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Samenvatting 

 

 
In Vlaanderen is meer dan 60% van het bestaande brugpatrimonium gebouwd vóór 
1981 en meer dan 25% zelfs vóór 1945, waardoor een aanzienlijk budget wordt 
besteed aan het onderhouden en herstellen van deze constructies. Daarom trachten 
ingenieurs steeds betere tools te ontwikkelen om rationeel gefundeerde 
beslissingen te maken met betrekking tot de besteding van de beschikbare 
budgetten. In het bijzonder worden daarbij nauwkeurigere berekeningsmethoden 
ontwikkeld die toelaten de resterende levensduur van bestaande constructies in te 
schatten. 
 
De laatste decennia is er veel onderzoek uitgevoerd naar constructieve veiligheid. 
Desondanks blijft het moeilijk om de veiligheid van bestaande bruggen te 
evalueren. Er is nood aan een kader voor het evalueren van de veiligheid van 
verouderde en degraderende constructies waarin de resultaten van inspecties en 
monitoring op een correcte manier in rekening kunnen worden gebracht. Vaak is 
er veel data voorhanden, maar is het onduidelijk wat deze juist vertelt over de 
degradatietoestand van de constructie. Er is nood aan een evolutie van methodes 
die enkel gebaseerd zijn op de beschikbare data naar methodes die uitgaan van een 
onderliggend model van de beschouwde constructie en waar de data wordt 
gebruikt om dit model te verfijnen om zo meer accurate voorspellingen van het 
constructieve gedrag te bekomen. 
 
Het beschikbare budget voor het beheer van het bestaande brugpatrimonium is 
beperkt en het is belangrijk om dit budget zo optimaal mogelijk te benutten. Een 
oplossing die hiervoor kan worden aangewend is het toepassen van een 
zogenaamde pre-posterior procedure die toelaat om de toegevoegde waarde van 
een meetcampagne te bepalen alvorens deze is uitgevoerd. In deze procedure 
wordt de kost over de gehele levenscyclus van de constructie bepaald in het geval 
geen extra maatregelen worden ondernomen enerzijds en anderzijds voor 
verschillende mogelijke meetcampagnes. Vervolgens worden beide verwachtte 
kosten vergeleken. Een meetcampagne is de investering waard indien de te 
verwachten kost over de gehele levenscyclus lager is dan wanneer deze 
meetcampagne niet wordt geïmplementeerd. Op analoge manier kunnen ook 
verschillende meetcampagnes met elkaar worden vergeleken en kan de meest kost-
optimale meetcampagne gekozen worden. Het dient te worden opgemerkt dat in 
deze analyses rekening dient gehouden te worden met het tijdsafhankelijk en 
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ruimtelijk karakter van de degradatie waaraan de beschouwde constructie is 
onderworpen. 
 
Er is veel literatuur beschikbaar over het modelleren van corrosie en de invloeden 
van corrosie op het gedrag van gewapende betonconstructies. Sommige van deze 
modellen worden in dit werk toegelicht en aangewend. Deze modellen laten toe 
om een voorspelling te maken van het gedrag van de bestudeerde constructie in de 
tijd. Dit gedrag is echter onderworpen aan onzekerheden, hetgeen kan leiden tot 
een grote spreiding op de geschatte degradatietoestand. Degradatie zal zich ook 
niet uniform manifesteren over de constructie, maar kent mogelijks een ruimtelijke 
spreiding die a priori moeilijk in te schatten is. Om een meer nauwkeurig beeld 
van de degradatietoestand te krijgen, i.e. de mate van degradatie en lokalisatie van 
meer gedegradeerde zones, kunnen metingen worden uitgevoerd op de constructie. 
De resulterende data kan dan worden gebruikt om de distributies van de 
degradatieparameters te updaten, wat zal leiden tot een meer nauwkeurige 
voorspelling van de resterende levensduur van de constructie. Verschillende types 
data kunnen worden gebruikt voor dit doel, elk met hun eigen voor- en nadelen. 
Een proefbelasting kan worden aangebracht op de constructie. Rekken en 
doorbuigingen kunnen dan worden opgemeten. Uit het huidige onderzoek werd 
geconcludeerd dat doorbuigingsmetingen over het algemeen geen lokalisatie van 
de schade toelaten en een beperkte reductie in onzekerheid opleveren. 
Rekmetingen kunnen dan weer een vrij accuraat beeld opleveren van de 
degradatietoestand, maar dit enkel op de locatie waar de rek wordt opgemeten. Om 
lokalisatie van schade mogelijk te maken zou de volledige constructie moeten 
worden uitgerust met reksensoren, wat praktisch vaak onmogelijk is. Anderzijds 
kunnen ook dynamische eigenschappen van de constructie worden afgeleid uit 
trillingsmetingen. Wanneer een constructie wordt uitgerust met accelerometers of 
optische vezels kunnen de natuurlijke frequenties en modevormen worden 
afgeleid uit de data verkregen ten gevolge van omgevingsexcitatie. Natuurlijke 
frequenties zijn gerelateerd aan de globale stijfheid (en dus globale 
degradatietoestand) van de constructie en laten geen lokalisatie van schade toe. 
Echter, lokale reducties in stijfheden kunnen een invloed hebben op de 
modevormen. Het combineren van de informatie uit de natuurlijke frequenties en 
corresponderende modevormen kan zo toelaten om schade te lokaliseren en te 
kwantificeren. Over het algemeen is de resterende onzekerheid groter dan deze ten 
gevolge van rekmetingen onder een proefbelasting. Het is aangetoond dat de 
combinatie van beide types data leidt tot een meer accurate voorspelling van de 
werkelijke degradatietoestand. Op basis van de modale data (natuurlijke 
frequenties en modevormen) kunnen de kritieke locaties, i.e. degene met de meeste 
schade, worden gelokaliseerd. Door deze vervolgens met reksensoren uit te rusten 
tijdens een proefbelasting en beide datasets te combineren, kan een veel betere 
inschatting van de degradatietoestand worden gemaakt. Het is ook aangetoond hoe 
het bijkomend in rekening brengen van visuele observaties een positieve invloed 
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heeft op de a posteriori distributie van de degradatieparameters. Wanneer 
bijvoorbeeld reeds visuele tekenen van corrosie zichtbaar zijn, zullen de lage 
corrosiegraden in de a posteriori distributie worden uitgesloten. 
Ter validatie van de ontwikkelde methodologie is ook een experimentele 
proefcampagne uitgewerkt. Hierin werden gewapende betonbalken onderworpen 
aan versnelde corrosie.  Op verschillende corrosiegraden werden de rekken onder 
een gekende belasting opgemeten en werden de natuurlijke frequenties en 
modevormen afgeleid uit dynamische metingen met accelerometers en optische 
vezels. De resultaten zijn dan vergeleken met deze voor een niet gecorrodeerde 
referentiebalk. De data is gebruikt om een vage a priori distributie van de 
corrosiegraad te updaten. Hier is ook het positieve effect aangetoond van het 
definiëren van een meer informatieve a priori distributie op basis van informatie 
van scheurmetingen. Tijdens deze proefcampagne is ook een eerste kwantificering 
gebeurd voor de meetfout bij statische rekmetingen op betonconstructies. 
 
Het voorgaand onderzoek over degraderende voorgespannen betonconstructies is 
eerder beperkt en er is nog geen consensus met betrekking tot het modelleren en 
evalueren van corrosie in deze constructies. Een kort overzicht van de huidige 
state-of-the-art wordt in dit werk gegeven. Bijkomend wordt een eerste analyse 
gedaan waarbij de corrosiegraad van een eenvoudige voorgespannen en 
nagespannen ligger wordt geüpdatet op basis van rekmetingen onder een 
proefbelasting. De data resulterende uit dynamische metingen is hierin niet 
beschouwd omdat deze voornamelijk beïnvloed worden als de voorspanning in die 
mate is gereduceerd dat het beton begint te scheuren. De berekeningen tonen aan 
dat voor een voorgespannen ligger de corrosiegraad kan worden geüpdatet op 
basis van statische rekmetingen indien deze met een voldoende grote 
nauwkeurigheid kunnen worden uitgevoerd. Dit kan echter een probleem zijn bij 
betonconstructies aangezien de heterogeniteit van het beton kan leiden tot een 
relatief grote spreiding op de meetresultaten, zoals ook is aangetoond tijdens de 
experimentele proefcampagne. Voor de nagespannen ligger is het nog moeilijker 
om de corrosiegraad te updaten op basis van de statische rekmetingen. Indien een 
kabelkoker zonder grout wordt beschouwd kan wel worden achterhaald of de 
strengen al dan niet gefaald zijn. Het bayesiaanse raamwerk is ook toegepast op 
twee nagespannen dakliggers met een onbekende resterende voorspanning. 
Gebruik makend van experimentele data betreffende de materiaaleigenschappen 
en een experimentele kracht/verplaatsingscurve kan een a posteriori distributie van 
de resterende voorspanning worden afgeleid. Wanneer de meest waarschijnlijke 
waarde van deze distributie als input voor een eindige elementen model van de 
liggers wordt gebruikt, wordt een goede overeenkomst met de experimentele 
kracht/verplaatsingscurve verkregen. 
 
Hoewel meetdata kan worden gebruikt om een meer accuraat beeld van de 
degradatietoestand van een constructie te krijgen, gaat het verwerven van deze 
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data gepaard met een bepaalde kost. Vóór het uitvoeren van een meetcampagne 
moet dus de vraag worden gesteld of deze de investering waard is. Een handige 
tool hiervoor is de zogenaamde pre-posterior analyse. Deze methodologie is in dit 
werk uitgebreid om rekening te houden met het tijdsafhankelijk en ruimtelijk 
gedrag van degradatie. Dit uitgebreide raamwerk laat toe om voor verschillende 
monitoringsstrategieën de waarde van de verkregen informatie (VoI, ‘Value of 
Information’) te bepalen. Deze VoI geeft het verschil weer tussen de a priori kost 
wanneer geen bijkomende metingen worden uitgevoerd en de a posteriori kost 
wanneer de voorgestelde meetcampagne zou worden geïmplementeerd. Door de 
VoI van verschillende meetcampagnes te vergelijken kan de meest optimale 
gekozen worden (i.e. deze met de hoogste VoI). 
 
Het evalueren van de VoI kan veel rekentijd vergen. Om een monitoringsstrategie 
te optimaliseren moet zowel het meest optimale tijdstip om de metingen uit te 
voeren bepaald worden, als de meest optimale posities van de sensoren. De laatste 
kunnen echter al op voorhand bepaald worden zonder de (rekenintensieve) VoI te 
moeten berekenen. In dit werk is uitgelegd hoe aan de hand van een eindig 
elementenmodel van de constructie de meest optimale sensorposities kunnen 
worden afgeleid zodanig dat het beste beeld van de a posteriori distributie van de 
schade en de bijbehorende ruimtelijke spreiding verkregen wordt. Deze optimale 
posities van de sensoren kunnen bepaald worden zowel voor statische rekmetingen 
als voor dynamische metingen waar versnellingen of rekken worden opgemeten. 
Een aantal bijkomende hulpmiddelen zijn ontwikkeld om de rekentijd ter bepaling 
van de VoI verder te verminderen. Ook is aangetoond dat deze VoI in hoge mate 
gevoelig kan zijn aan de opgegeven input waarden. Een kritische beoordeling van 
de VoI is dus zeker noodzakelijk en het is aangewezen om bij twijfel de 
gevoeligheid van de VoI aan de betreffende input te verifiëren vooraleer 
beslissingen te nemen op basis van de verkregen VoI. 
 
Tenslotte is een case study bestudeerd waar een werkelijke geometrie wordt 
beschouwd van een brug in Vlaanderen. De meetdata wordt gesimuleerd aan de 
hand van een eindig elementenmodel van de brug en een aangenomen ruimtelijke 
verdeling van de corrosiegraad. Opnieuw wordt aangetoond hoe op basis van de 
verschillende types data de a posteriori distributie van de corrosiegraad kan 
worden afgeleid en hoe een combinatie van data tot een meer accurate schatting 
van de corrosiegraad leidt. Ook wordt aangetoond dat het model van de constructie 
dat wordt gebruikt voor het updaten van de corrosiegraad een zo goed mogelijke 
benadering dient te zijn van de werkelijke constructie. Vereenvoudigingen in het 
model van de constructie die toegelaten zijn in het ontwerp kunnen een grote 
impact hebben op de a posteriori distributie van de corrosiegraad wanneer dit 
vereenvoudigd model ook wordt gebruikt voor het updaten van de corrosiegraad. 
Hierdoor kan de verkregen corrosiegraad sterk afwijken van de werkelijke in te 
schatten waarde. Ook het VoI raamwerk is toegepast op deze constructie en dit 
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voor twee situaties. In de ene situatie is de constructie onderhevig aan corrosie ten 
gevolge van carbonatatie. Dit proces verloopt vrij traag, waardoor geen 
interventies vereist zijn over de levensduur van de brug. Ook wanneer monitoring 
in beschouwing wordt genomen leiden de geüpdatete distributies niet tot 
bijkomende herstellingen. De VoI is dus negatief aangezien geen nuttige 
informatie uit de metingen wordt gehaald. Wanneer de constructie zich bevindt in 
een omgeving met veel chloriden, verloopt het corrosieproces veel sneller. De VoI 
is dan wel positief en het meest optimale tijdstip om de metingen uit te voeren kan 
bepaald worden. Ook kunnen verschillende meettechnieken met elkaar vergeleken 
worden en kan uiteindelijk de meest optimale techniek gekozen worden. Opnieuw 
is de invloed van een aantal inputparameters in de berekening van de VoI 
nagegaan. Het wijzigen van deze parameters kan een invloed hebben op de 
uitkomst van de VoI analyse. Bijgevolg wordt er aangeraden de 
gevoeligheidsanalyse steeds opnieuw uit te voeren indien er twijfel is over de 
waarden voor de inputparameters. 
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Summary 

 

 
In Flanders, more than 60% of the existing bridge patrimony has been built before 
1981, and more than 25% even before 1945. Because of their age, a considerable 
budget is spent on maintenance and repair of these bridges. Hence, engineers keep 
developing improved tools to make rationally funded decisions that allow 
spending the available budgets in an adequate way. In particular, accurate 
calculation methods are developed that allow estimating the remaining service life 
of existing structures on the basis of additional information. 
 
During the last decades, a lot of research has been performed on the topic of 
structural safety. Despite this effort, it remains difficult to estimate the safety of 
existing structures. There is a need for a framework to evaluate the safety of ageing 
and degrading structures, where the results of inspections and monitoring can 
properly be accounted for. Often, many data is available, but it remains unclear 
what this data tells about the condition of the structure. There is a need for an 
evolution from methods that are only based on the available data, to methods that 
take basis in an underlying model of the structure, where the data is used to fine-
tune this model and as such enable more accurate predictions of the structural 
behaviour. 
 
The available budget for the management of the existing bridge patrimony is 
limited, and it is important to use this limited budget as optimal as possible. For 
this purpose, an extended pre-posterior framework can be applied that allows 
determining the benefit of a monitoring strategy. In this framework, the cost of the 
structure over the whole life-cycle is evaluated for the situation where no action is 
undertaken, and for the situation where different possible monitoring strategies are 
accounted for. In a next step, both costs are compared and a monitoring strategy 
is worth the investment if the resulting life-cycle cost is smaller than for the 
situation where monitoring is not accounted for. In a similar way, different 
monitoring strategies can be compared, and the most optimal one can be chosen. 
In these analyses, the time-dependent and spatial character of degradation of the 
structure under investigation should be accounted for. 
 
A lot of literature is available on the modelling of corrosion and the influences of 
corrosion on the behaviour of reinforced concrete structures. Some of these models 
are highlighted in this work. These models allow predicting the behaviour of the 
structure under investigation over time. However, this behaviour is subjected to 
uncertainties, which can lead to a large spread on the estimated degradation state 
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of the structure. Degradation will also not be uniform along the structure, but might 
have some spatial variation, which is difficult to estimate a priori. To arrive at a 
more accurate estimate of the degradation state, i.e. the amount of deterioration 
and the localisation of more degraded zones, measurements can be performed on 
the structure. The resulting data can then be used to update the distributions of the 
degradation parameters, which will lead to more accurate estimates of the 
remaining service life of the structure. Different types of data can be used for this 
purpose, each with their advantages and disadvantages. A proof load can be 
applied to a structure, under which strains and deflections can be measured. It has 
been illustrated in the current work that, in general, deflection measurements do 
not allow localisation of damage and lead to a limited reduction in uncertainty. 
Strain measurements on the other hand lead to a very accurate estimate of the 
degradation state, but only at the measurement locations. To allow localisation of 
damage, the whole structure should be equipped with strain gauges, which is often 
practically impossible. Dynamic properties of the structure could be derived from 
vibrations measured under ambient excitation. When a structure is equipped with 
accelerometers or optic fibres, natural frequencies and mode shapes can be derived 
from the measurement data. Natural frequencies are related to the global stiffness 
of the structure, but do not allow localizing damage. On the other hand, local 
reductions in stiffness can influence the mode shapes, enabling localisation but no 
quantification of damage. As such, combining natural frequencies and mode 
shapes can allow for both localisation and quantification of damage. Nevertheless, 
in general the remaining uncertainty of the posterior distribution of the degradation 
parameters is larger than the one resulting from static strain data. In the current 
work, it has been illustrated how combining both data types (i.e. modal data and 
static strain data) leads to a more accurate estimate of the actual degradation state. 
Based on the modal data, critical locations, i.e. the ones with the highest amount 
of degradation, can be localised. Equipping these with strain gauges during a proof 
load and combining both datasets results in a more accurate estimate of the 
degradation state. It has also been illustrated how the introduction of visual 
observations has a positive influence on the posterior distribution of the 
degradation parameters. For example, when visual signs of corrosion are present, 
lower corrosion degrees will be excluded from the posterior distribution. 
 
In order to validate the methodology, an experimental campaign has also been 
developed. In this experimental campaign, reinforced concrete beams have been 
subjected to accelerated corrosion. For specific corrosion degrees, strains have 
been measured under a known load, and natural frequencies and mode shapes were 
derived from dynamic measurements with accelerometers and optic fibres. The 
resulting data was then compared with the results for a non-corroded reference 
beam. The data has been used to update a prior distribution of the corrosion degree. 
Here, also the positive effect of including additional information from crack width 
measurements in the definition of the prior distribution has been illustrated. During 
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this experimental campaign, also a first step has been undertaken to quantify the 
measurement error for static strain measurements on concrete structures. 
 
Research on degrading prestressed structures is rather limited and there is no 
consensus yet on the evaluation and modelling of corrosion in these structures. A 
short overview of the current state-of-the-art is provided in this work. 
Additionally, a first analysis is performed, where the corrosion degree of a simple 
prestressed and post-tensioned girder is updated based on static strain 
measurements. Modal data is not included herein, since modal properties are 
mainly influenced if the prestress is reduced to an extent that the concrete starts to 
crack. The calculations illustrate that for a prestressed girder the corrosion degree 
can be updated based on static strain measurements if these can be performed with 
a sufficiently accurate measuring technique. This can be a problem for concrete 
structures, since the heterogeneity of the concrete can lead to a relatively large 
spread on the measurement results, as also illustrated during the experimental 
campaign. For the post-tensioned girder, it is even more difficult to update the 
distribution of the corrosion degree based on static strain measurements. 
Nevertheless, for the case where an ungrouted duct has been considered, it can be 
determined whether the strands have failed or not. The Bayesian updating 
framework has also been applied to two post-tensioned roof-girders with an 
unknown remaining prestress. Using experimental data concerning the material 
properties and an experimental load-displacement curve, the posterior distribution 
of the remaining prestress can be determined. When the most probable value 
resulting from this distribution is used as input for a finite element model of the 
girders, a good agreement with the experimental load-displacement curve is 
achieved. 
 
Hence, data can be used to arrive at a more accurate estimate of the degradation 
state of a structure. Nevertheless, acquisition of this data comes at a certain cost. 
Before implementing a monitoring strategy, the question should be posed whether 
it is really worth the investment. A useful tool to answer this question is the pre-
posterior analysis. In the current work, this pre-posterior analysis has been 
extended to account for the time-dependent and spatial character of degradation. 
This extended framework allows determining the Value of Information (VoI) for 
different monitoring strategies. This VoI represents the difference between a prior 
cost when no additional monitoring would be performed, and the posterior cost 
when the suggested monitoring strategy would be implemented. By comparing the 
VoI of different strategies, the most optimal one can be chosen as the one with the 
highest VoI. 
 
Evaluating the VoI can require a large computational cost. To optimise a 
monitoring strategy, the most optimal time of performing the measurements 
should be defined, as well as the most optimal sensor locations. However, the latter 
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can already be determined beforehand, without the need of evaluating the 
(computationally demanding) VoI. In this work, it has been explained how, based 
on a finite element model of the structure, the most optimal sensor positions can 
be derived to achieve the best representation of the posterior distribution of the 
degradation parameters and the corresponding spatial variation, both for static 
strain measurements and for dynamic measurements of accelerations or strains. 
Further, some additional suggestions are provided to limit the computational 
demand of the VoI. It has also been illustrated how the VoI can be sensitive to the 
given input values. A critical mind-set is hence required when evaluating the VoI, 
and, if there is a certain doubt on the input value to be used, it is recommended to 
verify the sensitivity of the VoI to this input value before making decisions based 
on the obtained VoI. 
 
Finally, a case study has been discussed, where a real bridge geometry of a bridge 
located in Flanders is considered. Updating of the corrosion degree is performed 
based on simulated data, using a finite element model of the bridge and assuming 
different scenarios for the actual corrosion degrees. It has again been illustrated 
how, based on the different datatypes, the posterior distribution of the corrosion 
degree can be derived, and how the combination of data leads to a more accurate 
estimate of the latter. It has also been illustrated that the model of the bridge used 
in the Bayesian updating procedure should correspond to the real bridge geometry 
as closely as possible. Simplifications that are allowed in the design can have a 
large impact on the posterior distribution of the corrosion degree, due to which the 
latter deviates a lot from the actual value to be estimated. Also the VoI framework 
has been applied to this bridge, where two situations are considered. In the first 
situation, the bridge is subjected to carbonation-induced corrosion. This process 
proceeds slowly, due to which no structural interventions are required over the 
service life of the bridge. In addition, when monitoring is considered, the posterior 
distributions of the degradation parameters do not induce additional maintenance 
actions. The VoI is hence negative, since no additional useful information is 
retrieved from the monitoring data. When the bridge would be exposed to 
chlorides, the corrosion process will proceed at a much higher rate. The VoI 
becomes positive, and the most optimal time of monitoring can be determined. In 
addition, different monitoring strategies have been compared to each other, and 
the most optimal one was chosen. Again, the influence of some input parameters 
in the calculation of the VoI has been investigated. Changing these can have an 
influence on the results of the VoI analysis. However, there is no general trend 
between the results in this case study and previous results from another example. 
Hence, it is advised to perform this sensitivity study again if there is some doubt 
on the input parameters to be used. 
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“A true initiation never ends.” 
- Robert Anton Wilson 
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I.1 Introduction 

I.1.1 Context of the research topic 

All over the world, countries are facing the challenge of managing ageing 
infrastructure. Many concrete bridges in the bridge networks are reaching the end 
of their anticipated lifetime. In order to secure safe operation of these bridges, 
maintenance interventions might be required, and some bridges might even need 
replacement, since they might be subjected to structural degradation. This 
degradation is inherently spatially distributed and evolves over time. Although 
principles of modelling and assessment of existing structures are found in several 
standards (ISO 2394 (2015) and ISO 13822 (2010)), these remain rather general 
and do not provide a straightforward methodology for the assessment of existing 
structures. 
 
Whereas for new structures many design guidelines are available based on semi-
probabilistic methods, for existing structures, assessment of the safety is still 
mainly based on subjective investigations of the responsible engineers. In 
Belgium, visual inspections and level measurements are performed regularly, and 
decisions are made based on a subjective evaluation of these data. Even though 
Structural Health Monitoring (SHM) methods are becoming more mature, they 
still need to find their way into asset management for bridges. Nevertheless, SHM 
measurements consisting of vibration data collected in operational conditions have 
the advantage of easy deployment and the ability to provide information on the 
global behaviour of the structure. By application of system identification 
techniques, modal characteristics (such as natural frequencies and mode shapes) 
can be extracted from vibration data obtained under ambient excitation, avoiding 
the forced excitation of structures. Nowadays, many important structures are 
equipped with a permanent monitoring system, such as the Ørensund Bridge in 
Denmark and the Stonecutters Bridge in Hong Kong. 
 
In the assessment of existing structures, many uncertainties are involved, 
especially on parameters governing the structural resistance. A well-known 
framework to reduce uncertainties based on available data is the Bayesian 
framework (Diamantidis, 2001; JCSS, 2001). By applying Bayes’ theorem, prior 
probability distributions of the quantities of interest are updated to posterior 
distributions accounting for additional (measurement) information. Bayesian 
methods for incorporating monitoring information are for example found in 
(Strauss et al., 2008). The posterior distributions retrieved by applying these 
Bayesian methods can then be used in the probabilistic assessment of the existing 
structure (Bergmeister et al., 2009; Strauss et al., 2009, 2008). 
 
In the assessment of existing structures and the planning of inspections and 
maintenance, the number of alternative actions such as the amount and locations 



 
 

 
 

General introduction  3 
 

of inspections/measurements as well as strengthening and maintenance activities, 
can be extremely large. Hence, a framework for the systematic analysis of the 
corresponding consequences is expedient. A framework suitable for this purpose 
is Bayesian decision analysis (Raiffa and Schlaifer, 1961). In this framework, 
consequences are often expressed in monetary terms. A utility function should be 
defined together with probabilities of the different branches in the decision 
problem. The decision analysis is then reduced to the calculation of the expected 
utilities corresponding to different action alternatives. In this context, inspections 
and monitoring can be regarded as options for the decision-maker to ‘buy’ 
additional information before actually making his choice of action. If the cost of 
this information is small with respect to the obtained information on the structural 
state, the decision-maker should go ahead and perform the 
inspection/measurement. However, if different types of measurements are 
possible, the one yielding the overall largest utility or equivalently the smallest 
costs should be chosen. In this decision-making problem, the uncertain outcome 
of the measurements should be considered. The practical application of this pre-
posterior analysis to real engineering problems such as monitoring-based bridge 
inspection still poses many fundamental as well as practical challenges. 

I.1.2 Lacunae in current knowledge 

In the management of existing structures, decisions on maintenance and repair are 
often based on visual observations and engineering judgement. These visual 
observations can be complemented by monitoring information. Nevertheless, in 
current practice, decisions based on monitoring information are often built on 
performance thresholds and data-based methods. These data-based methods make 
use of a pattern recognition method for detecting damage by comparison to data 
obtained in a reference or undamaged state. This means that monitoring results are 
investigated over time and action is undertaken once a predefined threshold is 
reached. These methods only allow detecting and localizing damage. Based on 
such strategies, only reactive maintenance can be performed, where action is 
undertaken as soon as there are anomalies detected in the monitoring data. 
Nevertheless, pro-active maintenance might be economically more beneficial 
when considering the whole service life of the structure. For the latter, damage 
assessment should be coupled to quantification of damage and prognosis of the 
remaining service life. This cannot be accomplished by data-based methods, and 
model-based methods (Fritzen et al., 1998; Simoen et al., 2015) are required. 
 
Model-based methods compare the obtained data with a model of the structure. 
Up to now, most of these methods rely on the calibration of a linear model, and 
are able to quantify the damage, besides detecting and localizing it. In these linear 
models, quantification of damage often occurs by updating general stiffness 
parameters of different parts along the structure. In this way, these methods cannot 
assess the structural strength and do not enable prediction of the remaining service 



 
 

 
 

4 Chapter I   
 

life. Moreover, methods available up to date are often only applied to conceptual 
problems and need further elaboration to account for the time-dependent and 
spatial character of deterioration processes in real structures. 
 
An important deterioration process in (existing) reinforced concrete structures is 
corrosion of the reinforcement. To improve the estimate of the remaining service 
life of these structures, distributions of variables in the time-dependent 
degradation models should be updated based on monitoring information, also 
accounting for the spatial character of degradation. As such, damage can be 
detected, localized and quantified, and prediction of the remaining service life is 
enabled. Nevertheless, in literature, attempts to update the variables in the time-
dependent degradation models for reinforcement corrosion based on indirect and 
non-destructive data are scarce. Most literature up to now assumes that corrosion 
loss can be measured directly (Faroz et al., 2016; Ma et al., 2013; Marsh and 
Frangopol, 2008), which is often not the case in practice. Hence, there is a need 
for model-based methods that allow updating the variables in the time-dependent 
degradation models accounting for non-destructive data. These methods should 
also be able to incorporate the spatial character of the degradation processes. 
 
To apply model-based methods to degrading structures as described above, a 
degradation model is required. For reinforced concrete structures subjected to 
corrosion, there are different models available to simulate the corrosion process 
and its influence on the structural resistance. These models can be used to predict 
the remaining service life of the investigated structure. In the past years, a lot of 
research interest has been devoted to the assessment of corroding reinforced 
concrete structures. For prestressed concrete structures on the other hand, research 
on this topic is rather scarce. There remains some dissension on how to model 
time-dependent degradation due to corrosion in pretensioned and post-tensioned 
concrete structures, and also for the assessment of these structures (e.g. based on 
non-destructive data) more thorough investigations are required. 
 
The data to be used in the model-based methods can be collected by different 
monitoring strategies. Nevertheless, these monitoring strategies all come at a 
certain cost. Since the available budget for management of the bridge patrimony 
is often limited, the benefit of implementing a monitoring strategy should be 
investigated beforehand, and the monitoring strategy should be optimized to be as 
cost-efficient as possible. In section I.1.1, it has already been pointed out that 
Bayesian decision analysis can be used for this purpose. The value of information 
(VoI) of a monitoring strategy can be evaluated by application of a pre-posterior 
analysis (Thöns, 2018). Nevertheless, in current literature, the value of information 
is often evaluated for simplified models of structures, where degradation is 
accounted for by assigning different (discrete) condition states to the structure, e.g. 
ranging from a very good health to the need for immediate repair (e.g. (Nielsen 
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and Sørensen, 2018)). However, in reality it is important to account for the time-
dependent degradation of the structure, without this need for discretization. 
Moreover, spatial dependencies are often not accounted for, and system effects are 
mostly treated for steel structures consisting of different components (Zhang et al., 
2019). Especially applications to degrading reinforced concrete structures are 
scarce, and in the limited literature on this topic, spatial correlation of the 
degradation processes is often not accounted for (Zambon et al., 2020). Moreover, 
evaluating the value of information is often computationally challenging and there 
is a need for suggestions on how to reduce this computational burden (Straub et 
al., 2017). In general, the VoI analysis should be extended to be applicable to 
realistic reinforced concrete structures subjected to time-dependent and spatial 
degradation. 

I.2 Research scope and methodology 

I.2.1 Research scope 

This research addresses the problem of rational decision-making in the 
management of ageing infrastructure to optimally exploit the limited available 
resources. This decision-making is based on the evaluation of the life-cycle 
performance of the structure under investigation (Frangopol and Liu, 2007), 
allowing decisions on strategies for inspection, monitoring and strengthening. In 
this evaluation, all relevant uncertainties, which are unavoidable in the condition 
assessment of existing structures as well as the life-cycle cost prediction, should 
be accounted for, and the potential of additional information from inspections and 
monitoring should be exploited. Furthermore, this research also aims at 
incorporating the time-dependent and spatial character of degradation processes in 
the assessment of existing structures. Since these methods for decision-making are 
often accompanied with a large computational burden, this research will also 
investigate different suggestions on how to reduce the required computational 
effort when optimizing a monitoring strategy. 
 
The measurement information retrieved from different monitoring strategies will 
be used in a model-based framework in order to move beyond the state-of-the-art 
in damage assessment and enable prediction of the remaining lifetime of the 
structure. For this purpose, data from conventional tests can be supplemented by 
data collected from state-of-the-art vibration-assessment SHM technologies. This 
data will be used to calibrate a model that enables prediction of the remaining 
service life. The inherent time-dependent and spatially distributed character of 
degradation processes will also be incorporated. As such, by application of the 
Bayesian decision-making framework, the advantages of implementing an SHM-
strategy can be investigated. The focus will be on the use of measurement 
information to update variables in the degradation models of reinforced concrete 
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structures. Nevertheless, also some first investigations will be performed on the 
assessment of prestressed concrete structures. 

I.2.2 Research methodology 

A literature survey is performed to get insights in the current state-of-the-art on 
(1) degradation models and the spatial character of degradation, (2) the pre-
posterior framework and the calculation of the value of information, (3) 
measurement data and their relation to the degradation state of structures, and (4) 
Bayesian updating based on indirect measurement information. 
 
In a next step, the pre-posterior framework is extended so that it can be applied to 
large concrete structures degrading over time, accounting for the spatial character 
of the degradation. 
 
Since measurement information should be accounted for in this pre-posterior 
framework, an investigation is also performed on how to apply model-based 
methods to different types of data. A model of the structure under investigation is 
made, where the resistance of the structure depends on the (spatially variable) 
deterioration state at a certain point in time. It is investigated how the variables in 
the deterioration model can be updated based on different types of measurement 
data, and how the most accurate representation of the actual deterioration state can 
be found, also accounting for the spatial character of degradation. 
 
When applying these model-based methods to update the degradation models, 
depending on the sensor locations applied for monitoring, a more or less accurate 
prediction of the actual degradation state can be found. Hence, the optimal sensor 
locations are derived based on a greedy search algorithm. 
 
In a final step, all of the above is combined in the calculation of the VoI and the 
optimization of the monitoring strategies for the structure under consideration. 
Suggestions are also provided on how to limit the required computational effort in 
the process of optimizing a monitoring strategy. Finally, also the sensitivity of the 
VoI to values assumed for the input parameters in the analysis is investigated. 

I.2.3 Novel contributions 

The original contributions of this research to the scientific state-of-the-art can be 
summarized as follows: 

- By application of existing methodologies for Bayesian inference, the 
variables in degradation models to predict a spatially variable 
corrosion degree are inferred based on indirect measurement 
information (static and dynamic). This is in contrast to existing 
literature where the corrosion degree itself is updated (not the 
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variables of the degradation models), the spatial correlation is not 
accounted for, and it is assumed that corrosion variables can be 
measured directly. 

- This research has illustrated in a quantitative way the influence of 
the combination of different types of heterogeneous measurement 
data (i.e. static data, dynamic data, visual observations, etc.) when 
inferring degradation models for predicting the remaining service 
life of existing structures. 

- The pre-posterior analysis is extended for application to degrading 
concrete structures, explicitly taking into account the time-
dependent degradation models and the spatial variation of damage. 
A flowchart and corresponding code have been developed and are an 
addition to existing scientific literature. 

- The (extended) VoI analysis has been applied to a ‘real’ reinforced 
concrete bridge structure, providing suggestions for limiting the 
computational effort and investigating the influence of initial 
assumptions in the analysis. 

- The inclusion of random fields in the Bayesian inference and the VoI 
analyses has been investigated, and the benefit of including this 
spatial correlation has been illustrated. 

- An experimental campaign is performed which provides an 
important contribution to the state-of-the-art on experimental tests 
on corroded reinforced concrete beams, since it considers both static 
and dynamic testing, and points out the issues related to these 
experiments in application to real-scale samples. 

- A novel approach is provided on the assessment of time-dependent 
degradation parameters for evaluation of the prestressing steel 
section based on measurement information from static load tests. 

- The remaining prestress in the girders of a roof structure has been 
inferred based on the results from experimental testing of only one 
girder. Inference has been performed by application of a novel ad-
hoc procedure. 

I.3 Thesis layout 

This thesis consists of 13 chapters, divided into four main parts: 
- Part A provides an overview of the state-of-the-art related to spatial and 

time-dependent corrosion, Bayesian updating and value of information 
analysis. 

- Part B focusses on the Bayesian updating of corrosion parameters based 
on measurement data. 

- Part C treats the value of information analysis. 
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- Part D represents a case study, covering all previous parts by application 
to a real bridge geometry. 

 
Following the general introduction in the current Chapter I, an overview of the 
basic aspects related to time-dependent degradation due to corrosion is given in 
Chapter II. 
 
In Chapter III, the spatial character of degradation due to corrosion is introduced 
together with different ways to model this spatial correlation. 
 
Chapter IV introduces the main concept of Bayesian updating together with the 
different data types treated in this research. 
 
In Chapter V, the concepts of the pre-posterior analysis and the value of 
information are introduced. 
 
Chapter VI discusses how different data types can be used to update the corrosion 
degree in reinforced concrete structures. The results in this chapter are based on 
artificial data and applied to both an example of a reinforced concrete beam and a 
more extensive reinforced concrete girder bridge. It is also illustrated how 
combining different types of data can lead to a more accurate estimate of the actual 
corrosion degree. 
 
Chapter VII deals with an experimental campaign on reinforced concrete beams 
subjected to accelerated corrosion. These beams are subjected to dynamic and 
static tests, and the influence of corrosion on the different gathered data sets is 
investigated. 
 
In Chapter VIII a first investigation on updating the corrosion degree of 
prestressed structures is performed. This is applied to scholastic examples of a 
prestressed beam and a post-tensioned beam, and to a more extensive prestressed 
girder bridge. 
 
In Chapter IX, an extended pre-posterior framework is developed that enables to 
include the time-dependent and spatial character of degradation. This is also 
applied to some simplified examples to illustrate the method. 
 
Since optimization of a monitoring strategy based on the calculation of the value 
of information requires a lot of computational effort, it is suggested to determine 
optimal sensor positions beforehand, outside the value of information analysis. 
This optimal sensor placement is discussed in Chapter X. 
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In Chapter XI, the pre-posterior framework is applied to a reinforced concrete 
girder bridge. Tools to limit the computational effort are provided and the 
sensitivity to the choice of some input parameters is investigated and discussed. 
 
Chapter XII deals with a case study of a reinforced concrete girder bridge in 
Flanders. The Bayesian updating procedure is illustrated with simulated data. In 
addition, the influence of a model error on the posterior distribution is investigated. 
The value of information is also determined under different assumptions on the 
exposure conditions of the bridge. 
 
Finally, general conclusions and a summary of the research presented in this thesis 
are given in Chapter XIII. 
 
The relation between the different chapters is also visualized in Figure I-1. 
 

 
Figure I-1: Visualization of the relation between the different chapters 

 
If the reader would like some additional background or data related to the 
calculations performed in this manuscript, this can be obtained from the author on 
request. 
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II.1 Introduction 

Many concrete bridges are currently reaching the end of their anticipated service 
life. Many of these bridges are deteriorating and corrosion of the reinforcement is 
one of the main concerns. This corrosion can either originate from the presence of 
chlorides (i.e. road salts, seawater…) or due to carbonation resulting from the 
exposure to CO2. Corrosion affects reinforced concrete structures in different 
ways, affecting both the reinforcement steel and the surrounding concrete. This 
results in a decrease of structural safety, but also influences the serviceability of 
the structure. 
 
The purpose of this chapter is not to give a complete overview of the existing 
models for each phase of the corrosion process. The most important parts of the 
corrosion process will be explained, and the models used in this work will be 
highlighted. For a more detailed review on corrosion modelling, reference is made 
to (Andrade and Izquierdo, 2020; Coronelli, 2020; Coronelli and Gambarova, 
2004; Melchers, 2018; Qiu, 2020; Rodrigues et al., 2021). 
 
First, the degradation models will be introduced when modelling corrosion in 
ordinary reinforced concrete (RC) structures. Later, also the influence of corrosion 
in prestressed concrete (PC) structures will be discussed. These are treated 
separately because of different reasons. One of these reasons is that corrosion can 
manifest in different ways in RC and PC structures. Moreover, there is a certain 
agreement on how to model corrosion in RC concrete structures, but literature and 
guidelines on corrosion modelling and assessment of corrosion in PC structures 
are more limited. Section II.2 will focus on corrosion in RC structures, whereas 
section II.3 will focus on corrosion in PC structures. 

II.2 Modelling time-dependent degradation of RC structures 

Deterioration of structures over time can be ascribed to both internal and external 
factors. Examples of external factors are loading and environmental conditions, 
whereas internal factors refer for example to material properties (Schöbi and 
Chatzi, 2016). Corrosion has different effects on a reinforced concrete (RC) 
structure (Rodriguez et al., 1997):  

- reduction in steel section; 
- reduction of mechanical properties of the steel; 
- cracking and spalling of the concrete cover due to the expansion of 

corrosion products; 
- reduction of the bond between steel and concrete. 

 
Degradation models are for example provided in (Alonso et al., 1988; Andrade et 
al., 1993; Coronelli and Gambarova, 2004; Duracrete, 1998; El Hajj et al., 2017; 
Hájková et al., 2018; Lay et al., 2003; Stewart and Rosowsky, 2002; Vu and 
Stewart, 2000). 
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The evolution of corrosion takes place in different phases. First, there is an 
initiation period during which the aggressive agents penetrate the concrete and 
depassivate the protective layer on the steel. Once the steel is depassivated, the 
propagation period starts, i.e. corrosion products will be formed and reduce the 
reinforcement area. The iron oxides formed during corrosion are expansive, 
leading to an increased internal pressure. At a certain point in time, this pressure 
may become too high and the concrete starts to crack. These different phases are 
governed by different parameters. Mathematical models can be found in literature 
to describe the effects of corrosion on a RC structure (Duracrete, 1998; El 
Maaddawy and Soudki, 2007; Lay et al., 2003; Vu and Stewart, 2000). 
 
In the following section, models will be provided for the initiation period, the 
reduction in steel section during the propagation phase, the stiffness reduction due 
to concrete cracking, the reduction of the ultimate strain of the reinforcing steel 
and the reduction in bond between steel and concrete. 

II.2.1 Initiation period 

The modelling of the initiation period depends on the type of corrosion considered. 
In this work, the focus will be mostly on chloride-induced corrosion. However, 
the corrosion models for carbonation-induced corrosion will also be discussed to 
arrive at a more comprehensive overview. 
 
In case of chloride-induced corrosion, chlorides penetrate the concrete and change 
the chemical composition of the pore solution. Chloride ingress in concrete can be 
modelled by application of Fick’s second law of diffusion. A generally accepted 
simplification for the initiation period is given by equation (II-1) (Duracrete, 1998; 
fib, 2006). 𝑇𝑖 = 14𝐷 𝑐²(𝑒𝑟𝑓−1 (1 − 𝐶𝑐𝑟𝐶𝑠 ))2 

(II-1) 

Here, D [mm²/year] is the diffusion coefficient of the concrete, Ccr [wt.-%/c] the 
critical chloride concentration, Cs [wt.-%/c] the concentration of chlorides at the 
surface and c [mm] the concrete cover. It should be noted that the diffusion 
coefficient D should be described by a time-variant model, but that a generally 
accepted representation of the time-dependency is at present not available. Hence, 
an equivalent time invariant diffusion coefficient could be chosen such that a 
similar initiation period is reached. However, if desirable, also the time-dependent 
model of D could be taken into account directly according to equation (II-2). 
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𝐷 = 𝑘𝑒𝐷𝑅𝐶𝑀𝑘𝑡𝐴(𝑡)  with  𝑘𝑒 = exp (𝑏𝑒 ( 1𝑇𝑟𝑒𝑓 − 1𝑇𝑟𝑒𝑎𝑙))         and    𝐴(𝑡) = (𝑡0𝑡 )𝑎 

(II-2) 

Here, be [K] is a regression variable, Tref [K] the standard test temperature, Treal [K] 
the temperature of the structural element or the ambient air, DRCM [mm²/year] is 
the chloride migration coefficient, kt [-] is a transfer parameter, A(t) [-] a 
subfunction considering ageing, a [-] an ageing exponent, and t0 a reference point 
of time [years]. Distributions for all these variables can be found in (fib, 2006). 
 
In case of corrosion due to carbonation, the exposure of concrete to CO2 results in 
carbonation of the hydration products accompanied by a reduction in pH, which 
can induce corrosion of the reinforcement. The penetration of the carbonation front 
depends on the concentration of CO2 in the atmosphere and the amount of 
hydration products able to react with CO2. Furthermore, it is connected to other 
factors such as the porosity, permeability and saturation degree of the concrete, 
and the presence of cracks. If gas diffusion is assumed, the carbonation depth is 
proportional to the square root of time. When the carbonation front has reached 
the reinforcement, corrosion will start. Hence, the initiation period can be derived 
from equation (II-3) (fib, 2006). 𝑐 = √2𝑘𝑒𝑘𝑐(𝑘𝑡𝑅𝐴𝐶𝐶−1 + 𝜀𝑡)𝐶𝑠√𝑡𝑊(𝑡) (II-3) 

Here, c [mm] is the concrete cover, RACC
-1 [(mm²/years)/(kg/m³)] is the inverse 

effective carbonation resistance of concrete and Cs [kg/m³] the CO2 concentration. 
The factor ke [-] is an environmental function and is given by equation (II-4) (fib, 
2006). 

𝑘𝑒 = ( 
 1 − (𝑅𝐻𝑟𝑒𝑎𝑙100 )𝑓𝑒1 − (𝑅𝐻𝑟𝑒𝑓100 )𝑓𝑒) 

 𝑔𝑒
 (II-4) 

Here, RHreal [%] is the relative humidity of the carbonated layer, RHref [%] the 
reference relative humidity and ge and fe are exponents according to (fib, 2006). 
 
The factor kc [-] in equation (II-3) is an execution transfer parameter and is given 
by equation (II-5) (fib, 2006). 𝑘𝑐 = (𝑡𝑐7)𝑏𝑐 (II-5) 



 
 

 
 

Time-dependent degradation due to corrosion 17 
 

Here, bc [-] is an exponent of regression, and tc [days] is the period of curing. 
 
The function W(t) in equation (II-3) is given by equation (II-6) (fib, 2006). 𝑊(𝑡) = (𝑡0𝑡 )𝑤  with 𝑤 = (𝑝𝑆𝑅𝑇𝑜𝑊)𝑏𝑤2  (II-6) 

Here, ToW [-] is the time of wetness, pSR [-] is the probability of driving rain,  
bw [-] is an exponent of regression, and t0 [years] is the time of reference. 
 
Based on the above, the initiation period for carbonation-induced corrosion is 
given by equation (II-7). 

𝑇𝑖 = ( 𝑐√2𝑘𝑒𝑘𝑐(𝑘𝑡𝑅𝐴𝐶𝐶−1 + 𝜀𝑡)𝐶𝑠𝑡0𝑤)
1𝑤+1/2

 (II-7) 

II.2.2 Propagation period 

Different approaches exist for modelling the propagation phase, such as models 
based on electrochemical principles, empirical models, etc. In the following, only 
the model used in this work will be summarized. During the propagation period, 
corrosion products are formed and the reinforcement area reduces. This reduction 
is given by the corrosion degree 𝛼, which can be defined as the ratio of the 
reduction in reinforcement area to the initial reinforcement area. The predicted 
corrosion degree at time 𝑡 is given by equation (II-8) (Marsh and Frangopol, 2008; 
Stewart and Rosowsky, 1998). 𝛼(𝑡) = 𝐴𝑠0 − 𝐴𝑠(𝑡)𝐴𝑠0    with   𝐴𝑠(𝑡) = (𝑟0 − 𝑥(𝑡))2 ∙ 𝜋 ∙ 𝑛𝑟 (II-8) 

In this equation, 𝐴𝑠0 [mm²] is the initial reinforcement area (𝑛𝑟 bars with radius 𝑟0). Note that it is assumed that all 𝑛𝑟 bars deteriorate in the same way. When this 
is not the case, the equation should be adjusted accordingly. The reduction 𝑥(𝑡) in 
rebar radius is given by equation (II-9) (Duracrete, 2000; Lay et al., 2003; Stewart 
and Rosowsky, 1998). 𝑥(𝑡) = { 0 𝑡 ≤ 𝑇𝑖𝑉𝑐𝑜𝑟𝑟 ∙ 𝛼𝑝 ∙ (𝑡 − 𝑇𝑖) 𝑡 > 𝑇𝑖  (II-9) 

Here, 𝑡 is the age of the structure [years], 𝛼𝑝 [-] is a pitting factor to take into 
account the non-uniform corrosion of the rebar, and 𝑉𝑐𝑜𝑟𝑟  is the corrosion rate, 
which can be written as 𝑉𝑐𝑜𝑟𝑟 = 𝑉𝑐𝑜𝑟𝑟,𝑎 ∙ 𝑇𝑜𝑊, with 𝑉𝑐𝑜𝑟𝑟,𝑎 the mean corrosion rate 
when corrosion is active [mm/year] and 𝑇𝑜𝑊 the time of wetness as a fraction of 
the year [-]. 
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The values for the pitting factor and the corrosion rate to be used in equation (II-
9) depend on the type of corrosion. In general, carbonation-induced corrosion will 
result in a more uniform decrease in steel section and hence a small pitting factor. 
For the latter, a deterministic value of 2 is assumed in case of carbonation-induced 
corrosion according to (Duracrete, 2000). On the other hand, chloride-induced 
corrosion is often accompanied with the local formation of deep pits. This results 
in the use of a larger pitting factor in equation (II-9). Very often, this pitting factor 
is sampled from an extreme value distribution, as for example explained in 
(Duracrete, 2000; Guo et al., 2011b; Stewart and Rosowsky, 1998; Stewart and 
Suo, 2009). Another difference between both types of corrosion is the speed of 
corrosion. Carbonation-induced corrosion is often accompanied by very low 
corrosion rates, with mean values for Vcorr,a ranging from 0.002 mm/year to 
0.005 mm/year in sheltered and unsheltered conditions respectively. For chloride-
induced corrosion, the corrosion rates Vcorr,a are much larger, ranging from 
0.004 mm/year in wet-rarely dry exposures to 0.07 mm/year in tidal zones. 
 
General principles on propagation of reinforcement corrosion together with test 
methods and models for the propagation phase can be found in (Andrade, 2020, 
2019). Other models for the reduction in steel section can be found in (Alonso et 
al., 1988; Duracrete, 2000; Lay et al., 2003; Stewart and Rosowsky, 1998; Stewart 
and Suo, 2009; Vu and Stewart, 2000). Pitting corrosion can also be explicitly 
modelled instead of using the pitting factor 𝛼𝑝 in equation (II-9) (Stewart, 2004; 
Val and Melchers, 1997). The frameworks and principles that will be introduced 
in this work can easily be adapted to incorporate these different models. 

II.2.3 Concrete cracking 

Corrosion does not only lead to a reduction in steel section. The corrosion products 
formed on the reinforcement bars are expansive and take more volume than the 
initial uncorroded steel section. The expansion of the corrosion products can 
induce an excessive pressure on the concrete, leading to cracking of the concrete 
cover. The combined influence of corrosion on the steel section and concrete 
stiffness is visualized in Figure II-2. 
 
The time between initiation of corrosion and the onset of cover cracking can for 
example be calculated from equation (II-10) (Lv and Zhu, 2016), which has been 
derived based on the assumption of uniform corrosion of a steel reinforcement bar. 𝑇𝑐𝑟 = 377204.7 (1 + 𝑘 𝑐𝐷) {𝛿0 + 0.3 (0.5 + 4.33 𝑐𝐷) 𝑓𝑐𝑡𝑚 𝑅0𝐸𝑒𝑓 [(𝑅0 + 𝑐)2 + 𝑅02(𝑅0 + 𝑐)2 − 𝑅02 + 𝑣𝑐]}(1 − 0.00574 exp ( 𝑐4.81𝐷)) 𝑖𝑐𝑜𝑟𝑟  

(II-10) 
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In equation (II-10), 𝑘 ranges from 0.7 to 0.8 for long-term natural corrosion and 
from 0.1 to 0.3 for short-term accelerated corrosion. The corrosion current density 
is here written as 𝑖𝑐𝑜𝑟𝑟  and should be entered in units of µA/cm² (𝑖𝑐𝑜𝑟𝑟 =𝑉𝑐𝑜𝑟𝑟/0.0116). The concrete cover 𝑐 is given in mm, 𝐷 is the diameter of the steel 
reinforcing bar [mm], 𝛿0 is the thickness of the porous zone, typically in a range 
of 10 to 20 µm, and 𝑅0 = 𝐷/2+𝛿0. The parameter 𝑓𝑐𝑡𝑚 is the mean value of the 
concrete tensile strength, 𝑣𝑐 is the Poisson’s ratio of concrete (typically 0.2 for 
uncracked concrete) and 𝐸𝑒𝑓 is the effective elastic modulus of the concrete [MPa]. 
Equation (II-10) does not account for filling of cracks with corrosion products and 
the fact that the corrosion products can be compressed. Furthermore, it assumes a 
constant corrosion rate. 
 

