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Samenvatting

– Summary in Dutch –

Het steeds meer overvloedig aanwezig zijn van dataopslag, rekenkracht en
netwerkcapaciteit in de afgelopen decennia heeft geleid tot een explosieve
groei van het beschikbare volume aan data, een trend die naar verwachting
de komende jaren zal versnellen. Volgens een recente voorspelling van de
International Data Corporation (IDC) zal de hoeveelheid data die wereld-
wijd in 2021 wordt gegenereerd, oplopen tot 79 zettabytes (79×1021 bytes).
Dit cijfer zal de komende vijf jaar toenemen, waardoor het volume aan data
dat wereldwijd is gecreëerd tegen 2025 op 181 zettabytes zal komen te lig-
gen. In de moderne hyperverbonden wereld laat vrijwel elke interactie die
we hebben met onze omgeving een digitaal voetspoor achter. Organisaties
in alle sectoren wenden zich steeds meer tot technologieën die zich in het
domein van het zogenaamde Internet of Things (IoT) bevinden om hun
activiteiten te monitoren en data over hun bedrijfsactiviteiten te verzame-
len. Naarmate de hoeveelheid, de verscheidenheid en de complexiteit van
data groter worden, neemt ook de moeilijkheid toe om er inzichten uit te
verwerken, te analyseren en te distilleren. Dergelijke big data zijn de moge-
lijkheden van traditionele technologieën voor databeheer al lang ontgroeid,
en hebben de behoefte aan alternatieve mechanismen voor het bewaren van
en toegang krijgen tot data op een betrouwbare, schaalbare en performante
manier naar voren gebracht. Onderzoek en innovatie op het gebied van het
beheer van big data hebben geleid tot de ontwikkeling van een grote ver-
scheidenheid aan oplossingen, elk voor bepaalde specifieke gebruikssituaties.
Deze technologieën voor big data variëren van NoSQL-databases die data
kunnen bevatten die op verscheidene manieren zijn gestructureerd (bijv. in
de vorm van documenten, key-value data, grafen en kolommen), tot gedis-
tribueerde systemen die door gebruik van een commodity hardware cluster
data-intensieve workloads op kunnen slaan en uit kunnen voeren.

Voor moderne organisaties is het van het allergrootste belang om toegang
te krijgen tot data en er inzichten uit te halen zodra deze zijn gegene-
reerd om tot de juiste besluitvorming te komen. De noodzaak om de tijd
nodig om inzichten uit data te verwerven (data-to-insight) te minimalise-
ren, heeft geleid tot een toenemende interesse in event-based architectures
en near real-time stream processing frameworks. Ondanks hun groeiende
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populariteit zijn deze oplossingen nog niet wijdverspreid aanwezig in de be-
drijfswereld. De meeste dataverwerking die tegenwoordig wordt uitgevoerd,
is nog steeds voornamelijk gebaseerd op methoden geschikt voor de verwer-
king van batches waarvan bekend is dat ze een aanzienlijke responstijd met
zich meebrengen. Hierdoor lopen organisaties het risico beslissingen te ne-
men en actie te ondernemen op basis van verouderde data, met name voor
tijdkritische toepassingen die op deze grote, meerdimensionale dataverza-
melingen draaien. Deze thesis heeft daarom als doel om onderzoek te doen
naar de realisatie van interactieve query’s met een lage responstijd die op
grote multidimensionale datasets uitgevoerd worden. Met betrekking tot
dit probleem worden in deze thesis vier grote uitdagingen onderzocht:

C1: Dimensionale modellering is een basistechniek voor het structureren
van historische bedrijfsdata, waarbij gebruik wordt gemaakt van gede-
normaliseerde schema’s om snelle verwerking van analytische query’s
mogelijk te maken. Eenmaal gedefinieerd, bieden deze schema’s ech-
ter weinig flexibiliteit waardoor het lastig is om ze aan te passen of te
optimaliseren wanneer respectievelijk de workload verandert of wan-
neer tijdrovende query’s uitgevoerd worden. Deze thesis onderzoekt
daarom mechanismen om informatie over het daadwerkelijke gebruik
van de data terug te voeren naar het analytische systeem om de uit-
voering van query’s te versnellen.

C2: Het uitvoeren van verkennende analyses van live en historische multi-
dimensionale data is met name veeleisend voor dataverwerkingssyste-
men vanwege de steeds groter wordende hoeveelheid data en de com-
plexiteit van de query’s die nodig zijn om de verkenningsdoelen te
bereiken. Een groot deel van de contributie gepresenteerd in deze
thesis is gericht op het identificeren van veelvoorkomende patronen in
het opvragen van data bij karakteristieke verkennende acties, en op
het bedenken van mechanismen voor dataverwerking die interactieve
responstijden mogelijk maken voor query’s die verband houden met
dergelijke patronen.

C3: Traditioneel wordt het meeste rekenwerk bij de verwerking van query’s
uitgevoerd in backend- of servercomponenten. Als het gaat om tijdkri-
tische applicaties die meerdere clients bedienen, kunnen de rekenkos-
ten die aan elke individuele zoekopdracht zijn gekoppeld snel oplopen,
waardoor de schaalbaarheid van de service wordt belemmerd. In deze
thesis wordt een meer gebalanceerde afweging tussen server-side en
client-side verwerking bestudeerd, om enerzijds de schaalbaarheid van
de applicatie te bevorderen en anderzijds de mogelijkheid tot de be-
rekening van interactieve query’s te behouden.

C4: Patronen in het opvragen van data geven vaak informatiebehoeften of
gebruikersvoorkeuren weer. Deze patronen zijn bijzonder dynamisch
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en volatiel wanneer toepassingen met meerdere gelijktijdige clients
werken. Voor dit geval geldt dat alle datastructuren die zijn gemaakt
om bepaalde specifieke zoekopdrachten te versnellen, snel achterhaald
zijn. Proactieve mechanismen zijn vereist om aan veranderingen in
deze ophaalpatronen te voldoen en om te anticiperen op requests van
clients, om zodoende query’s met lage responstijd in tijdkritische toe-
passingen te kunnen garanderen.

Elk van de voorgaande uitdagingen wordt onderzocht in de hoofdstukken
waaruit deze thesis bestaat.

De eerste van de genoemde uitdagingen wordt bestudeerd in Hoofdstuk 2
en Bijlage A. In deze onderdelen wordt dieper ingegaan op een mechanisme
die, rekening houdend met de workload, een keuze voor een view maakt
in het geval van multidimensionale data. Het voorgestelde mechanisme is
gebaseerd op het uitgangspunt dat het data schema automatisch kan wor-
den aangepast om aan de werkelijke workload te voldoen. Gematerialiseerde
views zijn redundante datastructuren die analytische systemen in staat stel-
len om anders tijdrovende query’s onmiddellijk op te lossen door hun resul-
taten vooraf te berekenen en op te slaan. In die zin is de methode voor
het selecteren van views die in deze thesis is geïntroduceerd, gebaseerd op
syntactische analyse van de query’s die een bepaalde analytische workload
vormen om terugkerende structurele patronen te identificeren. Query’s die
veelvoorkomende patronen delen, worden samen in clusters gerangschikt.
Vervolgens wordt een score toegekend aan de verkregen clusterconfigura-
tie en worden irrelevante clusters uitgesloten van verdere verwerking. Ten
slotte worden definities van views afgeleid op basis van de query’s binnen
elk van de resterende clusters, en de bijbehorende resultaten worden gema-
terialiseerd op basis van een momentopname van de tot nu toe beschikbare
data. Het voorgestelde mechanisme is ook in staat om ongeziene query’s in
de berekende clusterconfiguratie in te passen en deze te vertalen zodat ze
worden uitgevoerd met de beschikbare gematerialiseerde views. De evalu-
aties uitgevoerd op een conventionele database met één instantie enerzijds,
en op een gedistribueerde opslagconfiguratie anderzijds, bewijzen dat het
voorgestelde mechanisme in staat is om een uitgebreide reeks gemateria-
liseerde views te genereren. Bovendien leiden de verkregen views tot een
substantiële reductie van de uitvoeringstijd, in tegenstelling tot de perfor-
mantie van query’s die draaien op de originele dataset.

Hoofdstuk 3 gaat dieper in op een generiek raamwerk voor dataverwerking
waarmee veelvoorkomende verkenningstaken interactief kunnen worden uit-
gevoerd over livestreams van multidimensionale data. De methoden die in
dit kader zijn bedacht, hebben tot doel om binnen minder dan een seconde
een antwoord te vinden op de query’s die ten grondslag liggen aan deze ver-
kennende taken, ongeacht of het gaat om het scannen van de volledige data
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die tot nu toe zijn verzameld, of alleen een recente subset van records. Het
identificeren van typische interactiepatronen die worden gebruikt door con-
sumenten van visuele verkenningstoepassingen is essentieel bij het ontwer-
pen van de pijplijn voor dataverwerking waarop het voorgestelde raamwerk
is gebaseerd. Een van de belangrijkste functies van deze pijplijn bestaat
uit het continu berekenen van synopsis datastructuren—namelijk continue
views—wanneer nieuwe data in het systeem komen. Deze structuren bie-
den een samengevat beeld van de originele data, hetgeen een onmiddellijk
antwoord geeft op de query’s die verband houden met de geïdentificeerde
interactiepatronen. Om dit te bereiken wordt een afweging gemaakt tus-
sen de responstijd enerzijds en de nauwkeurigheid van het antwoord op de
query anderzijds. Dit vertaalt zich in samenvattingen van data die wor-
den berekend over gediscretiseerde verdelingen met meerdere resoluties die
alle dimensies omvatten. Deze samenvattingen zijn gerangschikt in conti-
nue views en opgeslagen in een fast lookup datastore. Evenzo definieert het
raamwerk de procedures die worden gebruikt om query’s op te lossen die
overeenkomen met de geïdentificeerde interactiepatronen, op basis van de
samenvattingen binnen de continue views. Dit hoofdstuk presenteert ook
twee proof of concepts van de voorgestelde aanpak. De eerste van deze
implementaties is gebaseerd op een conventionele single-node geospatiale
tijdreeksdatabase, terwijl de tweede een gedistribueerde stream processing
engine gebruikt. Beide implementaties zijn in staat om de data streams, die
afkomstig zijn van een netwerk van mobiele sensoren die zijn ingezet in een
bestaande smart city omgeving in Antwerpen (België), binnen te halen en
te verwerken. De analyse van de performantie van deze implementaties ont-
hult een afname van de verwerkingstijd van query’s tot twee grootte-ordes,
in vergelijking met query’s die werden uitgevoerd op onbewerkte data. Als
we vervolgens de bovengenoemde afweging in acht nemen, observeren we
dat deze snellere responstijd ten koste gaat van minder dan 10% nauwkeu-
righeid in de geleverde resultaten, wat voor verschillende toepassingen kan
worden beschouwd als een te overwegen optie vanwege de verbeterde ge-
bruikerservaring.

In lijn met de derde uitdaging, bestudeert hoofdstuk 4 mechanismen om
een meer evenwichtige afweging te maken tussen server-side en client-side
verwerking, om de schaalbaarheid van het systeem te vergroten en toch
interactieve query’s mogelijk te maken. De oplossing die dit hoofdstuk
introduceert, bouwt voort op het raamwerk in hoofdstuk 3, en stelt een
vereenvoudigde interface voor die tot doel heeft om:

1. de complexiteit van de query’s die de backend kan oplossen, te be-
perken, waardoor de hoeveelheid rekencapaciteit die het per verzoek
toewijst, wordt verminderd,

2. het hergebruik van query’s voor verschillende clients te stimuleren
door de cachebaarheid van requests te verbeteren, en
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3. clients in staat te stellen complexe query’s op te lossen door de resul-
taten van meerdere eenvoudigere query’s te verzamelen.

Dit hoofdstuk werkt verder op een platform dat de samenvattingen van data
publiceert die continu worden berekend over een stream sensordata via een
lichtgewicht interface voor Linked Data Fragments (LDF). Door gebruik
te maken van deze interface kunnen clients alleen individuele samenvattin-
gen ophalen, elk gebonden aan een bepaald ruimtelijk-temporeel fragment.
Om clients in staat te stellen query’s over willekeurige ruimtelijke regio’s of
tijdsintervallen op te lossen, definieert het platform een datamodel, dat com-
patibel is met linked data, voor het weergeven van individuele fragmenten
van samenvattingen. Dit datamodel biedt hypermedia-besturingselementen
waarmee clients door de ruimtelijke en temporele dimensies kunnen navi-
geren en zelf de relevante samenvattingen kunnen ontdekken voor het be-
rekenen van niet-triviale query’s. Bovendien wordt verbeterd hergebruik
van query’s bereikt als een bijproduct van de vereenvoudiging van de inter-
face: de samenvattingen die worden gepubliceerd als linked data fragments
zijn onveranderlijke, oneindig cachebare datastructuren. De evaluatie die
is uitgevoerd op een implementatie van het voorgestelde platform, waar-
bij opnieuw gebruik wordt gemaakt van bovengenoemde sensordata, toont
aan dat de LDF-interface een groot deel van de queryverwerking kan ver-
plaatsen van de server-side naar de client-side van de applicatie, dankzij
de verbeterde cachebaarheid. Tegelijkertijd kunnen clients een responsieve
gebruikerservaring bieden door snel incrementele antwoorden op requests te
leveren, terwijl de relevante fragmenten van samenvattingen worden opge-
haald en verwerkt.

Hoofdstuk 5 behandelt de laatste van de hierboven genoemde uitdagingen.
Om het systeem aan te passen aan verschillende patronen voor het ophalen
van data die ontstaan door meerdere gelijktijdige clients die een tijdkritische
service gebruiken, stelt dit hoofdstuk een netwerk-ondersteund mechanisme
voor voorverwerking van query’s voor, geïnspireerd op het framework dat is
besproken in hoofdstuk 3. Het mechanisme wordt gepresenteerd in de con-
text van tile-based immersieve videostreamingdiensten. Bij dit soort dien-
sten wordt inhoud (d.w.z. data) gedefinieerd in termen van verschillende
dimensies, waaronder ruimte (video tiles), tijd (videosegmenten) en video-
kwaliteit (tiles worden weergegeven in verschillende kwaliteitsweergaven).
De Quality of Experience (QoE) van de gebruikers wordt sterk beïnvloed
door de hoeveelheid data die per tijdseenheid het apparaat van de client kan
bereiken, een metriek die op zijn beurt wordt beïnvloed door de vertraging
die het publiek netwerk tussen client en server introduceert. Bij het bedie-
nen van meerdere gelijktijdige clients die dezelfde video-inhoud binnen een
smal tijdvenster bekijken (bijvoorbeeld on-demand videostreaming), is het
vaak het geval dat kijkers zich concentreren op bepaalde specifieke delen van
het scherm. Het voorgestelde mechanisme heeft tot doel dit gedeelde Field



xxvi Samenvatting

of View (FoV) per videosegment te voorspellen en de bijbehorende video
tiles vooraf op te halen in een edge server die caching ondersteunt. Op deze
manier wordt relevante video-inhoud beschikbaar gesteld aan clients vanaf
een server die geografisch zo dicht mogelijk geplaatst is, waardoor de net-
werkmetrieken aanzienlijk verbeteren. Een evaluatie van het voorgestelde
mechanisme heeft uitgewezen dat het een verbeterde QoE kan leveren voor
clients van deze diensten. Met behulp van viewport traces die zijn ver-
zameld tijdens uitgevoerde 360°-videostreamingsessies, werd bewezen dat
het mechanisme voor prefetching in staat is om een hogere videokwaliteit
te bieden zonder bevriezingen van het beeld, in vergelijking met zowel een
conventionele client-serverconfiguratie, als een implementatie van een tra-
ditionele least recently used (LRU) cachestrategie. Bovendien wordt door
het vooraf ophalen van de inhoud die kijkers eerder zullen consumeren, de
belasting van de streamingserver en het verkeer op de backhaul aanzienlijk
verminderd.

De verschillende frameworks en mechanismen die in deze thesis worden voor-
gesteld, dragen bij aan het aanpakken van de genoemde uitdagingen met
betrekking tot het realiseren van interactieve query’s op big data. Op basis
van het resultaat van dit doctoraatsonderzoek worden interessante moge-
lijkheden voor verder onderzoek geïdentificeerd en besproken in hoofdstuk
6.
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The rapid commoditization of data storage, computing power, and network
capacity over the last decades has led to an explosive growth of the vol-
ume of data available, setting a trend that is expected to accelerate in the
coming years. According to a recent forecast by the International Data
Corporation (IDC), the amount of data generated worldwide only in 2021
is set to reach 79 zettabytes (i.e., 79×1021 bytes). Furthermore, this metric
will compound over the next five years, placing the volume of data created
globally at 181 zettabytes by 2025. In the modern hyperconnected world,
virtually every interaction we have with our surroundings leaves behind a
digital footprint. Organizations in all sectors are increasingly turning to In-
ternet of Things (IoT) technologies to monitor their operations and collect
data concerning their business activity. As the volume, variety, and com-
plexity of data grow larger, so does the difficulty for processing, analyzing,
and distilling insights from it. Such big data sets have long outgrown the
capabilities offered by traditional data management technologies, and have
brought to the forefront the need for alternative mechanisms for persisting
and accessing data in a reliable, scalable and performant manner. Research
and innovation in big data management have led to the development of a
vast variety of solutions each one catering to certain particular use cases.
These big data technologies range from NoSQL databases able to accom-
modate data encoded in a diversity of data models (e.g., document-based,
key-value data, graph, and columnar-based), to distributed systems capable
of harnessing the resources of a cluster of commodity machines to store and
run data-intensive workloads.

For modern organizations, being able to access data and derive insights
from it as soon as it is generated has become of utmost importance to sup-
port opportune decision-making. The need to minimize this data-to-insight
time has led to an increasing interest in event-based architectures and near
real-time stream processing frameworks. However, in spite of their growing
popularity, these kinds of solutions remain largely untapped by businesses.
Most of the data processing conducted nowadays still predominantly relies
on batch processing methods which are known to be subject to high latency.
In such circumstances, organizations face the risk of making decisions and
taking action on stale data, especially for latency-sensitive applications run-
ning on these large, high-dimensional data collections. This dissertation sets
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off to advance in the understanding of the problem of enabling interactive
low-latency querying on large multidimensional data sets. In relation to this
problem, four major challenges are addressed throughout the dissertation:

C1: Dimensional modeling is a staple technique for structuring histori-
cal business data, which resorts to denormalized schemas to enable
fast processing of analytical queries. However, once defined, these
schemas offer little flexibility to adapt to changes in the workload and
to optimize for time-consuming queries. This dissertation explores
mechanisms for feeding information about the actual use of the data
back to the analytical system to speed up query execution.

C2: Performing exploratory analysis over live and historical multidimen-
sional data is particularly demanding for data processing systems due
to the ever-growing volume of data and the complexity of the queries
required to fulfill the exploration goals. A large part of the contribu-
tions presented in this thesis are aimed at identifying common data
access patterns behind typical exploratory actions, and at devising
data processing mechanisms enabling interactive response times for
queries associated with said patterns.

C3: Traditionally, most of the heavy lifting of query processing is con-
ducted in backend or server-side components. When it comes to time-
sensitive applications serving multiple clients, computational costs
linked to each individual query can quickly add up thus hampering
service scalability. A more balanced trade-off between server-side and
client-side processing is studied in this dissertation, to favor system
scalability while still delivering interactive query computation.

C4: Data retrieval patterns often reflect information needs or user pref-
erences. These patterns are particularly dynamic and volatile when
applications deal with multiple simultaneous clients. In these cir-
cumstances, any data structures created to speed up certain specific
queries are quickly rendered obsolete. Proactive mechanisms to adjust
to changes in these retrieval patterns and anticipate client requests are
required to ensure low-latency querying in time-critical applications.

Each of the foregoing challenges is addressed in the research chapters com-
posing this dissertation.

The first of the stated challenges is studied in Chapter 2 and Appendix A.
These chapters elaborate on a workload-aware mechanism for view selec-
tion in large dimensional data. The proposed mechanism is based upon the
premise that the data schema can be automatically adapted to meet the ac-
tual workload demands. Materialized views are redundant data structures
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enabling analytical systems to instantly resolve otherwise time-consuming
queries, by pre-computing and storing their results. In that sense, the view
selection method introduced in this dissertation relies on syntactic analysis
of the queries composing a certain analytical workload to identify recur-
rent structural patterns. Queries sharing common patterns are arranged
together into clusters. Then, the obtained cluster configuration is scored
and spurious clusters are ruled out from further processing. Finally, view
definitions are derived based on the query statements within each of the re-
maining clusters, and their corresponding results get materialized based on
a snapshot of the data available thus far. The proposed mechanism is also
able to fit unseen queries into the computed cluster configuration, and trans-
late them so that they run against the available materialized views. The
experimental evaluation conducted on a conventional single-node database,
as well as a distributed storage setup, proved the devised mechanism effec-
tive in generating a comprehensive set of materialized views. Moreover, the
obtained views lead to a substantial reduction of the workload execution
time, in contrast to the performance of queries running on the base dataset.

Chapter 3 elaborates on a generic data processing framework for enabling
common exploratory tasks to run interactively over live streams of multidi-
mensional data. The methods devised in this framework aim at achieving
sub-second responses for queries underlying said exploratory tasks, regard-
less of whether they involve scanning the entire data collected thus far,
or only a recent subset of records. Identifying typical interaction patterns
adopted by consumers of visual exploratory applications is instrumental in
designing the data processing pipeline this framework thrives on. One of
the key functions of this pipeline consists in continuously computing synop-
sis data structures—namely, continuous views—as new data comes into the
system. Said structures represent a summarized view of the original data,
which enables instantaneous resolution of the queries associated with the
identified interaction patterns. To achieve this, a trade-off between query re-
sponse time and accuracy is proposed, which translates into data summaries
being computed across discretized bins of multiple resolutions spanning all
data dimensions. These data summaries are arranged into continuous views
and stored in a fast lookup datastore. Likewise, the framework defines the
formal procedures used to resolve queries matching the identified interac-
tion patterns, based on the summary data within the continuous views. This
chapter also presents two proof of concepts of the devised approach using
smart city sensor data as a relevant use-case. The first of these implementa-
tions is based on a conventional single-node geospatial time-series database,
while the second one uses a distributed stream processing engine. Both
implementations are able to ingest and process the stream of observations
coming from a network of mobile sensors deployed within a real smart city
environment in Antwerp, Belgium. A performance evaluation conducted on
the implementations of the proposed framework revealed a decrease in query
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processing time of up to two orders of magnitude, in comparison to queries
running against the base raw data. By virtue of the above-mentioned trade-
off, this speed-up in query response time comes at the expense of less than
10% accuracy in the delivered results, which for several applications can
be regarded as a reasonable price to pay in exchange for an enhanced user
experience.

In line with the third stated challenge, Chapter 4 studies mechanisms to
achieve a more balanced trade-off between server-side and client-side pro-
cessing, to boost system scalability while still offering interactive querying
performance. The approach this chapter introduces builds upon the frame-
work in chapter 3, and proposes a simplified querying interface that aims
at:

1. limiting the complexity of the queries that the backend application is
able to resolve, thus reducing the amount of computing resources it
allocates per request,

2. boosting query reuse across several clients by improving request
cacheability, and

3. enabling clients to solve complex queries by collating the results of
multiple simpler ones.

This chapter elaborates on a platform that publishes the data summaries
being continuously computed over a stream of sensor data via a lightweight
Linked Data Fragments (LDF) interface. By using this interface clients are
only allowed to retrieve individual data summaries, each one bound to a
certain spatio-temporal fragment. To enable clients to resolve queries over
arbitrary spatial regions or time intervals, the platform defines a linked-
data compliant data model for representing individual summary fragments.
This data model provides hypermedia controls that allow clients to navigate
across the spatial and temporal data dimensions, and discover by themselves
the relevant summaries for computing non-trivial queries. Furthermore, en-
hanced query reuse is achieved as a by-product of simplifying the querying
interface: the data summaries published as linked-data fragments are im-
mutable, infinitely cacheable data structures. The experimental evaluation
conducted on an implementation of the proposed platform using sensor data,
shows that the LDF interface can offload a large part of the query process-
ing from the server to the application’s client-side, thanks to the improved
cacheability. At the same time, clients can offer a responsive user experience
by promptly delivering incremental answers to user requests, as the relevant
summary fragments are retrieved and processed.

Chapter 5 deals with the last of the challenges listed above. To adapt to
varying data retrieval patterns that emerge from multiple concurrent clients
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consuming a latency-sensitive service, this chapter proposes a network-
assisted query preprocessing mechanism, inspired by the framework dis-
cussed in chapter 3. The mechanism is presented in the context of tile-
based immersive video streaming services. In this kind of service, content
(i.e., data) is defined in terms of several dimensions including space (video
tiles), time (video segments) and video quality (tiles are served in various
quality representations). The user quality of experience (QoE) is heavily in-
fluenced by the network throughput perceived at the client’s device, which
in turn is affected by the network latency. When serving multiple concur-
rent clients consuming the same video content within a narrow time window
(e.g, near-live on-demand video streaming), it is often the case for viewers to
focus on certain common regions of the display. The proposed mechanism
intends to predict this shared field of view (FoV) on a per video segment
basis, and prefetch the corresponding video tiles into a cache-enabled edge
server. In this way, relevant video content is made available to clients from a
nearby location, reducing the network latency, and increasing the perceived
link capacity in consequence. An evaluation conducted on the proposed
mechanism evidenced that it can deliver an enhanced QoE for consumers
of these services. Using viewport traces collected from actual 360° video
streaming sessions, the evaluation proved the prefetching mechanism capa-
ble of serving higher video quality, and a freeze-free playback experience in
comparison with both a conventional client-server setup, and an implemen-
tation of a traditional least recently used (LRU) cache replacement strategy.
Furthermore, by prefetching the content that active viewers are more likely
to consume, the load on the content server, as well as the traffic on the
backhaul network are substantially reduced.

The frameworks and mechanisms proposed in this dissertation contribute
to address the stated challenges related to achieving interactive querying
performance on big datasets. As a result of this study, interesting venues
for further research have been identified and discussed in Chapter 6.





1
Introduction

“We go back and forth between being time’s master and its victim.”

—James Gleick (1954–)

1.1 A brief overview of Big Data

A recent report on digital trends found that the global number of internet
users reached more than 4.7 billion, and mobile phone users around 5.3
billion by April 2021 [1]. This is at least 60% and 67% of the total world
population, respectively. As computer technology and telecommunication
networks grow increasingly more advanced and capable, their access barriers
continue to decline. Nowadays, it is common for us to walk around with a
smart device in our pockets, whose computing power and storage capacity
exceed by several orders of magnitude those from the guidance computer
aboard the Apollo 11 spacecraft that took the man to the moon for the first
time in 1969 [2, 3]. This commoditization of computing and connectivity
has boosted our ability to generate and store data. In the hyperconnected
world we live in, nearly every action we take leaves behind a digital trail.
From the mundane such as the number of steps we walk in a day, or the
posts we like in social media, to the critical such as medical records, tax
returns or bank account details, etc. Moreover, a large number of devices we
interact with on a daily basis—office and household appliances, the vehicles
we use to commute, and large industrial equipment—is today connected to
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the Internet generating endless streams of data. The Internet of Things
(IoT), as this growing network of machines is known, is estimated to have
reached about 12 billion connected devices in 2020 [4], and is responsible
for over 40% of the internet data generated nowadays [5]. With both non-
IoT and IoT networks in continuous expansion, our digital data universe is
growing at an unprecedented accelerated rate.

Back in the mid-nineties, amidst the early years of the World Wide Web
(WWW) boom, computer scientists like John Mashely and Sholom M. Weiss
were already anticipating the current explosive growth in available data
[6, 7]. Since then the term big data started to be adopted to refer to this
emerging phenomenon. These early visionaries realized the big data’s dis-
ruptive potential in supporting decision-making processes and building more
accurate forecast models. This notion of big data grew increasingly popular
as the Web transitioned from a network of linked documents mainly based
on text, to a global-reaching multimedia exchange platform. The world wit-
nessed the dawn of several of today’s most valuable technology companies,
such as Amazon, Google and Facebook, among others. These organizations
transformed industries in all sectors by harnessing the ubiquity and open-
ness of the Web to collect and analyze massive amounts of data from their
users. As profitable as data harvesting proved to be for these companies, big
data management came with daunting technical challenges. For one thing,
besides the sheer volume of data, there is the issue of variety. In contrast to
traditional relational databases, in which data entities are strictly defined
under a normalized schema, big data systems deal with semi-structured and
unstructured data served from a myriad of possible sources. Furthermore,
big datasets are often subject to variability, which refers to changes in the
data structures, content, and formats they adopt over time. Lastly, big data
systems typically incorporate data sources delivering continuous streams of
data at high rates (e.g., IoT setups, financial services, Web applications).
Adding to the volume, this high-velocity data drives the need for partition-
ing and parallelism of storage and processing, which can potentially harm
the consistency and availability of these big data collections [8].

The above-mentioned features, often referred to as the big data Vs (Volume,
Variety, Variability and Velocity) [9] , brought to the forefront the need for
new data management strategies that enable large-scale, reliable storage
and processing of complex, high-dimensional data. One of the most repre-
sentative technologies developed as a response to this need is the Hadoop
Framework [10]. Based on the Google File System paper by Ghemawat
et al. [11], Hadoop adopts a shared-nothing architecture that allows for
distributed storage and processing of vast amounts of data on a cluster of
commodity hardware. Hadoop is built on two basic components: (1) the
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Hadoop Distributed File System (HDFS) which offers high availability and
fault tolerance via data replication; and (2) the MapReduce framework [12],
which provides a straightforward programming model that enables the par-
allel execution of batch jobs across the nodes of the Hadoop cluster. For a
long time, Hadoop was the premier open-source platform for big data pro-
cessing. At the time of this writing, every major cloud computing provider
offers a managed distribution of the Hadoop framework as part of their ser-
vice portfolio. Along with other NoSQL data technologies such as MongoDB
[13] and Cassandra [14] also popularized by Web-scale platforms, Hadoop
laid the foundation for the modern big data technology landscape.
The relentless innovation within the industry and a thriving open source
community, brought about tools such as Apache Spark [15] and Apache
Tez [16] which offer a more time-efficient alternative to Hadoop’s MapRe-
duce framework and (in Spark’s specific case) support for processing data in
motion via a streaming API. Today, organizations benefit from a burgeon-
ing big data ecosystem providing tools that cater to particular use cases:
from high throughput in-memory key-value stores [17], time-series databases
[18, 19], and message brokers supporting event-driven applications [20], to
ACID-compliant distributed databases [21, 22], and Multi-model data stores
[23]. The data analysis capabilities these big data technologies enable have
proved valuable in several critical scenarios. For instance, accurate sta-
tistical models on aggregated data collected from telecom operators, social
networks, online news stories, among other sources, helped in the contention
of the Ebola outbreak in West Africa back in 2014 [24]. More recently, dur-
ing the COVID-19 global health crisis, big data analysis has been crucial
for governments around the world to understand how their measures are
affecting the spread of the virus, allowing them to adjust their course of ac-
tion accordingly [25, 26]. Even though big data has become a commonplace
asset for organizations in all sectors, it is still a nascent research field with
countless open challenges and opportunities for innovation.

1.2 Problem Statement

Data technologies are at the forefront of the digital transformation busi-
nesses are currently undergoing. As these businesses turn into data-driven
organizations, reducing the time-to-insight—i.e., the average time it takes
to produce actionable insight from the moment at which data is generated—
becomes increasingly important for them to ensure optimal decision-making
and timely strategic actions. In data-intensive applications, the perceived
value of data heavily depends on how fast it is captured, processed, and an-
alyzed (see Figure 1.1). This is certainly the case for numerous application
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domains such as IoT, supply chain, fraud detection, and networking and se-
curity, in which prompt response to potentially hazardous events is required
to prevent or mitigate their adverse effects. When it comes to big data
analysis, it is often the case that business questions can only be answered
by running analytical workloads over a large volume of data that spans
multiple silos or sources. In these circumstances, the processing required
(breaking silos, joining multi-dimensional datasets, computing aggregates,
etc) is usually resource-intensive and time-consuming. In consequence, or-
ganizations run the risk of making decisions on stale data.

Figure 1.1 Data value from capture to business action. Adapted from [27]

Under these conditions, informed and timely decision making requires mech-
anisms that enable high throughput data processing and efficient querying.
This while dealing with constraints of consistency, availability and parti-
tion tolerance inherent to distributed computing systems [28]. In spite of
the clear need for mechanisms and tools supporting interactive querying of
continuous generated data, this remains a largely open big data problem in
which three main requirements are to be met, namely: (i) high through-
put resolution of arbitrary queries, enabling data analysis and information
retrieval on an as-needed basis, (ii) deal with heterogeneous data sources,
since data is regularly available in a myriad of structured and unstructured
formats, and (iii) strict latency demands. There exist some approaches
conceived to tackle this problem, ranging from Massive Parallel Process-
ing (MPP) query engines running on top of frameworks like Hadoop (e.g.,
Presto [29], Apache Impala [30], Apache Drill [31]), to technology-agnostic
architecture patterns such as the Lambda [8] and Kappa [32] Architectures.
However, these solutions lack any guidelines concerning how to ensure in-
teractive response times for time-critical applications when querying large,
multi-dimensional datasets. This dissertation documents a study around
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this problem and proposes various workload-aware processing mechanisms
that aim at optimizing the query response times of time-sensitive data appli-
cations, across multiple application domains. It is worth noting that, in the
context of the research documented herein, the terms interactive querying
and low-latency querying are used interchangeably to denote the need for
prompt feedback to the questions users pose to data in time-critical do-
mains. Similarly, the term data dimension refers to the different aspects of
data (e.g., time, location, sensed variables, etc.) that may be relevant to
the users’ queries. That said, the research questions that shaped the work
in this dissertation are discussed below:

1. How can the structure of a large dimensional dataset be dyna-

mically adjusted to ensure instantaneous resolution of recurrent

analytical queries?

Dimensional modeling is one of the foundational techniques for laying out
the structure of historical business data in modern enterprise analytical
systems. It consists in arranging data into denormalized schemas in which
qualitative, seldom-changing elements describing business events are fac-
tored out from the most dynamic quantitative information concerning busi-
ness performance (e.g., purchase and sale orders, expenses). The former
descriptive elements are persisted into data entities known as dimension
tables, while performance-related data is stored into structures called fact
tables. In this way, each record within a fact table is described via its rela-
tionship to each of the dimension tables. Analytical queries issued against
dimensionally modeled datasets can be expensive and time-consuming de-
pending, among other factors, on the number of join operations they involve,
the cardinality of the fields included in the projection clause, and the ag-
gregate operations applied. By keeping a record of the queries submitted to
the dataset, it is possible to identify recurrent access patterns which after-
wards might be used to further denormalize the given dimensional schema
(e.g., merging dimension tables, partitioning fact tables), or creating redun-
dant data structures such as data views, so that queries complying to those
patterns can be resolved much faster. This dissertation explores how infor-
mation about the actual use of the data can be fed back into the analytical
system to speed up query execution.

2. How can common exploratory analysis tasks be supported

on live streams of multidimensional data under interactive (low-

latency) time constraints?

While Research Question 1 pondered over mechanisms for ensuring low-
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latency querying on a large but temporary immutable dataset, in this second
question the latter assumption is relaxed to tackle the more general case in
which records are continuously appended to a constantly growing dataset.
Once again, the effective use of the data is considered to shape the scope of
the research in this direction. In this sense, common data access patterns
should be identified as a starting point, and automatic mechanisms opti-
mizing query performance for said patterns should be devised. A second
major aspect this research question focuses on is interactivity. For time-
critical data applications, ensuring prompt query resolution is crucial, not
only to prevent users from making decisions on stale data, but also to enable
a smooth and responsive user experience. Meeting such stringent latency
requirements entails trade-offs between different aspects of the system such
as accuracy, flexibility of the querying interface, and query processing time.
These trade-offs are investigated in this dissertation as well.

3. How can a balanced trade-off between server and client-side

computation be reached to enable interactive exploration appli-

cations to serve requests from a large number of users?

Server-side processing can be cost-prohibitive for data exploration applica-
tions serving multiple clients under interactive time constraints, let alone
when operating at Web-scale. By simplifying the querying interface, it is
possible to offload the backend servers favoring the system’s scalability. Such
a lightweight interface should provide elemental, cacheable answers which
client-side applications can collate afterward to resolve complex queries by
themselves. Existing Web technologies (knowledge graphs, Linked Data, and
HTTP caching) provide means to define such cost-effective data interfaces
allowing to transfer part of the heavy lifting of the query computation from
the server to the clients. The trade-off between client and server-side pro-
cessing needs to be investigated to aid system scalability while still providing
low-latency request resolution and an interactive user experience.

4. How can data retrieval patterns be identified in a streaming

setting to dynamically enhance the user experience of multiple

concurrent clients served by a latency-sensitive application?

For real-world production applications, it is often the case to have multiple
clients consume the same data content within a small time frame. Shared
query patterns can be uncovered by analyzing how clients retrieve data over
a given period of time, which allows precomputing the result of recurrent re-
quests and storing them into a fast-lookup data structure for later retrieval.
However, these patterns can be highly volatile and change over time as
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clients come in and out of the system and user interests evolve. This dis-
sertation investigates how stream processing can help in identifying these
recurrent patterns and dynamically adjust them over time to accurately
reflect clients’ consumption preferences.

1.3 Research Contributions

The research questions stated in the previous section provide the framework
within which the work presented in this dissertation was conducted. The
main research contributions made in line with each ofthese questions are
summarized in the paragraphs below:

1. A workload-aware method for automatic view selection on large

dimensional datasets, intended to enable interactive-level latency

for both data exploration and visualization tasks.

Aligned with Research Question 1, this view selection method is a realization
of a conceptual framework—also devised within the scope of the research
documented in this dissertation—which contemplates a systematic mecha-
nism for incremental optimization of the schema of a dimensional dataset.
The optimization proposed is based on detecting recurrent patterns in the
structure of time-consuming analytical queries issued against said dataset
over time. The rationale behind this is to apply a series of operations (e.g.,
view materialization, table partitioning, field indexing) that result in a rear-
ranged schema, against which queries satisfying the identified patterns can
be instantly resolved.
The view selection method in particular, relies on syntactic analysis of the
query statements composing a given analytical workload. For this, a query
representation was first devised which encodes not only the entity-attribute
usage of each of the statements within the workload, but also the structure
of conventional analytical queries. This equivalent vectorized form is fed to a
clustering algorithm from which a limited set of candidate views is derived,
based on a custom query dissimilarity function. Finally, the decision on
which views to materialize is made according to how well their corresponding
clusters fare in terms of a materializable score. This score accounts for both
cluster consistency (i.e., how similar are the queries inside a given cluster,
and how distant are they from queries in other clusters) and cluster size (the
larger the cluster in relation to the workload size the better). The proposed
method was validated on the widely adopted Star Schema Benchmark [33]
using a conventional single-node database setup and a distributed storage
setting. The performance evaluation proved the devised mechanism effective
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in deriving a consistent set of materialized views that lead to a significant
reduction of the query response time, compared to the system performance
observed on the base dataset.

2. A generic framework for serving interactive low-latency re-

quests, typical of visual exploratory applications on live data

streams.

