a high accuracy when detecting damage 

levels (at element 4) exactly. ANN and ANNCS2 predict wrongly damage 

levels of element 4 for some cases.  For example, ANN and ANNCS2 

determine 3% and 3.2% of damage happening at element 4, respectively 

compared to the actual damage of 1% happening at element 4. 

6.4.3.2. Multiple damages 

- 2 damaged elements.  

Damages are generated at 2 random elements at the same time. The 

damage level is assigned from 0% to 50% with an interval of 1% for each 

element. The number of data sample is calculated as Eq (6.2). 

𝑁𝑠2 = 𝑛𝑠 ∗ 𝑛𝑒 !(𝑛𝑒 − 2)! ∗ 2!        (6.2) 

With ! is factorial. 𝑛𝑒= 42; 𝑛𝑠= 50, the number of data sample (𝑁𝑠2) is 43050 
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(a) (b) 

 
(c) 

Figure 6-30. Regression values: (a) ANN; (b) ANNCS2; (c) 

ANNCS1 

 

 

(a) 

 

(b) 
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(c) 

Figure 6-31. Error histogram: (a) ANN; (b) ANNCS2; (c) ANNCS1 

 

Figure 6-30 shows that 𝑅 – values of the network using ANN, 

ANNCS2, and ANNCS1 are 0.993, 0.993, and 0.994, respectively. Datasets 

of training, validation, and test are along the regression line. Figure 6-31 

indicates that errors between calculated and desired values are close to 

the zero error line. Obtained results demonstrate that a good agreement 

between calculated and real outputs is achieved. 
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(a) (b) 

 

(c) 

 
(d) 

Figure 6-32.Tolerance: (a) CS; (b) ANN; (c) ANNCS2; (d) ANNCS1 

Table 6.22. Performance indices of algorithms – 2 damaged elements.  

 

Table 6.22 and Figure 6-32 show that ANNCS1 surpasses ANN, and 

ANNCS2 in terms of accuracy. MSE – value is calculated by ANNCS1 is 

lowest, at 2.6298, compared to 3.2134, and 3.0503 provided by ANN, and 

ANNCS2, respectively. In terms of computational time, ANN, ANNCS2, and 

ANNCS1 spend 1550 s, 3911 s, and 1703 s, respectively to determine the 

best solution, whereas CS expends 42539s for this process. 

Algorithms MSE-values 
𝑅- Values Total CPU time 

(second-s) 

CS   42539 

ANN 3.2134 0.993 1550 

ANNCS2 3.0503 0.993 3911 

ANNCS1 2.6298 0.994 1703 
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(a) (b) 

Figure 6-33. Damage detection results in in element 4 and element 7 

using CS, ANN, ANNCS2, and ANNCS1: (a) 24%; (b) 64% damage. 

Figure 6-33 shows that CS, ANNCS2, ANNCS1 can accurately identify 

the damage location and severity of element 4 and element 7. There are 

some errors when using ANN to detect the damages of elements. ANN 

detects 62% of damage happening at element 9. However, the real 

damage occurs at element 7 (64% of damage). The accuracy of damage 

level identification provided by ANNCS1 outperforms that of ANNCS2, CS, 

and ANN.  

- 3 damaged elements.  

Damages are generated at 3 random elements at the same time. The 

damage level is assigned from 0% to 50% with an interval of 1% for each 

element. The number of data sample is calculated as Eq (6.3).  𝑁𝑠3 = 𝑛𝑠 ∗ 𝑛𝑒!(𝑛𝑒 − 3)! ∗ 3!         (6.3) 



128 
 

 

𝑛𝑒= 42; 𝑛𝑠= 50, The number of data sample (𝑁𝑠3) is 574000. 

 
(a) 

 
(b) 

 
(c) 

Figure 6-34. Regression values: (a) ANN; (b) ANNCS2; (c) 

ANNCS1 
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(a) 

 

(b) 

 

(c) 

Figure 6-35. Error histogram: (a) ANN; (b) ANNCS2; (c) ANNCS1 

Figure 6-34 shows 𝑅-values calculated by ANN, ANNCS2, and 

ANNCS1 higher than 0.986. The deviation between calculated and 

desired outputs (errors) also distributes close to the zero-error line 

(Figure 6-35).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-36. Tolerance: (a) CS; (b) ANN; (a) ANNCS2; (b) ANNCS1 

Table 6.23 –Performance indices of algorithms – 3 damaged elements.  

 

Algorithms MSE-values 
R- Values Total CPU time 

(second -s ) 

CS   42568 

ANN 5.6919 0.986 9102 

ANNCS2 5.2626 0.986 13218 

ANNCS1 4.8885 0.987 9513 
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Figure 6-36 and Table 6.23 show that ANNCS1 outperforms ANN and 

ANNCS2 in terms of accuracy. Regarding the CPU time, CS expends 

42568s on looking for the global best, compared to only 9102 s, 13218 s, 

and 9513 of ANN, ANNCS2, and ANNCS1, respectively 

 

Figure 6-37. Damage detection results at elements 2, 12, and 15 using 

CS, ANN, ANNCS2, and ANNCS1: 57% damage  

 

Figure 6-37 shows that ANNCS2, ANNCS1 can accurately identify the 

damage location and level of all elements. The accuracy of ANNCS1 

outperforms that of ANNCS2. For instance, ANNCS1 predicts 57% 

damage of elements 2, 12, and 15, whereas ANNCS2 predicts 55% of 

damage occurring at those elements. ANN and CS detect damage location 

of elements 15 inaccurately.  