 
Figure II-2: Reduction of steel section and cover cracking due to corrosion 

 
In general, the Young’s modulus of concrete can be written as a function of the 
compression strength 𝑓𝑐 as 𝐸𝑐 = 4500√𝑓𝑐 (Lv and Zhu, 2016), where both 𝐸𝑐 and 𝑓𝑐 are given in MPa. The reduced concrete strength due to cracking and spalling 
can be determined based on equation (II-11) (Coronelli and Gambarova, 2004), 
which represents the reduction of compressive strength due to tensile strains in the 
transverse direction that cause longitudinal microcracks. This relationship is 
derived from experimental research carried out by Vecchio and Collins (1986) on 
reinforced concrete panels under a variety of well-defined uniform biaxial stresses. 𝑓𝑐∗ = 𝑓𝑐1 + 𝐾 𝜀1𝜀𝑐0 (II-11) 

In equation (II-11), K is a coefficient related to the bar roughness and diameter 
(0.1 for medium-diameter ribbed bars), εc0 is the strain at the peak compressive 
stress fc, and ε1 is the average (smeared) tensile strain in the cracked concrete 
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perpendicular to the applied compression. This last term is given by equation (II-
12) (Coronelli and Gambarova, 2004). 𝜀1 = 𝑛𝑏𝑎𝑟𝑠𝑤𝑐𝑟𝑏0  (II-12) 

Here, b0 is the initial concrete section width before degradation due to corrosion, 
nbars is the number of reinforcement bars, and wcr is the total crack width for a 
given corrosion level. This crack width can be evaluated by applying equation (II-
13) (Andrade, Alonzo and Molina, 1993), which is derived from research on a 
numerical model based on standard finite element techniques for the simulation of 
cracking in concrete specimens subjected to corrosion, validated with 
experimental data. 𝑤𝑐𝑟(𝑡) = 2𝜋(𝜈𝑟𝑠 − 1)𝑥(𝑡) (II-13) 

In equation (II-13), x(t) is the depth of the corrosion attack, and νrs is the ratio of 
volumetric expansion of the oxides formed as corrosion products with respect to 
the virgin material, typically taken equal to 2 for reinforcement steel (Andrade et 
al., 1993). 
 
In general, corrosion will lead to longitudinal cracks along the reinforcement and 
is less likely to result in a general reduction of the concrete cover stiffness. To 
account for this cracking more accurately, the influence of the expansive rust on 
the stiffness of the concrete cover can also be modelled by finite element 
simulations (Sánchez et al., 2010). This model can also be extended to take into 
account the fact that corrosion products tend to penetrate in cracks and that the 
oxide layer itself is also deformable (Berra et al., 2003; Zandi Hanjari et al., 2013). 
Also different analytical models exist to predict the time to cracking (El 
Maaddawy and Soudki, 2007; Liu, 1996; Teplý and Vořechovská, 2012), the 
reduced stiffness of the cracked concrete cover (Du et al., 2014; Li et al., 2006; 
Šavija et al., 2013; Teplý and Vořechovská, 2012; Zhong et al., 2009), and the 
crack widths (Pedrosa and Andrade, 2017). A summary of models for the onset of 
cracking can also be found in (Ranjith et al., 2016). The framework of this thesis 
can easily be adapted to incorporate these different models. 

II.2.4 Other influences of corrosion 

Corrosion, and the presence of pits in particular, influences the ultimate strain 𝜀𝑠𝑢 
of the steel, resulting in a reduced ductility. Different models exist in literature for 
this reduction in ultimate strain. In this work, the (empirical) model of (Yu et al., 
2015; Zhu and François, 2015, 2013) as given by equation (II-14) is used. 𝜀𝑠𝑢,𝑟𝑒𝑑𝜀𝑠𝑢 = {𝑒−0.1𝛼 𝛼 ≥ 16%0.2 𝛼 < 16% (II-14) 
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The bond strength between concrete and steel reinforcement is also influenced by 
the corrosion process. Also here different models exist, but only the (empirical) 
model used in this work is provided. The ratio of the reduced bond strength due to 
corrosion relative to the initial maximal bond strength 𝜏𝑚𝑎𝑥  is given by equation 
(II-15) (Bhargava et al., 2007). 𝜏𝑚𝑎𝑥,𝑟𝑒𝑑𝜏𝑚𝑎𝑥 = { 1 𝛼 ≤ 1.5%1.192𝑒−0.117𝛼 𝛼 > 1.5% (II-15) 

II.3 Modelling time-dependent degradation of PC structures 

II.3.1 Difference between prestressed and reinforced concrete 

structures 

Time-dependent degradation in prestressed structures differs from degradation in 
reinforced concrete structures. The most important difference between both types 
of structures is the presence of the prestress. In prestressed structures, pitting 
corrosion due to chlorides might induce strand failure more rapidly than general 
(uniform) corrosion, due to the presence of the prestress. This high prestress on 
stranded wires may also accelerate the pitting corrosion process (Vu et al., 2009) 
and lead to earlier brittle rupture than expected. Vu, Castel, and François (2009) 
found that stress corrosion cracking induces brittle failure of the wire when pitting 
corrosion has led to a 20% reduction in steel cross-section in a steel wire loaded 
up to 80% of its elastic limit. When the wires fail due to stress corrosion, local 
damage can arise in the part of the structure closest to the broken wire, with 
cracking in the concrete and increasing strains in the non-prestressed 
reinforcement (Coronelli et al., 2009). The higher stress levels in the wires can 
also lead to up to more than 15% more mass loss due to corrosion when compared 
to unstressed wires. On the other hand, the stress level does not influence the 
composition of corrosion products in the pits (Vu et al., 2009). Due to the high 
stress levels in the prestressing steel, there will also be a coupling between 
conventional (pitting) corrosion and steel micro-cracking, called stress corrosion 
(Coronelli et al., 2009). Rupture of the prestressing strands was also observed by 
Naito et al. (2006), who investigated the corrosion of prestressing strands in 
prestressed concrete box girders. For this purpose, PC box girder beams from a 
46-year-old bridge were investigated. They observed pit depths greater than 20% 
of the wire section area. 
 
Besides the presence of the prestress, prestressing strands generally have a much 
thicker concrete cover compared to reinforcement bars, leading to a more severe 
corrosion degree of the latter under the same exposure conditions (Guo et al., 
2011a). Chloride ions take a longer time to reach the surface of the tendons or 
strands and hence to induce severe corrosion. Moreover, the cracking mechanism 
of concrete around prestressed strands might differ from the one around 
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reinforcement bars due to the difference in shape of cross-section of the strands 
and bars (Wang et al., 2019). Another important difference is that pitting corrosion 
of prestressing strands or tendons can form on each single wire. Hence, the failure 
of any wire will cause the increased load of other wires in the group due to stress 
redistribution. Moreover, according to (Guo et al., 2016), these pits propagate 
slower in prestressing steel than in reinforcing bars due to the high quality of the 
steel (higher quality of the passive film) and the more strict manufacturing process. 
The pit depth of unstressed wires is about 30% of the one of reinforcing bars under 
the same circumstances (Li et al., 2011). However, due to stress corrosion 
cracking, the mass loss of a prestressing strand can become 1.3 times as large as 
the one of a reinforcing bar. Li et al. (2011) observed higher corrosion rates for 
higher levels of prestressing and a corrosion rate decreasing over time, more 
rapidly in the initiation stage and slower afterwards. 
 
Not only the differences between reinforcement bars and prestressing strands are 
of importance, but also their interaction. As found by Guo, Frangopol, et al. 
(2011), loss in the non-prestressed reinforcement bars affects the structural 
integrity too by influencing the stress levels of the prestressing tendons. Hence, it 
is necessary to account for the non-prestressed reinforcements and their loss in 
cross-sectional area when performing reliability assessments. 

II.3.2 Reduction of steel area in prestressed concrete structures 

As mentioned earlier, chloride-induced corrosion will be more important for 
prestressed concrete structures due to the stress corrosion cracking effect 
generated by the formation of pits. If carbonation-induced corrosion would occur, 
similar models could be used as given for the reinforced concrete structures. A 
summary of models for carbonation-induced corrosion applied to prestressed 
concrete structures is also given in (Vereecken et al., 2021). In the following, the 
focus will be on models for chloride-induced corrosion in prestressed structures. 
 
The initiation period can also be modelled according to equation (II-1) for 
prestressed structures, as for example applied in (Nguyen et al., 2013; Tu et al., 
2019), amongst others. 
 
For the reduction of the steel cross-section in the propagation phase, different 
models exist. These models distinguish between uniform and pitting corrosion. 
For prestressed elements, the latter is the most important. For pitting corrosion, 
the area of a corroded bar at time t is given by equation (II-16) according to (Val 
and Melchers, 1997), assuming a hemispherical pit shape. 
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𝐴(𝑡) = {  
  𝜋𝐷024 − 𝐴1 − 𝐴2, 𝑝(𝑡) ≤ √22 𝐷0𝐴1 − 𝐴2 √22 𝐷0 ≤ 𝑝(𝑡) ≤ 𝐷00 𝑝(𝑡) > 𝐷0

  
with 𝑝(𝑡) = 0.0116(𝑡 − 𝑇𝑖)𝑖𝑐𝑜𝑟𝑟𝑅 

(II-16) 

Here, R [-] is the penetration ratio between maximum and average penetration 
(ranging from 4 to 8 for reinforcement steel embedded in concrete according to 
González et al. (1995)), icorr the corrosion rate in µA/cm² and Ti [years] the 
initiation period. 
 
The other parameters in equation (II-16) are given as follows (Val and Melchers, 
1997), with D0 the initial reinforcement diameter: 𝐴1 = 12 [𝜃1 (𝐷02 )2 − 𝑎 |𝐷02 − 𝑝(𝑡)2𝐷0 |] ;  𝐴2 = 12 [𝜃2𝑝(𝑡)2 − 𝑎 𝑝(𝑡)2𝐷0 ] (II-17) 

𝑎 = 2𝑝(𝑡)√1 − (𝑝(𝑡)𝐷0 )2 (II-18) 

𝜃1 = 2arcsin ( 𝑎𝐷0) ; 𝜃2 = 2arcsin ( 𝑎2𝑝(𝑡)) (II-19) 

 
Guo et al. (2011b) apply a truncated normal distribution (truncated at 1) for the 
penetration ratio R, with a mean value of 3 and a coefficient of variation (COV) 
of 0.33, which is based on the assumption that the 95% percentile corresponds to 
a penetration ratio R = 4 (Stewart and Rosowsky, 1998). These values have been 
derived for conventional reinforcement steel. The penetration ratio R could also 
be modelled by a Gumbel distribution. A model for the maximum pit depth, over 
a standard length L0 of a rebar, is given by Stewart (2009). Here, the maximum pit 
depth over a given length Lu is expressed by means of the Gumbel parameters µ  
and α as given by equation (II-20). 𝜇 = 5.56 + 11.16 ln (𝐿𝑢𝐿0)  and 𝛼 = 1.16 (II-20) 

In this equation, the values 5.56 and 1.16 are the Gumbel parameters obtained 
from corrosion tests on a reinforcement bar of diameter 16 mm with standard 
length L0 = 100 mm. The maximum pit depth should be estimated over the whole 
length of the reinforcement. The values 5.56 and 1.16 might change depending on 
the diameter of the bar, for example for a diameter of 10 mm they are respectively 
equal to 5.08 and 1.02, and for a diameter of 27 mm they are equal to 6.55 and 
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1.07 (Stewart, 2009). Nevertheless, for prestressing wires often much smaller 
diameters are used. For these smaller diameters, no values for the parameters of 
the Gumbel distribution are found in literature. 
 
Darmawan and Stewart (2007) also developed an empirical model for the pit depth 
p(t), further denoted as a. They applied a Gumbel distribution for the maximum 
pit depth based on the assumptions that the wire is exposed to a uniform corrosion 
rate along its length. In addition, the number of pits formed and the length of the 
pits are assumed constant in time after an initial period of corrosion. Only the pit 
depth grows in time. Finally, the model also assumes that at any location of the 
wire only one pit can form. The Gumbel distribution for the maximum pit depth a 
as a function of time t is given by equation (II-21). 𝑓𝑎(𝑡, 𝑖𝑐𝑜𝑟𝑟 , 𝐿) = 𝛼𝜆0.54 exp (−𝛼 ( 𝑎𝜆0.54 − µ)) exp (−exp (−𝛼 ( 𝑎𝜆0.54 − µ)))  if 𝑡 > 𝑇𝑖  (II-21) 

The parameters λ, µ  and α are given by equations (II-22) to (II-25). 𝜆
= [𝐷02 − (𝐷0 − 0.0232𝑖𝑐𝑜𝑟𝑟(1) {1 + 𝜅𝜃 + 1 [(𝑡 − 𝑇𝑖)𝜃+1 − 1]})2][𝐷02 − (𝐷0 − 0.0232𝑖𝑐𝑜𝑟𝑟(1) {1 + 𝜅𝜃 + 1 [𝑇0𝜃+1 − 1]})2]  

(II-22) 

𝑇0= exp( 1𝜃 + 1 𝑙𝑛 ((𝜃 + 1)(𝑖𝑐𝑜𝑟𝑟−𝑒𝑥𝑝𝑇0−𝑒𝑥𝑝) + (𝜅 − 𝜃 − 1)(𝑖𝑐𝑜𝑟𝑟(1))𝜅𝑖𝑐𝑜𝑟𝑟(1) )) 
(II-23) 

𝜇 = 𝜇0−𝑒𝑥𝑝 + 1𝛼0−𝑒𝑥𝑝 ln ( 𝐿𝐿0−𝑒𝑥𝑝)  and 𝛼 = 𝛼0−𝑒𝑥𝑝 (II-24) 

𝑖𝑐𝑜𝑟𝑟(𝑡 − 𝑇𝑖) = 𝑖𝑐𝑜𝑟𝑟(1) ∙ 𝜅(𝑡 − 𝑇𝑖)𝜃if 𝑡 − 𝑇𝑖 ≥ 1 𝑦𝑒𝑎𝑟 (II-25) 

Here, D0 [mm] is the initial diameter of the wire, icorr(1) [µA/cm²] is the corrosion 
rate at the start of corrosion propagation, Ti [years] the initiation period, and 
L [mm] is the wire length. 𝜅 and 𝜃 are empirical factors, with 𝜅 equal to 0.85 if 
the corrosion rate reduces with time and 1 if the corrosion rate is time-invariant. 
Accordingly, 𝜃 equals -0.29 and 0, respectively. The parameters with subscript  
‘-exp’ are the ones obtained from experimental data from (Darmawan and Stewart, 
2007): i.e. icorr-exp = 186 µA/cm², T0-exp = 0.03836 years, µ0-exp = 0.84,  
L0-exp = 650 mm and α0-exp = 8.10. The distribution of the maximum pit depth given 
by equation (II-21) can be used to generate samples of the pit depth in a 
probabilistic analysis of the corrosion process and the corresponding resistance or 
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probability of failure. The samples of the pit depth can subsequently be inserted in 
equation (II-16). This model of (Darmawan and Stewart, 2007) is also applied by 
(Tu et al., 2019). 
 
It is generally assumed that pitting corrosion will only occur on the exposed 
surface of the strands, i.e. half of the total surface of the outer six wires (Guo et 
al., 2016; Tu et al., 2019). This area exposed to pitting corrosion is visualized in 
Figure II-3. The pitting corrosion starts at these outer wires of a 7-wire strand since 
they are exposed to the chlorides. Hence, according to (Guo et al., 2016), the 
following assumptions can be made: 

1. Neglect pitting corrosion of the inner wire; 
2. Pitting corrosion on the outer six wires can occur at slightly different 

points in time; 
3. The pits propagate slower than in reinforcing bars due to the high quality 

of the steel and the more strict manufacturing process. 
 

 

Figure II-3: Area of a prestressing strand exposed to pitting corrosion (indicated with a red 
bold line) 

II.3.3 Influence on steel properties 

To account for the high stresses due to the reduction in wire sections (which might 
trigger structural collapse), an adapted stress-strain curve for the corroded steel 
can be used. Besides the size reduction of the strands, also the degradation in 
mechanical properties of the steel can be modelled, including: 

1. Ductility decrease; 
2. Change in elastic modulus; 
3. Change in ultimate strength due to the stress concentration caused by 

pitting and/or the asymmetric tension due to an asymmetric corrosion 
distribution; 

4. Change in ultimate strain; 
5. Loss of yielding plateau and strain hardening region if the corrosion 

degree is larger than a critical value. 
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Lu et al. (2016) performed an investigation on the mechanical behaviour of 
prestressing strands subjected to chloride attack. The reduced elastic modulus, 
ultimate strength and ultimate strain of the prestressing strands are given by 
equations (II-26) to (II-28), which are based on experimental results. 𝐸𝑠∗ = (1 − 1.8𝛼(𝑡))𝐸𝑠 (II-26) 𝑓𝑢∗ = (1 − 2.8𝛼(𝑡))𝑓𝑢 (II-27) 𝜀𝑢∗ = (0.1 + 0.9exp (−20𝛼(𝑡))) 𝜀𝑢 (II-28) 

Here, 𝛼(𝑡) [-] is the corrosion degree at time t, calculated based on the strand area. 
 
When the corrosion degree is given as a percentage, the constitutive law of the 
prestressing steel is given by equation (II-29) for corrosion degrees smaller than 
8% (Lu et al., 2016). If the corrosion degree exceeds 8%, the hardening plateau 
disappears and the stress-strain curve only contains the elastic branch. 

𝜎(𝜀) = {  
  𝐸𝑠∗𝜀 𝜀 ≤ 𝜀𝑦∗ = 0.85𝑓𝑢∗𝐸𝑠∗0.85𝑓𝑢∗ + 0.15𝑓𝑢∗𝜀𝑢∗ − 𝜀𝑦∗ (𝜀 − 𝜀𝑦∗) 𝜀𝑦∗ ≤ 𝜀 ≤ 𝜀𝑢∗  (II-29) 

 
Model (II-29) is also applied by Jeon et al. (2019). However, in the latter work, 
the ultimate stress and strain are determined based on a fit to data extracted from 
prestressing steel strands in external tendons of an existing bridge. The resulting 
models are given by equation (II-30) and (II-31). The regression coefficients 
depend on the pit depth and pit shape (corresponding to three types of pit 
configurations based on observations on real corroded strands). 𝑓𝑢∗ = 𝑎𝛼(𝑡) + 𝑏 (II-30) 

𝜀𝑢∗ = {𝑐𝛼(𝑡)2 + 𝑑𝛼(𝑡) + 𝑒 𝑑𝑝 < 0.5𝑓𝛼(𝑡)𝑔 𝑑𝑝 ≥ 0.5 
(II-31) 

Here, dp is the pit depth and a to g are regression parameters dependent on the pit 
shape, as given in Table II-1 (Jeon et al., 2019). In expressions (II-30) and (II-31), 
the corrosion degree is calculated based on the wire area. 
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Table II-1: Regression coefficients to be used in the stress-strain model of (Jeon et al., 2019) 

Pit type 
 Regression parameters 

 a b c d e f g 

Type 1 
 

-1991.8 1748.0 -5.96 -1.30 0.0754 0.0025 -0.621 

Type 2 
 

-1995.6 1801.6 -1.00 -0.69 0.0754 0.0045 -0.305 

Type 3 
 

-2302.7 1752.7 9.54 -1.77 0.0754 0.0045 -0.298 

 
Also Tu et al. (2019) apply the same constitutive law. However, equations (II-26) 
to (II-28) are slightly differently formulated, according to equations (II-32) to (II-
34), where 𝛼(𝑡) should be given as a percentage (percentage area loss caused by 
corrosion). The latter equations are formulated for experimental results on 
prestressed tendons and not for strands; hence this might explain the difference 
compared to equations (II-26) to (II-28). 𝐸𝑠∗ = (1 − 0.848𝛼(𝑡))𝐸𝑠 (II-32) 

𝑓𝑢∗ = (1 − 2.683𝛼(𝑡))1 − 𝛼(𝑡) 𝑓𝑢 
(II-33) 

𝜀𝑢∗ = (1 − 9.387𝛼(𝑡))𝜀𝑢 (II-34) 

 
The influence of corrosion on the yield stress at time t can for example be modelled 
according to equation (II-35). 𝑓𝑦 = (1 − 𝑎 ∙ 𝛼(𝑡) × 100)𝑓𝑦0 (II-35) 

Here, fy0 is the initial yield stress and 𝑎 an empirical coefficient (0.0054 for 
reinforcing bars and 0.0075 for stranded wires (Du et al., 2005; Vu et al., 2009)). 
However, Zhang et al. (2017a) state that the effect of corrosion loss on the yield 
stress and Young’s modulus is limited when compared to the effect on the ultimate 
strain of the strands. This can for example be illustrated when applying equation 
(II-35) for a corrosion degree of 0.08 (8%), which leads to a reduction factor on 
the yield stress of 0.94, which is much higher than the factors predicted by 
equations (II-26) to (II-28), (II-30), (II-31) and (II-32) to (II-34), and hence causes 
a smaller reduction. 
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II.3.4 Influence on concrete 

In (Belletti et al., 2020), the reduction in concrete compressive strength due to 
corrosion is modelled according to equation (II-11) (Coronelli and Gambarova, 
2004). The chemical composition of prestressing strands differs from the one of 
reinforcement bars. This might lead to different expansion ratios for prestressing 
and ordinary reinforcement steel (Li et al., 2011). Moreover, due to the different 
shape of, for example, 7-wire strands compared to reinforcement bars, the formed 
cracking pattern might deviate since the pressure generated by the corrosion 
products will have a different distribution. Nevertheless, the purpose of this 
equation is not to model the actual cracking pattern, but to provide an estimate of 
the influence on the concrete parameters. Whereas it seems reasonable to apply 
the given equation as a rough estimate of this reduction, a more detailed 
investigation on this topic might be required. 
 
Considering prestressed structures, in (Dai et al., 2015) a formulation for the 
critical cross-section loss at the cover cracking stage is given. The disadvantages 
of this model are the fact that the reinforcement expansion ratio of rust is used, 
residual stiffness of cracked concrete is not considered and two independent 
theories are used for crack initiation (a mechanical model) and propagation (a 
geometrical model). To resolve these issues, Wang et al. (2019) investigated the 
cracking of concrete under combined prestress and strand corrosion. The resulting 
rust expansion ratios were found to be on average equal to 2.78. Since in the 
experiments low corrosion degrees already induced cracking and corrosion is more 
uniform for low corrosion degrees, uniform corrosion products are assumed in the 
prediction model of Wang et al. (2019). However, this does not necessarily 
correspond to reality. The model is based on the thick-walled cylinder theory, and 
accounts for filling of cracks and pores. The residual tangential stiffness in cracked 
concrete assuming uniformly distributed smeared cracks is calculated, and a 
relation between the corrosion loss of the strand and the stiffness reduction of the 
concrete is given. It should be pointed out that the model of Wang et al. (2019) 
does not account for the presence of multiple strands. 

II.3.5 Assessment of post-tensioned structures 

There are some important differences between pretensioned and post-tensioned 
structures, which influence their assessment. The most important difference 
between both types of structures is the presence of a duct, in which the tendons are 
located, which implies that they are not in direct contact with the concrete. Hence, 
initiation of corrosion is not determined by the same processes as for reinforced 
and pretensioned structures. In the following section, information is provided on 
how to account for corrosion in post-tensioned structures. 
 
Despite the fact that for post-tensioned structures the strands are not in direct 
contact with the concrete, corrosion can still be an issue (Nguyen et al., 2013). 
This can for example be ascribed to the incomplete filling of the ducts with grout. 



 
 

 
 

Time-dependent degradation due to corrosion 29 
 

Voids created as such induce the accessibility of moisture, oxygen and chlorides 
(from rainwater, seawater, salt-fog or de-icing salts (Zhang et al., 2017a)). Voids 
in the grout also enable the transport of moisture and chlorides along the tendon 
and their presence can reduce the bond over parts of the tendon length. 
Furthermore, chlorides may be latent in the grouting (Schupack, 1994). Expansive 
grouting has a particularly high level of chlorides, which can induce tendon 
corrosion. Another possible source initiating the corrosion of the tendons can be 
the corrosion of the anchorage due to insufficient cover, impermeable materials or 
a lack of bond. This allows moisture and chlorides to enter the duct. These non-
tight anchorages or construction joints (e.g. inadequate sealing of the road surface 
(Podroužek et al., 2014)) can form the main source of corrosive agents in 
ungrouted ducts (Page and Page, 2007). Another source of corrosion can be water 
that was already present in the ducts of post-tensioning tendons prior to injection, 
due to which steel might already suffer severe pitting corrosion in the ungrouted 
and non-prestressed condition. This might lead to a reduction in load-bearing 
capacity. In current practice, the chloride contents in the water used for grout and 
concrete mixing should be verified and limited. However, in the past, this was not 
always the case. Hence, in older existing structures, chlorides can still be present 
in the concrete or grout. According to Zhang et al. (2017a) strand corrosion in 
post-tensioned structures can be accelerated by galvanic coupling between the 
strands and the anchorage body, which might induce anchorage failure. Finally, 
damage of the duct, improper slices between the duct, and a non-permanent duct 
can lead to chlorides reaching the tendons as well. Concluding, corrosion in post-
tensioned structures will mostly be induced by inappropriate construction. If 
tendons are well installed, corrosion should be very rare (Tu et al., 2019). 
 
Even though corrosion should be very rare if tendons are properly installed, 
according to Nguyen et al. (2013), corrosion of tendons happens very often in 
practice since grouting is generally incomplete (Woodward, 2001). The 
incomplete grouting process leads to voids that contain water and oxygen along 
the length of the tendon, inducing depassivation of the tendon surface. The 
corrosion rate will depend on the type of grout and the diffusion of oxygen into 
the wire surface. The time to corrosion initiation can still be calculated according 
to equation (II-1). However, c now equals the distance between the top of the grout 
and the wire surface, accounting for the void size which is commonly 6 mm 
(Nguyen et al., 2013) (see Figure II-4). This grout void size is based on 
experimental experience from an NDT testing company (Fisk and Armitage, 
2019), where a small bleed water void (less than 6 mm) was detected in virtually 
every grout classified as ‘good, unvoided’ after verification by drilling. The total 
surface concentration Cs will be a combination of the native chloride content of 
the grout (500 ppm for commercial grout) and the chloride in the air within the 
void (0.17%), or Cs = 0.8 kg/m³ (Nguyen et al., 2013). The diffusion coefficient D 
will then represent the diffusivity of the grout. Regarding the initial chloride 
content in the grout, different values are found in literature ranging from 80 ppm 
for non-commercial grout to 500 ppm in commercial grout (Wang et al., 2005). It 
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should also be pointed out that in the general model for reinforcement corrosion, 
the initial chloride concentration is not taken along in Cs but in a parameter C0 
according to (fib, 2006). In (Virmani and Ghasemi, 2012) a summary of codes and 
standards defining maximum allowable chloride limits in grout and prestressed 
concrete can be found. 
 
In the case of steel ducts, these ducts can also corrode, which allows corrosive 
agents to reach the steel surface through the ducts. For example, Guo et al. (2016) 
consider tendons consisting of stranded wires inside corrugated metal ducts, 
modelling the time of corrosion initiation of tendons as consisting of three parts: 

1) Diffusion of chloride ions from the concrete surface to the metal duct; 
2) The time for a pit with a depth equal to the thickness of a duct to form in 

the metal duct; 
3) Diffusion of the chloride ions in the grout. 

 
 

 

Figure II-4: Strands in grouted duct with void 

 
The distinction between these three phases is also made by Tu et al. (2019), who 
state that the second phase will have the smallest contribution due to the small duct 
thickness. To overcome this possibility of corrosive agents reaching the steel, 
strong emphasis is nowadays placed on the quality, integrity and continuity of the 
duct as a corrosion barrier in itself, replacing steel ducts by plastic equivalents. 
The better performance of plastic ducts compared to steel ducts is for example 
illustrated in the experimental research of (Salas et al., 2008). In (Salas et al., 
2004), light corrosion of steel in plastic ducts was observed, but with a much better 
performance compared to steel ducts. In the latter, severe duct destruction and 
pitting is observed. If corrosion is present in plastic ducts, it is mostly at locations 
where the duct is interrupted or where different pieces of the duct are connected. 
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Hence, there is a need for effective splicing and sealing at joints. In (McCool et 
al., 2011) different issues due to which plastic ducts can still lead to corrosion are 
listed: 

- Imperfect sealing; 
- Longitudinal splitting of the duct; 
- Presence of grout voids; 
- Improperly installed duct splices. 

 
They also observed that strands in plastic ducts showed less corrosion than in steel 
ducts, and that corrosion initiated later in plastic ducts. Chlorides do not penetrate 
trough plastic ducts and the duct itself remains intact. However, breaches in 
couplers and loosening of epoxy can induce the ingress of chlorides. For new 
bridges, the advice is hence to use these plastic ducts. Nevertheless, in older 
bridges steel ducts can still be present since little attention was formerly paid to 
the possible role of the duct as a barrier to corrosive agents (FHWA, 2013). 
 
The two models for corrosion in post-tensioned ducts described above are based 
on a completely different origin of the corrosion products and are therefore valid 
for specific situations. Both initiation period and corrosion rate can differ largely 
depending on the source of the chlorides. For the first model, assuming a grout 
cover of 15 mm between void and tendons, a critical chloride concentration of 
0.3 kg/m³, a surface chloride concentration of 0.8 kg/m³ and a diffusion coefficient 
of chlorides in the grout of 10-11 m²/s, Nguyen et al. (2013) found an initiation 
period of 15 years by applying a polynomial approximation to equation (II-1). 
According to Nguyen et al. (2013), the corrosion rate in grout equals 6.5 µA/cm² 
or 0.075 mm/year. This corrosion rate would correspond to a severe outdoor 
environment of a tidal zone for RC structures (Lay et al., 2003). When calculating 
the initiation period applying the models described in (Guo et al., 2016), it would 
take 15 years before the chlorides would reach the duct and 8 more years before 
the duct is penetrated. Next, another 15 years could pass before the chlorides reach 
the tendons within the duct when applying the same assumptions as in (Nguyen et 
al., 2013). Hence, the second model leads to a much larger initiation period and 
may as such lead to an underestimation of the actual corrosion degree by 
disregarding the presence of grout voids.  
 
Note also that for post-tensioned strands located in external ducts, i.e. outside of 
the concrete volume, only the first method seems reasonable. Not only is there no 
first stage of penetration of chlorides through the concrete, but also the choice for 
steel ducts will often not be made for external tendons since they are more directly 
exposed to the environment. If a steel duct would be used, there is still a possibility 
of corrosion of the duct, enabling chlorides from the environment to reach the 
prestressing steel. 
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Information on the probabilistic models for the corrosion parameters in the model 
for chloride ingress through grout voids is limited. To close this gap, Nguyen et 
al. (2013) suggest to use a Poisson distribution to model the initiation period as a 
stochastic variable, where the mean value is calculated based on equation (II-1). 
Nevertheless, other probability distributions could also be applied. For example, 
to model the distance between the void and the tendons, models proposed by 
(JCSS, 2001) for the concrete cover could be applied. The diffusion coefficients 
of grout and concrete are not that different according to (Guo et al., 2016), hence 
the distributions proposed in (fib, 2006) could be used for this parameter. In a 
similar way, the distributions from (fib, 2006) for the surface chloride 
concentration and critical chloride concentration could be adopted, using the 
aforementioned values as mean values for this specific example. 
 
Regardless of the origin of the corrosion products, corrosion happens on the single 
wires of a tendon, where tendon failure will only occur when in all wires in the 
tendon the critical stress is exceeded. Concerning wire failure, the worst effects 
are observed for unbonded tendons in post-tensioned elements since brittle failure 
of these tendons leads to a prestress reduction proportional to the tendons cross-
sectional loss (Coronelli et al., 2009). This is in contrast to bonded tendons, where 
a new anchorage on either side of the fracture can be developed after failure, due 
to the bond stresses between steel and concrete/grout. Hence, these failures might 
have a smaller structural impact.  
 
Another important difference between pretensioned and post-tensioned structures 
is the discontinuous character of the concrete cover (Wang et al., 2019). In the 
case of post-tensioned structures, the concrete cover consists of grout, situated in 
the duct, which is embedded in the concrete. Hence, strand corrosion will induce 
first internal grout cracking before it will affect the external concrete. Concerning 
the influence on concrete cracking, Zhang et al. (2017b) performed experimental 
investigations on eight bonded post-tensioned concrete beams with different 
corrosion levels. These beams were tested up to flexural failure, investigating the 
effects of corrosion on cracking, stiffness, ultimate strength, failure mode and 
ductility. They found that the cracking moment almost linearly decreases with 
increasing strand corrosion. Corrosion of the strands has only a limited influence 
on the initial stiffness of the post-tensioned beam. After cracking, the influence on 
the stiffness was found to depend on the strand area loss. Furthermore, strand 
corrosion accelerates the shift of the neutral axis under self-weight and decreases 
the depth of the compression zone, leading to a reduced ultimate strength of the 
beams. Finally, with increasing corrosion loss, the failure mode was observed to 
change from concrete crushing to strand rupture. 
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II.4 Conclusions 

In this chapter, degradation models for corrosion in reinforced concrete structures 
and prestressed concrete structures are discussed. Further chapters will mostly deal 
with reinforced concrete structures, and the degradation models used further in 
this work are summarized in this chapter. Models for both the initiation period of 
corrosion and the propagation phase are given. For prestressed concrete structures, 
literature is less clear on how to model degradation due to corrosion. Hence, a 
short summary on modelling degradation due to corrosion in prestressed and post-
tensioned structures has also been provided. These will be used in Chapter VIII of 
this work. 
 
The models in this chapter are provided without model uncertainties because these 
model uncertainties are not available in literature, neither the data to quantify these 
uncertainties. There is a need for the quantification of model uncertainties, which 
is a research topic of general interest for the assessment of existing structures. 
Nevertheless, the quantification of model uncertainties falls outside the scope of 
this work. 
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“Coincidences, in general, are great stumbling-blocks in the way of that class of 
thinkers who have been educated to know nothing of the theory of probabilities – 

that theory to which the most glorious objects of human research are endebted 
for the most glorious of illustration.” 

- Edgar Allan Poe, The Murders in the Rue Morgue 
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III.1 Introduction 

Degradation of a structure often does not propagate in a uniform way. There can 
be differences between the structural parts of the structure, for example the 
different girders and slabs of a girder bridge. These differences can arise due to 
different casts of concrete, different exposure to the environment, etc. Also within 
these structural elements, there can be spatial variation of degradation. This can 
be ascribed to workmanship, the composite nature of concrete and the intrinsic 
spatial variability of the corrosion process (for example the existence of pitting 
corrosion). 
 
A lot of research is performed about the influence of this spatial variation on, for 
example, reliability calculations. Taking into account spatial variations in concrete 
properties and the influence of degradation can have a large influence on the 
probability of failure. Furthermore, by accounting for possible correlation between 
structural elements or within an element, information gathered at one location of 
the structure might also provide information about non-inspected locations on the 
same structure. By making use of this correlation, more optimal inspection plans 
can be formulated. 
 
Although it is clear that taking into account the spatial variation of concrete and 
its degradation is important in structural assessment, literature on how to model 
these correlations is scarce. There is no consensus yet on the extent of spatial 
correlation of different concrete properties. 
 
In the following, available information on how to account for spatial variation of 
degradation will be summarized, including a discussion on hyperparameters and 
random fields. The focus will be mostly on the latter, since these will be used in 
further chapters of this work. Next, the modelling of spatial variation of the 
corrosion process will be discussed for reinforced concrete and prestressed 
concrete structures. 

III.2 Modelling the spatial character of degradation 

Corrosion in general is not materializing in a uniform way over a structure. 
Schneider et al. (2015) provide a framework that allows accounting for the spatial 
distribution of reinforcement corrosion for assessing and updating the reliability 
of concrete bridges subjected to corrosion. For this purpose, the structure is 
subdivided into different zones with similar exposure conditions and material 
characteristics. Between these different zones, there is no interdependence of the 
deterioration state. For example, when considering a box girder bridge, the bridge 
deck might be more susceptible to chloride-induced corrosion due to de-icing salts 
than the bottom flange. Hence, the bridge deck is considered as one zone, whereas 
the webs and bottom flange are grouped in another zone (Figure III-1 left). 
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These zones also need further discretization to model the spatial character of 
degradation within these zones. Hence, the zones will be further subdivided into 
elements. Within these elements, degradation will be considered uniform. When 
looking at the different elements, realizations can be independent, i.e. there is no 
correlation between the degradation states in the different elements, or there can 
be some correlation. To model this correlation, two methods are highlighted in the 
following: hierarchical models (i.e. using hyperparameters) and random fields. 
 

 
Figure III-1: Division of a box girder bridge in zones (left) and subdivision of zones in 

elements (right) 

III.2.1 Hyperparameters 

In most literature, common exposure conditions are modelled with 
hyperparameters. For example, if the box girder of Figure III-1 would be located 
in a marine environment, all elements of zone 2 would be exposed to this same 
environment. Similarly, the elements might consist of concrete from the same 
batch, due to which for example also the diffusion coefficient of the concrete can 
be modelled in a similar way. This statistical dependence of common (exposure) 
conditions is modelled by a common parent variable for all elements in zone 2, 
which is called a hyperparameter. In case of chloride-induced corrosion, 
hyperparameters can for example be used to describe the dependence between the 
chloride concentration or the diffusion coefficient at different elements (Schneider 
et al., 2015). These hyperparameters are the same for all elements within a zone, 
but can differ between zones. 

III.2.2 Random fields 

Hyperparameters model the common (exposure) conditions for all elements within 
a zone. However, for two elements in the same environment and hence with 
common exposure conditions, there might still be a spatial variation depending on 
the geometric location. For example, considering zone 2 of the box girder in Figure 
III-1, the exposure to chlorides might be similar in all elements, but the concrete 
cover can vary along the bridge, e.g. due to irregularities in the formwork. The 
concrete cover at locations close to each other will be more correlated than the 
concrete cover at the extremities of the structure. To model this spatial variation 
of the related properties, random fields are used (Luque and Straub, 2019; Sudret 
et al., 2007; Uribe et al., 2017). 
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III.2.2.1 General introduction to random fields 

With a random field model, the correlation between elements is a function of the 
location. A Gaussian random field 𝑆(𝒙, 𝜃) is defined by a mean function 𝜇𝑆(𝒙) 
and a covariance function CS(x,x’), where, x and x’ represent spatial coordinates. 𝜃 denotes the elementary events, part of the sample space Θ. In the covariance 
function, the correlation between two locations x and x’ can for example be 
modelled by an exponential (equation (III-1)) or a squared exponential correlation 
function (equation (III-2)). 𝜌𝑋(𝒙, 𝒙′) = exp (− |𝒙 − 𝒙′|𝑙𝑐 ) (III-1) 

𝜌𝑋(𝒙, 𝒙′) = exp (−(|𝒙 − 𝒙′|𝑙𝑐 )2) (III-2) 

The correlation functions depend on the correlation length 𝑙𝑐 and the distance 
between the two spatial coordinates x and x’ (|𝒙 − 𝒙′|). 
III.2.2.2 Discretization of random fields 

In practical examples, it is necessary to represent a random field by means of a 
finite sum of random variables. This can be achieved by application of the 
Karhunen-Loève expansion (Sudret and Der Kiureghian, 2000) according to 
equation (III-3). 

𝑆(𝒙, 𝜃) = 𝜇𝑆(𝒙) +∑𝜙𝑗(𝒙)√𝜆𝑗𝜁𝑗(𝜃)∞
𝑗=1  (III-3) 

Here, the random field 𝑆(𝒙, 𝜃) is written as a weighted sum of so-called Karhunen-
Loève modes 𝜙𝑗(𝒙), which are the Eigen functions of the covariance function 
CS(x,x’), with 𝜆𝑗 the corresponding eigenvalues. 
 
An alternative approach is to discretize the random field 𝑆(𝒙, 𝜃) to a random 
vector 𝑺(𝜃), representing the random field at given points xj. This random vector 
maps the probability space to a field of real numbers. If the random field is 
Gaussian, the corresponding discretized random vector will also be Gaussian. The 
latter is defined by a mean vector of size n x 1 and a covariance matrix of size 
n x n, with n the number of points at which the random field is evaluated. For a 
random field  𝑆(𝒙, 𝜃), discretized in n elements with mean vector 𝝁𝑺 (size n x 1) 
and a covariance matrix 𝜮𝑆 (size n x n), the random vector 𝑺(𝜃) is represented by 
equation (III-4) (Sudret and Der Kiureghian, 2000). 
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𝑺(𝜃) = 𝝁𝑺 +∑𝜙𝑗√𝜆𝑗𝜁𝑗(𝜃)∞
𝑗=1  (III-4) 

Here, 𝜙𝑗 are the eigenvectors of the covariance matrix 𝜮𝑆, with 𝜆𝑗 the 
corresponding eigenvalues. Since an infinite sum is not easy in use, the summation 
is taken over the first 𝑛𝑑 modes of the covariance matrix. The number of modes 𝑛𝑑 is chosen based on the acceptable error 𝜀𝑚𝑎𝑥 and the trace 𝑇𝑟(𝚺𝑆) of the 
covariance matrix according to equation (III-5) (Sudret and Der Kiureghian, 
2000). 

𝜀(𝑛𝑑) = 1 − 1𝑇𝑟(𝚺𝑆)∑𝜆𝑗𝑛𝑑
𝑗=1 ≤ 𝜀𝑚𝑎𝑥  (III-5) 

Hence, if the maximum acceptable error is 5%, the sum of the first 𝑛𝑑 eigenvalues 𝜆𝑗, ranked from high to low, should at least be equal to 95% of the trace of the 
covariance matrix (𝑇𝑟(𝚺𝑆)). A priori, the random field is assumed stationary over 
the considered domain. 
 
When non-Gaussian fields are used, the application of a Nataf transformation 
allows modelling the fields by an underlying Gaussian random field. As illustrated 
in (Liu and Der Kiureghian, 1986), the error on the covariance matrix of the 
transformed discretized field compared to the underlying discretized Gaussian 
field is limited for the most common distribution types. 
 
Figure III-2 shows four realizations of a random field of the corrosion degree. In 
this example, a uniform probability distribution function between zero and one is 
assumed for the corrosion degree, together with a squared exponential correlation 
model with correlation length 1 m. 

III.2.3 Random fields vs. hyperparameters 

Random fields and hyperparameters can be used for different purposes and both 
have their advantages and limitations. These are summarized in this section. 
Nevertheless, it should be pointed out that both methods serve other purposes and 
that parameters that should be modelled by random fields often cannot be 
modelled by hyperparameters, and vice versa. Hence, the two methods could not 
be mutually compared, but advantages and disadvantages of the methods should 
be kept in mind when applying them. 
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Figure III-2: Different realizations of the random field for the corrosion degree (squared 
exponential correlation model, lc = 1 m) 

 
Hyperparameters are used to model common realizations of the variables within a 
zone, and the hyperparameters itself are in most cases time-invariant. The type of 
correlation that can be modelled is limited to matrices of the Dunnett-Sobel class 
(Schneider et al., 2015), with linear constant correlation. However, it is a very 
transparent method to model the underlying assumption of a common source. In 
addition, the use of hyperparameters has less computational challenges when 
compared to random field models. 
 
Random fields are used to model the spatial distribution of a parameter. A 
disadvantage of the use of random fields is their possibly large computational cost. 
Moreover, when applying a random field, the underlying correlation structure 
should be known. The latter might be difficult to determine since it should ideally 
be based on a large amount of experimental data. Hence, often correlation models 
are based on engineering judgement. If experiments are performed to determine 
the correlation model, they should be designed as such that small and large scale 
variability is accounted for (Malioka and Faber, 2004). In general, two methods 
exist to determine the correlation length and correlation model based on 
experimental data. The first is based on finding the model parameter that provides 
the best fit to the autocorrelation of the measured data (Vanmarcke, 2010). The 
second procedure is based on the maximum likelihood method (Schoefs et al., 
2017, 2016). However, this falls outside the scope of this work and use is made of 
common proposals as available in existing literature and summarized in section 
III.3.2. 
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III.2.4 Structural analysis 

To account for spatial variation of degradation, the structure under investigation 
should be discretized in zones and elements, as pointed out in section III.2. When 
a finite element model of the structure is generated, these elements should not 
necessarily correspond to the finite element discretisation. One element for the 
discretisation of the spatially variable degradation process can contain multiple 
finite elements, depending on the required discretisation lengths. The degradation 
state in each of these elements of the model is then adjusted accounting for the 
corresponding realizations of the hyperparameters and of the discretized random 
field. When for example a beam is subdivided into n elements, the random field 
will be discretized into a random vector of size n x 1. Hence, each element of the 
discretized beam corresponds to an element of the vector representing the 
discretized random field. 
 
To properly account for the variation of variables modelled by a random field, an 
appropriate element size in the discretization of the structure is important. The 
element size is typically a fraction of the correlation length lc. For a squared 
exponential correlation model, the element size should be smaller than 𝑙𝑐/2 to 𝑙𝑐/3. 
For an exponential correlation function, element sizes of 𝑙𝑐/5 to 𝑙𝑐/10 are generally 
considered adequate (DIANA FEA BV, 2017). In general, when discretizing a 
structure, the maximum element size should be chosen as such that convergence 
of the probability of failure of the structure is reached, and a sensitivity study on 
the influence of the element size on the model outputs should be performed. 

III.3 Spatial character of degradation in RC structures 

When modelling the spatial character of corrosion in RC structures, there is often 
assumed some correlation of the corrosion process at different locations along the 
structure. In the following sections, suggestions for the use of hyperparameters 
and random fields when modelling corrosion in RC structures are provided. 

III.3.1 Hyperparameters in degrading RC structures 

For chloride-induced corrosion, the initiation period is a function of environmental 
variables such as chloride content, but also of material parameters such as the 
diffusion coefficient of the concrete. Hence, when for example the bridge deck in 
Figure III-1 is simulated as one zone with common exposure conditions, the 
chloride content Cs and the diffusion coefficient D of the concrete within this zone 
can be modelled by hyperparameters. The bridge deck is then discretized in 
elements, where the random variables Cs and D of the different elements are 
conditionally independent, given a realization of the hyperparameters. 
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III.3.2 Random field modelling of degrading RC structures 

In literature, different assumptions on the correlation models in RC structures can 
be found. Criel et al. (2014) summarize some correlation lengths commonly found 
in literature for corrosion variables and concrete parameters. These are given in 
Table III-1. The correlation models mentioned in this work are the exponential 
correlation model (equation (III-1)), the squared exponential model (equation (III-
2)) and the Matérn model (equation (III-6)). The last one depends not only on the 
correlation length lc, but also on a smoothness parameter ν. In equation (III-6), Γ(. ) is the Gamma function and 𝐾𝜈(. ) the BesselK(𝜈, . ) function. 𝜌𝑋(𝒙, 𝒙′) = 1Γ(𝜈)2𝜈−1 (2√𝜈|𝒙 − 𝒙′|𝜃 )𝜈 𝐾𝜈 (2√𝜈|𝒙 − 𝒙′|𝜃 )  

with 𝜃 = 𝑙𝑐 √𝜋Γ (𝜈 + 12)√𝜈Γ(𝜈)  

(III-6) 

 

Table III-1: Correlation lengths as summarized in (Criel et al., 2014) 

Variable 
Correlation 

lengths 
References 

Concrete cover c 1 m – 2 m – 3.5 m 
(Li et al., 2004; Stewart and 

Mullard, 2007; D. Straub, 2011) 
Surface chloride 
concentration Cs 

1 m – 1.96 m – 
2 m – 3.5 m 

(Duprat, 2007; Engelund, 1997; 
Straub, 2011; Vu, 2003) 

Concrete 
compressive strength 

fc 
3.5 m (Duprat, 2007) 

 
In (Straub, 2011), the exponential correlation model is applied, with the correlation 
lengths mentioned in Table III-2. In (Tran et al., 2012), a correlation length of 
1.1 m is considered for the diffusion coefficient. 
 

Table III-2: Correlation lengths as summarized in (Straub, 2011) 

Variable Correlation lengths 

Concrete cover c 1 m 
Surface chloride concentration Cs 2 m 
Critical chloride concentration Ccr 2 m 
Diffusion coefficient of concrete D 2 m 
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Vu and Stewart (2005) assume a squared exponential correlation model with 
correlation lengths as given in Table III-3. 
 

Table III-3: Correlation lengths as summarized in (Vu and Stewart, 2005) 

Variable Correlation lengths 

Concrete cover c 2 m 
Surface chloride concentration Cs 1 m – 1.96 m – 2 m 

Water/cement ratio w/c 0.5 m 
Young’s modulus of the concrete Ec 2 m 

Poisson coefficient of concrete ν 2 m 
Concrete compressive strength fc 2 m 

 
In (Straub et al., 2009), an exponential correlation model is considered with a 
correlation length of 80 cm for the chloride conductivity. In (Hajializadeh et al., 
2016), a squared exponential correlation model is considered with a correlation 
length of 1 m for the concrete cover and concrete compressive strength, and in 
(Stewart and Mullard, 2007) also a squared exponential correlation model is 
considered, but with a correlation length of 2 m for the concrete cover, concrete 
compressive strength and surface chloride concentration. For the surface chloride 
concentration and concrete cover, Ying et al. (2003) assume a squared exponential 
correlation model with a lower bound ρ0 of 0.5 or 0 and a correlation length of 
2 m, according to equation (III-7).  𝜌𝑋(𝒙, 𝒙′) = 𝜌0 + (1 − 𝜌0) ∙ exp (− |𝒙 − 𝒙′|2𝑙𝑐2 ) (III-7) 

Furthermore, also (Stewart and Suo, 2009) assume a correlation length of 2 m 
combined with an exponential correlation function for the concrete cover, concrete 
compressive strength and surface chloride concentration. 

III.4 Spatial character of degradation in PC structures 

As explained in the previous chapter, in prestressed concrete structures the effect 
of pitting corrosion is even more important than in reinforced concrete structures. 
When pitting corrosion occurs in prestressed concrete structures, the pits will be 
distributed along the wires, with different pit depths on the wires, even at the same 
location along the strand. Due to the local character of these pits, often the pitting 
factor at different locations along the structure is assumed uncorrelated. To model 
spatial variation due to pitting corrosion in prestressed structures, Darmawan and 
Stewart (2007) subdivided the beams studied in their work into different elements, 
with element lengths equal to twice the development length of the bond between 
steel and concrete. This element length is based on the assumption that when 
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failure of the steel occurs, there will be a loss of capacity at a distance equal to this 
development length at either side of the fracture since the bond strength has to 
redevelop starting from the location of fracture. Assigning the element length 
equal to two times the development length of the bond is based on the assumption 
that failure occurs in the middle of the elements. In reality, strand failure could 
occur near element sides with higher or lower action effects, inducing reduced or 
increased reliabilities. Nevertheless, it is assumed that differences in reliabilities 
for non-central strand ruptures will level out, leading to similar reliabilities at the 
level of the structure when compared to those obtained from the proposed failure 
criterion. 
 
Dias-da-Costa et al. (2019) also account for the fact that pitting can vary in space. 
To model the spatial variability, they divide the prestressing reinforcement into 
different segments, with different pit depths for each segment. For this purpose, 
the ratio between maximum and average pit depth R is randomly generated. A 
Gumbel distribution is assigned to R, with parameters u = 5.56 and α = 1.16 based 
on (Stewart and Al-Harthy, 2008), where these values were experimentally 
derived for reinforced concrete beams. All segments are considered statistically 
independent. The resistance capacity of the strands is then governed by the tensile 
capacity of each segment, depending on the reduced prestressing area. In contrast 
to Darmawan and Stewart (2007), who define the discretization length based on 
the transfer length of the prestressing force to the concrete, Dias-da-Costa et al. 
(2019) define the discretisation length as the distance at which pitting corrosion 
influences the structural safety, i.e. in the range of 0.1 to 1 m. The latter means 
that the reliability index cannot suddenly drop at the onset of corrosion. 
 
When comparing both models for the spatial variability, some observations can be 
made. For example, when an accurate estimate of the reliability index is required, 
the element lengths assumed by Darmawan and Stewart (2007) might be too large 
and can result in an underestimation or overestimation of the reliability index 
because of the mentioned possibiltiy of non-central strand ruptures and the 
assumed statistical independence of the segments. The criterion suggested by 
Dias-da-Costa et al. (2019) will lead to more accurate reliability estimates, but at 
the cost of requiring smaller element lengths leading to higher computational 
costs. Hence, the engineer should consider all of these aspects when making 
decisions on the element length. 
 