The solution proposed in Research Contribution 1 assumes an immutable,
size-bounded dataset. Moreover, the formulated view selection mechanism
is applied conforming to a batch processing strategy. In contrast, the frame-
work referred to in this second contribution deals with the problem of en-
suring low-latency querying on an ever-growing dataset fed by a continuous
data stream. The intent behind this framework is to enable interactive data
exploration over the entire history of the dataset, including the most recent
entries. In this sense, the starting point for formulating the framework is
the identification of the most common interaction patterns adopted by users
of visual exploratory applications on spatio-temporal data. Then, a catego-
rization of the queries satisfying the information needs associated to each
of these patterns is conducted. To speed up the execution of queries fitting
the derived categories, the framework incorporates a technology-agnostic
data processing pipeline which allows for the continuous estimation of data
synopsis structures over the stream of observations. These synopsis struc-
tures are computed across a spatio-temporal fragmentation scheme, span-
ning multiple resolutions in all data dimensions. These structures make for
a dynamically compacted dataset, able to provide instantaneous answers to
queries supporting interactive exploration tasks at the expense of some ac-
curacy. Two proof of concept implementations of the proposed framework—
running on one year worth of multi-sensor data sourced from a real-world
smart city environment—prove it effectively delivers sub-second execution
of queries supporting common visual exploratory analysis tasks.

3. The definition of a Linked Data Fragments interface that

enables (1) scalable, cost-efficient publication of live summaries

of spatio-temporal data streams and (2) responsive, incremental

query resolution for multiple concurrent clients.

This contribution answers Research Question 3 in which the case for a
more balanced trade-off between server-side and client-side computation is
presented to offload the application backend and boost its ability to serve
a large number of clients. The approach adopted to achieve said trade-off
builds upon the framework discussed earlier for Research Contribution 2. In
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this sense, the data summaries being continuously computed as new data
comes in are arranged into discretized connected fragments, represented by
a Linked-Data compliant data model. Each one of these fragments accounts
for the temporal state of the underlying data across a discretized area, and
is connected to other fragments via hypermedia controls that reflect the
inherent order of the time series. The querying interface is limited to serv-
ing these individual fragments instead of answering requests over arbitrary
regions and/or time intervals. In this way, it is up to the client-side appli-
cation to retrieve the fragments required to resolve these complex queries
(harnessing the hypermedia controls embedded in the data summaries rep-
resentation), and combining them to deliver a final answer to the user.
This lightweight querying interface comes with two substantial benefits: (i)
it encourages reuse across multiple clients since fragments are immutable
and infinitely cacheable structures, thus lightening the load on the system’s
backend, and (ii) client-side applications can display requests’ answers in an
incremental manner as new fragments are retrieved and processed, making
for a responsive and interactive user experience.

4. An edge-assisted query processing method capable of antici-

pating the requests of multiple concurrent clients.

In time-sensitive applications serving multiple clients, data access patterns
tied to user interests are often dynamic and tend to change over time.
Methods that thrive on continuous query precomputation to boost read
performance should adapt to this variable behavior to consistently provide
a responsive user experience. Adaptive tile-based video streaming services
deliver immersive content to viewer’s head-mounted displays (HMD) us-
ing an equirectangular projection of the 360° video, fragmented into spatial
tiles and temporal segments. To ensure an efficient use of the network band-
width, only the tiles overlapping with the user’s field of view (FoV) should
be served and their quality level adjusted to the client’s perceived network
capacity, using HTTP adaptive streaming techniques (HAS). To prevent
playout freezes due to buffer starvation, the client application should be
able to anticipate viewer’s head movements and request the video tiles she
is likely to watch in the upcoming segments (i.e., predicted viewport). For
this kind of video streaming service, network latency due to distant con-
tent servers can substantially degrade the network throughput perceived at
the client-side and, in consequence, the overall user’s quality of experience
(QoE). Inspired by the framework presented in Research Contribution 2, this
dissertation introduces a network-supported mechanism that essentially as-
sembles a collective playout buffer to serve active watching sessions from a
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nearby edge server. To build this collective buffer the mechanism incremen-
tally combines the predicted viewports of concurrent streaming sessions,
and downloads the most popular tiles per segment into the memory of a
cache-enabled edge server. When clients start buffering content from this
relatively close location, network latency is expected to be low. This in turn
increases the perceived network throughput, prompting the client to request
video tiles with higher quality representations for the subsequent segments.
The evaluation of the proposed mechanism on a public dataset of viewport
traces, recorded from real-world 360° video streaming sessions, proves it
substantially enhances the viewer’s QoE while reducing the backhaul traffic
and content server’s load.

1.4 Dissertation Outline

Besides the current introductory chapter, the remainder of this disserta-
tion comprises four chapters addressing each of the research contributions
declared in the previous section, and two complementary appendices. The
chapters correspond to publications written over the course of this Ph.D.
The paragraphs below summarize the content of each of the remaining chap-
ters (and appendices).

Chapter 2 presents the workload-aware method for automatic view selection
on dimensional datasets mentioned in Research Contribution 1. Following
a definition of the context and scope of the research, this chapter goes on
to describe the architecture of a dynamic data transformation framework
intended for speeding up query execution through a systematic iterative
process. The proposed view selection method is introduced next as a real-
ization of this framework. It relies on a syntactic analysis procedure applied
to the query statements within a given analytical workload, comprising three
major stages: (i) query representation, which involves translating raw state-
ments into a feature vector capturing the information about the structure
and entity-attribute use of each of the queries, (ii) query dissimilarity es-
timation which applies a custom distance function to determine to what
extent two queries are related, and (iii) query clustering and view materi-
alization which adopts an agglomerative clustering method and a cluster
quality metric to derive a comprehensive set of views covering groups of re-
lated queries. An experimental evaluation of the proposed approach using
the Star Schema Benchmark [33] is discussed also in this chapter. Results
account for an effective decrease in query execution time ranging from 80%
to 99%, and a storage footprint that amounts to 13% of the size of the
base dataset. The results presented in this chapter correspond to a proof of
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concept implementation running on top of a relational database. Appendix
A presents an implementation of the proposed view selection mechanism
running on a distributed storage environment.

Chapter 3 introduces Explora (Efficient eXPLORation through Aggrega-
tion), a framework for speeding up spatio-temporal queries supporting visual
exploration tasks on live feeds of mobile sensor data, as described back in
Research Contribution 2. This chapter provides an extensive account of the
functional requirements, enabling techniques, architecture and data process-
ing algorithms behind the operation of the framework. It also presents a
detailed description of two proof-of-concept implementations of Explora,
one based on a traditional spatial time-series database setup, and another
adopting a distributed stream processing approach. These implementations
were tested on real-world sensor data collected from a smart city environ-
ment currently operating in Antwerp, Belgium [34]. An evaluation of the
performance of these implementations is also discussed at the end of this
chapter. The results obtained account for a decrease of up to two orders
of magnitude in query processing time, compared to the performance of
queries running on the raw sensor observations. In this way, this chapter
shows how implementing Explora can effectively lead to a substantial re-
duction in query response time, enabling an interactive user experience for
common visual exploratory tasks over live smart city data.

Chapter 4 builds upon the framework introduced in the preceding chapter,
and elaborates on Explora-LD (i.e., Explora Linked Data), a platform
intended to aid server scalability in systems serving live spatio-temporal sen-
sor data, while providing interactive querying performance. Explora-LD

implements the proactive approach to data ingestion detailed in the chapter
about Explora, by which it takes in a stream of sensor observations and
continuously computes data summaries from the measured variables across
the temporal and spatial dimensions. As highlighted earlier in Research
Contribution 3, Explora-LD publishes these data summaries through a
lightweight, cost-efficient Linked Data Fragments (LDF) interface that of-
floads a large part of the query processing from the server-side to the client
application. This chapter explains the design decisions behind the data
model and architecture of the platform, and also compares its performance
with that of an Explora implementation exposing a conventional query-
ing interface. This benchmarking evaluation is conducted on data gathered
from the smart city setup referred to earlier, using the list of visual queries
specified in Appendix B. The results evidence the performance gain in terms
of application responsiveness and use of computing resources, thanks to the
incremental querying and inherent cacheability featured by the LDF inter-
face.
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Chapter 5 delves into the details behind Explora-VR (i.e., Explora

Virtual Reality), the edge-assisted mechanism for preemptive retrieval of
immersive video content outlined back in Research Contribution 4. This
chapter elaborates on the data structures that underlie the collective play-
out buffer designed to serve multiple concurrent watching sessions, along
with the formal definition of the stream processing procedure responsible
for incrementally building it. Then, the description of the system’s archi-
tecture and implementation is provided. The chapter goes on to detail the
experimental setup used to simulate multiple viewers consuming tile-based
360° video content in an on-demand near-live scenario, under diverse net-
work conditions. The proposed mechanism is tested against a conventional
client-server setup, and an edge-assisted strategy based on a traditional least
recently used (LRU) cache replacement policy. The results of this evaluation
show that Explora-VR not only delivers an enhanced watching experience
in terms of quality and freeze-free video playback, but also substantially of-
floads the content server and reduces the network traffic towards the back-
end by consistently serving more than 98% of the client requests from a
cache-enabled edge server.
Finally, Chapter 6 concludes this dissertation summarizing the main findings
of the research and highlighting various open challenges raised by this work.

1.5 Publications

The research conducted during this PhD research led to several publications
in scientific journals and international conferences and workshops. The
following list provides an overview of these publications.

1.5.1 Publications in International Journals

[1] L. Ordonez-Ante, G. Van Seghbroeck, T. Wauters, B. Volckaert
and F. De Turck. A Workload-Driven Approach for View Selection in
Large Dimensional Datasets. Journal of Network and Systems Mana-
gement, vol. 28, no. 4, p. 1161-1186, 2020.

[2] L. Ordonez-Ante, G. Van Seghbroeck, T. Wauters, B. Volckaert and
F. De Turck. Explora: Interactive Querying of Multidimensional
Data in the Context of Smart Cities. Published as special issue paper
in the MDPI Sensors Journal, vol. 20, no. 9, e2737, 2020.

[3] L. Ordonez-Ante, S. Vermandere, B. Van de Vyvere, P. Colpaert,
G. Van Seghbroeck, T. Wauters, B. Volckaert and F. De Turck.
Explora-LD: a Linked Data Fragments approach for interactive
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querying on mobile sensor data in Smart Cities. Submitted to the
IEEE Internet of Things Journal, January 2021.

[4] L. Ordonez-Ante, J. van der Hooft, T. Wauters, G. Van Seghbroeck,
B. Volckaert and F. De Turck. Explora-VR: Content Prefetching
for Tile-based Immersive Video Streaming Applications. Accepted
for publication in the Journal of Network and Systems Management,
February 2022.

1.5.2 Publications in International Conferences

[1] L. Ordonez-Ante, T. Vanhove, G. Van Seghbroeck, T. Wauters and
F. De Turck. Interactive Querying and Data Visualization for Abuse
Detection in Social Network Sites. Presented at 11th International
Conference for Internet Technology and Secured Transactions (IC-
ITST 2016).

[2] L. Ordonez-Ante, T. Vanhove, G. Van Seghbroeck, T. Wauters,
B. Volckaert and F. De Turck. Dynamic data transformation for low
latency querying in big data systems. Presented at 2017 IEEE Inter-
national Conference on Big Data (Big Data 2017).

[3] L. Ordonez-Ante, G. Van Seghbroeck, T. Wauters, B. Volckaert and
F. De Turck. Automatic view selection for distributed dimensional
data. Presented at the 4th International Conference on Internet of
Things, Big Data and Security (IoTBDS 2019).

1.6 Code Repositories

We advocate for open and reproducible research. The following list provides
an overview of all public code repositories, generated by the candidate dur-
ing his PhD research period.

[1] Explora Framework
URL: https://github.com/IBCNServices/explora-kafka.

[2] Explora-LD

URL: https://github.com/IBCNServices/explora-ld.

[3] Explora-VR Server
URL: https://github.com/LeandroOrdonez/explora-vr-server.

[4] Explora-VR Cache
URL: https://github.com/LeandroOrdonez/explora-vr-cache.
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[5] Explora-VR Client
URL: https://github.com/LeandroOrdonez/explora-vr-dash-

client.

[6] Workload-driven View Selection System
URL: https://github.ugent.be/lordezan/query_analysis.
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2
A Workload-driven Approach for View

Selection in Large Dimensional

Datasets

Four research questions have driven the work presented in this PhD the-
sis. This chapter details the contributions of this work concerning the first
research question. Herein a workload-aware mechanism for automatic view
selection in large dimensional data is introduced. The proposed approach is
based on the idea of augmenting the available data with precomputed views
containing the answers to expensive analytical queries. Since creating views
for each individual query is impractical in terms of storage and computing
resources, the mechanism uses syntactical analysis techniques to identify
groups of highly related queries. View definitions are built out of each query
group, and their corresponding results get materialized based on a snap-
shot of the data available thus far. The experimental evaluation conducted
on both a single node setup and a distributed data store (see Appendix A)
demonstrate the ability of the proposed method to derive a comprehensive
set of materialized views. Queries running against these views experienced
a speed-up of 80% to 99.99% relative to their processing time measured on
the base dataset.

⋆ ⋆ ⋆
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Abstract The information explosion the world has witnessed in the last
two decades has forced businesses to adopt a data-driven culture for them
to be competitive. These data-driven businesses have access to countless
sources of information, and face the challenge of making sense of overwhelm-
ing amounts of data in a efficient and reliable manner, which implies the
execution of read-intensive operations. In the context of this challenge, a
framework for the dynamic read-optimization of large dimensional datasets
has been designed, and on top of it a workload-driven mechanism for au-
tomatic materialized view selection and creation has been developed. This
chapter presents an extensive description of this mechanism, along with a
proof-of-concept implementation of it and its corresponding performance
evaluation. Results show that the proposed mechanism is able to derive a
limited but comprehensive set of views leading to a drop in query latency
ranging from 80% to 99.99% at the expense of 13% of the disk space used
by the base dataset. This way, the devised mechanism enables speeding
up query execution by building materialized views that match the actual
demand of query workloads.

2.1 Introduction

Providing instant access to data is still an open problem. A significant
part of the value proposition of nowadays data-driven organizations relies
on their ability to gain prompt and actionable insight from business data,
which poses stringent requirements on the response time of enterprise appli-
cations to support interactive querying and data visualization. To meet such
requirements, currently available data technology offers a variety of solu-
tions that ranges from high-level software architectural patterns such as the
Lambda and Kappa architectures proposed by [1] and [2] respectively, to off-
the-shelf/open-source solutions including in-memory computing platforms
like Apache Ignite [3] and SQL-on-Hadoop frameworks such as Apache Im-
pala and Apache Drill [4]. However, experimental evidence shows [5, 6] that
said solutions either fail to provide instantaneous query answering, or effec-
tively achieve such interactive functioning but at the expense of flexibility
by relying on hard-coded information views.
Existing enterprise information applications typically separate analytic work-
load processing (supported by Online Analytical Processing systems—OLAP)
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from the day-to-day Online Transaction Processing (OLTP). A key differ-
ence between these two types of workloads lies in the data models and struc-
tures they operate on: OLTP systems work on top of highly normalized data
models, while OLAP workloads run against denormalized schemas featur-
ing precomputed views derived from transactional business data. Results of
a previous experimental study [7] evidence that using such read-optimized
structures alone is not enough for analytical processing applications to meet
strict response time requirements, even for small datasets.

Thanks to the wide variety of storage technologies available nowadays, more
attention has been drawn towards polystore systems, also known as poly-
glot persistence systems. A well-thought-out polyglot persistence system is
able to optimally use multiple storage technologies for managing the vari-
ous types of data (with different write/access patterns) that an application
requires to handle. This way, data requiring rapid access (e.g. analytics
and reporting data) may be loaded into a columnar store, while frequently-
written data (e.g. user activity logs) can lay on a key-value database. In
this sense, [8] propose leveraging on polyglot persistence to boost the perfor-
mance of legacy applications by means of a dynamic transformation process
intended for translating data and queries between diverse data storage tech-
nologies.

Based on the work of Vanhove et al., a framework that serves as concep-
tual foundation for the mechanism this chapter reports on is presented in
[7]. The intuition behind that framework was to progressively optimize the
schema of a base dataset by applying a sequence of data transformation
operations (e.g. view materialization, table partitioning, field indexing), in
response to specific query usage patterns. The experimentation conducted
in that early stage evidenced that when it comes to dimensionally modeled
datasets, building materialized views is the method with the most signifi-
cant impact on query performance, reducing response time by several orders
of magnitude, followed by table partitioning.

In this sense, this chapter introduces an automatic view selection mechanism
based on syntactic analysis of the queries running against dimensionally
modeled datasets. The remainder of this chapter is structured as follows:
Section 2.2 addresses the related work. Section 2.3 introduces the dynamic
data transformation framework that underlies the view selection approach
proposed herein. Section 2.4 focuses on the main contribution of this work
and elaborates on the syntactic analysis conducted on the query statements.
Section 2.5 describes the implementation of the proposed approach, while
Section 2.6 discusses the experimental setup and results. Finally conclusions
and pointers towards future work are provided in Section 2.7.
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2.2 Related Work

Dimensional data modeling is one of the foundational techniques of modern
data warehousing [9]. It has been extensively applied to a wide range of
domains involving data analysis and decision support, due to its inherent
ability to structure data for quick access and summary [10–12]. View mate-
rialization is a common methodology used on top of these dimensional data
schemes for speeding up query execution. The associated overhead of im-
plementing this methodology involves computational resources for creating
and maintaining the views, and additional storage capacity for persisting
them. In this sense, finding the sweet spot between the benefits and costs
of this method is regarded by the research community as the view selection
problem.
Extensive research has been conducted around the materialized view selec-
tion problem, as evidenced in several systematic reviews on the topic by
[13], [14], and [15] to mention some of them. The approaches surveyed in
these works consist in general of two main steps:

1. Find a set of candidate views for materialization based on metrics
such as query execution frequency, query access costs, and base-relation
update frequencies.

2. Create a set of views selected out of the set of candidate views un-
der certain resource constraints such as view maintenance costs and
storage space limitations.

The review elaborated by [14] groups existing approaches in three main cat-
egories: (i) heuristic approaches, (ii) randomized algorithmic approaches,
and (iii) data mining approaches.
On the one hand, heuristic approaches use multidimensional lattice repre-
sentations [16, 17], AND-OR graphs [18], or Multiple View Processing Plan
(MVPP) graphs [19, 20] for selecting views for materialization. Issues re-
garding the exponential growth of the lattice structure when the number
of dimensions increases, and the expensive process of graph generation for
large and complex query workloads, greatly impact the scalability of these
approaches and their actual implementation in consequence [14, 21].
The solution space of the view selection problem grows exponentially with
the number of dimensions of the data, turning this into a NP-Hard prob-
lem. Randomized algorithmic approaches [22–28] emerged as an attempt
to provide approximate optimal solutions to this problem, by using tech-
niques such as simulated annealing (SA), evolutionary algorithms (EA) and
particle swarm optimization (PSO). However, since these approaches use
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multidimensional lattice representations, MVPP and AND-OR graphs as
input data structures, they suffer the same scalability issues earlier seen in
heuristic approaches [14].

On the other hand, data mining approaches are mainly workload-driven:
candidate materialized views are selected and created based on the syntac-
tic analysis of query sets representative of data warehouse usage [21, 29, 30].
Data-mining based solutions work with much simpler input data structures
called representative attribute matrices, generated out of query workloads.
These structures then configure a clustering context out of which candidate
view definitions are derived. Aouiche et al. [21, 29] propose the KEROUAC
method, which addresses view selection as the combinatorial problem of
finding the optimal partition of a set of objects (i.e. queries), according to a
metric of clustering quality called New Condorcet criterion (NCC ) [31, 32].
In KEROUAC clustering is conducted through an iterative procedure simi-
lar to the one employed for building univariate decision trees which typically
run in O(dMNlogN) time [33] —with N being the number of objects, M
the number of attributes, and d the number of nodes (i.e. clusters) in the
tree—, and additionally involves the computation of the NCC metric on ev-
ery iteration of the clustering process, which adds to the overall complexity
of the method. Other similar data mining approaches for view selection, in-
cluding the one from [30], involve identifying frequent accessed information
by browsing across several intermediate and/or historical results, which is
deemed to be a very costly and unscalable process [14].

In this sense, this chapter delves further into the approach introduced by
Ordonez et al. [7], particularly by elaborating on an automatic mechanism
for materialized view selection and creation. The mechanism presented in
the following sections relies also on syntactic analysis of query workloads
issued against a dimensionally modeled data collection. This mechanism
uses a representative attribute matrix as input data structure, assembled
as a collection of feature vectors encoding all the clauses of each individual
query in the workload at hand. With this input, a strategy for selecting
a limited set of candidate materializable views is implemented, comprising
the use of hierarchical clustering along with a custom query distance func-
tion, and the estimation of a materializable score on the resulting clustering
configuration.

It is noteworthy that the approach in [7] was concerned with defining a
data transformation framework on a conceptual level, while the mechanism
discussed herein addresses an actual realization of such framework, tack-
ling the problem of materialized view selection on large data collections.
Likewise, the approach introduced by Vanhove et al. [8] —that served as
inspiration for the framework proposed in [7]— is not particularly concerned
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with reducing query latency, but with enabling live data migration between
different data storage technologies, irrespective of the query-workload. In
this sense, the contribution of the proposed mechanism lies in three key fea-
tures: (i) a vector representation that encodes not only the query-attribute
usage, but also the basic structure of analytical queries, enabling a more
precise and also regular representation of the query set, (ii) a measure of
query distance tightly suited to the structure of the formulated feature vec-
tor representation providing a more accurate method for estimating query
relatedness, instead of plain Hamming distance used in existing approaches,
and (iii) a scalable procedure for candidate view generation that relies on
a measure of cluster consistency, which in turn uses the above-mentioned
query dissimilarity metric to unambiguously identify materializable groups
of related queries.

2.3 Dynamic Read-Optimization Framework

2.3.1 Iterative data transformation

The view selection mechanism this chapter presents is framed within the dy-
namic transformation framework introduced in a previous work [7], which
aims at incrementally optimize the schema of a dimensionally modeled
dataset to speed up query execution. Figure 2.1 presents an overview of
the architecture of the mentioned framework, which operates by running an
iterative process described in detail in [7].

Figure 2.1 Dynamic data transformation for read-optimization: architec-
ture overview
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During the first iteration of such process queries are handled by a base
dataset complying a star dimensional schema (Dsrc), as their performance
information is collected by the query performance monitor. This information
is then used by the schema optimization module to classify incoming queries
according to the read-optimization method they benefit the most, and to
prescribe a schema migration specification defining a number of actions to
be applied to a snapshot of Dsrc, to ultimately generate a read-optimized
version of said dataset (Dtrg in Fig. 2.1).
In subsequent iterations, the just generated Dtrg becomes the new Dsrc and
the process described for the first iteration is applied, except that this time
incoming queries first have to undergo a translation procedure (speed layer
in Fig. 2.1) that adjusts the query statements to the new read-optimized
schema. This way client applications can issue queries to Dtrg as if they
were querying the original Dsrc.

2.3.2 Materialized view selection

The framework proposed in [7] contemplates two categories of methods for
read-optimization: (1) redundant structures: view materialization and in-
dexing, and (2) non-redundant structures: table partitioning (horizontal and
vertical). Redundant structures involve an overhead in both storage and
computation, while methods from the second category imply reshaping the
dataset schema, and rearranging the original information without incurring
in any storage overhead. However, non-redundant structure methods are
mostly intended for aiding the maintenance of large datasets (e.g. loading
and removing vast amounts of data), rather than improving query perfor-
mance by themselves.
These methods are not competing nor mutually exclusive. Conversely, ap-
proaches such as the one presented by [34] promote the combination of
redundant and non-redundant structures to attain a better performance for
a given query workload. This chapter deals specifically with the design
and realization of a mechanism for materialized view selection, as a first
step towards the implementation of the data transformation framework de-
picted earlier (See Fig. 2.1). Before addressing an overview of the proposed
approach, the view selection problem is defined next.

Definition 2.1 View selection problem. Based on the definition by
[35]: Let R be the set of base relations, S the available storage space, Q a
workload on R, L the function for estimating the cost of query processing.
The view selection problem is to find the set of views V (view configuration)
over R whose total size is at most S and that minimizes L(R,V,Q)
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In the context of the view selection approach proposed herein, some as-
sumptions are made for the system to identify and materialize candidate
views:

1. The source data collection (Dsrc) is temporary immutable. This im-
plies dealing with insert and update operations is out of the scope of
the mechanism presented herein.

2. The query processor provides statistical information regarding Dsrc,
such as the size (row count) of each of the base tables composing the
schema of the dataset, as well as the cardinality of the attributes that
make up these relations.

3. Latency is favored over view storage cost. This means that the decision
on materializing candidate views is driven not by storage restrictions,
but by the gain in query latency.

In terms of Definition 2.1, given a dimensionally modeled dataset R, and a
workload Q, the view selection mechanism starts by translating the queries
in Q into feature vectors. In contrast to similar query representation tech-
niques [21], the method proposed in this work accounts not only for query-
attribute usage, but also for query structure by defining a number of re-
gions/segments representative of each of the clauses of a Select-Project-Join
(SPJ) query, i.e. aggregate operation, projection, join predicates and range
predicates. This way, the devised query representation provides a more pre-
cise specification of the query statements in Q. A detailed description of
this query representation is provided in section 2.4.1.
The collection of feature vectors of Q configures a clustering context C. This
context is then fed to the read optimizer component (see Fig. 2.1) which
implements a clustering algorithm able to identify groups of related queries
based on a similarity score computed via a custom query distance function,
described in detail in Section 2.4.2.
Upon running the clustering job, the resulting clustering configuration K
comprises several groups of queries the algorithm deems to be similar. The
idea behind building this clustering configuration is to be able to deduce
view definitions covering the queries arranged under each cluster. This way,
every cluster ci ∈ K would have an associated view Vi ∈ V (V: set of
candidate views), enabled to answer the queries in ci. Of course it is not
feasible to materialize the full set of views in V. Consider for instance the
(unlikely but possible) case in which Q is a collection of orthogonal queries.
In such situation, there would be as many clusters in K as queries in Q,
and in consequence one candidate view per query to be materialized, which
storage-wise is not efficient at all. Now considering a more practical case,
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the clustering algorithm might come up with spurious clusters, i.e. groups of
queries that are actually not that related. To identify those spurious clusters
and setting them apart from those clusters that are worth materializing, a
materializable score is defined, taking into account a measure of cluster
consistency and the cluster size |ci|. Further details on this score and the
clustering procedure are provided later in section 2.4.3.

Based on the results of the materializable score computed on the clustering
configuration K, a subset of the candidate views in V, Vmat, is prescribed to
be materialized by defining a schema migration specification, which is issued
and executed against the source dataset (Dsrc). With the materialized views
in place, the translation of the new data-retrieval queries is performed in
the speed layer (See Fig. 2.1). Clearly, such translation procedure involves
a certain overhead, however, according to the experimental results reported
by [8], the average translation time does not exceed 100 milliseconds, which
is negligible when contrasted with the query execution time on the original
data collection. Finally, the translated queries run against the matching
materialized views, being answered in a fraction of the time it would take
to process the original queries on the base dataset.

2.4 Syntactic analysis of query statements for
view selection

Since the devised view selection mechanism aims at lowering the response
time of data access operations, only Select-Project-Join (SPJ) queries are
considered in this analysis, particularly those containing aggregates. Aggregate-
SPJ queries are one of the foundational constructs of OLAP operations.
They allow for summarization returning result sets based on multiple rows
grouped together under certain criteria (column projection and range pred-
icates). In general, these aggregate queries are computationally expensive
since they require scanning several records in the data collection, hence the
use of materialized views for speeding up these queries.

In this research the widely-known Star Schema Benchmark (SSB) [36] was
adopted as a baseline schema and dataset. The SSB, defines a collection of
base relations along with a set of queries typically used in data warehousing.
Figure 2.2 shows the entity-relationship model of SSB, featuring Lineorder
as the table of facts, and Customer, DWDate, Part, and Supplier being the
dimensions describing the facts.
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Figure 2.2 The Star Schema Benchmark (SSB) data model

All statements in the SSB query set conform to the structure in listing 2.1.

SELECT select_list

FROM table_expression

[ WHERE search_conditions ]

[ [ GROUP BY column_list]

[ ORDER BY column_list] ]

Listing 2.1: SSB query structure

The syntactic analysis this work thrives on, starts by mining the information
contained in the select_list and search_conditions clauses, encoding
these values in a feature vector representation that enables further query
processing.

2.4.1 Query representation

The procedure for obtaining a text-mining-friendly representation of the
queries takes each one of the SELECT statements from a workload Q and ex-
tracts the aggregate (aggq) and projection (projq) elements, and join (joinq)
and range (rngeq) predicates, resulting in the following tuple:

q = (aggrq, projq, joinq, rngeq) (2.1)

The tuple above is the high-level vector representation of the queries from
Q. Consider for example the following SELECT statement:
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SELECT SUM(lo_revenue), d_year , p_category

FROM lineorder , dwdate , part

WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND d_year > 2010

GROUP BY d_year , p_category

For the query above:

aggrq = [SUM, lo_revenue]

projq = [d_year, p_category]

joinq = [d_datekey, p_partkey]

rngeq = [d_year]

Each element of the above high-level vector representation gets mapped to
a vector using a binary encoding function, as described below.

Definition 2.2 Binary mapping function. Let R be a relation defined
as a set of m attributes (a1, a2, ..., am) —with am being the primary key of
R—, and given r an arbitrary set of attributes, the binary mapping of r

according to R, denoted by bmR(r), is defined as follows:

bmR(r) = {bi} , 1 ≤ i ≤ m

bi =

{

1, if ai ∈ r

0, otherwise

(2.2)

Using the mapping function above, the vector representation of each one
of the query elements in Eq.2.1 (designated henceforth as segments), for a
dimensional schema comprising one fact table and N dimension tables, is
defined as follows:

aggrq = [aggOpCode, bmFact(aggrq)]

projq = [bmFact(projq), bmDim1(projq), bmDim2(projq), ..., bmDimN(projq)]

joinq = [bmFact(joinq), bmDim1(joinq), bmDim2(joinq), ..., bmDimN(joinq)]

rngeq = [bmFact(rngeq), bmDim1(rngeq), bmDim2(rngeq), ..., bmDimN(rngeq)]

where aggOpCode designates the aggregate operation using one-hot encod-
ing, namely, COUNT: 00001, SUM: 00010, AVG: 00100, MAX: 01000, MIN:
10000.



30 Chapter 2

A complete feature vector q representing a query q ∈ Q is set by putting
together the above-mentioned segments, that is:

q = [aggrq,projq, joinq, rngeq]

Accordingly, considering the SELECT statement in the example —issued
against the SSB (see Fig. 2.2)— a complete feature vector instance is shown
below (with Dim1=Customer, Dim2=DWDate, Dim3=Part, and Dim4= Sup-
plier):

q = [ [10, 1000000000000] , [0, 0, 10000, 1000, 0] ,

[101000, 0, 1, 1, 0] , [0, 0, 10000, 0, 0] ]

2.4.2 Query dissimilarity estimation

The collection of feature vectors representing the queries from Q are ar-
ranged as a representative attribute matrix, configuring a clustering context
C. To be able to identify groupings of related queries in such context, a
measure of dissimilarity between observations (vectors) and sets of obser-
vations is required. In this sense, a distance function is defined in which
similarity between two queries is determined to be proportional to the num-
ber of attributes they share in a per-segment (aggregation, projection, join
and range predicates) and per-relation (fact and dimensions) basis.

Definition 2.3 Segment Distance. Let xp and xq be two segments of
length N belonging to two distinct query vectors p and q from the clustering
context C. Distance between xp and xq (denoted as sgmtDst(xp,xq)) is
defined as:

sgmtDst(xp,xq) =
1

N ′

N∑

i

J(xpi
,xqi

),

(xpi
,xqi

) 6= (0, 0)

(2.3)

where,

• J(xpi
,xqi

) is the Jaccard-Needham distance estimated between the
i -th elements of xp and xq,

• N ′ is the number of pairs from xp and xq such that (xpi
,xqi

) 6= (0, 0)

This way, segment distance is defined as the average Jaccard-Needham dis-
similarity computed between pairs of segment elements corresponding to
those dimensions with at least one attribute being queried (i.e. xpi

6= 0 ∨ xqi
6=

0).
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The Jaccard-Needham distance is a widely-used method for estimating dis-
similarity between sets and binary sequences. Unlike similar measurements
such as the Simple Matching coefficient and the Rogers-Tanimoto distance,
Jaccard-Needham does not count negative co-ocurrences (or mutual ab-
sences), which means that null attribute pairs (0, 0) are not rated as matches
in the distance estimation. This, in addition to the symmetry of the mea-
sure (J(a, b) = J(b, a)) and its straightforward computation, makes the
Jaccard-Needham distance a suitable method for estimating the dissimilar-
ity between the query segments.

Definition 2.4 Query Distance. Let p and q be two vectors represent-
ing queries from the clustering context C. Distance between p and q (denoted
as qDst(p,q)) is defined as:

qDst(p,q) = waggr ∗ sgmtDst(aggrp,aggrq)

+wproj ∗ sgmtDst(projp,projq)

+wjoin ∗ sgmtDst(joinp, joinq)

+wrnge ∗ sgmtDst(rngep, rngeq)

(2.4)

where waggr, wproj , wjoin and wrnge are arbitrary weights that add up to
one (1.0), and condition the influence of each vector segment on the over-
all dissimiliarity measurement. These weights were estimated when tuning
the clustering method the proposed view selection mechanism relies on, by
binding their values to the performance of the obtained configuration of
clusters estimated in terms of the F-score and the Fowlkes-Mallows index
(FMI ).

2.4.3 Query clustering and View materialization

The view selection approach documented herein relies on hierarchical clus-
tering [37] for deriving groupings of similar queries. In contrast to other
well-known clustering methods such as K-Means or K-medoids, hierarchi-
cal clustering analysis does not require to provide the number of clusters
upfront. Instead, it generates a hierarchical representation of the entire clus-
tering context in which observations and groups of observations are stacked
together from lower to higher levels, according to a distance measure based
on the pairwise dissimilarities among the observations. This way, the in-
dividual observations lie at the lowest level of the hierarchy as singleton
clusters, while at the top level there is only one cluster holding all the ob-
servations. As an illustrative example, consider the dendrogram in Fig. 2.3
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Figure 2.3 Dendrogram resulting from applying hierarchical clustering
analysis on a 50-query workload. Each different color indicates a group
of similar queries.
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representing the clustering configuration obtained by applying hierarchical
clustering on a workload comprising 50 queries.
There are two basic ways to perform hierarchical clustering: through an ag-
glomerative procedure (i.e. starting at the bottom and recursively merging
pairs of similar clusters into a single cluster, while moving up the hierarchy),
or by a divisive procedure (i.e. starting at the top of the hierarchy with all
observations in one cluster, and recursively partitioning it while moving
down the hierarchy). Agglomerative clustering is far more extensively used
than its divisive counterpart, hence most of the hierarchical clustering algo-
rithms available fall into this category of methods. In divisive procedures,
all the possible partitions of the clustering context are considered in the first
step. Since the number of combinations for a collection of N observations
is 2N−1 − 1, it is impractical to exhaustively implement these methods and
heuristic approximations are used instead [38]. This is why agglomerative
clustering was favored over divisive clustering, for analyzing the vectors in
the representative attribute matrix of Q.
In order to apply hierarchical agglomerative clustering analysis on a cluster-
ing context C (representative attribute matrix of Q), it is required to specify
a dissimilarity metric for measuring the distance between pairs of query vec-
tors, and a linkage criterion which estimates the dissimilarity among groups
of queries as a function of the pairwise distance computed between queries
belonging to those groups. Selection of the specific technique to use as
linkage criterion was made on the basis of the characteristics of the pro-
posed feature vector representation, and results of preliminary parameter
tuning tests (mentioned at the end of section 2.4.2). In consequence—given
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that the query vectors derived from Q do not lie on the Euclidean space—
methods such as centroid, median, and Ward’s linkage [39] were ruled out.
Then, single linkage, complete linkage and Weighted Pair Group Method
with Arithmetic Mean (WPGMA) were considered, resulting in the selec-
tion of WPGMA, since the former two methods tended to underestimate
(single linkage) or overestimate (complete linkage) the dissimilarity between
query groupings, according to the mentioned tests. In this way, along with
WPGMA, the function defined in the previous section, qDst, serves as dis-
similarity metric in this case. Under this set-up, the clustering procedure
(detailed in algorithm 2.1) starts by assigning each query to its own cluster.
Then, the pairwise dissimilarity matrix between such singleton clusters, D,
is computed and an empty matrix (L) specifying the resulting dendrogram
is initialized. From D, the two most similar (nearest) clusters are merged
into one, and appended to L along with the distance between them (see line
6 in algorithm 2.1). Then, the pairwise dissimilarity matrix gets updated
using the WPGMA method for computing the distance between the newly
formed cluster and the rest of the currently existing clusters (eq. 2.5):

D[(a ∪ b),x] =
qDst(a,x) + qDst(b,x)

2
,

(a,b and x being clusters)
(2.5)

This procedure is then repeated until there is only one cluster left. Finally,
both the clustering configuration (K) and the dendrogram matrix (L) are
returned.

Algorithm 2.1 WPGMA clustering procedure
1: K ← C; C = {q0,q1, . . . ,qN} ⊲ Initializing clusters (singleton clusters)
2: D← qDst(qi,qj) for all qi,qj ∈ K, i 6= j ⊲ Pairwise dissimilarity matrix
3: L← [] ⊲ Output matrix
4: while |K| > 1 do
5: (a,b)← argmin(D) ⊲ Get the nearest clusters
6: append [a,b,D [a,b]] to L

7: remove a and b from K
8: create new cluster k← a ∪ b ⊲ Merge a and b into one cluster

9: update D: D [k,x] = D [x,k] =
qDst(a,x)+qDst(b,x)

2 for all x ∈ K
10: K ← K ∪ k

11: end while
12: return K,L ⊲ L: WPGMA dendrogram: ((N − 1)× 3)-matrix

The rationale behind building this clustering configuration is to deduce view
definitions containing the queries grouped under each cluster, so that for
each cluster ci ∈ K there exists a view Vi ∈ V able to answer the queries
in ci. However, as stated earlier, to avoid further processing of clusters
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grouping queries that are not closely related (i.e. spurious clusters), a score
was defined indicating to what extent it is worth to materialize the view
derived from a particular cluster.

Definition 2.5 Materializable cluster. A cluster c from a clustering
configuration K is said to be materializable if the following conditions are
met:

1. Queries in c are highly similar to each other.

2. Queries in c are clearly separated (highly dissimilar) from queries in
other clusters.

3. c covers as many queries as possible. In other words, |c| is large
enough in proportion to the size of the workload (|Q|)

For a cluster to meet the first two conditions it should be consistent, while
the third condition prevents singleton and small clusters from being further
processed. Based on the above definition, the materializable score of a
cluster (mat(c) in eq. 2.6) is computed as the product of two sigmoid
functions: one on the per-cluster silhouette score (S) [40]—defined below in
eq. 2.7—and the other on the per-cluster proportions (P ).

mat(c) =
( 1

1 + e−k(S(c)−s0)

)( 1

1 + e−k(P (c)−p0)

)

(2.6)

with:

S(c) =
1

|c|

∑

qi∈c

b(qi)− a(qi)

max {a(qi), b(qi)}
, P (c) =

|c|

|Q| (2.7)

where,

• k is a factor that controls the steepness of both of the sigmoid func-
tions,

• s0 and p0 are the midpoints of the silhouette and cluster-proportion
sigmoids respectively,

• a(qi) is the average distance between qi and all queries within the
same cluster,

• b(qi) is the lowest average distance of qi to all queries in any other
clusters.
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By setting a fixed threshold on this score (S ≥ 0.5 by default) it is possible
to unambiguously set the spurious clusters apart from those whose corre-
sponding views are worth materializing. The next step is deriving view
definitions covering the queries arranged under each of the materializable
clusters (Kmat ⊆ K), this is to say:

∀ci ∈ Kmat, ∃Vi|∀q ∈ ci,q ⊆ Vi

Algorithm 2.2 below details the procedure conducted to derive the views Vi

meeting this containment condition on each of the materializable clusters. In
this procedure, the SPJ-query clauses (aggregate, projection, join predicates,
and group-by) of the resulting views are defined in terms of the union of the
corresponding attributes from each query in the cluster.