132 
 

 

6.5 Conclusion of chapter 6. 

To consider the effectiveness of the proposed approaches, both 

numerical models and measurements are employed in this chapter. The 

proposed methods are used for model updating of two truss bridges, in 

which uncertain parameters including stiffness of supports, the stiffness 

of truss joints, and material properties are taken into account. The model 

using the semi-rigid connection at the truss joint can present the most 

exactly the behavior of the Nam O bridge. ODIPSO outperforms ODPSO in 

terms of accuracy and extremely reduces computational time compared 

to PSO and IPSO 

Moreover, the proposed methods ANNCS1, ANN, CS, and ANNCS2 are 

also applied to detect both single and multiple damages in a large-scale 

truss bridge. The obtained results show that ANNCS1 is superior to ANN, 

CS, and ANNCS2 in terms of accuracy as well as computational cost. 
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Chapter 7 Conclusions and 

Recommendations for Future 

Work 

7.1 Conclusions 

This thesis focuses on monitoring the health of large-scale truss 

bridges in which model updating and damage detection problems are 

dealt with. Moreover, novel algorithms are also proposed to remedy the 

disadvantages of traditional MO algorithms and ANN, help them become 

more effective and applicable to real problems. From obtained results, 

some main conclusions can be drawn. 

- PSO not only provides a better accuracy between the numerical 

model and measurements but also reduces the computational 

cost compared to GA. A side conclusion of the considered 

application example is that the assumption of semi-rigid joints 

(using rotational springs) can most accurately represent the 

dynamic characteristics of the studied truss bridge. 
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- ODIPSO not only outperforms PSO, IPSO, and ODPSO in terms of 

accuracy but also dramatically reduces the computational time 

compared to PSO and IPSO. 

- ANNCS1 is completely superior to CS, ANN, and another hybrid 

ANN in terms of accuracy and considerably reduces calculational 

costs compared to CS. 

- The vectorization technique reduces the dimension of data. 

Hence, the computational time is significantly reduced. 

- From the obtained results, some recommendations for the 

application of each algorithm used in this thesis for SHM can be 

extracted: 

1. MO algorithms such as GA, PSO, IPSO can look for the global 

best but this process is time-consuming. For example, PSO, 

IPSO spend more than 12 days on seeking the best solution for 

the Guadalquivir bridge (a five-span truss bridge). Therefore, 

it is not feasible to apply pure MO algorithms to deal with 

optimization problems of large-scale structures.  

2. ODPSO and ODIPSO can reduce computational time but it is 

still large (more than 2 days to update Guadalquivir bridge). 

3. ANN is beneficial to computational cost. Therefore, ANN can 

apply to detect damages in large-scale structures but the 
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accuracy of results is poor if the network is trapped in local 

minima.  

4. ANNCS1 not only can look for the best solution with a high 

level of accuracy and but also gain the benefit of reducing 

computational time. Hence, ANNCS1 has the potential to be 

employed for large-scale structures. However, these positive 

results do not mean that ANNCS1 is perfect. It has to be 

admitted that, when used for damage assessment of large-

scale structures, too many multiple damages scenarios are 

considered, it extremely increases the computational time 

and reduces the accuracy of ANNCS1. The same applies for 

model updating with many updating aparameters.   

7.2 Future Work 

Although the obtained results from this research are positive, it must 

be admitted that the thesis requires further research as well as 

improvement of some of the aspects of the proposed methods. From the 

conducted research and the derived conclusions, main recommendations 

for further research are proposed 

- In this thesis, structural damage identification of the proposed 

method is solely employed for a numerical model of a large-scale 

bridge. In this case, the effects of other factors such as noise and 
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temperature are not fully taken into account. Further research is 

needed to employ the proposed method in case of real damage to 

existing bridges. 

- With potential capacity, numerous optimization algorithms such 

as Teaching Learning Based Optimization (TLBO) Algorithm,  Salp 

Swarm Algorithm (SSA), and so forth have been proposed in 

recent years that possibly deal with drawbacks of traditional MO 

algorithms such as GA, PSO, and CS and contain enormous 

advantages. Hence, it is worth applying these state-of-the-art 

optimization algorithms for the SHM problem in the next 

research. 

- In this thesis, to obtain data from measurement, traditional 

sensors were employed (wired sensors used for Nam O and My 

Thuan bridge, and wireless sensors used for Guadalquivir bridge). 

The installation of such high-cost sensors is time-consuming. 

Besides, because of the restricted number of sensors, the amount 

of obtained data is limited. This leads to a reduction in the 

accuracy of results (numerous higher modes are missing). 

Optimal sensor placement should be taken into account if the 

number of sensor is too few. This plays a vital role in obtaining as 

much structural behavior information as possible. On the other 

hand, advanced equipment and technology such as fiber Bragg 
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grating sensors… should be employed to increase the quality of 

the measured data for the upcoming research.  

- It is commonly acknowledged that ANN has been proven its 

capacity for optimization problems or structural damage 

detection. However, because the structure of ANN is simple and 

without self-selecting characteristics, the capacity to deal with big 

data is limited. Damage detection of real bridges may generate a 

large amount of data. In this case, the use of ANN is no longer be 

useful. Therefore, it is necessary to employ other models of AI, 

typically, deep learning (DL), which has been commonly applied 

for many fields such as bioinformatics, drug design, medical 

image analysis and so on. The advantage of DL is that this model 

can take advantage of the ability to self-extract data features from 

the convolutional class and the trained classifier at the same time. 

Simultaneous learning of features and classifiers can help each 

other to find suitable parameters for feature vectors. With such 

outstanding advantages, the DL model is a promising candidate 

for the SHM of large-scale bridges. 

 

 

 

https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Medical_image_analysis
https://en.wikipedia.org/wiki/Medical_image_analysis
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