The effect of the spatial distribution of pitting in PC beams was also studied in 
(Belletti et al., 2020). Here it was demonstrated that the knowledge of the actual 
corrosion distribution over the length of the PC beam is fundamental for a reliable 
prediction of the ultimate limit state. Moreover, assumptions regarding the spatial 
distribution of pitting corrosion might also affect the location of the section where 
failure takes place. 
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For prestressed structures, the effect of pitting has been assumed the most 
prominent one, and hence in the references provided above, discretization is based 
on this pitting process, assuming no correlation between the different elements 
into which the structure is subdivided. Nevertheless, if desired, concrete cover, 
diffusion coefficient, etc. could also still be modelled with random fields and 
hyperparameters, as discussed for RC structures in section III.3 
 
In Chapter II, it was explained how corrosion in prestressed and post-tensioned 
structures can differ, due to multiple causes. Hence, also the spatial variation of 
corrosion could be simulated in different ways. When corrosion occurs through 
the presence of voids in the duct, a method to account for this incidental 
distribution of pits in post-tensioned structures is described by Nguyen et al. 
(2013). They subdivide the girder in nM elements. Each of these elements has a 
length Lw and contains np pits. The number of pits in each element is predicted by 
a Poisson distribution with mean np and the number of occurrences equal to the 
number of elements nM. This is based on the assumption that there is only a single 
pit in one wire in each element. Besides the distribution of pits in an element, the 
number of pits that can be present in one tendon is also considered random. 
Nguyen et al. (2013) use a Poisson distribution to predict the number of pits in one 
tendon. The mean value of this distribution is equal to one, representing the 
common case that at least one pit is formed in the tendon. The number of 
occurrences now equals the number of tendons in an element. As such, the number 
of pits in each tendon in each element can be calculated. This differs from the 
approaches by Darmawan and Stewart (2007) and Dias-da-Costa et al. (2019), 
who assume that each strand is exposed to pitting, while the pitting factors for the 
wires are considered as independent random variables. As such, a different sample 
for the pitting factor is generated for each wire of each strand in each element. 
Pitting corrosion caused by penetration of chlorides through the duct will also be 
characterized by a spatial variability. For the latter, the models for prestressed 
structures can still be used. 

III.5 Conclusions 

In this chapter, different ways of modelling the spatial variability of the corrosion 
process are described. First, a general introduction is given to the use of 
hyperparameters and random fields to model spatial correlation between variables. 
The advantages and disadvantages of both methods are also presented. Then, 
suggestions are provided on how random fields and hyperparameters can be used 
to account for spatial degradation in reinforced concrete structures. Since 
reinforced concrete structures and prestressed concrete structures suffer in slightly 
different ways from corrosion, also models to account for the spatial variability of 
(pitting) corrosion in prestressed concrete structures are provided.  
 
All indications on how to model a certain variable (i.e. with hyperparameters or 
random fields) that are provided in this chapter are only suggestions. In the 
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following chapters, when the spatial correlation of corrosion is accounted for, the 
assumptions on which variables are modelled with random fields and which 
variables are modelled with hyperparameters will be discussed before introducing 
the calculations and results. In general, mostly random fields will be used to model 
spatial correlation of corrosion in reinforced concrete structures. 
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“Uncertainty isn't just a sign of human ignorance; it's what the world is made 
of.” 

- Ian Stewart, Do Dice Play God? 
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IV.1 Introduction 

In this chapter, the principle of Bayesian inference will be introduced. Bayesian 
inference is a technique to incorporate information from data, taking into account 
uncertainties. As such, depending on the choice for the prior distribution, there 
might be a reduction in uncertainty, and the posterior distribution resulting from 
the Bayesian inference can provide more specific information on the variable 
under investigation. Bayesian inference has often been referred to in literature as 
a powerful tool to perform model updating, structural system identification and 
damage assessment (Beck, 2010; Beck et al., 2001; Huang et al., 2019; Vanik et 
al., 2002; Yuen et al., 2006). The incorporated information can consist of data 
resulting from measurements directly providing information on the variable of 
interest. However, such data is often not available since in many situations the 
variable of interest (i.e. the variable to be updated) cannot be measured directly. 
Other parameters are then measured, which depend on the variable of interest, 
providing indirect information on the latter. In section IV.3 of this chapter, 
different data types treated further in this work will be summarized. All these types 
of measurements will provide indirect information on the stiffness and hence the 
corrosion degree of a reinforced concrete structure under investigation. 

IV.2 Introduction to Bayesian inference 

The principle of Bayesian inference traces back to the theory of Thomas Bayes on 
how to assess the probability of a certain value of a non-observed quantity, making 
use of a set of related measurements. Bayes theorem to calculate the probability P 
of an event Ei given the observation A (i.e. the posterior probability of Ei) is given 
by equation (IV-1). 𝑃[𝐸𝑖|𝐴] = 𝑃[𝐴|𝐸𝑖]𝑃[𝐸𝑖]𝑃[𝐴]  (IV-1) 

Bayes theorem cannot only be applied to events but also to random variables or 
random vectors, for example X and Y, with prior probability density functions fX(x) 
and fY(y). The posterior probability density function of X given Y is then given by 
equation (IV-2), which represents a general formulation of Bayes theorem 
(Gelman et al., 2014). 𝑓𝑿"(𝒙) = 𝑓(𝒙|𝒚) = 𝑓(𝒚|𝒙)𝑓𝑿(𝒙) ∫ 𝑓(𝒚|𝒙)𝑓𝑿(𝒙) 𝑑𝒙 (IV-2) 

Here, 𝑓𝑿"(𝒙) is the posterior probability density function of X. 
 
In the current work, Bayesian inference will be applied for model updating 
purposes, i.e. updating the degradation model of a reinforced concrete structure 
under investigation. Hence, the random variables that are updated are the structural 
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model parameters 𝜽𝑀. Equation (IV-2) could then be written according to equation 
(IV-3). 𝑓"(𝜽𝑀) = 𝑓(𝜽𝑀|�̅�) = 𝑐𝑓′(𝜽𝑀)𝐿(𝜽𝑀|�̅�) (IV-3) 

Here, 𝑓′(𝜽𝑀) is the prior distribution of the structural model parameters 𝜽𝑀, L is 
the likelihood function of 𝜽𝑀 given the data �̅�, and c is a constant to normalize the 
probability density function (PDF). To evaluate the likelihood function, the data �̅� will be compared with the outcomes of a (structural) model representing the 
relationship between the variables of interest 𝜽𝑀 and the measured quantity. In the 
following, 𝑮 is the model to simulate the measured quantity 𝒅 as a function of the 
input variables 𝜽𝑀. 
 
The likelihood function 𝐿(𝜽𝑀|�̅�) can be interpreted as a measure of how well a 
model succeeds in explaining the observations �̅�. The latter will often deviate from 
the true system output and from the modelled output. Hence, the measurement data �̅� can be written according to equation (IV-4) (Simoen et al., 2015). �̅� = 𝒅 + 𝜼𝐷 = 𝑮(𝜽𝑀) + 𝜼𝐺 + 𝜼𝐷 (IV-4) 

Here, 𝜼𝐺 is a modelling error describing the discrepancy between model 
predictions of the measured quantity 𝑮(𝜽𝑀) and the true system output 𝒅, and 𝜼𝐷 
is the measurement error, which represents the discrepancy between the observed 
structural behaviour �̅� and the true response 𝒅. Accordingly, in the present work, 
equation (IV-5) is used for the likelihood (Simoen et al., 2015). 𝐿~(det(𝚺𝐷 + 𝚺𝐺))−1/2 exp (− 12𝐹𝑀𝐿) (IV-5) 

This expression is based on the assumption of a normally distributed measurement 
error 𝜼𝐷 and modelling error 𝜼𝐺, both with zero mean and covariance matrixes 𝚺𝐷 
and 𝚺𝐺 respectively. 𝐹𝑀𝐿 is the maximum likelihood function and is given by 
equation (IV-6) (Simoen et al., 2015). 𝐹𝑀𝐿 = (𝜼𝐷 + 𝜼𝐺)𝑇(𝚺𝐷 + 𝚺𝐺)−1(𝜼𝐷 + 𝜼𝐺)                                     = (𝑮(𝜽𝑀) − �̅�)𝑇(𝚺𝐷 + 𝚺𝐺)−1(𝑮(𝜽𝑀) − �̅�) (IV-6) 

 
The assumption of normally distributed errors is generally accepted (Geyskens et 
al., 1998) since it is based on the principle of Maximum Entropy (Simoen et al., 
2013). Also other distributions for the measurement and modelling errors can be 
assumed by adjusting the shape of the likelihood function. An example of 
including a multiplicative lognormal distribution for the modelling error will be 
discussed in Chapter XII. 
 
In many cases, no closed form analytical expression can be found for the posterior 
distribution in equation (IV-3). To derive the posterior distribution for these 
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situations, sampling based methods such as Markov Chain Monte Carlo (MCMC) 
methods were developed. These methods obtain samples from probability 
distributions based on a Markov chain, which is defined as a sequence of random 
variables xi for which the distribution, conditioned on past realizations, depends 
only on the previous sample xi-1 (Gelman et al., 2014). Hence, a chain of samples 
from the posterior distribution can be drawn in this way. The generated samples 
will then asymptotically behave as the PDF to be sampled. In this work, a 
‘cascade’ Metropolis-Hastings algorithm will be used for evaluating the Markov 
chain. The algorithm for the transition between two estimates of the posterior 
distribution is based on equation (IV-7) (Gelman et al., 2014). 𝒙𝑖+1 = {  𝒙 ∝ 𝑞(𝒙|𝒙𝑖) with probability ψ𝒙𝑖 else  (IV-7) 

Here, 𝑞(𝒙|𝒙𝑖) is the transition distribution. A common choice for this is a random 
walk, by adding a random increment to the previous estimate, as shown by 
equation (IV-8). 𝒙 = 𝒙𝑖 + 𝜻 (IV-8) 

Here, 𝜻 is a random vector that does not depend on the previous chain. These 
values are most often drawn from a normal distribution with zero mean and 
standard deviation σζ. This last one determines how fast the algorithm will 
converge. 
 
The probability ψ is the joint acceptance probability based on the prior probability 
and the likelihood function. This can be restated as the probability that a random 
sample uP, drawn from a uniform distribution between zero and one, is accepted 
according to the prior distribution and that a random sample uL, drawn from a 
uniform distribution between zero and one, is accepted according to the likelihood 
function. 
 
When applying the MCMC procedure, the first part of the generated samples is 
not considered to avoid taking along the burn-in period in the estimate of the 
posterior distribution. Convergence is checked by investigation of the evolution 
plots of the generated chains, i.e. the generated samples as a function of the 
iteration number. Furthermore, convergence is also verified in terms of the mean 
and standard deviation of the posterior distributions. 
 
In some cases, an analytical expression of the posterior distribution is available, 
and MCMC should not necessarily be applied. For example, when G(𝜽𝑀) is a 
linear model (i.e. G(𝜽𝑀) = RG𝜽𝑀), and 𝜽𝑀 has a (multivariate) Gaussian 
distribution with prior mean and covariance matrix 𝝁𝜽𝑀 and 𝜮𝜽𝑀, the posterior 
distribution of 𝜽𝑀 will also be Gaussian and the posterior mean vector and 
covariance matrix are given by equations (IV-9) and (IV-10) respectively (Malings 
and Pozzi, 2018; Vanmarcke, 2010). 
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𝝁𝜽𝑀|�̅� = 𝝁𝜽𝑀 + 𝜮𝜽𝑀𝑹𝐺𝑻(𝑹𝐺𝜮𝜽𝑀𝑹𝐺𝑻 + 𝜮𝜼)−𝟏(�̅� − 𝑹𝐺𝝁𝜽𝑀) (IV-9) 

𝜮𝜽𝑀|�̅� = 𝜮𝜽𝑀 − 𝜮𝜽𝑀𝑹𝐺𝑻(𝑹𝐺𝜮𝜽𝑀𝑹𝐺𝑻 + 𝜮𝜼)−𝟏𝑹𝐺𝜮𝜽𝑀𝑻  (IV-10) 

Here, 𝜮𝜼 is the error matrix (𝚺𝐷 + 𝚺𝐺) and �̅� is the vector of the available data. 

IV.3 Types of data considered in this work 

When applying the Bayesian inference procedure, different types of data can be 
considered. This can be direct data, measuring directly the variable of interest, or 
indirect data related to the variables of interest in an indirect way. 
 
When performing an inspection or measurement at time tinsp, in the ideal case one 
would directly measure the remaining reinforcement area perfectly: As,insp. When 
this is smaller than the reinforcement area initially present in the structure (As0), 
there is some corrosion present in the structure. Hence, one knows for sure that the 
initiation period Ti is smaller than tinsp, as indicated in Figure IV-1. Different 
combinations of Ti and the corrosion rate Vcorr (e.g. (Ti

1, Vcorr
1) and (Ti

2, Vcorr
2)) 

might lead to the same reinforcement area As,insp at tinsp. Since a variety of 
combinations of Ti and Vcorr is still possible, there is no unique solution. In a 
Bayesian context, a distribution with a certain mean and standard deviation will 
be specified for the initiation period, and the same will be done for the corrosion 
rate. Moreover, in reality, measurements will provide indirect information on the 
remaining steel section and measurement and/or modelling errors will be present, 
leading to a more vague posterior distribution. 
 
In the following sections, different data types used in the next chapters will be 
introduced. It will be illustrated how these are linked to the corrosion degree and 
can hence be used in the Bayesian inference procedure to find posterior 
distributions of the corrosion variables, such as the initiation period and corrosion 
rate. Here, following definitions of monitoring and inspection are considered: 

- Monitoring: The retrieval of global information from the structure. 
Dynamic or static tests are performed and relevant data is captured. The 
duration of the tests can be some days up to some weeks. The term does 
not necessarily refer to continuous long-term measurements. 

- Inspection: Local short-term measurements or observations, such as 
visual inspections and crack width measurements. 
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Figure IV-1: Observations on the corrosion process 

IV.3.1 Visual data 

Visual inspections are the most frequently occurring types of inspections. In 
Flanders, visual inspections for bridges occur very frequently (Vlaams Ministerie 
van Mobiliteit en Openbare Werken, 2012). They do not require any equipment, 
except from a photo camera, if available. By performing these inspections, it can 
be observed whether the safety of the user of the structure is in danger, or whether 
there are any abnormal evolutions in the behaviour of the bridge (Vlaams 
Ministerie van Mobiliteit en Openbare Werken, 2012). 
 
Regarding corrosion, the most important visual observations are the presence of: 

- Rust stains; 
- Corrosion cracks; 
- Concrete spalling. 

If any of these signs are present, it can be concluded that the reinforcement of the 
structure has started to corrode. If spalling is present, corrosion is already in an 
advanced stage and measures might have to be taken to prevent any further 
corrosion. 
 
In Figure IV-2 it is illustrated how visual observations can influence the 
distribution of the initiation period Ti. If at the time of visual inspection tinsp it is 
observed that rust stains are present, the initiation period Ti should be smaller than 
tinsp, since for higher Ti no corrosion would be present in the structure yet. 
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Figure IV-2: Influence of a visual observation of corrosion on the PDF of the initiation 
period 

 
From visual observations, the presence of bending cracks can also be observed. 
This might indicate possible overloading of the structure, i.e. loads exceeding the 
service loads. On the other hand, this might also point to a reduced resistance of 
the bridge, where service loads already induced concrete cracking. The presence 
of these cracks should be taken into account when models of the bridge would be 
made. 
 
It should be pointed out that visual inspections can suffer significantly from 
operator bias. If such bias is present, this bias should be accounted for when 
evaluating the information from the visual inspections. 

IV.3.2 Data from static diagnostic load testing 

According to (Transportation Research Board, 2019a), diagnostic load tests are 
performed with small fractions of the design live loads. A controlled and known 
load is applied to the structure to facilitate the comparison between the predicted 
bridge response (by an analytical or finite element model) and the actually 
measured response. In this way, the model of the bridge can be calibrated, 
improving the accuracy of the model-based predictions. However, it should be 
noted that part of the difference between the field measurements and the predicted 
response could be attributed to the presence of measurement and/or modelling 
errors. The measured responses are zeroed at the beginning of the load test and 
hence only include the live load effects. Influences of degradation on the capacity 
can be determined by estimating their effect on the structural stiffness. To identify 
the nature and source of the degradation, the diagnostic test results should be 
supplemented with other data such as visual inspections, non-destructive testing 
or material testing. 
 
Diagnostic load tests can be executed in a relatively short amount of time (typically 
1 day). Most activities can be carried out on a subset of the traffic lanes of a bridge 
while the remaining lanes remain open to traffic. Full closures are only required 
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during the data collection phase, which can typically be completed in 5 to 
15 minutes per load path. When access to the underside of the bridge is necessary, 
partial closures of the roadway under the bridge may be required. 
Typically measured parameters during a diagnostic load test are strains and 
deflections. Both give an indication on the actual stiffness of the structure. 
Whereas deflections depend on the global stiffness of the structure, for a statically 
determinate structure, strains depend on the stiffness of the cross-section where 
the strains are measured. If the structure is statically indeterminate, the global 
stiffness distribution will also influence the strain results. Measuring strains in RC 
bridges requires relatively large gauge lengths. When using very small gauge 
lengths, the heterogeneous nature of the concrete will result in significant 
measurement uncertainties. Moreover, for small gauge lengths the effect of local 
cracking can result in strain variations. The gauge length should be large enough 
to capture cracking effects in a smeared way. When multiple strain gauges are 
applied over the height of a girder, a strain profile can be developed to check if the 
cross-section behaves as cracked or uncracked. If the lower part of the cross-
section is cracked, the neutral axis moves upwards. Environmental effects on the 
data should be investigated prior to any load test. If the effect on a sensor is large, 
experimental results should be adjusted accordingly. Typically, a very slow 
moving test vehicle is used (8 km/h). Due to this short load cycle, effects of 
temperature and humidity might be considered relatively constant during the test. 
 
According to (Transportation Research Board, 2019b) strain sensors are widely 
used to capture the strain response associated with applied loads. It is stated to be 
probably the most (cost) effective sensor for determining how a structure reacts to 
its load demand, leading to determination of the structural integrity. Different 
types of strain sensors are listed, such as polymer-based sensors, electrical 
resistance based sensors, bolted-on sensors, epoxied sensors, weldable sensors, 
vibrating wire sensors, etc. The mentioned advantages of strain sensors are the 
easy-to-understand data, a well-known technology that is widely in use, and the 
versatility of the strain sensors. A disadvantage is the temperature effect that 
should also be accounted for. In (Transportation Research Board, 2019b), 
displacement sensors are stated to be typically used for the determination of 
relative linear movement of a structural element due to a loading event. The main 
disadvantages of displacement sensors are the limited scale and the requirement 
of a point of fixed reference. 

IV.3.3 Ambient vibration data 

For small structures, vibrations can be measured under a known impact with a 
hammer, where the force of the latter can also be measured. For bridge structures, 
this becomes more difficult. Here, vibrations are measured either under ambient 
conditions, or a dynamic test is performed, for example by driving a truck over the 
bridge. Dynamic data is often used for model updating. Common modal-based 



 
 

 
 

Updating corrosion models using Bayesian inference 61 
 

damage detection features are reviewed in (Moughty and Casas, 2017). These 
include natural frequencies, modal damping, displacement mode shapes, modal 
curvatures, modal strain energy and modal flexibility. Frequency shifts might be 
attributed to damage in the structure. The principle of damage detection based on 
modal damping is that cracking in a cross-section will increase internal friction 
and hence raises the value of the section’s damping. Displacement mode shapes 
have the advantage of being less influenced by the environment. Modal curvatures 
are the second derivative of the displacement mode shapes or can be derived based 
on the strain mode shapes. Modal strain energy is the energy stored in a structure 
when it deforms in its mode shape pattern, and the modal flexibility method 
defines the flexibility matrix as the inverse of the stiffness matrix (Catbas et al., 
2008; Jaishi and Ren, 2006; Pandey and Biswas, 1994). In this work, the focus 
will be on natural frequencies, displacement mode shape and strain mode shapes. 
 
The natural frequencies of a structure depend on its stiffness. The higher the 
stiffness, the larger the natural frequencies. However, since these natural 
frequencies depend on the global stiffness of the structure, it is impossible to 
localize damage based on natural frequency data. Localization of damage can be 
performed by combining the information from the natural frequencies with the 
corresponding displacement mode shapes. Local damage can change the 
displacement mode shape, as for example illustrated in Figure IV-3. Hence, by 
comparing the modelled with the experimental displacement mode shapes, the 
locations of regions with higher or lower stiffness can be identified. To estimate 
the absolute values of the stiffness based on modal data, the natural frequencies 
are also required. A same spatial distribution of the stiffness, but with other 
absolute values will induce the same displacement mode shapes, but the natural 
frequencies will differ. 
 

 
Figure IV-3: Influence of damage in a beam on the displacement mode shape of the first 
bending mode. Not that the damaged zone should be sufficiently large to influence the mode 
shape. 
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By making use of fibre-optic Bragg gratings, dynamic strains can be measured 
directly in a quasi-distributed way along the length of the fibre (Anastasopoulos, 
2020). These measured dynamic strains can then be used to identify the strain 
mode shapes for the monitored structure by making use of advanced system 
identification techniques. As such, cracks can be identified and localized by 
identifying changes in the strain mode shapes and in the position of the neutral 
axis. Strain mode shapes (and the corresponding modal curvatures) will be more 
sensitive to local damage compared to displacement mode shapes. 
 
When dynamic tests are performed, the obtained natural frequency will correspond 
to a certain stiffness. In this work, the stiffness of a reinforced concrete structure 
will be related to the corrosion degree of the reinforcement. Measurement errors 
and numerical errors in the processing of the data to obtain the experimental 
natural frequencies lead to uncertainties regarding the latter, which can be 
characterized by a probability distribution function. As illustrated in Figure IV-4, 
this will also lead to an uncertainty on the corrosion degree α. 
 

 
Figure IV-4: Uncertainty on the corrosion degree (α) based on the uncertainty on the 
experimental natural frequency (�̅�𝑟) 

 
In (Transportation Research Board, 2019b) accelerometers are mentioned to be 
used for the determination of the resonant frequency of a structure for comparison 
with a baseline analysis. The advantages are that accelerometers are relatively easy 
to install and can be reused (low costs per use). The disadvantages are the 
substantial amount of data that is produced which is difficult and/or expensive to 
process. Moreover, the resulting natural frequencies (after data processing) are 
global in nature and cannot pinpoint the location of concern on the structure that 
generated a response. For this purpose, also the displacement mode shapes should 
be extracted from the data. Transportation Research Board (2019b) also states that 
the obtained global structural modal response can be combined with subsequent 
responses in order to identify whether structural damage has occurred. Regarding 
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fibre-optic sensors, Transportation Research Board (2019b) mention as 
advantages the accuracy of 1 micron or less (i.e. very low strain values can be 
measured compared with traditional strain gauges), the low cost to install in long, 
linear cables with serial sensors (compared to many multiple strain gauges), and 
the effectiveness when used as long gauge length strain sensors on surfaces subject 
to strain variations, such as older concrete surfaces. The disadvantages are the fact 
that the sensors and data acquisition can be more expensive than standard strain 
measurements, and the fragility of the sensors. A critical note should be made on 
the accuracy, since this also depends on the equipment, environmental conditions, 
post-processing, etc. 

IV.3.4 Combinations of data 

As pointed out in the previous sections, each of the mentioned test methods and 
corresponding data types has its advantages and limitations. Hence, in this work 
the combinations of the different types of data will be investigated. Natural 
frequencies and displacement mode shapes will be combined, based on the 
arguments provided in section IV.3.3. Moreover, gathering modal data can be less 
expensive than measuring static strains all over the structure. Modal data will give 
an idea of the stiffness distribution of the structure, but the identified stiffness 
distribution is accompanied with relatively large uncertainties. Static strains on the 
other hand provide local information on the stiffness, but no information on the 
general stiffness distribution. Hence, it might be difficult to determine beforehand 
where these static strains need to be measured. A possible solution that will be 
investigated in this work is the combination of both types of data. The critical 
elements of the structure will be localized based on the modal data. If the identified 
stiffness is very low, diagnostic load tests can be performed after the dynamic 
tests, where strains will be measured at the critical locations. 
 
In addition, visual data can be used to supplement the static and/or dynamic data. 
It will give an indication on the origin of the stiffness reduction. Moreover, it can 
limit the possible ranges of some of the uncertain parameters in the updating 
procedure. For example, if rust stains or corrosion cracks are observed, the time 
of this observation provides an upper boundary for the distribution of the initiation 
period. Furthermore, models to predict the crack width or time to cracking can be 
updated based on the observed crack locations or crack widths. 

IV.4 Conclusions 

In this chapter, formulations are provided for Bayesian inference, i.e. updating a 
prior distribution to a posterior distribution based on obtained measurement data. 
It is explained how sampling procedures can be used to generate the posterior 
distribution. Furthermore, different data types that are considered in this work are 
introduced. These consist of visual observations, strains or displacements 
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measured under a diagnostic load test, and modal data (natural frequencies, 
displacement mode shapes and strain mode shapes) obtained from dynamic tests. 
All indications on which variables should be updated with the application of 
Bayesian inference are only suggestions. In the following chapters, when Bayesian 
inference is applied, the assumptions on which variables are inferred (and which 
prior distributions are assigned to them) will be discussed before introducing the 
calculations and results. 
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“All models are wrong, but some are useful.” 

- Common aphorism in statistics 
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V.1 Bridge management – current practice 

In current bridge management, routine or regular inspections are carried out 
periodically at intervals defined by the design service life. These routine 
inspections are performed to identify whether any changes in the structural 
conditions have occurred, and to detect indications of deterioration and the time 
of their first appearance. To meet these objectives, the inspections are carried out 
with appropriate tools and techniques (fib, 2013). These tools and techniques, and 
the frequency of the inspections, should be determined based on factors such as 
the likely mechanism of deterioration, environmental conditions, importance of 
the structure, etc. 
 
In Flanders, routine inspections are visual inspections. They are performed very 
regularly and the only required material is a photo camera. Routine inspections 
enable to detect endangered safety for the bridge users, abnormal evolutions in the 
behaviour of the bridge, or certain defects. When severe defects are present, a so-
called O-inspection should be performed. These O-inspections or occasional 
inspections happen in between the three years and six years cycles of the A and C-
inspections (cfr. infra). General inspections or A-inspections are performed 
systematically every three years and consist of level measurements. C-inspections 
are control inspections, performed every six years, alternating with the A-
inspections. They are similar to the A-inspections, but the inspection happens 
faster and with less means. C-inspections are applied to structures where little 
problems are expected. The B-inspection or special inspection requires extra 
means and special qualified staff. It is performed if further investigation is required 
for a specific element of a bridge (and not the entire structure, in contrast to the A 
and C-inspections, which are inspections for the total structure). 
 
In (fib, 2013) a chapter is devoted to the conservation of structures. In this chapter, 
information is provided on inspections and maintenance of new and existing 
structures. It is stated that proactive conservation requires more than just periodic 
visual inspections, since changes may happen to the internal conditions of the 
structure, without exposure to the outer zone of the concrete and hence without 
visible indicators. These changes cannot be recognised based on visual 
inspections. Information on the progress of internal degradation is generally 
gathered from appropriate non-destructive tests or samples from the concrete. 
 
There are various circumstances when a detailed investigation might be required 
(fib, 2013): 

- Signs of significant deterioration or changes in performance level are 
observed during a routine inspection; 

- A routine inspection is unable to provide the required information; 
- It is suspected that the structural integrity has adversely been affected by 

deterioration. 
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According to (fib, 2011), a reactive strategy follows visual observations, where 
more in depth investigations are performed when deterioration has been observed. 
The results of these investigations determine the required repair. The type of repair 
and the optimal point in time are mainly based on the results of visual inspections 
only. There are some major disadvantages of this reactive strategy: 

- When deterioration is visible, the degree of deterioration can already be 
well-advanced and expensive repair work will be required; 

- The possibility to perform pro-active maintenance (which is 
economically more beneficial in the long term) will already have passed; 

- Visual signs of deterioration reduce the attractiveness of the structure and 
the trust of the users. 

 
Non-Destructive Testing (NDT) and structural monitoring can provide better 
knowledge on the deterioration mechanism and degradation state, and provide a 
basis for a proactive repair strategy. This will allow early quantification of 
deterioration before visual damage occurs. As such, proactive interventions can be 
performed, delaying further deterioration. The advantages of a proactive strategy 
are the possible elimination of future corrective interventions and the proactive 
intervention will be cheaper than the otherwise required extensive repairs. 
Moreover, the visual appearance of the structure will be better, providing more 
trust to the users. By performing the proactive repair, also the residual value of the 
asset is improved. 
 
Since the costs for monitoring can become very high, it might be beneficial to 
determine beforehand whether a monitoring campaign is actually worth the 
investment. Moreover, the optimal time and/or locations of the measurements 
should be determined, and the number of sensors should be quantified. For 
example, according to (Transportation Research Board, 2019b), placing too much 
sensors should be avoided for the sake of collecting data, and good engineering 
judgment should be used when determining the number of sensors. These aspects 
(whether, when and where to measure) can be answered by application of the pre-
posterior analysis and the Value of Information (VoI). These concepts will be 
explained more thoroughly in the following sections. 

V.2 Pre-posterior analysis 

In engineering, decisions are often made under uncertainty. This uncertainty is 
present due to incomplete or uncertain information on the parameters in the 
decision. To cope with this uncertainty, Bayesian statistical decision theory can be 
applied. The question to be answered is the following: ‘Is it worth to collect more 
information before making a decision?’. 
 
The decision process consists of choosing an action out of a set of possible actions 
aj. Moreover, a number of uncertain conditions or events θi can occur. The 
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combination of such a condition and an action results in a utility u, often expressed 
in monetary terms. This can be visualized by a decision tree as illustrated in Figure 
V-1. 
 

 
Figure V-1: Example of a decision tree 

 
A priori, a probability is assigned to the different conditions θi. By multiplying the 
utility of θi and aj (u(aj, θi )) with the prior probability of θi (P’(θi )) and taking the 
sum over the different conditions, the utility corresponding to the action aj can be 
determined (𝑢(𝑎𝑗) = ∑𝑃′(𝜃𝑖)𝑢(𝑎𝑗 , 𝜃𝑖)). The optimal action will then be the one 
resulting in the highest utility. If now additional information becomes available, 
the prior probabilities assigned to the different conditions can be updated. Using 
these updated probabilities (P”(θi )), a new (posterior) utility for each of the action 
alternatives is found. Based on these utilities, the posterior optimal action can be 
chosen, taking into account the available additional information. The question of 
whether or not to gather this additional information has to be answered before 
actually collecting it. However, when making this decision, the outcome of 
additional tests is not known yet. Different possible test outcomes are considered, 
and for each of these test outcomes, the posterior utility is calculated and 
multiplied with the prior probability of actually measuring that test outcome. By 
summing up these results, an estimate of the total utility is found, taking into 
account the measurements. As such, the question ‘Is it worth to collect more 
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information before making a decision?’ can be answered. This latter analysis is 
called the pre-posterior analysis. 
 
The framework of pre-posterior decision analysis (Raiffa and Schlaifer, 1961) has 
enormous potential as a decision support tool in structural engineering, and is 
commonly applied in inspection and maintenance planning (e.g. (Faber et al., 
1993; Sorensen et al., 1993)). Utilities are often expressed as costs, where the 
optimal decision will be the one resulting in the lowest costs. The costs considered 
in the analysis are life-cycle costs and should cover the whole (remaining) life-
cycle of the structure. The objective of the pre-posterior analysis is to minimize 
these long-term expected costs, which should be discounted to the present value 
(Memarzadeh and Pozzi, 2016a, 2016b). Another important benefit of the pre-
posterior analysis is the possibility to compare different maintenance strategies 
and select the (sub)optimal one. The application of such a methodology for the 
integrated life-cycle cost decision-making related to monitoring of concrete 
structures with time-dependent degradation phenomena has at present not yet been 
investigated in detail. More specifically, the basic methodology of the pre-
posterior analysis must be extended to incorporate time-dependent and spatially 
distributed degradation processes inherent to existing concrete structures. These 
aspects will be investigated further in this work. 

V.3 Decision-making based on VoI 

V.3.1 Risk-based inspection planning 

The conditions or events in the pre-posterior analysis (earlier denoted with θi) 
often consider failure or survival of the structure. Hence, calculations of life-cycle 
costs in the pre-posterior analysis require calculations of failure probabilities, and 
decisions for structures or structural systems are often tackled with a risk-based 
approach. Risk-based inspection planning concerns the optimisation of inspection 
strategies, which define when and where to inspect, and which inspection 
technique to be used. All these different inspection strategies might provide 
different information and involve different costs. The cost of an inspection strategy 𝒮, with outcome 𝒚, is given by equation (V-1), where CT is the total cost, CI the 
inspection cost, CR the repair cost and CF the failure cost or the lifetime risk (Luque 
and Straub, 2019). 𝐶𝑇(𝒮, 𝒚) = 𝐶𝐼(𝒮, 𝒚) + 𝐶𝑅(𝒮, 𝒚) + 𝐶𝐹(𝒮, 𝒚) (V-1) 

 
As pointed out in the previous section, the inspection outcomes are not known 
beforehand, and the estimated total cost will be the average over the possible 
inspection outcomes according to equation (V-2) (Luque and Straub, 2019). 
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𝐸[𝐶𝑇(𝒮, 𝐘)] = ∫ 𝐶𝑇(𝒮, 𝒚)𝑓𝒀(𝒚)𝑑𝒚𝒀  (V-2) 

Finally, the optimal inspection strategy is the one that minimizes this expected 
lifetime cost, mathematically described by equation (V-3) (Luque and Straub, 
2019). 𝒮∗ = 𝑎𝑟𝑔𝑚𝑖𝑛[𝐸[𝐶𝑇(𝒮, 𝐘)]] (V-3) 

 
The number of possible inspection strategies might become very extensive. To 
overcome this issue, heuristics can be used to limit the set of possible strategies 
(Bismut et al., 2017). Examples hereof are probability thresholds and fixed 
inspection intervals. When investigating a structure at the system level, not only 
the timing, but also the location of the inspections is of importance. Therefore, 
heuristics at the component level can be extended to the system level. The 
components to be inspected can be taken along in the optimization as one of the 
decision variables. Furthermore, a limit on the system reliability can be used as a 
probability threshold instead of or next to a limit on the element reliability. In a 
similar way, the criteria to perform repairs can also be fixed. In most works, the 
latter is based on damage size (Luque and Straub, 2019). The flow chart of this 
heuristic implementation is illustrated in Figure V-2. 
 
When considering low-probability-high-consequence events in the optimization 
as given by equation (V-3), these could be accounted for by increasing the 
corresponding failure costs of the high-consequence events. Their occurrence 
could also be avoided by setting reliability thresholds, keeping the failure 
probability below a maximum tolerable level. 

V.3.2 Value of Information 

The Value of Information (VoI) is a metric to guide the decision on the 
implementation of an inspection strategy and the choice hereof. The optimal 
inspection strategy can be considered as the one that maximizes the VoI. The VoI 
represents the expected benefit from the implementation of an inspection strategy. 
It is calculated as the difference in the expected total life-cycle cost with and 
without the implementation of the inspection strategy, or hence the difference 
between posterior and prior expected costs. The VoI is quantified before any real 
observation is made, hence not the actual posterior cost, but a pre-posterior 
estimate of these costs is involved. This means that all possible inspection 
outcomes are considered (computed by sampling), and the posterior costs for these 
samples are calculated and weighted with their (prior) probability of occurrence. 
As such, an expected value of the pre-posterior cost is obtained. The VoI is 
calculated by equation (V-4) (Straub, 2014). 
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𝑉𝑜𝐼 = 𝐸[𝐶𝑝𝑟𝑖𝑜𝑟]  − [∫ 𝑓𝒀(𝒚)min𝑎 [𝐶𝑇(𝒮, 𝒚, 𝑎)]𝑑𝒚𝒀 ] (V-4) 

Here, fY(y) is the joint PDF of the inspection outcomes Y, 𝐶𝑇(𝒮, 𝒚, 𝑎) is the 
expected total life-cycle cost corresponding to action a, inspection strategy 𝒮 and 
outcomes y. This is calculated according to equation (V-2) for one specific 
decision on action/repair (i.e. the threshold for performing an action/repair and the 
corresponding type of action/repair). E[Cprior] is the prior expected lifetime cost 
without inspections (or when considering a baseline inspection scenario) and is 
given by equation (V-5). It is calculated as the minimum of the costs over the 
different possible decisions or actions a. 𝐸[𝐶𝑝𝑟𝑖𝑜𝑟]  = min𝑎 𝐶𝑇(𝑎) (V-5) 

 

 
Figure V-2: General flow in risk-based inspection planning 
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It is noteworthy to mention that an exact assignment of costs and utilities is often 
not necessary in the determination of the VoI. For decision-making, approximate 
estimates are sufficient for calculating and ranking the VoI of different 
monitoring/inspection strategies. The VoI can be quantified for different 
inspection and monitoring strategies, i.e. different inspection/monitoring methods 
with different accuracy, sensitivity and cost, but also different locations to perform 
inspections or place sensors, and different points in time at which inspections or 
measurements are performed. 
 
The optimal inspection or monitoring strategy will be the one that maximizes the 
VoI, taking into account the costs of the inspections as well. More information 
regarding this optimisation of information can be found in (Diamantidis et al., 
2018; Diamantidis and Sykora, 2018; Malings and Pozzi, 2017; Thöns and 
Stewart, 2019; Zhang et al., 2019). The optimisation is performed within the 
relevant constraints, such as limitations in time and on budget. Optimization of the 
inspection strategies by the VoI metric is also illustrated by equation (V-3): 
minimizing the expected pre-posterior life-cycle cost corresponds to maximizing 
the VoI, as also pointed out in (Diamantidis and Sykora, 2018; Thöns and Stewart, 
2019; Zhang et al., 2019). In (Luque and Straub, 2019), the computational 
challenge of considering all possible inspection strategies, especially at system 
level, is addressed. Three possible solutions are provided. One of these solutions 
is the use of heuristics to limit the set of possible strategies to a small number of 
parametrized stationary strategies. This optimization method will be used in this 
work. It will be assumed that decisions will be made based on reliability or damage 
thresholds. Moreover, the inspection times and locations will be chosen based on 
practical constraints imposed by the operator or other heuristics like reliability 
thresholds, the predicted level of damage, constant inspection intervals, etc. 
Inspection locations can also be determined based on sensor placement strategies 
as for example illustrated in (Papadimitriou and Lombaert, 2012).  
 
It should be pointed out that the VoI could be defined in two ways. In the above, 
the prior cost is assumed to not take into account any inspections. This is the case 
when the VoI is used as a metric in a decision to be made at the design stage, i.e. 
whether or not it would be useful to implement a more extensive inspection or 
monitoring strategy, next to the regular visual inspections. In this case, the cost of 
this extensive inspection or monitoring campaign could be compared with the cost 
without any inspection. Alternatively, the VoI could also be used as a metric for 
the optimisation of different inspection strategies. Here the prior cost could 
correspond to a baseline scenario of the least required inspections the operator 
would implement. Which of these two definitions of the VoI should be applied 
depends on the practical application. 
 
The concept of the value of information is also visualized in Figure V-3. Here, the 
grey curves correspond to the prior situation. The prior reliability index β (where 
a higher reliability index represents a lower probability of failure) decreases in 
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time, until a certain threshold level (βth) is reached. The resultant action is to 
perform a repair and restore the reliability index to its initial level. The 
corresponding expected costs gradually increase in time due to the increase in 
probability of failure over time. At the moment of repair, a repair cost is added. At 
tinsp, a measurement will be performed. This can give different outcomes, resulting 
in different reliability levels after the inspection. Two examples are visualized in 
Figure V-3. ‘Posterior 1’, the blue curve, corresponds to an 
inspection/measurement with a beneficial outcome, leading to a larger reliability 
index than a priori expected. The decrease in reliability is also slower, for example 
because the inspection revealed a slow corrosion process. Due to these beneficial 
effects, repair can be performed later in time, which is cheaper when also 
discounting effects are considered. ‘Posterior 2’, the red curve, corresponds to a 
negative inspection outcome, inducing a decreased reliability index compared to 
the a priori expected one. This can for example be the case when the corrosion 
degree is much larger than a priori estimated. Based on this inspection outcome, it 
can be decided to immediately perform the repair and for example apply a repair 
mortar and corrosion protection to reduce the future corrosion rate. When again 
considering the costs, it can be seen that the inspection cost is added at tinsp and 
that the gradual increase in cost depends on the rate of decrease in reliability. When 
evaluating the VoI, the prior cost is the cost at the end of the service life of the 
grey curve (Cprior). For different possible inspection outcomes, different posterior 
costs are found (i.e. again the costs at the end of the anticipated service life). These 
are indicated in Figure V-3 as CSL,1 and CSL,2. These costs should be weighed with 
the probabilities of the corresponding inspection outcomes, i.e. P1 and P2 
respectively. Depending on the type of measurement, more than two possible 
inspection outcomes can or should be considered, denoted with the subscript i. The 
expected value of the posterior cost is then calculated as the weighted sum of the 
posterior costs corresponding to the different inspection outcomes, or as ∑𝑃𝑖𝐶𝑆𝐿,𝑖. 
 
When looking at Figure V-3, it can be seen that repair actions have a twofold 
influence on the life-cycle cost. First, there is the cost of performing the repair 
itself. Second, repair leads to a reduced failure probability, and, depending on the 
type of repair, it can also lead to a slower increase of the probability of failure over 
time. As such, it also influences the contribution of the failure costs in the life-
cycle cost assessment. 

V.4 Conclusions 

In this chapter, a brief introduction is provided to the pre-posterior analysis and 
the VoI framework. It is illustrated how this can be used as a decision-making tool 
when deciding whether or not to implement a monitoring strategy. The VoI can 
also be used to compare different alternative monitoring strategies and choose the 
most optimal one as the one with the largest VoI. In the following chapters, the 
pre-posterior framework and VoI analysis will be further extended in order to take 
into account the time-dependent and spatial character of degradation. 
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Figure V-3: Concept of VoI 
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“Under Bayes’ theorem, no theory is perfect. Rather, it is a work in progress, 
always subject to further refinement and testing.” 

- Nate Silver 
 

 

 

 

 

 

 

 

 

 

Partly redrafted after “A Bayesian inference approach for the updating of spatially 
distributed corrosion model parameters based on heterogeneous measurement 
data” Vereecken E., Botte W., Lombaert G. & Caspeele R. Structure and 
Infrastructure Engineering. 2020 
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VI.1 Introduction 

Monitoring and inspection of structures are important for estimating their 
remaining lifetime and to support decisions on maintenance and repair. Current 
practice in bridge management consists of performing a limited number of tests 
and inspections, but the information is often not used to assess or update the 
deterioration state of the bridge in a quantitative way. Visual data are usually 
supplemented by data from proof loading where, for example, strains and 
deflections are measured, or modal data is extracted from ambient vibration tests, 
including for example acceleration measurements and strain measurements. In 
general, these inspections and measurements are only used to identify parts of the 
bridge suffering from degradation or showing unexpected deformations. This is 
partly due to a lack of knowledge on how to use such measurement data to update 
the estimation of the remaining lifetime of the structure. In (Heitner et al., 2019), 
a methodology is presented to update the estimated level of corrosion damage 
using data such as strains, deflections and rotations measured in operational 
conditions, supplemented by bridge weight-in-motion (B-WIM) data to estimate 
the corresponding service loads to which the bridge is exposed. Subsequently, the 
distribution characterizing the uncertainty in the loss of reinforcement area is 
updated. Sousa et al. (2020) also illustrate that strain measurements are a good 
indicator for corrosion damage resulting in a reduction in stiffness. 
 
In addition to these inspections commonly used in practice, much focus in research 
has gone to vibration-based structural health monitoring (SHM), e.g. techniques 
based on modal analyses (Carden and Fanning, 2004; Cross et al., 2010). Up to 
now, these measurements are often used for data-based SHM methods (Soman et 
al., 2018), considering only the measured values, without translating them into 
adaptations in the prediction model. This means that an intervention is done when 
the measurements show unexpected deviations from previously identified trends 
(Rodrigues et al., 2010). However, when the prediction of the remaining lifetime 
of a structure is required, model-based SHM methods might be more appropriate 
(Simoen et al., 2015). In these methods, updating is most often performed on linear 
elastic models, where an (equivalent) stiffness is adapted in order to localize 
damage (Beck et al., 2001; Dilena et al., 2011; Simoen et al., 2015). Hence, these 
models cannot be used to quantify the remaining service life of the structure, which 
requires models where damage is accounted for in a more realistic way. 
 
Whereas Bayesian theory has often been used to update bridge resistance and/or 
reliability based on observed and/or historical data, attempts to update the 
variables in the time-dependent corrosion models based on indirect and non-
destructive data like strains and modal data are scarce. For example, Marsh and 
Frangopol (2008) use corrosion rate sensor data to improve the accuracy of 
reliability estimates accounting for spatial and temporal variability of the corrosion 
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rate. Hence, they assume that the variable of interest, i.e. the corrosion rate, is 
directly measured. Also Enright and Frangopol (1999) use corrosion rate 
inspection data to predict the deterioration of concrete bridges, referring to 
(Geyskens et al., 1998; Zheng and Ellingwood, 1998) where Bayesian methods 
are used to improve strength and structural reliability predictions. Also Ma et al. 
(2013) directly measure the variables of interest: they use field inspection results 
of concrete strength and concrete cover to update their respective distributions. 
The distribution of the corrosion loss is also updated, but based on destructive 
measurements of this corrosion loss, which is often not possible in practice. Also 
Faroz et al. (2016) performed Bayesian updating of the steel loss assuming that 
there exists a non-destructive tool that is capable of measuring steel loss in 
concrete. A completely different approach is found in (Strauss et al., 2008), where 
a prediction function is first fitted to SHM data and later updated based on 
monitored data. Finally, Heitner et al. (2016) update a general remaining 
reinforcement section based on deflection-based damage indicators. In contrast to 
(Heitner et al., 2016), in this work, no damage indicators will be used, but the 
corrosion variables will be updated based on indirect non-destructive data, 
including static strains and modal data extracted from vibration measurements. 
 
The real corrosion state and/or progress of both existing and new structures might 
differ from the predictions made by different corrosion models. To arrive at a more 
accurate prediction of the remaining lifetime, a better knowledge of the real state 
of deterioration is required. Such information can be extracted from relevant 
measurement data. Measurements and inspections might (1) give an indication on 
whether corrosion has initiated or not, (2) enable updating of the deterioration state 
of the structure based on the (indirectly) measured stiffness, or (3) support the 
localization of damage. As such, the distributions assigned to the model 
parameters describing the deterioration process can be updated, inducing a more 
accurate estimation of the remaining lifetime of the structure.  
 
In this chapter, the parameters of the degradation model will be updated, taking 
into account the spatial character of degradation. Two (non-destructive) types of 
tests will be considered: proof loading and ambient vibration tests. It is 
investigated how the uncertainty on the deterioration state of reinforced concrete 
structures is reduced based on the resulting data from the individual types of tests. 
Furthermore, it is investigated to what extent more accurate predictions are 
achieved by combining both types of tests. A model-based method is used, 
identifying damage through the calibration of a finite element model of the 
structure (Friswell and Mottershead, 1995; Fritzen et al., 1998; Mottershead and 
Friswell, 1993; Simoen et al., 2015; Teughels and De Roeck, 2005). This model 
calibration is performed using Bayesian methods, implying that the prior 
uncertainty on the model parameters is reduced to a posterior uncertainty by taking 



 
 

 
 

84 Chapter VI 
 

  

 

into account the information contained in the measurement data. Environmental 
effects on the modal characteristics and strain measurements are considered to 
have been filtered out and are hence disregarded in the following investigation.  

VI.2 Considered example structures 

Throughout this chapter, two example structures will be used to illustrate the 
concepts. The first one is an illustrative example of a simply supported beam and 
the second one considers a more realistic RC girder bridge. 

VI.2.1 Illustrative example: simply supported beam 

The simply supported beam that will be considered throughout this chapter is 
visualized in Figure VI-1. The beam has a length of 4 m and is 500 mm high and 
300 mm wide. The reinforcement area has been designed for a permanent and 
variable line load, both of 25 kN/m. The bottom reinforcement consists of three 
bars of 20 mm diameter (As0 = 942.5 mm²). 
 

 

 
Figure VI-1: Simply supported beam for illustration of concepts 

 
The reinforcement area of the beam As varies in time according to equations (II-8) 
and (II-9) since the beam is assumed to be subjected to chloride-induced corrosion. 
The prior distributions of the corrosion variables used in this example are given in 
Table VI-1. These are based on CEMI/42.5 with a water/cement ratio of 0.45 and 
a cyclic wet-dry exposure class. The distribution of the initiation period is based 
on the distributions of the variables appearing in equation (II-1). 
 
Corrosion is not uniform along the structure, hence neither is As. To account for 
this spatial character of degradation, the initiation period and corrosion rate are 
modelled as random fields, with marginal distributions according to Table VI-1. 
The random fields are discretized into elements and are transformations of 
underlying Gaussian random fields, which are defined by a mean vector and a 
covariance matrix. A squared exponential correlation model is assumed, 
considering a correlation length of 1 m for both parameters. In general, the 
correlation length should be chosen proportional to the length scale of the expected 
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damage. For the case under consideration, and for the purpose of illustration, the 
correlation length is chosen relatively small. To adequately capture the random 
field, an element length of 0.5 m is chosen. Hence, as also visible on Figure VI-1, 
the beam is discretized in eight elements. Within these elements, degradation is 
assumed constant. However, the corrosion degree varies for the different elements. 
The random fields for the initiation period Ti and the corrosion rate Vcorr are 
discretized in an (8 x 1) matrix. The mean vector of the underlying Gaussian 
random field is an (8 x 1) vector and the covariance matrix is an (8 x 8) matrix. To 
discretize the random fields, Karhunen-Loève decomposition of the underlying 
Gaussian random field is applied according to equation (III-4). For the initiation 
period and corrosion rate as given in Table VI-1, four modes are required in the 
decomposition of the random fields (equation (III-5)). 
 

Table VI-1: Distributions of variables related to the corrosion model of the simply 
supported beam 

Variable 
Symbol 

[unit] 
Mean 

Standard 

deviation 
Distribution Reference 

Pitting factor 
αp 

[-] 
2 - Deterministic 

(Duracrete, 
2000) 

Mean corrosion 

rate while 

corrosion is active 

Vcorr,a 
[mm/yr.] 

0.03 0.04 Weibull 
(Lay et al., 

2003) 

Time of wetness 
ToW 

[-] 
0.75 0.2 Normal 

(Lay et al., 
2003) 

Initiation period 
Ti 

[years] 
22 10 Lognormal - 

Diffusion 

coefficient of 

concrete* 

D 

[mm²/yr.] 
20 10 Lognormal (fib, 2006) 

Surface chloride 

concentration* 

Cs 

[wt.-%/c] 
2 0.9 Lognormal (fib, 2006) 

Critical chloride 

concentration* 

Ccr 

[wt.-%/c] 
0.6 0.15 Lognormal (fib, 2006) 

*These distributions are used in the determination of the parameters of Ti using Taylor 
approximations 
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VI.2.2 Practical example: RC girder bridge 

To illustrate the applicability of the concepts introduced in this chapter, they are 
also applied to a more realistic bridge structure. The bridge as discussed in 
(Enright and Frangopol, 1999) is considered. The investigated span has a length 
of 9.1 m and a width of 11.60 m. The deck is carried by five girders, each with a 
width of 400 mm and a height of 600 mm (Figure VI-2). The main longitudinal 
reinforcement of the girders consists of eight bars with diameter 35 mm, in two 
layers of each four bars (Figure VI-3). 
 

 
Figure VI-2: Cross-section of the RC girder bridge (dimensions in mm) 

 

 
Figure VI-3: Bottom reinforcement of the girders of the studied bridge (dimensions in mm) 

 
In line with (Yang et al., 2019), this bridge is considered to be exposed to a 
medium level of corrosion. The reduction in steel section over time is evaluated 
according to equations (II-8) and (II-9). The probability distributions for the 
different corrosion variables in these models are based on the distributions 
provided by (Yang et al., 2019), and the spatial variation of the corrosion process 
is accounted for. Instead of a lognormal distribution for the corrosion rate Vcorr 
with mean 0.0116 mm/year and a coefficient of variation of 0.2 (as adopted in 
(Yang et al., 2019)), a 2D lognormal random field is considered, with the same 
mean and standard deviation, which are a priori equal in all elements. The 
correlation model of the random field is a squared exponential correlation model 
with correlation length 2 m along the length of the bridge and correlation length 
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5.8 m along the width of the bridge. The bridge is therefore subdivided into 50 
elements, 10 along its length and 5 along its width (i.e. exactly corresponding to 
the positions of the 5 girders). As such, the element length in the transverse 
direction equals 2.5 m and the element length in the longitudinal direction equals 
0.91 m, which are both smaller than half the correlation length in the respective 
directions (DIANA FEA BV, 2017). Furthermore, the diffusion coefficient of the 
concrete D is modelled by a random field as well, with marginal lognormal 
distribution with mean value 129 mm²/year and a coefficient of variation of 0.10. 
The correlation structure is the same as for the corrosion rate, since both 
characteristics follow from the same physical process. Finally, the chloride 
concentration at the surface Cs is modelled as a scalar random variable with a 
lognormal distribution, assuming all elements are subjected to common exposure 
conditions. The distribution for Cs is a lognormal distribution with mean 0.1% and 
a coefficient of variation of 0.1 (Yang et al., 2019). The value of Cs is constant for 
the whole structure. By modelling the diffusion coefficient and the corrosion rate 
by random fields and taking them along in the updating procedure, correlation 
between the degradation in the different elements is considered. As such, the 
characteristics of each element will depend on the neighbouring elements as well. 
The joint distribution in this case concerns a distribution over all 50 elements in 
which the bridge is discretized. Based on the chloride concentration at the surface 
Cs, the diffusion coefficient D, the concrete cover c and the critical chloride 
concentration Ccr (lognormal, mean 0.04%, COV = 0.1), the initiation period can 
be calculated according to equation (II-1). 
 