Algorithm 2.2 Procedure for deriving view definitions
1: Let c be a cluster in Kmat

2: V ← [aggrV , projV , joinV , groupByV ] ⊲ Output view definition
3: for each query q in c do
4: aggrV ← aggrV ∪ aggrq
5: projV ← projV ∪ projq ∪ rngeq
6: joinV ← joinV ∪ joinq

7: groupByV ← groupByV ∪ projq ∪ rngeq
8: end for
9: return V

It is worth noting that view definitions are generated without range pred-
icates. Instead, the attributes used in this query clause are pushed to the
projection and group-by clauses of the view definition. In this way, the re-
sulting materialized views are able to answer not only the queries grouped
under each cluster, but also unseen queries with arbitrary range predicates
on the attributes listed in the projection clause of the view definition1. Addi-
tionally, thanks to the iterative nature of the underlying data transformation
framework, further optimization of the derived views is possible. Later in
this chapter (Section 2.6.3) a view maintenance strategy is discussed which
leverages on the continuous data transformation process described back in
section 2.3.
To recap, this section developed a thorough description of the syntactic
analysis of query workloads that makes up the view selection mechanism
proposed here. It started by specifying the procedure for obtaining a struc-
tured representation of the queries in the form of a feature vector and a
representative attribute matrix. Then, a custom query dissimilarity func-
tion was defined, tailored specifically to the structure and values of said
feature vectors. Finally, a query clustering algorithm based on the pairwise

1Although this only applies for queries with distributive aggregate functions, i.e. SUM,
COUNT, MIN, and MAX.
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dissimilarities between the analyzed queries was addressed, detailing as well
the procedure for deriving materialized view definitions out of the obtained
clustering configuration.

2.5 Proof-of-concept Implementation: Star
Schema Benchmark (SSB) and workload
generation

Figure 2.4 Proof-of-concept implementation of the proposed view selection
mechanism.

A bottom-up approach was adopted to test the principles, assumptions and
procedures governing the view selection mechanism detailed in the previous
sections. In this way, starting from a set of predefined view definitions, the
effectiveness of the proposed mechanism is estimated in terms of its ability
for identifying the same set of views and reconstructing their definitions,
upon analyzing a query workload generated from query templates fitting
the original set of views (see Figure 2.4).
As stated back in section 2.4, this research leverages on the Star Schema
Benchmark (SSB) as baseline schema and dataset, and therefore both the
predefined views and query templates, as well as the query generator mod-
ule were designed and built so they conform to the data model the SSB
embodies.
The SSB comprises a dimensional data model (four dimensions, one fact
table), an extensible dataset (size depending on a scaling factor—SF ), and
a set of queries typical for data warehouse applications arranged in four
categories/families designated as Query Flights (a detailed definition of the
SSB is available online [36]).
Thirteen Select-Project-Join query statements in total compose the full
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query set of the SSB. For the proof-of-concept that is being described, three
view definitions were derived based on the original SSB query set, and from
each view definition, four query templates were prepared. Additionally, one
template for each one of the 13 canonical SSB queries was also composed.
With this set of 25 templates as input, a module that generates random
instances of runnable queries enabled the creation of query workloads of
arbitrary size. Listings below present the definitions of each one of the
mentioned views.

SELECT sum(lo_revenue), p_brand1 , c_region ,

s_region , d_year

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY p_brand1 , c_region , s_region , d_year

ORDER BY p_brand1 , c_region , s_region , d_year

Listing 2.2: Definition of View A

SELECT sum(lo_ordtotalprice), p_category , c_city ,

s_city , d_yearmonthnum

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY p_category , c_city , s_city , d_yearmonthnum

ORDER BY p_category , c_city , s_city , d_yearmonthnum

Listing 2.3: Definition of View B

SELECT sum(lo_supplycost - lo_tax), c_region , p_mfgr ,

s_region , c_nation , d_year

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY c_region , p_mfgr , s_region , c_nation , d_year

ORDER BY c_region , p_mfgr , s_region , c_nation , d_year

Listing 2.4: Definition of View C

2.6 Experimental Evaluation

2.6.1 Experimental setup

Figure 2.5 depicts the arrangement of components and technologies used
for conducting the experimental evaluation of the proposed view selection
approach. This evaluation comprised three main stages:
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Figure 2.5 Experiment set-up

(1) Running the view selection implementation on a 400-query workload
to the point that it materializes views A, B, and C (defined earlier
in section 2.5), while keeping track of the runtime involved in the
procedures of query clustering, view scoring (using the materializable
score defined in section 2.4.3), view definition, view registering and
view creation (i.e. materialization).

(2) Once the views are materialized, run a second 400-query workload
against both the base SSB dataset and the materialized views. In
doing the latter, queries first pass through a translation component
that gathers the details of the available materialized views from the
view registry (stored in a MongoBD2 document database), and adapts
the incoming query statements accordingly.

(3) Running the two previous stages on workloads of different sizes and
query distributions.

For all the stages, the performance information collected from running the
tests were aggregated and visualized using Jupyter notebook3. During this
evaluation, workloads of multiple sizes were run against two different di-
mensions of the SSB dataset: 48 million rows (SF = 8), and 192 million
rows (SF = 32). These datasets were stored into PostgreSQL4 databases

2Available at mongodb.com
3Available at jupyter.org
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deployed on two VMWare® virtual machines with the following specifica-
tions: Intel® Xeon® E5645 @2.40GHz CPU, 20GB RAM, 500GB hard
disk.

2.6.2 Results

2.6.2.1 View selection overhead

Running the view selection implementation on a validation workload (400
queries) and a SSB dataset with SF = 32 took around 4200 seconds in total
(i.e. 1 hour and 10 minutes). While this might be deemed as a considerable
amount of time, it is worth mentioning that the actual analysis of the work-
load takes just a small fraction of it. As mentioned before, the view selection
process involves the execution of a sequence of steps: (1) query clustering,
(2) view (or cluster) scoring, (3) view definition, (4) view registering and (5)
view creation. Out of these only the first four steps have to do with the syn-
tactical analysis of query sets described throughout this chapter, while the
last one (view creation) refers to the actual materialization of the derived
views in the data store.

Figure 2.6 Materialized view selection runtime per stage (SSB SF = 32,
|Q| = 400)
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Figure 2.6 portrays the substantial difference between these execution times
by defining two stages: the first one aggregates the initial four steps, and the
second one comprises the view creation step only. Note how the steps from
stage one amounts to less than 10 seconds, adding up to just the 0.23% of
the total execution time, while the remaining 99.77% is the time it takes for
the data store (PostgresSQL in this case) to build and persist the resulting
views.
While in classical data-mining methods for view selection, query sets are
mapped into a query vs attribute matrix (where statements are represented

4PostgreSQL v9.5.8 working with the default configuration (postgresql.org)
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as flat binary sequences), the method proposed in this work accounts not
only for query-attribute usage, but also for the basic structure of analyti-
cal queries (see query segments in section 2.4.1). The KEROUAC method
by Aouiche et al.[21, 29] discussed back in section 2.2, adopts this classical
approach and additionally relies on a clustering technique that can be re-
garded as divisive clustering, in the sense that it proceeds by first placing
the whole collection of queries into a single cluster, and then iteratively par-
titioning it until convergence to a stable clustering configuration is achieved.
Given that the mechanism proposed herein adopts a agglomerative cluster-
ing technique, it was considered relevant to contrast the performance of
both methods. To this end, authors of KEROUAC were contacted to pro-
vide missing information required to replicate their approach. As a result,
Figure 2.7 shows the variation of the overhead time of the proposed method
w.r.t. the workload size, and compares it to that from KEROUAC. While
the approach proposed herein features a quadratic rate of growth—since
the implementation of the WPGMA method used in the clustering analysis
relies on the nearest-neighbors chain algorithm which is known to run in
O(N2) time [39]—it still outperforms similar methods running under the
same conditions, as evidenced in Figure 2.7.

Figure 2.7 View selection overhead vs Workload size.
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When it comes to storage cost, view size varies depending on the cardi-
nality of the fields used in the group-by clause of their definition [21], and
whether or not there are hierarchical relations between such attributes (e.g.
the one between c_region, c_nation and c_city). Figure 2.8a shows
the amount of records per materialized view, in contrast to the number
of rows in the SSB base schema. While the amount of records of views
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A (175.000) and C (4.375) is fairly negligible in comparison with the base
schema (192.000.754 records), view B amounts to almost half the size of
the base dataset. Nonetheless, in terms of disk space usage the proportion
between views and base schema is more favorable, as evidenced in Figure
2.8b. This way, while the amount of records stored into the three derived
views add up to 50% of the number of rows in the base schema, the disk
space used by said views is only 13% the size of the base data collection.

Figure 2.8 Materialized views size: (a) millions of records. (b) disk space.
— (SSB SF = 32).

2.6.2.2 View selection performance

With the selected views already materialized, a 400-query workload was run
against the base SSB dataset (SF = 32) to get a query latency baseline.
Out of those 400 queries, 300 were covered by the three available materi-
alized views (100 queries per view), and the remaining ones were canonical
SSB-based queries. Once the latency baseline was built, the same workload
was issued this time with the query translation module in place, so that in-
coming queries matching any of the definitions of the available materialized
views get rewritten and issued against them. Figure 2.9 illustrates the con-
trast between the baseline query latency (baseline_time) and the latency
when queries run against the materialized views (runtime). For queries
that benefit from views A and C the gain in query latency is remarkably
substantial, going from hundreds of seconds in the baseline to sub-second
runtime in the views. On the other hand, queries running on the view B
present an important—though less striking—reduction in latency. In this
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case, the size of this view, which in terms of number of records is compa-
rable to the base dataset, prevents queries from running under interactive
latency constraints.

Figure 2.9 Query runtime per view: Baseline runtime vs. View runtime
(SSB SF = 32, |Q| = 400)
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Table 2.1 summarizes the results obtained from running the above test,
including the reduction in latency achieved through each one of the views,
relative to the average baseline query runtime.

Table 2.1: Query latency reduction per view (SSB SF = 32, |Q| = 400)

Baseline time
(s)

Translation
time (s)

View runtime
(s)

% Latency
reduction

View A 251.04±2.85 (3.54±0.11)×10−3 (36.89±0.49)×10−3 99.98

View B 253.53±3.53 (10.7±0.45)×10−3 51.83±3.22 79.55

View C 256.98±4.51 (5.18±0.45)×10−3 (2.86±0.21)×10−3 99.99

2.6.2.3 Response to workload size

The purpose of this last evaluation was estimating the influence of the view
selection mechanism in the workload execution time (hereafter WET), using
query sets of multiple sizes and different query distributions. As with the
previous tests, each workload was first run against the base SSB dataset
(SF = 8), this time measuring the execution time for the full workload
instead of the average query runtime. Afterwards, each workload was fed
to the view selection implementation, measuring again the WET, as well as
the view selection overhead. Three query distributions were considered for
the workloads in this evaluation: (1 ) half the queries in the workload are
covered by the materialized views, (2 ) 75% of the queries in the workload are
covered by the materialized views, and (3 ) all the queries in the workload
are covered by the available materialized views. Figure 2.10 presents the
results obtained for different workload sizes and query distributions.
Results displayed in Figure 2.10 evidence a consistent decrease in the WET
as the amount of queries covered by the materialized views grows: for the
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Figure 2.10 Workload execution time (WET) vs. Workload size (SSB
SF = 8)

50%-view-covered workloads the WET was consistently reduced by about
40%, while the 75%-view-covered and the full-view-covered workloads took
57% and 75% less time to run respectively. As the results from the previous
tests indicated, the drop in the WET is closely tied to the size of the ma-
terialized views. Under the configuration used for this test, the aggregated
size of the materialized views add up to 85% of the number of records of
the base dataset and 46% of the disk space this last one uses. This way,
in order to further reduce the workload execution time in cases like this,
a better compromise between view’s query coverage and view size has to
be achieved. The next section elaborates on this constraint and outlines
a practical strategy to address it, leveraging on the iterative nature of the
dynamic transformation framework upon which the proposed view selection
mechanism was conceived.

2.6.3 Discussion

The syntactic analysis lying at the core of the mechanism described in this
chapter, proved an effective method for identifying groups of related queries
and deriving a limited but comprehensive set of materialized views out of
them. The experimental evaluation conducted on a proof-of-concept im-
plementation of the devised approach reported that, despite the appreciable
overhead, the time it takes for the procedure to run is nearly linear on the
number of queries in the workload. Moreover, most of the overhead in time
is due to the materialization of the selected views in the underlying storage
technology, while the time spent in the actual analysis of the workload is
relatively negligible.
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On the other hand, when examining the effect of using the resulting materi-
alized views on the query latency and workload execution time, there is an
evident and substantial improvement considering a drop in query latency
ranging from 80% to 99.99%, and a decrease in the WET of 40% to 75%
depending on the view coverage of the workload. However, there are cases
where maximizing the query coverage of the derived views might lead to a
prohibitively large storage overhead critically impacting the relative benefit
of using materialized views. By leveraging on the iterativity inherent to
the dynamic data transformation framework introduced at the beginning of
section 2.3, it is possible to cope with the stated limitation, considering the
following extra steps:

First iteration, before materializing a selected view:

1. Estimate the maximum size of the view as the product of the cardinal-
ities of the attributes listed under the group-by clause of its definition.

2. When the estimated size is comparable to the amount of records of the
fact table, partition the view on the attribute with the less cardinality,
this way ending up with a set of size-bounded child views.

Subsequent iterations:

1. In the query translation component, anytime an incoming query matches
a partitioned view rewrite it into several sub-queries targeting each
one a different partition. Then, run such sub-queries concurrently
and aggregate their result sets.

2. Identify hot regions in the available materialized views (i.e. sets of
tuples that get queried the most) leveraging on the continuous moni-
toring of the incoming queries.

3. Use horizontal partitioning on the views to set apart the hot regions
from the remaining tuples.

4. Keep track of the hit ratio5 of each materialized view and its cor-
responding partitions to eventually dispose of those views/partitions
that seldom get queried.

The above procedures configure a practical maintenance strategy that allows
to address the storage overhead constraints and maximize the benefit of the

5Ratio of the number of queries answered by the view/partition to the total number
of queries in a certain period of time
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materialized views the view selection mechanism comes up with. This strat-
egy is currently under development and its integration to the mechanism
proposed in this chapter has been deferred to future work.

2.7 Conclusions and Future Work

Organizations nowadays face a daunting challenge when trying to make
sense of the massive and ever-growing amount of data generated in their
day-to-day operation. Being able to conduct ad-hoc querying and get visual
insights from such data in an efficient and timely manner is key for business
to support their decisions. In this regard, this chapter describes an approach
for automatically generating materialized views to speed up data retrieval
on dimensionally modeled datasets. The proposed approach has been con-
ceived as part of a framework for dynamic data transformation intended to
generate read-optimized data schemas, and relies on syntactic analysis of
query workloads issued against the data collection. The developed method
provides a way to estimate how similar two queries are, and put together
clusters of related queries based on said estimation. Then, the method is
able to tell out of those clusters which ones are worth materializing—based
on consistency and query coverage criteria—and derive a view definition for
each materializable cluster, based on the queries they group.

The experimental evaluation conducted on a proof-of-concept implementa-
tion was focused on measuring the overhead the proposed view selection
method entails and contrasting it to the relative benefit it brings in return.
Results show that in general such processing overhead pays off in query
latency, leading to a drop ranging from 80% to 99.99% at the expense of
13% of the disk space used by the base dataset for persisting the derived
materialized views. The evaluation also reported a few open challenges of
the proposed approach when it comes to finding an adequate level of query
coverage, so that the storage overhead due to the views does not compro-
mise the benefit of using them. To deal with the declared limitation a
preliminary view maintenance strategy was outlined, resorting to the itera-
tive optimization of the available views by using horizontal partitioning and
keeping track of their usage patterns over time.

In consequence, upcoming work on this research will extend the current
view selection mechanism with the view maintenance strategy described
earlier and evaluate its impact on query performance. Additionally, the
dynamic data transformation framework—that lays the foundations for the
approach proposed in this chapter—will be further developed to relax the
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assumption of temporary immutability of the base dataset, and also incor-
porate polyglot persistence (i.e. intelligently scatter data over multiple data
store technologies).

Acknowledgements

This work was supported by the Research Foundation Flanders (FWO)
under Grant number G059615N - "Service oriented management of a virtu-
alised future internet".

Addendum

Note on the storage cost: It is well known that view materialization
entails a processing and storage overhead. One of the assumptions
made by the mechanism proposed in this chapter to identify and ma-
terialize candidate views states that latency improvement is favored
over storage costs (cf. section 2.3.2). Said assumption should not
be taken as meaning that the storage overhead is not a concern for
the view selection mechanism, otherwise the system might as well
create one view for each of the statements in the workload. Quite
conversely, by discovering groups of similar queries and deriving rep-
resentative view definitions out of said groups, the method presented
in this chapter aims at identifying a limited set of views that can serve
as many queries from the workload as possible. In that sense, while
the proposed view selection mechanism does not intend to achieve the
optimal trade-off between query processing cost and storage overhead,
it does attempt to reduce the amount of views materialized for a given
workload.

Note on scalability : Concerning the related approaches, one of the main
issues identified in this chapter is their lack of scalability (section 2.2).
The experimental evaluation conducted on the view selection mech-
anism shows that the proposed method responds better than similar
solutions to the increase in the workload size (Figure 2.7). However,
these results might be deemed as providing an incomplete picture of
the scalability of the proposed approach, especially considering that
tests were made on a setup with two instaces of conventional Post-
greSQL servers. In this sense, the work presented in Appendix A of
this dissertation elaborates on the applicability of the devised view
selection mechanism to a scenario with distributed data storage, us-
ing an infrastructure based on the Apache Hadoop framework with
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Apache Spark for data ingestion and query processing. Moreover, the
evaluation conducted in this environment allowed estimating the per-
ceived benefits and costs of the proposed approach as the volume of
records in the base dataset increases. While the obtained results show
that devised mechanism can substatially reduce the query processing
time for distributed data collections, challenges concerning the main-
tenance and incremental update of the derived materialized views are
still to be addressed.

Note on database performance tunning and indexes: The original
manuscript this chapter is based upon does not report some relevant
details concerning the configuration of the database and the indexes
used in the experimental evaluation. On the one hand, no performance
tuning was conducted on the data stores, thus default configuration
parameters were used for both instances of PostgreSQL. On the other
hand, only conventional B-tree indexes were created on each of the
primary keys of the entities composing the SSB data schema. In this
regard, it would be certainly possible to further improve the perfor-
mance of analytical queries running against the base data collection
by using data structures such as Bitmap indexes on low-cardinality
attributes [41].
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3
Explora: Interactive Querying of

Multidimensional Data in the Context

of Smart Cities

The methods presented in the previous chapter assumed the dataset to be
temporarily immutable. The approach presented in this chapter relaxes said
assumption and introduces Explora, a data processing framework able to
precompute the results of recurrent queries on an ever-growing dataset gen-
erated by sensors deployed in a smart city environment. The motivation
behind Explora consists in enabling low latency querying for interactive
data exploration applications on top of live datasets. In that sense, this
framework incorporates a processing pipeline that incrementally computes
continuous views over the stream of data. These views are optimized to
serve queries representing common interaction patterns adopted by users of
this kind of applications. Besides elaborating on the architecture and de-
sign decisions of the proposed approach, this chapter presents two proof-of-
concept implementations of Explora operating on data from a real smart
city setup. The performance evaluation conducted in these implementations
shows a substantial reduction in query response time in contrast to queries
running on the collection of raw sensor measurements.

⋆ ⋆ ⋆
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Abstract Citizen engagement is one of the key factors for smart city initia-
tives to remain sustainable over time. This in turn entails providing citizens
and other relevant stakeholders with the latest data and tools that enable
them to derive insights that add value to their day-to-day life. The massive
volume of data being constantly produced in these smart city environments
makes satisfying this requirement particularly challenging. This chapter in-
troduces Explora, a generic framework for serving interactive low-latency
requests, typical of visual exploratory applications on spatio-temporal data,
which leverages the stream processing for deriving—on ingestion time—
synopsis data structures that concisely capture the spatial and temporal
trends and dynamics of the sensed variables and serve as compacted data
sets to provide fast (approximate) answers to visual queries on smart city
data. The experimental evaluation conducted on proof-of-concept imple-
mentations of Explora, based on traditional database and distributed data
processing setups, accounts for a decrease of up to 2 orders of magnitude
in query latency compared to queries running on the base raw data at the
expense of less than 10% query accuracy and 30% data footprint. The
implementation of the framework on real smart city data along with the ob-
tained experimental results prove the feasibility of the proposed approach.

3.1 Introduction

The increasing pervasiveness of data in the world is currently leading to
a new era of human progress, which has been referred to as the Fourth
Industrial Revolution. As part of this new dynamic, initiatives in the context
of smart cities have emerged, aiming at harnessing the power of data to
connect with citizens, to build public awareness, to drive urban development
and local public policy, and to answer pressing problems such as how to
lighten the huge strain that human development has historically placed on
the environment and Earth’s natural resources. The burgeoning information
technology (IT ) industry has played a major role in bringing forth these
kind of initiatives: big data, Internet of Things (IoT ), and cloud computing
technologies are at the core of the smart city strategies being implemented
nowadays around the world [1].
Harrison et al. [2] argue how, by building on the advances in IT, the tra-
ditional physical city infrastructure is extended to an integrated framework
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allowing cities to gather, process, analyze, and make decisions based on de-
tailed operational data. These authors define smart cities through three IT
aspects:

• Instrumented systems that enable capturing live real-world data de-
scribing the operation of both physical and virtual systems of the city
(sensors, smartphones, cameras, and social media, among others.)

• Interconnected systems enabling the instrumented systems to com-
municate and interact not only among themselves but also with the
multiple IT systems supporting the operation of the city’s services.

• Intelligent systems able to analyze, model, and visualize the above
interconnected data and to derive valuable insights that drive deci-
sions and actions to optimize the operation of the city’s services and
infrastructure.

Aligned with these aspects, many cities around the world have committed
a large amount of resources involving both public and private investment
in an effort towards the realization of the smart city vision, yet only few of
these initiatives have attained a level of maturity to remain sustainable over
time. Research states that one of the key requirements and major challenges
for ensuring the sustainability of smart city projects lies in achieving citizen
engagement, that is getting communities involved as prosumers of the city’s
data and services [3–5]. This in turn involves providing citizens and other
relevant stakeholders with prompt and reliable access to smart city data,
enabling them to contribute to the construction and further development of
the abovementioned city’s intelligent systems.
In this context, data management systems are required to handle the mas-
sive amounts of data being continuously generated by smart devices. Typi-
cally, said data is defined by spatio-temporal dimensions, e.g., weather, air
quality, traffic congestion, parking availability, social media streams, etc.
Coping with this large volume of spatio-temporal information while support-
ing time critical end-user applications—such as those enabling responsive
data exploration and visualization—is essentially a big data problem that
exceeds the ability of traditional offline data processing methods [6, 7]. The
nature of this data and requirements of the stated problem call for a more
proactive approach where data is processed during ingestion in response to
recurrent user requests, instead of waiting for it to be accumulated and
persisted into an ever-growing database to make it queryable [8, 9].
In that sense, the work reported in this chapter aims at answering the
research question on how to serve common data exploration tasks over live
smart city data coming from nonstationary sensors under interactive (low-
latency) time constraints. To address the stated aim, the approach presented
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herein explores the use of stream processing over the sequence of readings
coming from mobile sensor devices deployed in an urban environment to
aggregate the data of those readings into rich summaries for further querying
and analysis. The motivation behind this is two-fold:

1. Typical visual exploration applications for this kind of georeferenced
time series present users with a sort of dashboard containing a map
and a number of controls allowing them to perform visual queries on
said data on a per region (e.g., by interacting with the map) and a per
time period (e.g., by setting an interval of dates) basis [10]. However,
these applications are not able to deliver sensible and predictable re-
sponse times when operating over highly dynamic data such as the raw
readings coming from smart city sensors due to its unbounded size:
queries can take from several seconds to minutes over a few million
sensor measurements. Considering that these queries define restric-
tions on the spatial and temporal dimensions of data, it is appealing
to establish a fragmentation strategy over these two dimensions in
order to reduce the cardinality of the search space by computing con-
tinuous data summaries. These summaries amount to a fraction of the
number of raw observations, allowing data exploration applications to
remain responsive to user queries at the expense of some accuracy.

2. These summaries being proactively derived out of the incoming stream
of sensor readings enable data management systems to provide client
applications with information about the current state of the measured
variables without incurring expensive scan operations over the whole
raw data. For said summaries to be relevant, frequent user requests as
well as interaction patterns when visually exploring spatio-temporal
data should be considered to drive the design of the stream processing
pipeline and should determine which technologies could support its op-
eration. By abstracting a generic framework embracing these require-
ments, it is possible to test to what extent existing data technologies
support time-sensitive applications and to estimate their limitations
in terms of scalability and reliability.

Aligned with these considerations, the main contributions of the work intro-
duced in this chapter are (1 ) the formulation of a technology-agnostic ap-
proach for the continuous computation of data summaries over a live feed of
sensor readings by applying a spatio-temporal fragmentation scheme to the
sequence of observations, (2 ) the formal definition of a uniform interface for
querying said summaries based on recurrent user interaction patterns, and
(3 ) the realization of the proposed approach by implementing a complete
stream processing pipeline able to operate over real-world sensor readings
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coming from a smart city setup deployed in the city of Antwerp in Bel-
gium. For this, a number of existing open source data technologies running
on commodity hardware have been used, being able to test their ability to
serve visual exploration applications under different configurations. Results
show that, by implementing the proposed continuous aggregation approach
on centralized and distributed data stores, it is possible to outperform a tra-
ditional time series database bringing down query response times by up to
two orders of magnitude and reaching sub-second performance for requests
made over one year’s worth of data (nearly 14+ million observations). This
document provides a detailed description of the components and design de-
cisions behind the definition of this approach. Section 3.2 addresses the
related work. Section 3.3 focuses on the main contribution of this work
and elaborates on the framework for supporting data exploration on spatio-
temporal data through continuous computation of data summaries. Section
3.4 describes the implementation of the proposed approach, while Section
3.5 discusses the experimental setup and results. Finally, conclusions and
pointers towards future work are provided in Section 3.6.

3.2 Related Work

Recent surveys on big spatio-temporal data by Yang et al. [11] and He et
al. [12] argue that most of the existing tools for visual exploration serve a
single specific use case, acknowledging the need for more flexible data visu-
alization approaches that allow users to examine the behavioral changes in
the information over the temporal and spatial domains while having sensible
storage requirements and improving query performance. The approach de-
scribed in this chapter has been precisely formulated to comply with those
requirements, considering smart cities as a meaningful use-case scenario.
This section discusses existing literature regarding spatio-temporal data
management, visual exploratory analysis on smart city data, and big data
frameworks for smart cities.

3.2.1 Spatio-temporal Data Management

The problem of speeding up spatial queries has been studied extensively
from the data management perspective. Ganti et al. [13] propose MP-
trie, a mechanism that reduces the problem of spatial indexing to that of
prefix-matching over binary strings by encoding spatio-temporal data into
a data structure they call Space-Time Box (STB) [14]. According to the
authors, MP-trie provides a 1000× performance improvement over tradi-
tional indexing approaches (specifically R*-tree [15]), though it only reaches
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said performance when implemented using hardware acceleration (ternary
content-addressable memory or TCAM [16]). MP-trie is described as an
indexing mechanism intended to speed up spatial queries such as finding all
the objects within a distance r from a point p (range queries) or finding
the top-K nearest neighbors from p (kNN queries). Similarly, SATO [17]
and AQWA [18] proposed by Vo et al. and Aly et al., respectively, are two
data-synopsis-based mechanisms aiming at finding the optimal partitioning
scheme in order to lower the response time of spatial queries in distributed
spatial datasets. However, these and other similar approaches dealing with
spatial indexing and partitioning [19–21] overlook the temporal dimension of
the data typical of smart city applications and, in consequence, might fall
short in supporting requests intended to explore the historical behaviour
from a given sequence of observations.
This issue has also been addressed in the context of Wireless Sensor Net-
works (WSN). Wan et al. [22] present a promising technique for high-
dimensional indexing of the sensor data produced within large WSNs, based
on the Voronoi Diagram data structure. The mechanism that Wan et al.
propose includes a hierarchical in-network storage which is capable of an-
swering different range monitoring queries, based on the devised indexing
scheme. However, given the restrictions in terms of power, storage, and com-
puting resources typical of WSN nodes, pushing a large volume of queries
down to the sensing devices for processing could compromise the availability
of the network. The approach proposed in this chapter deals with deliver-
ing interactive-level performance for basic exploratory tasks. In this use
case, it is not uncommon to serve multiple users, each one issuing several
queries during a session of data exploration, which would entail a prohibitive
computational expense for a WSN.

3.2.2 Visual Exploratory Analysis on Smart City Data

Research on visualization techniques for interactive exploration of smart city
data is mainly focused on enhancing user experience by providing them with
responsive client-side applications. Doraiswamy et al. [10] proposed Raster
join, a technique to speed up spatial join queries supporting the interactive
exploration of multiple spatio-temporal data sets at the same time. The
Raster join technique—that leverages current generation graphics process-
ing units (GPU)—was integrated to Urbane [23], a 3D visual framework to
support the decision making for designing urban development projects. By
integrating the proposed technique, Urbane is able to handle requests over
hundreds of millions of observations with nearly sub-second performance.
Similarly, Murshed et al. [24] introduced a web-based application for analy-
sis and visualization spatio-temporal data in smart city applications called
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4D CANVAS. This application enables users to perform interactive explo-
ration on both space (3d) and time dimensions over a data set stored on disk
by leveraging on a WebGL-based framework known as Cesium [25]. Also,
under these visual data exploration approaches, Li et al. developed SOVAS
[26], a visual analytics system for query processing of massive array-based
climate data, which works on top of Hadoop and provides an SQL-based
language for users to express their information needs and to conduct spatial
analytics tasks. One common feature platforms described in this section
(and related solutions like References [27, 28]) that does not incorporate is
the ability to process data in a streaming format. These solutions expect
the spatio-temporal data they operate on to be residing on the file system
(whether local or distributed), some of them requiring additional offline
preprocessing to be able to deliver the functionality they advertise.

In contrast to the approaches above, Cao et al. present a visual interactive
system known as Voila [29], able to process a stream of traffic flow data and
to assist users in detecting anomalous events. Voila assigns an anomaly
score for a given region at a certain point in time by examining changes in
patterns’ occurrence-likelihoods. Then, users can indicate whether the sys-
tem has accurately identified anomalous events, and Voila incorporates their
judgement, recomputing the anomaly scores by using a bayesian approach.
In the same vein, Chen et al. proposed ADF [30], an open framework
for anomaly detection over fine particulate matter measurements (PM2.5),
coming from a network of low-cost sensors rolled out on an urban environ-
ment. The ADF framework is able to identify spatio-temporal anomalous
sensor readings as new data comes in, thanks to a statistical-based method
called time-sliced anomaly detection (TSAD), which thrives on contrasting
the readings from each sensing device with those from neighboring sensors
to detect and label atypical observations. While the systems proposed by
Cao et al. and Cheng et al. were designed with the anomaly-detection
use case in mind, the approach described herein was devised for serving a
more general purpose, i.e., enabling basic exploratory analysis tasks on live
smart city data—regardless of the kind of environmental information being
ingested, the number or type of sensor devices, or their location (fixed or
mobile)—considering both spatial and temporal data dimensions under in-
teractive response time constraints. It is worth mentioning that one of the
main features of the approach introduced in this chapter is that of being
an extensible, technology-agnostic data analysis pipeline, and as such, it
would be able to integrate the anomaly detection methods implemented in
systems like Voila and ADF while offering interactive querying capabilities
over their resulting outcome.
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3.2.3 Big Data Frameworks for Smart Cities

As stated earlier, handling spatio-temporal data in the context of smart
cities is inherently a big data problem which has become a prolific research
field over the last few years. This section addresses some recent advances
and initiatives in this regard. Osman A. proposes the Smart City Data
Analytics Panel (SCDAP) [31], a framework for big data analytics tailored
to the specific requirements of smart city environments. SCDAP has been
laid out in a 3-layered architecture encompassing multiple stages in the data
analysis pipeline ranging from data acquisition, cleansing, and transforma-
tion to online and batch data processing, including the management and
aggregation of data analysis models serving smart city applications. The
author outlines a prototype implementation of a big data analytics platform
adopting the artifacts defined in SCDAP, using a number of existing open
source technologies. However, no indication is provided w.r.t. its actual
application and performance on real or synthetic smart city data.
Badii et al. [32, 33] introduce Snap4City, a visual programming environment
along with a suite of microservices allowing users to create event-driven IoT
applications in the context of smart cities. The platform runs on top of
Node-RED [34] and offers a comprehensive set of visual constructs through
which users can assemble complex data flows supporting smart city applica-
tions (dashboards, route planning, data analytics, etc.). Another platform
intended to facilitate the development of smart city applications is InterSC-
ity proposed by Del Esposte et al. [35]. InterSCity also advocates for a mi-
croservice architecture and provides a Web service middleware that enables
the integration of heterogeneous IoT devices, services, and resources. While
enabling interactive data exploration is not the main concern of platforms
like Snap4City, InterSCity, and other similar approaches [36], their focus
on microservices allows for the integration of data management solutions
like the one presented in this chapter, aiming at supporting time-sensitive
smart city applications.
Aguilera et al. [37] propose IES Cities, a data integration platform that
enables the creation of citizen-centered applications in the context of smart
cities. This approach is founded on the premise that the smart city vi-
sion should be achieved through the organic coalescence of government data
(linked open data), IT infrastructure in place throughout the city (IoT ), and
citizen initiative and contributions mediated through smartphone applica-
tions (crowd-sourced data). While the IES Cities platform is able to inte-
grate smart city data sourced in structured formats such as RDF, JSON,
and CSV and relational databases, it does not specifically tackle the issue of
enabling interactive data exploration over live streams of spatial-time series
data being continuously produced within a smart city environment.



Explora: Interactive Querying of Multidimensional Data 61

3.3 Explora: Interactive Exploration of
Spatio-temporal Data Through Continu-
ous Aggregation

The previous section discussed existing approaches addressing the issue of
handling spatio-temporal data to support visual exploratory applications
in the context of smart cities. Most of the studies in this review tackle
specific aspects of the problem, neglecting in some cases the time dimen-
sion of the data; others deal with mechanisms for optimizing display and
interaction features, but fall short when processing data as it comes in; and
others are concerned with frameworks and guidelines for building smart
city applications from the perspective of big data. The proposal addressed
in this chapter builds on top of the mentioned approaches and introduces
a generic framework called Explora (Efficient eXPLORation through
Aggregation) intended for speeding up spatio-temporal queries supporting
visual exploratory analysis conducted on mobile sensor data. This section
discusses the key requirements and features driving the design of the devised
framework, then introduces the enabling techniques adopted to support the
framework requirements, elaborates on the framework components and ar-
chitecture, and finally details the formal definition of the data processing
pipeline lying at the core of the framework.

3.3.1 Framework Requirements and Features

User interaction patterns typical in visual data exploration have been iden-
tified in a former study by Andrienko et al. [38], distinguishing two main
categories of exploratory actions on spatio-temporal data: (i) elementary
tasks, aiming at describing the state of the observed variable(s) at a par-
ticular instant (time) over a given region (space), and (ii) general tasks,
intended for describing how the state of the observed variable(s) in a given
region (space) changes over time. By composing these basic tasks, it is pos-
sible to support more elaborate workflows to help answer different questions
about the data at hand. This is why the set of categories by Andrienko et
al. has become commonplace benchmark tasks to assess the quality of user
interactive exploration on spatio-temporal data [39]. On the other hand, a
related study by Liu and Heer [40] addressing the effects of latency on visual
exploratory analysis states that high delay reduces the rate at which users
make observations, draw generalizations, and generate hypotheses. Consid-
ering these findings, two key requirements have been derived to drive the
design of the Explora framework proposed herein:
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R3.1 Support elementary and general visual exploratory tasks on spatio-
temporal data generated by mobile sensors in a smart city setup.

R3.2 Provide fast answers (sub-second timescales as target) to queries
serving the two basic visual exploratory tasks stated in R3.1.

In addition to these key requirements—and following the steps of several of
the big data frameworks for smart cities discussed earlier in this document—
a microservices approach has been adopted to profit from features such as
modularity, extensibility, and scalability. As a generic framework, Explora

should be able to incorporate different sources of sensor readings as well as
multiple methods for storing, partitioning, and querying said data. Micro-
services advocate for establishing a clear separation of concerns and for
identifying the functional building blocks that support the framework capa-
bilities. This componentization facilitates the overall system development
and deployment and further promotes other appealing features such as ex-
tensibility and maintainability, reducing the amount of effort required to
introduce modifications, since it would involve making said changes to cer-
tain individual microservices.

Likewise, an implementation of Explora should be flexible enough to cope
with the increasing volumes of sensor data coming in as well as seasonal load
variations (e.g., user activity and data influx are expected to peak during
certain time periods). The effective modularization into independent de-
ployable components enables these implementations to elastically react to
system load; this is, they are able to dynamically scale-up or down the num-
ber of microservice instances they need to efficiently deal with the volume
of requests at a given moment.

Lastly, as a consequence of adopting a microservices approach, the Ex-

plora framework benefits from two other highly desirable features, namely
availability and portability. By relying on microservices, the framework com-
ponents are designed to be self-contained and interchangeable, which helps
in timely spotting system failures when they occur, introducing changes to
the relevant components and redeploying them without incurring in any ma-
jor system downtime. Microservices also encourage the use of well-defined
interfaces exposing the capabilities of each component and mediating the
interaction with other system modules and the underlying infrastructure.
This way, as long as modules comply to said interfaces, details such as the
language they are written in and the software frameworks they use are not
relevant.
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3.3.2 Enabling Techniques

To comply to the committed requirements, the Explora framework relies
on two enabling techniques: query categorization and data synopsis.

3.3.2.1 Query Categorization

Requests serving elementary and general exploratory tasks (requirement
R3.1) query spatio-temporal data on different attributes and satisfy dif-
ferent information needs. When conducting elementary tasks, users are
interested in visualizing the state of the observed variable over a particular
region at a given moment in time. For instance, a user might want to know
the concentration of particulate matter (PM) over their neighbourhood dur-
ing peak hours. Queries serving these kind of tasks expect the requested
time (in terms of timestamps) and the geographic area of observation (in
terms of longitude and latitude) as input parameters and provide as output
a sort of snapshot accounting for the value of the observations aggregated
over discretized units of space covering the region of interest. Typical ex-
amples of the kind of visualizations that might be presented to the user
as a result of these elementary exploratory tasks are the choropleth maps
shown in Figure 3.1. Queries falling into this category have been labeled as
Snapshot-temporal queries (ST).

Figure 3.1 Examples of visualizations expected from an elementary ex-
ploratory task: These choropleth maps show the concentration of nitrogen
dioxide (NO2) over the city of Antwerp, BE through a one-month period.
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On the other hand, the intent behind general exploratory tasks consists in
comparing the state of the observed variable over a given region along dif-
ferent points in time. Users might conduct these kind of tasks, for instance,
by selecting an arbitrary geographic area on a map and by choosing the pe-
riod of time they are interested in reviewing. This way, queries supporting
general exploratory tasks expect as inputs a specification of the region of
interest along with the inspection time period and yield as answer the value
of the observed variable aggregated over discretized units of time (minutes,
hours, days, etc.), revealing the historical behaviour of the measured vari-
able. Queries belonging to this category are referred to as Historical-spatial
queries (HS). Figure 3.2 below outlines a common outcome of a general
exploratory task.