According to (Dey et al., 2019), assuming correlation between the different girders 
is reasonable since they are uniform in shape and material. Nevertheless, a 
reasonable assumption might also be that there is correlation within the girders, 
but that there is no correlation between the different girders. In such a case, a 1D 
random field is assigned to each of the girders. These random fields have the same 
correlation properties in longitudinal direction as the 2D random field mentioned 
above. It will be investigated how changing this assumption influences the 
posterior distribution of the corrosion degree along the bridge. 

VI.3 Updating of corrosion variables 

As already mentioned, in this chapter, a model-based method will be followed to 
update the corrosion model taking into account (heterogeneous) measurement 
data, including vibration data or static strain measurements. The corrosion models 
will be updated, taking into account the time-dependent and spatial character of 
degradation. Heterogeneous measurement data following from static load tests and 
ambient vibration tests will be combined to update prior distributions reflecting 
parametric uncertainties in the service life model. As such, this facilitates a more 
accurate estimate of the remaining service life. In the following, it is stepwise 
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explained how measurement data can be used to update the distributions of the 
variables in the corrosion model, and the methodology will also be illustrated by 
application to the simply supported beam and the RC girder bridge. 
 
When posterior distributions are provided in the following, these are the posterior 
distributions of the corrosion degree at the point in time when the measurements 
are performed. Nevertheless, not only the distribution of the corrosion degree is 
inferred, but also the distributions of the variables in the models for the initiation 
and propagation phase (see Chapter II). By evaluating these models at the point in 
time at which the measurements are performed, and by accounting for the updated 
distributions of the corrosion variables, the posterior distribution of the corrosion 
degree at different points in time can be obtained. By updating the variables in the 
models of the initiation and propagation phase, there is also accounted for the fact 
that it is often unknown whether the reinforcement is already depassivated and 
whether the propagation phase has started or not. 

 

VI.3.1 General framework 

The general formulation for the posterior distribution is already given in 
section IV.2. Here, the likelihood function is provided and it is described how 
Bayesian updating is performed based on MCMC sampling, requiring multiple 
evaluations of a model. The model used in the likelihood function can be a finite 
element model. However, evaluating the finite element model can be 
computationally demanding, while many samples are required in the MCMC 
procedure. To avoid the evaluation of the finite element model at every iteration 
in the MCMC sampling, a response surface approach is used to predict the 
response of the finite element model for different values of the input parameters. 
The response surfaces are based on a least-square approximation (Bucher, 2009). 
Latin Hypercube Sampling (LHS) samples are generated for the input parameters, 
and for each set of samples, the corresponding finite element output is evaluated. 
A polynomial response surface is fit to the latter according to (Bucher, 2009). A 
smaller number of new LHS samples (verification samples) is generated for the 
verification of the response surface. The suitability of the response surface is 
verified by considering the coefficient of determination 𝑅2. This statistical 
measure describes the correlation between the output predicted by the response 
surface 𝑦𝑅𝑆 for a set of input parameters 𝑥𝑘 and the actual data following from the 
finite element model 𝑧𝑘, for 𝑚 different evaluations of the model. This coefficient 𝑅2 is given by equation (VI-1). 𝑅2 = 1 − ∑ [𝑧𝑘 − 𝑦𝑅𝑆(𝑥𝑘)]2𝑚𝑘=1∑ [𝑧𝑘]2𝑚𝑘=1  (VI-1) 
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When the number of data samples is low with respect to the number of parameters 
in the response surface, the 𝑅2 value can tend to be too optimistic and there is a 
risk of overfitting of the response surface. To avoid this overfitting, it is generally 
accepted to adjust the coefficient of determination 𝑅2 according to equation (VI-
2) (Bucher, 2009). 𝑅𝑎𝑑𝑗2 = 𝑅2 − 𝜈 − 1𝑚 − 𝜈 (1 − 𝑅2) (VI-2) 

Here, 𝜈 is the number of unknown parameters in the response surface. 
 
An additional verification of the response surface is performed by changing one 
of the variables 𝑥𝑘 in the model and the response surface from a low to a high 
value, while keeping the others constant. The outcomes are evaluated for the finite 
element model and for the response surface, and visualized on a graph. As such, it 
can be verified whether the behaviour of the response surface corresponds to the 
actual behaviour of the finite element model. 

VI.3.2 Updating based on static data 

When data is gathered under proof loading, the load is known accurately. Hence, 
the measured parameters can be compared with the predicted ones under the same 
load at the time of proof loading. Static data giving an indication of the stiffness 
of the structure are for example strains and deflections. Amongst others, this 
stiffness depends on the deterioration state, which can consequently be updated 
based on the static data. In practice, this data can also depend on effects of creep 
and shrinkage, temperature, etc. However, it is considered that these effects have 
already been be filtered out prior to the analysis. Only the random fields for the 
corrosion variables, and hence the corresponding corrosion degree, are updated. 
 
The maximum likelihood function 𝐹𝑀𝐿 to be used in equation (IV-5) is given by 
equation (VI-3), which is based on equation (IV-6), assuming independent errors. 

𝐹𝑀𝐿 =∑(𝑑�̅� − 𝐺(𝜽𝑀))2𝜎𝑑2𝑁
𝑗=1  (VI-3) 

Here, 𝑁 is the number of measurements available, 𝜎𝑑  the standard deviation of the 
measurement error, and �̅�𝑗 represents the measurement data. 𝜽𝑀 are the input 
parameters to be updated, and 𝐺(𝜽𝑀) are the model results obtained from a finite 
element model or a response surface fit to the finite element simulations. In the 
latter case, the model error due to the use of the response surface is also included 
in 𝜎𝑑. 
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VI.3.2.1 Static strains 

First, the illustrative example of the simply supported beam as described in section 
VI.2.1 will be considered, with a spatially variable corrosion degree. To evaluate 
the strains in the simply supported beam, the Finite Element (FE) software DIANA 
FEA (DIANA FEA BV, 2019) is used. The FE model is a 2D model, with a linear 
mesh with quadrilateral elements. The different elements in which the beam is 
discretized are modelled as different planar ‘sheets’ in DIANA FEA. Within one 
sheet, the Young’s modulus of the concrete varies over the height, with lower 
values in the cracked regions, according to section II.2.3. The initial Young’s 
modulus of the concrete is 33 GPa, according to a concrete type C30/37. In the 
uncracked region, the Poisson coefficient is 0.2. The tensile strength of the 
concrete is modelled by a Hordijk curve, with tensile strength fct equal to 2.9 MPa. 
The compressive strength fc is initially (before the effect of degradation) equal to 
38 MPa. The reinforcement is modelled as ‘embedded’ reinforcement (DIANA 
FEA BV, 2019) and is defined by the total reinforcement area in each element. 
The reinforcement is discretized, corresponding to the different elements in which 
the beam is discretized. To account for corrosion, the reinforcement area is 
reduced correspondingly, and varies in the different elements. A stiffness 
adaptation analysis is adopted since it is able to provide accurate predictions of 
strains and cracking behaviour (Schreppers et al., 2011). This approach is less 
suitable for ultimate limit state calculations, but this is not the objective of the case 
under consideration. 
 
A polynomial response surface has been fit to the finite element model output. The 
input of the response surface are the standard normal variables appearing in the 
decomposition of the random fields for the initiation period and corrosion rate (see 
equation (III-4)). The output of the response surface is the static strain at the 
considered measurement location, i.e. for each measurement location a separate 
response surface has been generated. A polynomial response surface of degree 2 
considering no interaction between the variables is found to be appropriate for the 
case under consideration, since this resulted in a sufficiently high value of the 
coefficient of determination R². Moreover, it has been checked that the error made 
by introducing the response surface is sufficiently small compared to the 
measurement error accounted for in the likelihood function. The prior corrosion 
degree in all elements has a mean of 0.12 and a standard deviation of 0.16, based 
on the prior distributions for the initiation period and the corrosion rate, evaluated 
at time t = 35 years (i.e. the time of performing the measurements) (see Figure VI-
4). It is investigated how this distribution is updated based on the measurement 
results. To simulate the situation that the load is known when a bridge is subjected 
to proof loading, the beam is subjected to a known point load of 30 kN at 1.75 m 
from the left support. The measurement results are based on simulations of the 
underlying corrosion degree in the eight elements, which is represented by the 
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black dash-dotted line in Figure VI-5. They are generated by evaluating the FE 
model for these corrosion degrees and adding a random value of the measurement 
error to these results. In the first case considered, only the strain at element 4 is 
measured both at top and bottom fibre since this element has the highest corrosion 
degree. Different values for the measurement error are assumed to investigate the 
influence hereof. In (Heitner et al., 2019), a measurement error of 1.95 µε is used. 
Sousa et al. (2020) mention smaller errors based on strain measurements, with an 
order of magnitude of 0.2 to 0.5 µε. When other strain measuring techniques are 
applied, the measurement error can be even larger, e.g. 3 µε for electrical 
resistance strain gauges according to (Neild et al., 2005). Finally, also a 
measurement error of 10 µε is assumed. Literature on the measurement error to be 
used in these analyses is rather limited. That is why in this chapter and further 
chapters, different values will be considered. Nevertheless, in this research, also 
an effort is made to derive an appropriate value for this measurement error. For 
these analyses, reference is made to Chapter VII.  
 

  
a) Prior distribution of the corrosion 

degree along the beam 
b) Histogram of the prior 

corrosion degree at one location 

Figure VI-4: Prior distribution of the corrosion degree of the simply supported beam at 
t = 35 years 

 
In the following, the posterior distribution of the corrosion degree is derived for 
the different assumptions on the measurement error. The posterior distribution of 
the corrosion degree is visualized in Figure VI-5 (a) for the measurement error of 
0.5 µε and in Figure VI-5 (b) for the measurement error of 10 µε. The posterior 
uncertainty is given as the Highest Density Interval (HDI) calculated based on the 
samples of the corrosion degree obtained from the MCMC simulations. This HDI 
is the shortest interval on a posterior density for some given confidence level 
(Turkkan and Pham-Gia, 1993). At the inspected element, the posterior 
distribution of the corrosion degree has a decreased uncertainty. At the non-



 
 

 
 

92 Chapter VI 
 

  

 

inspected elements on the other hand, the posterior distribution of corrosion degree 
has a larger remaining uncertainty. The results of the different measurement errors 
are summarized in Table VI-2 where the root mean square (RMS) value of the 
difference between the actual corrosion degree and the posterior mean at all 
elements is given (Ni et al., 2020), together with the difference between the actual 
corrosion degree and the posterior mean at the inspected element, and the posterior 
uncertainty (minimum standard deviation σmin, maximum standard deviation σmax 
and average standard deviation σaverage). The RMS value is given by equation (VI-
4). 

𝑅𝑀𝑆 = √∑ (𝛼𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − µ"𝛼,𝑖)2𝑛𝑖=1 𝑛   (VI-4) 

Here, n is the number of elements in the discretization of the structure, 𝛼𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 is 
the actual corrosion degree at element i, and µ"𝛼,𝑖 is the posterior mean of the 
corrosion degree at element i. 
 
In Table VI-2, it can be seen that the lower the measurement error, the closer the 
posterior mean corrosion degree corresponds to the actual value, especially at the 
inspected element. Moreover, the higher the measurement error, the higher the 
posterior uncertainty. The fact that the RMS value is largest for the measurement 
error of 1.95 µε could be ascribed to an overestimation of the corrosion degree at 
the non-inspected elements 1, 2 and 3. 
 

a) Error 0.5 µε b) Error 10 µε 

Figure VI-5: Posterior distribution of the corrosion degree of the simply supported beam 
for updating based on static strain measurements at element 4 (i.e. 1.75 m from the left 
support) for (a) a measurement error of 0.5 µε, and (b) a measurement error of 10 µε 
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Table VI-2: Comparison of some posterior statistics (RMS, difference between the actual 
corrosion degree 𝛼𝑎𝑐𝑡𝑢𝑎𝑙 and the posterior mean 𝜇"𝛼 at the inspected element (element 4), 
minimum standard deviation σmin, maximum standard deviation σmax and average standard 
deviation σaverage) when changing the measurement error in the likelihood function - simply 
supported beam, static strains measured at element 4 

Error RMS (𝝁"𝜶 − 𝜶𝒂𝒄𝒕𝒖𝒂𝒍)𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝟒 σmax σmin σaverage 

0.5 µε 0.09 0.09 0.13 0.05 0.10 
1.95 µε 0.13 0.11 0.13 0.05 0.10 

3 µε 0.09 0.13 0.13 0.08 0.11 
10 µε 0.11 0.19 0.12 0.10 0.11 

 
For the RC girder bridge, the corrosion degree is modelled as spatially variable 
over the bridge as discussed in section VI.2.2. Also for this case, a finite element 
model has been generated in DIANA FEA (DIANA FEA BV, 2019). This is a 3D 
model, where the girders and the slab are modelled with solid elements. The 
reinforcement is modelled as embedded reinforcement. The different elements in 
which the girders are discretized to represent the discretization of the random 
fields are modelled by different ‘blocks’. The concrete properties are according to 
(Yang et al., 2019), i.e. a concrete compressive strength of 25.9 MPa, a concrete 
tensile strength of 2.2 MPa and a Young’s modulus of the concrete of 30 GPa. The 
concrete model in compression is again ideal (i.e. a linear elastic behaviour until 
the concrete compressive strength, followed by a constant stress equal to the 
concrete compressive strength) and the tensile model is a Hordijk curve. The proof 
load applied to the bridge is simulated by a truck of 200 kN located over the middle 
girder. The static load test is performed at 50 years after construction considering 
a prior corrosion degree with mean value 0.038 and standard deviation 0.009 (see 
Figure VI-6). This is based on samples generated for the initiation period and the 
corrosion rate, and evaluating the corresponding corrosion degree according to 
equation (II-8) at t = 50 years. The measurement results are generated based on 
the corrosion degrees represented by the black dashed-dotted lines in Figure VI-7. 
Bayesian updating is performed assuming accurate strain measurements according 
to (Sousa et al., 2020), with a measurement error of 0.5 µε. The results from the 
Bayesian updating are given in Figure VI-7 for the case where the data consists of 
strains measured at all 50 elements at top and bottom fibre under the proof load 
(Figure VI-8). The measurement locations are in the middle of the elements 
corresponding to the elements of the random field. However, it is considered not 
realistic to measure the strains at all 50 elements. Hence, Figure VI-9 gives the 
posterior distribution of the corrosion degree when measuring the strains at the 
middle two elements of all five girders. Here it is observed that the shape of the 
posterior distribution depends on the measurement locations, i.e. there is a smaller 
deviation between posterior mean and actual corrosion degree at the measurement 
locations. At these locations, there is also a smaller posterior uncertainty. 
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Figure VI-6: Prior distribution of the corrosion degree of the RC girder bridge (at one 
location) 

 
 

 
Figure VI-7: Posterior distribution of the corrosion degree of the RC girder bridge for strain 
data measured under proof loading at top and bottom fibre at the middle of all 50 elements 
in which the structure is discretized (see Figure VI-8) (measurement error 0.5 µε) 
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(a) (b) 

Figure VI-8: Measurement locations to arrive at the posterior distribution visualized in 
Figure VI-7 (a) bottom view, and (b) side view (part of a girder) 

 
 
The effect of the measurement error on the posterior distribution is investigated, 
and the results are summarized in Table VI-3. The posterior distribution has been 
evaluated for different sampled values of the corrosion degree (and hence the 
corresponding simulated measurement results) and for different assumptions on 
the measurement error. The RMS value and maximum, minimum and average 
posterior standard deviation are given for different orders of magnitude of the 
actual corrosion degree and different assumptions on the measurement error. The 
RMS value and the standard deviation are each time also given for the prior 
distribution of the corrosion degree, in order to allow easier comparison. For all 
cases, the RMS value and posterior uncertainty are smaller than the values found 
a priori. The larger errors only provide accurate posterior distributions for higher 
corrosion degrees, due to the larger influence of these higher corrosion degrees on 
the measured strains. Hence, depending on the measurement accuracy, there is a 
threshold on the corrosion degree that can be estimated. 
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Table VI-3: Comparison of some posterior statistics (RMS, minimum standard deviation 
σmin, maximum standard deviation σmax and average standard deviation σaverage) when 
changing the measurement error in the likelihood function for different corrosion degrees 
– RC girder bridge, static strains. ‘Max α’ refers to the maximum corrosion degree sampled 
along the bridge to generate the measurement result. 

Max α 

[-] 

Error 

[µε] RMS σmax σmin σaverage 

0.05 Prior 0.0094 0.017 0.017 0.017 
 0.2  0.0035 0.0095 0.0054 0.00070 
 1  0.0078 0.010 0.0078 0.0089 
 3  0.0088 0.010 0.0088 0.0096 
 5  0.0090 0.010 0.0089 0.0098 
 10  0.0090 0.010 0.0090 0.0099 

0.15 Prior 0.029 0.040 0.040 0.040 
 0.2  0.011 0.024 0.011 0.017 
 1  0.017 0.031 0.018 0.024 
 3  0.025 0.030 0.024 0.027 
 5  0.030 0.030 0.025 0.028 
 10  0.028 0.030 0.026 0.028 

0.30 Prior 0.047 0.058 0.058 0.058 
 0.2  0.0045 0.037 0.020 0.026 
 1 0.021 0.044 0.028 0.035 
 3 0.031 0.044 0.035 0.039 
 5 0.037 0.044 0.037 0.041 
 10 0.043 0.045 0.039 0.043 

0.40 Prior 0.064 0.067 0.067 0.056 
 0.2 0.009 0.044 0.024 0.032 
 1 0.025 0.053 0.033 0.042 
 3 0.036 0.055 0.044 0.050 
 5 0.046 0.057 0.047 0.053 
 10 0.056 0.059 0.051 0.056 

0.50 Prior 0.078 0.081 0.081 0.081 
 0.2 0.0044 0.045 0.026 0.033 
 1 0.014 0.058 0.035 0.045 
 3 0.031 0.065 0.047 0.056 
 5 0.46 0.065 0.055 0.060 
 10 0.059 0.068 0.058 0.064 
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Figure VI-9: Posterior distribution of the corrosion degree of the RC girder bridge 
when performing strain measurements under proof loading at the two middle 
elements of all girders (measurement error 0.5 µε) 
 
 
Similar calculations are performed for simulations where the corrosion variables 
are modelled with independent random fields for each girder. The results are 
summarized in Table VI-4. Here it can be seen that in general the RMS value and 
posterior uncertainty are higher compared to the results of Table VI-3. For very 
large corrosion degrees, posterior distributions generated accounting for 
measurement errors up to 5 µε provide a reasonable estimate of the actual 
corrosion degree, i.e. the posterior mean shows the same spatial variation as the 
actual corrosion degree, as visible in Figure VI-10. Nevertheless, the 
approximation is less good compared to the results with 2D random fields. This 
can be ascribed to the increased number of unknowns due to the reduced 
correlation. Hence, relatively less information is available. 
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Table VI-4: Comparison of some posterior statistics (RMS, minimum standard deviation 
σmin, maximum standard deviation σmax and average standard deviation σaverage) when 
changing the measurement error in the likelihood for different corrosion degrees – RC 
girder bridge, static strains, assuming independent random fields for the different girders. 
‘Max α’ refers to the maximum corrosion degree sampled along the bridge to generate the 
measurement result. 

Max α 

[-] 

Error 

[µε] RMS σmax σmin σaverage 

0.05 Prior 0.030 0.018 0.018 0.018 
 0.2  0.0071 0.0071 0.0024 0.0047 
 1  0.0054 0.0086 0.0027 0.0057 
 3  0.0072 0.0097 0.0048 0.0073 
 5  0.0071 0.0097 0.0053 0.0074 
 10  0.016 0.010 0.0087 0.0095 

0.15 Prior 0.057 0.039 0.039 0.039 
 0.2  0.031 0.025 0.008 0.016 
 1  0.032 0.030 0.013 0.019 
 3  0.034 0.032 0.017 0.022 
 5  0.034 0.032 0.018 0.023 
 10  0.036 0.030 0.020 0.024 

0.30 Prior 0.098 0.057 0.057 0.057 
 0.2  0.017 0.035 0.010 0.021 
 1 0.019 0.046 0.013 0.025 
 3 0.020 0.050 0.018 0.029 
 5 0.022 0.050 0.022 0.031 
 10 0.028 0.044 0.025 0.033 

0.40 Prior 0.10 0.070 0.070 0.070 
 0.2 0.014 0.048 0.023 0.035 
 1 0.056 0.055 0.026 0.038 
 3 0.076 0.056 0.026 0.038 
 5 0.078 0.054 0.029 0.040 
 10 0.088 0.062 0.046 0.053 

0.50 Prior 0.100 0.080 0.080 0.080 
 0.2 0.010 0.049 0.025 0.039 
 1 0.048 0.061 0.034 0.048 
 3 0.067 0.065 0.040 0.055 
 5 0.091 0.068 0.048 0.060 
 10 0.097 0.071 0.056 0.065 
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Figure VI-10: Posterior distribution of the corrosion degree of the RC girder bridge with 
measurement error 5 µε when updating independent random fields for each girder – 
updating based on static strains at all elements in which the structure is discretized 

VI.3.2.2 Deflections 

It is also investigated how measuring deflections under a known load allows 
reducing the prior uncertainty on the corrosion degree. Similar as for the static 
strains, first the illustrative example of the simply supported beam will be 
considered. The finite element model used to generate the data is the same as for 
the static strains, and the time of performing the analysis is again t = 35 years. 
Assuming a measurement error of 0.05 mm (Heitner et al., 2019; Sousa et al., 
2020) and a measured deflection at element 4, the posterior distribution of the 
corrosion degree of the simply supported beam is given in Figure VI-11 (a). The 
posterior distribution is similar to the one achieved by measuring the strains at 
element 4, but with a larger posterior uncertainty at element 4. In general, less 
information is extracted regarding the corrosion degree when measuring 
deflections under proof loading. The updating based on deflection measurements 
is also performed for a lower maximum underlying corrosion degree, with 
posterior distribution according to Figure VI-11 (b). Here it can be seen that the 
posterior mean of the corrosion degree lies close to the prior one (mean corrosion 
degree of 0.12 and a standard deviation of 0.16), and that there is a large difference 
between the posterior mean and the actual value of the corrosion degree. 
Moreover, the posterior uncertainty is rather large. This can be ascribed to the 
lower corrosion degrees and hence the smaller difference in displacements. When 
this difference becomes too small with respect to the measurement error, the effect 
of the Bayesian updating will be very limited. Hence, similar as for the static 
strains, there will be a threshold on the corrosion degree that can be detected 
depending on the measurement accuracy. 
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a) Higher actual corrosion degree b) Lower actual corrosion degree 

Figure VI-11: Posterior distribution of corrosion degree when measuring the deflection at 
element 4 

 
Also for the girder bridge, the influence of deflection measurements is 
investigated. The finite element model used to generate the data is again the same 
as for the static strains and the time of analysis equals 50 years, inducing the same 
prior distribution of the corrosion degree. In Figure VI-12, the posterior 
distribution of the corrosion degree is given when measuring the vertical 
deflections under a known load at all elements in which the bridge is subdivided. 
Again, a measurement error of 0.05 mm is considered. A very vague posterior 
distribution is achieved, which is close to the prior distribution. The measurements 
do not provide sufficient information to represent the actual corrosion degree. 
 

 
Figure VI-12: Posterior distribution of the corrosion degree of the RC girder bridge when 
measuring the vertical deflections at 50 locations 
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VI.3.3 Updating based on ambient vibration data 

Model-based structural health monitoring is often done through vibration-based 
finite element model updating. It assumes that local structural damage results in a 
local reduction of stiffness. The presence of damage can be detected, located and 
quantified (Simoen et al., 2015). Modal characteristics can be identified from 
ambient data collected in an ambient vibration test, avoiding interruption of traffic. 
 
When the measurement errors of all measurement data are assumed statistically 
independent, their covariance matrix 𝚺𝐷 (equation (IV-6)) is a diagonal matrix. 
The diagonal elements consist of the variances, assumed proportional to the 
experimental values, according to equation (VI-5) (Simoen, 2013). 𝜎𝜆,𝑟 = 𝜎𝜆𝜆̅𝑟 and 𝜎𝜙,𝑟 = 𝜎𝜙‖�̅�𝑟‖ (VI-5) 

Here, �̅�𝑟 is the experimental frequency and �̅�𝑟 the experimental mode shape 
vector. 𝜎𝜆 and 𝜎𝜙 represent the proportionality between the variance of the 
measurement error and the experimental frequency and mode shape respectively. 
When considering 𝚺𝐺 = 0 for illustrative purposes, the maximum likelihood 
function (equation (IV-6)) can be rewritten according to equation (VI-6) (Simoen, 
2013). 

𝐹𝑀𝐿 =∑(𝜆̅𝑟 − 𝜆𝑟(𝜽𝑀))2𝜎𝜆,𝑟2 +𝑁𝑚
𝑟=1 ∑‖�̅�𝑟 − 𝝓𝑟(𝜽𝑀)‖2𝜎𝜙,𝑟2𝑁𝑚

𝑟=1=∑(𝜆̅𝑟 − 𝜆𝑟(𝜽𝑀))2𝜎𝜆2𝜆̅𝑟2 +𝑁𝑚
𝑟=1 ∑‖�̅�𝑟 − 𝝓𝑟(𝜽𝑀)‖2𝜎𝜙2‖�̅�𝑟‖2

𝑁𝑚
𝑟=1  

(VI-6) 

Here, 𝑁𝑚 is the number of modes considered. In this equation, it is implicitly 
assumed that suitable mode shape scaling has been performed. 
 
It should be pointed out that, since the error on the displacement mode shapes is 
proportional to the norm of the mode shape (equation (VI-5)), the error will 
increase if more accelerometers are used and hence the experimental displacement 
mode shape is available at more locations. Nevertheless, in this case also in the 
denominator of equation (VI-6), more data points are considered. Another note is 
that the error considered here is not only reflecting the experimental error, but 
refers to a more global prediction error, also including modelling errors. Reference 
can be made to (Simoen et al., 2013), where both the influence of introducing 
correlation in this prediction error and the influence of the number of 
accelerometers are investigated. If more information is available on the mode 
shapes and the experimental errors, other assumptions on this error could also be 
applied. 
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In the following, it is assumed that the Young’s modulus in the models to simulate 
the modal characteristics is the same as the one applied in the models for the static 
load tests, i.e. the dynamic modulus Ecd is equal to the static modulus Ecs. 
Nevertheless, in reality the dynamic modulus will be larger than the static 
modulus, with a linear relationship between both, i.e. Ecd = a∙Ecs, with a a factor 
larger than or equal to 1. When working with actual data (instead of simulated 
data, as assumed in the current and following chapters), either the static and 
dynamic Young’s modulus should both be tested experimentally to establish this 
relationship, either the factor a is also assigned a distribution and considered in the 
Bayesian inference. In the analyses performed further in this work, a is assumed 
to be equal to 1. 

VI.3.3.1 Natural frequencies 

In this section, updating is performed only taking along the natural frequencies in 
the likelihood function. First, the simply supported beam is considered. To 
calculate the modal properties of the simply supported beam, a 2D FE beam model 
is used (Dooms et al., 2014) where the stiffness is replaced by an equivalent 
stiffness in each element, accounting for the corroded reinforcement and the 
cracked concrete due to corrosion. The assumed material properties are the same 
as mentioned in section VI.3.2.1. The corrosion degree is assumed uniform along 
the structure (i.e. no spatial variability is considered) and a uniform prior 
distribution between 0 and 1 is assumed for the corrosion degree. The simulated 
measurement result is generated in the same way as explained in the previous 
sections, i.e. by generating a value for the corrosion degree and evaluating the 
finite element model to find the corresponding natural frequencies. To these 
values, a sample of the measurement error is then added. When updating is 
performed based on the natural frequencies, this uniform corrosion degree is 
approximated quite well, as can be seen in Figure VI-13 for two different situations 
corresponding to two different actual corrosion degrees. In these analyses, the 
error on the natural frequencies is assumed equal to 1% of the experimental value 
(or  𝜎𝜆 = 0.01). For situation 1, the posterior distribution of the corrosion degree 
is also visualized when the error on the natural frequencies is increased by a factor 
10 (or 𝜎𝜆 = 0.1). Here it can be seen that due to the very high experimental error, 
the posterior distribution lies close to the prior distribution. Nevertheless, there is 
a slight increase in posterior probability close to the actual corrosion degree. 
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Figure VI-13: Posterior distribution of the corrosion degree for the simply supported beam 
where the corrosion degree is considered uniform along the beam. Updating is performed 
based on natural frequency data for two different actual corrosion degrees. 

 
 

For the RC girder bridge, also a uniform corrosion degree along the whole 
structure is considered. The finite element model to generate the data is the same 
as in the previous sections, and the time of analysis again equals t = 50 years. The 
simulated measurement result is generated in the same way as described in the 
previous sections. The prior distribution is based on the marginal distributions of 
the initiation period and corrosion rate as given in section VI.2.2. The posterior 
distribution based on the natural frequency data is visualized in Figure VI-14 when 
assuming an error equal to 1% of the experimental value (or  𝜎𝜆 = 0.01). When 
the measurement error is decreased by a factor 10 (or  𝜎𝜆 = 0.001), the posterior 
distribution becomes less vague and a more accurate representation of the actual 
value is found. When assuming spatial variation of corrosion and an error of 0.1% 
of the experimental frequency, the posterior corrosion degree is visualized in 
Figure VI-15. Here it can be seen that no spatial variation of the corrosion degree 
is present in the posterior distribution, since the natural frequencies only provide 
global information on the stiffness. 
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Figure VI-14: Posterior distribution of the corrosion degree of the RC girder bridge when 
this is modelled uniform along the bridge. Updating based on natural frequencies for two 
different errors in the likelihood function. 

 

 

Figure VI-15: Posterior distribution of the (spatially variable) corrosion degree of the RC 
girder bridge when updating based on natural frequencies (prior mean of the corrosion 
degree equal to 0.038 and prior standard deviation equal to 0.009) 

VI.3.3.2 Displacement mode shapes 

In this section, the influence of also incorporating displacement mode shapes in 
the likelihood function is evaluated. Similar as in the previous sections, the 
illustrative example of the simply supported beam is considered first. The data is 
generated in the same way as described in the previous sections, using the same 
model as described in section VI.3.3.1. For the simply supported beam and a 
uniform corrosion degree along the length of the beam, the posterior distribution 
is visualized in Figure VI-16 for two different actual corrosion degrees. The 
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assumed errors in the likelihood function are 𝜎𝜆 = 0.01 and 𝜎𝜙 = 0.01. In Figure 
VI-16, it can be seen that for the higher actual corrosion degree, the posterior 
uncertainty is reduced compared to Figure VI-13, even though displacement mode 
shapes only change if there is a change of stiffness along the structure. 
Nevertheless, for the very high corrosion degrees, the structure has such a low 
resistance that it is cracked under the service load at some locations. This might 
lead to changes in the displacement mode shapes. Hence, these very high corrosion 
degrees are not present anymore in the posterior distribution. For a lower actual 
corrosion degree, no additional reduction in uncertainty is found when the 
displacement mode shapes are considered together with the natural frequencies in 
the likelihood function and assuming uniform corrosion along the length of the 
beam. 

 

 

Figure VI-16: Posterior distribution of uniform corrosion degree along the beam based on 
natural frequencies and displacement mode shapes for two actual corrosion degrees 

 
When the natural frequencies and displacement mode shapes of the first four 
bending modes (accelerations measured at 0.5 m, 1 m, 1.5 m, 2 m, 2.5 m, 3 m and 
3.5 m from the left support of the beam) are used as data when the corrosion degree 
is modelled as spatially variable, the posterior distribution visualized in Figure VI-
17 (b) is obtained. Here it can be seen that the posterior standard deviation is higher 
at element 4 when compared to the case where strains are measured at this element 
with an accurate strain measuring technique (Figure VI-5). 
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a) 𝜎𝜆 =0.001, 𝜎𝜙 =0.01 b) 𝜎𝜆 =0.01, 𝜎𝜙 =0.01 

 
c) 𝜎𝜆 =0.001, 𝜎𝜙 = 0.001 

Figure VI-17: Influence of the measurement error of the dynamic data on the posterior 
corrosion degree of the simply supported beam (spatially variable corrosion) 

 
Similar as for the static strain measurements, the ‘measurement error’ on the 
modal data influences the posterior distribution. The larger the error, the more 
uncertain the posterior distribution will be. The influence of the measurement error 
is visualized in Figure VI-17. The difference between figure a and b is an increased 
error on the natural frequencies (from 0.1% of the experimental value to 1% of the 
experimental value). The difference between figures a and c is a decreased error 
on the norm of the mode shape, i.e. from 1% of the measured value to 0.1% of the 
measured value. A reduction of these errors leads to a reduction of the posterior 
uncertainty. 
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Next, the RC girder bridge is considered. The finite element model is the same as 
in the previous sections, and the measurement results are generated in the same 
way as described before. The time of analysis is again t = 50 years. Only the first 
four natural frequencies and corresponding displacement mode shapes at the 
sensor locations are assumed to be extracted from the acceleration data. The 
posterior distribution of the corrosion degree based on modal data of these first 
four modes is given in Figure VI-18 (𝜎𝜙 = 0.01 and 𝜎𝜆 = 0.001). Here, the 
accelerations are assumed to be measured at the middle node at the bottom of all 
50 elements of the discretized structure. The posterior uncertainty on the corrosion 
degree found by updating based on modal data is larger than the posterior 
uncertainty on the corrosion degree when accounting for static strain 
measurements. This can be attributed to two reasons: first, the relative 
measurement error assumed for the displacement mode shapes is larger than for 
the static strains. Second, displacement mode shapes and natural frequencies of 
the lower, global modes give a more global characterization of the stiffness. Next 
to these two reasons, the number of measured mode shape components is also of 
importance. Although the exact stiffness cannot be identified from the posterior 
distribution, the critical regions with the lowest stiffness and hence the largest 
corrosion degree can be found. 
 
The influence of the measurement error on the posterior distribution is also 
investigated for the RC girder bridge. For updating based on modal data, three 
cases are considered, which are the same as for the simply supported beam: 

1. 𝜎𝜆 = 0.001∙𝜆̅𝑟, 𝜎𝜙 = 0.01∙‖�̅�𝑟‖ 

2. 𝜎𝜆 = 0.01∙𝜆̅𝑟, 𝜎𝜙 = 0.01‖�̅�𝑟‖ 

3. 𝜎𝜆 = 0.001∙𝜆̅𝑟, 𝜎𝜙 = 0.001‖�̅�𝑟‖ 

The difference in posterior distribution can be seen when comparing the results in 
Table VI-5. Here it can be seen that case 3 approaches much better the actual value 
compared to case 2 and case 1. The posterior uncertainty is also smaller for case 1 
than for case 2. 
 

Table VI-5: Comparison of some posterior statistics (RMS, minimum standard deviation 
σmin, maximum standard deviation σmax and average standard deviation σaverage) when 
changing the measurement error in the likelihood – RC girder bridge, modal data 

Error RMS σmax σmin σaverage 

Case 1 0.004 0.009 0.006 0.008 
Case 2 0.005 0.010 0.007 0.009 
Case 3 0.003 0.009 0.005 0.007 
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Figure VI-18: Posterior distribution of the corrosion degree of the RC girder bridge when 
updating is performed based on the natural frequencies and displacement mode shapes of 
the first four modes (accelerations are measured in the middle of all 50 elements). 

VI.3.3.3 Strain mode shapes 

In this section, it is considered that dynamic strains are measured under ambient 
excitation to provide strain mode shapes. The corrosion variables are updated 
based on natural frequencies and strain mode shapes. The natural frequencies are 
accounted for according to equation (VI-6) and the strain mode shapes are 
accounted for according to equation (VI-3). The error on the natural frequencies 
is assumed equal to 0.1% of the experimental value (cfr. supra), and the error on 
the strains is assumed equal to 0.2 µε (cfr. supra). This error of the strains relates 
to the strain mode shapes as derived from the displacement mode shapes provided 
by the finite element model (order of magnitude of some microstrain). If actual 
data is available and the strain mode shapes are scaled (to the mass matrix or to 
those of the finite element model), other values for the error might be more 
appropriate and/or a relative error could be assumed. 
 
Similar as in the previous sections, the illustrative example of the simply supported 
beam is considered first. The data is generated in the same was as described in the 
previous sections, and the same model is used. The modal strains are assumed the 
average strains over the elements in which the beam is discretized. The posterior 
corrosion degree obtained after updating based on natural frequencies and strain 
mode shapes at top and bottom fibre at all eight elements is given in Figure VI-19. 
Strains under operational conditions are often very low and hence difficult to 
measure. The use of optical fibres and recently developed data processing 
techniques can resolve this problem (Anastasopoulos et al., 2018). When the error 
on the natural frequencies is increased by a factor of 10, the results are visualized 
in Figure VI-20 (a). Here it can be seen that a larger posterior uncertainty is found 
and that the posterior distribution is a less good approximation of the actual 
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corrosion degree. When the error on the strains is increased to 1.95 µε, the 
influence is less significant (Figure VI-20 (b)). 
 
 

 
Figure VI-19: Posterior distribution of the corrosion degree of the simply supported beam 
after measuring the modal strains at all eight elements (i.e. the average strain in each 
element) 

 
 

a) Increased error on natural 
frequencies 

b) Increased error on strains 

Figure VI-20: Posterior distribution of the corrosion degree of the simply supported beam 
after measuring the modal strains at all eight elements (i.e. the average strain in each 
element) with an increased error (a) on the natural frequencies or (b) on the strains 
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For the RC girder bridge, Figure VI-21 shows the posterior distribution of the 
corrosion degree when natural frequencies and strain mode shapes are 
incorporated in the likelihood function, assuming an error of 0.2 µε and 0.1% of 
the experimental frequency. The strains are average strains measured over a length 
of 100 mm. When compared to the case where displacement mode shapes have 
been used for updating (Figure VI-18), the posterior uncertainty is reduced. 
However, approximation of the actual corrosion degree is not as good as for the 
case where static strains are measured at all elements (Figure VI-7). 
 
Also for the strain mode shapes, the influence of the measurement error is 
investigated. For the error on the natural frequencies, two cases are considered: 
0.001∙𝜆̅𝑟 and 0.01∙𝜆̅𝑟. For the error on the strains, following values are considered: 
0.2 µε, 1.95 µε and 3 µε. The results are summarized in Table VI-6. Here it can be 
seen that the actual corrosion degree is better represented by the posterior mean if 
the measurement error decreases. 
 
 

 
Figure VI-21: Posterior distribution of the corrosion degree of the RC girder bridge after 
measuring the modal strains at all 50 elements with a measurement error of 0.2 µε and 0.1% 
of the experimental frequency 

 
 
 
 
 
 
 



 
 

 
 

Bayesian inference of degradation parameters in the service life model of 
reinforced concrete bridges 

111 

 

Table VI-6: Comparison of some posterior statistics (RMS, minimum standard deviation 
σmin, maximum standard deviation σmax and average standard deviation σaverage) when 
changing the measurement error in the likelihood – RC girder bridge, strain mode shapes 

Error on 

strain 

Error on natural 
frequency 

RMS σmax σmin σaverage 

0.2 µε 0.01𝜆̅𝑟  0.0036 0.0070 0.0039 0.0055 

0.2 µε 0.001�̅�𝑟 0.0036 0.0070 0.0039 0.0055 

1.95 µε 0.01𝜆̅𝑟 0.0041 0.0078 0.0047 0.0063 

1.95 µε 0.001�̅�𝑟 0.0040 0.0079 0.0047 0.0063 

3 µε 0.01𝜆̅𝑟 0.0043 0.0079 0.0050 0.0075 

3 µε 0.001�̅�𝑟 0.0043 0.0081 0.0048 0.0065 

VI.3.4 Updating based on visual inspection data 

Visual signs of corrosion can be rust stains (i.e. rust penetrating through corrosion-
induced cracks) and the presence of (severe) corrosion cracks. When rust stains 
are visually observed at a particular point in time, this implies not only that 
corrosion has initiated, but also that the first corrosion cracks are present in the 
concrete cover. For the time to cracking (Tcr), different models exist in literature. 
In this work, the model of (Lv and Zhu, 2016) will be used, which is given by 
equation (II-10). 
 
When rust stains have been observed, Ti+Tcr should be lower than trust, with trust 
the first time at which rust stains are observed. Furthermore, Stewart and Suo 
(2009) also give the time to severe cracking, which corresponds to a crack width 
of 1 mm (wlim). The time between first cracking (Tcr) and severe cracking (crack 
widths exceeding 1 mm) is given by equation (VI-7). 𝑇𝑠𝑒𝑟 = 𝑘𝑅 0.0114𝑖𝑐𝑜𝑟𝑟 [𝐴 ( 𝑐𝑤/𝑐)𝐵] with 𝑘𝑅 ≈ 0.95 [exp (−0.3𝑖𝑐𝑜𝑟𝑟(𝑒𝑥𝑝)𝑖𝑐𝑜𝑟𝑟 ) − 𝑖𝑐𝑜𝑟𝑟(𝑒𝑥𝑝)2500𝑖𝑐𝑜𝑟𝑟 + 0.3] (VI-7) 

Here, w/c is the water-to-cement ratio of the concrete, A (700 or 65) and B (0.23 
or 0.45) are empirical constants for limit crack widths (of 1 mm and 0.3 mm 
respectively), and icorr(exp) (100 µA/cm²) is the accelerated corrosion rate used to 
derive the constants A and B. When severe cracking is observed, Ti+Tcr+Tser should 
be lower than tser,observed, i.e. the first time at which this severe cracking is observed. 
When performing MCMC-based Bayesian updating considering these visual 
observations, samples of the initiation period and corrosion rate not fulfilling 
either of the two mentioned criteria will be rejected. 
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The influence of accounting for the visual observations is first illustrated for a very 
general example. Consider the following prior distributions: a lognormal 
distribution for the initiation period with mean 21 years and standard deviation 
10 years, and a lognormal distribution for the corrosion rate with mean 
0.03 mm/year and standard deviation 0.02 mm/year. Assume that it is visually 
observed that corrosion cracks and rust stains are present at t = 15 years. The 
influence on the distributions of the initiation period, corrosion rate and corrosion 
degree is visualized in Figure VI-22 to Figure VI-24. Here it can be seen that the 
influence on the distribution of the initiation period is quite large and that only 
initiation periods lower than 15 years are retained. For the corrosion rate, there is 
a shift to higher values due to the early presence of corrosion cracks. Also the 
corrosion degree shifts to higher values and a corrosion degree of zero is not 
present anymore in the posterior distribution. If also severe cracking would be 
observed at 15 years, the posterior distributions are visualized in the same figures. 
The influence on the initiation period is limited, and the corrosion rate and 
corrosion degree shift to slightly higher values. 
 

 
Figure VI-22: Influence of visual observations on the distribution of the initiation period 

 

Figure VI-23: Influence of visual observations on the distribution of the corrosion rate 
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Figure VI-24: Influence of visual observations on the distribution of the corrosion degree 

 
In the following, for each element in which the structure is discretized, the first 
time of observing rust stains and/or severe cracking will be accounted for in the 
Bayesian updating, assuming inspection intervals of 3 years. Virtual measurement 
data are generated based on samples of the random fields of the initiation period 
and corrosion rate. Based on these samples, the times for visual observations are 
derived. For the simply supported beam, rust stains are observed at [33, 30, 21, 15, 
15, 18, 27, 30] years and severe cracking at [33, 30, 21, 15, 15 18, 27, 33] years. 
These different values correspond to the observations in the different ‘elements’ 
in which the beam is discretized. Note that the time instances for observing rust 
stains and severe cracking are mostly equal, which can be ascribed to 1) the low 
values of Tser, and 2) the assumed fixed time of 3 years between visual 
observations. Because of the latter reason, cracking can have occurred shortly after 
an earlier inspection and once the next inspection is performed, severe cracking 
might already be present. For the simply supported beam, the posterior distribution 
is visualized in Figure VI-25 when only accounting for the visual observations of 
rust stains. Here it can be seen that this posterior distribution is rather vague and 
that the visual observations alone are not sufficient to update the corrosion degree. 
 
Also for the RC girder bridge, information from visual inspections can be 
accounted for. Again, a three-year inspection interval is assumed. The times of 
observing rust stains or corrosion cracks, vary between 18 years and 27 years for 
the different elements in which the structure is discretized. When the posterior 
distribution is determined for the RC girder bridge only based on visual 
observations of rust stains and/or corrosion cracks, the posterior distribution is 
visualized in Figure VI-26. Here it can be seen that because visual signs of 
corrosion are observed, the lowest corrosion degrees are excluded from the 
posterior distribution. Nevertheless, the actual corrosion degree is not accurately 
represented by the posterior distribution. 
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Figure VI-25: Posterior corrosion degree when only accounting for the visual inspection 
results up to t = 35 years 

 
 

 
Figure VI-26: Posterior distribution of the corrosion degree of the RC girder bridge based 
on visual inspection data only 
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VI.3.5 Updating based on heterogeneous data 

In the previous sections, the influence of different types of data on the posterior 
distribution of the corrosion degree was studied. In the following sections it is 
investigated how different types of data can be combined in order to arrive at a 
more accurate estimate of the corrosion degree. 

VI.3.5.1 Modal data and static strain data 

Based on the conclusions obtained in the previous sections, a first possible strategy 
is to determine locations where the structure is likely damaged based on modal 
data, and prioritize these locations when collecting strain data under proof loading. 
Combining the data of both measurements will lead to reduced identification 
uncertainties when compared to the case where the measurements are considered 
separately. This means that the posterior uncertainty and the deviation between the 
posterior mean and actual value will decrease. A conceptual illustration of the 
advantage of combining both sources of information is provided in Figure VI-27. 
 
When considering the simply supported beam, the posterior distribution of the 
corrosion degree resulting from modal data suggests that the most damaged region 
of the beam is in the middle of the beam (see Figure VI-17). It is considered that, 
after updating based on the modal data of the first four modes (errors 1% of the 
experimental frequency and displacement mode shape), a proof load is applied and 
the strain in the middle of element 4 is measured (i.e. at 1.75 m from the left 
support, error 0.5 µε). The corresponding posterior distribution is given in Figure 
VI-28. When looking at Figure VI-28, it can be seen that the posterior uncertainty 
is smaller compared to the posterior distribution of the corrosion degree when only 
accounting for the modal data (Figure VI-17) or the static strain data (Figure VI-
5), and that also at the elements where no static strains are measured a more 
accurate representation of the corrosion degree is found. 
 



 
 

 
 

116 Chapter VI 
 

  

 

 
Figure VI-27: Conceptual representation of updating of the corrosion degree based on strain 
data from proof loading and modal data from ambient acceleration measurements, and the 
improved predictability when considering both sources of information 

 
Also for the RC girder bridge, the HDI from the posterior distribution based on 
the modal data is very wide. The corrosion degree is not predicted very accurate 
and precise. However, the general pattern of the posterior distribution along the 
bridge points towards critical locations to perform additional static strain 
measurements. These locations to perform additional strain measurements under 
proof loading are based on an assumed critical corrosion degree of 0.042, which 
represents an increase of 10% compared to the prior mean. Strains are only 
measured at the locations were the critical corrosion degree lies in the 50% HDI 
of the posterior distribution as identified from the modal data. The results are given 
in Figure VI-29. By combining the information of modal data and static strain data, 
the posterior uncertainty is reduced when compared to the case where only modal 
data or static strain data at a limited number of sensor locations are considered. 
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Figure VI-28: Posterior distribution of the corrosion degree of the simply supported beam 
after a combination of modal data and static strain data 

 
 

 
Figure VI-29: Posterior distribution of the corrosion degree of the RC girder bridge after 
updating based on modal data and static strain data at those locations where the critical 
corrosion degree (0.042) is within the 50% HDI of the posterior distribution when only 
accounting for modal data (as indicated in the top left corner of the figure) 
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In previous sections, it was found that an increased error on the static strain 
measurements leads to a more vague posterior distribution, not accurately 
describing the actual corrosion degree. When combining this strain data with 
natural frequencies and displacement mode shapes, the posterior distribution is a 
better approximation of the actual corrosion degree, which can be concluded based 
on the results in Table VI-7. If static strain measurements are performed at all 
locations and the error on the strain measurements is small enough, not much 
additional information is gained by adding the modal data. Nevertheless, if the 
strain measurements are not very accurate, adding the information obtained from 
the modal data provides a significant benefit. 
 

Table VI-7: Comparison of some posterior statistics (RMS, minimum standard deviation 
σmin, maximum standard deviation σmax and average standard deviation σaverage) of the 
corrosion degree when changing the measurement error in the likelihood – RC girder 
bridge, modal data and static strain data. ‘Max α’ refers to the maximum corrosion degree 
sampled along the bridge to generate the measurement result. 

Max 

α [-] 

Error 

on 

strain 

Data RMS σmax σmin σaverage 

0.13 1 µε 
Modal + static 

strain 
0.019 0.030 0.016 0.023 

 1 µε Static strain 0.017 0.031 0.018 0.024 

 3 µε 
Modal + static 

strain 
0.027 0.034 0.022 0.026 

 3 µε Static strain 0.025 0.030 0.024 0.027 

 10 µε 
Modal + static 

strain 
0.030 0.035 0.023 0.028 

 10 µε Static strain 0.028 0.030 0.026 0.028 

0.40 1 µε 
Modal + static 

strain 
0.018 0.051 0.029 0.038 

 1 µε Static strain 0.025 0.053 0.033 0.042 

 3 µε 
Modal + static 

strain 
0.030 0.058 0.035 0.044 

 3 µε Static strain 0.036 0.055 0.044 0.050 

 10 µε 
Modal + static 

strain 
0.042 0.064 0.036 0.048 

 10 µε Static strain 0.056 0.059 0.051 0.056 
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VI.3.5.2 Visual observations and strain or modal data 

In this section, it is investigated how combining the visual observations with the 
different considered data types influences the posterior distribution of the 
corrosion degree. 
 
When considering the simply supported beam, the posterior distribution of the 
corrosion degree is determined for a data set including strains measured under 
proof loading at element 4, accelerations at seven locations along the beam, or 
modal strains in all eight elements. Both the results with and without consideration 
of the visual observation of rust stains at [33, 30, 21, 15, 15, 18, 27, 30] years are 
determined. The results are summarized in Table VI-8. The posterior distribution 
is visualized in Figure VI-30 when considering the static strains. In Figure VI-30, 
it is observed that the addition of the visual observation leads to a smaller posterior 
uncertainty and a better characterization of the actual corrosion degree. For the 
natural frequencies and displacement mode shapes, the maximum standard 
deviation of the corrosion degree reduces from 0.10 to 0.075 when incorporating 
the information from the visual inspection (Table VI-8). For the natural 
frequencies and strain mode shapes, this maximum standard deviation reduces 
from 0.101 to 0.075 when accounting for the visual observations. 
 
If the measurement error on the strains is increased to 3 µε, the influence of adding 
the visual observations becomes even more pronounced, as visible in Table VI-9. 
Increasing the error in the likelihood function when accounting for the natural 
frequencies and displacement mode shapes has a less remarkable influence. For 
the natural frequencies and strain mode shapes, the effect of adding the visual data 
is again larger if the error in the likelihood function is increased. 
 
Not only the corrosion degree itself is updated, but also the underlying initiation 
period and corrosion rate. The posterior distributions for these variables are given 
in Figure VI-31 and Figure VI-32 for updating with and without the visual 
observation when measuring strains under proof loading at element 4. It can be 
seen that the uncertainty of the initiation period is indeed decreased. Due to this 
additional information regarding the initiation period, the information obtained 
from the strain measurements can be used to update the corrosion rate. Here, the 
posterior distribution shows a decreased uncertainty and provides a better 
characterization of the actual corrosion rate. For the natural frequencies and 
displacement mode shapes or strain mode shapes, a similar effect can be observed. 
For the natural frequencies and displacement mode shapes, the maximum 
coefficient of variation (COV) of the initiation period is reduced from 0.45 to 0.19, 
and when updating based on the natural frequencies and strain mode shapes, the 
maximum COV of the initiation period is reduced from 0.41 to 0.24.  
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Next, both the visual observation of rust stains and the observation of severe 
cracking are accounted for. The posterior distribution of the corrosion degree when 
adding this additional visual observation is given in Figure VI-33 for the static 
strain data. For this case and the other cases, the posterior statistics are also 
summarized in Table VI-8. A first observation when looking at the provided 
results is that the influence of adding the visual observations is largest for the static 
strain data and the natural frequencies and displacement mode shapes, since these 
originally provide a more vague posterior distribution of the corrosion degree. A 
second observation is based on Figure VI-31 and Figure VI-32. Here it can be seen 
that the largest reduction in uncertainty is found for the initiation period. The 
influence on the corrosion rate is limited, even when including additional 
observations of severe cracking. This could be ascribed to the fact that the time to 
cracking and the time to severe cracking are relatively short with respect to the 
initiation period. Furthermore, changing the corrosion rate often does not lead to 
an increase or decrease of the time to (severe) cracking larger than three years (i.e. 
the time between consecutive visual inspections). Hence, the largest part of the 
reduction on the uncertainty of the corrosion rate is ascribed to the accompanying 
measurement data. Finally, the influence of adding the visual observation of severe 
cracking is rather limited compared to the initial influence of adding the visual 
observation of rust stains. The latter updates the initiation period to a large extent. 
The time to severe cracking depends on the corrosion rate, but as already pointed 
out, the influence is limited. Adding the time to severe cracking does not update 
the initiation period and only updates the corrosion rate to a very small extent. 
Hence, for this specific situation, including the observations of rust stains in the 
Bayesian procedure is worth the effort, but the observation of severe cracking 
should not necessarily be accounted for. 
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Table VI-8: Influence of visual observations on the posterior statistics (RMS, minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) for the simply supported beam 

Data RMS σmax σmin σaverage 

Static strain at element 4 0.093 0.132 0.053 0.102 
Static strain at element 4 + rust stains 0.033 0.090 0.042 0.063 

Static strain at element 4 + severe cracking 0.033 0.097 0.038 0.065 
Natural frequencies and displacement mode 

shapes 
0.023 0.101 0.079 0.090 

Natural frequencies and displacement mode 
shapes + rust stains 

0.023 0.075 0.037 0.062 

Natural frequencies and displacement mode 
shapes + severe cracking 

0.015 0.071 0.031 0.050 

Natural frequencies and strain mode shapes 0.023 0.101 0.079 0.090 
Natural frequencies and strain mode shapes 

+ rust stains 
0.003 0.075 0.008 0.039 

Natural frequencies and strain mode shapes 
+ severe cracking 

0.003 0.071 0.008 0.038 

Table VI-9: Influence of visual observations on the posterior statistics (RMS, minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) for the simply supported beam, increased measurement error 

Data RMS σmax σmin σaverage 

Static strain at element 4 (error 3 µε) 0.038 0.120 0.104 0.113 
Static strain at element 4 (error 3 µε) + rust 

stains 
0.033 0.110 0.061 0.088 

Static strain at element 4 (error 10 µε) 0.110 0.120 0.110 0.100 
Static strain at element 4 (error 10 µε) + rust 

stains 
0.030 0.110 0.056 0.086 

Natural frequencies (error 0.01𝜆̅𝑟, ) and 
displacement mode shapes (error 0.01‖�̅�𝑟‖) 

0.003 0.100 0.078 0.089 

Natural frequencies (error 0.01𝜆̅𝑟, ) and 
displacement mode shapes (error 0.01‖�̅�𝑟‖) 

+ rust stains 
0.023 0.082 0.037 0.063 

Natural frequencies (error 0.01𝜆̅𝑟, ) and 
strain mode shapes (error 0.2 µε) 0.028 0.100 0.079 0.089 

Natural frequencies (error 0.01𝜆̅𝑟, ) and 
strain mode shapes (error 0.2 µε) + rust 

stains 
0.020 0.078 0.038 0.061 
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a) Without visual observation b) With visual observation of rust 
stains 

Figure VI-30: Posterior corrosion degree of the simply supported beam when measuring 
the strains under proof loading at element 4 a) without visual observation, b) with visual 
observation of rust stains 

 

a) Without visual observation b) With visual observation of rust 
stains 

Figure VI-31: Posterior initiation period of the simply supported beam when measuring the 
strains under proof loading at element 4 a) without visual observation, b) with visual 
observation of rust stains 
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a) Without visual observation b) With visual observation of rust 
stains 

Figure VI-32: Posterior corrosion rate of the simply supported beam when measuring the 
strains under proof loading at element 4 a) without visual observation, b) with visual 
observation of rust stains 

 

a) With visual observation of rust 
stains 

b) With visual observation of rust 
stains and severe cracking 

Figure VI-33: Posterior corrosion degree of the simply supported beam when measuring 
the strains under proof loading at element 4 a) with visual observation of rust stains, b) with 
visual observation of rust stains and severe cracking 
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Also for the RC girder bridge, the influence of incorporating the visual 
observations is investigated. The results are summarized in Table VI-10. When 
accounting both for the visual information and static strains measured at the two 
middle elements of each girder, the posterior distribution is visualized in Figure 
VI-34. The posterior corrosion degree shifts to higher values when including the 
information from the visual observations. Moreover, the posterior mean better 
approximates the actual corrosion degree compared to the case where only the 
static strain measurements are accounted for. When for the RC girder bridge the 
natural frequencies and strain mode shapes are combined with the visual 
observations, the resulting posterior distribution is visualized in Figure VI-35. 
Here it can be seen that the posterior uncertainty is reduced with respect to the 
case where no visual observations are accounted for. Moreover, the posterior 
distribution shifts to higher values, inducing a slight overestimation of the 
corrosion degree. Similar observations are found when combining the visual 
observations with natural frequencies and displacement mode shapes, as 
visualized in Figure VI-36. 
 

Table VI-10: Influence of visual observations on the posterior statistics (RMS, minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) of the RC girder bridge 

Data RMS σmax σmin σaverage 

Static strains in the middle of the 
girders 

0.0056 0.0087 0.0030 0.0064 

Static strains in the middle of the 
girders+ rust stains 

0.0043 0.0081 0.0019 0.0058 

Static strains in the middle of the 
girders (error 10 µε) 0.0075 0.0098 0.0090 0.0095 

Static strains in the middle of the 
girders (error 10 µε) + rust stains 

0.0090 0.0087 0.0070 0.0080 

Natural frequencies and displacement 
mode shapes 

0.0042 0.0074 0.0045 0.0059 

Natural frequencies and displacement 
mode shapes + rust stains 

0.0046 0.0070 0.0041 0.0055 

Natural frequencies and strain mode 
shapes 

0.0034 0.0044 0.0023 0.0032 

Natural frequencies and strain mode 
shapes + rust stains 

0.0043 0.0040 0.0045 0.0059 
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Figure VI-34: Posterior distribution of the corrosion degree of the RC girder bridge when 
accounting for static strains measured at the middle of the girders and visual observations 

 

 
Figure VI-35: Posterior distribution of the corrosion degree of the RC girder bridge when 
accounting for natural frequencies, strain mode shapes and visual observations 
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Figure VI-36: Posterior distribution of the corrosion degree of the RC girder bridge when 
accounting for natural frequencies, displacement mode shapes and visual observations 

VI.4 Summary and conclusions 

Data used for updating of a structural model is in many cases indirectly related to 
the degradation of the structure. This is for example the case for strains or 
displacements measured under proof loading and modal data, which are indirect 
measures of the stiffness. In this chapter, it is investigated how strain and 
displacement data gathered under proof loading and modal data from (ambient) 
vibration tests, can be (jointly) used to update the distribution of the corrosion 
degree, accounting for the spatial character of corrosion. Strain data under proof 
loading provides accurate but local information on the corrosion degree. Modal 
data extracted from acceleration measurements, on the other hand, provides more 
global information, but with a larger uncertainty. It is investigated how the 
combination of these different types of data leads to a more accurate representation 
of the actual corrosion degree. The methods are applied to a simply supported 
reinforced concrete beam and an RC girder bridge, where the influence of 
corrosion is modelled by a reduced reinforcement section and a reduced stiffness 
of the concrete cover due to cracking. 
 
First, static data obtained during a proof load test are considered. When strains 
measured under proof loading are used to estimate the real corrosion degree, a 
relatively accurate estimate of the corrosion degree is found at the elements 
equipped with strain sensors, but not at the elements where no measurements are 
performed. The accuracy of the approximation also depends on the corresponding 
measurement error. When considering displacement data, large posterior 
uncertainties are found, with a posterior mean value that does not approximate the 
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actual corrosion degree. Damage can be detected if the corrosion degree is 
sufficiently large, but it cannot be estimated accurately. 
 
A disadvantage of proof loading is that the structure should be taken out of service. 
Therefore, modal data from ambient vibration tests could be applied in a first step 
to detect the presence and location of damage, since these measurements can be 
performed in operational conditions. It has been illustrated that accounting for 
natural frequencies and displacement mode shapes in the likelihood function leads 
to a posterior distribution following the underlying pattern of the corrosion degree, 
giving an indication of reduced stiffness where corrosion damage is present. 
Nevertheless, the posterior uncertainty remains rather large. Next, it is investigated 
what information can be extracted from strain mode shapes in terms of the 
corrosion state of the structure. It is shown how strain mode shapes indeed provide 
more local information compared to displacement mode shapes because modal 
strains are more sensitive to local changes in stiffness. Nevertheless, under the 
present assumptions, less precise estimates of the corrosion degree are obtained 
compared to the results from strains measured under proof loading. 
 
It is also illustrated how modal data can detect and localize damage, and for 
example trigger proof loading and help identifying relevant locations for strain 
measurements. When these measurement results are combined, a significantly 
more accurate and precise estimate of the actual corrosion degree is found. For the 
different data types, it is also illustrated how the measurement error influences the 
posterior distribution. 
 
Also the influence of including visual observations about the presence of corrosion 
(by observing rust stains or corrosion cracks) is investigated. It should be pointed 
out that operator bias is assumed not to be present and hence not accounted for. If 
operator bias is expected, this should be included in the inference. Furthermore, in 
the analyses performed in this work, the visual observations are used to update the 
distribution of the initiation period (and of the corrosion rate). Nevertheless, an 
interesting addition might be to also consider information on the underlying 
parameters in the model for the initiation period, to improve the estimate on the 
latter. This information could for example be retrieved from cover measurements, 
measurements of chloride profiles on concrete cores, etc. The resulting data could 
also be included in the Bayesian inference scheme. In general, the methods 
described in this chapter can also be applied to other data types that are indirectly 
related to the stiffness of the structure and hence the underlying degradation, or 
directly related to variables in the degradation models. 
 
The method developed in this chapter allows updating the corrosion degree based 
on heterogeneous measurement data consisting out of modal data and static strain 
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data, possibly combined with visual observations. The shortcomings and 
advantages of both types of data separately are discussed and illustrated by 
examples. The results of combining both types of data show how a more accurate 
posterior distribution of the corrosion degree can be achieved when accounting for 
heterogeneous measurement data. Even though for visualization purposes only the 
posterior distribution of the corrosion degree has been plotted, this distribution is 
obtained from the posterior distributions of variables such as the initiation period 
and corrosion rate, which can be used to model degradation at later timesteps. This 
will be used in later chapters of this work to evaluate the probability of failure over 
time. Here, the assumption will be made that the distribution of the corrosion rate 
is time-independent, i.e. a constant corrosion rate is assumed. Time-dependent 
models for the corrosion rate are also available in literature and, if required, could 
be taken along in the applied procedures. 
 
The developed model-based framework can also be used to estimate which 
inspection technique has the highest impact on the predicted damage (and 
corresponding reliability), in order to assess the most optimal measurement 
techniques. For this purpose, different metrics exist to evaluate the performance 
of the posterior distribution. Examples are the Kullback-Leibler divergence (as 
applied in (Vereecken et al., 2022)), the information entropy (see Chapter X), the 
explanatory power (Sousa et al., 2020) (as applied in (Vereecken et al., 2020)), 
etc. 
 
All results in this chapter depend on the assumptions made for the errors in the 
likelihood function (i.e. measurement and modelling errors). Other assumptions 
could be made, which might influence the shape and/or uncertainty of the posterior 
distribution. More research is required on the appropriate quantification of these 
measurement and/or model errors. In the current work, for the static strains, a large 
range of measurement errors is considered, from 0.5 to 10 µε. Even though this 
broad range of errors can occur in practice, for a well-designed experimental 
campaign with appropriate sensor locations, the measurement error can be limited, 
and a small measurement error can be used in the likelihood function. 
Nevertheless, in such a situation, also the contribution of a model error should be 
accounted for in the likelihood. For the natural frequencies, in the current work 
the experimental error is assumed relative to the natural frequency, since an 
absolute error would assign a relatively large weight to the higher order 
frequencies. Even though these can be measured more accurately due to the 
increasing gap between the frequencies, this effect is compensated by the 
decreasing excitability of these higher order modes. If more information on the 
difference in experimental accuracy of different modes is available, this could also 
be accounted for in the likelihood function. Also the models for the errors on the 
displacement mode shapes could be altered, which could resolve the scaling of the 
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error if the experimental mode shape is available at more locations (cfr. supra). 
For the strain mode shapes, an absolute error has been assumed, but this should be 
adjusted if scaling of the strain mode shapes is included. In general, lower 
measurement errors (if appropriate) will lead to lower posterior uncertainties and 
better approximations of the actual value. Nevertheless, if the measurement error 
is estimated too low, the posterior distribution might deviate from the actual value. 
The measurement error will not only depend on the measurement equipment itself, 
but also on environmental conditions, attachment of the sensors, possible 
occurrence of damage to the sensors, etc. 
 
Since the error in the likelihood function influences the posterior distribution and 
hence the capability of a measurement technique to detect and quantify damage, 
thresholds can be defined for the required accuracy depending on the expected 
damage, or vice versa on the damage level that can be detected with a measuring 
technique with a given accuracy. Nevertheless, more research is required on this 
topic. 
 
Also assumptions on the correlation models for the random fields have been made 
for the prior modelling of spatial correlation. In the present work, these will have 
limited influences on the results since the model for generating the data and the 
model used in the Bayesian inference are the same. When actual data is present, 
this prior choice for the correlation model might influence the results, even though 
it will also be inferred during the Bayesian updating procedure. More information 
on the influence of the prior correlation model can also be found in (Vereecken et 
al., 2021). 
 
Even though Bayesian inference is a well-known method to account for 
measurement information in a probabilistic way, this chapter extends the existing 
state-of-the-art by updating the distributions of the variables in the degradation 
models based on indirect (static and dynamic) measurement information, 
accounting for the spatial variability and correlation of corrosion. In scientific 
literature, often the corrosion degree itself is inferred and not the variables in the 
underlying time-dependent degradation models, the spatial variation of the 
corrosion degree is not accounted for, and it is assumed that corrosion (variables) 
can be measured directly. It is hence the first time that static strains, static 
displacements, natural frequencies and mode shapes are used to update variables 
in the corrosion models, which can be modelled with random fields. Moreover, 
the influence of combining different data types is investigated together with the 
possible inclusion of information from visual observations. 
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“The true method of knowledge is experiment.” 
- William Blake 
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VII.1 Introduction 

To validate the procedure described in the previous chapter, an experimental 
campaign is performed in the Magnel-Vandepitte lab. In this experimental 
campaign, beams are subjected to accelerated corrosion. On these corroded beams, 
static tests are performed, consisting of 4-point bending tests up to a load smaller 
than the cracking load of the beam. In addition, dynamic tests are performed, 
during which strains and accelerations are measured with optic fibres and 
accelerometers respectively. Finally, destructive tests are performed on the beams, 
also in a 4-point bending set-up. After the destructive tests, the reinforcement is 
removed from the beams, cleaned, and weighed. As such, the actual corrosion 
degree can be determined based on the mass loss of the reinforcement. 

VII.2 Accelerated corrosion tests 

To obtain sufficiently high corrosion degrees within a reasonable time, reinforced 
concrete specimens are in experimental research often exposed to accelerated 
corrosion. Accelerating corrosion can be achieved by manipulating the corrosion 
kinetics. To simulate the corrosion process naturally, the concentration of salts or 
the temperature could be increased (Zhu and François, 2014). The specimens 
could also be subjected to cyclic wetting and drying, as for example performed in 
(Altoubat et al., 2016). The wetting happens with a sodium chloride solution and 
is repeated until the desired corrosion degree is reached. Although the process is 
faster than natural corrosion, it still requires several months to depassivate the 
reinforcement. A more popular method is the use of anodic polarization. In this 
method, a DC current is applied, connecting the reinforcement (acting as the anode 
in the corrosion process) with a stainless steel plate (acting as the cathode) 
submerged in a salt solution. In literature, the concentration of the latter varies 
from 2% to 5% NaCl. This salt solution can be used to increase the rate of 
corrosion, or simulate a seawater environment. Specimens can either be immersed 
in the salt solution (Abosrra et al., 2011; Caré and Raharinaivo, 2007), or a 
bottomless basin with the salt solution can be placed on top of the specimens 
(Otieno et al., 2016). In some experiments, chlorides are mixed into the concrete 
specimens to arrive at immediate depassivation of the reinforcement and eliminate 
the initiation period. In this way, also a more uniform distribution of corrosion can 
be achieved. Regarding the electric circuit, either a constant voltage or a constant 
current can be applied. For the constant current, an upper limit of 100 µA/cm² is 
imposed in literature to have the same corrosion products as in the case of natural 
corrosion. However, some sources apply larger current densities, as for example 
(El Maaddawy and Soudki, 2007). Andisheh et al. (2019) state that the difference 
in corrosion products formed by applying accelerated corrosion tests is not really 
a problem when considering structural engineering applications and not looking 
into the details of the corrosion process itself. When a DC current is applied to the 
reinforcement bar and a stainless steel plate placed in the salt solution, the cathode 
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is located outside the concrete. As such, no OH- ions are formed within the 
concrete, which is different from the natural corrosion process, where OH- ions 
are produced inside the concrete. Nevertheless, from a structural point of view this 
is less important. 
 
The theoretical amount of steel loss in an accelerated corrosion test can be 
calculated from equation (VII-1). ∆𝑚 = 𝑀 ∙ 𝐼 ∙ 𝑡𝑧 ∙ 𝐹  (VII-1) 

Here, ∆𝑚 is the steel mass loss per unit surface, M is the atomic weight of iron 
atoms (56 g), I is the current in A, t the time in seconds, z the ionic charge, and F 
is the constant of Faraday (96 500 A/s). 

VII.3 Description of the experimental campaign 

In this experimental campaign, the procedure developed at the Building Materials 
and Constructions section of KU Leuven has been applied (Nasser et al., 2021; 
Van Steen et al., 2021, 2019a, 2019b). 

VII.3.1 Layout of the beams 

The tested reinforced concrete beams have a length of 5 m, a width of 300 mm and 
a height equal to 400 mm. The reinforcement ratio of the lower reinforcement was 
chosen to be equal to 1%. Hence, the tensile reinforcement consists of four bars of 
20 mm diameter. The concrete cover on the longitudinal reinforcement equals 
30 mm. The shear reinforcement has a diameter of 10 mm and a spacing of 
270 mm. In addition, two bars of 16 mm diameter are provided as top 
reinforcement. A longitudinal section of the beams is given in Figure VII-1, and 
the cross-section of the beams is visualized in Figure VII-2. In Figure VII-1, it can 
be seen that the lower reinforcement extends 10 cm out of the beams in order to 
be able to connect the power source (cfr. infra) to the beams. At the ends of the 
beams, the last 5 cm of the tensile reinforcement inside the concrete and the first 
5 cm of the reinforcement extending out of the concrete are coated. This coating 
is applied to avoid localized corrosion at the ends of the beams due to the higher 
presence of oxygen outside the concrete. 
 

 
Figure VII-1: Longitudinal section of the beams (dimensions in mm) 
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Figure VII-2: Cross-section of the beams (dimensions in mm) 

 
In total, five beams have been casted, on three casting days. The beams are 
numbered according to Table VII-1 and the anticipated corrosion degrees 
(calculated according to equation (VII-1)) are mentioned. 
 

Table VII-1: Specifications and names of the different beams 

 Name 
Anticipated 

corrosion degree 
Remarks Casting date 

Set 1 Beam 1.1 30%  
28/09/2020 

 Beam 1.2 2%  

Set 2 Beam 2.1 25%  
12/11/2020 

 Beam 2.2 15% No optic fibres 

Set 4 Beam 4.1 0% Reference beam 09/12/2020 
 

VII.3.2 Concrete composition 

The concrete used for the beams corresponds to concrete code 30A4CK0S 
(BENOR) and has a composition according to Table VII-2. The concrete has 
chloride class 0.4%, environment class EI, maximum aggregate size 
Dmax = 14 mm, consistency class S4 and strength class C25/30. 
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Table VII-2: Concrete composition 

Component Content [kg/m³] 

K 6.3/14 (limestone 6.3/14 BENOR Holcim) 955 
Sea sand 518 

K 0/4 (washed limestone sand Holcim Gaurain 
BENOR) 

427 

CEM I 52.5 N Holcim 270 

Water 
174 (183 incl. absorption 

water) 
Sky 571 (BASF) 1.9 

VII.3.3 Accelerated corrosion 

To accelerate the corrosion process, a current is applied to the reinforcement, 
together with a salt solution applied to the beam. The current and salt solution are 
applied for the first time when the beams have reached an age of 28 days. During 
the accelerated corrosion tests, the beam is turned upside down, i.e. the bottom 
reinforcement is located at the top of the beams. Then, a bottomless wooden tank 
is placed on top of the beams, which is filled with a 5% NaCl solution. Within this 
wooden tank, a stainless steel plate is placed, which acts as the cathode and is 
connected with the negative side of the power source. The 5% NaCl solution 
within the wooden tank works as an electrolyte. The bottom reinforcement is 
connected to the positive side of the power source and acts as the anode. A current 
density of 100 µA/cm² is applied to the reinforcement by a power source providing 
direct current. The top reinforcement is isolated from the stirrups and hence not 
subjected to the current. During the corrosion process, the set-up is placed in a 
climatised room with 60 ± 10% RH and temperature 21 ± 2°C. The set-up is 
illustrated in Figure VII-3. 
 

 
Figure VII-3: Visualization of the accelerated corrosion set-up 
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VII.3.4 Static and dynamic tests 

The main purpose of the experimental campaign is to acquire static strain data and 
dynamic data on corroded reinforced concrete beams, which can then be used in a 
Bayesian inference procedure to estimate the corrosion degree of the beams (cfr. 
Chapter VI). The static tests, the destructive tests and the dynamic tests will be 
described in the following. The results of these tests will be discussed in more 
detail in section VII.6. 

VII.3.4.1 Static load tests 

The static tests are performed in a 4-point bending test set-up, as shown in Figure 
VII-4 and Figure VII-5. The locations of the loads are at one fourth of the span 
length. The loads are applied with hydraulic jacks. A steel plate (7.06 kg) or steel 
profile (12.3 kg) is placed in between the jacks and the beam in order to spread the 
load. When looking at the side of the beam to which the strain gauges are attached, 
the left support is a hinged support and the right support is a roller support (Figure 
VII-6). In between the jacks and the beam, also a load cell (2.592 kg (50 kN 
calibration), 3.960 kg (500 kN calibration)) is placed to measure the applied load 
(Figure VII-6). 
 

 
Figure VII-4: 4-point bending test set-up 
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Figure VII-5: 4-point bending test set-up (schematic) (dimensions in mm) 

 

  
Figure VII-6: Roller support (left) and detail of jack - load cell – steel plate (right) 

 
During the static load tests, strains are measured with strain gauges and 
displacements are measured with LVDT’s. The locations of the LVDT’s are 
visualized in Figure VII-5. In addition, an LVDT is present at each support. The 
locations of the strain gauges are visualized in Figure VII-7. The exact position of 
some of the strain gauges for some beams might slightly deviate from those 
illustrated in Figure VII-7 in order not to apply a strain gauge over existing cracks 
in the concrete (e.g. shrinkage cracks). The maximum applied load during the 
static load tests equals 15 kN in each loading point, which equals about 75% of 
the estimated cracking load. 
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Figure VII-7: Positions of the strain gauges and LVDT’s (at each support also an LVDT is 
present, but these are not visualized on this figure) (dimensions in mm) 

VII.3.4.2 Destructive tests 

The destructive tests are performed in the same set-up as the static load tests. The 
loading scheme is given in Table VII-3. The indicated load is the load in one of 
the loading points. Hence, the total load on the beam equals the given load 
multiplied by 2. 
 

Table VII-3: Loading procedure for the destructive tests.  

Start Stop Loading rate 

0 kN 5 kN 50 N/s 
5 kN 0 kN 50 N/s 
0 kN 5 kN 50 N/s 
5 kN 15 kN 50 N/s 
15 kN 20 kN 50 N/s 
20 kN 30 kN 50 N/s 
30 kN 50 kN 50 N/s 
50 kN 100 kN 50 N/s 
100 kN Failure Displacement-controlled; +- 0.03 mm/s 

 
After the destructive test, the tensile reinforcement is removed from the beams, 
cut into parts of 20 cm, and cleaned. The cleaning of the reinforcement is 
performed according to ASTM G1-03 (ASTM International, 2011). The 
specimens are submerged in a solution of 500 mL hydrochloric acid, 3.5 g 
hexamethylene tetramine and reagent water to make 1000 ml. Different cycles 
(10 minutes at room temperature) are performed, and after each cycle, the samples 
are weighed. The mass loss is then graphed as a function of the number of equal 
cleaning cycles. Two lines are obtained on this graph (AB and BC, see Figure VII-
12). The second line corresponds to removal of the metal after removing the 
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corrosion products. The mass loss due to corrosion will hence approximately 
correspond to point B on the graph. 
 

 
Figure VII-12: Mass loss of corroded specimens resulting from repetitive cleaning cycles 
(ASTM International, 2011) 

VII.3.4.3 Dynamic tests 

Dynamic tests are performed at an age of 28 days, i.e. before starting the corrosion 
process, and at the age corresponding to the anticipated corrosion degree, i.e. 
before performing the destructive tests. During the dynamic tests, the beams are 
placed on flexible supports to isolate them from the environment and solely 
measure the natural frequencies of the beam and not frequencies due to the 
interaction between the beam and the environment (free-free boundary 
conditions). 
 
When performing the dynamic tests, the beams are subjected to a load inducing 
vibrations, and accelerations and strains are measured as a response to this load. 
The vibrations are induced by hitting on the beams with a small hammer. Each 
time, three tests are performed with thirty hammer impacts in the vertical direction 
and three tests with thirty hammer impacts in the lateral direction. Only for set 1 
at 28 days, only two tests with lateral impacts are performed. 
 
Accelerometers are fixed to the beam in order to measure the accelerations 
resulting from the hammer impacts (Figure VII-8). Twenty uniaxial 
accelerometers are applied to the top of the beam in order to measure the vertical 
accelerations and ten uniaxial accelerometers are applied to the side of the beam 
in order to measure the horizontal accelerations. As such, vertical bending modes, 
lateral bending modes and torsional modes can be extracted from the acceleration 
data. The positions of the accelerometers are visualized in Figure VII-9. 
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Figure VII-8: Accelerometers applied to the beam 

 

 
Figure VII-9: Locations of the accelerometers (dimensions in mm) 

 
During the dynamic tests, strains are measured with optic fibres on some of the 
beams (cfr. Table VII-1). These strains can be used to extract strain mode shapes. 
The optic fibres are attached to the beams with a clamping system as visualized in 
Figure VII-10. The optic fibres are placed at one side of the beam. One optic fibre 
is applied along the top of the beam, and one at 6 cm from the bottom of the beam. 
The latter was chosen so that the fibres would not be in close contact with eventual 
corrosion products. For the reference beam, the optic fibres are respectively along 
the bottom of the beam and 6 cm from the top of the beam. 
 
 

 
Figure VII-10: Optical fibre connected to the beam with clamping system 
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The accelerations and strains measured during the dynamic tests should be post-
processed in order to obtain natural frequencies, displacement mode shapes and 
strain mode shapes. This post-processing is performed by a system identification 
with MACEC, a MATLAB toolbox for experimental and operational modal 
analysis developed by the Structural Mechanics Section of KU Leuven (Reynders 
et al., 2014). The covariance-driven stochastic subspace identification (SSI-COV) 
is applied, which is an output-only identification technique. Since the force is also 
measured, also the combined deterministic-stochastic subspace identification 
(CSI) can be used. Nevertheless, the signal of the hammer is not always very good, 
and in those situations, SSI-COV is preferred. In both techniques, the maximum 
system order and half number of Hankel’s block rows need to be defined 
(Anastasopoulos, 2020; Peeters and De Roeck, 1999; Reynders and De Roeck, 
2008). The latter is chosen equal to 30, and the system order is given as 2:2:100. 
The system identification is performed in the time domain, and during data 
processing, the static or direct current offset is removed from the measured signals 
(Anastasopoulos, 2020; Peeters and De Roeck, 1999; Reynders et al., 2014; 
Reynders and De Roeck, 2008). The identified frequencies are then manually 
selected from stabilization diagrams, as for example visualized in Figure VII-11 
for beam 1.2 at 28 days and for a vertical impact. 
 
The dynamic tests were performed in collaboration with dr. ir. Dimitrios 
Anastasopoulos from the Structural Mechanics section at KU Leuven, who is 
greatly acknowledged for his contribution in the execution of the tests. After a 
short introduction, processing of the data has been performed by the author herself. 
Hence, other than the execution of the dynamic tests, all the research mentioned 
in this work is original research performed by the author. 
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Figure VII-11: Stabilization diagram for beam 1.2 at 28 days for a vertical impact. Only the 
stable modes between 0 and 500 Hz are visualized. The red circles indicate the selected 
results. 

VII.4 Test for material characterization and for the 

determination of the measurement error 

When applying a Bayesian inference procedure, a model is required that simulates 
the measurement output as a function of the parameters to be updated (see 
section IV.2). In this research, a finite element model of the beams is used, which 
will be discussed in more detail in section VII.5. When creating this model, some 
input is required on the material properties of the concrete and the reinforcement 
steel. Hence, tests for material characterization have been performed. These tests 
and the obtained results are summarized in section VII.4.1.  
 
When performing Bayesian inference, the obtained results depend on the 
measurement error (see section IV.2). Since this error is difficult to estimate for 
static strains measured on reinforced concrete elements, some tests on plain 
concrete prisms have been performed to gain insight in its order of magnitude. The 
test procedure and the results from these tests are discussed in section VII.4.2. 
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VII.4.1 Tests for material characterization 

Tests to determine the strength and stiffness of the concrete have been performed. 
The cylinder compressive strength fc,cyl is tested on cylinders with height 300 mm 
and diameter 150 mm according to NBN EN 12390-3 (CEN, 2019a). The cube 
compressive strength fc,cube is tested on cubes with side 150 mm according to 
NBN EN 12390-3 (CEN, 2019a). The tensile strength is determined based on 
three-point bending tests on prisms with length 400 mm and sides of 100 mm. The 
flexural strength fct,fl is determined based on NBN EN 12390-5 (CEN, 2019b). 
From the two parts of the sample resulting from this flexural test, the splitting 
strength fct,sp is determined according to NBN EN 12390-6 (CEN, 2005a). Based 
on the splitting tensile strength, the axial tensile strength can be calculated as 
fct = 0.9∙fct,sp according to NBN EN 1992-1 (CEN, 2005b). From the bending 
tensile strength, the axial tensile strength can be determined according to equation 
(VII-2) (fib, 2013). 𝑓𝑐𝑡 = 𝐴𝑓𝑙𝑓𝑐𝑡,𝑓𝑙  with 𝐴𝑓𝑙 = 𝛼𝑓𝑙ℎ𝑏0.71 + 𝛼𝑓𝑙ℎ𝑏0.7 (VII-2) 

Here, hb is the beam depth (100 mm), and 𝛼𝑓𝑙 is a coefficient that accounts for the 
brittleness of the concrete and equals 0.06. 
 
The fracture energy Gf is determined based on three-point bending tests on notched 
prisms. The prisms have a length of 400 mm and sides of 100 mm. The layout of 
the notch is visualized in Figure VII-13. 
 

 
Figure VII-13: Layout of the sample for determination of the fracture energy, the rough 
surface is the front surface (dimensions in mm) 

 
The chloride migration coefficient DRCM is determined from non-steady-state 
migration experiments according to NT Build 492 (NORDTEST, 1999). These 
tests are performed on samples of diameter 100 mm and height 50 mm. Finally, 
the Young’s modulus Ec is determined on cylinders of height 300 mm and 
diameter 150 mm according to EN 12390-13 (CEN, 2005c). 
 
Material characterization is performed for the different sets of concrete. These test 
results have been determined at 28 days and at the age of the destructive tests of 
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the beams. For the reference beam, also intermediate results have been determined 
at the different testing ages. The results are summarized in Table VII-4 to 
Table VII-6. In these tables, only the mean value and corresponding uncertainty 
are provided. The reader is referred to Appendix A.2 for the individual testing 
results. 
 

Table VII-4: Test results material characterization concrete set 1 

 fc,cyl 

[MPa] 

fc,cube 

[MPa] 

fct 

[MPa] 

Gf 

[N/mm] 

DRCM
 

[mm²/year] 

Ec 

[GPa] 

Set 1 – 28 days 

Mean 39.0 42.9 3.3 0.10 1500 31.0 
COV 0.03 0.015 0.16 / 0.07 0.02 

Set 1 – 63 days 
(destructive test beam 1.2) 

Mean 37.8 / 2.8 0.15 / 37.6 
COV / / 0.07 0.08 / / 

Set 1 – 330 days 
(destructive test beam 1.1) 

Mean 34.7 / 2.8 0.17 / 33.5 
COV / / 0.17 / / / 

 

Table VII-5: Test results material characterization concrete set 2 

 fc,cyl 

[MPa] 

fc,cube 

[MPa] 

fct 

[MPa] 

Gf 

[N/mm] 

DRCM
 

[mm²/year] 

Ec 

[GPa] 

Set 2 – 28 days 

Mean 42.4 43.3 3.8 0.18 1631 32.7 
COV 0.01 0.03 0.23 / 0.08 / 

Set 2 – 182 days 
(destructive test beam 2.2) 

Mean 40.6 / 3.2 0.09 / 30.6 
COV 0.04 / 0.11 / / 0.01 

Set 2 – 285 days 
(destructive test beam 2.1) 

Mean 40.7 / 3.7 0.12 / 33.6 
COV 0.04 / 0.10 0.09 / 0.09 
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Table VII-6: Test results material characterization concrete set 4 

 fc,cyl 

[MPa] 

fc,cube 

[MPa] 

fct 

[MPa] 

Gf 

[N/mm] 

DRCM
 

[mm²/year] 

Ec 

[GPa] 

Set 4 – 28 days 

Mean 37.6 41.0 3.2 0.13 1895 32.3 
COV 0.02 0.01 0.13 0.2 0.09 0.05 

Set 4 – 63 days 
(destructive test beam 1.2) 

Mean 40.7 / 3.3 0.12 / / 
COV / / 0.07 / / / 

Set 4 – 182 days 
(destructive test beam 2.2) 

Mean 36.6 41.0 3.2 0.21 / 30.0 
COV / / 0.10 / / / 

Set 4 – 285 days 
(destructive test beam 2.1) 

Mean 36.3 41.0 3.5 0.14 / 35.0 
COV / / 0.08 / / / 

Set 4 – 330 days 
(destructive test beam 1.1 and beam 4.1) 

Mean 36.5 41.1 3.2 0.16 / 32.1 
COV 0.04 / 0.06 / / 0.05 

 
 
Besides the concrete, also the properties of the reinforcement are characterized. 
Tensile tests are performed on reinforcement bars with length 1 m in a testing 
apparatus with a capacity of 1000 tons. The force and deformation are logged. The 
deformation is measured with two LVDT’s with a measuring base of 200 mm. 
Tensile tests have been performed on the longitudinal and shear reinforcement in 
order to determine the stress-strain diagram. For each reinforcement type, three 
bars of length 1 m have been tested. The resulting stress-strain diagrams and the 
corresponding stress-strain diagram adopted in the finite element calculations are 
visualized in Figure VII-14. 
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Figure VII-14: Stress-strain curve for (a) the shear reinforcement and (b) the longitudinal 
reinforcement 

 
For the longitudinal reinforcement, a yield strength of 577 MPa is found and an 
ultimate strength of 665 MPa. The corresponding strains are 0.0033 and 0.08. For 
the shear reinforcement, a yield strength of 500 MPa and a tensile strength of 
550 MPa are found, with corresponding strains of 0.0026 and 0.092. 

VII.4.2 Determination of measurement error related to static strain 

measurements on (plain) concrete 

Based on the results provided in Chapter VI, it could be concluded that is important 
to have an idea about the (order of magnitude of the) corresponding measurement 
error when performing Bayesian inference based on data resulting from dynamic 
tests or from proof loading. For static strain measurements with strain gauges, 
limited information on this topic is available in literature. Hence, an experimental 
campaign has been performed to arrive at an estimate for the measurement error 
corresponding to the static strain measurements. The samples used for these tests 
are three prisms, each with dimensions 400 mm x 100 mm x 100 mm. The prisms 
are subjected to 4-point bending tests with a span of 300 mm and a distance 
between the loading points of 150 mm. The prisms are each equipped with eight 
strain gauges (gauge length 6 cm), i.e. four on the front side and four on the back 
side, according to the configuration visualized in Figure VII-15. The names of the 
strain gauges are according to the same figure. 
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Front Back 

Figure VII-15: Configuration of the tests for determination of the measurement error related 
to static strain measurements on plain concrete (dimensions in mm) 

 
For each sample, the load tests are performed according to the loading scheme 
provided in Table VII-7, where the given load represents the load in one loading 
point. Different load cycles are applied in order to be able to compare the strains 
between these different cycles. The maximum load of each cycle is 5 kN, which 
is lower than the cracking load. Assuming a tensile strength of 2.8 MPa, the 
cracking load is estimated to be 6.22 kN. 

VII.4.2.1 Measurement results 

In the following, the results for the different samples are summarized and 
discussed. 
 
The strains at all the strain gauges of the first prism are visualized in Figure VII-
16 (a). Here it can be seen that generally the differences between the results at the 
bottom fibre are limited. Cracking and failure occurred through strain gauges FBL 
and BBR. When considering the strains at the upper fibre, it can be seen that strain 
gauge FTR deviates from the others. This could be ascribed to the fact that this 
strain gauge is applied over a pit in the concrete surface. It should be pointed out 
that this could be prevented in practice. 
 
 
 
 
 
 
 

FTL FTR 

FBL FBR 

BTL 

BBL 

BTR 

BBR 
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Table VII-7: Loading procedure for the tests for determination of the measurement error. 
The load represents the load in one loading point, i.e. the total load applied to the prism 
equals two times this value. 

Start [kN] End [kN] Rate [N/s] 

0 1 50 
1 5 50 
5 0 50 
0 1 50 
1 5 50 
5 0 50 
0 1 50 
1 5 50 
5 0 50 
0 1 50 
1 5 50 
5 0 50 
0 1 50 
1 FAILURE 50 

 

  
a) Sample 1 b) Sample 2 

 
c) Sample 3 

Figure VII-16: Strains in (a) sample 1, (b) sample 2 and (c) sample 3 
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The strains at all the strain gauges of the second prism are visualized in Figure VII-
16 (b). Here a limited deviation can be observed between the results at the bottom 
fibre. Cracking and failure occurred through strain gauges FBL and BBR. The 
strains in strain gauge FBL generally deviate from the others. This could again be 
ascribed to the fact that strain gauge FBL is applied over a pit in the concrete 
surface. When considering the strains at the top fibre, it can be seen that the results 
of all strain gauges are close to each other. 
 
The strains at all the strain gauges of the third prism are visualized in Figure VII-
16 (c). Here it can be seen that generally the differences between the results are 
limited, but that the results of strain gauges FBL and BBR deviate from those of 
strain gauges FBR and BBL. This could again be ascribed to the presence of a pit 
in the concrete surface. When considering the strains at the top fibre, it can be seen 
that the results of all strain gauges are close to each other. 

VII.4.2.2 Analysis of the measurement error 

The measurement error is determined according to (Li et al., 2019). Here, a two-
way ANOVA based Repeatability and Reproducibility (R&R) analysis is 
suggested to quantify the sources of the measurement error. This considers both 
the repeatability and the reproducibility. Statistical quantification of the 
repeatability, reproducibility, overall variability and error sources is performed. 
The input data for the analysis requires J different operators to measure each of I 
different parts a total of m times. In the current analysis, the J operators represent 
the eight different strain gauges on a sample (J = 8), the I different parts represent 
the three different samples (I = 3), and the m times the measurements are 
performed correspond to the five loading cycles (m = 5). The two-way random 
effects model is represented by equation (VII-3). 𝑦𝑖𝑗𝑘 = µ + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝜀𝑖𝑗𝑘 (VII-3) 

Here, 𝑦𝑖𝑗𝑘 is the kth measurement made by strain gauge j on sample i, µ  is a 
measurement averaged over all possible strain gauges and all possible samples, 𝛼𝑖 
represents the random effects of the different samples, 𝛽𝑗 represents the random 
effects of the different strain gauges, 𝛼𝛽𝑖𝑗  represents the random joint effects to 
combinations of particular samples and strain gauges, and 𝜀𝑖𝑗𝑘 is the random 
measurement error. 
 
According to the random effects model given by equation (VII-3), the only 
difference between different measurements for a specific combination of sample 
and strain gauge is the measurement error (ε), so its standard deviation (σ) is a 
measure of the repeatability of the model, or the repeatability error is given by 
equation (VII-4) (Li et al., 2019). 
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𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎 (VII-4) 

 
For a fixed sample i, the value µ + 𝛼𝑖 is constant for different measurements, so 

the measure of strain gauge bias for a fixed sample, i.e. √𝜎𝛽2 + 𝜎𝛼𝛽², is an 

appropriate measure of reproducibility: 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = √𝜎𝛽2 + 𝜎𝛼𝛽² (VII-5) 

 
Therefore, the overall variation due to repeatability and reproducibility (𝜎𝑅&𝑅) can 
be calculated based on equation (VII-6). 𝜎𝑅&𝑅 = √𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 + 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦² (VII-6) 

 
The two-way ANOVA analysis required to obtain the different parameters in these 
models is performed using the statistical software package SPSS. The resulting 
two-way ANOVA table will be of the shape as illustrated in Table VII-8. The 
samples (I) and strain gauges (J) are set as nominal variables for the two-way 
ANOVA analysis. The required standard deviations are calculated by application 
of equations (VII-7) to (VII-9) (Li et al., 2019). 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎 = √𝑀𝑆𝐸 (VII-7) 

𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = √max(0,𝑀𝑆𝐵𝑚𝐼 + (𝐼 − 1)𝑀𝑆𝐴𝐵𝑚𝐼 − 𝑀𝑆𝐸𝑚 ) (VII-8) 

𝜎𝑅&𝑅 = √𝑀𝑆𝐵𝑚𝐼 + (𝐼 − 1)𝑀𝑆𝐴𝐵𝑚𝐼 + (𝑚 − 1)𝑀𝑆𝐸𝑚  (VII-9) 

 
Equations (VII-7) to (VII-9) can be derived from a variance components analysis 
based on the ANOVA table (Table VII-8). The variance components in a two-way 
ANOVA analysis are given by equations (VII-10) to (VII-13). 𝜎² = 𝑀𝑆𝐸 (VII-10) 

𝜎𝛼2 = 𝑀𝑆𝐴 −𝑀𝑆𝐴𝐵𝑚𝐽  (VII-11) 
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𝜎𝛽2 = 𝑀𝑆𝐵 −𝑀𝑆𝐴𝐵𝑚𝐼  (VII-12) 

𝜎𝛼𝛽2 = 𝑀𝑆𝐴𝐵 −𝑀𝑆𝐸𝑚  (VII-13) 

 

Table VII-8: Typical two-way ANOVA table for the R&R study, adapted from (Li et al., 
2019) 

Source 
Sum of 

squares, SS 

Degrees of 

freedom, df 
Mean square, MS 

Sample (I) SSA I-1 MSA=SSA/(I-1) 
Strain gauge (J) SSB J-1 MSB=SSB/(J-1) 
Sample x strain 

gauge (I x J) 
SSAB (I-1)(J-1) 

MSAB=SSAB/(I-
1)(J-1) 

Error SSE IJ(m-1) MSE=SSE/(IJ(m-1)) 
Total SSTot IJm-1 - 

 
The contributions of 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 to 𝜎𝑅&𝑅 are quantified by 
equations (VII-14) and (VII-15). Fraction of 𝜎𝑅&𝑅  due to 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦2 /𝜎𝑅&𝑅2  (VII-14) Fraction of 𝜎𝑅&𝑅  due to 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦2 /𝜎𝑅&𝑅2  (VII-15) 

 
The abovementioned analyses are performed for the load levels ranging from 2 kN 
to 5 kN, based on the strain increase measured between a load of 1 kN and the 
considered load level. The results of the analyses are summarized in Table VII-9. 
Here, the COV represents the value of 𝜎𝑅&𝑅 relative to the mean strain at the 
considered load level. When looking at the results in Table VII-9, it can be seen 
that the error 𝜎𝑅&𝑅 increases with an increasing load level and an increasing 
average strain. The relative error (i.e. the COV) decreases for an increasing load 
level. Furthermore, the fraction due to 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 decreases for an increasing 
load level while the fraction due to 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 increases, i.e. the contribution 
of the combination of sample and strain gauge decreases whereas the strain gauge 
bias for a fixed sample increases for an increasing load level. 
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Table VII-9: Results of the two-way ANOVA analysis in determination of the measurement 
error for load levels 2 kN to 5 kN 

Load 

level 

𝝈𝒓𝒆𝒑𝒆𝒂𝒕 
[µε] 

𝝈𝒓𝒆𝒑𝒓𝒐𝒅 

[µε] 
𝝈𝑹&𝑹 

[µε] 

Mean 

strain 

[µε] 

COV 

[-] 

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏  𝝈𝒓𝒆𝒑𝒆𝒂𝒕 
[-] 

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏  𝝈𝒓𝒆𝒑𝒓𝒐𝒅 

[-] 

2 kN 0.66 1.11 1.29 12.17 0.11 0.26 0.74 

3 kN 0.72 2.12 2.24 24.19 0.09 0.10 0.90 

4 kN 0.81 3.03 3.13 36.21 0.09 0.07 0.93 

5 kN 1.05 4.04 4.18 48.29 0.09 0.06 0.94 

 
The same analysis is performed for the load levels of 6 kN, 7 kN and 8 kN. For 
these load levels, no different loading cycles are performed, hence m = 1. This also 
means that the repeatability error cannot be determined for these load levels and 
only the strain gauge bias for a fixed sample can be determined (𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦). 
The results are summarized in Table VII-10. It can be seen that the value of 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 relative to the average strain increases for an increasing load level. 
If the fraction of the reproducibility error to the total error would be equal to 0.94, 
as found for the load level of 5 kN (Table VII-9), the total error would be equal to 
the values given in Table VII-11. 
 

Table VII-10: Results of the two-way ANOVA analysis in determination of the 
measurement error for load levels 6 kN to 8 kN 

Load 

level 

𝝈𝒓𝒆𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒃𝒊𝒍𝒊𝒕𝒚 

[µε] 

Mean 

strain 

[µε] 

COV 

[-] 

6 kN 4.52 60.99 0.07 
7 kN 5.67 74.84 0.08 
8 kN 7.37 90.70 0.08 

 

Table VII-11: Results of the determination of the measurement error for load levels 6 kN 
to 8 kN, assuming Fraction due to 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 equal to 0.94 

Load 

level 

𝝈𝒓𝒆𝒑𝒆𝒂𝒕 
[µε] 

𝝈𝒓𝒆𝒑𝒓𝒐𝒅 

[µε] 
𝝈𝑹&𝑹 

[µε] 

Mean 

strain 

[µε] 

COV 

[-] 

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝝈𝒓𝒆𝒑𝒆𝒂𝒕 
[-] 

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝝈𝒓𝒆𝒑𝒓𝒐𝒅 

[-] 

6 kN 1.14 4.52 4.66 60.99 0.07 0.06 0.94 
7 kN 1.43 5.67 5.85 74.84 0.08 0.06 0.94 
8 kN 1.86 7.37 7.61 90.70 0.08 0.06 0.94 
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In general, repeatability and reproducibility errors are based on a one-way 
ANOVA analysis. Here, the repeatability variance is estimated as the error 
variance from the one-way ANOVA analysis and represents the variance within 
the considered factor. The reproducibility variance is then the sum of this 
repeatability variance and the between factor variance. The results of different 
one-way ANOVA analyses (considering different factors) are summarized in 
Table VII-12 for a load level of 5 kN. Three different situations are considered, 
i.e. in the first situation the factor is chosen to represent the different strain gauges, 
in the second situation the factor corresponds to the different samples, and in the 
last situation, the factor corresponds to the different loading cycles. From these 
results, it can be concluded that the total error, here represented by 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦2  
indeed corresponds to 𝜎𝑅&𝑅2  found in the previous analysis (taking into account 
some rounding errors). 
 

Table VII-12: Results of the measurement error for load level 5 kN based on a one-way 
ANOVA analysis 

Factor 

𝝈𝒓𝒆𝒑𝒆𝒂𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝟐  

(within factor 

variance) 

Between factor 

variance 
𝝈𝒓𝒆𝒑𝒓𝒐𝒅𝒖𝒄𝒊𝒃𝒊𝒍𝒊𝒕𝒚𝟐  

Strain 
gauge 

8.106 9.086 17.192 

Sample 15.774 0.519 16.293 
Loading 

cycle 
16.379 0 16.378 

VII.4.2.3 Measurement error in further analysis 

In the following parts of this chapter, strains will be measured on reinforced 
concrete beams instead of on plain concrete prisms. Due to the larger scale and the 
presence of the reinforcement, a larger scatter of the resulting strains and hence a 
larger measurement error are expected. In the following analyses, a measurement 
error of 0.1 or 10% of the measured value will be assumed. This is based on the 
COV for the error due to repeatability and reproducibility (σR&R) provided in 
Table VII-9 and Table VII-10. The measurement error is given relative to the 
measured value, since in Table VII-9 it can be seen that the absolute value of the 
error depends on the load level and hence on the order of magnitude of the 
measured strains. However, the COV is almost the same for the different load 
levels, indicating that the measurement error could be expressed relative to the 
measured value. For strain values lower than 10 µε, the measurement error of 10% 
of the measured value would result in a measurement error lower than 1 µε, which 
equals the accuracy of the measuring equipment. Hence, for these strains, the 
measurement error is set equal to 1 µε. For very high measured strains, the relative 
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error of 10% would lead to very high measurement errors, which are not realistic. 
However, these situations are not covered by the current experimental set-up. An 
upper boundary of 100 µε is derived based on literature (Dokoupil, 2017). For the 
analyses similar to those in Chapter VI and those performed in the current and 
later chapters, the (proof)load applied to the structure remains lower than the 
cracking load and hence these very high strain levels are not encountered. 

VII.5 Finite element model 

VII.5.1 Static tests 

For simulation of the static tests, a 2D finite element model is created in DIANA 
FEA (DIANA FEA BV, 2019). The default mesher type is Hexa/Quad and the 
default mesh order is quadratic. The mid-side node location is determined based 
on linear interpolation. All reinforcement (i.e. bottom reinforcement, top 
reinforcement and shear reinforcement) is modelled as embedded reinforcement. 
Only when modelling the behaviour up to failure, bond-slip reinforcement is 
considered for the bottom reinforcement. The adopted concrete properties are the 
mean values resulting from the tests for material characterization (section VII.4.1) 
for the beam under investigation at the considered age. For set 1, the tensile 
behaviour of the concrete is modelled with a Hordijk tensile curve. For the beams 
of set 2, the brittle tensile model is assumed for the concrete, with a damage based 
reduction model for the Poisson’s ratio reduction. The brittle model has been 
applied to set 2 since more (shrinkage) cracks are observed for these beams. The 
compressive behaviour of the concrete is assumed parabolic, with the Vecchio and 
Collins (1993) reduction model with a lower bound of 0.6 for the reduction curve. 
No increase due to stress confinement is accounted for. The reinforcement is 
modelled with Von Mises plasticity. The stress-strain curve is the one given in 
Figure VII-14. For the bond-slip interface, a normal stiffness modulus of 
101800 N/mm³ is assumed and a shear stiffness modulus of 10180 N/mm³, 
calculated based on the rule of thumb that the normal stiffness modulus equals the 
stiffness divided by the element size of the embedding element and multiplied by 
80 to 100 (DIANA FEA BV, 2021). The hardening hypothesis is strain hardening 
and the hardening type is isotropic hardening. At the supports and the load 
application points, steel plates are modelled in order to distribute the concentrated 
loads. The strains are calculated by a non-linear analysis in order to account for 
possible cracking. The destructive tests are simulated by a displacement-controlled 
analysis. The element size is 25 mm. 
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VII.5.2 Dynamic tests 

To predict the natural frequencies and mode shapes, a 3D finite element model is 
generated in DIANA FEA (DIANA FEA BV, 2019) with element size 50 mm. 
The models for the concrete and reinforcement steel are the same as for the 2D 
model developed for the static tests. In contrast to the 2D model, no supports and 
loads are applied to the 3D model (free-free boundary conditions). A structural 
eigenvalue analysis is applied to determine the natural frequencies and 
displacement mode shapes. The strain mode shapes are evaluated based on the 
displacement mode shapes. 