Figure 3.2 Example of a general exploratory task: (a) the visual query
prompted by the user: How have the NO2 emissions historically evolved
within the traced perimeter? (b) Three time series charts reporting on the
concentration of the NO2 over the past one hour, 24 h, and one week.
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(b) Time series corresponding to the se-
lected region.

It is worth noting that a general exploratory task can be fulfilled as well
by sequentially executing multiple elementary tasks. Consider for instance
the case in Figure 3.3, where a progression of choropleths is displayed, as
the result of running a series of snapshot-temporal queries requesting the
state of the observed variable over several months. While in practice this
sequence of requests serve a general task intent, in cases like this, the pro-
posed framework deals with each individual query in isolation, regardless of
the overall purpose of the exploratory task.
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Figure 3.3 Example of a general exploratory task as a composite of mul-
tiple elementary tasks.

3.3.2.2 Data Synopsis and Spatio-temporal Fragmentation

Both historical-spatial and snapshot-temporal queries are expensive and
time-consuming when running on large spatio-temporal data, since they in-
volve executing demanding scan, sort, and aggregate operations. Reducing
the data-to-insight time in visual exploratory applications requires speed-
ing up this kind of query (requirement R3.2). The temporal and spatial
dimensions of smart city data along with the specific features of HS and ST

queries make this problem appealing for synopsis data structures [41]. Syn-
opsis structures are by definition substantially smaller than the base data
set they are derived from. They represent a summarized view of the original
data intended to serve certain predefined types of queries. In a streaming
setting, synopsis structures are created as data comes in; this way, users
can submit queries on the data stream at any point in time and get prompt
(and often approximate) answers based only on the data available thus far
in the synopsis structures.
As stated in the previous section, the outcome of queries supporting vi-
sual exploratory applications is typically delivered in discretized units of
time (HS queries) or space (ST queries). Explora takes advantage of such
discretization to assemble synopsis structures—namely, continuous views—
that are incrementally computed as new sensor observations arrive. Con-
sider the choropleth maps presented back in Figure 3.1, reporting on the
concentration of nitrogen dioxide (NO2) over the city of Antwerp, Belgium,
for a period of one month. To build these visualizations, raw sensor readings
occurring during the requested period are aggregated according to the spa-
tial fragment (i.e., tile/street-block) which they fall into. Then, the value of
said aggregate is encoded in the color displayed for each fragment, providing
the user with insight about the state of the observed variable. Similarly,
the time series charts shown in Figure 3.2b are laid out by aggregating raw
observations into specific time resolutions or bins (i.e., minutes, hours, and
days) in correspondence to the time said observations occurred. Instead of
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computing these aggregates on request over the raw sensor observations,
Explora sets a spatial fragmentation scheme upfront and applies multiple
aggregate operations (e.g., average, sum, and count) for a number of time
resolutions (from one-minute to monthly) over the incoming stream of sen-
sor readings. The collection of aggregates corresponding to an individual
spatial fragment over a single time bin has been labeled as data summary.
This way, continuous views are assembled for each of the supported time
resolutions by persisting the resulting data summaries into an structure that
can be seen as a sort of dynamic spatio-temporal raster. Figure 3.4 below
shows a schematics of this structure, in which a regular tile grid is used as
spatial fragmentation strategy for illustrative purposes.

Figure 3.4 Spatio-temporal fragmentation for continuous computing of
data summaries.
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Notice that, regardless of the volume of sensor readings being ingested, the
size of the continuous views only depends on the size of the spatial frag-
ments and time bins being used, this is, the lower the resolution of the
spatio-temporal fragmentation scheme, the smaller the size of the corre-
sponding view. By querying these synopsis structures instead of the raw
sensor data, users of visual exploratory applications can experience a more
responsive feedback at the expense of some accuracy. It is worth noting as
well how, thanks to the way these continuous views are structured, answer-
ing HS and ST queries comes down to cutting longitudinal (i.e., along the
time axis) and transverse slices (i.e., along the longitude/latitude plane),
respectively, and further aggregates their constituent data summaries after-
wards, as illustrated below in Figure 3.5.
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Figure 3.5 Query resolution on continuous views: The diagram on the left
describes an HS query requesting the historical behaviour of the observed
variable over Qregion, while the one to the right shows an ST query requesting
the state of the observed variable at instant Qtime = t2.
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3.3.3 The Explora Framework: Components and Ar-
chitecture

This section deals with the definition of the framework’s building blocks and
how they fit together to meet the requirements stated earlier. As Figure 3.6
illustrates, the Explora framework adopts a layered architecture approach,
where functional modules are organized into logical tiers, namely processing
on ingestion, storage, query processing, and serving layers. Besides these
functional layers, three supporting layers are defined for decoupling the sys-
tem from the available sensor data sources (event log) and for providing
monitoring capabilities and infrastructure resources for the components in
the functional tiers to operate with (performance monitoring and container
orchestration). The description of these layers and their associated compo-
nents is addressed next.

Event log This layer serves as an interface between the framework and
the sensor data providers. It collects the raw sensor data and hands
it over to the upper layers for scalable and reliable consumption and
further processing. This tier can be realized through a distributed
append-only log that implements a publish–subscribe pattern, allowing
data producers to post raw sensor observations to logical channels
(topics) that are eventually consumed by client applications in an
asynchronous way.
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Figure 3.6 Components and architecture of the Explora framework.
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Processing on ingestion This layer subscribes to the event log to con-
sume the stream of raw sensor observations and processes them to
continuously generate the data synopsis structures that the framework
thrives on. The stream processing mechanism this layer implements
is subject to the particular designated spatio-temporal fragmentation
strategy and the set of supported aggregate functions used to com-
pute the corresponding data summaries. This layer represents one of
the core components of the Explora framework, as it comprises the
modules in charge of applying the ingestion procedure that will be
further discussed later in this section (Algorithm 3.1).

Storage layer This tier comprises the artifacts responsible for providing
persistent storage for both the continuous views generated in the in-
gestion layer and the stream of raw sensor observations being con-
sumed from the event log, along with the corresponding programming
interfaces (APIs) for enabling modules in adjacent tiers to conduct ba-
sic data retrieval tasks. Complex requests—such as those supporting
the elementary and general exploratory tasks discussed back in Sec-
tion 3.3.1—might be handled in cooperation with the serving layer at
the top, depending on querying capabilities offered by the data storage
technologies implemented in this layer.
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Serving layer This tier provides an entry point for visual exploratory
applications to interact with the framework and to access the avail-
able sensor data. The serving layer implements a uniform API allow-
ing client applications to issue historical-spatial and snapshot-temporal
queries against the data persisted in the storage layer (both raw obser-
vations and continuous views). Depending on the storage technologies
used in the underlying storage layer, the serving tier might also take
part in the query resolution process. This is why query processing is
represented as a separate layer, sitting in between the two upper tiers.

Query processing As stated above, responsibilities of this tier overlap
those from the contiguous layers (serving and storage). The processing
performed in this layer supports query answering for both historical-
spatial and snapshot-temporal inquiries (according to the procedures
detailed in Algorithms 3.2 and 3.3, discussed later in Section 3.3.4).
Where this processing takes place is determined by the capabilities
of query API provided by the data storage being used. Thus, for
instance, a data store offering an expressive SQL interface would be
able to handle most of the query processing tasks, while a typical key-
value store offering simple lookup operations would require a large
part of the query processing to be performed programmatically in the
serving layer.

Container orchestration All the functional components of the Explora

framework are implemented as containerized microservices. The con-
tainer orchestration layer is in charge of the automatic deployment,
scaling, load balancing, networking, and life-cycle management of the
containers that these components operate on. Examples of existing
technologies able to support the functionality required from this layer
are Kubernetes [42]—deemed as the de facto standard for container
orchestration to date—OpenShift [43], and Apache Mesos [44].

Performance monitoring The role of this layer is to keep track of a
number of metrics accounting for the computing requirements (mem-
ory and CPU usage) and overall performance of a system implement-
ing the Explora framework (query response time and accuracy). To
that end, this layer relies on tools provided by the container orches-
trator, the operating system, and third-party libraries for statistical
analysis and data visualization. Performance information such as that
reported later in Section 3.5 is compiled in this layer.
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Client applications Finally, visual exploratory applications consume the
API available through the serving layer to support different data
exploration use cases based on the two abstracted categories of ex-
ploratory tasks: elementary and general. Section 3.4 provides a num-
ber of examples of said use cases, presented as part of proof-of-concept
implementations of the proposed framework.

3.3.4 The Explora Framework: Formal Methods and
Algorithms

The formal definition of the query resolution mechanism along with the
ingestion procedure at the core of the Explora framework are detailed
next.

3.3.4.1 Data Ingestion: Continuous Computation of Data Syn-
opsis Structures

Let us represent a mobile sensor observation (reading) as the following tuple:

r = 〈t, x, y, s, v, a0, a1, . . . , an〉 (3.1)

where t is the timestamp indicating when the observation was made, x and
y being respectively the longitude and latitude where the observation took
place; s is the observed (sensed) variable; v is the observed value as measured
by the sensor; and ai is additional attributes and metadata (device identifier,
measurement units, etc.).
Then, a continuous view for a given observed variable, s, can be represented
as a function V that maps a spatial fragment, φ, and a temporal bin, τ , to
its corresponding data summary σ (collection of aggregates), as follows:

V〈s,Φ,Ω〉 : (φ, τ) 7→ σ; σ = {σAVG, σSUM, σCOUNT, . . . } (3.2)

where φ is one of the discretized units of space into which a geographic
area is partitioned, according to a certain spatial fragmentation strategy Φ

(e.g., tiles, hexagons, street blocks, etc.) and τ identifies one of the temporal
buckets resulting from setting a regular frequency, Ω, at which the incoming
sensor observations are aggregated (e.g., minutely, hourly, daily, etc.).
Similarly, the mechanism for assigning a sensor observation r to its cor-
responding data summary can be defined as a function F that takes the
spatial and temporal attributes from r and returns the spatial fragment
and temporal bin identifying the data summary to which r belongs:

F : r〈t, x, y〉 7→ (φ, τ) (3.3)
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With these definitions in place, the formal procedure for data ingestion in
Explora is presented below in Algorithm 3.1. The process starts by first
setting a spatial fragmentation strategy (Φk), a frequency of aggregation
(Ωk), and a set of aggregate methods to be supported (Σk) (lines 3–6).
Then, persistent storage for a new continuous view is allocated (assuming
it does not exist yet) (line 7), and the sensor observations coming from a
stream S are taken in, one after the other. To determine the data summary
into which each sensor reading has to be aggregated, the spatial fragment
and temporal bin are computed by applying the function F on each of the
incoming readings. With this input, the corresponding data summary is
retrieved from the view (lines 9 and 10). Then, the collection of aggregates
from the data summary gets updated and the changes are persisted in the
continuous view (lines 11–19). In practice, the type of each one of the aggre-
gate functions in Σk (i.e., distributive, algebraic, or holistic [45]) determines
how the update procedure in line 16 is implemented. Later, in Section 3.4,
two prototypes are presented for illustration and proof of concept.

Algorithm 3.1 Explora ingestion procedure.
1: Let S be a stream of sensor observations of a variable ŝ
2: S = {r0, r1, r2, . . . }; ri = 〈ti, xi, yi, ŝ, vi, a0i, a1i, a2i, . . . 〉 ⊲ Unbounded set of sensor

readings
3: Let Φk be a spatial fragmentation strategy
4: Φk = {φ0, φ1, φ2, . . . , φn}
5: Let Ωk be the frequency of aggregation ⊲ e.g. minutely, hourly, daily
6: Let Σk be a set of aggregate operations ⊲ e.g. AVG, SUM, COUNT
7: Create persistent storage for view V〈ŝ,Φk,Ωk〉

8: for each reading ri in S do
9: (φi, τi)← F(ri〈ti, xi, yi〉); φi ∈ Φk ⊲ Get the spatial fragment and temporal bin

for ri
10: σi ← V〈ŝ,Φk,Ωk〉(φi, τi) ⊲ Get the data summary ri should be aggregated into

11: for each operation AGGR in Σk do ⊲ Update data summary aggregates
12: σAGGR ← σi [AGGR]
13: if σAGGR = ∅ then ⊲ If there is no aggregate for AGGR yet, then initialize it with ri
14: σAGGR ← AGGR(ri〈vi〉)
15: else ⊲ Otherwise, update the current aggregate for AGGR with ri
16: Update σAGGR with ri〈vi〉
17: end if
18: Update σAGGR in σi

19: Persist σi in V〈ŝ,Φk,Ωk〉 ⊲ Finally, update the continuous view

20: end for
21: end for

As soon as sensor observations start being ingested, Explora is capable
of processing queries issued against the continuous views. The mechanism
for query resolution varies from HS queries to ST queries. The subsections
below detail the procedure for each category of queries, starting by defining
their corresponding functions.
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3.3.4.2 Query Processing: Historical-Spatial Queries

Let us define HS—for historical-spatial queries—as a function that takes
as inputs a specification of an arbitrary polygonal selection, φq, from a 2-
dimensional map (e.g., as an array of vertex coordinates) and optionally an
interval of dates, τq〈start,end〉, and delivers as output an array containing the
data summaries aggregated over all the spatial fragments φi lying inside the
perimeter defined by φq, for all the temporal bins τi in τq:

HS
∣
∣
∣
V〈s,Φ,Ω〉

: (φq, τq〈start,end〉) 7→{〈τm,σm〉, 〈τm+1,σm+1〉,

〈τm+2,σm+2〉, . . . , 〈τn,σn〉};

τm ≥ τq〈start〉 ∧ τn ≤ τq〈end〉

(3.4)

where V〈s,Φ,Ω〉 is the continuous view that the HS function is evaluated
against and each σk is the aggregated summary that results from combining
the data summaries corresponding to the spatial fragments covered by φq,
for temporal bin τk. The procedure for deriving said aggregated summaries
is formally defined below in Algorithm 3.2.

Algorithm 3.2 Explora query processing for historical-spatial queries.
1: Let V〈ŝ,Φk,Ωk〉 be a continuous view being fed with sensor observations from a variable ŝ,

with spatial fragmentation Φk and aggregation frequency Ωk

2: Let Σk be a set of aggregate operations ⊲ e.g. AVG, SUM, COUNT
3: procedure HS(φq, τq〈start,end〉)
4: input: an arbitraty polygonal selection from a 2D map (φq) and a time interval

(τq〈start,end〉)
5: output: summary time-series (RHS)
6: Φq ← Φk ∩ φq ⊲ Get the set of spatial fragments inside φq

7: τm ← truncateΩk
(τq〈start〉) ⊲ Starting temporal bin

8: τn ← truncateΩk
(τq〈end〉) ⊲ Ending temporal bin

9: RHS ← {} ⊲ Initialize result set
10: for τi = τm to τn do
11: σi ← {} ⊲ Initialize empty aggregated summary for τi
12: for each fragment φj in Φq do
13: σj ← V〈ŝ,Φk,Ωk〉(φj , τi) ⊲ Get the data summary for φj and τi
14: for each operation AGGR in Σk do
15: σAGGR ← σi [AGGR]
16: if σAGGR = ∅ then ⊲ If there is no aggregate for AGGR yet, then initialize it

with σj

17: σAGGR ← σj [AGGR]
18: else ⊲ Otherwise, combine the existing aggregate for AGGR with σj

19: Combine σAGGR with σj [AGGR]
20: end if
21: Update σAGGR in σi ⊲ Update the aggregated summary σi

22: end for
23: end for
24: Append 〈τi,σi〉 to RHS

25: end for
26: return RHS ⊲ The time series of aggregated summaries
27: end procedure
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First, the set of spatial fragments Φq lying inside φq is computed (this op-
eration has been represented as the set intersection in line 6). Then, the
boundary temporal bins, τm and τn, are defined by truncating the τq〈start〉
and τq〈end〉 dates, respectively, according to the frequency of aggregation
Ωk (lines 7 and 8). This is, for instance, if Ωk is set to hourly, then the
dates are truncated to the exact hour (e.g., 2019-09-22T12:47:32.767Z→
2019-09-22T12:00:00.000Z). Once these time boundaries have been de-
termined, the data summaries corresponding to the fragments in Φq are
retrieved from the view and aggregated for each of the temporal bins in the
interval [τm, τn] (lines 11–21). Finally, the resulting aggregated summaries,
along with their corresponding temporal bins, are paired together and in-
crementally appended to the result set to assemble the summary time series
returned as output (RHS) (lines 24–26).

3.3.4.3 Query Processing: Snapshot-Temporal Queries

On the other hand, ST—for snapshot-temporal queries—is a function that
takes as inputs the timestamp τq at which a snapshot of the state of the
observed variable would be taken and optionally a polygonal selection, φq,
from a 2-dimensional map (if not provided, the snapshot would be computed
over the entire region for which data is available). With these inputs, ST
returns the collection of data summaries that correspond to the spatial
fragments lying inside of φq (if provided) for the temporal bin τx, where τq
falls into:

ST
∣
∣
∣
V〈s,Φ,Ω〉

: (τq,φq) 7→{〈φa,σa〉, 〈φb,σb〉, 〈φc,σc〉, . . . };

φx ∈ Φ ∩ φq

(3.5)

where V〈s,Φ,Ω〉 is the continuous view that the ST function is evaluated
against and each σx is a data summary registered under the temporal bin
τx (namely, the one τq fits into). The generic sequence of steps followed by
this function is detailed below in Algorithm 3.3. The procedure is similar
to the one defined for the HS function. It also starts by computing the
set of spatial fragments lying under the selected polygonal region and by
determining τx from the provided timestamp (τq) by applying a truncate

operation (lines 5 and 6). Then, the data summaries available in the view are
filtered, so that only those corresponding to the spatial fragments covered by
φq and registered under τx are retrieved (lines 8–14). These summaries and
their corresponding spatial fragments are coupled together and appended
to a collection of tuples (RST ), representing a temporal snapshot of the
observed variable.
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Algorithm 3.3 Explora query processing for snapshot-temporal queries.
1: Let V〈ŝ,Φk,Ωk〉 be a continuous view being fed with sensor observations from a variable ŝ,

with spatial fragmentation Φk and aggregation frequency Ωk

2: procedure T S(τq,φq)
3: input: a snapshot timestamp (τq) and a polygonal selection from a 2D map (φq)
4: output: temporal snapshot (RST )
5: Φq ← Φk ∩ φq ⊲ Get the set of spatial fragments inside φq

6: τx ← truncateΩk
(τq) ⊲ Get the querying temporal bin

7: RST ← {} ⊲ Initialize result set
8: for each fragment φx in Φq do
9: σx ← V〈ŝ,Φk,Ωk〉(φx, τx) ⊲ Get the data summary for φx and τx

10: if σx 6= ∅ then ⊲ If there is a data summary under (φx, τx)
11: Append 〈φx,σx〉 to RST

12: end if
13: end for
14: return RST ⊲ Snapshot of ŝ, over φq at τx
15: end procedure

The three algorithms formulated in this section lie at the core of Explora,
allowing for interactive exploration of mobile sensor data. It is worth not-
ing that, since these algorithms operate on discretized units of space and
time, in most of the cases, they would only manage to deliver approxi-
mate query answers; this is, the gain in speed this framework brings in
entails a loss in accuracy. Nevertheless, for use cases in visual exploratory
analysis, these estimates are able to provide relevant insights on the state
and historical behaviour of the observed variables. Later, in Section 3.5, a
metric is introduced to measure accuracy of queries issued against contin-
uous views—under several spatio-temporal fragmentation strategies—w.r.t.
queries running on the base raw data.
To recap, this section developed a thorough description of the framework
devised for enabling interactive exploration of mobile sensor data in smart
cities. It started by identifying the framework requirements and features.
Then, a description of the key techniques behind the formulation of the
proposed framework was discussed. Next, the definition of the layered ar-
chitecture adopted for the proposed framework along with the description
of its constituent modules were addressed, and finally, a comprehensive pre-
sentation of the mechanisms behind the stream processing pipeline that
enables the continuous generation of data synopsis structures as well as the
procedures defined to speed up spatio-temporal queries, which profit from
said data synopsis structures, were made.

3.4 Prototype Implementation

This section explores the applicability of the Explora framework for en-
abling interactive exploration of live and historical smart city data by har-
nessing existing open source data technologies. First, an application sce-
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nario within the context of mobile sensor data in smart cities is described.
Then, three target use cases of visual exploratory applications are defined,
incorporating the elementary and general exploratory tasks identified in the
previous section to provide more elaborate interaction workflows. Lastly,
two implementations aimed at supporting the defined use cases are detailed,
one based on a traditional spatial time-series database approach and another
using a distributed stream processing approach.

3.4.1 Application Scenario: The Bel-Air Project

Figure 3.7 Setup of air quality sensors installed on the roofs of the Bpost
delivery vans as part of the Bel-Air project.

The Bel-Air project is part of the City of Things (CoT) [46] initiative that
is being implemented in the city of Antwerp, Belgium, in a joint effort
that involves businesses, government, and academia. This initiative aims at
putting together a city living lab and technical testbed environment, which
allows researchers and developers to easily set up and validate IoT experi-
ments. Within CoT, the Bel-Air project is particularly concerned with find-
ing efficient mechanisms to accurately measure the air quality over the city.
Since the costs of rolling out a dense network of fixed sensors across a large
urban area could be prohibitively expensive, the Bel-Air project established
a partnership with the Belgian Postal service (Bpost) to attach highly sensi-
tive sensors to the roofs of the mail delivery vans that traverse the city on a
daily basis (see Figure 3.7). These sensors conduct periodic measurements
on environmental variables such as temperature, humidity, and air pollu-
tion (particulate matter, nitrogen dioxide, etc.), which are timestamped and
geotagged before being sent over the network to a persistent storage. This
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mobile sensor setup together with some additional sensors deployed at fixed
locations allow mapping the air quality of the entire city of Antwerp in a
cost-effective way.

Efficient mechanisms for visual exploratory analysis over the data delivered
by the mobile-sensor setup of the Bel-Air project can help get relevant
insights regarding the status of air quality across the urban area of Antwerp,
which would further allow to timely take the proper course of action to
mitigate the problems caused by elevated levels of pollution. This scenario
serves as the context for a proof-of-concept realization for the proposed
framework. The next section describes a number of target use cases to test
the applicability of the Explora approach.

3.4.2 Target Use Cases for Visual Exploratory Appli-
cations on Spatio-temporal Data

3.4.2.1 Visualizing the Temporal Change of an Observed Vari-
able over a Certain Region

This use case has to do with allowing users to pose visual queries aimed at
examining the historical behaviour of an air quality variable by defining a
polygonal selection on a 2-dimensional map. Queries are further parame-
terized, allowing users to specify traits such as the aggregate function they
want to be applied on the data, the time resolution (per-minute, per-hour,
or per-day) or time period (last 5 minutes, last hour, etc.) they want the
results to be displayed on, and whether the query should be issued against
the raw sensor data or run against the continuous views computed during
data ingestion. Figure 3.2 (in Section 3.3.2.1) and Figure 3.8 below portray
examples of this use case.

3.4.2.2 Progressive Approximate Query Answering

Aiming at improving the user experience in terms of perceived respon-
siveness, queries supporting visual exploratory actions can profit from the
reduced latency expected from synopsis data structures. In this sense,
users can be presented first with an approximate answer to their requests,
which then is continuously refined as time goes on, until the exact result—
computed on the raw data—is finally displayed. To this end, multiple con-
tinuous views are required to be computed during data ingestion, featuring
progressively finer geospatial resolution.
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Figure 3.8 Application allowing users to examine the change over time of
an air quality measure on a certain geospatial region: Notice at the right
hand side how tiles and street-blocks would approximate the area of the
provided polygonal selection.

Figure 3.9 Progressive approximate query answering: The approximate
time series at the top gets gradually refined until the exact answer is pre-
sented to the user.
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Consider for instance the time series charts in Figure 3.9, corresponding to
the polygonal selection in Figure 3.8 over a period of 4 months. Notice how
the resulting time series is progressively refined from the chart at the top to
the one at the bottom, which corresponds to the final exact answer derived
from the raw sensor observations.

3.4.2.3 Dynamic Choropleth Map

This use case concerns the visualization of the historical behaviour of a
given variable, this time by displaying a sequence of successive temporal
snapshots and by allowing the user to transition between them on com-
mand using interactive controls (e.g., back and forward buttons or a time
slider). An example of this use case was presented earlier in Figure 3.3
when discussing the execution of a general exploratory task as a composite
of multiple elementary tasks.

3.4.3 Proof-of-Concept Implementations of Explora

Figure 3.10 Proof-of-concept implementations of Explora.
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(a) Spatial time-series database ap-
proach.
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(b) Distributed stream processing ap-
proach.

This section describes two realizations of the Explora framework: the first
one harnesses a series of extensions of the PostgreSQL open-source relational
database management system (RDBMS), which endow this database engine
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with capabilities for efficiently storing and indexing time-series and geospa-
tial data. The second implementation draws on the distributed stream
processing engine provided by Apache Kafka [47] to process the feed of sen-
sor observations from the Bel-Air project setup. Figure 3.10 presents two
diagrams mapping the technologies used in both implementations to each of
the tiers and components of the Explora framework. Let us first consider
the modules which are common to both implementations and then proceed
to a detailed description of those that are specific to each approach.

Event log Apache Kafka is used to implement this layer of the archi-
tecture. Kafka provides a number of tools for processing and ana-
lyzing streams of data, including a distributed message broker that
adopts the publish–subscribe pattern. This Kafka broker allows for
registering each of the incoming sensor observations into a partitioned
append-only log, maintaining them over a fixed configurable retention
period, which enable multiple consumers (as many as the number of
partitions) to read and process the collected data in an asynchronous-
concurrent way.

Container orchestration The components in the serving, storage, and
processing on ingestion layers are built as Docker containers and are
deployed on a Kubernetes cluster, consisting of one master node and
three working nodes, all of them running Ubuntu 18.04.3 LTS.

Performance monitoring Data regarding query response time, query
accuracy, and computing resources usage for all the components of
the system is captured via bash and Python scripting. Once col-
lected, this information is analyzed and visualized through a series of
Jupyter notebooks that make use of the Pandas and Matplotlib Python
libraries.

Serving Layer A REST API is implemented for serving client applica-
tions. In the PostgreSQL-based implementation (see Figure 3.10a),
this API is provided by using the Flask web framework for Python
and NGINX+uWSGI as an application server, while in the distri-
buted stream processing approach (Figure 3.10b), this API runs on
a Jetty servlet container. This REST API consists of two endpoints:
one for handling historical-spatial queries and the other for snapshot-
temporal queries. The specification of each of the API endpoints is
presented below in table 3.1. Multiple instances of the API server are
deployed to balance the load and to provide high availability.
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Table 3.1: API specification for the serving layer (default values are shown in
underlined text).

HS queries: GET /airquality/{metric_id}/aggregate/{aggregate}/history

Path parameters • metric_id: (required) one of the air quality metrics
available from the Bel-Air setup (no2|pm25|pm10|o3|...).

• aggregate: (required) one of the available aggregate func-
tion (AVG|SUM|COUNT).

Query paramenters • q_polygon: (required) Well-Known Text (WKT) represen-
tation of the polygon selected by the user, e.g.: “POLYGON
((1.0 0.0, 1.0 1.0, 0.0 0.0, 1.0 0.0))”.

• source: tile grid (tiles), street blocks (street_blocks) or
raw sensor data (raw).

• time_res: min|hour|day|month.

• grid_precision: in case multiple continuous views corre-
sponding to multiple values of geohash precision have been
computed, via this parameter it is possible to specify the
desired precision for the query at hand (default: 6).

• from: the start of the query interval as a timestamp in
milliseconds.

• to: the end of the query interval (exclusive) as a timestamp
in milliseconds.

• interval: optionally it is possible to use one of five prede-
fined intervals: 5min|1hour|1day|1week|1month.

ST queries: GET /airquality/{metric_id}/aggregate/{aggregate}/snapshot

Path parameters Same as for the previous endpoint

Query paramenters • bbox: (required) comma-separated string of coordinates
corresponding to the bounding box over which the snap-
shot would be taken.

• source, time_res, grid_precision: same as for the previ-
ous endpoint.

• snap_ts: timestamp in milliseconds corresponding to the
instant the snapshot would be taken.
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Client applications Two Jupyter notebooks are deployed as client appli-
cations, one implementing the first two use cases described in Section
3.4.2 and another implementing the third use case. Figure 3.11 shows
screen captures taken from these implementations.

Figure 3.11 Screen captures of the Jupyter notebooks implementing the
target use cases defined in Section 3.4.2.

(a) Use cases 3.4.2.1 and 3.4.2.2. (b) Use case 3.4.2.3.

These notebooks consume the API available in the serving layer to re-
solve the historical-spatial and snapshot-temporal queries that support
the interaction with end users.

3.4.3.1 Spatial Time-Series Database Approach

Processing on ingestion PostgreSQL triggers are used to implement the
ingestion procedure described in Algorithm 3.1. These trigger func-
tions are invoked for each of the sensor readings being consumed from
the Kafka broker, relaying them to the corresponding continuous views
for aggregation before being persisted into the time-series storage.
Two spatial fragmentation schemas have been laid over the region
covered by the mobile sensors, namely a tile grid built according to
the geohash encoding algorithm by Niemeyer G. [48] (see Figure 3.1a
for reference) and a grid corresponding to the street-blocks of the city
of Antwerp (see Figure 3.1b). Additionally, four aggregation frequen-
cies were considered, fragmenting time into minutely, hourly, daily,
and monthly bins. In consequence, under this setup, eight continuous
views (2-spatial fragmentation schemas × 4-aggregation frequencies)
are computed, holding data summaries that comprise the results of
three aggregate functions applied over the incoming stream of sensor
observations: the arithmetic average of the measured values (AVG),
the sum of the measurements (SUM), and number of reported readings
(COUNT).
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Storage and query processing layer For these layers, three open-source
extensions of PostgreSQL are set up on top of this database engine,
enabling it to store and query time-series data, to support geospatial
operations, and to incrementally create and persist continuous views:

• TimescaleDB [49] is a time-series database working on top of
PostgreSQL, thus being able to offer a full SQL querying inter-
face while supporting fast data ingestion. Raw sensor readings
consumed from the Kafka broker are formatted and stored into a
TimescaleDB Hypertable, which partitions data in the temporal
dimension for efficient ingestion and fast retrieval.

• PostGIS [50] is a spatial extension that allows PostgreSQL to
store and query information about location and mapping. With
PostGIS in place, the GeoJSON specifications of the tile and
street-block grids are stored as two spatial tables, for which the
records correspond to individual tile/street-block from the spatial
fragmentation schemes. Likewise, each one of the records from
the TimescaleDB Hypertable are augmented with a PostGIS ge-
ography object that corresponds to the sensor reading location.
This enables the execution of spatial join operations required
later during the querying stage to address calculations such as
point-in-polygon and polygon intersection.

• PipelineDB [51] is an extension that enables the computation
of continuous aggregates on time-series data, storing the results
into regular PostgreSQL tables. The eight continuous views men-
tioned earlier are created in PipelineDB and incrementally com-
puted as continuous queries running against the stream of sensor
observations being handed in through the trigger functions in
the ingestion layer. For illustration, listing 3.1 presents the SQL
statement used in PipelineDB for creating a view that computes
the three stated aggregates on a per-minute basis.

CREATE VIEW aq_no2_minutely_view WITH (action=materialize) AS
SELECT fragment_id , observed_var , minute(time) AS ts ,

COUNT (*) AS count ,
SUM(value) AS sum_value ,
AVG(value) AS avg_value

FROM aq_no2_stream -- stream of NO2 sensor measurements
GROUP BY fragment_id , observed_var , ts;

Listing 3.1: Example of a view creation statement in PipelineDB.

Since PostgreSQL is the underlying storage technology used in this
setup, it is possible to translate the procedures for handling historical-
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spatial and snapshot-temporal queries (from Algorithms 3.2 and 3.3,
respectively) into declarative SQL statements, leveraging the expres-
siveness of this language along with the capabilities of the implemented
extensions. An example of said statements is presented below in listing
3.2.

SELECT observed_var , ts, combine(avg_value) AS avg_value
FROM aq_no2_minutely_view
INNER JOIN tile_grid ON aq_no2_minutely_view.fragment_id =

tile_grid.id
WHERE ST_Contains(ST_GeomFromText('<QUERY_POLYGON >'), tile_grid.

geom)
GROUP BY observed_var , ts
ORDER BY ts; -- QUERY_POLYGON: Well -Known Text (WKT) representation

-- of the user 's polygonal selection.

Listing 3.2: Example of a HS query statement running on PipelineDB.

3.4.3.2 Distributed Stream Processing Approach

Processing on ingestion A Kafka streams application is implemented
for this layer, according to the procedure in Algorithm 3.1. The Kafka
streams library provides an API for conducting distributed stateful
transformations on the feed of sensor observations being pushed to
the Kafka broker by enabling multiple stream processor instances to
consume the partitioned Kafka topics that the sensor readings are be-
ing written to. In consequence, the global application state is also
partitioned into a distributed key-value store, instances of which are
collocated with the working stream processors. Since Kafka streams
does not support spatial operations out-of-the-box, in order to set up
a statiotemporal fragmentation schema, a compound record key was
associated to each of the incoming sensor observations, consisting of
their geohash code (a base 32 sequence of 12 characters encoding the
latitude and longitude of the measurement), along with their corre-
ponding timestamp, formatted as in the example shown below:

geohash
︷ ︸︸ ︷

u14dhqs4cpbp
︸ ︷︷ ︸

{lat:51.012818, lon:3.707970}

#

timestamp
︷ ︸︸ ︷

20191101
︸ ︷︷ ︸

date: 2019/11/01

: 143115
︸ ︷︷ ︸

time: 14:31:15

: 344
︸︷︷︸

milliseconds

By augmenting sensor observations with keys structured in this way,
the implemented ingestion procedure is able to set up a geohash-
based spatial grid, leveraging the fact that readings sharing the first
k-geohash characters fall into the same geospatial region identified by
such k-character prefix. Likewise, the same procedure uses timestamp
prefixes to set up a time-partitioning layout over the incoming stream
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of sensor readings, pushing records into minutely, hourly, daily, and
monthly bins. Thereafter, data summaries are continuously computed
on each of the geohash-based spatial fragments for each of the time
partitions, and their results are persisted into the distributed state
store. As an illustration, listing 3.3 presents an example of the con-
tinuous views generated by the Kafka streams application.

...
u14dhq#20191101:140000:000: {AVG: 54.32, SUM: 182678.16 , COUNT

:3363} ,
u14dhq#20191101:150000:000: {AVG: 32.10, SUM: 111964.80 , COUNT

:3488} ,
u14dhq#20191101:160000:000: {AVG: 45.13, SUM: 147755.62 , COUNT

:3274} ,
u14dhq#20191101:170000:000: {AVG: 90.08, SUM: 304560.48 , COUNT

:3381} ,
...

Listing 3.3: Example of a continuous view with hourly time bins in Kafka Streams.
The segment presented corresponds to the spatial fragment identified
by the geohash prefix u14dhq.

Storage layer This layer is also supported by tools provided by Kafka:
raw sensor observations are stored into Kafka topics, while continuous
views generated in the ingestion layer are stored into a distributed
key-value database known as RocksDB [52], which Kafka uses as the
default state store for stream applications. While records stored in
Kafka topics are not directly queryable, continuous views in RocksDB
allow simple key-based lookup and range queries. This is why a major
part of the query processing needs to be conducted in the serving layer,
when handling the client application requests.

Query processing and serving layer In this distributed setup, an in-
stance of the REST API serving client requests is hosted on each of the
Kafka stream processors. Each of these instances is only capable of an-
swering queries on the portion of the application state available to the
hosting stream processor. Therefore, resolving a query on the global
state requires combining the results computed on the state available
to each of the stream processor thus far. Consider for instance the ex-
ample presented in Figure 3.12, illustrating the procedure for a setup
with three stream processors, resolving a historical-spatial query: (1)
The query reaches one of the instances of the serving layer API. This
instance processes the query against the version of the continuous view
persisted on its own state store. (2) Then, the query is relayed to a
second instance to retrieve the data summaries from its correspond-
ing state store and to combine them with those obtained from the
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first instance. (3) This process is repeated until the query reaches the
last API instance. Finally, the resulting sequence of aggregated data
summaries is retrieved to the client application.

It is worth noting that the simplicity of the querying interface offered
by the state stores—limited basically to key-based lookups and range
queries—along with the key-value data model they adopt pay off in
terms of query processing time, as will be shown when discussing the
performance of these proof-of-concept implementations in the follow-
ing section.

Figure 3.12 Procedure for distributed query resolution.
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3.5 Experimental Evaluation

The previous section explored two proof-of-concept implementations of the
Explora framework, proving its ability to support typical use cases for vi-
sual exploratory applications on mobile sensor data. This section addresses
a performance evaluation conducted on both implementations on a feed of
air quality sensor observations collected from the Bel-Air smart city setup.

3.5.1 Query Accuracy Metric

The performance evaluation reported herein is mainly focused on determin-
ing to what extent the continuous computation of data summaries applied
in Explora effectively reduces the query response time on spatio-temporal
data and what is the cost of such increase in responsiveness in terms of
query accuracy. The latter was determined by defining a metric accounting
for the average distance between the elements of the result sets obtained
when querying continuous views—i.e., approximate answer—against those
retrieved when querying the base raw sensor data—i.e., exact answer. Let
X q and Yq be two result sets obtained from running a query q against both
a continuous view V and the base sensor data R, respectively. X q and Yq

can be regarded as relations since they designate a set of ordered pairs:
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X q = {〈kx1, vx1〉, 〈kx2, vx2〉, . . . , 〈kxm, vxm〉}

Yq = {〈ky1, vy1〉, 〈ky2, vy2〉, . . . , 〈kyn, vyn〉}
(3.6)

With kxi and kyi being spatial-fragment identifiers or timestamps and vxi
and vyi being aggregate values. Ideally, X q and Yq should have the exact
same set of keys and values; this is, the distance between them (tuple-wise)
should be zero. However, due to the applied spatio-temporal fragmenta-
tion scheme, data summaries—upon which queries are resolved—can only
match spatial and temporal query predicates in an approximate manner.
In consequence, key-value sets might differ from X q to Yq. To estimate
the average tuple-wise distance—henceforth, distance—between these two
result sets, first, a full outer-join operation is computed:

Zq = X q ⊲⊳ Yq

= {〈kz1, (vxz1, vyz1)〉, 〈kz2, (vxz2, vyz2)〉, 〈kz3, (vxz3, vyz3)〉, . . . }

vxzi = 0, if kzi /∈ X q ∧ vyzi = 0, if kzi /∈ Yq

(3.7)

Then, the distance (d) between these two result sets is estimated as follows:

d : X q ×Yq 7→ [0, 1],

d(X q,Yq) =
1

|Zq|

|Zq|∑

i

|vxzi − vyzi|

|vxzi|+ |vyzi|

(3.8)

where |Zq| denotes the cardinality of the set resulting from the outer-join
operation in Equation (3.7). One appealing feature of this distance metric
is that it provides a normalized symmetrical measure of the dissimilarity
between two result sets, which makes it more easily interpretable than al-
ternative distance metrics such as dynamic time warping (DTW) [53] used
for measuring the similarity between two temporal sequences.

3.5.2 Experimental Setup

The data set collected for this performance evaluation covers about one-
year’s worth of sensor measurements (from August 2018 to August 2019)
made to map the situation of air pollutant emissions over the city of Antwerp.
The two proof-of-concept setups detailed in Section 3.4 were deployed to a
Kubernetes cluster consisting of one master and three worker nodes, set
up on the imec/IDLab Virtual Wall environment [54]. Table 3.2 lists the
versions of the software tools used in these implementations.
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Table 3.2: Versions of the software used in the experimental setup.

Software Version
Kubectl 0.15.10
Linux Kernel 4.15.0-66-generic
Operating System Ubuntu 18.04.3 LTS
Container Runtime Version containerd://1.2.6
PostgreSQL (TimescaleDB + PostGIS + PipelineDB) 11.5 (1.4.2 + 2.5.2 + 1.0.0)
Apache Kafka 2.3.0
NGINX + uWSGI 1.14.2 + 2.0.17.1
Jetty Server 9.4.20.v20190813
Java (OpenJDK) 14-ea
Python 3.7.5

The process for collecting performance information on both proof-of-concept
setups started by recording the queries generated during one user session
on the first setup. This collection of queries—designated henceforth as
workload—amounts to 222 statements comprising a wide range of query
predicates (polygonal selections, timestamps, time intervals, etc.), 64% of
which correspond to historical-spatial queries while the remaining 36% are
snapshot-temporal requests. The collection of historical-spatial queries can
be further divided into statements with a predicate in the temporal dimen-
sion (i.e., those querying over a certain period of time provided by the user)
and queries without said predicate (namely, those querying over the whole
period of available data thus far). Table 3.3 shows the final composition of
the query workload, considering the discussed classification.

Table 3.3: Composition of the test workload used for the performance evaluation.

Query type # Queries
HS (w/ temporal predicate) 90
HS (w/o temporal predicate) 52
ST 80
Total 222

To determine how each of the Explora implementations performs as the
amount of ingested data increases, the test air quality data was fed to both
setups in batches of one-month’s worth of data. This way, at the end of each
batch increment, the sequence of request included in the workload was run
on both implementations while monitoring query response time and query
accuracy. Each batch of raw sensor data was ingested and aggregated into
a geohash-based tile grid (for which precision was set to a six-character geo-
hash prefix) and—only for the spatial time-series database setup—a street-
blocks based grid, which partitions the urban area of Antwerp into 12.230
polygonal regions.
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3.5.3 Results

3.5.3.1 Continuous Views Storage Footprint

The continuous views generated through Explora are by definition redun-
dant data structures for read optimization [55] and, as such, entail a storage
overhead. In this sense, Figure 3.13a illustrates the proportion of the num-
ber of records (i.e., data summaries) registered in the views w.r.t. the total
count of raw sensor observations ingested per month for both tile and street-
block grids. On average, tile grid views and street-block views amount, re-
spectively, to 26.5% and 33.8% of the total record count for sensor readings.
Since street-block views rely on a finer (and irregular) spatial fragmentation
strategy than that used for tile views, the number of data summaries placed
into the former views is larger in proportion to the amount of raw sensor
observations.

Figure 3.13 Storage footprint of continuous views.
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In the same vein, Figure 3.13b shows that most of the storage overhead is
due to views with aggregation frequency set to one minute, accounting—in
both tile and street-block views—for more than 90% of the total amount
of generated data summaries. Again, as stated earlier in Section 3.3.2.2,
the lower the resolution of the spatio-temporal fragmentation scheme, the
smaller the size of the corresponding view: while for one-year’s worth of
sensor data, there might be around 8.640 hourly data summaries per spatial
fragment, the corresponding minutely summaries would amount to 518.400,
which explains the stark difference between the minutely view proportions
and the second-largest hourly views.
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3.5.3.2 Query Response Time for HS Queries without Time Pred-
icate

When the serving API receives a historical-spatial request providing only
the spatial parameter (and no conditions on the temporal dimension), the
corresponding response is computed over the full extent of data available
thus far. The response time reported for this kind of queries with regards
to the amount of ingested sensor readings is illustrated in Figure 3.14. Re-
sults from multiple setups are presented in these charts in order to compare
both implementations of Explora. For the spatial time-series database ap-
proach (PostgreSQL based), the query response time on the raw sensor ob-
servations (TimescaleDB + PostGIS ) and continuous views (PipelineDB +
PostGIS ) are reported; while for the distributed stream processing approach
(Kafka based), results obtained from running Apache Kafka with three dif-
ferent partition settings are presented: 3 partitions/3 stream processors
(KSTREAMS 3 Partitions), 6 partitions/6 stream processors (KSTREAMS
6 Partitions), and 9 partitions/9 stream processors (KSTREAMS 9 Parti-
tions). Query processing time from the TimescaleDB + PostGIS setup
serves as reference to estimate the performance gain in query response time
for the remaining setups. These time measurements were conducted along
the four considered temporal resolutions, namely per-minute, per-hour, per-
day, and per-month bins. In light of the results obtained, it is worth high-
lighting four key facts:

Figure 3.14 Query response time vs. volume of ingested data: HS queries
without time predicate.
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(i) Query response time on the raw data (dashed line in Figure 3.14) be-
haves nearly the same along the four temporal resolutions, displaying
a linear increase as the amount of data ingested grows larger. This
describes an expected system’s response, since each of these queries
involves running expensive sequential scan operations over the full
collection of raw sensor readings. This way, response time for these
requests increases proportional to the amount of ingested sensor ob-
servations, regardless of the requested temporal resolution.

(ii) Continuous views (solid lines in Figure 3.14) in general outperform the
base raw data for both implementations of Explora. Only for views
with per-minute temporal bins the performance benefit from using
these synopsis structures is compromised due to the considerable size
of said structures relative to the raw data (and to the remaining views,
as evidenced earlier in Figure 3.13). However, even in this case, queries
perform 1.1–1.3× faster in the 3-partition/3-processors Kafka setup
and 1.8–2.9× faster in the PipelineDB + PostGIS setup compared to
queries running against the raw data. For the other considered time
resolutions, queries running on the corresponding views perform up
to two orders of magnitude faster than the reference setup, reaching
sub-second response times in all cases.

(iii) When it comes to distributed stream processing, increasing parallelism—
i.e., adding partitions and stream processors accordingly—actually
leads to a slight decline in performance, which can be attributed to
the overhead due to the process of combining the partial aggregates
computed on each of the stream processors, which also implies data
exchange among said processors (network overhead). That said, this
approach still delivers a more stable response as the data volume grows
compared to the spatial time-series approach, describing a linear-time
trend for which the slope tends to zero as the temporal resolution of
the aggregates decreases—notice the almost constant time for views
with per-month temporal bins.

(iv) For ingested data under 6–8 million sensor observations, queries on
the spatial time-series approach either outperform or closely follow
the performance of those from distributed streaming setups. From 8
million records onwards, the query response time for the PipelineDB
+ PostGIS setup branches out, describing an exponential growth. In
this situation, given the increased volume of data, indexed tables can
no longer fit in the available memory; in consequence, parts of the
index are repeatedly swap in and out of the database buffer pool,
leading to a performance degradation.
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3.5.3.3 Query Response Time for HS Queries with Time Predi-
cate

This part of the evaluation deals with a more practical and sensible kind of
query, namely those with predicates in both spatial and time dimensions.
Figure 3.15 describes the performance for queries running on the six consid-
ered setups for five predefined time intervals: last 5 minutes and last hour
running on minutely views; last day running on hourly views; and last week
and last month running on daily views.

Figure 3.15 Query response time vs. volume of ingested data: HS queries
with time predicate.
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The obtained results show how the reference setup (TimescaleDB + Post-
GIS ) is able to deliver almost constant-time performance for queries re-
questing hourly and daily time resolutions and outperforms the alternative
implementations based on synopsis data structures with minutely time bins.
This behaviour stems from TimescaleDB taking advantage of the inherent
time-ordering of the ingested sensor observations to only process the most
recent data. On the other hand, once again, the distributed stream process-
ing approach stands out as the system with the most stable performance,
featuring a nearly constant-time response as the amount of ingested data
increases and sub-second query latency for all the considered time intervals.
Meanwhile, the performance of the spatial time-series database (PipelineBD
+ PostGIS ) approach falls behind, as it struggles to deliver a consistent time
response as data grows larger.
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3.5.3.4 Query Response Time for ST Queries

Snapshot-temporal queries provide a time-slice visual of the status of the
observed variable over the geospatial region being displayed on the user’s
screen for a given timestamp and for a specific time resolution determining
the span of time covered in the query computation (i.e., one minute, one
hour, one day, or one month). Figure 3.16 below reports on the performance
for this kind of query as the amount of data ingested increases.

Figure 3.16 Query response time vs. volume of ingested data: ST queries.
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According to this test, the distributed stream processing setups deliver a
constant-time response as data volume grows for all considered time res-
olutions in contrast to the alternative PostgreSQL setups, for which re-
sponse is affected by the amount of data available (notice the linear-time
performance for queries running with one minute time resolution) and the
temporal interval over which the query is computed (notice how, for the
reference setup, query latency tends to increase as this interval goes from
one minute to one one month). This behaviour obeys to the fact that the
distributed key-value database storing the partitioned continuous views en-
ables constant-time key-based lookups, making the procedure implemented
for resolving snapshot-temporal queries independent of the amount of data
available and only subject to the size of the visible (or selected) geospatial
region. Another significant result from this test is that, overall, both imple-
mentations of the Explora framework deliver sub-second response times,
proving these approaches effective to enable interactive-level performance
for snapshot-temporal queries.
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3.5.3.5 Query Accuracy on Continuous Views

The main caveat of using synopsis data structures for answering spatio-
temporal queries is their inherent loss in accuracy. Figure 3.17 illustrates the
level of accuracy attained in both of the proof-of-concept implementations
of Explora for different setups. In these charts, accuracy is defined as the
complement of the distance metric formulated earlier in Section 3.5.1:

accuracy = 1− d(X q,Yq)

where X q is a result set obtained upon running a query q on one of the
available continuous views and Yq is a reference result set. For the spatial
time-series database implementation, Figure 3.17a portrays the accuracy
achieved for queries running on tile-based and street-block based views, as
a function of the amount of data ingested. In this case, the reference result
sets are those computed on the raw sensor observations for each query in
the test workload. According to these results, the cost incurred in terms of
accuracy is, on average, less than 10% for both types of views. It is also clear
from the chart how using a finer spatial fragmentation schema allows for
a more accurate approximation: queries running on the street-block views
are 3.64 percent points closer to the exact answer than those running on
the coarser tile-based views.

Figure 3.17 Query accuracy on the continuous views computed with Ex-

plora: (a) Accuracy on both tile-grid and street-block views is above 90%
on average. (b) Accuracy in relation to approximate answers from the
PipelineDB + PostGIS setup: increasing the number of partitions eventu-
ally compromises query accuracy.
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(b) Kafka streams implementation.

On the other hand, for the distributed stream processing implementation,
query accuracy is measured as a function of the number of partitions (and
stream processors) used to split the ingested data and to generate the distri-
buted continuous views under the premise that increasing parallelism im-
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plies increased error probability. Since views from this setup are based on
the same geohash tiles from the PipelineDB + PostGIS implementation, the
query accuracy obtained in said implementation defines an upper bound for
the distributed processing approach in this particular setup. That is why
query accuracy in Figure 3.17b is estimated in relation to the approximate
answers derived from the tile views of the PostgreSQL-based setup. The re-
ported results indicate an effective drop in the expected accuracy once data
and processing are split up into more that six partitions, evidencing that
increased parallelism not only impacts query latency but also can eventually
compromise the accuracy of the answers computed on continuous views.

3.6 Conclusions

Supporting visual-interactive exploration on top of the massive volumes of
smart city data being generated nowadays remains largely an open problem.
The stringent latency requirements typical of these kind of applications call
for proactive and flexible data management mechanisms able to serve users
with prompt answers to their information requirements, based on the most
recent data available. In this sense, this chapter introduced Explora, a
microservice-based data management framework for spatio-temporal data
produced in smart city environments (i) that leverages stream processing
methods to continuously compute synopsis data structures over the live feed
of measurements coming from mobile sensor, (ii) that defines a uniform in-
terface to query said structures based on recurrent user interaction patterns,
and (iii) that monitors system and query performance.
The experimental evaluation conducted on two proof-of-concept implemen-
tation of Explora—one based on a traditional spatial time-series database
approach and another using a distributed stream processing pipeline—proved
the feasibility of the proposed framework, being able to serve expensive
spatio-temporal queries with sub-second performance over a continuously
increasing amount of sensor data (reaching up to 2 orders of magnitude
speedup in comparison to queries running on the base raw observations) at
the expense of less than 10% loss in accuracy and around 30% of storage
overhead.
A current limitation of the Explora framework is that the set of aggregate
operations used for building the continuous synopsis structures (e.g., aver-
age, sum, and count in the described implementations) has to be defined
upfront. In this sense, future work on this research will extend the frame-
work to incorporate a pluggable mechanism that enables developers/users
to provide custom aggregates as extensions that would be integrated to the
running data ingestion pipeline. Additionally, the query processing com-
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ponent of the framework will be further developed to enable features such
as predictive caching to anticipate the queries that are likely to be issued
next, according to user’s interaction behaviour, and federated querying by
implementing a linked data fragments interface, which boosts system scala-
bility by pushing part of the query computation to the client-side application
[56, 57].
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Addendum

Further details on the experimental setup: The original manuscript
this chapter is based upon lacks some relevant details regarding the
sensor data sources used for the evaluation of the proposed approach.
Table 3.4 below provides further information that complements the
details provided in section 3.5.2.

Table 3.4: Information on sensor data sources

Parameter Value

Number of sensors 78
Communication protocol LoRaWAN
Sensed Measure Nitrogen Dioxide (NO2)
Average rate 27 readings/min
Total dataset size 13542770 readings

Note on non-associative aggregates: The implementations of the
Explora framework detailed in this chapter only support distribu-
tive/associative and algebraic aggregate operations [45]. Holistic (non-
associative) aggregates such as median, rank, among others are less
trivial to implement in a distributed stream processing context due
to their inherent dependency on global ordering of data. To incorpo-
rate this category of functions into the Explora’s ingestion pipeline,
a solution based on probabilistic data structures such as Count-min
sketch and Hyperloglog can be devised [58].
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4
Explora-LD: a Linked Data

Fragments approach for interactive

querying on mobile sensor data in

Smart Cities

Building upon the ideas introduced earlier in the Explora framework,
this chapter presents Explora-LD, an open source platform for scalable
and cost-efficient publication of data summaries computed on live spatio-
temporal data. Explora-LD thrives on achieving a more balanced trade-
off between server-side and client-side query processing while still providing
interactive response times. The proposed platform incorporates a simplified
querying interface based on Linked-Data Fragments (LDF) which limits the
complexity of the queries that the server is able to handle, and encourages
response reuse across multiple client sessions. By adopting this simplified in-
terface, the proposed platform intents to hand part of query computation over
to the client-side application to favour system scalability. Since Explora-

LD is based on the framework described in the preceding chapter, it is worth
noting that some content overlap is expected concerning the definition of the
data synopsis and spatio-temporal fragmentation mechanisms the platform
relies on.

⋆ ⋆ ⋆
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Abstract Smart Cities should aim to provide instantaneous access to their
ever-growing collections of time series data, allowing citizens to query the
data interactively. Publishing these time series as Linked Open Data is
hindered by the difficulty to predict what type of questions are going to be
asked. A new trade-off needs to be investigated allowing fast query answer-
ing while offering flexibility in tailoring the questions to end-user needs. We
developed Explora-LD, an open source platform running on a real-world
Smart City deployment measuring a.o. air pollution. Explora-LD sum-
marizes spatio-temporal data on ingestion and republishes it with a Linked
Data Fragments (LDF) approach. Measuring server load and query execu-
tion time, we found that, on average latency remain largely constant regard-
less of the number of queries being issued within a one-hour window, while
CPU and memory usage scale linearly and logarithmically with the load,
respectively. The evaluation also shows that Explora-LD is able to deliver
incremental answers to user queries under sub-second latencies, favoring ap-
plication responsiveness. In this case, this incremental approach to query
processing comes at the expense of major server load when compared to
Explora, a similar query engine implementing a blocking interface. How-
ever, we show that Explora-LD servers are effectively freed of most of the
query processing in the long run, thanks to the inherent cacheability of the
LDF interface. This in turn translates into cache nodes consuming less than
50% the amount of memory required by the alternative blocking interface,
and nearly constant CPU usage under increasing load.

4.1 Introduction

Smart City initiatives are currently gaining momentum as a response to the
challenges posed by the sustained growth of the urban population around
the world [1]. Governments, business and research institutions are deter-
mined to harness the full potential of information technologies, to bring
forth a vision of cities where decision-making processes around urban de-
velopment are driven by data, resources are optimally allocated across all
the services provided by the city, and citizens are connected and actively in-
volved in shaping public policies. Internet of Things (IoT ) and particularly
sensor technologies are instrumental in enabling this vision [2]. Via sensors,
cities can collect a wide variety of data: the crowdedness in certain areas,
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traffic hot-spots, concentrations of trash, parking availability, temperature
and air pollution, etc. To leverage the potential this data offers, interac-
tive applications need to be built that consume this data and provide it in
some form to consumers, for example, through visualizations in graphs and
charts. These visualizations can offer clear insights and help in defining local
policies or simply informing citizens. To effectively support the low-latency
requirements inherent to these interactive exploratory applications, Smart
Cities should provide instantaneous access to the historical sensor data they
collect, while offering a querying interface that is cost-efficient, scalable and
sustainable over time [3]. Given the ever-growing volume and variety of data
typical of these environments, meeting the stated requirements remains an
open problem.

In the scope of this challenge we have devised Explora-LD, an open source
platform that combines a proactive approach to data ingestion for speed-
ing up exploratory spatio-temporal queries, and a Linked Data Fragments
(LDF) approach to data publication for providing a scalable and responsive
interface to Smart City sensor data. Explora-LD leverages distributed
stream processing for continuously deriving synopsis data structures from
the incoming feed of raw sensor measurements, this way capturing the spa-
tial and temporal trends of the sensed variables. The platform we propose
takes advantage of a spatial partitioning strategy, and the inherent order of
time series data to arrange these summary structures into discretized frag-
ments, representing the temporal state of the sensed variables over a specific
spatial region. We have defined a Linked-Data compliant data model to
represent said fragments, adopting widely-used standard vocabularies. The
formulated model incorporates a number of hypermedia controls that enable
clients to automatically explore the partitioned arrangement of data sum-
maries, and discover the fragments that are relevant to answer a particular
query. In this way, by running exploratory queries against the computed
data summaries, instead of the raw historical data, Explora-LD manages
to deliver responsive query performance, at the expense of some accuracy.
At the same time, the LDF querying interface makes for a scalable cost-
efficient data access method, while the associated Linked-Data data model
facilitates handling the wide variety of sensor data sources by mapping them
into a generic representation.

To evaluate this approach, we have developed a proof-of-concept implemen-
tation of Explora-LD and tested its performance on sensor data collected
from a real Smart City environment deployed in the city of Antwerp, Bel-
gium. In order to estimate the overall effect of publishing data summaries
through an LDF interface, we benchmarked Explora-LD against a similar
system exposing data summaries via a traditional blocking API, which we
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presented in previous work [4] (cf. Chapter 3). In this process we measured
the performance of the two systems under increasing load, in terms of query
response time and demand of computing resources. The outcomes of this
evaluation reveal that, when running on uncached fragments, the LDF in-
terface falls behind the performance of the blocking API. However, once the
fragments are cached, Explora-LD gets the upper hand both regarding
CPU and memory utilization, and perceived responsiveness, since it is able
to instantaneously deliver intermediate answers to the submitted queries.
The Explora-LD platform provides a complete data processing pipeline
for enabling interactive data exploration on streams of mobile sensor data.
The approach we propose builds upon our previous work on the Explora

framework [4], which integrates support for ingesting raw sensor measure-
ments and derive spatiotemporal-indexed data summaries out of live data
streams. On top of this data processing pipeline, Explora-LD offers a
semantically-enriched data model and a novel LDF interface for publish-
ing said summary data structures in a scalable, cost-efficient manner. It
should be noted that the main contribution of the Explora-LD approach
lies in the definition of said domain model and lightweight LDF querying
interface. Together these components provide a mechanism to expose live
data summaries to client-side applications which works independently of
the persistence model (i.e., how data is structured and laid out on disk).
In this sense, even though the current implementation of Explora-LD

uses a Kafka-based ingestion pipeline and persistence backend [5], the do-
main model and querying interface the proposed platform incorporates are
portable to streaming contexts supported in other data processing frame-
works.
In this chapter we provide a detailed description of the Explora-LD ap-
proach, including architectural aspects, implementation and evaluation. The
following section addresses the related work. Section 4.3 discusses the mech-
anisms supporting the operation of the proposed platform. Section 4.4 elab-
orates on the devised data model, as well as the definition of the platform’s
architecture, while section 4.5 presents the experimental evaluation and re-
sults. Finally, section 4.6 examines the main findings of this research and
provides pointers towards future work.

4.2 Related Work

4.2.1 Semantic Web technologies and Smart Cities

Explora-LD leverages semantic Web technologies such as Linked data
and shared vocabularies to foster interoperability and to enable automated
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clients to navigate through Smart City data using hypermedia controls. In
the same vein, the IES Cities platform, conceived by Aguilera et al. [6]
harnesses linked open data along with crowd-sourced data to enable the
creation of citizen-centered mobile services. This platform provides uni-
form access to Smart City data sourced in structured formats such as RDF,
JSON, and CSV and relational databases through a RESTful interface, and
implements a query mapper that enables users of the platform to query any
registered data source using SQL statements. Similarly, Consoli et al. [7],
propose a semantic data model aiming to ensure interoperability at the con-
cept level for a number of heterogeneous data sources typical of Smart City
contexts (sensor data, public transportation, waste collection, etc.). Data
aligned with this model is published as RDF triples and made available thro-
ugh a dedicated SPARQL endpoint. As argued by Verborgh et al. [8, 9],
SPARQL endpoints are expensive to host at high availability, since they
enable clients to run arbitrarily complex queries. In contrast to the above
approaches, Explora-LD draws on the Linked Data Fragments (LDF) [8]
conceptual framework, to come up with a lightweight access interface that
efficiently offloads query processing from servers to clients, and favors cache
reuse.

Jansen et al. [10] develop a conceptual study on Big Open Linked Data
(BOLD) and how it allows for the creation of Smart City services and
applications by linking and combining data sources, and by employing data
analysis and predictive analytics. The authors highlight one of the main
challenges in using BOLD for enabling Smart Cities stems in the data pub-
lishing mechanisms, however they do not elaborate on the issue any further.
Along these lines, the European Telecommunications Standards Institute
(ETSI) has released NGSI-LD [11], a standard specification that defines a
Linked-Data compliant data model and an open API for publishing context
information sourced from IoT devices. Sensors and other context sources
are modeled as Entities according to the NGSI-LD data model. Each Entity
is identified via a URI, and described in terms of Properties and Relation-
ships to other Entities. The API allows clients to provide, consume and
subscribe to context information, and enables near real-time access to the
data encoded in the context entities. However, the NGSI-LD specification
does not yet contemplate data aggregation capabilities.

On the other hand, two separate studies by Poveda-Villalon et al. [12] and
Gyrard et al. [13] develop the case for the use of ontology catalogs for anno-
tating Internet of Things (IoT) and Smart City data. The authors remark
the importance of ontology catalogs since they encourage ontology reuse
among application developers, hence promoting data integration. Most of
the approaches in this category, including those in References [14–16], ac-
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knowledge the convenience of semantic Web technologies to tackle the issue
of interoperability among disparate Smart City data sources, but overlook
the issue of providing efficient publishing methods and scalable access in-
terfaces to data. Moreover, they lack querying mechanisms that enable
interactive exploration over historical geolocated data typical of Smart City
environments.
The Explora-LD approach heavily relies on stream processing. Among
the Semantic Web technologies there are solutions such as CQELS [17] or
Continuous SPARQL (C-SPARQL) [18], commonly known as RDF Stream
Processing (RSP) engines. While these engines by definition operate over
streams of data encoded as RDF triples, the approach we propose is able to
process streams of raw sensor readings. Additionally, these engines require
maintaining open connections with each client querying the stream of RDF
data, which poses a critical scalability bottleneck [19].

4.2.2 Interactive exploratory analysis of Smart City
sensor data

Approaches in this category are mainly aimed at providing end-users with
responsive client-side applications for conducting visual exploration over
historical Smart City data. 4D CANVAS by Murshed et al. [20] is a Web-
based application that enables dynamic visualization of 3D geospatial data
for supporting decision making in Smart Cities, leveraging a WebGL-based
framework known as Cesium [21]. One downside of this application is that
it requires the data to be residing on the file system (offline data). In
a similar note, Ferreira et al. propose Urbane [22], a 3D visual framework
tailored for architects and city planners to assist the decision making process
around urban development projects. Urbane supports the exploration and
visualization of both 2D and 3D data sets, being able to handle requests
over several million observations with nearly sub-second performance. The
SOVAS analytic system developed by Li et al. [23] supports interactive
querying analytics over large climate data sets. SOVAS accesses climate
data stored in the Hadoop distributed file system (HDFS) [24] and offers a
SQL interface through distributed query engines such as Apache Hive [25]
and Apache Impala [26]. A shared limitation of the approaches presented
thus far in this category (and similar ones including [27, 28]) is that they
are not able to handle live feeds of sensor readings, let alone conducting
stream processing on said data.
Alternatively, approaches such as those conceived by Cao et al. [29] and
Cheng et al. [30] feature online data processing mechanisms to support
interactive applications for anomaly detection applications in Smart Cities.
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Voila by Cao et al. is a visual interactive system able to process streams
of traffic sensor data for identifying anomalous incidents. Moreover, the
interaction mechanism implemented in Voila harnesses the users’ judgment
to better spot atypical events. On the other hand, the ADF framework pro-
posed by Cheng et al. supports the detection of anomalous sensor readings,
based on a statistical-based technique called time-sliced anomaly detection
(TSAD). TSDA leverages metrics of spatial proximity between sensing de-
vices to label unexpected readings. Both Voila and the ADF framework
are tailored to the anomaly detection use case, while Explora-LD aims
at serving a more generic exploratory analysis on recent and historical sen-
sor data. Additionally, by embracing semantic technologies and publishing
linked data, Explora-LD promotes the interoperability with third party
systems at the data level, while providing a scalable and responsive querying
interface.

4.3 Explora-LD: Enabling mechanisms

The proposal addressed in this chapter aims at supporting interactive incre-
mental query answering on current and historical mobile sensor data, while
providing a scalable and responsive interface based on a Linked Data Frag-
ments approach. The Explora-LD platform thrives on three key enabling
mechanisms: (i) data synopsis, (ii) spatio-temporal fragmentation and (iii)
Summary time series fragments. This section discusses how our platform
embraces these mechanisms to serve the stated purpose.

4.3.1 Data Synopsis

Queries on spatio-temporal data are typically formulated in terms of specific
constraints over both time and space dimensions. For instance, a user might
want to know what the situation of air pollution in his neighborhood looks
like at the moment, and how it has been changing over time. This request
can be placed in the form of a polygonal selection on an interactive map,
along with a specification of the querying time period. As discussed in our
previous work on the Explora framework [4] (cf. Chapter 3, section 3.3.1),
this kind of interaction pattern has been designated as general exploratory
task by Andrienko et al. [31] on a survey on the topic of exploratory analysis
of spatio-temporal data. To serve these exploratory tasks, Explora-LD

harnesses the same synopsis data structures defined in Explora,which are
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continuously computed over the incoming stream of spatio-temporal data.
Said synopsis data structures are by definition drastically smaller than the
base data collection they are derived from, allowing for much faster query
execution.

4.3.2 Spatio-temporal fragmentation

To build the synopsis data structures discussed in the previous section,
Explora-LD places a spatial fragmentation scheme over the incoming data
stream, and computes a number of aggregates (e.g., average, sum, count)
for several time resolutions (minutely, hourly and daily bins). We refer
to the collection of aggregates under an individual spatial fragment and a
certain temporal bin as data summary, and to the structured collection of
data summaries as continuous view. At the time of writing the platform
supports Slippy Map tiles as spatial fragmentation strategy, which is also
used as geospatial indexing method in the OpenStreetMaps online service
[32].
With this data ingestion pipeline in place, Explora-LD is able to instantly
serve queries supporting exploratory tasks, by publishing the incrementally
computed data summaries as Linked Data Fragments, as we shall see in the
section below.

4.3.3 Summary time series fragments

Linked Data Fragments (LDF) is a conceptual framework that encompasses
all the existing interfaces to Linked Data datasets. According to the LDF
framework interfaces are characterized in terms of how query processing
cost is distributed between server and client, and what level of data granu-
larity an interface is able to serve [8]. Triple Pattern Fragments are a type
of Linked Data Fragments conceived as a low-cost method for publishing
Knowledge Graphs at Web scale, by pushing part of the query processing to
the client-side applications. With this method, the entries of a Knowledge
Graph are arranged into fragments, each one matching a specific selector,
together with metadata and hypermedia controls that enable clients to re-
trieve related fragments. Raw time series data can be transformed into times
series fragments by applying the same approach. For time series fragments
this fragmentation occurs in both the temporal and spatial dimensions: in
the time dimension, the raw time series data gets fragmented into fixed-
length time slots. Each time series fragment has a previous and a next
attribute, containing URIs to navigate to the previous and the next frag-
ment respectively along the temporal axis. In the spatial dimension, data
is fragmented in tiles. These tiles are based on the Slippy Map tiles at a
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certain zoom level. A visual representation of the fragmenting is shown on
figure 4.1: each of the tiles in the map has a sequence of time series frag-
ments associated, and each of the fragments contains timestamped sensor
measurements that occurred within the bounds of that tile, ordered in time.
The data structures described above, can also be referred to as raw time se-
ries fragments, since they deal with unprocessed sensor readings. Summary
time series fragments (or summary fragments) on the other hand, follow
a similar approach by arranging data summaries into fixed time slots and
map tiles, instead of raw observations. Depending on its size (or length) a
summary fragment may bundle one to several data summaries. For instance
a one-day summary fragment might contain 1440 per-minute summaries, or
24 per-hour summaries, or one per-day summary.

Figure 4.1 Visual representation of the Time Series Fragments’ structure.

Time
Sensor readings

Sequence of time series fragments within the shaded map tile

Fragment

Publishing data summaries as summary fragments changes the way in which
clients interact with the server. Instead of sending a single request expecting
one large response from the server (i.e. blocking approach), clients now send
multiple requests to fulfill their query (i.e. incremental approach). Each
request is resolved by transmitting a single summary fragment. The client
then examines the next and previous attributes of the reply to find out which
other fragments need to be requested to satisfy the original query. This
form of interaction enables clients to answer queries in an incremental way,
which makes for a more responsive user experience in visual exploratory
applications. There are two main caveats to this approach: (1 ) queries
involving arbitrary polygons are approximated to fit the tile grid. In that
sense, summaries might include the contributions from readings outside the
requested boundaries. (2 ) Since summary fragments might contain data
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falling outside the requested time interval, it is up to the client to filter
out said summaries when computing the final answer. While summary
fragments can only guarantee an approximate answer to queries on spatio-
temporal data, they are still able to provide relevant insights on the state
and historical behaviour of the observed variables.

4.4 Explora-LD: Data Model and Architec-
ture

Based on the mechanisms discussed in the previous section, we have formu-
lated a data model for publishing summary fragments, and designed and
implemented a stream processing data pipeline for continuous computation
of data summaries on live spatio-temporal sensor data. This section elabo-
rates on both the model and the architecture of the proposed platform.

4.4.1 Data Model

The data model needs to facilitate the modeling of sensors and summaries
of sensor observations and do this compliant to linked data standards. The
Semantic Sensor Network Ontology (SSN) [33] was chosen, with its SOSA
(Sensor, Observation, Sample, and Actuator) core ontology that contains
the elementary classes and attributes. The data itself is represented in
JSON-LD. Summary fragments are identified and accessible through URIs
that match the following template:

data/{z}/{x}/{y}{?page,aggrMethod,

aggrPeriod}

Where z, x and y identify the zoom level, and the x and y coordinates of the
fragment tile, respectively; page is the ISO date of the day the aggregated
sensor measurements were made; and aggrMethod and aggrPeriod define
the requested aggregate method and the length aggregation interval (e.g.
minute, hour, day), respectively. Each summary fragment features links to
the previous and next fragment, along with a Hydra descriptor [34] enabling
clients to automatically construct fragment URIs at runtime.
Likewise, a summary fragment is made up of aggregate observations. These
aggregate observations are specified in terms of attributes such as the re-
sulting aggregate, the start and end time of the aggregate interval, the list
of devices reporting the measurements, and the observed variable. The list-
ings below show an example of an aggregate observation and a summary
fragment encoded in JSON-LD.
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{
"@context": {

"sosa": "http :// www.w3.org/ns/sosa/",
"ssn": "http ://www.w3.org/ns/ssn/",
"time": "https ://www.w3.org/TR/owl -time/",

},
"@id":"http :// example.org/data/airquality.no2 /1565110800000" ,
"@type":"sosa:Observation",
"sosa:hasSimpleResult":69.798,
"sosa:resultTime":"2019 -08 -06 T19 :00:00.000Z",
"sosa:phenomenonTime":{

"time:hasBeginning":{
"inXSDDateTimeStamp":"2019 -08 -06 T19 :00:00.000Z"

},
"time:hasEnd":{

"time:inXSDDateTimeStamp":"2019 -08 -06 T20 :00:00.000Z"
}

},
"sosa:observedProperty":"http :// example.org/data/airquality.no2",
"sosa:madeBySensor":[

"http :// example.org/data/lora.FF0032E81",
"http :// example.org/data/lora.FF0032EA2"

],
"sosa:usedProcedure":{

"@id": "http :// example.org/data/id/avg",
"@type": "ssn:Procedure",
"hasOutput": {

"@type": "ssn:Output",
"count":268,
"total":18705.991

}
},
"sosa:hasFeatureOfInterest":"http :// example.org/data/AirQuality",

}

Listing 4.1: Example of an aggregate observation

{
"@id": "http :// example.org/data /13/4196/2734? page =2019 -08 -06 T00

:00:00.000Z&aggrMethod=avg&aggrPeriod=hour",
"@context": {

"sosa": "http :// www.w3.org/ns/sosa/",
"ssn": "http ://www.w3.org/ns/ssn/",
"tiles": "https :// w3id.org/tree#",
"dcterms": "http :// purl.org/dc/terms/",
"hydra": "http ://www.wr.org/ns/hydra/core#",
"schema": "http :// schema.org"

},
"tiles:zoom": 13,
"tiles:longitudeTile": 4196,
"tiles:latitudeTile": 2734,
"schema:startDate": "2019 -08 -06 T00 :00:00.000Z",
"schema:endDate": "2019 -08 -07 T00 :00:00.000Z",
"hydra:previous": "http :// example.org/data /13/4196/2734? page =2019 -08 -05

T00 :00:00.000Z&aggrMethod=avg&aggrPeriod=hour",
"hydra:next": "http :// example.org/data /13/4196/2734? page =2019 -08 -07 T00

:00:00.000Z&aggrMethod=avg&aggrPeriod=hour",
"dcterms:isPartOf": {

"@id": "http :// example.org/data /13/4196/2734? aggrMethod=avg&
aggrPeriod=hour",

"@type": "tiles:Collection",
"hydra:search": {

"@type": "hydra:IriTemplate",
"hydra:template": "http :// example.org/data/{z}/{x}/{y}{?page ,

aggrMethod ,aggrPeriod }",
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"hydra:variableRepresentation": "hydra:BasicRepresentation",
"hydra:mapping": [

{
"@type": "hydra:IriTemplateMapping",
"hydra:variable": "x",
"hydra:property": "tiles:longitudeTile",
"hydra:required": true

},
{

"@type": "hydra:IriTemplateMapping",
"hydra:variable": "y",
"hydra:property": "tiles:latitudeTile",
"hydra:required": true

},
{

"@type": "hydra:IriTemplateMapping",
"hydra:variable": "z",
"hydra:property": "tiles:zoom",
"hydra:required": true

},
{

"@type": "hydra:IriTemplateMapping",
"hydra:variable": "page",
"hydra:property": "tiles:timeQuery",
"hydra:required": false

},
{

"@type": "hydra:IriTemplateMapping",
"hydra:variable": "aggrMethod",
"hydra:property": "dcterms:accrualMethod",
"hydra:required": false

},
{

"@type": "hydra:IriTemplateMapping",
"hydra:variable": "aggrPeriod",
"hydra:property": "dcterms:accrualPeriodicity",
"hydra:required": false

}
]

}
},
"@graph": [

{/* aggregate observation 1 */},
{/* aggregate observation 2 */},
...

]
}

Listing 4.2: Example of a Summary fragment

4.4.2 Architecture

We have designed Explora-LD with scalability in mind. This is why
we opted for a Microservices-based architecture. The platform consists
of containerized, independently deployed components that can be elasti-
cally provisioned to meet the load requirements. For this we used Kuber-
netes [35] as container orchestration platform. Figure 4.2 shows the main
components of the Explora-LD platform, which contemplates two ma-
jor parts: the server and the client side. The source code from both the



Explora-LD: LDF approach for interactive querying of sensor data 115

Figure 4.2 Architecture of the Explora-LD platform.
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client and server sides of the implemented architecture is open source and
available at https://github.com/IBCNServices/explora-ld (server side), and
https://github.com/linkedtimeseries/timeseries-client (client library).

4.4.2.1 Server side

Event log This module serves as an interface between Explora-LD and
the sensor data providers. It collects the raw sensor measurements
and relays the data stream to other components for further process-
ing. The event log is implemented using Apache Kafka [5]. Kafka
provides a suite of tools for processing streams of data, including a
distributed message broker that adopts the publish–subscribe pattern.
This way, incoming sensor observations are registered into a parti-
tioned append-only log (namely topic), which maintains them over a
fixed retention period. The Kafka broker allows multiple consumers
to read and process the collected data in an asynchronous-concurrent
way.

Stream processor This is one of the core modules of the platform’s ar-
chitecture. The stream processor subscribes to the Kafka topic where
the raw sensor observations are being registered, and processes them
to incrementally compute the data summary structures discussed in
section 4.3. This component is implemented as a Kafka streams appli-
cation, according to the data ingestion algorithm described in detail
in one of our previous works [4]. Figure 4.3 presents a schematic of the
implemented stream processing topology using plate notation [36] to
represent the replication of certain regions of the graph. Notice that
the stream processing pipeline defined this way supports multiple tile
resolutions and multiple types of measurements: summary fragments
can be computed over different zoom levels (given by the Z-index in
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Figure 4.3 Representation of the stream processing topology using plate
notation. Z stands for the different zoom levels used for spatial fragmenta-
tion, while M represents the collection of sensed variables (measures) avail-
able (e.g. air pollution, temperature, humidity, etc.)

Z

M

the inner box of the topology), for several sensed variables (M-index in
the outer box of the topology). Notice as well that continuous views
of multiple temporal resolutions (per-minute, per-hour and per-day)
are computed for each of the summary fragments, as indicated by the
sink nodes in the topology. This enables the system to serve client
requests with different spatial and temporal resolutions.