VII.6 Experimental results of the static and dynamic tests 

VII.6.1 Crack width measurements and corrosion degree 

Before destructive testing, crack widths have been measured where possible. At 
the bottom surface of the beams, this was sometimes difficult due to the presence 
of corrosion products leaking from the cracks as well as the presence of salt in the 
cracks. For the different beams, the average, minimum and maximum crack widths 
are summarized in Table VII-13. The locations of the cracks in beams 1.1, 1.2, 2.1 
and 2.2 are visualized in Figure VII-17 to Figure VII-20, respectively.  
 
 
Table VII-13: Minimum, maximum and average crack widths for each beam [mm] 

 Beam 1.1 Beam 1.2 Beam 2.1 Beam 2.2 

Bottom     

Average 0.61 0.21 0.43 0.36 
Minimum 0.04 0.15 0.08 0.20 
Maximum 1.30 0.39 0.70 0.70 

Side optic fibres     

Average 0.16 0.11 0.08 0.07 
Minimum 0.00 0.07 0.05 0.01 
Maximum 0.30 0.14 0.10 0.16 

Side strain gauges     

Average 0.30 0.14 0.26 0.03 
Minimum 0.10 0.12 0.05 0.02 
Maximum 0.60 0.16 0.40 0.04 
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Figure VII-17: Locations of cracks on beam 1.1 

 

 
Figure VII-18: Locations of cracks on beam 1.2 

 

 

Figure VII-19: Locations of cracks on beam 2.1 
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Figure VII-20: Locations of cracks on beam 2.2 

The corrosion degrees of the four beams after cleaning and weighing of the 
reinforcement bars are visualized in Figure VII-21. These represent the total mass 
loss over the four bars at each location x. The x-coordinate with value 0 
corresponds to the left side of the beam when looking at the side with the strain 
gauges. The corrosion degrees of the individual bars can be found in Appendix 
A.1. The average corrosion degrees over the length of the beams are the following: 

- Beam 1.1: 6.2%; 
- Beam 1.2: 2.7%; 
- Beam 2.1: 6.6%; 
- Beam 2.2: 5.2%. 

These corrosion degrees only account for the longitudinal reinforcement. 
 

 
Figure VII-21: Corrosion degrees of the four corroded beams (x = 0 corresponds to the left 
side when looking at the side with the strain gauges) 
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VII.6.2 Static tests 

For beam 1.1 (6.2% corrosion), beam 2.1 (6.6% corrosion) and beam 2.2 (5.2% 
corrosion), the differences in strains measured between the load levels of 5 kN and 
15 kN (i.e. the load in one loading point) are visualized in Figure VII-22 to Figure 
VII-24. Here, the positive strains correspond to those measured at a height of 
90 mm (upper graphs) and 130 mm. The negative strain values correspond to those 
measured at a height of 362 mm. For beam 1.2 (2.7% corrosion), the strain results 
from the static tests at 63 days are not available. In Figure VII-22 to Figure VII-
24, the black lines represent the strains measured with the short strain gauges of 
6 cm, whereas the black scatter plots represent the results of the long strain gauges 
of 12 cm. The error bars on these plots represent the 95% confidence intervals 
when accounting for a measurement error of 10% of the measured value 
(according to section VII.4.2). The red lines represent the results of the finite 
element model, inserting the actual spatial corrosion degrees (as visualized in 
Figure VII-21). The hatched red zone indicates the 95% confidence interval on the 
model predictions when accounting for a model uncertainty with a lognormal 
distribution with mean 1 and COV 0.1. The latter is based on (Allaix et al., 2015), 
but with an increased COV. The COV has been increased to account for the fact 
that different models can be used to model the influence of corrosion, since no 
consensus is available for this. Furthermore, there is also a minor error made by 
application of the analytical model for the stiffness reduction compared to a more 
extensive finite element model. Also, the model error in (Allaix et al., 2015) has 
only been derived for under-reinforced beams and has not yet been generally 
calibrated. Finally, only rather small beams in well-controlled environments are 
considered in the analysis to derive the model error, whereas in this experimental 
campaign larger beams are used, with many shrinkage cracks. Hence, the COV 
has been increased to cover for these extra uncertainties and effects possibly 
influencing the difference between predicted and measured strains. When looking 
at the results, it can be seen that in general there is a reasonable agreement between 
the measured and predicted strains. 
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Figure VII-22: Static strains of beam 1.1 (6.2% corrosion) 

 

 

Figure VII-23: Static strains of beam 2.1 (6.6% corrosion) 
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Figure VII-24: Static strains of beam 2.2 (5.2% corrosion) 

 
When the strains of the reference beam are considered, results are available at an 
age of 185 days (age of destructive test on beam 2.2 (5.2% corrosion)), 285 days 
(age of destructive test on beam 2.1 (6.6% corrosion)) and 330 days (age of 
destructive test on beam 1.1 (6.2% corrosion)). These are visualized in Figure VII-
25. The results obtained with the longer strain gauges around 3 m deviate 
significantly from the predicted strains. This could be ascribed to the fact that it 
was inevitable to apply these strain gauges over existing shrinkage cracks. When 
comparing the strain results at these different ages, the strains are very close to 
each other. Hence, no reduction in stiffness could be derived from these strain 
measurements. In addition, when comparing the results of the reference beam with 
those of the corroded beams, some conclusions can be made. When considering 
the strain results that are within the uncertainty bounds around the simulated 
strains (see Table VII-14), the strains at the lowest measurement level are on 
average higher in absolute value for the corroded beams than for the reference 
beam at the same age. Nevertheless, the difference in strains often does not exceed 
the measurement error on the strains. 
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Figure VII-25: Static strains of beam 4.1 (reference) 

 
Table VII-14: Average strains of strain results within the uncertainty bounds 
around the simulated strains for the different corroded beams and for the reference 
beam at the corresponding age 

Beam (age) 
Height of strain sensors 

90 mm 130 mm 362 mm 

Beam 2.2 (185 days) 22.37 µε 13.39 µε -35.03 µε 
Beam 4.1 (185 days) 20.82 µε 14.47 µε -37.03 µε 

Beam 2.1 (285 days) 21.68 µε 14.01 µε -35.04 µε 
Beam 4.1 (285 days) 19.76 µε 14.98 µε -33.94 µε 

Beam 1.1 (330 days) 21.89 µε 9.40 µε -26.58 µε 
Beam 4.1 (330 days) 17.71 µε 15.05 µε -35.00 µε 

 

VII.6.3 Destructive tests 

The load-displacement curves from the destructive tests on the different beams are 
visualized in Figure VII-26. The displacement is the one measured at mid-span. It 
can be seen that the beams reached different ultimate load levels. Beam 1.1 (6.2%) 
failed due to crushing of the concrete in the compressive zone followed by a shear 
failure. A similar behaviour has been observed for beam 1.2 (2.7%). 
Beams 1.1 (6.2%) and 1.2 (2.7%) show a similar load-displacement behaviour. 
Beam 1.1 (6.2%) has a higher corrosion degree and indeed reaches a lower 
ultimate load than beam 1.2 (2.7%). In addition, the initial stiffness is lower for 
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beam 1.1 (6.2%). Beams 2.1 (6.6%) and 2.2 (5.2%) failed in shear. 
Beam 2.2 (5.2%) had the highest bearing capacity of all beams. Finally, 
beam 4.1 (reference) also failed in shear and its ultimate capacity was lower than 
for some corroded beams. The ultimate load for beam 4.1 (reference) and 
beam 2.1 (6.6%) is the same (166.5 kN). However, the behaviour of 
beam 4.1 (reference) is more stiff compared to the corroded beams. This can also 
be seen in more detail on Figure VII-27. Different failure modes are observed 
among the different beams. Small changes in material properties can lead to a shift 
in the failure mode. This also follows from analytical calculations for evaluation 
of a beam under bending, where, depending on the values of the material properties 
(within the ranges observed from the tests for material characterization), there is a 
shift from crushing of the concrete towards yielding and rupture of the 
reinforcement. Changing the material properties in the finite element model of the 
beams also leads to a shift in the governing failure mode or in the estimated 
ultimate load. 
 

 
Figure VII-26: Load-displacement curves of the destructive tests on the different beams. 
The vertical axis represents the average of the load in the two loading points. 
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Figure VII-27: First part of the experimental load-displacement curves. The vertical axis 
represents the average of the load in the two loading points. 

 
The destructive tests have also been simulated with the finite element model 
discussed in section VII.5.1. It has been investigated to what extent the finite 
element model results approximate the experimental load-displacement curve. In 
Figure VII-28, the load displacement curve of beam 1.1 (6.2% corrosion) is given 
for different finite element models and compared with the experimental curve. The 
different models considered are: 

- Minimum corrosion degree. The minimum of the total corrosion 
degrees of beam 1.1 visualized in Figure VII-21 is assigned uniformly to 
the reinforcement over the total length of the beam. The steel section of 
the bottom reinforcement is adjusted, together with the Young’s modulus 
of the concrete cover and the ultimate strain of the bottom reinforcement. 

- Maximum corrosion degree. Similar as the previous model, but now the 
maximum of the total corrosion degrees of beam 1.1 is used instead of 
the minimum. 

- Average corrosion degree. Similar to the previous models, but now 
assuming the average corrosion degree of 6.2% instead of the maximum 
or minimum corrosion degree. 

- Spatial corrosion degree. The total corrosion degree according to Figure 
VII-21 is assigned to the beam, i.e. the bottom reinforcement is 
subdivided into different parts of 20 cm, each with a different steel 
section corresponding to the corrosion degree of that part. In addition, the 
ultimate strain of the different parts is adjusted to the corresponding 
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corrosion degree and the Young’s modulus of the concrete cover varies 
along the length of the beam. 

- Uncorroded. The beam is modelled without assuming any corrosion. 
In the finite element model, compression failure of the top reinforcement is 
accounted for by altering the stress/strain relationship for the top reinforcement 
according to (Akkaya et al., 2019; Maekawa et al., 2003; Massone and López, 
2014; Urmson and Mander, 2012). 
 
 

 
Figure VII-28: Experimental and predicted load-displacement curves of beam 1.1 (6.2%). 
The vertical axis represents the average of the load in the two loading points. 

 
When looking at the curves in Figure VII-28, it can be seen that the maximum 
capacity is indeed reached for the uncorroded case. The maximum capacity 
decreases when going from the minimum, over the average, to the maximum 
corrosion degree. The latter curve approximates best the experimental curve. 
Consequently, when in practice the corrosion degree would only be measured 
locally (e.g. by locally removing the concrete cover), and this local corrosion 
degree corresponds to a low value, the failure load will be overestimated. In this 
specific case, the difference in estimated ultimate load based on the average 
corrosion degree and the actually spatially variable corrosion degree is limited. 
The fact that the load-displacement curve of the spatially variable corrosion degree 
does not approximate the actual load-displacement curve could be ascribed to the 
fact that this is still an average corrosion degree over a distance of 20 cm. Hence, 
pit depths are averaged out over this distance. On the other hand, the finite element 
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model with the maximum corrosion degree gives a good approximation of the 
experimental failure load. 
 
Similar analyses have been performed on the other beams. 

VII.6.4 Dynamic tests 

Below, the results of the dynamic tests are given for an increasing corrosion 
degree. When mode shapes are visualized, these are scaled to the results from the 
finite element model. This is required since in most cases the experimental modes 
are identified using output-only data, and therefore cannot be mass normalized. 
Hence, the experimental modes are scaled with a scaling factor 𝛾𝑟, which can be 
obtained through a least-squares fit between experimental and predicted mode 
shapes according to equation (VII-16). 𝛾𝑟 = �̅�𝑟𝑇𝜙𝑟/‖�̅�𝑟 ‖22 (VII-16) 

Here, �̅�𝑟  is the experimental mode shape and 𝜙𝑟 the predicted mode shape. 

VII.6.4.1 Beam 4.1 (Reference) 

The reference beam is tested at 28 days and at the different testing ages of the other 
beams, i.e. 63 days, 182 days, 285 days and 330 days. As such, comparison can be 
made between the natural frequencies of a corroded beam and an uncorroded beam 
of the same age. This is necessary, since in young concrete there might also be 
other influences leading to natural frequency variations. The natural frequencies 
of the reference beam are summarized in Table VII-15. These are determined 
based on both strain measurements with optic fibres and acceleration 
measurements. To support the beams during the dynamic tests, three tyres were 
used, i.e. one at the left end, one in the middle and one at the right end of the beam. 
All tyres were inflated up to 1 bar. At an age of 63 days, only the measurements 
with the optic fibres have been performed, and at the age of 330 days, only 
acceleration measurements have been performed due to damage to the optic fibres. 
In Table VII-15, it can be seen that the natural frequencies of the reference beam 
decrease over time, even though the beam is not subjected to corrosion. The 
relative decrease is also illustrated in Figure VII-29 for the modes available at all 
testing ages. Here it can be seen that the natural frequencies seem to stabilize at 
later ages. The decrease in natural frequency over time could be ascribed to 
different causes. One reasoning would be to attribute the decrease to internal 
cracks that are present in a reinforced concrete beam. These cracks can originate 
from multiple causes, e.g. shrinkage. These cracks can open, even for a small load 
such as self-weight. Another explanation would be to ascribe the decrease in 
natural frequencies to the microstructure of the concrete and the composite 
character of reinforced concrete. 
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Table VII-15: Natural frequencies of beam 4.1 (reference) [Hz] 

Mode 28 days 63 days 182 days 285 days 330 days 

1st lateral 45.64 44.33  41.96 43.10 
1st bending 61.97 60.66 58.45 58.40 55.60 
2nd lateral 119.55 117.98 113.63 113.70 112.22 

2nd bending 165.74 164.63 156.99 153.53 153.03 
1st torsion 204.61  199.69 199.11 198.84 
3rd  lateral 228.89 226.25 221.30 218.41 217.51 
3rd bending 305.75 301.05 292.24 288.41 286.40 
4th lateral 363.71  350.62 345.68 343.85 

3th torsion 409.76  403.32 402.04 400.99 
4th bending 474.95  455.38 456.82 447.45 
5th lateral 521.51  502.22 495.56 492.61 
4th torsion 612.05  600.12 597.99 597.77 
5th bending 665.19  638.55 629.76 626.69 

 

 
Figure VII-29: Evolution of natural frequencies of beam 4.1 (reference) as a function of 
time. The error bars represent the 90% confidence interval based on the standard deviation 
between the different dynamic tests at a specific testing age. 
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Besides natural frequencies, also displacement mode shapes (Figure VII-30) and 
strain mode shapes (Figure VII-31) are available for beam 4.1 (reference). When 
looking at the results at the different testing ages, there are no noticeable changes. 
This could be expected beforehand, since there is no damage of the beam. For the 
displacement mode shapes, there is a very local change in the third lateral bending 
mode at 285 days. However, this does not appear at the later testing age of 
330 days. Hence, this could probably be ascribed to the use of damaged 
accelerometers in one test. Another cause for the deviation in displacement mode 
shapes could be damage to the glue used to attach the plate of the accelerometer, 
due to which the latter was not fixed tight enough to the beam. 
 
 

 
Figure VII-30: Displacement mode shapes of beam 4.1 (reference) (x = 0 mm corresponds 
to the left of the side of the beam with the optic fibres) 
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Figure VII-31: Strain mode shapes of beam 4.1 (reference) (x = 0 mm corresponds to the 
left of the side of the beam with the optic fibres) 

 
 
In Figure VII-32 also the neutral axis position of the reference beam derived based 
on the strain mode shapes is visualized. The neutral axis is not given in regions 
with very low strain values, due to numerical instabilities in these zones. It can be 
seen that there is no shift in neutral axis position over time. This observation 
contradicts the reasoning of cracks causing the reduction in natural frequencies, 
since these would also lead to a shift in neutral axis position. Hence, the main 
cause of the reduction in natural frequencies will be internal effects in the concrete 
itself. 
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Figure VII-32: Neutral axis position of beam 4.1 (reference) based on strain mode shapes. 
Regions with very low strain values are neglected. (x = 0 mm corresponds to the left of the 
side of the beam with the optic fibres) 

VII.6.4.2 Beam 1.2 (2.7% corrosion) 

Beam 1.2 is tested at an age of 28 days (before corrosion) and at an age of 63 days 
(2.7% corrosion). The experimental natural frequencies for beam 1.2 are 
summarized in Table VII-16. The natural frequencies are each time derived both 
based on the acceleration measurements and based on the strain measurements 
with the optic fibres. Only the natural frequencies resulting from well-excited 
modes (high MPC (Modal Phase Collinearity) values and low damping ratios) are 
considered. The first vertical bending mode and the first lateral bending mode are 
also not taken along, since these were influenced by a difference in support 
conditions during the dynamic tests. For the tests at 28 days on beam 1.2, two tyres 
were used to support the beam during the dynamic tests, one at each end of the 
beam. However, two tyres proved insufficient to establish the free-free boundary 
conditions. 
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Two notes should also be made on the results with the optic fibres. As a first note, 
optic fibres measure axial strains. However, when a beam is subjected to torsion 
loading, axial strains are only present during restrained warping. For a rectangular 
cross-section and free-free boundary conditions, the warping is not restrained and 
hence theoretically, axial strains do not occur. In practice, some restraint might 
occur due to the presence of the tyres. That is the reason why torsion modes are 
not expected to be identified by the strain data, and if they do, they might not be 
trustworthy and are hence excluded from the data set. Accelerometers on the other 
hand are measuring vertical and lateral accelerations of the beam, which are not 
related to warping. In this case, all modes will be properly identified from 
acceleration data if they are properly excited, and shall hence not be excluded. As 
a second note, for natural frequencies larger than 250 Hz, there can be some 
synchronization issues for the optic fibres. The acquisition system for the optic 
fibres does not simultaneously scan all sensors on the optic fibres, but instead 
makes a high-speed sweep scan of about 0.1 pm/ns along the wavelength 
bandwidth. In this way, a high wavelength resolution is achieved, but a delay is 
introduced in the measurements. This delay leads to a phase shift between the 
different sensors. The results from these sensors can be synchronized by an offline 
synchronization technique, as explained in (Anastasopoulos et al., 2018). The 
phase shift between the sensors is important for the high frequency modes 
(> 250 Hz) and almost insignificant for the low frequency modes (0-20 Hz). 
Hence, the high frequency modes should be evaluated with extra care. 
 
When looking at Table VII-16, it can be seen that most of the natural frequencies 
have reduced from 28 days to 63 days. However, also for the reference beam a 
reduction in natural frequencies was observed between 28 days and 63 days. 
Hence, the results at 63 days should be compared with those of the reference beam 
at the same age. When doing this, it can be seen that in general higher natural 
frequencies are found for the corroded beam. This could be ascribed to differences 
in concrete properties of the reference beam and beam 1.2 (2.7% corrosion) due to 
the different concrete batch and the small differences in natural frequencies at 
28 days between both beams. Moreover, the cracks resulting from the corrosion 
process are longitudinal cracks, mostly affecting lateral bending modes, whereas 
vertical bending modes are typically influenced by transverse cracks (e.g. bending 
cracks). This could also be observed in Table VII-16, where the increase in 
frequency compared to the reference beam is smaller for the lateral bending modes 
than for the vertical bending modes, possibly ascribed to the larger influence of 
corrosion on the lateral bending modes, inducing a larger reduction in natural 
frequencies. 
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Table VII-16: Natural frequencies of beam 1.2 (2.7%) [Hz] 

Mode 
28 days 63 days Ref. Rel. Diff. 

Acc. Strains Acc. Strains 63 days 63 days 

2nd lateral 120.97  120.58   118.92 117.98 0.79% 
2nd bending 164.70  164.63  167.03  164.63 1.44% 
1st torsion 204.51   201.27    
3rd  lateral 228.26  228.36  227.00 226.25 0.33% 
3rd bending 303.97  303.94 304.43 303.89 301.05 1.02% 
4th lateral 362.75  358.56    

3th torsion 405.61  403.67    
4th bending 473.79   474.54    
5th lateral 520.60  518.94    
4th torsion 604.09  601.74    
5th bending 659.18  656.35    

 
The displacement mode shapes of beam 1.2 (2.7% corrosion) are visualized in 
Appendix A.3. The displacement mode shapes are almost the same at 28 days and 
63 days. Hence, based on the displacement mode shapes, no spatial variation of 
the corrosion degree could be derived. Furthermore, the experimental 
displacement mode shapes approximate quite well the results from the finite 
element model. Also the strain mode shapes of beam 1.2 (2.7% corrosion) are 
visualized in Appendix A.3. In these strain mode shapes, some irregularities can 
be observed. These can be ascribed to the fact that the clamps used to attach the 
optic fibres to the beam (Figure VII-10) were not screwed tight enough. Another 
explanation for the peaks in the strain mode shapes could be the inhomogeneous 
character of concrete. The strain mode shapes at 63 days closely correspond to the 
(undamaged) finite element model and there are hence no indications of local 
damage. Also, if the neutral axis position is evaluated based on the strain mode 
shapes, there is no significant change over time. Nevertheless, there is a large 
difference between the strain mode shapes at 28 days and 63 days, of such an 
extent that very large degrees of damage could be expected. The differences in 
strain mode shapes should here be ascribed to bad clamping of the fibres, damage 
in the glue used to apply the clamps and losses of prestress in the fibres. Moreover, 
for other beams at later ages, sagging of the fibres was observed due to which they 
needed to be restressed. This sagging could possibly be ascribed to shrinkage of 
the concrete. It might have already been present for beam 1.2 (2.7% corrosion) 
too, but due to the lower age of this beam the sagging might not have been visible 
to the unaided eye yet. 
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VII.6.4.3 Beam 2.2 (5.2% corrosion) 

To support beam 2.2 during the dynamic tests, three tyres were used, i.e. one at 
the left end, one in the middle and one at the right end of the beam. All tyres were 
inflated up to 1 bar. The natural frequencies of beam 2.2 resulting from the 
dynamic tests at 28 days and at 182 days (± 5.2% corrosion) are summarized in 
Table VII-17. Here it can be seen that there is a reduction in natural frequencies 
over time. However, there was also a reduction in natural frequencies for the 
reference beam between 28 days and 182 days. Hence, the natural frequencies of 
beam 2.2 (5.2% corrosion) are compared with those of the reference beam at 
182 days. Here, it can be seen that there is a general reduction in natural frequency 
from the reference beam to beam 2.2 (5.2% corrosion), except for the second and 
the fifth vertical and lateral bending mode. A possible reason for this could be the 
localisation of damage and/or cracks at regions with low curvature when 
considering these modes. Nevertheless, these differences have the same order of 
magnitude as those found between beam 1.2 and the reference beam, and might 
hence also be ascribed to an experimental error or the differences between the 
concrete batches. 
 
For this beam, when looking at the frequency differences between the corroded 
beam and the reference beam, there could not be made a clear distinction between 
the vertical bending modes and the lateral bending modes, even though this could 
be expected beforehand (cfr. section VII.6.4.2). 
 

Table VII-17: Natural frequencies of beam 2.2 (5.2% corrosion) [Hz] 

Mode 28 days 182 days Ref. 182 days Rel. Diff. 

1st lateral - 41.2   
1st bending 60.66 55.9 58.45 -4.36% 
2nd lateral 118.98 114.44 113.63 0.71% 

2nd bending 162.76 157.06 156.99 0.04% 
1st torsion 201.16 194.58 199.69 -2.56% 
3rd lateral 224.95 216.82 221.30 -2.02% 

3rd bending 300.54 285.58 292.24 -2.28% 
4th lateral 358.84 346.72 350.62 -1.11% 

3th torsion 402.98 397.53 403.32 -1.44% 
4th bending 467.42 454.58 455.38 -0.18% 
5th lateral 515.64 503.87 502.22 0.33% 
4th torsion 604.72 590.33 600.12 -1.63% 
5th bending 657.56 640.50 638.55 0.31% 
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The displacement mode shapes of beam 2.2 before and after corrosion are 
visualized in Appendix A.3. Only around 2000 mm, the displacement mode shapes 
of the first and third vertical bending mode are slightly different at 182 days 
compared to 28 days. The difference in displacement mode shapes could be 
ascribed to the use of damaged accelerometers, which have been replaced 
afterwards or due to problems with the glue used to attach the accelerometers to 
the beam. 

VII.6.4.4 Beam 1.1 (6.2% corrosion) 

The natural frequencies before (28 days) and after corrosion (330 days) of 
beam 1.1 are summarized in Table VII-18. The natural frequencies of the reference 
beam at 330 days are also provided. This enables to investigate the influence of 
corrosion on the natural frequencies. The natural frequencies of the corroded beam 
are lower than those of the reference beam at the same age. Hence, corrosion has 
led to a reduction in stiffness and a corresponding reduction in natural frequency. 
After corrosion, the optic fibres were severely damaged, so no strain 
measurements are available. The damage to the optic fibres originated mainly from 
the transportation of the beam between the different tests.  
 
The first lateral and vertical bending mode are not considered in Table VII-18. 
This due to a difference in boundary conditions. At 28 days, beam 1.1 was 
supported by two rubber blocks, whereas at 330 days, three tyres were used, i.e. 
one at the left end, one in the middle and one at the right end of the beam. All tyres 
were inflated up to 1 bar. 
 

Table VII-18: Natural frequencies of beam 1.1 (6.2%) [Hz] 

Mode 
28 days 330 days Ref. Rel. Diff. 

Acc. Strains Acc. 330 days 330 days 

2nd lateral  121.50 103.60 112.22 -7.68% 
2nd bending 169.16 168.65 146.33 153.03 -4.38% 
1st torsion 202.01  186.57 198.84 -6.17% 
3rd lateral  227.71 202.41 217.51 -6.94% 

3rd bending 306.48 306.47 274.17 286.40 -4.27% 
4th lateral 363.36 363.35 322.05 343.85 -6.34% 

3th torsion 401.67  389.07 400.99 -2.97% 
4th bending 476.21  429.16 447.45 -4.09% 
5th lateral 522.36  457.57 492.61 -7.11% 
4th torsion 604.17  573.83 597.77 -4.00% 
5th bending 666.86  597.59 626.69 -4.64% 
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When investigating the difference in frequencies between the reference beam and 
the corroded beam, it can be observed that in general there is a larger decrease in 
frequencies for the lateral bending modes than for the vertical bending modes. This 
could again be ascribed to the longitudinal cracks originating from the corrosion 
process, which have a larger influence on lateral bending modes, whereas vertical 
bending modes are more influenced by transverse cracks. 
 
The displacement mode shapes of beam 1.1 (6.2% corrosion) for some of the 
modes are visualized in Appendix A.3. The displacement mode shapes deviate 
from the results at 28 days and from the finite element model only at one point 
(around 3.2 m) and only in the lateral direction. This could possibly be ascribed to 
very local damage behind the plate to which the accelerometer is attached, damage 
of the glue used to attach the plate, or a local defect in the close neighbourhood of 
this accelerometer. Damage due to corrosion is expected to have a more global 
influence and would also be visible at other locations along the displacement mode 
shape. 

VII.6.4.5 Beam 2.1 (6.6% corrosion) 

To support beam 2.1 during the dynamic tests, three tyres were used, i.e. one at 
the left end, one in the middle and one at the right end of the beam. All tyres were 
inflated up to 1 bar. Table VII-19 summarizes the natural frequencies resulting 
from the dynamic tests on beam 2.1 at 28 days (before the onset of corrosion) and 
at 285 days (before the destructive tests). When comparing the natural frequencies 
at the different testing ages, it can be seen that the natural frequencies remain 
almost unaltered between 28 days and 285 days and that for some modes there 
even is a slight increase in natural frequency. In addition, when comparing the 
natural frequencies with those of the reference beam at 285 days, the latter are 
lower than the former. These results are not in line with the expectations. There is 
no clear cause for these observations, but some plausible reasons are the following: 

- The beam was tested dynamically after first testing another beam. The 
pressure in the tyres could hence have been reduced due to the weight of 
the previous beam. It has been proven in earlier research that a lower tyre 
pressure and hence a higher stiffness of the supports can lead to higher 
natural frequencies. Nevertheless, in such a case an effect on the natural 
frequencies of the first modes would be expected, which reduces for the 
higher modes. The fact that the natural frequencies are almost the same 
at 28 days and 285 days for all modes does not support this hypothesis of 
the influence of the boundary conditions. 

- It could be that the effects of creep and shrinkage are limited for this beam 
due to a beneficial effect of corrosion. For small levels of corrosion, the 
bond between reinforcement and concrete increases, compared to a non-
corroded reinforcement bar. Even though on average beam 1.1 (6.2% 
corrosion) reached about the same corrosion level, for the latter beam, a 
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decrease in natural frequency could be observed. However, these average 
corrosion degrees are both an average over the four bars and an average 
over the length of the beam. Hence, this number is no exact representation 
of the possible internal effects in each of the individual beams. 

 
The displacement mode shapes of beam 2.1 are visualized in Appendix A.3. For 
the lateral bending modes, there is a slight deviation between the different testing 
ages. However, this is very local and might be attributed to damage behind the 
plate of the accelerometer, damage to the glue, or reattachment of the plate. The 
strain mode shapes of beam 2.1 are also visualized in Appendix A.3. In these strain 
mode shapes there are again some irregularities. The irregularities at 28 days could 
be ascribed to improper clamping of the fibres. The irregularities at 285 days could 
be ascribed to rust products present on the fibres. 
 

Table VII-19: Natural frequencies of beam 2.1 (6.6% corrosion) [Hz] 

Mode 

28 days 285 days Ref. Rel. Diff. 

Acc. Strains Acc. Strains 
285 

days 
285 days 

1st lateral  43.88  45.62 41.50 9.93% 
1st bending 60.17 60.24 61.5 62.2 58.40 5.91% 
2nd lateral 117.6 117.76 120.03 120.42 113.54 5.89% 

2nd bending 161.85 161.86 161.74 161.51 152.32 6.11% 
1st torsion 200.19  200.48  199.11 0.69% 
3rd lateral 223.31 223.35 226.34 226.37 218.41 3.64% 

3rd bending 298.64 298.74 299.30 299.40 288.34 3.82% 
4th lateral 359.51  360.81 360.71 345.68 4.36% 

3th torsion 402.72  402.90  402.04 0.21% 
4th bending 468.22  468.39  456.82 2.53% 
5th lateral 507.94  513.82  495.24 3.75% 
4th torsion 600.56  601.18  597.99 0.53% 
5th bending 650.49  649.70  629.76 3.17% 

VII.6.4.6 General remarks 

When investigating the results of the dynamic tests, it should be noted that 
longitudinal cracks (such as the cracks originating from the corrosion process) do 
not influence the bending stiffness directly. There is a relationship between both, 
but it is more indirect. When there would be a combination of corrosion and 
loading over the cracking moment, transverse cracks would originate due to the 
loading process, which would have a larger influence on the bending stiffness and 
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hence on the natural frequencies of the vertical bending modes. The given 
reasoning neglects other effects such as micro-cracking, debonding of 
reinforcement and concrete, etc. 
 
Most of these beams have been subjected to many manipulations. They have been 
transported between the location where the accelerated corrosion process took 
place and the testing hall to perform the dynamic tests. The beams also had to be 
turned upside down for application of the salt solution, and turned back to the 
normal position for the tests. Only beam 4.1 (reference) did not need to be turned. 
This could have had an influence on the natural frequencies. The fact that all beams 
were subjected to turning manipulations and beam 4.1 (reference) did not, can 
already lead to a difference in natural frequencies between the reference beam and 
the other beams. However, further investigation is required on the effects of 
turning the beams on the natural frequencies. 
 
Because of the problems that occurred during the analysis of the test results for the 
dynamic tests, these results will not be used further in this chapter for the Bayesian 
assessment of the corrosion degree. 

VII.7 Bayesian inference 

Bayesian inference will be applied to update the corrosion degree of the beams 
based on the static strain data. In the following sections, first the model to be used 
in the likelihood function will be described (section VII.7.1), followed by the 
assumptions on the prior distributions for the corrosion degree (section VII.7.2). 
Next, the posterior distributions for the corrosion degree based on the static strain 
data will be derived and discussed (section VII.7.3). 

VII.7.1 Model used in the likelihood function 

As discussed in section IV.2, for application of Bayesian inference, in the 
likelihood function a model is required modelling the relationship between the 
variables to be updated and the measurement data. In the following, the model 
used in the likelihood function is the finite element model as described in section 
VII.5.1, providing a relationship between the corrosion degree of the beams and 
the static strains. To account for the degradation due to reinforcement corrosion in 
the finite element model, the steel section of the reinforcement bars is adapted 
according to equation (II-8), and the Young’s modulus in the concrete cover is 
reduced to account for cover cracking according to section II.2.3. Corrosion can 
also influence the ductility of the reinforcement bars and the bond between the 
reinforcement and the concrete cover. However, the latter two influences do not 
affect the strains under static loading for small load levels. 
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VII.7.2 Prior distribution 

In contrast to Chapter VI, in this section the distribution of the corrosion degree 
will be updated directly and not the distributions of the variables in the corrosion 
models. When applying accelerated corrosion, the initiation phase will be almost 
completely removed and the corrosion rate will be largely influenced by the 
applied current. Hence, both will not correspond to results that can be obtained in 
natural conditions, and the choice is made to directly infer the corrosion degree. 
 
A prior distribution is assigned to the corrosion degree of the beams. A uniform 
corrosion degree along the length of the beam is assumed since a salt solution was 
provided along the whole length of the beam. In addition, too little strain 
measurements along the length are performed to capture the very sudden changes 
in the corrosion degrees as visualized in Figure VII-21. Moreover, these very local 
changes in corrosion degree have a limited influence on the strains, as also visible 
in Figure VII-22 to Figure VII-24, especially when compared to the error on the 
strain measurements. 
 
For the prior distribution of the corrosion degree, first a vague prior distribution is 
assumed, i.e. a uniform distribution between 0.5% and 30% corrosion (the 
maximum anticipated corrosion degree). The lower bound for the uniform 
distribution is based on the visual observation of corrosion cracks, excluding the 
uncorroded situations. In (Andrade and Izquierdo, 2020; Pedrosa and Andrade, 
2017), it is stated that the start of the corrosion propagation phase with visible 
cracking occurs at a general reduction in reinforcement diameter of 50 to 100 µm. 
For the beams under consideration, this corresponds to a corrosion degree of 0.5%. 
Hence, as soon as any visual observation of cracking is present, the lower bound 
of the uniform distribution could be adjusted to 0.5% instead of 0%. 
 
Besides this uniform prior distribution, also a more informative prior distribution 
is assumed, based on the information from crack width measurements. In (Ouzaa 
and Oucif, 2019) a simple model for predicting the crack width as a function of 
the corrosion degree is presented. This model is given by equation (VII-17). Δ𝑤𝑐𝑟 = 𝛾Δ𝜙 (VII-17) 

Here, Δ𝑤𝑐𝑟  is the increase in crack width, Δ𝜙 the reduction in reinforcement 
diameter, and 𝛾 is given by equation (VII-18). 𝛾 = (𝜑𝑟 − 1)𝜋𝜙( 𝜙2𝜙2 + 𝐶𝑝 + 1)𝑐

 
(VII-18) 
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Here, 𝜑𝑟 is equal to the ratio of the density of steel to the density of rust (or 𝜑𝑟 = 0.53), 𝜙 is the reinforcement diameter, and 𝑐 is the concrete cover. 
 
Another model relating the crack widths to the corrosion degree is found in (Nasser 
et al., 2021) and is given by equation (VII-19). 𝛼 = 13𝑤𝑐𝑟1.3 (VII-19) 

Here, 𝛼 is the corrosion degree and wcr the crack width. 
 
For the same crack width, both equations result in almost the same corrosion 
degree. The average of the results from both equations will be used as the mean of 
the informative prior distribution. The corrosion degree resulting from both 
equations is given in Table VII-20 and Table VII-21 for each beam, evaluated 
based on the average crack width and the maximum crack width at the bottom side 
of the beam respectively. The standard deviation of the prior distribution is based 
on a COV of 0.5. A Beta distribution has been assumed for the prior distribution. 
The lower bound is again adjusted based on the presence of the cracks and equals 
0.5%. The upper bound is 100%, i.e. complete loss of the steel section. 
 

Table VII-20: Mean and standard deviation of informative prior distribution based on the 
average crack width 

Beam w [mm] 
Corrosion degree [%] 

µ' σ' 
(VII-17) (VII-19) 

1.1 (6.2%) 0.61 6.81 6.84 6.83 3.42 
1.2 (2.7%) 0.21 2.37 1.71 2.04 1.02 
2.1 (6.6%) 0.43 4.83 4.34 4.59 2.30 
2.2 (5.2%) 0.36 4.05 3.44 3.75 3.38 

 

Table VII-21: Mean and standard deviation of informative prior distribution based on the 
maximum crack width 

Beam w [mm] 
Corrosion degree [%] 

µ' σ' 
(VII-17) (VII-19) 

1.1 (6.2%) 1.30 14.23 18.28 16.26 8.13 
1.2 (2.7%) 0.40 4.38 3.82 4.10 2.05 
2.1 (6.6%) 0.70 7.80 8.18 7.99 4.00 
2.2 (5.2%) 0.70 7.80 8.18 7.99 4.00 
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VII.7.3 Bayesian inference based on static strain data 

The prior distributions discussed in section VII.7.2 will be updated by application 
of Bayesian inference by considering the model discussed in section VII.7.1 in the 
likelihood function. The data used in the likelihood function are the strains as 
visualized in Figure VII-22 to Figure VII-24, with the exception of the outliers in 
the strain graphs. The measurement error and model error considered in the 
likelihood function are according to sections VII.4.2.3 and VII.6.2. The prior 
distributions and resulting posterior distributions of the corrosion degrees for 
beams 1.1 (6.2%), 2.1 (6.6%) and 2.2 (5.2%) are visualized in Figure VII-33 to 
Figure VII-35. 
 
When looking at the resulting posterior distributions, the following conclusions 
can be derived. For beam 1.1 (6.2% corrosion), an underestimation of the average 
corrosion degree is found when the uniform prior distribution is assumed. When 
the informative prior distribution based on the average crack width is used, the 
underestimation is smaller, but the best approximation is found when the prior 
distribution is based on the maximum crack width. This prior distribution 
overestimates the corrosion degree, which balances out the underestimation 
obtained based on the data as found with the uniform prior distribution. Moreover, 
the very low corrosion degrees are not accepted due to their low prior probability. 
 
For beam 2.1 (6.6% corrosion), the posterior distribution when assuming the 
uniform prior distribution approximates quite well the actual corrosion degree, but 
an even better approximation is found when the informative prior distribution 
based on the maximum crack width is assumed. The informative prior distribution 
based on the average crack with is too informative, and the posterior distribution 
is almost equal to the prior distribution, since the range in strains that can be 
expected based on this prior distribution is sometimes smaller than the assumed 
measurement errors. 
 
Finally, for beam 2.2 (5.2% corrosion) an overestimation of the corrosion degree 
is found when the uniform prior distribution is assumed. A better approximation 
of the corrosion degree is found when assuming the more informative prior 
distributions. 
 
In general, the informative prior distribution based on the maximum crack width 
performs best. This is also in line with observations at KU Leuven, see e.g. (Nasser 
et al., 2019). 
 
 
 
 
 



 
 

 
 

182 Chapter VII   
 

 

 
Figure VII-33: Posterior distribution of the average corrosion degree in beam 1.1 (6.2% 
corrosion) based on static strains measured between the load levels of 5 kN and 15 kN 

 
 

 
Figure VII-34: Posterior distribution of the average corrosion degree in beam 2.1 (6.6% 
corrosion) based on static strains measured between the load levels of 5 kN and 15 kN 



 
 

 
 

Experimental investigation of corroded reinforced concrete beams 183 

 

 
Figure VII-35: Posterior distribution of the average corrosion degree in beam 2.2 (5.2% 
corrosion) based on static strains measured between the load levels of 5 kN and 15 kN 

 
In the results provided above, the difference in strain between 5 kN and 15 kN is 
used as data in the likelihood function. These correspond to strains under loads 
lower than the cracking load of the beams. This is typical for proof load testing, 
where stop criteria are defined as the onset of non-linear behaviour or the 
occurrence of damage such as cracking (Lantsoght, 2019). However, for 
evaluation of the stop criteria, distinction should be made between structures 
already cracked in bending and structures not yet cracked in bending. In both 
situations, the concrete strain at the bottom fibre should remain lower than a 
limiting value of the strains. In case of failure due to bending, for the beams under 
investigation this limiting value equals 2700 µε (Lantsoght, 2019). In case of 
failure under shear, the limiting value equals 800 µε (Lantsoght, 2019). When 
considering the latter criterion (due to the fact that failure under shear is very 
probable), the maximum load level that could be considered as being part of a 
proof load test is 30 kN for beam 1.1 (6.2%). When updating based on the strains 
measured between this load level and 5 kN, the posterior distributions of the 
corrosion degree for beam 1.1 (6.2%) are given in Figure VII-36. These posterior 
distributions are very similar to those obtained in Figure VII-33. 
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Figure VII-36: Posterior distribution of the corrosion degree of beam 1.1 (6.2% corrosion) 
when updating based on static strains measured between the load levels of 5 kN and 30 kN 

 
To simulate the case where the structure is already cracked in bending, the load 
level of 50 kN is considered in the following. All strain gauges are used, except 
the strain gauges under the right loading point since here a crack appeared. In the 
finite element model, for the different corrosion degrees, the strain gauges are also 
applied in between the cracks. This could also be achieved in practice: if the 
structure already shows bending cracks, strain gauges could be applied in between 
these cracks and not over the bending cracks. When updating based on the average 
strain measured in the zone in between the loading points and comparing these 
strains with the average predicted strains in this zone, the posterior distribution is 
visualized in Figure VII-37. This distribution is different from the one found in 
Figure VII-36 and approximates the actual corrosion degree quite well for all prior 
distributions, i.e. the posterior uncertainty is rather small and the mean value is 
located close to the actual corrosion degree. This could probably be ascribed to the 
larger influence of the corrosion degree on the average strain at these higher load 
levels. This has been partly proven by performing the updating also based on the 
strains measured at a load level of 70 kN, showing similar posterior distributions, 
but with a smaller posterior uncertainty. 
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Figure VII-37: Posterior distribution of the corrosion degree of beam 1.1 (6.2% corrosion) 
when updating based on the average static strains in the constant moment region measured 
between the load levels of 5 kN and 50 kN 

 
Another strategy could also be followed, where both the strains over a crack and 
the strains in between cracks are accounted for. This strategy relies on the 
principles of tension stiffening. When the strain over a crack is given by εcr and 
the strain in between cracks is given by εuncr, the average strain is given by equation 
(VII-20). 𝜀𝑚 = (1 − 𝜉)𝜀𝑢𝑛𝑐𝑟 + 𝜉𝜀𝑐𝑟 with 𝜉 = 1 − (𝑀𝑐𝑟𝑀 )2 (VII-20) 

Here, M is the moment acting on the structure and Mcr equals the cracking moment. 
When strain gauges are applied over cracks and in between cracks, the strains εcr 
and εuncr can be derived from the strain readings. Similarly, in the finite element 
model, strains are evaluated in between cracks and over cracks. Then, the average 
strain 𝜀𝑚 based on the measured strains and the average strain 𝜀𝑚 based on the 
simulated strains are evaluated based on equation (VII-20) and compared to each 
other. When Bayesian inference is performed based on 𝜀𝑚 at a load level of 50 kN, 
the posterior distribution is visualized in Figure VII-38. Here it can be seen that 
an underestimation of the corrosion degree is found, which is reduced when 
assuming a more informative prior. The approximation of the corrosion degree is 
less good compared to the previous cases. This could be ascribed to the larger error 
between predicted and measured strains that might be present due to the 
incorporation of equation (VII-20). Only for the informative prior distribution 
based on the maximum crack width, the posterior distribution approximates the 



 
 

 
 

186 Chapter VII   
 

actual value. This prior distribution was also found to be the best performing for 
the results based on the strains measured under a load lower than the cracking 
moment. 
 

 
Figure VII-38: Posterior distribution of the corrosion degree of beam 1.1 (6.2%) when 
updating based on the average static strains calculated based on equation (VII-20) at the 
load level of 50 kN 

 
In this case, a uniform distribution of the corrosion degree is updated and spatial 
variation is not accounted for. This could be ascribed to the fact that uniform 
corrosion has been generated by applying the salt solution over the whole length 
of the beam, where spatial variations are only arising from the pitting effect. When 
a spatially variable corrosion degree should be updated, the average of the strains 
over the constant moment region cannot be considered anymore and the measured 
strains should be compared with the predicted strains at the corresponding 
locations. In case of an uncracked structure, this can be done in the same way as 
earlier described. However, if the structure has been cracked previously, these 
bending cracks should also be simulated in the model to be able to approximate 
the actual strain pattern as accurate as possible. 
 
Finally, following remark should be made. In practice, for large-scale RC bridges, 
LVDT’s or other measuring equipment with a larger gauge length could be used 
to measure strains. In such cases, average strains over longer lengths are measured, 
averaging out the effects of cracks. For example in (Lantsoght, 2019), LVDT’s 
measuring over a distance of 1 m are used to measure strains in an RC bridge. 
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VII.8 Conclusions 

In this chapter, an experimental campaign on reinforced concrete beams subjected 
to accelerated corrosion has been described. Static loading tests and dynamic tests 
are performed on the beams, which each achieved a different corrosion level. It 
should be pointed out that for the higher corrosion levels these actual corrosion 
degrees were not in line with those predicted based on equation (VII-1). The 
influence of corrosion on the different test results has been investigated, and the 
results from the static tests were used to update the distribution of the corrosion 
degree. For this purpose, different prior distributions have been assumed, i.e. a 
vague uniform prior distribution and two more informative prior distributions 
taking into account the information from crack width measurements. 
 
When considering the static strain data, first an estimate has been made of the 
measurement error when measuring strains with strain gauges on plain concrete 
specimens. The results of these tests give an indication of the error to be used in 
the likelihood function. When taking into account this measurement error and a 
model error for the finite element model, it has been concluded that for most of 
the measurements there is an overlap between the predicted values with their 
uncertainty bounds and the measured values with their uncertainty bounds. When 
these strains are used to update the corrosion degree, the posterior distribution 
depends largely on the assumed prior distribution. However, the mean of the 
posterior distribution of the corrosion degree shifts towards the actual corrosion 
degree and there is a reduction in uncertainty. In the model for the Bayesian 
inference, the influence of corrosion on the concrete stiffness has been modelled 
with a reduction in Young’s modulus over the concrete cover, evaluated based on 
an analytical model. The influence of this simplification on the resulting strains 
has been investigated and the error was small. Also the reduction in bond between 
steel and concrete has been neglected, since for the considered load levels this 
influence is very limited. Nevertheless, models that are more detailed could also 
be considered, taking into account the fact that corrosion mostly results in 
longitudinal cracks along the reinforcement, considering the reduction in bond 
between steel and concrete, etc. 
 
When looking at the data from the dynamic tests, an important conclusion is that 
also the reference beam, which was not subjected to any degradation, shows a 
reduction in natural frequencies over time. This could be ascribed to the young age 
of the concrete, the heterogeneous character of concrete and internal effects within 
the concrete. Beams 2.2 (5.2% corrosion) and 1.1 (6.2% corrosion) showed a 
decrease in natural frequencies due to corrosion when compared to the reference 
beam at the same age. For beam 1.2 (2.7% corrosion), the corrosion degree was 
too small for this effect to be noticeable. For beam 2.2 (6.6% corrosion), larger 
natural frequencies than for the reference beam were observed due to an 
experimental error. Due to the longitudinal cracks arising from the corrosion 
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process, for most beams the influence on the frequencies of the lateral bending 
modes was also observed to be larger than the influence on the vertical bending 
modes. Displacement mode shapes and strain mode shapes could also be extracted 
from the measured accelerations and strains. As expected, due to the generally 
uniform nature of corrosion, no influence on the displacement mode shapes was 
found. Only very local changes at consecutive testing ages were observed, which 
could most probably be ascribed to experimental flaws rather than corrosion. 
When considering the strain mode shapes, a behaviour with many unexpected 
peaks was observed. This could be ascribed to bad clamping of the fibres, damage 
of the fibres due to contact with rust stains, etc. In addition, during the 
experimental campaign, many fibres broke or clamps came loose, which could 
also induce differences in strain mode shapes. Due to the different experimental 
problems and issues discovered during the data processing, the results from the 
dynamic tests were not used in the Bayesian inference of the corrosion degree. 
 
As could be concluded from the discussion of the results as provided in this 
chapter, there have been some issues with the different types of tests. These issues 
could be ascribed to the difficulties associated with the large scale of the beams 
(i.e. damage of the optic fibres during handling, the presence of shrinkage cracks 
influencing the strain readings, etc.). The experience of performing accelerated 
corrosion tests on such large-scale specimens in literature is generally scarce or 
not completely documented. To the knowledge of the authors, the current research 
is one of the first documented experimental campaigns treating accelerated 
corrosion of such large beams and investigating the influence of corrosion on 
dynamic data and static strain data. Despite the shortcomings of the current results, 
important lessons were learned from the performed experiments, which could be 
taken along in future experimental campaigns. 
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“Prediction is very difficult, especially about the future.” 
- Niels Bohr 
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VIII.1 Introduction 

Similarly as for reinforced concrete structures, there is a need for more clear 
guidelines on the assessment of the deterioration state and the corresponding 
strength of existing prestressed concrete structures. Studies regarding the 
structural response of prestressed and post-tensioned structures subjected to 
corrosion are rather limited. For example, Podroužek et al. (2014) model the 
degradation due to corrosion by applying a reduction of prestressing tendons to 
critical elements in a finite element model, without modelling the actual corrosion 
process. Nevertheless, corrosion is a major durability concern since it might result 
in rupture of strands and might lead to a reduction of strength and serviceability 
up to an unacceptable level (Dias-da-Costa et al., 2019). As such, the structure 
might fail at an early stage due to the occurrence of brittle fracture (Page and Page, 
2007). Hence, accurate knowledge of the corrosion state and corresponding 
effective prestressing force is an important factor in the assessment of the 
structural health and corresponding performance of a prestressed concrete 
structure (Osborn et al., 2012). The importance of studying corrosion of 
prestressed structures is also shown by the study of Papé and Melchers (2011). 
Here, 45-year-old post-tensioned bridge girders were tested after a bridge was 
taken out of service. Whereas corrosion of the non-prestressed reinforcement was 
according to the expectations, some of the prestressing strands were severely 
corroded, with cross-section losses between 75% and 100%. Nevertheless, little 
evidence of this corrosion could visually be observed, since no rust stains were 
formed. Even in an apparently sound beam, severe localised corrosion of the 
prestressing strands was observed after demolition. Moreover, if rust stains were 
observed, they originated from corrosion of the non-prestressed reinforcement. 
Also in (Moravcik et al., 2020) a precast prestressed bridge from the early 1950’s 
was tested. Here the failure of the superstructure of the bridge could mainly be 
ascribed to corrosion of the prestressing wires at the anchors, since these were 
installed without grouting and no proper maintenance was applied. As such, 
corrosion contributed to the loss of prestress and hence a reduced resistance of the 
bridge superstructure. 
 
In this chapter, it is investigated whether it is possible to update the remaining steel 
section/prestressing force based on different (non-destructive) measurements. In a 
first stage, based on static strain data and modal data, a posterior distribution of 
the remaining prestressing steel section will be derived for a prestressed beam 
(section VIII.2). In a next stage, this is extended to a prestressed girder bridge 
(section VIII.3). In section VIII.4, a post-tensioned beam is studied, making the 
distinction between a grouted (section VIII.4.1) and an ungrouted 
(section VIII.4.2) duct. Finally, a case study of two prestressed roof girders is 
investigated (section VIII.5). These girders were not subjected to corrosion. 
However, other time-dependent phenomena can lead to a loss of prestress. A lot 
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of experimental data was available, and the remaining prestress of the girders is 
updated based on these data. 