Summary fragments store The Kafka streams library provides an API
that supports distributed stateful transformations on the stream of
sensor readings, enabling multiple stream processor instances to con-
sume the partitioned Kafka topics. Each one of these processor in-
stances is responsible for maintaining a part of the global application
state, namely the summary fragments corresponding to the sensor
readings coming from each of the topic partitions. In the architec-
ture diagram (Fig. 4.2) this is represented by the Summary fragments
stores, which are distributed key-value database instances, co-located
with the stream processors. Each summary fragment in these stores is
associated with a compound record key. Said key consists of an identi-
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fier of the summary fragment’s tile encoded as its equivalent quadtree
prefix, along with a timestamp indicating the start date of the sum-
mary fragment. As an illustration, consider the example shown below:

quadtree prefix
︷ ︸︸ ︷

1202021230320
︸ ︷︷ ︸

{x:4180, y:2742, z:13}

#

timestamp
︷ ︸︸ ︷

20190406
︸ ︷︷ ︸

date: 2019/04/06

: 000000
︸ ︷︷ ︸

time: 00:00:00

: 000
︸︷︷︸
ms

Each database instance manages a key range which is advertised to
other modules via a metadata service. The summary fragments server
(described next) uses this metadata service to determine which of the
store instances should be queried in order to fetch a given summary
fragment.

Summary time series fragments (STSF) server This component of-
fers a HTTP interface to serve the summary fragments persisted in
the key-value stores discussed above. Notice that there are multiple
server instances, one per stream processor. Each instance is only able
to serve the summaries from its local fragment store. Every client
request for a (not-yet-cached) fragment reaches one of the available
server instances, and it is up to the receiving server to decide whether
to process the request, or forward it to another instance, based on
the information provided by the metadata service of the summary
fragment stores. This HTTP API runs on a Jetty servlet container.

Proxy/Cache This is the component where all HTTP requests arrive. In
this cache, each requested fragment gets stored according to Least Re-
cently Used policy. Notice that the historical data inside the fragments
does not go stale and thus, are not removed from the cache after be-
ing unused for a certain amount of time. This is why Cache-Headers

of all sent fragments, except the one of the current date, are set to
max− age = 31556952000 (which corresponds to one year, the maxi-
mum value this directive is allowed to take according to the HTTP/1.1
specification). This does not apply for the fragment of the current
date, since this one is still being updated with new measurements.

4.4.2.2 Client side

Client library As mentioned earlier, publishing data summaries as sum-
mary fragments involves a fundamental change in the way server and
clients interact: instead of a traditional blocking approach, where
clients send a single request per query and expect one large response
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from the server, queries in Explora-LD are handled through an in-
cremental process in which clients request individual fragments one
after the other using the hypermedia controls embedded into them,
until they gather enough data to meet the query requirements. The
client library is a proof-of-concept Node.js implementation that en-
able clients of Explora-LD to do precisely this. The library takes a
geographic area defined by a polygon, together with a time interval,
an aggregate method (supporting average, count, and sum at the mo-
ment of writing), and an aggregate period (min, hour, or day). The
query polygon is formed out of coordinate pairs and the time inter-
val is defined as two ISO-date strings, for the start date and the end
date of the query interval. With these inputs the following steps are
performed:

1. The process starts by computing the minimum collection of Slippy
map tiles to cover the provided geometry at the zoom levels sup-
ported by the platform. To illustrate this, consider the example
in figure 4.4.

2. The following action is to start fetching the summary fragments
for the requested time interval, beginning with the start date. For
each subsequent date, the fragments for all tiles are requested.

3. Once all data for a date has been gathered, all the summary
fragments of the tiles are sorted into one object. This sorting is
done according to the metric and sosa:resultTime attribute of
the aggregate observations within the fragments.

4. Sorted aggregate observations are then combined to calculate the
summary time series corresponding to the date being currently
processed.

5. Finally, the procedure is repeated from step 2 onwards, until the
end date of the requested time interval is reached.

All previous steps run asynchronous to the main thread. To notify
users of the progress of their request, a listener system was created.
In this way, Client applications can subscribe to certain events being
triggered in the client library —for instance, whenever the library is
done aggregating all the observations for a given date— and will be
notified every time new data is available.
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Figure 4.4 Computing the required tiles for the requested polygon: num-
bers within the tiles indicate the zoom level of each of them.
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4.5 Experimental Evaluation

To estimate the benefits, costs and limitation of the proposed approach, we
have conducted an empirical comparison of two setups: one implementing
the stream processing pipeline and Linked Data Fragments interface pro-
posed with the Explora-LD platform, and the other featuring a similar
distributed stream processing mechanism, but offering a traditional HTTP
interface with a blocking query processing approach, which we refer to as
Explora [4]. More precisely, this evaluation uses the Kafka Streams im-
plementation of Explora detailed back in section 3.4.3.2 of the previous
Chapter. This section describes first the experimental setup, and then dis-
cusses the results of the tests conducted.

4.5.1 Experimental Setup

The data used in this evaluation was sourced from the Bel-Air project:
a Smart City setup that is currently operating in the City of Antwerp,
under the City of Things (CoT) [37] initiative. This project is particularly
concerned with collecting data on air quality in the city in a flexible, cost-
efficient manner. Since the costs of deploying a maintaining a network of
fixed sensors across the entire city could be prohibitively high, the Bel-Air
project opted for a hybrid solution, involving mobile sensors installed on
top of the mail delivery vans of the Belgian Postal service (Bpost), together
with a number of sensors placed in fixed locations within the city.
From this setup we have collected about one-year’s worth of sensor measure-
ments (from August 2018 to August 2019) on a number of air pollutants over
the city of Antwerp, which we fed into the Explora-LD stream processing
pipeline to compute summary time series fragments.
We have deployed both Explora-LD and Explora to a Kubernetes clus-
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ter with one master and three worker nodes —all nodes sharing the same
specifications: Intel E5645 @ 2.4GHz CPU, 8GB RAM, 50GB hard disk—
using the infrastructure from the imec/IDLab Virtual Wall environment
[38]. Both setups were spawned to run with five concurrent stream proces-
sors, each one subscribed to one of the five partitions of the Kafka topic
to which the stream of sensor data was being posted. Then, we conducted
a benchmark evaluation on both approaches measuring their performance
in terms of query response time, CPU usage, and memory consumption.
For this we used the query set defined by the polygons listed in table B.1
(See appendix B) —which cover the area of around 85 km2 where sen-
sor measurements were collected—, along with the time interval between
May 3rd 2019, to June 3rd 2019. Each of these queries comprises mul-
tiple Slippy tiles in zoom levels 13 and 14. Table B.1 specifies the coor-
dinates corresponding to each of the query polygons and the Slippy tiles
they encompass. By drawing random combinations of these queries we were
able to generate several workloads of various sizes, which we then used for
the benchmark evaluation. The workloads we generated are available at
https://github.com/LeandroOrdonez/explora-ld-test-workloads.
Both the Explora-LD and Explora setups were subjected to increasing
load over a 1-hour time window, under the settings presented in table 4.1.

Table 4.1: Experiment settings.

Parameter Value

Spatial fragmentation (tile zoom levels) [13, 14]
Summary fragment size (Explora-LD) 1 day
Aggregate period 1 minute
# queries/hour (workload size) [4, 8, . . . , 256, 512]

Considering the influence of caching on the query response time, we con-
ducted these measurements for both cached and uncached summary frag-
ments. Finally, the versions of the software tools used in these tests are
listed in table 4.2.

4.5.2 Results

4.5.2.1 Query response time

According to the procedure outlined earlier for the client library, the polyg-
onal regions designated as the test queries get fitted by arrangements of
four (4) Slippy tiles as shown in table B.1. Following said procedure, the
client library translates each of these queries into 124 fragment requests (4
fragments × 31 days). We measured the time it takes for Explora-LD to
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Table 4.2: Versions of the software used in the experimental setup.

Software Version

Kubectl 0.15.12
Linux Kernel (k8s pods) 4.15.0-101-generic
Operating System (k8s pods) Debian GNU/Linux 10 (buster)
Container Runtime Version containerd://1.2.6
Apache Kafka 2.3.0
NGINX (proxy/cache module) 1.19.0
Jetty Server 9.4.20.v20190813
Java (OpenJDK) 14-ea
Node.js 13.13.0

answer each fragment request under different load demands. Results of these
measurements are presented in Figure 4.5, contrasted to those obtained for
the alternative blocking approach (Explora). For Explora-LD —both
cached and uncached fragments— average response times corresponding to
the first, middle and last response are shown in the graph, while the time
plotted for the blocking approach corresponds to the single response per
query this interface yields by definition.

Figure 4.5 Query response time remains predominantly stable for all the
evaluated setups under variable load.
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Notice that despite the increasing load, the average query response time
remains largely invariant across all setups. Explora-LD is able to pro-
vide the first answers under 62 milliseconds latency for both cached and
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uncached fragments, which makes for a highly responsive interface. On the
other hand, the Explora (blocking interface) manages to serve a single
(complete) answer in just under 1.5 seconds, around the same time it takes
for Explora-LD to reach half the number of answers to solve the query
with cached fragments.

Figure 4.6 allows us to better visualize how the answers are incrementally
delivered with Explora-LD and how it compares to the behaviour of the
alternative blocking interface. This graph displays the number of answers
generated vs. the average query processing time. In the worst-case scenario
—i.e. none of the requested summary fragments are cached— Explora-

LD takes on average 4x longer to provide a complete answer to the client’s
query, in contrast to the Explora’s blocking interface.

Figure 4.6 Response time performance: Explora-LD delivered between
20% to 60% of the full query answer before the blocking interface computed
a complete response. Nearly 30% of the answers were produced under one
second, when querying cached fragments.
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When instead all the requested summary fragments are cached (i.e. best-
case scenario) Explora-LD takes only 1.8x longer to completely resolve the
query compared to the alternative approach. While this may be deemed as
a significant latency, it is worth noting that Explora-LD starts delivering
partial answers nearly as soon as the query is submitted, in contrast to
the blocking approach, which takes more than one second to produce a
single, final answer. This is more noticeable for queries involving longer
time intervals (for instance, several months). In those cases the blocking
interface might take several seconds to obtain a final response, which can
render client applications unresponsive.
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4.5.2.2 CPU usage

We used the Metrics API provided by Kubernetes to collect measurements
of CPU and memory consumption on the setups under evaluation, for both
server and client sides. Figure 4.7 reports on the server’s average CPU
usage for the Explora-LD implementation, compared to the alternative
Explora blocking interface. As illustrated in this graph, CPU utilization
scales linearly with the amount of load in both setups. For Explora-LD

(with uncached fragments), this performance metric grows nearly 2.5x faster
in comparison to the blocking interface, which is largely attributed to the
overhead due to processing multiple request per query, instead of just one
large request.

On the other hand, when requesting cached fragments, queries are served di-
rectly from the proxy/cache module, thus freeing server instances from per-
forming any processing. In this sense, caching is one of the main advantages
of the summary fragments approach we have adopted in Explora-LD. In
contrast to the blocking approach, the segmentation schema that this in-
terface incorporates favors cache reuse across multiple clients, prompting
an effective decrease in the amount of resources demanded from the server
instances over time. Moreover, summary fragments can be cached indef-
initely, since the data they are derived from —i.e. historic data— is not
subject to change in the future.

Figure 4.7 Server side CPU Usage vs. queries/hour: CPU usage grows
linearly with the amount of load for both Explora-LD (with uncached
fragments) and the blocking interface. When querying cached fragments
the CPU usage of the NGINX proxy/cache instance is close to negligible.
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As stated earlier in this chapter, the summary fragments interface that
Explora-LD implements thrives on pushing part of the query processing
to the client-side applications. In this sense, it is expected for the clients
of Explora-LD to use more computing resources than those demanded
by clients of a traditional blocking interface. Figure 4.8 compares clients
of both setups in terms of their CPU usage throughout a session of 512
queries/hour. Under these high-load conditions, Explora-LD clients use
up to two orders of magnitude more CPU than clients from the blocking
counterpart.

Figure 4.8 CPU usage on the client side under high load (512 queries/hour)
is almost two orders of magnitude larger for Explora-LD compared to the
alternative Explora blocking interface.
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4.5.2.3 Memory Consumption

Memory consumption when requesting uncached fragments is also higher
for Explora-LD compared to the blocking interface. However, in contrast
to CPU usage, the amount of memory demanded by the server instances
grows nearly logarithmically as the load increases. As illustrated in the
chart in Figure 4.9, server instances from the Explora-LD setup con-
sume around 6% more memory that servers of the blocking interface. The
semantically-rich data model offered by the summary fragments interface
demands more memory for producing query answers and serializing them
as JSON-LD objects, in comparison to the plain tabular format served by
the blocking interface. This explains the difference in memory requirements
from both setups. Once the summary fragments are cached the amount of
memory consumed by the proxy/cache module is remarkably small: around
2.3x lower than the Explora’s blocking interface, and 2.5x lower than
Explora-LD on uncached fragments.
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Figure 4.9 Server side memory consumption: demand scales nearly log-
arithmically for Explora-LD on uncached fragments under increasing load
while it remains largely constant for the same setup on cached fragments.
This latter setup consumes 2.3x less memory than the alternative blocking
interface.
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As for the client side, there is a noticeable difference between the memory
used by Explora-LD clients, and those from the Explora blocking in-
terface. Under medium-to-heavy load conditions, the procedure conducted
on the client library (detailed back in section 4.4.2.2) to combine the re-
trieved summary fragments and compute the complete query answer, de-
mands substantially more memory than that required for the traditional
single-request/single-response approach. Figure 4.10 compares the distri-
butions of measurements of memory consumption obtained on the client
side, again across a session of 512 queries/hour. Under these conditions an
Explora-LD client requires on average nearly 1.4x the amount of memory
consumed by a client of the blocking interface.

4.6 Discussion and Conclusions

As more Smart City initiatives are rolled-out, coming up with mechanisms
that offer timely, efficient access to the streams of spatio-temporal data gen-
erated in these environments becomes critical for building the engagement
among citizens and other stakeholders, required to ensure the sustainability
of these initiatives over time. Aligned with these requirements, we conceived
Explora-LD, a data platform that enables the interactive exploration over
historical and near-real time Smart City data. Explora-LD harnesses the
sequential nature of time series data and a quadtree-based spatial indexing
structure known as Slippy tiles, to continuously generate relevant data sum-
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Figure 4.10 Memory consumption on the client side under high-load con-
ditions (512 queries/hour): a Explora-LD client consumes —on average—
as much as 1.4 times the memory used by a client from the blocking inter-
face.

0 10 20 30 40 50 60
Elapsed time (min)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

M
em

or
y 

(M
iB

)

explora-ld
explora

maries arranged into a graph of immutable connected resources, which then
publishes through a Linked Data Fragments interface. This architectural
choice involves a fundamental change in the way servers and clients inter-
act: by offering a constrained interface, servers are freed from computing
arbitrarily complex requests, and clients are compelled to conduct a major
part of the query processing by traversing the linked structure of summary
fragments. Another appealing feature of the Explora-LD’s fragments in-
terface consists in its inherent cacheability: in general, once a fragment has
been built as part of the answer to an arbitrary query, it can remain cached
indefinitely for other clients to reuse it. As a consequence of this, recurrent
queries are expected to run faster over time, while further decreasing the
load on the server instances.

The data model conceived for representing the summary fragments pro-
vides a navigational structure via Hydra-compliant hypermedia controls.
This comes with two significant benefits: (i) it enables automated clients to
solve spatio-temporal queries by exploring the fragmented data themselves,
and (ii) it promotes evolvability of the querying interface, in the sense that
adding or removing features to the devised fragmentation will not cause
existing clients to break, since they are able to dynamically interpret these
changes on-the-fly. Additionally, by resorting to widely accepted vocabular-
ies, the Explora-LD data model provides metadata and formal semantics
that facilitates the integration and interoperability with third party appli-
cations aligned with these Linked-Data vocabularies. In this chapter we
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present a detailed definition of the Explora-LD platform architecture, to-
gether with its Linked-Data compliant data model, and an implementation
of the stream processing pipeline the platform thrives on. Additionally, we
report on a performance evaluation of the proposed approach on real world
air pollution data, collected from a Smart City setup running in the city of
Antwerp. In this evaluation we compare Explora-LD to a similar system
exposing a traditional blocking query interface. In doing this, we contrast
the response of these two systems to increasing load, keeping record of met-
rics such as query response time, CPU usage, and memory consumption.
The results of this evaluation reveal a number of findings:

• Given a spatio-temporal query, Explora-LD is able to provide a se-
quence of intermediate answers before the alternative Explora block-
ing interface finishes processing and delivering a complete response.
This is best perceived when performing exploratory requests over ex-
tended periods of time and/or large spatial regions. In those cases,
the system offering a blocking interface could be dismissed as un-
responsive due to the associated high latency, while Explora-LD

would promptly serve incremental answers regardless of the scope of
the query.

• When running on uncached fragments Explora-LD occupies more
computing resources than the blocking interface. The foregoing is
mainly attributed to the segmentation of queries into several requests,
added to the on-the-fly serialization of the derived summary fragments
into JSON-LD objects. However, once these fragments are cached,
such resource-intensive serialization procedure is no longer required,
leading to an effective decrease in the servers’ load, and a reduction
of around 50% in query response time.

• Queries on cached fragments are inexpensive in terms of CPU usage,
and consume less than 50% the memory required by the Explora

blocking interface. By promoting cache reuse, the Explora-LD ap-
proach makes for a cost-efficient scalable interface for supporting ex-
ploratory tasks on spatio-temporal data.

The proposed Explora-LD platform thrives on a trade-off between query
accuracy and query latency. In this sense, further experimentation is re-
quired to determine the optimal compromise between these two require-
ments. This would involve, for instance, testing the platform’s perfor-
mance on different spatial indexing mechanisms, and different fragment
lengths.Likewise, optimizing the data serialization step —which proved to
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be a rather expensive procedure— is going to be part of future iterations
of our research. We are considering some alternative formats to JSON-
LD, including N-Triples, N-Quads, and binary serialization formats such as
Avro.
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5
Explora-VR: Content Prefetching

for Tile-based Immersive Video

Streaming Applications

Chapter 4 introduced Explora-LD as a platform capable of serving inter-
active query responses, even under high-load conditions. This chapter goes
further to study the challenge of adapting to variable data retrieval patterns
in latency-sensitive applications while serving multiple concurrent clients.
Using tile-based immersive video streaming services as a relevant use case,
this chapter presents Explora-VR, a network-assisted query preprocessing
mechanism inspired by the framework discussed in chapter 3. In tile-based
immersive video streaming, the user’s quality of experience (QoE) is heavily
affected by network latency. By analyzing the stream of requests issued by
users with active streaming sessions, Explora-VR intends to anticipate
viewer actions (head movements), and prefetch the video content they are
most likely to watch in the upcoming segments into a nearby cache-enabled
edge server. Clients consuming video tiles served by these nearby edge nodes
experience lower latency, higher network throughput, and in consequence,
higher video quality and a smoother playback experience in comparison to
conventional content delivery approaches.

⋆ ⋆ ⋆
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Abstract Despite the growing popularity of immersive video applications
during the last few years, the stringent low latency requirements of this kind
of services remain a major challenge for the existing network infrastruc-
ture. Edge-assisted solutions compensate for network latency by relying on
cache-enabled edge servers to bring frequently accessed video content closer
to the client. However, these approaches often require historical request
traces from previous watching sessions or adopt passive caching strategies
subject to the cold-start problem and prone to playout freezes. This chapter
introduces Explora-VR, a novel edge-assisted content prefetching method
for tile-based 360° video streaming. This method leverages the client’s rate
adaptation heuristic to preemptively retrieve the content that the viewer will
most likely watch in the upcoming segments, and loads it into a nearby edge
server. At the same time, Explora-VR incrementally builds a dynamic
collective buffer for serving the requests from active streaming sessions based
on the estimated popularity of video tiles per segment. An evaluation of
the proposed method was conducted on head movement traces collected
from 48 unique users while watching three different 360° videos. Results
show that Explora-VR is able to serve over 98% of the client requests
from the cache-enabled edge server, leading to an average increase of 2.5×
and 1.4× in the client’s perceived throughput, compared to a conventional
client-server setup and a least recently used caching policy, respectively. This
enables Explora-VR to serve higher quality video content while providing
a freeze-free playback experience and effectively reducing network traffic to
the content server.

5.1 Introduction

The recent outbreak of the COVID-19 pandemic has forced a radical shift
in reality for a vast majority of the human population. Given the strict
restrictions on mobility and social contact, people were compelled to move
several aspects of their daily life into the digital world. These circumstances
have boosted the interest in 360° immersive video applications (augmented
and virtual reality—AR/VR) as a means to provide realistic and engaging
user experiences,that make up for the lack of presence and physical interac-
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tion [1–3]. However, the stringent demands in terms of bandwidth and very
low latency of AR/VR applications still represent a major challenge for the
existing network infrastructure [4].

For services relying on VR headsets for content delivery, the delay perceived
by the user is a critical factor for determining the overall experience. Re-
search on this topic signals that the motion-to-photon (MTP) latency for
VR displays should be less than 20 ms to prevent the perception of scene
instability and cybersickness [5, 6]. For on-demand tile-based 360° video
streaming in particular, many of the existing studies have focused on miti-
gating the effect of latency by increasing viewport prediction accuracy and
applying HTTP adaptive streaming (HAS) methods to adapt the quality
of the requested content to the network conditions [7, 8]. While these ap-
proaches achieve a rational use of the bandwidth as perceived at the client’s
side, the network latency due to distant content servers can still substan-
tially degrade the viewer experience.

As an answer to this problem, network-supported solutions leveraging cache-
enabled edge servers have been proposed [8, 9]. The idea behind these ap-
proaches consists of bringing frequently accessed video tiles closer to the
client; this offsets the network delay, which in turn leads to a significant im-
provement in the quality of the delivered content. This is, however, easier
said than done: the high variety of possible viewport configurations—due to
the freedom of device orientation, added to different network conditions—
makes it hard to determine a priori the set of tiles that should be cached.
In this sense, network-supported solutions often rely on log traces obtained
from previous streaming sessions to estimate the popularity of the content,
and/or adopt passive caching strategies in which only those tiles that are
requested get cached at the edge server. These approaches entail two fun-
damental problems: (i) historical request traces are not always available for
every piece of content, and (ii) the cold-start problem: early users would
barely experience any improvement from having a cache nearby, due to the
fact that most of their requests for content end up being forwarded to the
origin server.

To address these issues, in this chapter we introduce Explora-VR, a con-
tent prefetching mechanism for tile-based immersive video streaming. Our
solution introduces two fundamental changes in the traditional workflow of
content consumption for this kind of services: (1 ) the early advertising of the
outcome of the viewport prediction and rate adaptation algorithm, running
on the head-mounted display (HMD), and (2 ) the incremental building of a
collective buffer that incorporates fixation patterns shared by the viewers.
The rationale behind this is two-fold:
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1. The information on the predicted user’s viewport is forwarded to
the cache-enabled edge server before the client’s device starts buffer-
ing content. The edge server uses this information to preemptively
retrieve—at a given quality level—the video tiles that the user is
likely to watch in the upcoming segments, and it loads them into
memory. Then the client starts consuming the video content from a
closer server. In these circumstances, a HAS client would perceive
that the content is downloaded with low latency, leading to a high
network throughput estimation, and consequently to an increase in
quality of the requested video tiles.

2. Since having multiple clients consume the same VR content within a
small time window is a common use case (e.g., the on-demand, near-
live scenario when a content provider premieres a new release), we
have devised a stream-processing pipeline which enables combining
the different user predicted viewports into a dynamic collective buffer
(henceforth referred to as DCoB) which is built and refined incremen-
tally as new users join the streaming session. The purpose of this
DCoB is to serve as a cache holding frequently accessed content, pre-
venting the edge server from flooding the content server with duplicate
requests.

This chapter presents the following three main contributions of the solu-
tion we propose: (1 ) an edge-assisted, content-agnostic mechanism that
proactively downloads the video tiles that an individual viewer is likely to
watch in the near future (2 ) the formal definition of the data structure and
stream processing pipeline behind the DCoB, which enables low-latency de-
livery of 360° video content to multiple users taking part of an on-demand,
near-live streaming scenario, and (3 ) the experimental evaluation of the
proposed approach on a public dataset which comprises the viewport traces
from 48 users, collected throughout immersive video sessions. We have
benchmarked the Explora-VR prefetching mechanism against a conven-
tional client-server configuration (without caching/prefetching), and a setup
implementing a traditional least-recently used (LRU) caching replacement
policy. Results show that the devised prefetching mechanism substantially
improves the quality of experience (QoE) perceived by the viewer, in terms
of video quality, startup latency, and occurrence of playout freezes, while
reducing the backhaul traffic and content server’s load.
It should be pointed out that it is not in the scope of this chapter to reach
an optimal trade-off between network resource consumption and video de-
livered quality, as is the case for approaches in the literature such as [10]
and [11]. Our work is focused on investigating data processing methods for
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enabling preemptive retrieval of immersive video content which are able to
adapt to the fixation patterns of multiple concurrent viewers. To achieve
this, we leverage the computing resources of cache-enabled edge nodes, and
we rely on existing methods for client-side viewport prediction and tile-based
rate adaptation such as those introduced in [12] and [13].
The remainder of this chapter is structured as follows. Section 5.2 discusses
the related work. Section 5.3 describes the detailed description of the tech-
niques behind the content prefetching mechanism for tile-based 360° video
streaming. Section 5.4 elaborates on the architecture of a proof-of-concept
implementation of the proposed approach. Section 5.5 presents the experi-
mental setup and the results derived from the evaluation. Finally, conclu-
sions and perspectives for further research are provided in Section 5.6.

5.2 Related Work

Immersive video applications are typically bandwidth-hungry and highly
sensitive to latency. A large body of research in this field has been devoted
to develop efficient mechanisms of content delivery. Existing approaches
can be grouped into three categories according to the main focus of their
respective contribution, namely client-driven, server optimization, and edge-
assisted solutions.

5.2.1 Client-driven HAS streaming for tile-based 360°
video

To improve transmission efficiency, approaches in this category divide an
equirectangular projection of the spherical video into several rectangular ar-
eas of the same size, referred to as tiles. By implementing said tiling scheme,
the client can opt to prioritize the tiles that overlap with the viewer’s view-
port and request them in a higher quality representation than the tiles that
are not visible to the user. Representatives approaches of these tile-based
viewport-dependent adaptive video streaming solutions include those by
Hosseini [14], Xie et al. [15], Graf et al. [16], Nguyen et al. [17], and van
der Hooft et al. [13]. These works are fundamentally focused on addressing
two main challenges: (i) viewport prediction: anticipate user movements
to ensure content is timely displayed following the field of view (FoV) of
the user; and (ii) quality of experience (QoE): providing a smooth, re-
sponsive viewing experience at the highest possible video quality that the
best-effort network can deliver [8]. In essence, these approaches adopt tradi-
tional HTTP adaptive streaming techniques, and augment them to support
tile-based content delivery, while meeting the stringent demands in terms
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of latency and interactivity of omnidirectional video streaming. Although
these solutions allow for an efficient use of the link capacity, they are still
highly sensitive to network latency due to content servers situated in distant
locations which severely degrades the user experience.

5.2.2 Server optimization solutions

This category comprises works mainly focused on maximizing viewer’s QoE
while optimally allocating server and network resources. Long et al. [10]
propose a solution to the problem of optimal transmission resource alloca-
tion on the server side given a specific requirement of video quality from
the viewer, as well as the optimal encoding rate for each video tile given a
certain transmission energy budget. The solution contemplates exploiting
several multicast opportunities that involve balancing trade-offs between
video quality, computation, and consumption of communication resources.
One of the implications of the proposed multicasting mechanisms is that
the server might transmit video tiles at a higher quality representation than
requested by a certain client. In such a case, the client application would
incur a processing cost in order to scale down the received video tile to
the appropriate quality representation. Building upon [10], the work by
Zhao et al. [11] investigates the impact of viewport prediction on adaptive
streaming of tiled 360° video in a multi-carrier wireless system. The authors
consider a setup with a multi-antenna base station from which video content
is transmitted to one or multiple single-antenna clients. Within the scope
of said setup, the authors propose a framework that optimizes the downlink
subcarrier allocations as well as the encoding rates for tiles and FoVs at the
server side. The solution proposed in [11] aims at maximizing the video
quality delivered to the clients, while controlling the rebuffering time for
different levels of certainty about the outcome of the viewport prediction.
It is noteworthy that the optimization investigated in [11] relies on methods
that operate on the radio link layer, which is out of the scope of the work
we present in this chapter.
Another approach that fits within this category is introduced by Shi et al.
[5], who propose a remote rendering solution in which the server is able to
stream only the scenes within the user’s FoV plus a margin area around it
whose width depends on the perceived system latency. Instead of a tiling
scheme, the server uses an adaptive cropping filter that adjusts the delivered
content to the fraction of the VR video overlapping with the current user
viewport. A design decision made by the authors consists of minimizing
the use of video buffering to reduce the system’s response latency. As a
consequence, the proposed remote rendering solution is sensitive to network
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jitter and prone to frame dropping. Furthermore, the authors do not provide
a clear indication concerning the performance of the proposed solution under
high server load (i.e., serving multiple concurrent viewers).

5.2.3 Edge-assisted solutions

Thanks to the recent availability of public datasets on Virtual Reality (VR)
video streaming —such as those by Lo et al. [18], David et al. [19], Fremerey
et al. [20], and Wu et al. [21], among others— there has been an increas-
ing interest in investigating methods for mining behavioral patterns from
user movement traces. According to the study by Rossy et al. [22], nav-
igation trajectories followed by viewers with high affinity exhibit patterns
that can be used for optimizing the content delivery in streaming systems.
Approaches aligned with this idea are often labelled as edge-assisted or
network-supported solutions. Papaioannou et al. [23] addressed the prob-
lem of optimal caching for tile-based VR video streaming in the wireless edge
network. Specifically, the solution introduced in [23] formulates a tile and
tile resolution caching policy that aims at minimizing the error between the
cached and requested content. The authors studied a static caching scenario
in which the caching decision is made upfront, based on statistical data of
the tile resolution demands from past watching sessions. Similarly, Mahzari
et al. [24] explored the application of edge caching as a measure to com-
pensate for network latency, and offload the content servers and backhaul
network. The authors of this work conceived a FoV-aware caching policy
based on a bayesian model which takes in the sequence of requests made
by previous viewers. The proposed model gauges the popularity of indi-
vidual tiles, and makes decisions on which content to cache/evict based on
said metric. Similarly, Maniotis and Thomos [25] devised a cache replace-
ment strategy for tile-based omnidirectional video, supported by a deep
reinforcement learning (DRL) framework. This strategy takes into account
the popularity of both videos and individual tiles. The authors introduced
the concept of virtual viewports defined as the most popular video tiles re-
sulting from the overlapping FoV of multiple users. To learn the optimal
policy for tile placement in the cache, the DRL framework first requires to
train a deep neural network (DNN) on past user requests.
These approaches (and related proposals such as [26–29]) have proven the
pertinence and substantial benefit of edge caching to improve QoE in 360°
video services, while reducing the load on the core network. However, these
solutions often require an offline stage in which they fit a certain data
model to traces of user requests. Afterward, in a subsequent online stage,
this model is used to make decisions on which content to cache/evict, ac-
cording to the demands from new users consuming the streaming service. In
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addition, the studies discussed above adopt a passive approach to caching,
i.e. tiles are stored into the edge-server memory only after they have been
requested. Under these circumstances, early viewers would experience lit-
tle benefit from the caching strategy in place, an issue that is commonly
referred to in the literature as the cold-start problem [30]. Using a cold
cache translates into cache miss events, which in turn increases the like-
lihood of playback freezes, since user requests have to be relayed back to
the content server, thus incurring additional latency. To counter this issue,
we propose a new FoV-aware content prefetching approach for tile-based
adaptive 360° video streaming. This approach takes advantage of existing
viewport prediction techniques to preemptively retrieve and cache the video
content that the viewer is most likely to consume in the upcoming segments.
Additionally, this mechanism does not rely on training data from historical
traces as it is able to learn a collective viewport on the fly, out of the re-
quests made by viewers with active streaming sessions. The content inside
the collective viewport dynamically adapts in response to the content that
is most demanded by the audience at a given point in time, which makes
this approach specially appealing for near-live immersive video streaming
applications.

5.3 Explora-VR: Approach Overview

Figure 5.1 High-level component view of the VR content prefetching sce-
nario. The link between Content and Prefetch servers features a larger ca-
pacity and higher latency than the one between Prefetch server and Client.

Figure 5.1 illustrates the components that make up the content prefetching
mechanism we propose. This mechanism is deployed on a cache-enabled
edge server acting as a transparent proxy between the client and the content
server. In this section we elaborate on the techniques that lay the foundation
of our solution, namely (1 ) the early advertising of the outcome of the
viewport prediction and rate adaptation algorithm, and (2 ) the dynamic
collective buffer (DCoB).
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5.3.1 Viewport Prediction Advertising and Prefetching

In immersive video applications based on 360° video, it is common for con-
tent to be segmented not only in time but also in the spatial dimension.
The HEVC/H.265 standard, for instance, allows to split an equirectangular
projection of the content into m×n tiles of the same resolution. By adding
this spatial dimension, clients can prioritize the content within the user’s
field of view, assigning a higher quality to specific regions of the video, hence
making more optimal use of the bandwidth resources [31, 32].
To prevent buffer starvation and ensure a smooth playback in these highly
interactive applications, traditional HAS methods need to be augmented.
HAS clients for VR applications rely on techniques for predicting the users’
target field of view or viewport, and rate adaptation heuristics to fine-tune
the quality level of the requested content in response to the users’ movements
and network conditions [7, 16, 32].
Several methods have been introduced for viewport prediction in tile-based
VR video streaming over the last years. On the one hand, content-agnostic
approaches estimate the trajectory the viewer is likely to follow based on
the viewport center locations of the last few milliseconds. To do so, some
of these approaches use linear projection on the previous viewport positions
[13, 31, 33, 34], while others rely on machine learning models trained on
user movement traces [35, 36]. Content-aware techniques on the other hand,
attempt to anticipate user movements based not only on an estimation of
the viewer’s trajectory, but also on specific features derived from the video
content itself such as image saliency, fixation density and object motion
maps [37–40].
In this work, we adopt the content-agnostic method proposed by van der
Hooft et al. in [12] for predicting the user’s viewport. In contrast to other
content-agnostic solutions that assume the user moving on a path in the two-
dimensional space defined by the equirectangular projection of the video,
the method proposed in [12] models the viewer’s movement as a trajectory
on the unit sphere’s surface. In this way, the future location of the viewport
center is estimated by unidirectionally extending the path covered by the
viewer thus far across the surface of the unit sphere (spherical walk). This
approach to viewport prediction provides a more natural approximation of
the viewer’s motion within the 360° video scene. This allows for a more
accurate prediction compared to alternative content-agnostic solutions us-
ing linear extrapolation of the user’s trajectory over the equirectangular
projection of the video.
It is worth noting that the content prefetching mechanism we propose does
not involve any substantial modification to the adopted viewport prediction
scheme. Besides, while we favor the use of spherical-walk based viewport
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prediction—mainly due to its enhanced accuracy—the devised prefetch-
ing mechanism is easily compatible with other alternative content-agnostic
viewport prediction methods such as those proposed by Petrangeli et al.
[31] and Xu et al. [34].

Along with the viewport prediction scheme based on spherical walks, we
also adopt the Center Tile First (CTF) rate adaptation heuristic proposed
in [13]. The intent behind this heuristic is to maximize the quality level
for the video tiles located closer to the viewport center. In doing so, tiles
from an equirectangular VR video are ranked according to the great-circle
distance between their center and the viewport predicted location. The
closer a certain tile is to the viewport center, the higher its priority and the
quality representation that gets assigned to it.

As illustration, consider the example in Figure 5.2 for a 4× 4 tiling scheme
and two quality levels. The diagram outlines both the viewport (circular
area on the sphere in Figure 5.2a) and viewport center (indicated as a
cross mark). In this example, the CTF heuristic has prioritized the six
tiles that lie closer to the viewport center, assigning them a high quality
representation.

Figure 5.2 Example of the application of the CTF rate adaptation heuris-
tic for a setup with a 4×4 tiling scheme and two quality levels: The highest
quality representation gets assigned to the blue-shaded tiles, while the re-
maining ones are requested in the lowest quality. The number of high/low
quality tiles in this example is arbitrary as it depends on the network con-
ditions between client and server.

(a) Viewport projection in the unit
sphere. Based on [32]

(b) Equivalent equirectangular projec-
tion of the viewport. Based on [32]

The output of the rate adaptation heuristic is represented as an array that
encodes the tile ranking, along with the quality level assigned to each of
the tiles. Traditionally, a VR client would take said array and download
each of the tiles, at the specified quality level, into the playout buffer. The
prefetching mechanism we propose contemplates an extra step: forwarding
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the rate adaptation result to the cache-enabled edge server as soon as it
is generated, before the client starts buffering video content for a given
segment.
Returning to the example introduced earlier, the output of the CTF rate
adaptation heuristic in that case comprises six high-quality plus ten low-
quality tiles, following the order indicated below in Figure 5.3. As the
diagram illustrates, the client relays this output array to the Prefetch server.
With this information, the specified tiles are requested concurrently from
the Content server, taking advantage of a high-capacity link between them.
Then, the corresponding video files are loaded into the cache memory, which
serves the forthcoming requests from the client with low latency. This in
turn should lead to an increase in the bandwidth perceived by the client, and
as consequence, also in the quality of the content requested for subsequent
video segments.

Figure 5.3 VR content prefetching: The output of the rate adaptation
algorithm is fed to the prefetch server before the client’s buffer starts filling
up.

Clearly, conducting such a prefetching procedure for each individual user
would entail a misuse of the cache memory resources and a substantial
increase in the backhaul traffic and the content server’s load. To address this
issue, we propose a stream processing method for estimating the most salient
tiles according to the viewers fixation patterns, on a per-video segment basis.
Said set of per-segment salient tiles is then stored into the data structure
we refer to as DCoB.

5.3.2 Dynamic Collective Buffer (DCoB)

The DCoB can be understood as a common playout buffer shared by active
viewers consuming the same VR content at a certain point in time. Think
about the scenario in which a content provider premieres a new episode of a
popular show. Many viewers are likely to start a streaming session soon after
the episode has been released. In such scenario, clients can benefit greatly
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from a nearby cache serving content that has been previously requested by
other users. Of course, to make the most of the limited memory resources,
only a subset of the tiles per segment should be stored into this cache, i.e.
those that are most likely to be consumed in ongoing streaming sessions.
Arranged in this way, the data in the cache configures a per-segment col-
lective viewport or collective buffer keeping content from the last N video
segments consumed thus far.
This collective buffer has been modeled as a FIFO queue of limited size,
backed by a hash table to allow for instantaneous retrieval (see Figure 5.4
below). Once the configured capacity is exceeded, the tiles corresponding to
the least recently requested segment are evicted, freeing up space in memory
for new segments.

Figure 5.4 Collective buffer as a FIFO queue. Each item in the queue
corresponds to one segment of a given video and contains the most relevant
tiles prefetched from the content server.

The set of video tiles contained within each of the segments of the collective
buffer should be dynamically adjusted in response to viewers’ fixation pat-
terns. In Section 5.3.1, a tile ranking was obtained as output of the CTF
rate adaptation heuristic. This ordered list of tiles encodes the estimated
fixation map of an individual user when watching a particular video seg-
ment. In this sense, we have devised an incremental procedure that enables
merging the ordered preferences of all the users with an active streaming
session, into a single list of video tiles per segment, composing a collective
fixation map.
Let us represent a viewer’s fixation map for video v and segment s as:

φv,s = {〈t, ρ(t)〉 : t ∈ {1, ...,m · n}} (5.1)

where t represents each of the m · n tiles per segment in the tiling scheme
(m× n), while ρ is a function that returns the position in the viewer’s tile
ranking of the tile passed as argument. Considering the running example
from the previous section (see Figure 5.3), the corresponding fixation map
can be expressed in the following terms:
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φv,s = {〈1, 14〉, 〈2, 8〉, 〈3, 4〉, 〈4, 8〉, 〈5, 13〉, 〈6, 7〉, 〈7, 1〉, 〈8, 3〉, 〈9, 15〉,

〈10, 9〉, 〈11, 2〉, 〈12, 6〉, 〈13, 16〉, 〈14, 12〉, 〈15, 11〉, 〈16, 10〉}
(5.2)

Now, to combine the fixation maps of K viewers watching segment s of
video v, we start by computing the average position, ρ, for each video tile
over all K-fixation maps. The collective fixation map (φ̄v,s) is defined as
follows:

φ̄v,s =

{〈

t,
1

K

K∑

i=1

ρ〈i〉(t)

〉

: t ∈ {1, ...,m · n}

}

(5.3)

The order of the tiles in φ̄v,s is determined by their average position, i.e.
the smaller this value is for a certain tile, the higher the precedence the tile
has for the given video segment.
As stated earlier, only a subset of these tiles should make it to the corre-
sponding segment of the collective buffer. We refer to this subset as collec-
tive viewport, defined as the top-k tiles of the collective fixation map. To
determine the value of k we first estimate the correlation between the view-
ers’ fixation maps. High correlation between these maps would imply that
users are looking at the same sections of the display, i.e. a few specific tiles.
We estimate said correlation by using the Kendall’s tau coefficient (Kτ )
[41], which measures the correspondence between two ordered sequences in
the range [−1, 1]: the closer to 1 (resp. −1) the higher (resp. lower) the
correspondence. Finally, the value of k is set to be proportional to the com-
plement of this correlation coefficient, which we refer to as Kendall’s tau
distance (Kτdist). Let us take φ̄

currv,s as the current collective fixation map
for segment s of video v, and φ

uv,s as a new fixation map corresponding
to user u, for the same video segment. The collective viewport size, k, is
computed as follows:

k =
⌈
m · n · Kτdist(φ̄currv,s, φuv,s)

⌉
;

Kτdist(φ̄currv,s, φuv,s) = 1−
Kτ (φ̄currv,s, φuv,s) + 1

2

(5.4)

From the equations in 5.4, note that in case of perfect correlation (Kτ = 1),
the distance between the fixation maps is zero (Kτdist = 0), and therefore
the viewport size, k, is equal to zero as well. In these circumstances, since
both the collective and new fixation maps contain the same collection of
tiles, the collective viewport stored into the DCoB for the given segment
and video should remain unmodified.
The collective fixation map is incrementally refined as new viewers show up.
For this the prefetch server keeps track of the number of viewers (nV iews)
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that have watched a given video segment, along with the per-segment cu-
mulative Kendall’s tau distance (aggKτdist) computed across all the fixation
maps received thus far. This data is kept in a key-value store with the tuple
〈v, s〉 being designated as key:

F : (〈v, s〉) 7→
[
φ̄v,s, nV iews, aggKτdist

]
(5.5)

Algorithm 5.1 Dynamic collective buffer

1: Let V be a catalog of 360° videos
2: Let Φ be a stream of fixation maps forwarded from the VR clients
3: Φ = [φv,s : v ∈ V ∧ s ∈ {1, 2, 3, . . . }] ⊲ Unbounded set of fixation maps
4: Let m · n be the number of tiles according to the tiling scheme (m× n)
5: Let N the capacity of the collective buffer (number of video segments)
6: Let DCoB(N) be the collective buffer (a FIFO queue backed by a hash table)
7: F ← empty dictionary
8: for each fixation map φv,s in Φ do
9: if 〈v, s〉 /∈ F.keys() then ⊲ There is no fixation map for tuple 〈v, s〉 yet

10: φ̄v,s ← φv,s ⊲ Initialize collective fixation map

11: nV iews← 1
12: aggKτdist ← 0
13: k ← m · n ⊲ Initialize size k of the collective viewport to m · n
14: else
15: φ̄v,s, nV iews, aggKτdist ← F.get(〈v, s〉)
16: φ̄v,s ← mergeFixationMaps(φ̄v,s, φv,s) ⊲ Merge φv,s into collective fixation

map

17: nV iews← nV iews + 1
18: aggKτdist ← aggKτdist +Kτdist(φ̄v,s, φv,s)

19: k ←
⌈

aggKτdist
nV iews

(m · n)
⌉

⊲ Set k to be proportional to average Kτdist

20: end if
21: if DCoB.size() ≥ N then ⊲ If the buffer capacity has been exceeded then remove

the segment at the head of the queue
22: 〈vH , sH〉 ← DCoB.pop()
23: F.remove(〈vH , sH〉)
24: end if
25: F.set(〈v, s〉,

[

φ̄v,s, nV iews, aggKτdist

]

) ⊲ Update key-value store with new values
26: if k 6= 0 then
27: collectiveV Pv,s ← topK(φ̄v,s, k) ⊲ Collective viewport set to the top k tiles of

φ̄v,s

28: V PV ideoT ilesv,s ← HTTPGetFromContentServer(collectiveV Pv,s)
29: DCoB.set(〈v, s〉, V PV ideoT ilesv,s) ⊲ Update data at the collective buffer

30: end if
31: end for

The formal procedure for processing the stream of fixation maps coming
from connected VR clients is specified in Algorithm 5.1. The process starts
by first initializing F as an empty key-value store (line 7). Then the fix-
ation maps φv,s are taken in, one after the other (line 8). Each fixation
map updates its corresponding entry on the collective buffer. The merge-
FixationMaps function in line 16 represents the incremental application of
the operation referred earlier in equation 5.3. The output of this function
is the collective fixation map modified by the fixation map being currently
processed. The size of the collective viewport, k, is determined as the clos-
est integer to the product of the average Kendall’s tau distance (aggKτdist

nV iews )
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times the total number of tiles (m · n). This way the input from previous
viewers is weighted and taken into account (line 19). Finally, the tiles be-
longing to the collective viewport are obtained (i.e. the first k tiles from the
collective fixation map), the corresponding video files are retrieved from the
content server, and the up-to-date data is stored into the collective buffer
(DCoB) and the key-value store (F) (lines 25-29), after ensuring that the
maximum configured capacity (N) is not exceeded (lines 21-24).

Figure 5.5 Timeline of a typical interaction between the entities compos-
ing the VR content prefetching approach. At prefetching time the collec-
tive viewport and outstanding tiles are downloaded into the prefetch server
memory. These tiles are served to the client with low latency at querying
time.

Along with the collective buffer, we also defined a short-lived buffer into
which the prefetch server stores the set of outstanding tiles, namely those
tiles in the viewer’s fixation map that remain outside the collective viewport.
This in order to avoid the client having to wait for the content server to
deliver these tiles during querying time, preventing playout freezes from
happening. The entries in this ephemeral buffer are volatile and expire
over a period of time equivalent to one video segment to minimize their
memory footprint. Having both the collective and ephemeral buffers in
place ensures that the client can always find relevant content loaded into
the prefetch server memory. This way we manage to bypass the cold-start
problem typical of traditional caching solutions. Figure 5.5 illustrates a
typical sequence of interactions that take place between client, servers and
data stores for a single viewer.
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5.3.3 Analysis of computational cost

The procedure in charge of conducting content prefetching has been con-
ceived as a stateful streaming algorithm (see Algorithm 5.1). The input of
said procedure consists of regular array structures representing the viewer’s
fixation maps (consider the example in Equation 5.2). The length of these
arrays is fixed and determined by the number of tiles of the tiling scheme in
use, i.e., m · n. The proposed algorithm processes each array on an individ-
ual basis, and the output of such a processing alters the state of a collective
fixation map and the collective and ephemeral buffers, for a given video v

and segment s. These data structures represent the state being managed
by the algorithm. Let us consider the cost incurred in this procedure both
in terms of space and time.

5.3.3.1 Space cost

As described earlier in Section 5.3.2, the data structures that maintain the
state in the proposed algorithm are all arranged into hash tables persisted
in memory to allow for fast read and write operations. The hash tables of
both the key-value store holding the per-segment collective fixation maps
(F), and the collective buffer (DCoB) have a fixed capacity in terms of
the number of segments they can contain. Said capacity is set upfront via
a configuration parameter N . In this sense, the space cost due to these two
data structures is proportional to O(N).
The hash table backing the ephemeral buffer stores individual tiles which
are not part of the collective viewport for a given video and segment. In
these circumstances, the space cost is proportional to the number of tiles
the viewer is likely to watch in the upcoming segment that fall outside the
collective viewport. Said number is never greater than m · n (worst-case
scenario). Additionally, the video content persisted in this ephemeral buffer
is short-lived by design, which further reduces its memory footprint.

5.3.3.2 Time cost

At the core of the procedure for maintaining the collective buffer lie two
operations:

i. the function that updates the collective fixation map (φ̄v,s) for a cer-
tain video v and segment s, taking in a new unseen fixation map (φv,s)
(see line 16 in Algorithm 5.1)

ii. the function that incrementally computes the Kendall’s tau distance
(Kτdist) between the current φ̄v,s and the incoming φv,s (see line 18
in Algorithm 5.1)
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The first operation consists of computing the element-wise average of two
indexed arrays of size m ·n, and subsequently sorting the resulting array on
the obtained values. By using an algorithm such as mergesort, the time it
takes for this operation to run is proportional to O(mn logmn).

The Kendall’s tau distance in the second operation is computed using the
method by Knight [42], implemented in the SciPy Python library. This
method is known to have linearithmic time complexity, which in this par-
ticular case translates to O(mn logmn), just as with the above-mentioned
operation.

Figure 5.6 Experimental determination of the time required to compute
the collective viewport. An in-depth description of the setup is provided in
Section 5.5.1.

Since m and n values are fixed and typically small (consider for instance a
4 × 4 tiling scheme), the proposed algorithm is expected to feature a low
and fairly consistent execution time. Figure 5.6 shows an example of the
computation times measured on an experimental setting with 48 viewers
watching the first 30 segments of three different 360° videos, using a 4 × 4

tiling scheme. In said setting (described in detail later in Section 5.5.1), the
devised operations for computing the collective viewport run under 20 mil-
liseconds 80% of the time. This is only 1

50 to 1
200 of the video segment length

used in tile-based omnidirectional video streaming applications, which typ-
ically ranges between one to four seconds [16].

Note that the computational cost of the proposed mechanism largely de-
pends on configuration parameters such as the collective buffer capacity
(N) and the tiling scheme (m × n). This suggests that, as the number
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of users increases, memory use will not surge out of control and processing
time will remain consistent, which accounts for the scalability of our content
approach.

5.4 Architecture and Proof-of-Concept
Implementation

The system that implements the content prefetching mechanisms we in-
troduced in the previous section adopts an architecture featuring highly
configurable containerized components. This system supports the emula-
tion of multiple VR video streaming scenarios—with and without prefetch-
ing enabled—under different network and load conditions. A diagram of the
components and submodules that make up the system is presented in Figure
5.7. Next, we address the description of the components of this architecture.

Figure 5.7 VR content prefetching architecture: inspired by the Explora

framework by Ordonez et al. [43]

5.4.1 Prefetch Server

This is the core component of the system. In devising the functional sub-
modules of this server, we have drawn inspiration from the data processing
pipeline presented by Ordonez et al. in [43], which decouples stream data in-
gestion/preprocessing from data storage and content retrieval. The prefetch
server features three main modules: (1 ) the prefetching component, (2 ) the
content buffers, and (3 ) the retrieval component.
The prefetching component provides an event bus which collects the viewers’
fixation maps fed by the VR client. A stream processor in this component
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consumes said fixation maps and runs the procedure specified earlier in
Algorithm 5.1 to incrementally build the collective viewports. The stream
processor is also in charge of fetching video content from the Content server,
and does this by issuing multiple concurrent HTTP requests. We relied
on the Publish/Subscribe pattern readily available in the Redis in-memory
data store [44] to implement the event bus. As for the stream processor, we
implemented it as a Python application running continuously in background,
along with the HTTP API in charge of handling the interaction with the
client.
The video content fetched from the content server by the stream processor
is loaded into the data buffers. The collective buffer hosts the arrangement
of video tiles lying inside the incrementally computed viewports, while the
ephemeral buffer stores the outstanding tiles as defined at the end of Section
5.3.2. Both buffers are backed by key-value databases implemented in Redis.
The retrieval component implements the querying handler submodule in
charge of processing clients’ requests for video content. Upon receiving a
query, this handler looks up the corresponding video tile file into both the
collective and ephemeral buffers. In case the video file is not available yet
in none of the prefetch buffers (e.g., due for instance to quality mismatch or
network delay), the handler would relay the request to the content server.
The implementation of the prefetch server is available online at https://
github.com/LeandroOrdonez/explora-vr-cache.

5.4.2 Content Server

This component plays the role of one of the nodes from a content delivery
network (CDN). The content server consists of a containerized Web server
publishing the tiled video content through a HTTP API. Video files are
served from the local file system of this component in response to regular
HTTP/1.1 GET requests matching the following the URL pattern:

http://<:host>:<:port>/<:video_id>/<:t_hor>x<:t_vert>/

<:quality_id>/seg_dash_track<:tile_id>_<:segment_id>.m4s

where t_hor and t_vert stand for the number of tiles in the horizontal and
vertical axes respectively, according to the applied tilling scheme.
This content server component was implemented as a Python Web ap-
plication using the Flask framework and NGINX+uWSGI as application
server. The code of this implementation is available online as well at
https://github.com/LeandroOrdonez/explora-vr-server.
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5.4.3 Client

This component is a containerized adaptation of the headless Virtual Real-
ity client developed by van der Hooft et al. [32]. The headless VR client
is an adaptive streaming application written in Python which is able to
recreate video streaming sessions from prerecorded head movement traces.
By deploying this component as an independent containerized application,
we were able to spawn multiple concurrent video streaming sessions, allow-
ing us to assess the response of the proposed VR video content prefetch-
ing mechanism under different network and load conditions. The code
of the original implementation of the headless VR client is available at
https://github.com/jvdrhoof/VRClient, while our adaptation can be found
at https://github.com/LeandroOrdonez/explora-vr-dash-client.

5.5 Experimental Evaluation

To determine the strengths, costs and limitations of the content prefetching
mechanism, we have conducted a benchmark evaluation on various VR video
streaming setups, with and without the prefetch mechanism in place. The
prefetching approach presented in this article was also compared to a caching
strategy with a traditional least-recently used (LRU) replacement policy
which is a common baseline used for evaluating the performance of existing
edge-assisted solutions. A description of the environment configuration and
the covered test scenarios is presented next, along with the results obtained
from this evaluation.

5.5.1 Experimental Setup

The experimental testbed we used in this evaluation is depicted in Figure
5.8. Each of the components in this diagram were deployed as an isolated
Docker container, running on a single host machine with 20GB RAM, Intel
E5645s @ 2.4GHz processor, and 54GB Hard Disk, using the infrastructure
provided by the imec/IDLab Virtual Wall environment [45]. As is typically
the case, we assume the link between the content server and the cache-
enabled edge server to have higher capacity/higher latency than the one
between the prefetch server and the VR clients. To emulate these conditions,
we have run traffic control (tc) [46] on each of the containers. This way, we
have provisioned a connection between content and prefetch server with 1
Gbps bandwidth capacity and 25 milliseconds latency. On the client’s end,
we set the latency to 5 milliseconds for the setup with prefetching enabled,
and 30 milliseconds in the setup without prefetching—i.e. we kept the same
round trip time (RTT) between client and content server in both setups.
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We gradually increased the bandwidth in the clients link from 10 Mbps to

Figure 5.8 Experimental testbed for evaluating the VR content prefetching
mechanism

50 Mbps, and estimated the impact the devised prefetching mechanism has
on the quality of experience (QoE) perceived by the user, measured in terms
of delivered video quality, startup delay, and occurrence of playout freezes,
as reported by the VR client on a per-segment basis. Finally, these results
are contrasted to those obtained from a setup implementing a traditional
LRU replacement policy in the cache-enabled edge server.
As for the video content we used the dataset created by Wu et al. [21],
which provides head movement traces recorded from 360° video streaming
sessions. This dataset comprises the traces collected from 48 unique users
while watching nine different VR videos. The tests run in this evaluation
consider three representative videos out of the original nine: Sandwich fea-
tures a fragment of a talk show in which most of the motion concentrated in
the center of the display; Spotlight presents a more dynamic sequence typi-
cal for an action movie; Surf displays a compilation of video clips recorded
with a GoPro camera in an open environment. A tiling scheme of 4 × 4

was applied to each of these videos at 4K resolution and 30 FPS, using the
same encoder and parameters discussed in [32] and listed in Table 5.1. We
used two quality levels to encode each of the three videos, corresponding
to constant rate factors (CRF) of 15 (High quality) and 35 (Low quality).
Table 5.2 summarizes the resulting bitrates for both quality representations.
With this setup in place, we proceeded to emulate a scenario with multiple
users connecting to a video streaming event. In this scenario, each of the
48 viewers in the dataset by Wu et al. [21] would start a streaming session
to watch the first 30 segments—this is 32 seconds for a segment duration of
1.067 seconds—of each of the three considered videos. In order to approxi-
mate the dynamics of such near-live on-demand streaming scenario serving
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Table 5.1: Overview of encoding parameters

Parameter Value

Encoder HEVC Test Model (HM)
Tiling scheme 4×4 at 4K resolution and 30 FPS
GOP 32
Segment duration ≈1.067s
CRF [15, 35]

Table 5.2: Quality levels and corresponding bitrates for the three videos.

Video
Bitrate [Mbps]

High Quality Low Quality

Sandwich 21.9±6.6 1.2±0.3
Spotlight 20.8±13.9 1.4±1.3
Surf 26.4±12.7 2.4±1.4

multiple users, we set up the experiment so that viewers arrive to their
watching session in quick succession with a 5 second separation between
each other. This means there were no more than six users watching the
same video at a given time.

We have run this simulation for three different configurations: (i) NO_PRE-
FETCH: no prefetching/cache enabled, (ii) PREFETCH: prefetching enabled
with a collective buffer of 30 segments in size, and (iii) LRU: caching with
LRU replacement strategy and cache size limited to 70MB, which is slightly
above the maximum value of memory used by the prefetching mechanism
throughout the experiment, as shown below in Table 5.3. For each config-
uration, we measured the performance of the system in terms of segment
download time, user’s QoE (i.e., video quality, startup time, and occurrence
of playback freezes), network traffic between content and edge server, and
accuracy of the prefetch buffer/cache.

Table 5.3: Memory consumed by the prefetching and caching strategies

Bandwidth client’s link
(Mbps)

Edge Server memory use (MB)

LRU PREFETCH

10 70 57.91
15 70 59.25
20 70 61.11
25 70 62.69
30 70 67.04
35 70 64.01
40 70 67.30
45 70 67.46
50 70 66.29
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Finally, the versions of the software tools used in this evaluation are listed
in Table 5.4.

Table 5.4: Versions of the software used in the experimental setup.

Software Version

Docker 20.10.6, build 370c289
Docker Compose 1.17.1
Operating System Ubuntu 18.04.4 LTS
Redis server 5.0.3
NGINX (content and prefetch servers) 1.14.2
uWSGI (content and prefetch servers) 2.0.17.1
Flask (content and prefetch servers) 1.0.2

5.5.2 Results

The playout buffer size in VR video streaming is limited to a few segments
to allow for fast adaptation to viewport changes. In this sense, these kind of
streaming applications are particularly susceptible to buffer starvation and
playout freezes. In a setup with a cache-enabled edge server placed between
clients and the content server, the rate adaptation heuristic might be tricked
into believing that content is closer than it actually is, which leads it to
request video tiles in high-quality representations. In case of cache misses
(i.e. the requested content is not found in the cache’s memory) the request
has to be relayed back to the server, which entails additional processing and
network latency. In said cases, the segment download time might take longer
than the segment playback duration. When such conditions persist for
several segments during a watching session, buffer draining-out and playout
freezes are bound to happen.
Figure 5.9 shows the empirical cumulative distribution function (ECDF) of
the per-segment download time for the three configurations under evalua-
tion (NO_PREFETCH, PREFETCH, and LRU), measured for multiple values of
bandwidth on the client’s end. Note that both the setup with the proposed
prefetching mechanism, as well as the one with the LRU cache replacement
policy manage to keep download times under the segment duration limit
(SEG_DUR line in Figure 5.9) for most of the segments across all bitrates and
videos. However, for the LRU setup, there is in general a larger proportion of
segments taking longer to download than the segment duration: on average
14% of the segments in the LRU configuration, compared to only 7.6% of
the segments in the PREFETCH setup. As the capacity on the client’s link
increases, those segments can take as much as 3.9 seconds to download,
which is far higher than the comparable download times from the PREFETCH
setup which do not surpass 1.8 seconds in any of the cases. This signals a
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higher likelihood of cache misses for the LRU configuration, and a more fre-
quent occurrence of playout freezes in this setup, specially for large values
of bandwidth on the client’s connection.

Figure 5.9 ECDF of the per-segment download time for the three tested
configurations. The larger the number of segments taking longer than SEG_-

DUR to download, the more likely playout freezes are to occur.

The foregoing is confirmed by measuring the number and duration of the
playout freezes by streaming session. Figure 5.10 reports on these measure-
ments as a function of the client’s bandwidth, for each of the considered
videos. Note that the setup with the proposed prefetch mechanism offers a
freeze-free playback experience to the user, in contrast to the LRU counter-
part. According to Figure 5.10a, the average number of freezes per stream-
ing session on the LRU configuration is always greater than zero, and the
number increases for the three videos as the bandwidth grows larger. We
can observe a similar behavior for the total freeze duration. Figure 5.10b
presents this measurement as a proportion of the length of a streaming ses-
sion, i.e. 32 seconds. These results are clearly inconvenient and counterintu-
itive from the client’s perspective, and can be attributed to the occurrence of
cache misses. Table 5.5 below shows the cache hit ratio measured across the
streaming sessions of all 48 users in the dataset, for both LRU and PREFETCH

configurations. For the setup with content prefetching enabled, the hit ratio
stays above 98% through the entire range of bandwidths, while for the con-
figuration with LRU cache replacement it consistently decreases from 94.6%
to 87% as the bandwidth increases. As the bandwidth in the client’s link
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grows larger, the quality of the requested content tends to increase, as does
the size of the video tiles stored in the cache. In these circumstances, the
LRU cache is only able to accommodate a few items, which in consequence
increases the frequency of eviction cycles and cache misses.

Figure 5.10 Occurrence and duration of playout freezes: The PREFETCH

and NO_PREFETCH configurations manage to deliver a freeze-free watching
experience to the viewer. For the LRU setup, both frequency and duration
of playout freezes increase as the bandwidth on the client’s link grows larger.

(a) Average number of freezes per
watching session.

(b) Average freeze duration to play-
back time ratio per streaming session.

Table 5.5: Hit ratio for different values of bandwidth in the client’s link.

Bandwidth client’s link
(Mbps)

Hit ratio

LRU PREFETCH

10 94.62% 98.44%
15 93.84% 98.43%
20 92.56% 98.36%
25 91.65% 98.51%
30 89.40% 98.52%
35 88.17% 98.60%
40 87.37% 98.69%
45 87.27% 98.97%
50 87.02% 99.13%

Cache misses also occur as a consequence of the cold-start problem that
affects passive caching strategies such as LRU. Requests issued against a
cold cache are likely to be cache misses and therefore result in retrieval
from the origin server. This leads to longer startup delays which degrade
the QoE mainly for early viewers. Figure 5.11 presents the startup delay
observed across all the streaming sessions as a function of the client’s link
capacity. Delay values remain relatively invariable as the bandwidth on
the client’s connection increases for all the considered configurations. Note
that for both PREFETCH and LRU setups (left and right side in Fig. 5.11,
respectively), the majority of the values are clustered around 200 millisec-
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onds approximately. This represents a reduction of nearly 3× the startup
delay viewers experience in the setup without prefetching/caching enabled
(middle chart in Fig. 5.11). However, a large number of outliers is observed
for the LRU configuration lying beyond the segment duration limit. This in-
dicates that many viewers would experience more than one second latency
from the moment they initiate the streaming session to the moment the
video playback starts. These outliers represent the startup delay perceived
by the first users as a consequence of their request hitting a cold cache and
being relayed back to the content server. By forwarding said requests to the
origin server, early users of the LRU setup incur an extra network hop which
leads to startup delay times higher than those observed for the NO_PREFETCH
setup. In Figure 5.12 only the startup latency measured for the group of
early viewers is plotted. On average, early users in the LRU configuration
would observe around 2× and 6× longer delay times compared to view-
ers in the NO_PREFETCH and PREFETCH setups, respectively. These results
show that the proposed content prefetching mechanism is able to bypass the
cold-start problem and offer not only shorter startup delay times but also
a more consistent experience across all viewers compared to the alternative
configurations.

Figure 5.11 Startup delay distribution as a function of the client’s link
capacity. Observations for PREFETCH and LRU configuration are largely con-
centrated around comparable values. However, outliers for the LRU setup lie
farther apart from the bulk of the data, beyond the segment length in many
cases. In comparison, the PREFETCH configuration offers a more consistent
experience for all viewers.

So far, the proposed prefetching mechanism has proven able to deliver a
user experience that outperforms that of the alternative setups in terms of
segment download time, frequency/duration of playout freezes and startup
latency. Let us now look into the perceived video quality. In the HAS
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Figure 5.12 Startup delay times observed by early users: On average view-
ers in the PREFETCH configuration would experience 6.5× and 3.4× lower
latency than those in the LRU and NO_PREFETCH setups, respectively.

client, quality level for each tile in a video segment is determined based on
the perceived bandwidth, estimated as the quotient between the amount of
bits downloaded per segment and the per-segment download time:

perceived_bandwidth(si) =
size(si)

download_time(si)
(5.6)

In the expression above, the size of the segment (si) is proportional to
the quality level of the tiles it comprises. This way, the perceived band-
width provides a reliable indication of the video quality as observed by the
user. Figure 5.13 shows the average perceived bandwidth over all watching
sessions per video, as a function of the actual bandwidth on the client’s
link. The configuration with content prefetching enabled outperforms the
LRU setup, most remarkably along the largest values of bandwidth. With
the proposed mechanism running on a cache-enabled edge server, clients
perceive on average up to 2.5× more link capacity in comparison to the
configuration without prefetching, and up to 1.4× compared to the LRU

configuration. This results in a higher number of tiles being downloaded in
high quality.

Figure 5.14 presents the distribution of the amount of high-quality tiles per
segment across the three videos. The mass of the distributions correspond-
ing to each of the setups shifts towards the right (higher number of HQ tiles)
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Figure 5.13 Client perceived bandwidth as a function of the actual link ca-
pacity. User experience greatly benefits from prefetching VR video content
into a nearby server.

Figure 5.14 Distribution of the number of HQ tiles per segment: In com-
parison to the LRU and NO_PREFETCH configurations, the number of tiles
retrieved in HQ from the prefetch setup increases more rapidly as the band-
width grows larger. Bitrate values in the charts are in Mbps.

as the bandwidth increases. Note that for the configuration with prefetch-
ing enabled, the distribution tends to gravitate around 16 tiles/segment at
a faster pace than the other two configurations. This proves that across
all tested scenarios, the mechanism we propose consistently delivers higher
quality of experience for the viewer, compared to the LRU cache alternative,
and the plain vanilla client-server configuration.
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Another appealing effect of prefetching and caching video content into an
edge server is the reduction of network traffic to and from the content site.
Table 5.6 presents the network traffic (in gigabytes) measured in the content
server interface for the configuration without prefetching/caching enabled,
along with the relative change of this metric for the LRU and PREFETCH

setups, and how these measurements vary as the bandwidth on the client’s
link increases (see Figure 5.15 for the absolute values). Note that, thanks
to the reuse enabled by the LRU and prefetching configurations, there is an
important reduction in traffic to the content server: from 75% to 84% for LRU
caching, and from 36% to 83% for the prefetching server. Also, it is worth
noting that the setup with the proposed prefetching mechanism enables
these network traffic savings while serving the highest video quality among
the tested configurations. That is to say, serving a comparable video quality
directly from the content server—without any prefetch/cache capabilitites—
would require several times the network traffic reported in Table 5.6.

Table 5.6: Network traffic between content and prefetch servers for different values
of bitrate in the client’s link.

Bandwidth client’s
link (Mbps)

NO_PREFETCH
network traffic (GB)

% network traffic reduction

LRU PREFETCH

10 1.11 -75.68% -36.04%
15 1.64 -78.66% -44.51%
20 2.24 -80.36% -48.21%
25 2.82 -82.27% -53.90%
30 3.43 -80.76% -64.14%
35 3.89 -81.75% -64.78%
40 4.24 -82.31% -67.45%
45 4.57 -83.15% -80.96%
50 5.01 -84.23% -83.03%

To understand why the LRU configuration results in a higher reduction of
network traffic with respect to the implementation of the proposed prefetch-
ing mechanism, consider the fact that the latter setup is able to consistently
deliver higher video quality levels than the former one throughout the en-
tire range of bandwidth values. An increase in the capacity of the client’s
connection leads to a corresponding increase in the network throughput.
This in turn prompts the client to request video tiles in higher quality rep-
resentations, which consequently drives up the network traffic consumption.
Figure 5.16 portrays the relation between bandwidth at the client side, net-
work traffic in the content server’s link, and video quality in terms of the
number of high-quality tiles per segment delivered to the client. Note that
while the setup with the LRU cache replacement strategy gets the upper
hand with regard to network traffic reduction, the enhanced video quality
added to the smooth playback offered by the proposed prefetching mecha-
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nism, makes for a far superior QoE for the viewer. In this sense, the increase
in network traffic to the content server for this configuration can be regarded
as a reasonable price to pay.

Figure 5.15 Network traffic to the content server for the three considered
configurations, as a function of the bandwidth in the client’s link: Both the
LRU and PREFETCH setups manage to induce a notable decline in network
traffic. The prefetching mechanism enables this while delivering the highest
quality of experience among the considered configurations.

Figure 5.16 Relation between client’s link bandwidth, network traffic in the
backhaul link, and video quality. Both LRU and PREFETCH setups drive back-
haul traffic down while increasing the number of tiles per segment served in
high quality. The increase in network traffic use for the PREFETCH setup in
relation to the LRU configuration obeys to a corresponding increase in the
delivered video quality.
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5.6 Conclusions

Immersive video applications are known for having an immense potential in
sectors such as entertainment, education, healthcare, and digital services,
among others. However, the existing network infrastructure still struggles
to meet the stringent latency and bandwidth requirements of these kind of
services, which remains a barrier to enable their broad adoption. In this
chapter we presented Explora-VR, an edge-assisted solution that allows
for low-latency video streaming for tile-based immersive content.

Explora-VR thrives on prefetching the tiles that users are likely to watch
in the upcoming segments by advertising the outcome of the viewport pre-
diction and rate adaptation algorithms, before the client starts consuming
the content. Prefetched video tiles are downloaded to a cache-enabled edge
server located in close proximity to the user, allowing for low-latency content
retrieval. This in turn increases the link capacity perceived at the client’s
end, and in consequence also the quality level of the requested video tiles.

Additionally, the proposed solution supports content prefetching for an on-
demand, near-live scenario, i.e. serving multiple active watching sessions
streaming the same content within a narrow time window. To prevent the
system from overflowing the content server with duplicate requests while
doing this, Explora-VR features a stream processing mechanism that in-
crementally builds a collective playout buffer to serve the requests from
active users. This collective buffer is an in-memory data structure storing
a fixed number of collective viewports, namely the group of tiles viewers
tend to fixate the most on a per-segment basis. The per-segment collective
viewports are continuously updated as new viewers arrive to dynamically
accommodate to changes in the current preferences from the audience.

We evaluated the performance of Explora-VR against a conventional
client-server setup with no support for caching or prefetching, and an
edge-assisted configuration implementing a regular LRU cache replacement
strategy. Our solution proved to be effective in providing a smooth video
playback, while also increasing the quality of the delivered content. Under
equivalent network conditions, the devised prefetching mechanism leads to
an average increase of 2.5× and 1.4× in the effective bandwidth perceived
at the client’s device compared to the conventional client-server and LRU
setups, respectively. This in turn results in a proportional increase in the
number of viewport tiles served in high quality. Moreover, in contrast to
the alternative LRU configuration, our solution can consistently serve more
than 98% of the content requests from the edge server. This means that
only a minor proportion of the client requests get relayed to the origin con-
tent server, resulting in a freeze-free playback experience for the user. The
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foregoing also signals the ability of the proposed approach to bypass the
cold-start problem that typically affects passive caching strategies. The ob-
served startup delay times show that Explora-VR consistently provides
low startup latency for all users, including early viewers. These results also
hint at the potential of the proposed solution to aid in the recovery from
eventual playback freezes. The proximity of the edge server coupled with
the high prefetch hit ratio ensures that viewers can quickly resume the play-
back with a delay we expect to be comparable with the observed startup
latency. Additional evaluations with real network traces are needed to con-
firm this assumption. The devised collective buffer also proved efficient in
reducing the load on the content server network. Even though the LRU
cache replacement policy outperforms the prefetching mechanism regarding
this metric, the superior quality of experience that our approach can offer
to the viewer reasonably outweighs this drawback.
In developing Explora-VR, we assumed a number of conditions that will
be relaxed in future work to make this solution more suitable for a production-
level VR video streaming service. In this sense, further research is going
to explore the effect of working with a lossy wireless network in the per-
formance of the content prefetching mechanism. Likewise, the proposed
solution will be extended to support multiple intermediate quality represen-
tations, instead of only low-quality and high-quality levels. We expect the
results of this work will motivate further studies on edge-assisted prefetching
techniques for omnidirectional video streaming.
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6
Conclusions and Future Research

Directions

“Problems worthy of attack prove their worth by hitting back.”

—Piet Hein (1905–1996)

Data is profoundly imbued into nearly every aspect of modern society. As
data becomes increasingly more pervasive, we strive to find even more inno-
vative ways to harness it to augment our lives, make more of our resources,
and back up the decisions we make. However, the sheer amount of data
available nowadays, added to the accelerated rate at which it is being gen-
erated, exceeds the capacity of people and organizations to assimilate and
make sense of it. To put it another way: most of the data that is produced
today goes underused. Despite the rapid pace at which data technologies
are being developed, accessing large, high-dimensional, and often distri-
buted data remains an expensive and time-consuming task. This disserta-
tion investigates several challenges concerning the provisioning of efficient
querying mechanisms in big data environments. Four questions shaped the
direction of the research presented in this thesis, as enumerated below:

RQ1: How can the structure of a large dimensional dataset be dynami-
cally adjusted to ensure instantaneous resolution of recurrent analyti-
cal queries?
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RQ2: How can common exploratory analysis tasks be supported on live
streams of multidimensional data under interactive (low-latency) time
constraints?

RQ3: How can a balanced trade-off between server and client-side compu-
tation be reached to enable interactive exploration applications to serve
requests from a large number of users?

RQ4: How can data retrieval patterns be identified in a streaming setting to
dynamically enhance the user experience of multiple concurrent clients
served by a latency-sensitive application?

This dissertation introduces a number of solutions that contribute to ad-
dressing the formulated questions in various application domains including
business analytics, smart cities, and content delivery for omnidirectional
video streaming. The sections below summarize these contributions.

6.1 A workload-aware method for automatic
view selection on large dimensional datasets

In line with the first research question, this method was conceived as a real-
ization of a dynamic framework for schema transformation in dimensionally
model datasets. Said framework, also formulated within the scope of the
research documented in this dissertation, intends to incrementally alter or
augment the existing dataset schema so that recurrent and time-consuming
analytical queries can be resolved in far less time. In this way, for instance,
the framework might decide to merge a certain dimension into the fact ta-
ble given it is often used within join predicates, or to partition the fact
table to speed up queries involving scans, or simply to precompute certain
highly-frequent queries, and store their results as materialized views in a fast
lookup data store. The method referred to in this first contribution deals
precisely with the latter scenario. The rationale behind this workload-aware
approach for view selection is to arrange expensive analytical queries into a
consistent clustering configuration. Each of the resulting clusters contains
highly similar queries, not only in terms of data attributes but also in the
structure of the statements. Subsequently, the members within each cluster
are combined into an all-encompassing query statement which gets material-
ized into a view in the data store. Upcoming (unseen) queries are then fitted
into the clustering configuration and translated to be evaluated against the
corresponding materialized view. When queries run against these precom-
puted views, query execution time is substantially reduced since these data
structures are in general a small fraction of the size of the base dataset,
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and the results of expensive scan, join, sort and aggregate operations are
immediately available, as they have been calculated upfront.
The proposed method relies on the syntactic analysis of the query state-
ments composing the workload at a given time. In this way, query state-
ments get mapped to an equivalent vectorized representation, and subse-
quently, an agglomerative hierarchical clustering model is fitted against the
collection of feature vectors that make up the analytical workload. Finally,
the query groups derived from the clustering configuration are scored ac-
cording to a custom consistency metric to decide which of them are worth
materializing. This method was tested on two different setups using the
widely adopted Star Schema Benchmark [1]. The first of these setups uti-
lized a traditional PostgreSQL relational database while the second one was
built on top of a Hadoop cluster using Apache Spark for query processing
(See Appendix A). In both cases, the proposed method proved effective in
identifying consistent groups of related queries and deriving a comprehen-
sive set of materialized views out of said groups. Query performance was
also evaluated on the views generated with this method. The results of
this evaluation showed a substantial decrease in query response time of up
to 99% in comparison to the processing time on the base dataset, with a
storage footprint that added up to 13% of the size of the original data on
disk.

6.2 Explora: A framework for enabling low-
latency querying on live data streams

Typical visual exploration applications for geospatial time-series data present
users with a dashboard composed of a number of charts and controls, and
a two-dimensional map they can navigate through actions like panning or
zooming. Users of these applications expect their actions to trigger imme-
diate changes on the information the dashboard presents to them. Support-
ing such a responsive interaction on top of big and continuously growing
spatio-temporal data remains a challenging task [2]. By identifying ba-
sic interaction patterns it is possible to build a data processing pipeline
aimed at speeding up the queries that get triggered when instantiating said
patterns. That is precisely the approach behind the Explora framework
(Efficient eXPLORation through Aggregation) for supporting interactive
querying on live spatiotemporal data streams. From the outset, Explora

draws upon the user interaction patterns identified by Andrienko et al. [3]
in which two main categories of exploratory actions are recognized: (i) el-
ementary tasks aimed at obtaining a snapshot of the observed variable(s)
at a certain point in time, and (ii) general tasks intended for examining
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how the state of the variable(s) change over time across a particular spa-
tial region. To serve the queries supporting these exploratory actions under
low-latency constraints Explora resorts to the continuous computation of
data summaries over the incoming data stream, across discretized spatio-
temporal bins of various resolutions. These data summaries are assembled
into a dynamic spatio-temporal raster-like data structure optimized for fast
retrieval. Queries are solved against these structures by combining the data
summaries whose corresponding bins overlap with the query predicates in
both spatial and temporal dimensions. Since the amount of summaries is
comparatively smaller than the number of raw observations, the query pro-
cessing time is expected to decrease significantly.
Two proof-of-concept implementations of Explora were developed using
different technology stacks, considering smart cities as a use-case scenario.
The first implementation consists of a setup with a traditional PostgreSQL
database with added support for time-series and geospatial data. The sec-
ond setup relies on a distributed stream processing application implemented
in Apache Kafka. Both setups count upon a Kafka message broker to handle
the ingestion of data collected from non-stationary sensors in a smart city
environment. A performance evaluation conducted on both implementa-
tions, using data from a smart city test-bed deployed in the city of Antwerp,
Belgium [4], accounted for a substantial reduction in query response time.
Complex queries supporting visual exploratory actions are sped-up up to
two orders of magnitude in contrast to requests running on the raw time-
series data. Since Explora thrives on aggregation over a discretized space
and time grid, this response time speedup entails a measurable degradation
in query accuracy which amounts to less than 10%. These results proved
the Explora framework effective in serving sub-second latency querying
over historical and live spatio-temporal data.