VIII.2 Updating of corrosion in a prestressed girder 

A prestressed girder with length 6 m, height 730 mm and width 350 mm is 
considered. The girder has three layers of prestressing strands, each consisting out 
of three 7-wire strands of 93 mm² (Figure VIII-1). It is assumed that the girder is 
subjected to corrosion. The girder is modelled in finite element software DIANA 
FEA (DIANA FEA BV, 2019), making use of a non-linear 2D model. The non-
linear calculations include the non-linear material behaviour, i.e. cracking of the 
concrete. For this purpose, the tensile strength of the concrete is modelled by a 
Hordijk curve, with concrete tensile strength fct = 3.8 MPa. A total strain based 
crack model is used with rotating cracks. The non-linear material behaviour of the 
steel is modelled by adding the ultimate tensile strength and modelling the steel 
behaviour as such that the stress approaches zero if the ultimate tensile strength is 
exceeded. The yield strength equals 1674 MPa and the ultimate tensile strength 
equals 1860 MPa. Pitting corrosion may cause an extreme steel section loss only 
at a few locations. In order to be able to model the spatial behaviour of the 
corrosion process, the finite element model of the girder is subdivided into six 
elements of 1 m, and the three layers of strands are modelled separately. This 
distribution in elements is based on (Darmawan and Stewart, 2007). Here, the 
subdivision is derived from the assumption that the largest pitting effect happens 
in the middle of the element and that the prestressing force is again fully 
transferred to the concrete by the bond between steel and concrete when reaching 
the next element. Hence, the corrosion degree modelled within an element is the 
maximum corrosion degree within that element, depending on the maximum pit 
depth over the element length. In reality, this maximum pit depth might not be in 
the middle of the element, but the error made by this assumption is limited 
according to (Darmawan and Stewart, 2007). In the finite element model, when a 
strand fails, the strand is removed from the model and the increased load on the 
remaining strands is calculated. 
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Figure VIII-1: Cross-section of the investigated prestressed girder (dimensions in mm) 

 
In the following, a prior distribution is assigned to a variable 𝜂, representing the 
reduction in prestressing steel area according to 𝐴𝑝 = 𝐴𝑝0(1 − 𝜂), with 𝐴𝑝 the 
area of the prestressing steel and 𝐴𝑝0 the initial area of prestressing steel before 
corrosion. Since 𝜂 cannot be negative, a lognormal distribution is assumed. This 
distribution will also be restricted to an upper limit of one, since the steel section 
cannot be negative. The mean value of the distribution of 𝜂 is calculated based on 
a degradation model (cfr. infra), inserting the mean values of the corrosion 
variables (i.e. corrosion rate, initiation period and pitting factor). This mean value 
is calculated accounting for corrosion of individual wires and strands, where the 
total remaining steel area is evaluated as the sum of the remaining strands and their 
corresponding sections. In the analysis performed herein, the initiation period is 
higher for strands with larger concrete covers. The corrosion rate and initiation 
period are both modelled with a lognormal distribution: 
Vcorr ∼ LN(0.03, 0.02) [mm/year] (Lay et al., 2003) and Ti ∼ LN(21, 10) [years] 
(for the strands with the smallest concrete cover) (Botte, 2017). The pitting factor 𝛼𝑝 is modelled by a Gumbel distribution with location parameter 6.66 and scale 
parameter 1.07, i.e. mean 6 and standard deviation 3 (Darmawan, 2009; 
Darmawan and Stewart, 2007; Stewart, 2004). The remaining steel section of each 
wire is calculated based on the remaining diameter, which is given by 𝐷(𝑡) =𝐷0 − 𝑉𝑐𝑜𝑟𝑟(𝑡 − 𝑇𝑖)𝛼𝑝, with D0 the initial wire diameter (4.1 mm). Based on the 
wire cross-sections, the remaining strand section is calculated and the 
corresponding increase in stress. If this increased stress exceeds the tensile 
strength of the strand, the strand is removed and the force is redistributed over the 
remaining strands. The stress in a strand is calculated based on a constant 
pretensioning force on the strand (based on an initial prestress of 1395 MPa per 
strand), accounting for the remaining wire area. By applying this procedure, the 
remaining steel area and the total pretensioning force are calculated for each 
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element of the beam. When assuming that the age of the beam is equal to 
t = 50 years, a mean value of 0.066 is found for 𝜂. The COV is assumed equal to 
0.3, i.e. corresponding to a rather vague prior. 
 
The posterior distribution of the corrosion degree 𝜂 is obtained by application of 
MCMC sampling and assuming the likelihood function provided in equation (VI-
3). A proof load is assumed to be placed on the girder, which is simulated by a 
uniform line load of 10 N/mm over the length of the beam. The data used in this 
equation consists of simulated static strains at the top and bottom fibre in each of 
the six elements in which the girder is subdivided. These strains are simulated by 
inserting the values of 𝜂 as represented by the black vertical lines in Figure VIII-
2 in the finite element model and adding a random sample of the measurement 
error to these modelled strains. In this analysis, a measurement error of 0.2 µε is 
assumed. The values of 𝜂 in the different elements are assumed independent (to 
account for the local effects of pitting). The model used in the likelihood is a 
response surface fit to the output of the finite element model of the girder. The 
output of the response surface are the strains at the different measurement 
locations and the input are the values of η in each of the six elements in which the 
girder is subdivided. The response surface is a polynomial response surface of first 
degree. 
 

 
Figure VIII-2: Posterior distribution of the reduction factor η after measuring static strains 
at top and bottom fibre at all elements when the actual corrosion degree is spatially variable 
- prestressed girder 
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When static strains are measured at the top and bottom fibre, centrally at each of 
the six elements, the posterior distributions of η in all six elements are given in 
Figure VIII-2. When looking at Figure VIII-2, it can be seen that the actual 
corrosion degree is approximated well by the posterior distribution, i.e. the 
posterior mean lies close to the actual value and the corresponding posterior 
uncertainty is rather small. In Figure VIII-2, the strains are assumed to be 
measured at all six elements. When the strains are only measured at one element, 
a reduction of uncertainty is only found at the inspected element. 
 
When the measurement error is increased to 3 µε, the statistics of the posterior 
distribution are summarized in Table VIII-1. Here it can be seen that, because of 
the larger measurement error, the posterior uncertainty increases. When the 
measurement error increases further to 10 µε, again an increase in posterior 
uncertainty is found. However, the actual corrosion degree is still approximated 
by the posterior distribution, which follows from the RMS value. Only at the 
elements closest to the supports, the posterior distribution is almost equal to the 
prior distribution and there is no reduction of uncertainty. This could be ascribed 
to the too small (difference in) strains compared to the measurement error. 
 

Table VIII-1: Influence of the measurement error on the posterior uncertainty (minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) and the deviation between the posterior mean and the actual value of the corrosion 
degree (RMS) – prestressed girder 

Measurement 

locations 

Measurement 

error 

RMS σmax σmin σaverage 

All elements 0.2 µε 0.004 0.006 0.002 0.005 
 3 µε 0.008 0.012 0.006 0.008 
 10 µε 0.018 0.018 0.014 0.016 
Element 4 0.2 µε 0.024 0.023 0.007 0.018 
 3 µε 0.023 0.021 0.008 0.018 
 10 µε 0.023 0.024 0.015 0.020 

 
The abovementioned calculations only provide a posterior distribution of the 
corrosion degree 𝜂 and do not allow forecasting the remaining prestressing steel 
area, i.e. predicting the reduction over time. Hence, in the following investigation, 
the reduction in steel area is dependent on the initiation period Ti and a rate of 
reduction over time 𝑎, i.e. 𝜂 = 𝑎(𝑡 − 𝑇𝑖) if 𝑡 > 𝑇𝑖 , else 𝜂 = 0. The mean of the 
rate 𝑎 is calculated based on the corrosion rate and pitting factor as given earlier, 
by applying a Taylor approximation. The uncertainty is represented by a COV of 
0.3 (also for the initiation period). Both the rate and the initiation period are 
modelled by a lognormal distribution. Instead of only updating the corrosion 
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degree 𝜂, now also the distributions of the initiation period 𝑇𝑖  and the corrosion 
rate 𝑎 are updated based on the (simulated) data. The posterior distribution of the 
reduction in reinforcement area 𝜂 is now given in Figure VIII-3 for static strain 
measurements at all elements when the actual underlying corrosion degree is 
uniform along the length of the beam and depends on the initiation period and 
reduction rate. Here it can be seen that slightly larger posterior uncertainties are 
achieved since there are more unknowns. Nevertheless, the posterior distribution 
provides a good estimate of the actual reduction in steel area. Again, when the 
measurement error increases, the posterior uncertainty increases, as visible in 
Table VIII-2. 

 

 
Figure VIII-3: Posterior distribution of the reduction factor η when measuring static strains 
at all elements when assuming a relationship between the reduction factor η and an initiation 
period and a reduction rate - prestressed girder 

 

Table VIII-2: Influence of the measurement error on the posterior uncertainty (minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) and the deviation between the posterior mean and the actual value of the corrosion 
degree (RMS) – prestressed girder, corrosion degree as a function of initiation period and 
reduction rate 

Measurement error RMS σmax σmin σaverage 

0.2 µε 0.004 0.014 0.004 0.008 
3 µε 0.005 0.016 0.007 0.010 
10 µε 0.011 0.021 0.014 0.017 
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The aforementioned results are based on the measurement of strains under a 
known load. The influence of modal data extracted from ambient vibration tests is 
also investigated. For this purpose, the same 2D finite element model is applied, 
but now without the proof load and with a structural eigenvalue analysis. In Figure 
VIII-4, the posterior distribution of the reduction in steel section is given when 
updating is performed based on strain mode shapes and natural frequencies from 
the first four modes (strains measured at all six elements, measurement error 0.2 µε 
for the strains and 0.1% of the experimental frequency for the natural frequencies). 
The posterior distribution shifts to the actual value, but has a larger uncertainty 
compared to the case where static strain data is accounted for. When the 
measurement error increases, the posterior distribution becomes more vague, as 
summarized in Table VIII-3. When displacement mode shapes are accounted for 
instead of strain mode shapes, the posterior distribution has a quite large 
uncertainty, as visible in Figure VIII-5 (assumed errors in the likelihood function 
are 1% of the norm of the experimental mode shapes and 0.1% of the experimental 
natural frequency) and Table VIII-3. This increased uncertainty could be ascribed 
to the relative error assumed in both situations, but also to the fact that strain mode 
shapes are more sensitive to local changes in stiffness than displacement mode 
shapes. 

 
Figure VIII-4: Posterior distribution of the reduction factor η when updating based on 
natural frequencies and strain mode shapes at all elements at the lower fibre - assuming a 
relationship between the reduction factor η and an initiation period and a reduction rate - 
prestressed girder 

 



 
 

 
 

Bayesian inference of remaining prestress in PC structures 199 
 

Table VIII-3: Influence of the error in the likelihood function on RMS, minimum standard 
deviation σmin, maximum standard deviation σmax and average standard deviation σaverage 
when accounting for modal data – prestressed girder 

Data type 
Measurement 

error 
RMS σmax σmin σaverage 

Natural frequencies and 
strain mode shapes 

0.2 µε, 0.001𝜆̅𝑟 0.009 0.020 0.014 0.017 

1.0 µε, 0.01𝜆̅𝑟 0.018 0.029 0.020 0.024 

Natural frequencies and 
displacement mode 

shapes 

0.01||�̅�𝑟 ||, 
0.001�̅�𝑟 

0.005 0.029 0.022 0.026 

0.1||�̅�𝑟 ||, 0.01𝜆̅𝑟 0.015 0.034 0.028 0.031 
 

 
Figure VIII-5: Posterior distribution of the reduction factor η when updating based on 
natural frequencies and displacement mode shapes at all elements - assuming a relationship 
between the reduction factor η and an initiation period and a reduction rate - prestressed 
girder 

VIII.3 Updating of corrosion variables in a prestressed bridge 

The analysis is extended from the prestressed girder to a more realistic case of a 
prestressed concrete bridge. The bridge is described in (Lebeau and Wadia-
Fascetti, 2010), has a span of 13.1 m, and consists of 6 prestressed girders spaced 
2 m from each other. The slab on top of the girders has a thickness of 165 mm and 
a total width of 11.6 m. The dimensions of the girders themselves are given in 
Figure VIII-6. 
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A 3D finite element model of the whole bridge deck is developed in DIANA FEA 
(DIANA FEA BV, 2019), where strains are calculated based on non-linear 
analyses. In the finite element model, the Young’s modulus of the concrete equals 
37 GPa, the tensile strength 4.1 MPa and the concrete compressive strength 
40 MPa. The tensile strength of the strands equals 1860 MPa and the initial applied 
prestress is equal to 1395 MPa, which corresponds to a force of 72540 N per 
strand. The Young’s modulus of the steel equals 190 GPa. 
 
The remaining steel section along the bridge is estimated based on simulated data. 
Similarly as in the previous application, this is done based on Bayesian methods 
and the MCMC algorithm. No correlation in the pitting factor in neighbouring 
strands is considered according to (Darmawan and Stewart, 2007). The initiation 
period and corrosion rate are assumed constant along the bridge. The mean of the 
initiation period is assumed 21 years and the standard deviation equals 10 years. 
The mean of the corrosion rate is 0.03 mm/year (airborne seawater) and the 
standard deviation equals 0.04 mm/year. The pitting factor for a bar of 8 mm 
diameter has a Gumbel distribution with mean 6 and COV 0.2 (Darmawan and 
Stewart, 2007; Stewart, 2009). The parameter α of the Gumbel distribution 
remains unaltered and equals 1.07. The parameter u is altered to account for the 
correct area of the strands and equals 6.66. The bridge is subdivided into elements 
based on the anchorage length, which equals 848 mm based on 9.5 mm diameter 
7-wire strands. The element length is checked to reach a converged probability of 
failure, i.e. if the element length is further reduced, this does not influence the 
failure probability of the bridge anymore. For calculating the failure probability, 
bending failure of the bridge girders is considered, modelling each girder as a 
series system consisting of the different elements in which it is subdivided. As 
such, the girders are subdivided into 16 elements of 818.75 mm. To account for 
spatial variation of the corrosion process, the pitting factor will be different in each 
of the elements, assuming no correlation between the different elements. 
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Figure VIII-6: Cross-section of a girder of a prestressed bridge (Lebeau and Wadia-Fascetti, 
2010) 

 
The bridge is assumed to be subjected to a proof load. The applied proof load is 
modelled by a uniform load of 9 kN/m², inspired by the highest lane loads 
suggested by the Eurocode. This is just an assumption to model a load that has a 
sufficient high influence on the structural behaviour of the bridge without 
exceeding the cracking moment. For a real case study, information about the 
applied proof load will be available and this load should be simulated in the model 
of the bridge. It has been assumed that the strains are measured at all the elements 
in which the bridge is subdivided, except for the first and last element of each 
girder (since these are assumed not to be accessible). First, only corrosion of the 
lowest layer of strands is assumed. The model in the likelihood function will 
consist of a polynomial response surface of first degree fit to the output of the 
finite element model, i.e. the strains at the different measurement locations. The 
input of the response surface will be the corrosion degree in each of the elements 
in which the structure is discretized. The posterior distribution of the remaining 
steel section is given in Figure VIII-7 for an error of 0.2 µε, and the posterior 
statistics are summarized in Table VIII-4 considering different values for the 
measurement error. Results are each time given for a small measurement error 
(0.2 µε) and a larger measurement error (3 µε and 10 µε). It has also been 
investigated how the posterior distribution is influenced if only half of the 
elements are inspected. When elements are alternately inspected and not inspected, 
the results are also summarized in Table VIII-4. Here it can be seen that when less 
elements are inspected, the uncertainty of the posterior distribution increases. This 
increase will especially take place at the non-inspected elements.  
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Table VIII-4: Influence of the measurement error on the posterior uncertainty (minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) and the deviation between the posterior mean of the corrosion degree and the actual 
value (RMS) – prestressed bridge, lowest layer of strands subjected to corrosion 

Measurement 

locations 

Measurement 

error 

RMS σmax σmin σaverage 

All elements 0.2 µε 74.98 107.69 21.17 60.29 
 3 µε 73.16 116.12 39.83 70.77 
 10 µε 75.38 122.45 47.35 77.86 
Half of the elements 0.2 µε 73.98 120.72 38.27 76.68 
 3 µε 76.76 125.70 44.50 89.52 
 10 µε 78.43 136.82 57.47 96.61 

 

 
Figure VIII-7: Posterior distribution of the remaining steel section of the lowest layer of 
strands for the prestressed bridge at each girder 

 
When looking at Figure VIII-7, there is still some deviation between the posterior 
mean and the actual value, where the latter is not always located in the Highest 
Density Intervals (HDI) of the posterior distribution. Due to modelling the 
corrosion process as a function of initiation period and corrosion rate, only limited 
corrosion levels are considered in the abovementioned analysis, where only the 
lowest layer of strands is affected by corrosion. In the following analysis, the 
corrosion degree will not be modelled dependent on the initiation period and 
corrosion rate, but a uniform prior distribution will be assumed between no strands 
present in the lowest three layers of reinforcement and all strands present in the 
lowest three layers of reinforcement. The response surface is again a polynomial 
response surface of first degree. To calculate the response surface, LHS samples 
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of the remaining steel section in the lowest three layers of strands are generated, 
assuming a uniform distribution between zero bars present and all bars present, 
and this for all the elements. As such, a larger variation on the amount of 
prestressing reinforcement present in the girder is possible compared to the 
previous analysis. This larger variation in prestressing steel results in a larger 
variation on the resulting strains. When updating is performed based on this 
response surface, a posterior distribution is found with the actual value located 
within the highest density intervals of the posterior distribution. Hence, this 
posterior distribution is capable of estimating the remaining steel section at all 
locations where measurements are performed. When measurements are performed 
at all elements, except at the first and last element of each girder, the posterior 
distribution is visualized in Figure VIII-8 for a gradual progression of the actual 
remaining steel sections along the length of the girders and a measurement error 
of 0.2 µε. For a measurement error of 3 µε and for a measurement error of 10 µε, 
results are summarized in Table VIII-5. Further, also for a more irregular 
behaviour of the corrosion process, the actual remaining steel section can be 
approximated by the posterior distribution, as illustrated in Figure VIII-9. When 
measurements are not performed at all locations, a larger posterior uncertainty is 
found, especially at the non-inspected locations. Also for this simulated 
measurement result, statistics of the posterior distribution are given in Table VIII-
5 for different measurement errors. The better results for this situation compared 
to the previous situation could be ascribed to the fact that a larger variation in total 
remaining steel section is considered, leading to a larger variation on the resulting 
strains, especially when compared to the assumed measurement error. This larger 
spread on the possible results leads to a better identification. 
 

 
Figure VIII-8: Posterior distribution of the remaining steel section of the lowest 
three layers of strands for the prestressed bridge – measurement results based on 
gradual progression of the actual remaining steel section 



 
 

 
 

204 Chapter VIII   
 

 

Table VIII-5: Influence of the measurement error on the posterior uncertainty (minimum 
standard deviation σmin, maximum standard deviation σmax and average standard deviation 
σaverage) and the deviation between the posterior mean of the remaining steel section and the 
actual value (RMS) – prestressed bridge, three layers of strands subjected to corrosion 

Meas. result Meas. location 
Meas. 

error 
RMS σmax σmin σaverage 

Gradual  

(Figure VIII-
8) 

All elements 

0.2 µε 166.05 317.62 13.31 47.57 

3 µε 207.56 379.25 17.62 79.69 

10 µε 185.73 366.49 34.95 95.74 

Random 

(Figure VIII-
9) 

All elements 

0.2 µε 94.64 253.98 12.18 41.29 

3 µε 155.96 338.56 16.69 56.39 

10 µε 163.93 355.74 29.13 79.39 

Half of the 
elements 

0.2 µε 176.83 341.53 15.11 89.15 

3 µε 214.26 343.90 21.74 143.63 

 10 µε 243.66 368.06 34.75 192.85 

 
 
 

 
Figure VIII-9: Posterior distribution of the remaining steel section of the lowest three layers 
of strands for the prestressed bridge – random progression of the actual remaining steel 
section 
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VIII.4 Updating of corrosion in a post-tensioned beam 

The influence of corrosion of reinforcement and strands in a post-tensioned beam 
is also investigated. The beam under consideration is taken from (Vu et al., 2010). 
This is a beam with length 3 m, height 200 mm and width 150 mm. The beam has 
a tendon with diameter 8 mm in a plastic duct, to which a post-tensioning force of 
54 kN is applied (Figure VIII-10). The Young’s modulus of the tendon is 200 GPa 
and the ultimate strength equals 1600 MPa. There are also three reinforcement 
bars of 6 mm diameter present in the section. When the beam is subjected to a 
corrosive environment, corrosion of these reinforcement bars will arise. 
Furthermore, due to the presence of voids in the grout of the duct, the post-
tensioning strand can also corrode. The influence of corrosion of the tendon and 
of the unstressed reinforcement on the static strains and natural frequencies is 
investigated. For this purpose, a finite element model of the beam is created and a 
non-linear analysis is performed. To model the spatial variation of corrosion, the 
beam is subdivided into six elements of 0.5 m. 
 

 
Figure VIII-10: Cross-section of the considered post-tensioned beam (dimensions in mm) 

 
It is investigated whether the corrosion variables can be updated based on static 
strain measurements performed under proof loading (i.e. a known load represented 
by a uniform load of 3 N/mm over the length of the beam). The corrosion variables 
are assumed to vary over the different elements, assuming no correlation of the 
corrosion degree between the elements. When the reduction is ascribed to pitting 
corrosion, the assumption of no correlation of the corrosion degree makes sense, 
since the pit depths in the different elements will be independent. For the tendon, 
the initiation period Ti is assumed to have a mean of 15 years according to (Nguyen 
et al., 2013) and a COV of 0.3. The mean value of the initiation period is based on 
the assumption that corrosion initiates due to the presence of chlorides in grout 
voids in the duct. The initiation period is modelled by a lognormal distribution. 
The rate at which the prestressing steel section reduces (𝑎) is also modelled by a 
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lognormal distribution and has a mean of 0.0036 mm/year. The area of a tendon is 
given by 𝐴𝑝(𝑡) = 𝐴𝑝0 ∙ (1 − 𝜂) with 𝜂 = 𝑎 ∙ (𝑡 − 𝑇𝑖). For the unstressed 
reinforcement, the reduction in reinforcement radius is calculated as 𝑥(𝑡) =2𝑉𝑐𝑜𝑟𝑟𝑇𝑜𝑊(𝑡 − 𝑇𝑖). Here, 𝑇𝑜𝑊 is the time of wetness (equal to 0.75), 𝑉𝑐𝑜𝑟𝑟 the 
corrosion rate (lognormal distribution with mean 0.03 mm/year and standard 
deviation 0.02 mm/year) and Ti the initiation period (lognormal distribution with 
mean 21 years and standard deviation 10 years). The grout cover on the tendons 
can be smaller than the concrete cover on the unstressed reinforcement, leading to 
a smaller initiation period for the prestressing reinforcement, as is also assumed in 
this example. 
 
Two situations are possible in case of a post-tensioned structure, i.e. either the duct 
is grouted or the duct is ungrouted. If the duct is grouted and a tendon breaks, the 
pretension can be retransferred to the structure at a distance equal to the transfer 
length from the breakage location due to the bond between the grout and the steel. 
On the other hand, if the duct is ungrouted, this is not possible and the complete 
prestress of the broken tendon will be lost. 

VIII.4.1 Grouted duct 

A response surface is used to model the strains and is generated based on LHS 
samples of the initiation period and corrosion rate of the reinforcement bars in all 
elements and the initiation period and corrosion rate of the tendon in all elements. 
As such, different samples of the corrosion degree η of the tendon elements and of 
the corrosion degree α of the reinforcement elements are generated. Inserting these 
in the finite element model results in different samples of the strains. A response 
surface of first degree is applied as a function of the corrosion degree α of the 
reinforcement bars at all elements and the corrosion degree η of the tendon 
elements. When the standard deviation of the strains resulting from these LHS 
samples is calculated for each of the elements individually, it appears to be 6 to 20 
times larger than the error on the strains by replacing the finite element model by 
the response surface. Hence, the error of the response surface is considered 
sufficiently small as it is well below the expected influence of the corrosion 
degrees η and α on the strains. On the other hand, the standard deviation of the 
resulting strains is of the order of magnitude of 1.4 µε, whereas the measurement 
error is assumed equal to 0.2 µε (which already corresponds to very accurate 
measurements). Hence, this measurement error is quite large compared to the 
variation in strains due to corrosion. 
 
Based on the assumed corrosion variables described above, the reduction in area 
of the tendons is only limited. Hence, when updating is performed based on strain 
measurements, the posterior distribution of the corrosion degree of the tendon is 
very close to its prior distribution and only the distribution of the corrosion degree 
α of the reinforcement bars is updated, as illustrated in Figure VIII-11 and Figure 
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VIII-12. In these results, only the corrosion degree α of the unstressed 
reinforcement is updated since for all sampled values of η, no failure of the strands 
has occurred and hence there is no influence of the reduced strand area on the 
structural behaviour of the girder. The corrosion degree of the tendon is not 
updated in both cases (i.e. the posterior distribution is (almost) equal to the prior 
distribution), which could be ascribed to the fact that it only influences the strains 
to a noticeable extent once the tendon has failed. When the measurement error on 
the strains is increased, the posterior distributions are close to the prior 
distributions. 
 

 
Figure VIII-11: Prior and posterior distribution of the corrosion degree α of the unstressed 
reinforcement for the grouted post-tensioned girder when the actual corrosion degree is 
spatially variable 

 
Figure VIII-12: Prior and posterior distribution of the corrosion degree η of the prestressing 
tendon for the grouted post-tensioned girder when the actual corrosion degree is spatially 
variable 
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VIII.4.2 Ungrouted duct 

When the duct is ungrouted, the tendon has either ruptured somewhere and the 
complete prestress is lost, or the tendon has not ruptured and all prestress remains 
available. In this case, the spatial distribution of the corrosion degree η of the 
tendon does not need to be considered due to the aforementioned structural 
behaviour. On the other hand, spatial variability of the corrosion degree α of the 
unstressed reinforcement steel remains possible. Hence, the duct is assumed 
ungrouted and two response surfaces are made, i.e. one when the tendon in the 
duct is active and one where the tendon is ruptured. In each of the response 
surfaces, the corrosion degree of the unstressed reinforcement varies along the 
length of the girder. The applied response surfaces are polynomial response 
surfaces of the first degree, where the strain is given as a function of the corrosion 
degree in the unstressed reinforcement. The posterior distributions are given in 
Figure VIII-13 and Figure VIII-14 when assuming uniform prior distributions 
between zero and one for the different corrosion degrees. This differs from the 
previous section since now the focus is on the influence of the tendon rupture. 
Hence, for η lower than a specific threshold, the tendon would still be delivering 
prestress and if η exceeds this threshold, the tendon will break and no prestress 
will be present anymore. Here it can be seen that the posterior distributions 
approach the actual corrosion degree α of the unstressed reinforcement or the 
corrosion degree η of the prestressing steel. Nevertheless, the posterior 
distributions remain rather vague. When the measurement error is increased to 
3 µε, the posterior distributions are (almost) equal to the prior distributions for this 
case. 
 

 
Figure VIII-13: Posterior corrosion degree α of the unstressed reinforcement for an 
ungrouted post-tensioned girder 
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Figure VIII-14: Posterior corrosion degree η of the prestressing tendon for an ungrouted 
post-tensioned girder 

VIII.5 UCO case study 

The next section does not focus on a corrosion-related problem but on a more 
general problem, i.e. the assessment of the remaining prestress of a post-tensioned 
structure, which can also be tackled with the developed approaches. During 
previous investigations at the Magnel-Vandepitte Laboratory, 70-year old post-
tensioned concrete beams were subjected to destructive testing, and the results of 
this experimental campaign are used to update the remaining prestress of the 
beams. 

VIII.5.1 Introduction to the case study 

The textile factory ‘Union Cottonière’ (UCO) at Ghent was constructed in 1947-
1948 and hence dates from the pioneering period of prestressed concrete 
structures. Its roof structure consists of large post-tensioned concrete beams and 
was originally designed by prof. Gustave Magnel. The primary beams have a 
nominal span of 20.5 m and are supported by concrete corbels, which are 
monolithically attached to the columns of the structure. They have a height of 
1.75 m with a top flange of 90 cm wide and a bottom flange of 50 cm wide 
(Magnel, 1948) (Figure VII-15). The prestressing tendons in these beams consist 
of three bundles of 48 wires with a diameter of 5 mm, with an initial prestress of 
1000 MPa (Magnel, 1948). In addition, these beams do not contain any other 
reinforcement, except for some stirrups in the anchor blocks and the reinforcement 
in the corbels that carry the secondary beams. Note that no supporting 
reinforcement is provided to anchor the corbels. The secondary beams have a 
height of 1.0 m, the top flange has a width of 30 cm and the bottom flange has a 
width of 16 cm. The web has a thickness of only 10 cm. The prestressing tendon 
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consists of a single bundle of 24 wires with a diameter of 5 mm, with an initial 
prestress of 1000 MPa. The prestress was applied according to the Blaton-Magnel 
system. No other reinforcement was present, except for the prestressing 
reinforcement and some stirrups in the anchor blocks. According to (Magnel, 
1948), the design was performed considering a maximum compressive stress of 
13 MPa in the concrete, while the compressive strength of concrete at the moment 
of prestressing was estimated at 40 MPa. 
 

(a) Primary beam 

 
(b) Cross-sections of primary beam 

Figure VIII-15: (a) Dimensions of the primary beam; (b) dimensions of a cross-section at 
mid-span (AA) and close to the anchor block (BB) (Dimensions in cm) (Botte et al., 2021) 

 
In 2016, part of the factory was demolished. Subsequently, one primary beam and 
one secondary beam were transported for testing to the Magnel-Vandepitte 
Laboratory for Structural Engineering and Building Materials of Ghent University, 
where they were tested up to failure. The experimental campaign included tests 
for material characterisation and destructive testing of the beams. Based on the 
available test results, a Bayesian framework is adopted to determine the 
distributions for the material parameters and for the remaining prestress. 
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VIII.5.2 Experimental program 

VIII.5.2.1 Material properties 

The mechanical properties of the concrete and the prestressing steel were 
determined based on specimens taken from another beam situated in the same 
building. The concrete compressive strength (according to EN 12390-3) and 
density were determined based on three cylindrical specimens with a height of 
100 mm and a diameter of 100 mm. Furthermore, the characteristics of the 
prestressing steel were determined based on tensile tests performed on three wires 
according to EN ISO 15630-3. The results are presented in Table VIII-6. 
Additional cores were drilled from remaining pieces of the test on the primary 
beams, and a tensile splitting test has been performed on these cores, yielding an 
average value fct,sp = 4.2 MPa. According to EN1992-1-1 (paragraph 3.1.2(8)) the 
average tensile strength can be calculated as fctm = 0.9 fct,sp, i.e. fctm = 3.7 MPa. 
 

Table VIII-6: Characteristics of concrete and prestressing steel 

 
Concrete Prestressing steel 

fc,cyl 100x100 

[MPa] 

ρc 

[kg/m³] 

Fp0.2
 

[MPa] 

Fm
 

[MPa] 

Ep 

[GPa] 

µ 52.6 2310 1478 1704 194.4 

σ 5.6 30 43 24 0.8 
Notations: fc,cyl100x100: compressive strength determined on cylinders with a height 
and diameter of 100 mm; ρc: mass density of concrete; Fp0.2: 0.2% strain limit; Fm: 
tensile strength; Ep: Young’s modulus 

VIII.5.2.2 Testing of the primary beam 

The primary beam was prestressed by means of three bundles of 56 ∅ 5 mm, which 
deviates from the description provided in (Magnel, 1948) and can be attributed to 
the specific load configuration and geometry of this particular beam. To test the 
beam, the beam was simply supported using a hinged support at the left and a roller 
support at the right. The distance between the two supports was 20.5 m, which 
corresponds to the nominal span according to (Magnel, 1948). The primary beam 
was loaded up to failure by means of two point loads located at 7.25 m from the 
supports. At each loading point, two jacks with a capacity of 500 kN each were 
used to apply the force on a mortar embedded steel profile in order to properly 
distribute the two point loads on the top flange of the beam. The test set-up is 
visualized in Figure VIII-16. 
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(a) Schematic test set-up primary beam 

 
(b) Actual test set-up primary beam 

Figure VIII-16: (a) Schematic overview of the test set-up for the primary beam (dimensions 
in cm); (b) picture of the actual test set-up for the primary beam (Botte et al., 2021) 

 
The test on the primary beam was performed in two phases. In the first phase, the 
load applied at each of the two load application points was increased up to a load 
level higher than the cracking moment and subsequently the beam was fully 
unloaded. During phase 2, the load was increased up to failure of the beam. It 
should be noted that due to the limited stroke of the jacks (i.e. 125 mm), the jacks 
had to be readjusted while the loads were taken over by an auxiliary reaction 
system.  
 
The load-deflection diagram is shown in Figure VIII-17. The load P represents the 
load applied in one load application point. The deflection is the vertical deflection 
at mid-span measured by means of an LVDT. Additionally, the displacements 
obtained by means of dial gauges at discrete load levels are also shown in 
Figure VIII-17. The load-deflection curve related to phase 1 shows a linear elastic 
behaviour up to approximately 450 kN, after which a non-linear behaviour is 
observed up to 580 kN. Subsequently, the load is completely removed and a 
residual deflection of 2.5 mm is found. The load-deflection curve of phase 2 shows 
a linear elastic behaviour up to a load level of approximately 400 kN after which 
a non-linear behaviour is observed. At a mid-span deflection of 140 mm, the take-
over procedure was executed. The beam failed at a load level of approximately 
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800 kN per load application point (or 1600 kN in total) and a mid-span deflection 
of 170 mm. 
 
Deformation gauges are applied at a bottom fibre located around mid-span. The 
deformation measurements related to phase 1 allow detecting the moment of 
cracking. The first and second crack appear at a load level of approximately 
420 kN and 460 kN, respectively. The latter is reflected by a sudden increase of 
the opening of the deformation gauges. These load levels correspond 
approximately to the load level at which the load-deflection behaviour in 
Figure VIII-17 becomes non-linear. The deformation measurements related to 
phase 2 allow detecting the moment of reopening of the previously formed cracks, 
i.e. the moment of decompression of the bottom fibre. The first crack reopens at a 
load level of approximately 350 kN. 
 
For more details and additional measurements, reference is made to (Botte et al., 
2021). 
 

 

Figure VIII-17: Load applied in one load application point as a function of the deflection at 
mid-span for the primary UCO beam (Botte et al., 2021) 

VIII.5.2.3 Testing of the secondary beam 

Similar to the primary beam, also the secondary beam is simply supported: a 
hinged support at one side and a roller support at the other side. The supports have 
an intermediate distance of 13.7 m, which corresponds to the theoretical span 
length as indicated in (Magnel, 1948). The beam was loaded by four point loads: 
the outer load application points were located at 1.7 m from the supports, while 
the inner load application points were located at a nominal distance 5.1 m from 
the supports. Considering the slender geometry of the beam, it was decided to 
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support against lateral displacements at both end sections and near one of the load 
application points. The test set-up is visualized in Figure VIII-18. 
 
 

 
(a) Schematic test set-up secondary beam 

 
(b) Actual test set-up secondary beam 

Figure VIII-18: (a) Schematic overview of the test set-up for the secondary beam 
(dimensions in cm); (b) picture of the actual test set-up for the secondary beam (Botte et 
al., 2021) 

 
Similar to the test on the primary beam, also the test on the secondary beam was 
executed in two phases. In the first phase, the load P was increased up to a load 
level higher than the cracking moment and subsequently the beam was partially 
unloaded. During phase 2, the load P was increased up to failure of the beam. 
Figure VIII-19 shows the load P applied by one jack as a function of the mid-span 
deflection. Additionally, the displacements obtained by means of a dial gauge 
located at mid-span at discrete load levels are also shown. The beam failed at a 
load level of approximately 160 kN per jack (or 320 kN in total) and a mid-span 
displacement of 150 mm. Deformation measurements revealed that the cracks 
reopen at a load level of approximately 40 kN to 50 kN. 
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For more details and additional measurements, reference is made to (Botte et al., 
2021). 
 

 
Figure VIII-19: Load applied by one jack as a function of the deflection at mid-span for the 
secondary UCO beam (Botte et al., 2021) 

VIII.5.3 Bayesian updating based on the experimental results 

The remaining prestress of the beams is determined based on a Bayesian 
assessment procedure. First, the assumed prior distributions of the material 
parameters are updated based on the available data from the material 
characterization. Then, these updated distributions are used to determine a 
probability distribution for the remaining prestress. This last step is performed for 
both the primary and secondary beam. 
 
To simulate the relationship between the prestress and the load-displacement 
diagram, a numerical model of the beams was made in DIANA FEA (DIANA 
FEA BV, 2019). A 2D finite element model was developed. Eight-node 
quadrilateral isoparametric plane stress elements based on quadratic interpolation 
and Gauss integration were used to model the concrete. The average element size 
was 75 mm. These properties were selected based on convergence of the results 
of the finite element model. Non-linear material properties were assigned to the 
concrete elements (i.e. non-linear material behaviour in tension and compression), 
and a total strain based fixed crack model was used to allow for cracking. A 
Hordijk tension-softening model was used for concrete in tension, while for 
concrete in compression a parabolic stress-strain relationship based on the fracture 
energy was implemented. A variable shear retention model was used in which de 
shear stiffness gradually reduces to zero for a crack width of half the average 
aggregate size (which was assumed equal to 10 mm). For the reinforcement, one-
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dimensional fully embedded reinforcement was applied for which perfect bond 
between the reinforcement and the neighbouring concrete elements is assumed. 
Non-linear material properties were assigned to these reinforcement elements. The 
strain-hardening hypothesis together with the Von Mises plasticity criterion was 
used. 
 
A sensitivity study has been performed to determine the most important input 
parameters of the numerical model influencing the measurement results used in 
the Bayesian analysis, i.e. the moment of decompression of the bottom fibre, the 
cracking moment and the displacement at a certain (arbitrary) load level in the 
non-linear branch of the second phase. From this sensitivity study, it is found that 
the following variables need to be considered: 

- The tensile strength of the concrete; 
- The prestress; 
- The Young’s modulus of the concrete; 
- The stress-strain diagram of the steel, defined by the Young’s modulus 

and the steel yield stress; 
- The concrete density. 

Hence, distributions for these variables are updated in the following. 

VIII.5.3.1 Updating of distributions for material characteristics 

From a mathematical point of view, the use of so-called natural conjugate priors 
in the Bayesian updating procedure is very useful, since it allows having a 
posterior distribution that is of the same form as the prior distribution, after the 
additional information is taken into account (Gelman et al., 2014) (cfr. infra). 
However, they can only be used when the variable to be updated is measured 
directly. This is the reason why these conjugate priors could not be used in the 
previous analyses, since there is only an indirect relationship between the static 
and dynamic data that has been experimentally obtained and the corrosion 
variables. In the following analyses, material properties will be updated based on 
direct measured results of the considered property. In case one considers e.g. a 
material property modelled as a lognormal distribution, the lognormal-inverse-
gamma distribution is a conjugate prior when the mean M and standard deviation 
Σ of the lognormal distribution are considered as random variables. The joint 
probability density function for M and Σ is a lognormal-gamma distribution. In 
that case, the predictive prior distribution of the lognormally distributed variable 
(i.e. the distribution incorporating parameter uncertainties) is given by equation 
(VIII-1) (Rackwitz, 1983). 

𝐹𝑋(𝑥) = 𝑇𝜈′ (ln(𝑥) − �̅�′𝑙𝑛𝑋𝑠′𝑙𝑛𝑋 √ 𝑛′𝑛′ + 1) (VIII-1) 
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Here, 𝑇𝜈′(. ) is the Student’s t-distribution with 𝜈′ degrees of freedom, �̅�′𝑙𝑛𝑋 is the 
(prior) lognormal hyperparameter of the mean value, 𝑠′𝑙𝑛𝑋  is the (prior) lognormal 
hyperparameter of the standard deviation, and 𝑛′ is the (prior) hyperparameter for 
the sample size. In case 𝑛′𝜈′ > 10, the distribution in equation (VIII-1) can be 
approximated by a lognormal distribution with mean �̅�′𝑙𝑛𝑋  and standard deviation 𝑠′𝑙𝑛𝑋√ 𝑛′𝑛′−1 𝜈′𝜈′−2  according to the JCSS Probabilistic Model Code (JCSS, 2001). 

 
Considering conjugate prior distributions, these distributions can be easily updated 
based on available measurement information. The parameters of the distribution 
can be updated based on equations (VIII-2) to (VIII-5) (Gelman et al., 2014). �̅�"𝑙𝑛𝑋 = �̅�′𝑙𝑛𝑋𝑛′ + �̅�𝑙𝑛𝑋𝑛𝑛"  (VIII-2) 

𝑛" = 𝑛′ + 𝑛 (VIII-3) 

𝑠"𝑙𝑛𝑋 = 1𝜈" [(𝜈′𝑠′𝑙𝑛𝑋 + 𝑛′�̅�′𝑙𝑛𝑋²) + (𝜈𝑠𝑙𝑛𝑋2 + 𝑛�̅�𝑙𝑛𝑋²) − 𝑛"�̅�"𝑙𝑛𝑋²] (VIII-4) 

𝜈" = 𝜈′ + 𝜈 + 1 (VIII-5) 

Here, ′ refers to the prior parameters and " to the posterior parameters. When n 
measurement results xi are available, these are accounted for by the parameters �̅�𝑙𝑛𝑋 = 1𝑛∑ ln(𝑥𝑖)𝑛𝑖=1  and 𝑠𝑙𝑛𝑋 = √1𝜈∑ (ln(𝑥𝑖) − �̅�𝑙𝑛𝑋)2𝑛𝑖=1 . The abovementioned 

formulas are only valid under the given assumptions, i.e. for the assumed pairs of 
conjugate priors.  

VIII.5.3.1.1 Updating of the compressive strength of concrete 

The concrete compressive strength can be modelled as a lognormal variable and 
can hence be updated by the formulas given above. For the concrete compressive 
strength, the only available information is found in the work by Magnel (1948), 
where a concrete strength of 40 MPa is mentioned. Suggestions for prior 
distributions for the concrete strength can be found in (Rackwitz, 1983). Based on 
the previously mentioned information provided by Magnel (1948), a concrete type 
C35 for precast elements is considered to be an appropriate prior. This prior 
distribution is summarized in Table VIII-7 by means of the so-called 
hyperparameters (�̅�′𝑙𝑛𝑋, 𝑛′, 𝑠′𝑙𝑛𝑋, 𝜈′) which describe the prior predictive 
distribution of a lognormally distributed variable considering parameter 
uncertainties (cfr. supra). Subsequently, the prior distribution is updated 
considering the measurement results 40.8 MPa, 42.8 MPa and 33.7 MPa using 
Equations (VIII-2) to (VIII-5). Accounting for these results, the posterior 
hyperparameters are given in Table VIII-7. 
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Table VIII-7: Parameters of prior and posterior distribution of concrete compressive 
strength. Prior information based on (Rackwitz, 1983) 

Concrete type 𝒙′𝒍𝒏𝑿 𝒏′ 𝒔′𝒍𝒏𝑿 𝝂′ 𝒙′′𝒍𝒏𝑿 𝒏′′ 𝒔′′𝒍𝒏𝑿 𝝂′′ 
C35 – Concrete for 

precast elements 
3.95 2.5 0.08 4.5 3.79 5.5 0.097 7.5 

 
The posterior predictive distribution of the concrete compressive strength based 
on the previously derived hyperparameters is subsequently used in the 
determination of the distributions of tensile strength and Young’s modulus of the 
concrete, since these properties are considered to be strongly correlated to the 
concrete compressive strength (JCSS, 2001). 

VIII.5.3.1.2 Updating of the tensile strength of concrete 

The distribution for the tensile strength of the concrete is determined based on the 
distribution of the concrete compressive strength. Since no prior information is 
available in literature regarding the concrete tensile strength, a prior distribution 
for the latter is derived by sampling the posterior distribution of the compressive 
strength and assuming the following relationship between tensile and compressive 
strength (JCSS, 2001): fct = 0.3∙fc

2/3∙Y2,j, where Y2,j has a lognormal distribution 
with mean 1 and coefficient of variation 0.3. This results in a prior lognormal 
distribution for the tensile strength with a mean value of 3.8 MPa and a standard 
deviation of 0.7 MPa.  
 
This distribution can be updated based on the available test results for the tensile 
strength, which are derived from two splitting tests, i.e. 3.6 MPa and 4.0 MPa. 
This updating procedure is performed based on MCMC sampling assuming a 
measurement error of 0.5 MPa. This error includes both the measurement error in 
the tensile tests and the model error for calculating the tensile strength. The 
posterior mean and standard deviation are 3.8 MPa and 0.2 MPa, respectively. 

VIII.5.3.1.3 Updating of the Young’s modulus of concrete 

The distribution of the Young’s modulus of the concrete is also based on sampling 
of the posterior distribution for the concrete compressive strength (similar as for 
the concrete tensile strength). The relationship between both variables is assumed 

to be 𝐸𝑐 = 2.15 ∙ 104 ∙ (𝑓𝑐𝑚10 )1/3 (CEN, 2005b). The prior mean and standard 

deviation of the Young’s modulus are 35.28 GPa and 1.48 GPa, respectively, 
derived based on the posterior hyperparameters for the concrete compressive 
strength as given in Table VIII-7. No experimental results on the Young’s modulus 
are available. Hence, this distribution is not updated and the prior distribution is 
used in the subsequent analyses. 
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VIII.5.3.1.4 Updating of the density of concrete 

The prior distribution of the concrete density is based on the JCSS Probabilistic 
Model Code (JCSS, 2001), which suggests a normal distribution with mean 
2400 kg/m³ and coefficient of variation 0.02. The test results available are 
2300 kg/m³, 2280 kg/m³ and 2340 kg/m³. Applying Bayesian updating (by using 
MCMC sampling), a posterior distribution with mean 2389 kg/m³ and standard 
deviation 45 kg/m³ is found. This is based on a likelihood with a measurement 
error of 200 kg/m³ of the measured value. This error includes the measurement 
errors in the weighing of the samples and in measuring the sample dimensions. 

VIII.5.3.1.5 Updating of the Young’s modulus of prestressing steel 
The prior distribution for the Young’s modulus of the steel is based on the JCSS 
Probabilistic Model Code (JCSS, 2001), which suggests a normal distribution with 
mean 200 GPa and a coefficient of variation of 0.02. For the Young’s modulus of 
the steel, following test results are available: 194.8 GPa, 194.9 GPa and 
193.5 GPa. Based on MCMC sampling, the posterior distribution is found to be a 
normal distribution with mean 199.4 GPa and standard deviation 3.86 GPa. This 
is based on a likelihood with an error of 20 GPa. This error includes the 
measurement error of the performed tests and the error made by calculating the 
Young’s modulus based on these test results. 

VIII.5.3.2 Updating of the remaining prestress 

Considering the previously updated variables, the remaining prestress is 
consecutively updated based on the experimental results, i.e. the measurements 
obtained in the large-scale load tests. In particular, the cracking moment, the 
moment of reopening of the cracks and the behaviour in the non-linear branch of 
the load-displacement diagram are used, since these depend significantly on the 
remaining prestress level. For the behaviour in the non-linear branch of the load-
displacement curve, the load corresponding to a displacement of 40 mm (i.e. in the 
non-linear branch) is considered as measurement result. The measurement results 
are accompanied by measurement errors originating from the measurement 
equipment. Moreover, the moment of reopening of the cracks and the moment of 
cracking are derived based on the experimental load-displacement curve, 
introducing an additional uncertainty on these values. Hence, in the procedure 
outlined below, an error term is added to the respective output values of the 
numerical model to account for these uncertainties: 𝜀𝑐𝑟𝑎𝑐𝑘  denotes the error on the 
cracking moment, 𝜀0 denotes the error on the moment of reopening of the cracks, 
and 𝜀𝛿 denotes the error on the load corresponding to a displacement of 40 mm. 
Distributions of these error terms are estimated based on engineering judgement, 
taking into account both the accuracy of determining measurement results from 
the experimental graphs and the measurement error itself. The assumptions on 
these error terms are summarized in Table VIII-8. 
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Table VIII-8: Distributions of the material parameters used in the Bayesian assessment of 
the remaining prestress (Botte et al., 2021) 

Parameter Unit µ σ Distr.* 
Lower 

bound 

Upper 

bound 

Concrete tensile 
strength 

fct MPa 3.8 0.2 LN   

Young’s 
modulus of the 

concrete 
Ec MPa 35,283 1480 N   

Young’s 
modulus of the 

steel 
Ep GPa 199.4 3.86 N   

Concrete 
density 

ρc kg/m³ 2389 45 N   

0.2% strain 
limit 

Fp0.2 MPa 1477 86 N   

Error on the 
cracking 
moment 

(primary beam) 

εcrack kN   U -25 25 

Error on the 
moment of 

decompression 
(primary beam) 

ε0 kN   U -50 50 

Error on the 
load at 40 mm 

εδ kN 0 10 N   

Error on the 
cracking 
moment 

(secondary 
beam) 

εcrack kN   U -5 5 

Error on the 
moment of 

decompression 
(secondary 

beam) 

ε0 kN   U -5 5 

*Distribution type: N – Normal distribution; LN – Lognormal distribution; U – 
Uniform distribution 
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The remaining prestress is not updated using standard Bayesian methods, such as 
the MCMC sampling used in Chapter VI and sections VIII.2 to VIII.4. The reason 
for this is that this would yield an unrealistically small posterior uncertainty when 
accounting for the different measurement results. The latter can be ascribed to not 
adequately taking into account the correlation between the measurement results. 
When the different measurement results are assumed to be independent in a 
standard Bayesian procedure, inherent variability of the measurement results, for 
example due to their different origin and inherent variability of structural 
properties, is not accounted for (Behmanesh et al., 2015). Moreover, standard 
Bayesian procedures would only update the prestress specifically valid for the 
tested beams and not account for the possible variations between similar beams in 
the same structure (which are not tested). If it would have been possible to perform 
multiple similar tests (on the different roof girders in the structure), these could 
induce varying measurement results. Hence, this uncertainty should also be 
accounted for when performing the Bayesian inference. In (Behmanesh et al., 
2015), a hierarchical Bayesian inference procedure is applied to resolve these 
issues. However, in this work there will be opted for another procedure, which will 
be explained in more detail below. 
 
In order to derive a posterior distribution for the remaining prestress: 

1. A set of n prestress values 𝜎𝑃,𝑖 (i = 1,…,n) is considered; 
2. For each prestress value 𝜎𝑃,𝑖 m random sets of input parameters (𝑓𝑐𝑡,𝑗; 𝐸𝑐,𝑗; 𝐸𝑝,𝑗; 𝜌𝑐,𝑗; 𝐹𝑝0.2,𝑗; 𝜀𝑐𝑟𝑎𝑐𝑘,𝑗; 𝜀0,𝑗; 𝜀𝛿,𝑗) (j = 1,…,m) are generated 

based on the posterior distributions of those parameters derived before 
(see Table VIII-8) as input for the numerical model; 

3. For each 𝜎𝑃,𝑖 a multivariate normal distribution 𝑓𝑃0,𝑃𝑐𝑟,𝑃𝛿,𝑖(𝑃0, 𝑃𝑐𝑟 , 𝑃𝛿) is 
fit on the output of the numerical model for the load 𝑃0,𝑖𝑗  corresponding 
to decompression of the bottom fibre, the cracking load 𝑃𝑐𝑟,𝑖𝑗 and the load 𝑃𝛿,𝑖𝑗 corresponding to a displacement of 40 mm; 

4. For each 𝜎𝑃,𝑖 the latter distribution function is evaluated in the measured 
load 𝑃0𝑚𝑒𝑎𝑠 corresponding to decompression of the bottom fibre, the 
measured cracking load  𝑃𝑐𝑟𝑚𝑒𝑎𝑠 and the measured load 𝑃𝛿𝑚𝑒𝑎𝑠 
corresponding to a displacement of 40 mm, i.e. 𝑓𝑃0,𝑃𝑐𝑟,𝑃𝛿,𝑖(𝑃0𝑚𝑒𝑎𝑠 , 𝑃𝑐𝑟𝑚𝑒𝑎𝑠 , 𝑃𝛿𝑚𝑒𝑎𝑠); 

5. Finally, as a probability is found for each value of the prestress, the most 
probable value of the prestress can be determined. 

 
By applying this procedure, a vague prior distribution where the prestress could 
range up to 1000 MPa (initial prestress) is updated to a posterior distribution 
accounting for the uncertainties on the experimental results and their mutual 
correlation. When relating this ad-hoc procedure to standard Bayesian inference 
procedures, the prior distribution for the prestress can be considered a uniform 
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prior distribution, where all considered prestress values 𝜎𝑃,𝑖 have an equal prior 
probability. The multivariate normal distribution 𝑓𝑃0,𝑃𝑐𝑟,𝑃𝛿,𝑖(𝑃0, 𝑃𝑐𝑟 , 𝑃𝛿) is related 
to the likelihood function, providing the likelihood of 𝑃0, 𝑃𝑐𝑟  and 𝑃𝛿  for the 
considered prestress value 𝜎𝑃,𝑖. 
 
For the primary beam, the resulting distribution of the prestress is given in Figure 
VIII-20. The markers correspond to the probabilities found for the different 
considered prestress levels 𝜎𝑃,𝑖. The shaded area represents the 90% Highest 
Density Interval (HDI), which spans the interval between 755 MPa and 812 MPa. 
The most probable value is between 775 and 800 MPa. For the latter prestress 
levels and considering the mean values of the material characteristics according to 
Table VIII-8, the load-displacement diagram obtained from the numerical 
calculations is shown together with the experimental curve in Figure VIII-21. In 
these figures, it can be seen that the numerical results considering the most 
probable prestress levels correspond closely to the experimentally observed load-
displacement diagram. 
 