6.3 Explora-LD: A platform for scalable
publication of live summaries of spatio-
temporal data

While the Explora framework provides a mechanism for proactively com-
puting data summaries as new data comes in to the system, the querying
interface it defines for serving those synopsis structures does not quite favor
reuse (caching) and pushes all the heavy lifting of query processing down
to the server-side. This is particularly taxing for the system impacting its
ability to cope with increasing load. Explora-LD (LD standing for Linked
Data) builds on top of the Explora framework and promotes a more bal-
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anced trade-off between server-side and client-side processing. To achieve
this, the Explora-LD platform specifies a lightweight Linked Data Frag-
ments (LDF) interface for publishing self-contained representations of each
of the summaries being dynamically computed over the stream of spatio-
temporal data. Said representations—labeled as summary fragments—are
arranged in a spatio-temporal knowledge graph, which reflects the fragmen-
tation strategy used to compute the encoded data summaries. These sum-
mary fragments are also endowed with hypermedia controls which enable
clients (both users and automated agents) to traverse the knowledge graph.
In that way, the responsibility of computing the complete answer to a given
arbitrary query is delegated to the client, which proceeds by traversing the
knowledge graph structure and requesting from the server the summary
fragments needed to respond to the overall query. Besides offloading the
server form complex processing, the proposed LDF interface entails two
additional appealing properties, namely extensive reuse: since summary
fragments are immutable resources, they can be indefinitely cached; and
incremental answering : clients can display partial answers as they retrieve
summary fragments from the server, which makes for an interactive and
highly responsive user experience.
To estimate the benefits and limitations of the proposed approach, a bench-
mark evaluation was carried out to contrast the performance of the in-
cremental LDF interface provided by Explora-LD against the original
blocking querying interface from Explora in response to increasing load.
Results indicate that Explora-LD is able to consistently provide instan-
taneous intermediate answers to user queries before the original Explora

implementation is able to deliver the complete query response. Moreover,
when running on cached summary fragments, query response time gets fur-
ther reduced by around 50%. In these circumstances CPU usage measured
at the proxy/cache nodes is largely negligible, while memory consumption
remains mostly constant as the load increases. In this sense, Explora-LD

provides a lightweight, cost-efficient alternative for delivering interactive
querying on streams of spatio-temporal data, which additionally can scale
with the system’s load.

6.4 Explora-VR: An edge-assisted content
prefetching method for serving multiple
concurrent users

Just as the system load varies over time, data access patterns reflecting user
interests are also highly prone to change. The fourth major contribution
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detailed in this dissertation addresses precisely the challenge of adapting
to dynamic access patterns in latency-sensitive applications with multiple
concurrent users. Tile-based omnidirectional video streaming was chosen as
a compelling use-case scenario, considering that data (i.e., video content)
in this kind of services is defined in terms of several dimensions. These di-
mensions include space (video content gets fragmented into multiple spatial
tiles), time (the video sequence is partitioned into sets of consecutive frames
called segments), and quality (video tiles are available in several quality rep-
resentations to adapt the content delivery to the prevailing network condi-
tions). To tackle this challenge, this dissertation introduced Explora-VR

(VR standing for virtual reality), a network-assisted content prefetching
method for tile-based 360° video streaming. Explora-VR is grounded
on the premise that multiple viewers in a near-live on-demand streaming
setting would hold their focus on certain specific parts of the scene being
presented to them via a head mounted device (HMD). On that premise,
the proposed method aims at identifying those most salient video tiles in a
per-video-segment basis. These sets of salient tiles, designated as collective
viewports, are downloaded from the content server to a cache-enabled edge
node located in close proximity to the viewers. In this way, video content
that is likely to be requested by the active users thus far is made readily
available through a low-latency link. Explora-VR draws on viewport pre-
diction techniques to anticipate the position of the user’s field of view (FoV)
for the subsequent video segments. Thanks to a stream processing pipeline,
which takes inspiration from the Explora framework, these individual pre-
dicted FoVs are combined into the above-mentioned collective viewports and
arranged into an in-memory FIFO queue of limited size, which makes for a
collective playout buffer. By consuming video content from this collective
buffer hosted on a nearby edge server, clients perceive an increased network
throughput, which drives them to request video tiles with higher quality
representations. This in turn leads to an enhanced quality of experience
(QoE) overall.

Explora-VR was evaluated in an emulated environment using head move-
ment traces collected from actual 360° video streaming sessions [5]. These
traces comprise data gathered from 48 unique viewers, while watching nine
different videos. Traces from three representative videos were used in the
evaluation. The performance of the proposed content prefetching method
was measured in terms of segment download time, and user QoE, namely
delivered video quality, and occurrence of playback freezes. Results show
that, under equivalent network conditions, Explora-VR effectively out-
performs the conventional client-server setup (i.e., without edge support),
and a traditional caching implementation based on the least recently used
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(LRU) replacement policy. In contrast to the LRU configuration, the setup
using Explora-VR is able to deliver a freeze-free playback experience with
higher video quality, as a result of a 40% increase in the perceived network
throughput on the client’s link (150% increase w.r.t. the conventional client-
server setup). Moreover, Explora-VR can consistently deliver most of the
clients’ requests (>98%) from the cache-enabled edge server, which trans-
lates into a considerable reduction in backhaul traffic and content server
load.

6.5 Future Perspectives

This dissertation presented several contributions in the domain of efficient
data access methods for large multi-dimensional data collections. Of course,
it would not be feasible to exhaust the subject matter within the limited
scope of the research conducted, and therefore some challenges remain open,
and promising venues for future studies have emerged as a result of the
work documented herein. Below, these future research directions are briefly
discussed.

Managing data integrity in big data systems

The mechanisms introduced in this dissertation intend to enable instant
data access for latency-sensitive applications, thus preventing users and
clients in general from taking action on stale data. However, in these ap-
proaches data integrity aspects—as pre-eminent as timeliness is in ensuring
quality decision making—are largely taken for granted. The rise of big data
has prompted a golden age for artificial intelligence (AI) and machine learn-
ing (ML) applications. In the modern digital world, these ML models fed
on vast amounts of data have become pervasive, being increasingly deployed
in several critical systems (e.g., self-driving vehicles, risk management and
credit scoring, talent acquisition software, etc.). As the impact of the deci-
sions we make based on these models grows, so does the need for ensuring
the integrity and quality of the data they are trained on. In this sense, data
traits such as correctness, completeness, consistency, and lineage are foun-
dational for building trust in these big data systems. Explora-LD, the
platform introduced in chapter 3, can be regarded as a step in this direction
in that it adopts a metadata-rich, linked-data based representation of the
data being served. The foregoing, added to the use of shared domain vocab-
ularies to describe information resources, provide applications with valuable
context as to where the data came from, and how it is expected to be used.
There is still ample room for extending this research area including the
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integration of context-aware mechanisms for anomaly detection [6] aiming
to promote data integrity, and scalable methods for capturing data prove-
nance in large datasets [7]. Likewise, semantic technologies can be used to
augment ML models, enabling these systems to be not only accurate and
reliable, but also predictable and explainable [8].

Impact of fault tolerance mechanisms

A large part of this dissertation deals with an extensive description of the
Explora framework and its derived implementations (i.e., Explora-LD

and Explora-VR). These mechanisms for improving read performance
heavily rely on continuous materialized views whereby they manage to an-
ticipate and promptly answer clients’ expensive queries, in a cost-efficient
and scalable manner. One important aspect that is yet to be investigated
in order to use the proposed methods in production-ready systems is the
implementation of fault tolerance mechanisms. The proof-of-concepts built
for evaluating the contributions in this dissertation assume sharded/parti-
tioned data with a single replica per partition. This makes these systems
highly vulnerable to outages of the datastores where continuous views are
kept. Increasing the number of replicas can substantially reduce the impact
of this kind of failures, boosting systems availability in consequence. How-
ever, the effective use and management of replicated data involve making a
number of decisions, among them:

• how many replicas should handle write requests (i.e., whether to use
single-leader, multi-leader, or leaderless replication),

• whether or not all replicas should acknowledge every write operation
before it is considered successful (i.e., synchronous vs. asynchronous
replication),

• the definition of quorum and the consensus mechanism for reaching
agreement on the value of a replicated data element (e.g., protocols
such as Paxos and Raft [9])

Each of the choices above involves varying trade-offs between system avail-
ability, data consistency and query responsiveness that are worth studying
further and evaluating in practical evaluation settings.

Adaptive network-supported distributed query process-
ing

The approach presented in chapter 5 features a method for edge-assisted
query processing able to anticipate the information demands from multi-
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ple clients in time-sensitive services. Besides a more in depth study of
the effects of the variability of network conditions in the performance of
the proposed method (e.g., fluctuating link capacity, packet loss, etc.), a
further compelling line of research consists in investigating smart schedul-
ing methods to intelligently scatter the processing workload across multiple
edge nodes, including dynamic resource allocation mechanisms. In such a
distributed setting, clients can be dynamically clustered together according
to features such as shared access patterns, client’s location, end client de-
vice, and quality of service (QoS) requirements. The intended scheduling
mechanisms should respond to said clustering configuration and optimally
allocate the limited computing resources of the edge network to serve the
queries from each of the derived groups. Recent studies on multi-access
edge computing (MEC) [10] such as those by Cai et al. [11] and Liang et al.
[12] can provide valuable guidelines for the design and realization of these
edge-assisted mechanisms for distributed query processing.

Explora-VR: Objective and subjective evaluation of
QoE

Concerning the specific use case of immersive video streaming studied when
defining the mechanisms behind Explora-VR, metrics such as the occur-
rence and duration of playback freezes, the video quality, and the perceived
network throughput in the client’s link were used as proxy to estimate the
quality of experience (QoE) delivered to the viewer. To get a more accurate
and reliable indication of the performance of the proposed approach in this
regard, a more extensive evaluation of the QoE is recommended. Said eval-
uation should comprise both a subjective assessment—through measures
such as the mean opinion score (MOS) provided by actual viewers—and
an objective analysis which involves estimating indicators such as the video
quality metric (VQM) and the structural similarity index measure (SSIM).
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Abstract Small-to-medium businesses are increasingly relying on big data
platforms to run their analytical workloads in a cost-effective manner, in-
stead of using conventional and costly data warehouse systems. However,
the distributed nature of big data technologies makes it time-consuming to
process typical analytical queries, especially those involving aggregate and
join operations, preventing business users from performing efficient data
exploration. In this sense, a workload-driven approach for automatic view
selection was devised, aimed at speeding up analytical queries issued against
distributed dimensional data. This paper presents a detailed description of
the proposed approach, along with an extensive evaluation to test its fea-
sibility. Experimental results shows that the conceived mechanism is able
to automatically derive a limited but comprehensive set of views able to
reduce query processing time by up to 89%–98%.
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A.1 Introduction

Existing enterprise applications often separate business intelligence and data
warehousing operations—mostly supported by Online Analytical Processing
systems (OLAP)—from day-to-day transaction processing—a.k.a. Online
Transaction Processing (OLTP) [1]. While OLTP systems rely mostly on
write-optimized stores and highly normalized data models, OLAP tech-
nologies work on top of read-optimized schemas known as dimensional
data models, which leverage on denormalization and data redundancy to
run computationally-intensive queries typical from decision-support appli-
cations (e.g. reporting, dashboards, benchmarking, and data visualization),
that would result in prohibitively expensive execution on fully-normalized
databases.
Traditional data warehousing systems are expensive and remain largely in-
accessible for most of the existing small-to-medium sized business (SMEs)
[2]. However, thanks to the advent of big data, more and more cost-effective
(often open-source) tools and technologies are made available for these or-
ganizations, enabling them to run analytical workloads on clusters of com-
modity hardware instead of costly data warehouse infrastructure. Yet in
such a distributed setting, some of the common challenges of conventional
data warehousing systems become even more daunting to deal with: the
way data is scattered and replicated across distributed file systems such as
Hadoop’s HDFS [3] makes it computationally expensive and time-consuming
to run Aggregate-Select-Project-Join (ASPJ) queries which are one of the
foundational constructs of OLAP operations.
For typical data warehousing and related applications using materialized
views is a common methodology for speeding up ASPJ-query execution.
The associated overhead of implementing this methodology involves com-
putational resources for creating and maintaining the views, and additional
storage capacity for persisting them. In this sense, finding a fair compromise
between the benefits and costs of this method is regarded by the research
community as the view selection problem.
In this regard, this paper presents an automatic view selection mechanism
based on syntactic analysis of common analytical workloads, and proves its
effectiveness running on top of distributed dimensionally-modeled datasets.
The paper explores the techniques devised for abstracting feature vectors
from query statements, clustering related queries based on an estimation
of their pairwise similarity, and deriving a limited set of materialized views
able to answer the queries grouped under each cluster.
The remainder of this paper is organized as follows: Section A.2 addresses
the related work. Section A.3 describes the view selection problem and
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presents an overview of the proposed approach for tackling it. Section
A.4 elaborates on the syntactic analysis conducted on analytical workloads,
while Section A.5 describes a proof-of-concept implementation of the devised
mechanism, along with the experimental setup and performance results. Fi-
nally conclusions and future work are addressed in Section A.6.

A.2 Related Work

Extensive research has been conducted around the view selection problem,
as evidenced in several systematic reviews on the topic such as those by [4],
[5], [6], [7].

The review elaborated in [6] groups existing approaches in three main cat-
egories: (i) heuristic approaches, (ii) randomized algorithmic approaches,
and (iii) data mining approaches.

Heuristic and randomized algorithmic approaches emerged as an attempt to
provide approximate optimal solutions to the NP-Hard problem that view
selection entails. Both types of approaches use multidimensional lattice
representations [8], AND-OR graphs [9, 10], or multiple view processing
plan (MVPP) graphs [11, 12] for selecting views for materialization. Issues
regarding the exponential growth of the lattice structure when the number
of dimensions increases, and the expensive process of graph generation for
large and complex query workloads, greatly impact the scalability of these
approaches and their actual implementation in consequence [6, 13].

Unlike previously mentioned approaches, data-mining based solutions work
with much simpler input data structures called representative attribute ma-
trices, which are generated out of query workloads. These structures then
configure a clustering context out of which candidate view definitions are de-
rived. In [13, 14] candidate views are generated by merging views arranged
in a lattice structure. Since the number of nodes in this lattice grows expo-
nentially with the number of views, the procedure for traversing it can be
expensive. Other data mining approaches for view selection, including the
one from [15], involve browsing across several intermediate and/or historical
results, which is deemed to be a very costly and unscalable process [6].

More recently, approaches such as [16] and [17] explore the application of
materialized views on top of massive distributed data to speed up big data
query processing. While the work of Goswami et al. [16] addresses a solution
based on a multi-objective optimization formulation of the view selection
problem, it assumes as given the set of candidate views from which the
selection is made. On the other hand, [17] elaborates on the recently enabled
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support for materialized views in Apache Hive [18], however at the time of
writing there is no indication of any built-in mechanism for supporting view
selection with this new feature.
In view of the above, this paper elaborates on an automatic mechanism
for materialized view selection on top of distributed dimensionally-modeled
data. The mechanism presented in the following sections relies on syntac-
tic analysis of query workloads using a representative attribute matrix as
input data structure, assembled as a collection of feature vectors encoding
all the clauses of each individual query in the workload at hand. With
this input, a strategy for selecting a limited set of candidate materializable
views is implemented, comprising the use of hierarchical clustering along
with a custom query distance function complying with the structure of the
feature vectors, and the estimation of a materializable score on the resulting
clustering configuration, allowing to unambiguously identify materializable
groups of queries.

A.3 Materialized view selection

Figure A.1 Materialized view selection: architecture overview
[[2,10,0,...,12,24,8],
 [4,12,1,...,15,36,9],
 [2,14,0,...,16,28,4],
         ...
 [8,12,2,...,40,44,9]]

Dsrc

Before addressing an overview of the proposed approach, let’s first define
the view selection problem.

Definition A.1 View selection problem. Based on the definition by
Chirkova et al. [19]: Let R be the set of base relations (comprising fact(s)
and dimensions tables), S the available storage space, Q a workload on R, L
the function for estimating the cost of query processing. The view selection
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problem is to find the set of views V (view configuration) over R whose total
size is at most S and that minimizes L(R,V,Q)

In the context of the view selection approach proposed herein, some as-
sumptions are made for the system to identify and materialize candidate
views out of the syntactic analysis of query workloads:

1. The source data collection (Dsrc) complies a star schema data model,
i.e. it comprises a fact table referencing one or more dimension tables.

2. Dsrc is temporary immutable. This is a common scenario in some
data warehousing systems, where analytical data is updated once in a
substantial period of time —e.g. through an ETL procedure running
on top of OLTP databases—, and queried multiple times during such
a period.

3. Statistical information regarding Dsrc, such as the size (row count) of
each of the base tables composing the dataset, as well as the cardinality
of the attributes that make up these relations is available either by
querying the metadata kept by the datastore, or by directly querying
the base tables.

4. Latency is favored over view storage cost. This means that the decision
on materializing candidate views is driven not by storage restrictions,
but by the gain in query latency.

Figure A.1 outlines the main components of the mechanism proposed herein
to address the stated view selection problem. In terms of the definition A.1,
given a dimensionally modeled dataset R and a workload Q, the view selec-
tion mechanism starts by translating the queries in Q into feature vectors
representing the attributes contained in each of the clauses of an ASPJ-
query, i.e. aggregate operation, projection, join predicates and range pred-
icates. In contrast to similar query representations such as the one used in
[13], the method proposed herein accounts not only for query-attribute us-
age, but also for query structure by defining a number of regions/segments
representative of each of the clauses of a Select-Project-Join (SPJ) query, i.e.
aggregate operation, select list, join predicates and range predicates. This
way, the devised query representation provides a more precise specification
of the query statements in Q.
The collection of feature vectors of Q configure a clustering context C. This
context is then fed to a clustering algorithm able to identify groups of related
queries based on a similarity score computed via a custom query distance
function. Upon running the clustering job, the resulting clustering config-
uration K comprises several groups of queries the algorithm deemed to be
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similar. The idea behind building this clustering configuration is to be able
to deduce view definitions covering the queries arranged under each cluster.
The clustering algorithm might come up with spurious clusters, i.e. groups
of queries that are actually not that related. To identify those spurious
clusters and setting them apart from those clusters whose corresponding
candidate views are worth materializing, a materializable score is defined,
taking into account a measure of cluster consistency and the cluster size.
Further details on this score and the clustering procedure are provided later
in section A.4.2.
Based on the results of the materializable score computed on the clustering
configuration K, a subset of the candidate views in V, Vmat, is prescribed
to be materialized. Finally, with the views in place, the translation of new
analytical queries matching said views is performed.

A.4 Query Analysis

The syntactic analysis this work thrives on, starts by mining the infor-
mation contained in the select list and search conditions clauses, encoding
these values in a feature vector representation that enables further query
processing.

A.4.1 Query representation

The procedure for obtaining a text-mining-friendly representation of the
queries takes each one of the SELECT statements from a workload Q and
extracts the
aggregate (agq) and projection (pjq) elements, and join (jnq) and range
(rgq) predicates, resulting in the following tuple:

q = (agq, pjq, jnq, rgq) (A.1)

The tuple above is the high-level vector representation of the queries from
Q. Consider for example the following SELECT statement:

SELECT SUM(lo_revenue), d_year , p_category

FROM lineorder , dwdate , part

WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND d_year > 2010

GROUP BY d_year , p_category

For the query above:

agq = [SUM, lo_revenue]
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pjq = [d_year, p_category]

jnq = [d_datekey, p_partkey]

rgq = [d_year]

Each element of the above high-level vector representation gets mapped to
a vector using a binary encoding function, as described below.

Definition A.2 Binary mapping function. Let R be a relation defined
as a set of m attributes (a1, a2, ..., am) —with am being the primary key of
R—, and given r an arbitrary set of attributes, the binary mapping of r

according to R, denoted by bmR(r), is defined as follows:

bmR(r) = {bi} , 1 ≤ i ≤ m

bi =

{

1, if ai ∈ r

0, otherwise

(A.2)

Using the mapping function above, the vector representation of each one
of the query elements in Eq.A.1 (designated henceforth as segments), for a
dimensional schema comprising one fact table and N dimension tables, is
defined as follows:

agq = [aggOpCode, bmFact(agq)]

pjq = [bmFact(pjq), bmDim1(pjq), ..., bmDimN(pjq)]

jnq = [bmDim1(jnq), ..., bmDimN(jnq)]

rgq = [bmFact(rgq), bmDim1(rgq), ..., bmDimN(rgq)]

where aggOpCode designates the aggregate operation using one-hot encod-
ing, namely, COUNT: 00001, SUM: 00010, AVG: 00100, MAX: 01000, MIN:
10000.
A complete feature vector q representing a query q ∈ Q is set by putting
together the above-mentioned segments, that is:

q = [agq,pjq, jnq, rgq]

Accordingly, considering the SELECT statement in the example above and
the dimensional schema described in [20] which comprises one fact table
and four dimension tables, a complete feature vector instance (its decimal
equivalent for length and clarity) is shown below:

q = [[2, 8] , [0, 0, 16, 8, 0] , [0, 1, 1, 0] , [0, 0, 16, 0, 0]]
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The collection of feature vectors representing the queries from Q are ar-
ranged as a representative attribute matrix, configuring a clustering context
C.

A.4.2 Query clustering and View materialization

Algorithm A.1 WPGMA clustering procedure

1: K ← C; C = {q0,q1, . . . ,qN} ⊲ Initializing clusters (singleton clusters)
2: D← qDst(qi,qj) for all qi,qj ∈ K, i 6= j ⊲ Pairwise dissimilarity

matrix
3: L← [] ⊲ Output matrix
4: while |K| > 1 do
5: (a,b)← argmin(D) ⊲ Get the nearest clusters
6: append [a,b,D [a,b]] to L

7: remove a and b from K
8: create new cluster k← a ∪ b ⊲ Merge a and b into one cluster
9: update D: D [k,x] = D [x,k] = qDst(a,x)+qDst(b,x)

2 for all x ∈ K
10: K ← K ∪ k

11: end while
12: return K,L ⊲ L: WPGMA dendrogram: ((N − 1)× 3)-matrix

The view selection approach documented herein relies on hierarchical clus-
tering [21] for deriving groupings of similar queries. In contrast to other
well-known clustering methods such as K-Means or K-medoids, hierarchi-
cal clustering analysis does not require the number of clusters upfront as
parameter. Instead, it generates a hierarchical representation of the en-
tire clustering context in which observations and groups of observations are
stacked together from lower to higher levels, according to a distance measure
based on the pairwise dissimilarities among the observations.
This way, a dissimilarity metric is required to apply hierarchical clustering
analysis on a clustering context C, along with a linkage criterion which esti-
mates the dissimilarity among groups of queries as a function of the pairwise
distance computed between queries belonging to those groups. In this sense,
a distance function, qDst, is defined in which similarity between two queries
is determined to be proportional to the number of attributes they share in
a per-segment and per-relation (fact and dimensions) basis. Since vectors
in C do not lie in an euclidean space, the Weighted Pair Group Method with
Arithmetic Mean (WPGMA) clustering method is used as linkage criterion,
instead of methods such as centroid, median, or ward [22].
Under this set-up, the clustering procedure (detailed in algorithm A.1) starts
by assigning each query to its own cluster (see line 1). Then, the pairwise
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dissimilarity matrix between these singleton clusters, D, is computed and
an empty matrix (L) specifying the resulting dendrogram is initialized (lines
2-3). From D, the two most similar (nearest) clusters are merged into one,
and appended to L along with the distance between them (lines 5-6). Then,
the pairwise dissimilarity matrix gets updated using the WPGMA method
for computing the distance between the newly formed cluster and the rest
of the currently existing clusters (eq. A.3):

D[(a ∪ b),x] =
qDst(a,x) + qDst(b,x)

2
,

(a,b and x being clusters)
(A.3)

This procedure is then repeated until there is only one cluster left. Finally,
both the clustering configuration (K) and the dendrogram matrix (L) are
returned (line 12).
As mentioned earlier, spurious clusters might be found in the derived clus-
tering configuration. To avoid further processing of those query groups a
score was defined indicating to what extent it is worth to materialize the
view derived from a particular cluster.

Definition A.3 Materializable cluster. A cluster c from a clustering
configuration K is said to be materializable if the following conditions are
met:

1. Queries in c are highly similar to each other.

2. Queries in c are clearly separated (highly dissimilar) from queries in
other clusters.

3. |c| is large enough in proportion to the size of the workload |Q|.

A cluster meeting the first two conditions is said to be a consistent cluster,
while the third condition prevents singleton and small clusters from being
further processed. Based on the above definition, the materializable score
of a cluster (mat(c) in eq. A.4) is computed as the product of two sigmoid
functions: one on the per-cluster silhouette score (S) [23]—defined below in
eq. A.5—and the other on the per-cluster proportions (P ).

mat(c) =
( 1

1 + e−k(S(c)−s0)

)( 1

1 + e−k(P (c)−p0)

)

(A.4)
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With:

S(c) =
1

|c|

∑

qi∈c

b(qi)− a(qi)

max {a(qi), b(qi)}
, P (c) =

|c|

|Q| (A.5)

Where,

• k is a factor that controls the steepness of both of the sigmoid func-
tions,

• s0 and p0 are the midpoints of the silhouette and cluster-proportion
sigmoids respectively,

• a(qi) is the average distance between qi and all queries within the
same cluster,

• b(qi) is the lowest average distance of qi to all queries in any other
clusters.

Upon factoring out the spurious clusters, the next step is deriving view
definitions covering the queries arranged under each of the materializable
clusters (Kmat ⊆ K). Algorithm A.2 below details the procedure conducted
to derive the views Vi meeting this containment condition on each of the
materializable clusters. In this procedure, the ASPJ clauses of the resulting
views are defined in terms of the union of the corresponding attributes from
each query in the cluster (aggregate (agq), projection (pjq), join (jnq), and
range (rgq) predicates in lines 4-7).

Algorithm A.2 Procedure for deriving view definitions

1: Let c be a cluster in Kmat

2: V ← [agV , pjV , jnV , groupByV ] ⊲ Output view definition
3: for each query q in c do
4: agV ← agV ∪ agq
5: pjV ← pjV ∪ pjq ∪ rgq
6: jnV ← jnV ∪ jnq

7: groupByV ← groupByV ∪ pjq ∪ rgq
8: end for
9: return V

A.5 Evaluation

A.5.1 Proof-of-concept Implementation

A bottom-up approach was adopted to test the view selection mechanism de-
tailed in the previous sections. In this way, starting from a set of predefined
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Figure A.2 Proof-of-concept implementation of the proposed view selection
mechanism.
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view definitions, the effectiveness of the proposed mechanism is estimated in
terms of its ability for identifying the same set of views and reconstructing
their definitions, upon analyzing a query workload generated from query
templates fitting the original set of views (see Figure A.2).
This proof-of-concept implementation leverages the Star Schema Bench-
mark (SSB) as baseline schema and dataset, and therefore both the prede-
fined views and query templates, as well as the query generator module were
designed and built so they conform to the data model the SSB embodies.
Thirteen ASPJ-query statements compose the full query set of the SSB,
arranged in four categories/families designated as Query Flights (a detailed
definition of the SSB is available at [20]). For this proof-of-concept, three
view definitions were derived based on the original SSB query set, and from
each view definition, four query templates were prepared. Additionally, one
template per each one of the 13 canonical SSB queries were also composed.
With this set of 25 templates as input, a module that generates random
instances of runnable queries enabled the creation of query workloads of
arbitrary size. Listings below present the definitions of each one of the
mentioned views.

SELECT sum(lo_revenue), p_brand1 , c_region ,

s_region , d_year

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY p_brand1 , c_region , s_region , d_year

ORDER BY p_brand1 , c_region , s_region , d_year

Listing A.1: Definition of View A
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SELECT sum(lo_ordtotalprice), p_category , c_city ,

s_city , d_yearmonthnum

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY p_category , c_city , s_city , d_yearmonthnum

ORDER BY p_category , c_city , s_city , d_yearmonthnum

Listing A.2: Definition of View B

SELECT sum(lo_supplycost - lo_tax), c_region , p_mfgr ,

s_region , c_nation , d_year

FROM lineorder , customer , dwdate , part , supplier

WHERE lo_custkey = c_custkey

AND lo_orderdate = d_datekey

AND lo_partkey = p_partkey

AND lo_suppkey = s_suppkey

GROUP BY c_region , p_mfgr , s_region , c_nation , d_year

ORDER BY c_region , p_mfgr , s_region , c_nation , d_year

Listing A.3: Definition of View C

A.5.2 Definition of the data serialization format

Figure A.3 Set-up for deciding on the data serialization format
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Since serialization formats determine the way data structures are turned
into bytes and sent over the network, and how said structures are stored on
disk, such formats have a major impact on the response time of data pro-
cessing and retrieval operations performed in a distributed fashion. This
is why, prior to evaluating the performance of the proposed view selection
mechanism, the decision on which serialization format to use for encoding
and storing the SSB datasets into HDFS needed to be made. Figure A.3
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outlines the setup arranged to conduct a benchmark analysis on three dif-
ferent data serialization formats, one being a text-based format (CSV) and
two binary schema-driven formats (Parquet [24] and Avro [25]). By lever-
aging on the built-in support Spark SQL provides for these serialization
formats, a 48-million-row SSB dataset was encoded into CSV, Parquet and
Avro and stored in HDFS. Then, the canonical SSB query set (consisting of
13 queries) was run against each of the encoded datasets, as well as against
a separate dataset placed in a single-node PostgreSQL1 database serving as
a reference.
Figure A.4 shows the results obtained from measuring the average query
runtime (over 10 runs) for each one of the serialization formats. Notice
how, in the mentioned conditions, queries running against the Parquet-
encoded dataset ran up to 10 times faster than the reference relational
database. Also, Parquet was the only serialization format that managed to
outperform the average query runtime of PostgreSQL.

Figure A.4 Average query-flight runtime per data serialization format
(SSB SF = 8)
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Serialization formats also have a significant impact on the size of the en-
coded data structures. While for text-based human-readable formats such
as CSV data is stored as-is, binary formats like Parquet and Avro do ap-
ply compression on the data they encode. Figure A.5 shows a comparison
between the reported sizes (in gigabytes) of the SSB dataset for each of
the considered serialization formats. According to these results Parquet is
once again the most efficient serialization format, reaching a compression

1PostgreSQL 9.5.8 working with the default configuration and deployed on a
VMWare® virtual machine as the ones used for the Hadoop cluster (postgresql.org)
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ratio of 3.6:1 in relation to the uncompressed CSV-encoded dataset, and
6.5:1 in relation to the PostgreSQL reference database (including primary
key indexes). In consequence, Parquet was the chosen serialization format
for encoding the various datasets involved in the evaluation of the proposed
view selection approach.

Figure A.5 Disk space usage per data serialization format (SSB SF = 8)
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A.5.3 Experimental setup

Figure A.6 depicts the arrangement of components and technologies used
for conducting the experimental evaluation of the proposed view selection
approach. This evaluation comprised two major stages:

(1) Running the view selection implementation on a 400-query workload
to the point it materializes views A, B, and C (defined in section
A.5.1), while keeping track of the runtime involved in the procedures of
query clustering, view scoring (using the materializable score defined
in section A.4.2), and view creation (i.e. materialization).

(2) Once the views are materialized, run a 100-query workload against
both the base SSB dataset and the materialized views. In doing the
latter, workload queries first pass through a translation component
that gathers the details of the available materialized views from the
view registry (stored in a MongoBD2 2.6.10 document database), and
adapts the incoming query statements accordingly.

2Available at mongodb.com



Automatic View Selection for Distributed Dimensional Data 199

Figure A.6 View selection experiment set-up
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For all the stages, the performance information collected from running the
tests were aggregated and visualized using Jupyter notebook3. During this
evaluation, workloads were run against eight different sizes of the SSB
dataset, as specified below in table A.1. These datasets were stored into
a 3-Node Hadoop4 2.7.3 cluster deployed on 3 VMWare® virtual machines,
each one with the following specifications: Intel® Xeon® E5645 @2.40GHz
CPU, 16GB RAM, 250GB hard disk.

Table A.1: SSB dataset sizes

Scaling
Factor (SF)

Dataset size
(# rows)

8 48×106

16 96×106

24 144×106

32 192×106

40 240×106

48 288×106

56 336×106

64 384×106

3Available at jupyter.org
4Available at hadoop.apache.org
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A.5.4 Results

A.5.4.1 View selection overhead

Figure A.7 View selection runtime per process (|Q| = 400). Time needed
for view materialization grows as the dataset size increases, while the over-
head due to clustering and view scoring remains invariant.
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The overhead of the view selection implementation was estimated first by
running it on a 400-query workload throughout the considered range of sizes
of the SSB dataset. Results show that, for a fixed-size workload, the runtime
overhead grows nearly proportional to the size of the data collection (See
Figure A.7), with a major part of said overhead due to the view material-
ization itself. As mentioned before, the proposed view selection mechanism
involves the execution of a sequence of steps: (1) query clustering, (2) view
(or cluster) scoring, and (3) view materialization. Out of these only the first
two steps have to do with the syntactical analysis of query sets described
throughout this paper, while the last one refers to the actual materializa-
tion of the derived views in Parquet. Figure A.7 shows the execution times
for each one of the three mentioned steps, including the individual materi-
alization of each one of the three selected views. Note how clustering and
view scoring amount to only 20 seconds, and remain largely invariant as
the dataset size grows larger. Nonetheless, it is worth mentioning that the
behaviour evidenced in Figure A.7 for the materialization step cannot be as-
sumed the same for any arbitrary set of views, since this part of the runtime
overhead depends not only on the size of the dataset, but also on factors
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such as view size, the join predicates in the view definition, and —given
that views are placed in a distributed file system— also the latency of the
network.
On the other hand, the implementation of the WPGMA method used in the
clustering analysis relies on the nearest-neighbors chain algorithm which is
known to have O(N2) time complexity [22]. As Figure A.8 shows, the
overhead due to said analysis features a quadratic growth as the number
of queries in the workload increases, outperforming alternative approaches
with exponential complexity discussed back in section A.2.

Figure A.8 View selection overhead vs Workload size. The syntactical
analysis features a quadratic growth w.r.t. the size of the query set.
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When it comes to storage cost, view size varies depending on the cardinality
of the fields used in the group-by clause of their definition [13], and whether
or not there are hierarchical relations between such attributes (e.g. the one
between c_region, c_nation and c_city). Figure A.9 shows the size per
materialized view, as well as the number of rows in the SSB base schema for
a range of values of the scaling factor (SF ). Notice that while the number
of records of views A and C is fairly negligible in comparison with the base
schema, view B and the base dataset have comparable sizes for small values
of SF . Then, the size of view B tends to stabilize around 10

8 records as the
base data set gets larger. Such difference in size among the views has to do
with the cardinality of the fields used when defining said views. For instance,
view B uses fields c_city, s_city and d_yearmonthnum whose cardinality
is far larger than fields such as c_region, c_nation and d_year, used in
the remaining views.
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Figure A.9 View size overhead vs SSB scaling factor
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A.5.4.2 View selection performance

With the selected views already materialized, a 100-query workload was
run against each one of the eight base SSB datasets to get a query latency
baseline. Out of those 100 queries, 75 were covered by the three avail-
able materialized views (25 queries per view), and the remaining ones were
canonical SSB-based queries. Once the latency baseline was built, the same
workload was issued this time with the query translation module in place,
so that incoming queries matching any of the definitions of the available
materialized views get rewritten and issued against them. Figure A.10 il-
lustrates the contrast between the baseline query runtime and the response
time when queries run against materialized views. In the light of these
results it is worth to highlight three key facts:

Figure A.10 Query runtime per view: Baseline runtime vs. View run-
time (|Q| = 100, Spark running on yarn-client mode with 3 executors and
spark.executor.memory = 1Gb)
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(i) For all the selected views the time required for queries to run against
the base dataset steadily grows as the scaling factor (SF ) increases
from 8 (48 million rows) to 40 (240 million rows). This describes an
expected behaviour since the base dataset is also growing at a uniform
rate (48 million rows per step).

(ii) From SF = 48 (288 million rows) onwards, there is a strong though
less regular increase in the average response time of queries issued
against the base datasets: queries run 5-9 times slower compared to
those running on the immediate smaller dataset (SF = 40), when only
a 22-27% mean increase in the query runtime was expected. Such a
stark difference is consequence of Apache Spark changing the mecha-
nism it uses to implement join operations. Up to SF = 40, the size
of the dimension tables is small enough for Spark to broadcast them
across the executors —collocated with the Hadoop DataNodes— and
use its most performant join strategy known as Broadcast Hash Join.
However, for SF ≥ 48 some of those dimensions grows larger than
the threshold set in Spark for them to be regarded as broadcastable
datasets, compelling Spark to fall back to Sort-Merge Join, which
entails an expensive sorting step on the tables involved in the join
operation, ultimately impacting the query response time.

(iii) Materialized views outperform the base datasets for any value of SF ≥
8. Queries running on views A and C perform 2-8 times faster than
the corresponding base dataset for values of SF between 8 and 40, and
22-65 times faster for larger values of SF . Likewise, queries running
against the second view (view B) run up to 2 times faster than queries
running on the base dataset for SF ≤ 40, and up to 10 times faster
for larger values of SF . The expensive join operations performed for
queries running on the base dataset are bypassed for those matching
any of the available selected views, allowing Spark to run those queries
in a fraction of their original query response time.

Table A.2 summarizes the results obtained from running the above test,
stating the reduction in query runtime achieved through each one of the
views relative to the average baseline query runtime.

A.6 Discussion and Conclusions

The analytical workloads typical in OLAP applications feature expensive
data processing operations whose cost and complexity increases when run-
ning on a distributed setting. By identifying recurrent operations in the
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Table A.2: Query latency reduction per view (|Q| = 100)

% Reduction in
query response time

SSB Dataset
size (SF)

View A View B View C

8 40.86 26.99 61.21

16 62.66 42.64 83.36

24 69.05 50.14 80.95

32 75.16 54.48 84.06

40 78.60 51.56 87.05

48 96.02 88.96 98.00

56 96.10 89.15 98.24

64 95.36 89.82 98.46

queries composing said workloads and saving their resulting output on disk
or memory in the form of distributed views, it is possible to speed up the
processing time of not only known but also previously unseen queries. That
is precisely the premise behind the mechanism detailed in this paper, which
leverages on syntactic analysis of OLAP workloads for identifying groups of
related queries and deriving a limited but comprehensive set of views out
of them. The views the devised mechanism comes up with proved an ef-
fective method for circumventing expensive distributed join operations and
subsequently reducing the query processing time by up to 89%–98% with
reference to the runtime on the base distributed dimensional data.

While the convenience of distributed materialized views is more prominently
perceived as the dimensional data grows larger, one of the main open chal-
lenges of the proposed approach has to do with the unbounded size of the
views that the mechanism is able to compose, which increases the associ-
ated processing overhead and cuts down the relative benefit of using these
redundant data structures. To cope with this limitation, the view selec-
tion mechanism needs to be aware not only of the recurrent attributes and
operations of queries but also of the cardinality of such attributes, so that
views including attributes with high cardinality (consider for instance view
B in section A.5.1) get materialized as multiple size-bounded child views
corresponding to partitions of the original view. Additionally, by keeping
track of how the selection conditions of incoming workloads change over
time, it is possible to implement a continuous view maintenance strategy
that performs horizontal partitioning on the derived views, allowing the pro-
posed mechanism to adapt to workload-specific demands, using an approach
similar to the one presented in [26]. The implementation of the cardinality-
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awareness feature for the proposed view selection mechanism, as well as the
view maintenance strategy discussed above are the future extensions of the
work presented in this paper.
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Table B.1: Visual queries used for the performance evaluation
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