 

Figure VIII-20: Posterior distribution of the remaining prestress of the primary and 
secondary UCO beam. The different markers correspond to the probability found for the 
different prestress values 𝜎𝑃,𝑖 on the horizontal axis. 

 
For the secondary beam, the posterior distribution of the prestress is also given in 
Figure VIII-20. The shaded area represents the 90% HDI. The boundaries of this 
interval are 708 MPa and 918 MPa. The most probable value equals 825 MPa. 
Hence, for this prestress and the mean values of the material characteristics 
according to Table VIII-8, the load-displacement diagram obtained from the 
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numerical calculations is shown together with the experimental curve in Figure 
VIII-22. It can be seen that this curve corresponds closely to the experimentally 
observed load-displacement diagram. 
 

 
Figure VIII-21: Posterior estimate of the load-displacement diagram for the primary UCO 
beam (Botte et al., 2021) 

 

 
Figure VIII-22: Posterior estimate of the load-displacement diagram for the secondary UCO 
beam (Botte et al., 2021) 
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It is important to indicate that the Bayesian approach presented above not only 
allows deriving a most probable value of the remaining prestress, but also provides 
an indication related to the uncertainty on this parameter. Comparing the posterior 
distributions of the primary and secondary beam, it is clear that although a higher 
most probable value is found for the prestress in the secondary beam, also a higher 
uncertainty is expected for the latter. Furthermore, the latter shows that although 
all available information was incorporated in the updating procedure, still 
important uncertainties regarding the remaining prestress remain. The larger 
uncertainty for the secondary beam can be mainly attributed to two reasons. First, 
relative to the load values, the measurement errors for the cracking moment and 
the load at a displacement of 40 mm are larger in case of the secondary beam 
compared to the primary beam. Furthermore, it was found that the intrinsic 
uncertainty of the load-displacement response, originating from the uncertainty 
related to the material properties, is significantly larger in case of the secondary 
beam. More specifically, the coefficient of variation considering a specific 
prestress level is up to three times higher for the cracking moments, up to four 
times higher for the moment of decompression of the bottom fibre and up to two 
times higher for the load at a displacement of 40 mm. 

VIII.6 Conclusions 

In this chapter, existing scientific literature is expanded with a novel approach to 
update the (time-dependent) prestressing steel section based on indirect 
measurement data. It is first illustrated how for a prestressed structure the 
remaining prestressing steel area can be updated based on available data from 
static strain measurements. For this purpose, a Bayesian updating procedure is 
applied. To account for spatial variability, the structure is subdivided into different 
elements with a varying amount of remaining prestress. It is illustrated how the 
posterior distribution of the remaining steel section indeed approaches the actual 
value for the considered cases. In a next step, this remaining steel section is 
modelled by an initiation period and a rate of reduction in order to predict the 
remaining prestress over time. For the studied example, also these distributions 
could be updated, where the posterior distributions approximated the actual 
underlying value. Nevertheless, due to the addition of unknown variables, the 
posterior uncertainty has increased compared to the case where only the reduction 
in steel section is updated. In general, when the number of unknowns increases, it 
becomes more difficult to perform the identification and more data is required to 
arrive at a similar degree of identification. 
 
The analysis is also extended to a prestressed girder bridge. Here, the change in 
steel section of a limited number of strands does not have a very large influence 
on the measured strains, especially when compared to the measurement error. 
Hence, a more vague prior distribution is required, taking into account a possible 
variation between all strands present in the lowest three layers and no strands 
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present in the lowest three layers. In this case, a more accurate posterior 
distribution is found, due to the larger range of possible strain outcomes. From 
these results, it could be concluded that, similar as in Chapter VI, it might be 
beneficial to define thresholds on the measurement accuracy to detect a certain 
damage extent, or vice versa, to define thresholds on the deterioration state that 
can be detected with a given monitoring technique and its accuracy. 
 
Next, a post-tensioned beam is investigated, where the purpose is twofold, i.e. both 
the corrosion degree of the unstressed reinforcement steel and the corrosion degree 
of the prestressing steel are updated. Two situations are considered, one where the 
duct is grouted and one where the duct is ungrouted. In the first situation, the 
corrosion degree of the unstressed reinforcement bars could be updated based on 
the strain data, but not the corrosion degree of the prestressing steel. This could be 
ascribed to the fact that the latter only influences the strains to a noticeable extent 
once the strands have failed. When the duct is ungrouted, the remaining area of 
prestressing steel, and hence the remaining prestress, is considered uniform along 
the beam. When the Bayesian updating is performed based on static strain data, 
vague posterior distributions are found, but still approaching the actual underlying 
value. Nevertheless, increasing the measurement error leads to a posterior 
distribution almost equal to the prior distribution, due to the limited strain 
differences between the corroded case and the uncorroded case. 
 
In general it could be concluded that the remaining steel section of prestressing 
steel could be updated based on static strain data, but only as soon as some strands 
have ruptured and hence induced a noticeable effect on the strains. Moreover, at 
the cost of higher posterior uncertainties, also variables in a model to predict the 
loss of steel section over time could be updated. It should be emphasized that the 
examples in this work are still largely simplified and extension to a real case study 
is required (i.e. a real bridge geometry with actual data). For example, for existing 
prestressed structures there is also expected to be some post-tension loss over their 
lifetime. Together with the corrosion effects, this will influence the behaviour of 
the structure, and both phenomena can interfere with each other. To tackle this, 
one can either include additional degradation models describing the time-
dependent post-tensioning losses, or one can included an additional model error in 
the likelihood function. Furthermore, all results provided in this chapter depend 
on the assumptions made for the errors in the likelihood function (i.e. measurement 
and modelling errors). Other assumptions could be made here, which might 
influence the shape and/or uncertainty of the posterior distribution. Nevertheless, 
more research is required on the appropriate quantification of these measurement 
and/or model errors. 
 
In the last section, the remaining prestress of two 70-year old post-tensioned 
beams tested up to failure is updated. The beams originated from a roof structure 
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originally designed by professor Gustave Magnel. Considering the age of the 
beams, significant prestress losses are expected. Hence, based on the available test 
results, it is investigated whether an estimate could be made of the remaining 
prestress of the beam. In a first step, the material properties are updated based on 
the tests performed for material characterization. In a second step, a posterior 
distribution for the prestress is generated based on the load-displacement diagram 
of the testing up to failure and considering the posterior distributions found for the 
material properties in step 1. The most likely value for the prestress is determined 
for both beams and verified based on the load-displacement curve of the finite 
element model, accounting for this prestress. These load-displacement curves 
closely approximated the experimentally observed curves. 
 
The updating of the remaining prestress in the girders of a roof structure based on 
the experimental results of only one girder is a novel contribution to the existing 
state-of-the-art. Furthermore, the algorithm for treating this inference problem in 
an ad-hoc way has not been applied before. 
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“Brains are decision-making machines, making guesses about the future.” 

- Ian Stewart, Do Dice Play God? 
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IX.1 Introduction 

The pre-posterior framework and VoI analysis were already introduced in 
Chapter V. In the current chapter, the pre-posterior framework is extended in order 
to include the time-dependent and spatial character of degradation. The time-
dependent degradation models described in Chapter II will be applied, and the 
hyperparameters and random fields as introduced in Chapter III will be 
incorporated in the framework. In the current chapter, the framework will only be 
applied to simplified examples in order to illustrate the concepts. In the following 
chapters, the Bayesian updating based on different data types as introduced in 
Chapter VI will be included, and it will be illustrated how the VoI can be used as 
a metric to optimize a monitoring strategy. 

IX.2 Incorporation of the time-dependent and spatial 

character of corrosion in the pre-posterior framework 

This section explains the extension of the pre-posterior framework that has been 
developed to determine the VoI based on yet unknown inspection results. Since in 
a pre-posterior analysis the inspection results are not known in advance, they are 
sampled based on the probability distributions of underlying stochastic variables. 
Once the inspection results are known, a posterior analysis can be performed. This 
pre-posterior framework extends previous formulations by taking into account the 
time-dependent character and spatial dependence of degradation, and is visualized 
in the flowchart of Figure IX-1, which is stepwise explained in the following sub-
sections. The framework requires a run for the prior case without consideration of 
inspection results, and one for the pre-posterior case where unknown inspection 
results are accounted for. For this reason, the flowchart differentiates between the 
prior and pre-posterior case (the latter containing unknown, hence sampled, 
measurement results). The same procedure is followed in both cases, but without 
any inspections or updating procedures in the prior case. In the following, the 
flowchart is explained for the more extensive pre-posterior case. It should also be 
noted that once the measurement results are available, the posterior cost could be 
calculated based on the actual measurement results. In this case, the difference 
between prior and posterior cost can be evaluated in order to illustrate whether the 
obtained measurement results were really worth their costs. 
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Figure IX-1: Flowchart for the determination of the VoI accounting for time-dependent and 
spatial discretization 
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IX.2.1 Discretization of the structure and definition of degradation 

Before starting the analysis, the considered structure should be modelled, and the 
relevant variables and corresponding probability distributions should be defined. 
Failure is considered through an appropriate limit state, and probability 
distributions can be assigned to the uncertain input variables. Furthermore, the 
relevant effects of deterioration in time and space on the failure probability need 
to be considered and properly taken into account. To account for the spatial 
dependence, variables correlated by means of hyperparameters or random fields 
should be defined. The structure under investigation should be subdivided into 
elements with the element length chosen such that correlation is strong within an 
element for the variables modelled by common hyperparameters and that the 
random field is properly represented. As such, within one element, deterioration 
is considered uniform. In addition, a model for simulating the degradation as a 
function of time is required. For reinforcement corrosion, this can be done 
according to the models presented in Chapter II. 

IX.2.2 Definition of inspection and decision strategies 

In this framework, the inspection/monitoring strategy to be evaluated is chosen in 
advance. The strategy is defined by the number of elements (of the discretized 
structure) to be inspected (nel,insp) and the timesteps Tinsp at which 
inspections/measurements will be performed. Furthermore, ndecisions possible 
decision/repair strategies aj are considered. When evaluating the flowchart for the 
prior case (i.e. without considering inspection/monitoring outcomes), only the 
prior decision strategies are used as input. In Figure IX-1, these input parameters 
can be found in the frame at the top of the flowchart indicated by ‘Define 
inspection and maintenance’. 

IX.2.3 Definition of the possible inspection outcomes 

In the pre-posterior case, the value of (yet) unknown inspection results/monitoring 
outcomes is accounted for by considering NoS combinations of test outcomes. As 
the test outcomes are not known in advance, these are sampled according to the 
prior information. Later in the framework, the occurrence probability of all the 
possible inspection/monitoring outcomes will be accounted for. It should be noted 
that the number of test outcomes should be chosen large enough so that 
convergence of the VoI is reached. Sampling of the test outcomes can be done 
based on Latin Hypercube Sampling (LHS). LHS is adopted since less samples 
are needed to approximate the distributions when compared to Monte Carlo 
sampling. For each of the sets of inspection/monitoring outcomes y, a 
corresponding lifetime cost CT(y) will be determined, leading to NoS values of 
CT(y). 
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IX.2.4 Determine costs associated to a set of inspection/monitoring 

outcomes 

IX.2.4.1 Accounting for inspection/monitoring outcomes 

As indicated before, the inspection/monitoring outcomes are not known 
beforehand and are hence sampled. The inspection/monitoring outcomes (y) are 
random variables that are a function of other random variables (X), where the 
relationship is given by 𝑮(𝑿). For example, when a deflection would be measured, 
this depends on the stiffness of the structure and hence on the random variables 
included in the corrosion modelling. In this work, inspection/monitoring outcomes 
are modelled by sampling the input variables X with LHS and calculating the 
corresponding inspection/monitoring outcomes by evaluating the model 𝑮 for 
these different samples. To these modelled values, a random error 𝜼 (depending 
on the measured quantity and the equipment used) is added to generate the 
inspection/monitoring outcome, according to equation (IX-1). This error 𝜼 can 
incorporate a measurement error ηD and/or a model error ηG. 𝒚 = 𝑮(𝑿) + 𝜼 (IX-1) 

 
In this way, samples for the inspection/monitoring outcomes can be generated at 
different times and locations, by evaluating the model at the corresponding times 
and/or locations. When the inspection/monitoring outcomes are of the inequality 
type (e.g. indication / no indication of corrosion initiation), both 
inspection/monitoring outcomes are considered, and each is weighed with their 
corresponding probability. The inspection/monitoring outcomes in this case are 
binary (discrete) random variables. 
 
Based on the sampled inspection/monitoring outcomes, the probability 
distributions of the model parameters are updated by applying Bayesian methods, 
according to Chapter IV. Through the representation of spatial correlation of 
corrosion variables by hyperparameters and random fields, 
inspections/measurements at one location of the structure also provide information 
on non-inspected locations. These hyperparameters and random fields are included 
in the variables X. To account for multiple inspection/monitoring outcomes in 
time, the posterior distribution of a previous timestep is used as the prior 
distribution at a later timestep. Furthermore, the inspection results at different 
timesteps are based on the same simulations of the variables governing 
degradation. As such, inspection/monitoring outcomes at a later timestep will be 
correlated to those at an earlier timestep. Moreover, the model G(X) takes into 
account the spatial degradation, where the variables X can have a spatial 
correlation. 
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When all distributions are updated based on the inspection/monitoring outcomes, 
these updated distributions can be used to calculate the updated probability of 
failure, e.g. based on a FORM (First Order Reliability Method) analysis. To 
perform the FORM analysis, a distribution is fit to the samples following from 
MCMC, and the mean and standard deviation are calculated. FORM is then 
performed assuming these distributions. 

IX.2.4.2 Cost corresponding to a set of inspection/monitoring 

outcomes and a decision strategy 

In order to determine the life-cycle cost for a fixed set of inspection/monitoring 
outcomes, a loop over the different decision alternatives is made (counter j in 
Figure IX-1). At the start of every loop, the following parameters are initialized: 
the initial time t and the counter for the time k are set equal to zero, all probability 
distributions corresponding to deterioration, material properties and loads are set 
to their prior distributions (X), and costs for performing an action (CA) or an 
inspection (CI) are set equal to zero. 
 
At every timestep t = k∙∆t (except for the first one), it is checked whether at the 
previous timestep (k-1)∙∆t a threshold for making an action (e.g. performing a 
repair) was exceeded (e.g. a reliability threshold βaj, damage threshold…), in case 
this is imposed by the decision strategy. If this is the case, repair will be performed 
and the expected cost of repair CA will be calculated according to equation (IX-2). 𝐶𝐴 = 𝐶𝑎(1 − 𝑝𝐹(𝑡𝑎))(1 + 𝑟)𝑡𝑎  (IX-2) 

Here, Ca is the cost of the action (e.g. the cost of repair), ta equals (k-1)∙∆t, i.e. the 
time at which the threshold is exceeded, pF is the cumulative probability of failure 
at this timestep (cfr. infra), and r is the discount rate. When repair is performed, 
this may affect some of the variables in X, which is indicated by X|ai. For example, 
when assuming perfect repair, degradation is returned to its initial condition. When 
repair is assumed to stop degradation, degradation is kept constant in all following 
evaluations of the probability of failure. The section where repair is accounted for 
in the flowchart of Figure IX-1 is indicated by the orange frame labelled ‘Repair’. 
 
Next, the reliability index should be determined, accounting for time-dependent 
degradation. The state of deterioration (e.g. the remaining reinforcement section) 
is evaluated at the timestep considered. Accounting for this reduced resistance, the 
failure probability Pf, reliability index β, cumulative probability of failure pF and 
failure rate ΔPf  for the considered timestep are evaluated based on FORM 
analyses. The failure rate ΔPf is given by equation (IX-3). 
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∆𝑃𝑓 = 𝑝𝐹(𝑘 ∙ ∆𝑡 ) − 𝑝𝐹((𝑘 − 1) ∙ ∆𝑡 )∆𝑡(1 − 𝑝𝐹(𝑘 ∙ ∆𝑡 ))  (IX-3) 

The cumulative probability of failure pF is calculated according to equation (IX-
4) (Straub, 2004). 

𝑝𝐹(𝑇) = 1 −∏(1 − 𝑃𝑓(𝑡))𝑇
𝑡=0  (IX-4) 

In this work, the number of variables in the FORM analysis is still limited and the 
problem is not high dimensional. Hence, FORM is applicable. For high-
dimensional problems, the performance of FORM should be assessed. Some 
information on this and alternative methods to calculate the failure probability can 
be found in (Hadidi et al., 2017; Jiang and Li, 2017; Katafygiotis and Zuev, 2008; 
Lehar and Zimmermann, 2012; Schuëller et al., 2004; Wang and Grandhi, 1996; 
Wang and Song, 2018, 2016). 
 
When the timestep considered belongs to one of the imposed 
inspection/monitoring times in the vector Tinsp, the sampled inspection/monitoring 
outcomes are used to update the appropriate probability distributions, and the 
corresponding cost CI for inspection/monitoring should be accounted for, as given 
by equation (IX-5). 

𝐶𝐼 = 𝐶𝑖𝑛𝑠𝑝 (1 − 𝑝𝐹(𝑡𝑖𝑛𝑠𝑝))(1 + 𝑟)𝑡𝑖𝑛𝑠𝑝  (IX-5) 

Here, Cinsp is the cost of the inspection/monitoring, tinsp equals k∙∆t, i.e. the time at 
which the inspection/monitoring is performed, pF is the cumulative probability of 
failure at this timestep, and r is the discount rate. 
 
In this work, inspection/monitoring outcomes are used to reduce the uncertainties 
on the variables involved in the reliability analysis by using the updated 
distributions of the variables influenced by the inspection/monitoring and not to 
check whether certain thresholds are reached and corresponding repairs need to be 
performed. By updating the distributions of the hyperparameters and by updating 
the random fields, inspections at one element will also affect the uncertainty of 
other correlated elements. When all distributions are updated, FORM analyses are 
again performed and the updated failure probability is determined, together with 
the reliability index and failure rate. The section on inspections/monitoring can be 
found in the flowchart of Figure IX-1 within the green frame labelled ‘Inspection’. 
 
Given the failure probability (after updating at a timestep in Tinsp), the costs are 
evaluated at the end of every timestep, according to equation (IX-6). In this 
equation, 𝐶𝐹0 is the failure cost of the construction. 
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𝐶𝑇(𝑘 ∙ ∆𝑡) = 𝐶𝑇((𝑘 − 1) ∙ ∆𝑡 ) + 𝐶𝐼 + 𝐶𝐴+ 𝐶𝐹0∆𝑃𝑓(𝑘 ∙ ∆𝑡 ) 1 − 𝑝𝐹((𝑘 − 1) ∙ ∆𝑡 )(1 + 𝑟)𝑡𝑖∙∆𝑡  
(IX-6) 

Subsequently, the next timestep can be considered, i.e. 𝑘 = k+1, and CA and CI are 
set equal to zero. 
 
Finally, the cost corresponding to the set of considered inspection outcomes y and 
decision a is the cost at the final timestep (the expected service life tSL) and is 
denoted as CT(tSL|a,y). 
 
The procedure set out above is summarized in Figure IX-2, which is also indicated 
by the dashed frame in Figure IX-1. 

IX.2.4.3 Costs associated to a set of inspection outcomes 

In the decision analysis performed by this framework, the optimal repair strategy 
will be chosen for each possible inspection/monitoring outcome. The different 
possible heuristics for the repair strategy relate to possible decisions on the repair 
strategy. For each inspection/monitoring outcome, these will be evaluated and the 
repair strategy with the lowest cost will be chosen. This will lead to the total life-
cycle cost associated with this particular inspection/monitoring outcome. Hence, 
the cost CT(y) corresponding to a set of inspection outcomes y, is the minimum 
over all actions/decisions considered (equation (IX-7)).  𝐶𝑇(𝒚) = min𝑎 𝐶𝑇(𝑡𝑆𝐿|𝑎, 𝒚) (IX-7) 

Here, a represents the different actions/decisions considered and CT(tSL|a,y) the 
cost at the anticipated service life corresponding to action or decision a, accounting 
for the inspection outcomes y. This cost CT(tSL|a,y) is evaluated at the expected 
service life and is an accumulation of all failure costs over time, including the 
inspection/monitoring costs (CI) and the action/repair costs (CA), discounted to the 
year of calculation of the VoI (net present value). For a specific set of 
inspection/monitoring outcomes, costs need to be evaluated for all possible 
decision strategies aj. 
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Figure IX-2: Flowchart a - Cost for a given set of inspection outcomes and a given decision 
strategy 

 
When the abovementioned framework is run through for all possible decisions 
(according to Figure IX-3), the costs for the set of inspection/monitoring outcomes 
considered can be evaluated according to equation (IX-7). When no 
inspection/monitoring outcomes are considered, equation (IX-7) gives the prior 
costs. 
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Figure IX-3: Flowchart b - Costs associated to a set of inspection/monitoring outcomes 

IX.2.5 Determination of the pre-posterior costs and VoI 

When the costs corresponding to each inspection/monitoring outcome are 
calculated, these will be weighed with the probability of occurrence of these 
inspection/monitoring outcomes, leading to the expected value of the pre-posterior 
cost. Hence, when all samples of inspection/monitoring outcomes are considered, 
the estimated posterior cost can be evaluated based on equation (IX-8).  𝐸[𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟] = ∫ 𝐶𝑇(𝐲)𝑓𝒀(𝒚)𝑑𝒚𝒀  (IX-8) 

Here, the PDF fY(y) is calculated based on the PDF’s of the variables of which the 
inspection/monitoring outcomes are a function, evaluated at the samples used for 
the generation of the inspection/monitoring outcomes. The probability is then 
based on the samples for the different input variables, based on which the 
inspection/monitoring outcomes at different locations and times are calculated. As 
such, in equation (IX-8), the costs corresponding to a set of inspection/monitoring 
outcomes are weighed with the probability that these measurement results would 
actually be obtained. Hence, the expected pre-posterior cost is obtained by 
averaging over the different sampled inspection/monitoring outcomes. The final 
result, i.e. the VoI, is then found by subtracting the expected pre-posterior costs 
from the expected prior costs (equation (IX-9)). 𝑉𝑜𝐼 = 𝐸[𝐶𝑝𝑟𝑖𝑜𝑟]  − 𝐸[𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟] (IX-9) 

Here, 𝐸[𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟] is calculated by equation (IX-8) and 𝐸[𝐶𝑝𝑟𝑖𝑜𝑟] is calculated in 
a similar way. It should be pointed out that Cprior could be calculated according to 
two possible definitions of the VoI, i.e. without considering any inspection results 
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if the VoI is calculated in the design stage, or with consideration of some baseline 
inspection scenario. A positive value of the VoI implies that an 
inspection/monitoring strategy is economically interesting. The most optimal 
inspection/monitoring strategy will be the one with the largest VoI, or hence the 
lowest expected value of the pre-posterior cost. 

IX.3 Example applications of the extended pre-posterior 

framework 

In this section, the application of the extended pre-posterior framework will be 
illustrated by application to two simplified examples. 

IX.3.1 Application example 1 - simply supported beam 

The first illustration is by application of the framework to the simply supported 
beam introduced in section VI.2.1. 

IX.3.1.1 Definition of the structure: limit state, degradation and 

decision alternatives 

It is assumed that the design service life equals 50 years (hence the VoI will be 
evaluated at tSL = 50 years). In this case, a random field is assigned to the concrete 
cover with a squared exponential correlation model and a correlation length of 1 m 
(Straub, 2011). Hence, element lengths of 𝑙𝑐/2 = 0.5 m are considered sufficient. 
This element length indeed leads to convergence of the failure probability of the 
beam. Besides the random field assigned to the concrete cover, the chloride 
content at the concrete surface Cs and diffusion coefficient of the concrete D are 
also assumed to be spatially correlated. This dependence is modelled by using a 
common hyperparameter for the distributions of D and Cs in these elements. The 
diffusion coefficient D for the different elements is equi-correlated with a 
correlation coefficient of 0.5. The same is assumed for the chloride concentration 
Cs. Hence, these are statistically independent for a given realization of the 
hyperparameter. The beam represents one zone and is subdivided into eight 
elements of 0.5 m as visualized in Figure VI-1. 
 
The assumptions on the hyperparameters, random fields and correlation models 
are based on literature in the field of structural engineering, where the surface 
chloride concentration is often assumed constant and other properties, including 
the concrete cover, are modelled by random fields. Considering the material 
science behind corrosion, the spatial dependence of the initiation period will be 
mainly due to a difference in surface chloride concentration and the influence of 
spatial variation of the concrete cover is not that pronounced. Another note on the 
spatial variation is that this can be completely different for different structures. In 
a very large structure, there will be a certain correlation, from one anode to 
another, where the anodes determine the corrosion process. This can lead to 
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correlation lengths ranging from 1 m to a few meters. This correlation between 
anodes could also be used as an estimate for the correlation in the propagation 
phase. However, it is not the purpose of this work to model the corrosion process 
in detail, but to illustrate some concepts on the application of the VoI analysis to 
time-dependent and spatially degrading concrete structures. The framework can 
incorporate any kind of correlation or time-dependent degradation. 
 
To determine the failure probability over time, the limit state function given by 
equation (IX-10) is adopted.  𝑔(𝑿, 𝑡) = 𝐾𝑅𝐴𝑠(𝑡)𝑓𝑦 (ℎ − 𝑐 − 0,5 𝐴𝑠(𝑡)𝑓𝑦𝑏𝑓𝑐 ) − 𝐾𝐸(𝐺 + 𝑄) (IX-10) 

 
The distributions used for the variables in this equation are summarized in Table 
IX-1 and Table IX-2. The values provided for the load effect are the maximum 
bending moments, resulting from a uniformly distributed load applied to the beam. 
For the variable load effect, the distribution for a 5-year reference period is used 
(Holicky and Sykora, 2010). Since the load is considered to be constant in a 
reference period of 5 years, it is the same distribution as for a 1-year reference 
period (Honfi, 2014; JCSS, 2001; Leonardo da Vinci Pilot Project CZ/02/B/F/PP-
134007, 2005). The probability of failure will be evaluated every year, and a 
threshold for repair will be based on a target reliability for a reference period of 
1 year. 
 
In equation (IX-10), the time-dependent character of degradation is accounted for 
by including As(t), i.e. the reinforcement area at time t. This is evaluated based on 
equations (II-8) and (II-9), and probabilistic models are assigned to the variables 
in the models for the initiation and propagation phase (Table IX-1) to evaluate the 
probability of failure over time. The variables that will be inferred based on the 
measurement information are those appearing in these degradation models (similar 
as in Chapter VI). The posterior distributions of these variables will be used for 
evaluation of the probability of failure at the timesteps following 
inspection/monitoring. 
 
The probability of failure is calculated considering the beam to be a series system 
that fails when one of its eight elements fails. The failure probability can be 
calculated according to equations (IX-11) and (IX-12). 𝑃𝑓,𝑠(𝑡) = 1 − 𝛷𝑚(𝜷(𝒕), 𝝆) (IX-11) ρ𝑖𝑗 = 𝛂𝒊𝑻𝛂𝒋 (IX-12) 

Here, ρ𝑖𝑗  represents the correlation between the reliabilities of elements i and j, 
calculated based on the sensitivity factors of the input variables in elements i and 
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j, according to equation (IX-12). β(t) is the vector of element reliabilities at time t, 
and Φm represents the multivariate normal CDF of degree m (here m = 8). The 
element reliabilities are evaluated based on equation (IX-10), where the moments 
are recalculated towards the maximum moment in the considered element and the 
steel section As(t) is evaluated for the corresponding element in the discretization 
of the random field. 
 

Table IX-1: Distributions of variables related to corrosion for the simply supported beam 

Variable 
Symbol 

[unit] 
Mean 

Standard 

deviation 
Distr. Reference 

Pitting factor 
αp 

[-] 
2 - Det. 

(Duracrete, 
1998) 

Mean corrosion 

rate while 

corrosion is 

active 

Vcorr,a 

[mm/yr.] 
0.03 0.02 Weibull 

(Lay et al., 
2003) 

Time of wetness 
ToW 

[-] 
0.75 0.2 Normal 

(Lay et al., 
2003) 

Surface chloride 

concentration 

Cs 

[wt.-%/c] 
2 0.9 Lognormal (fib, 2006) 

Diffusion 

coefficient of 

concrete 

D 

[mm²/year] 
20 10 Lognormal (fib, 2006) 

Critical chloride 

concentration 

Ccr 

[wt.-%/c] 
0.6 0.15 Lognormal (fib, 2006) 

Concrete cover 
c 

[mm] 
30 5 

Gaussian 
Random 

Field 

(JCSS, 
2001) 
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Table IX-2: Distributions of variables in the limit state under bending for the simply 
supported beam (JCSS, 2001) 

Variable Symbol Units Mean 
Standard 

deviation 
Distribution 

Resistance model 
uncertainty 

KR - 1 0.05 Lognormal 

Reinforcement 
yield stress 

fy MPa 550 11 Normal 

Depth of the beam h mm 500 10 Normal 

Width of the beam b mm 300 - Deterministic 

Concrete 
compressive 

strength 
fc MPa 38.78 4.6 Lognormal 

Load model 
uncertainty 

KE - 1 0.10 Lognormal 

Permanent load 
effect 

G kNm 50 2.5 Normal 

Variable load 
effect 

(imposed loads, 

5-year reference 
period) 

Q kNm 10 11 Gumbel 

Initial 
reinforcement 
cross-section 

As0 mm² 785.4 - Deterministic 

 
 
In this example, two decisions are considered: do nothing, or repair the elements 
of which the reliability index drops below the annual target reliability of 4.3, which 
represents an increase in failure probability by a factor 10 compared to the initial 
failure probability. This initial failure probability is derived based on the reliability 
analysis applied to the undamaged beam. Repair is assumed to stop degradation of 
the corresponding element. It is assumed that this repair is perfect and that the 
structure will not further degrade after the repair. This repair strategy is assumed 
for the purpose of illustration and other repair models can be incorporated in the 
framework. 
 
For the results represented in the following, the costs of Table IX-3 are used, which 
are all relative to the cost of failure (inspired by (Straub, 2004)). 
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Table IX-3: Cost parameters in the example of the simply supported beam 

Parameter Value Parameter Value 

CF0 1 Ca 10-2 

Cinsp 10-6 r 0.01 

IX.3.1.2 Determination of the value of information 

According to the flowchart in Figure IX-1, the prior and pre-posterior costs are 
derived. When it is decided not to perform any interventions, the prior relative 
lifetime cost equals 0.06091. This means that, when the cost of failure of the beam 
is 1 million euros (accounting for structural but also human costs) and the cost of 
repair is 10 000 euros, the total expected lifetime cost equals 60 910 euros, when 
accounting for possible repairs and the probability of failure. When the threshold 
for repair is an element reliability of 4.3, the prior relative lifetime cost becomes 
0.007692. Minimizing over the actions, the final prior cost is the minimum of both, 
which equals 0.007692. A priori, the decision will be made to do the repair when 
an element reliability drops below 4.3, since this leads to a lower total lifetime 
cost. 
 
When the chloride concentration is measured at 5 years at element 4, measurement 
outcomes for this chloride concentration are sampled and the corresponding 
distributions and hyperparameters are updated. Based on these analyses, the pre-
posterior relative lifetime cost is evaluated and equals 0.007660. This is smaller 
than the prior cost. Hence, this inspection is economical for the current assumed 
repair and inspection/monitoring costs. The pre-posterior cost is determined 
according to costs and probabilities from which some are given in Figure IX-4. 
For different sampled test outcomes Csi, the corresponding lifetime cost is shown 
in the lower graph (which is the minimum over the actions “repair” and “no 
repair”) together with the corresponding probability of occurrence of this test 
outcome in the upper graph. 
 
By varying the time of inspection/monitoring, the costs and corresponding VoI 
can change. As such, the best inspection strategy (time of inspection/monitoring) 
can be chosen. A simple comparison is made by varying the time of measuring the 
chloride content at element 4 from 5 years to 25 years. The results are shown in 
Figure IX-5. The VoI is expressed relative to the prior costs. If the VoI is positive, 
it might be beneficial to perform the measurements. Furthermore, in this example, 
more benefit will be gained when the measurements are performed earlier. 
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Figure IX-4: Measurement of chloride concentration at 5 years: costs and probabilities for 
different sampled test outcomes for the chloride concentration Csi 

 
Figure IX-5: Prior and pre-posterior costs for measuring chloride content at element 4 at an 
age of 5, 10 and 25 years, and the corresponding relative VoI 
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IX.3.2 Application example 2 - bridge girder 

As a second example, a simply supported highway bridge described in (Mandić 
Ivanković et al., 2019) is considered with a single span of 24.8 m. The 
superstructure is composed of five prefabricated I-type prestressed concrete 
girders connected with a monolithic concrete deck (Figure IX-6). The deck is 
modelled as a zone, and the girders are grouped in a second zone, since these are 
subjected to different chloride exposure. The concrete cover of each girder is 
modelled by a random field while the dependence of the diffusion coefficient of 
the concrete D and the chloride concentration Cs between elements of the girder is 
modelled by hyperparameters. The probability distributions of the chloride 
concentration and diffusion coefficient are given in Table IX-4. The value of the 
diffusion coefficient is based on CEMI/42.5 with a water/cement ratio of 0.45 (fib, 
2006). The probabilistic models for the corrosion rate and time of wetness are also 
given in Table IX-4. This corresponds to a cyclic wet-dry exposure class. The 
pitting factor is assigned a normal distribution with mean value 9.28 and standard 
deviation 4.04 according to (Duracrete, 1998). It is assumed that the girders are 
pretensioned. 
 
Considering the ultimate limit state of bending, failure of the girders is modelled 
analytically by limit state equation (IX-13) with resistance and load effect 
according to equations (IX-14) and (IX-15) respectively. 𝑍 = 𝑅 − 𝐸 = 𝑀𝑅𝑑𝐾𝑅 − (𝑀𝐺𝐾𝐸,𝐺 +𝑀𝑄𝐾𝐸,𝑄) (IX-13) 

𝑅 = 𝑀𝑅𝑑𝐾𝑅 = [(ℎ − 𝑐 − Φ𝑏2 ) 𝑛𝑟𝐴𝑠𝑓𝑦 + 𝑛𝑔𝑑𝐴𝑝𝑓𝑦𝑝𝑘] 0.9𝐾𝑅 (IX-14) 

𝐸 = 𝑀𝐺𝐾𝐸,𝐺 +𝑀𝑄𝐾𝐸,𝑄= [(𝐴 + ℎ𝑑𝑏𝑑)𝛾𝐶 𝐿28 + Δ𝑀𝑔] 𝐾𝐸,𝐺 +𝑀𝑄𝐾𝐸,𝑄 
(IX-15) 

The parameters appearing herein and their corresponding probability distributions 
are summarized in Table IX-5. The additional permanent load ΔMg describes the 
effect of permanent claddings or permanent loads besides the self-weight of the 
concrete. 
 
 

 

Figure IX-6: Superstructure of the investigated bridge 
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Table IX-4: Distributions of variables related to corrosion used for the bridge girder 

Variable Symbol Mean 
Standard 

deviation 
Distribution Reference 

Pitting factor 
αp 

[-] 
9.28 4.04 Normal 

(Duracrete, 
1998) 

Mean corrosion 

rate while 

corrosion is active 

Vcorr,a 

[mm/yr.] 
0.03 0.02 Weibull 

(Lay et al., 
2003) 

Time of wetness 
ToW 

[-] 
0.75 0.2 Normal 

(Lay et al., 
2003) 

Surface chloride 

concentration 

Cs 

[wt.-%/c] 
2 0.9 Lognormal (fib, 2006) 

Diffusion 

coefficient of 

concrete 

D 

[mm²/yr.] 
20 10 Lognormal (fib, 2006) 

Critical chloride 

concentration 

Ccr  

[wt.-%/c] 
0.6 0.15 Lognormal (fib, 2006) 
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Table IX-5: Distributions of variables in the limit state under bending for the bridge girder 
(JCSS, 2001; Mandić Ivanković et al., 2019) 

Variable Distribution Mean 
Standard 

deviation 

Girder height h [m] Deterministic 1.66 - 
Girder cross-section 

area 
A [cm²] Normal 3.14 0.06 

Concrete cover c [mm] 
Gaussian 

random field 
20 5 

Number of 
reinforcement bars 

nr [-] Deterministic 4 - 

Number of tendons ng [-] Deterministic 2 - 
Bar diameter 

(initial) 
Φb [mm] Deterministic 20 - 

Permanent load 
effect uncertainty 

KEG [-] Lognormal 1 0.12 

Yield strength of 
reinforcement 

fy [MPa] Normal 550 11 

Concrete 
compressive strength 

fc [MPa] Lognormal 38.8 4.65 

Resistance model 
uncertainty 

KR [-] Lognormal 1.2 0.15 

Traffic load effect 
model uncertainty 

KEQ [-] Lognormal 1 0.19 

Concrete density 
γc 

[kN/m³] 
Normal 25 1 

Deck height hd [mm] Deterministic 240 - 
Deck width bd [mm] Deterministic 2800 - 

Traffic load effect Q [kNm] Gumbel 905.4 130.3 
Tensile strength of 
prestressing steel 

fypk  
[N/mm²] 

Normal 1515.1 75.8 

Effective depth of 
tendons 

d [mm] Normal 1410 352.5 

Area of tendon Ap [mm²] Normal 2200 440 
Additional 

permanent load 
ΔMG 

[kNm] 
Normal 403.1 20.2 
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For evaluation of the probability of failure of a girder, again a series system is 
assumed according to equations (IX-11) and (IX-12), considering the different 
elements in which the girder is discretized. For evaluation of the element 
reliabilities, the moments are recalculated towards the maximum moments in the 
considered element. The steel section of the girders will reduce in time due to 
corrosion. This reduction in steel section is evaluated based on equations (II-8) 
and (II-9), and probabilistic models are assigned to the variables in the models for 
the initiation and propagation phase (Table IX-4) to evaluate the probability of 
failure over time. 
 
To reduce uncertainties, information on the bridge condition can be gathered. This 
information can be used to update the probability distributions of the variables. 
The variables that will be inferred based on the measurement information are the 
surface chloride concentration Cs, the diffusion coefficient of the concrete D and 
the concrete cover c. The posterior distributions of these variables will be used for 
evaluation of the probability of failure at the timesteps following inspection. Two 
different techniques for detection of corrosion are compared, where it is assumed 
that technique 2 is more accurate than technique 1. It should be pointed out that in 
prestressed or post-tensioned structures the most common corrosion mechanism is 
stress corrosion cracking. This type of corrosion cannot be detected by half-cell 
potential measurements. Nevertheless, the procedure applied in the following is a 
more general simplification, with the purpose of illustrating the concepts of the 
pre-posterior framework, rather than diving deep into detail with respect to 
corrosion mechanisms and different inspection methods. Hence, there will be 
assumed that corrosion can be detected or not, each with a certain probability. This 
is an assumption made to illustrate how the pre-posterior framework will 
differentiate the VoI of two techniques with different accuracy. 
 
The assumed accuracy of both techniques is given in Table IX-6, which is also a 
representation of their measurement reliabilities. The probability of a true positive 
relates to the number of samples correctly classified as initiated. The probability 
of a true negative relates to the number of samples correctly classified as no 
initiation. The larger these values, the more accurate the measurement technique. 
The probability that the inspection outcome is ‘no initiation of corrosion’ when 
the steel is actually depassivated is the probability of false negatives. Finally, the 
probability that the inspection outcome is ‘initiation of corrosion’ when the steel 
is actually not depassivated relates to false positives, which is smaller for the more 
accurate technique 2. It should be pointed out that the values in Table IX-6 are just 
crude estimates, provided here to illustrate the application and benefit of the pre-
posterior framework. In reality, Probability of Detection (PoD) curves will also 
correlate spatially, but no information on this topic is available in literature. 
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Table IX-6: Accuracy of two inspection techniques (Courage, 2018) (D stands for 
Depassivation and ND for No Depassivation) 

 Technique 1 Technique 2 

 D ND D ND 

No initiation of corrosion 0.40 0.60 0.10 0.90 
Initiation of corrosion 0.60 0.40 0.90 0.10 

 
To get the probability of detecting initiation of corrosion at each timestep, the 
probability of indication given depassivation (D) should be multiplied by the 
probability of depassivation at those timesteps, hence by FTi(t), which is the CDF 
of the initiation period Ti. The probability that the measurements at time t give no 
indication of corrosion initiation is found by multiplying the values related to the 
situation of no depassivation (ND) by (1- FTi(t)). These probabilities are illustrated 
in Figure IX-7 for both techniques. 
 
In this example, two possible decisions are considered: ‘do not intervene and leave 
the structure as is’ or ‘repair an element (assuming perfect repair) when the failure 
probability increases with a factor 10 compared to the initial failure probability for 
the undamaged girder (cfr. supra for the simply supported beam)’. In this example, 
the lifetime cost of the girder is considered. Hence, the failure cost and the 
corresponding probability of failure relate to failure of the girder. Also system and 
force redistribution effects could be considered when evaluating failure. However, 
this falls outside the scope of this chapter. The design lifetime of the bridge is 
assumed 100 years, and the VoI will be calculated at tSL = 100 years. In the 
calculation of the costs, the cost of inspection/monitoring is not considered. Hence, 
the possible difference in cost between both techniques should be accounted for 
when comparing the VoI of both techniques. When, at the end, the VoI of the 
techniques is calculated, the maximum cost of these inspections can be determined 
in order to be economic. The cost of repair is assumed to be 10-3, which means that 
this cost is only 0.1% of the cost of failure, which equals 1. The discount rate 
equals 0.02.  With the derived probabilities of indication / no indication (Figure 
IX-7) and based on the method described above, the relative VoI of both 
techniques can be defined for different inspection strategies. In order to find an 
optimal inspection strategy, the time of inspection and the location of the 
inspection are varied. The influence of inspection time and location is given in 
Figure IX-8 and Figure IX-9 respectively. 
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Figure IX-7: Probabilities of indication whether corrosion has initiated or not of both 
inspection techniques as a function of time 

 
When the VoI is evaluated at different points in time, as in Figure IX-8, the best 
time of inspection can be found. Until 15 years, the VoI generally increases since 
later inspections are associated to lower costs if ‘no indication of corrosion 
initiation’ follows from the inspection. These costs are generally lower than the 
prior costs, but decrease further when inspection is done later. If ‘indication of 
corrosion initiation’ follows out of the inspections, the costs are larger than the 
prior costs. However, the pre-posterior costs also decrease when the inspection is 
done later. Nevertheless, after t = 15 years, the probability of having ‘no indication 
of corrosion initiation’ as inspection outcome largely decreases for technique 2. 
For technique 1, this decrease is less remarkable, as can be seen in Figure IX-7. 
Moreover, due to the large uncertainty associated to this inspection, the posterior 
distributions lie closer to the prior distributions when compared to those obtained 
when the more accurate technique is used. Hence, in general the lifetime costs 
accounting for technique 1 lie closer to the prior costs, inducing lower values of 
the VoI. 
 
Figure IX-9 shows that the relative VoI obtained through different inspection 
locations is symmetric along the mid-span of the beam. As already observed in 
Figure IX-8, the more accurate technique 2 leads to a larger VoI at every inspection 
location. The most beneficial location of inspection, only considering the VoI and 
this inspection set-up, can be derived from this figure for both techniques. It seems 
that inspecting at mid-span is the most beneficial for this case. These results 
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confirm what can be intuitively expected, since the failure of the beam will mostly 
be defined by failure of its critical elements, which are located at mid-span where 
the largest load effects (i.e. bending moments) are found. When inspecting further 
away from mid-span, the amount of information gained on the most critical 
elements is limited. Inspecting at 2 m from mid-span still provides information on 
the concrete cover at mid-span, which is modelled by a random field (correlation 
length 1 m). The influence on the distribution of the chloride concentration and 
diffusion coefficient of the concrete at mid-span is the same for all inspection 
locations different from mid-span, since for these parameters the correlation is 
constant as the dependence is modelled by hyperparameters. Hence, the VoI is 
largest at mid-span, decreases when measuring further from mid-span and 
becomes constant when inspections are performed at locations that are at a 
distance much larger than the correlation length of the random field. 
 
 

 

Figure IX-8: VoI as a function of the inspection time for both techniques (inspection at mid-
span). The black line corresponds to a VoI of zero 
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Figure IX-9: VoI as a function of the location of inspection for both techniques (at 
t = 15 years). The black line corresponds to a VoI of zero. The vertical dashed line 
represents the axis of symmetry located at mid-span. 

IX.4 Summary and conclusions 

In this chapter, the existing pre-posterior analysis has been extended to account 
for the time-dependent and spatial character of degradation. As such, the VoI of a 
given inspection/monitoring strategy can be defined before actually implementing 
it. This enables the comparison of different strategies, varying in 
inspection/monitoring time, location, and even the type of inspection/monitoring. 
For illustrative purposes, the framework is applied to a simple analytical example 
and to a bridge girder subjected to corrosion. 
 
The traditional pre-posterior framework is extended to account for structural 
degradation. In order to account for the time-dependent character, a deterioration 
mechanism is modelled and the probability of failure and corresponding costs are 
calculated at every timestep. In this thesis, the focus is put on corrosion of 
reinforced concrete elements as deterioration mechanism. The time (and location) 
when (and where) to undertake action is determined by heuristics, e.g. the 
exceedance of a damage threshold. Since, in general, degradation is not uniform 
along the structure, the spatial character is accounted for as well, by the use of 
hyperparameters and random fields. Different types of inspections/monitoring can 
be included. The determination of the VoI with this extended framework enables 
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the comparison of different inspection/monitoring strategies, consisting of 
different types of inspections/monitoring, but also different points in time at which 
the inspection/monitoring is performed and varying inspection/monitoring 
locations. 
 
To account for the spatial character of degradation in reinforced concrete 
structures, the structure is discretized in elements and the optimal 
inspection/monitoring locations along the structure can be determined to describe 
this corrosion process. Moreover, in most literature the decision-making 
framework is based on discrete states of the structure with respect to their 
degradation, i.e. no corrosion, a lot of corrosion, etc. However, here the corrosion 
phenomenon is not discretised and the distributions of the variables in the time-
dependent model are updated based on the inspection/monitoring outcomes. This 
also pushes forward the current state-of-the-art, as inspection/monitoring 
outcomes are mostly only used to trigger repair, but now also enable to update the 
degradation model. Hence, a novel coupling between the traditional pre-posterior 
framework and structural time-dependent and spatial degradation of reinforced 
concrete structures has been developed, in which the variables of the degradation 
model can be updated based on the inspection/monitoring outcomes. As such, an 
optimal inspection/monitoring or maintenance strategy can be defined over the 
whole lifetime of the structure.  
 
The applied methods are illustrated by application to an analytical example case 
considering a simply supported beam and a prestressed concrete girder. Including 
other monitoring strategies than those considered in the illustrative examples (such 
as the ones used in Chapter VI), will be done in Chapter XI. 
 
The analyses performed in this chapter take into account the probability of failure 
over time. Nevertheless, decision-makers do not always have the necessary 
background or tools for evaluating failure probabilities. Instead of target 
reliabilities, other thresholds for actions could be derived, e.g. based on critical 
deformations. Further research is required on the definition of these thresholds. In 
case no failure probabilities can be evaluated, also the formulations for the (failure) 
costs need to be reconsidered. 
 
The flowchart for the extended pre-posterior framework as developed in this 
chapter (and the corresponding code) provide an important contribution to the 
existing state-of-the-art. It allows evaluating the VoI for real-case corroding RC 
structures, as will be illustrated in Chapters XI and XII. 
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 “True optimization is the revolutionary contribution of modern research to 
decision processes.” 
- George Dantzig 
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X.1 Introduction 

In the previous chapter, the concept of VoI analysis has been introduced. This can 
be used as a decision support tool when optimizing a monitoring strategy. 
However, for optimizing both the time and locations of measurements, many 
(computationally expensive) evaluations of the VoI are required. In this chapter, a 
solution will be provided for this issue by illustrating how the optimal sensor 
positions can also be optimized without running the VoI analysis. An optimal 
sensor configuration can be selected such that the resulting data are most 
informative on the actual condition of the structure (Yuen et al., 2001). This is 
especially important when the sensors are limited in number (Chisari et al., 2017). 
By optimizing the sensor placement, the cost of the monitoring campaign can be 
reduced without compromising the quality of the obtained data (Ostachowicz et 
al., 2019). A possible optimal sensor placement strategy will be highlighted in this 
chapter and applied to the different monitoring strategies discussed in Chapter VI. 
The sensor placement strategy discussed in the current chapter might be 
suboptimal since it is based on heuristics, but the influence on the VoI will be 
limited, drastically reducing the computational effort. 
 
Optimal sensor placement has already extensively been discussed in literature. A 
lot of research is performed on optimal sensor placement for the extraction of 
modal data, both based on a deterministic model (i.e. not accounting for 
uncertainties of the underlying model parameters) (Beal et al., 2008; Meo and 
Zumpano, 2005) and based on Bayesian models accounting for uncertainties 
(Argyris et al., 2017; Li and Der Kiureghian, 2016; Vincenzi and Simonini, 2017). 
Different methods exist herein, for example sensor placement based on the modal 
assurance criterion (MAC) (Ostachowicz et al., 2019; Sun and Büyüköztürk, 
2015), Fisher information matrix (Ostachowicz et al., 2019), energetic approaches 
(e.g. structural deformation energy (Banfu and Miyamoto, 1998)), etc. In most of 
these works, the purpose of the optimal sensor placement is to accurately detect 
the mode shapes with the modal analysis (i.e. distinguish well between the 
different modes), and to identify the parameters of interest. 
 
Whereas a lot of research has been performed on optimal sensor placement for 
optimally extracting modal data out of the sensor readings, the identification of 
model parameters is often required in the assessment of existing structures (Chisari 
et al., 2017). Therefore, the number, type and location of the sensors have to be 
estimated such that the uncertainties on the estimated model parameters are 
minimized (Capellari et al., 2018). These uncertainties are related to the 
uncertainties of the underlying model parameters. Nevertheless, deterministic 
methods do not take into account these uncertainties. When uncertainty on model 
parameters should be accounted for in the optimal sensor placement, Bayesian 
theory can be used. The utility function for the optimal sensor placement in this 
case depends on the information entropy, which is a metric for the decrease in 
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uncertainty from the prior distribution of the model parameters to a posterior 
distribution after updating based on the obtained data (Argyris et al., 2017; 
Ostachowicz et al., 2019; Zhang et al., 2017). This information entropy will 
depend on the sensitivity of the measured variable to changes in the model 
parameter to be estimated. Hence, these sensitivities have an important share in 
the derivation of (an asymptotic approximation of) the information entropy. 
 
For complex structures, the data is often generated by a finite element model. 
Moreover, analytical expressions of the utility function to be used in the 
optimization scheme are often not available or difficult to derive. In those case, 
Monte Carlo sampling of the utility function can be performed, as for example 
done in (Capellari et al., 2018, 2016a; Huan and Marzouk, 2013; Yuen and Kuok, 
2015). Evaluating a finite element model for every sample in the Monte Carlo 
evaluation can be computationally very expensive. In (Capellari et al., 2018, 
2016a, 2016b; Huan and Marzouk, 2013), this is resolved by applying a meta-
model, which will then be used in the Monte Carlo sampling. (Chow et al., 2011) 
also use a finite element model to generate the responses of the structure. Their 
optimal sensor placement is also based on information entropy as utility function 
and an asymptotic approximation of the posterior distribution. However, it is not 
clear how they have derived the sensitivities of the measured variables to the 
parameters of the finite element model. Nevertheless, the computationally 
expensive objective function and possible unavailability of first-order derivatives 
of the data to the model parameters are important challenges in the derivation of 
the optimal sensor placement (Beal et al., 2008). 
 
For a reinforced concrete structure subjected to corrosion, the model parameters 
in the corrosion model should be identified, as for example performed in 
Chapter VI, where distributions of the corrosion variables are updated based on 
monitoring data. Hence, in the calculation of the information entropy, sensitivities 
of the data to these corrosion variables should be derived. The relationship 
between these corrosion variables and the data is mostly non-linear and modelled 
with a finite element model. In this chapter, no Monte Carlo evaluations will be 
used for calculation of the objective function. The sensitivities of the data to the 
corrosion variables will be estimated directly based on the finite element model 
by the method of Nelson (Nelson, 1976). To account for the spatial character of 
corrosion, in contrast to existing literature, the structure will not be subdivided into 
independent substructures, each modelled with an independent variable for the 
stiffness, but the methods to account for spatial variation/correlation as 
summarized in Chapter III will be applied. 
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X.2 Optimal sensor placement based on information entropy 

X.2.1 Information entropy 

The optimal sensor locations for parameter estimation based on experimental data 
can be derived from a metric called the information entropy. This information 
entropy can be used as a performance measure of a specific sensor configuration. 
The optimal sensor configuration is found by minimizing the information entropy. 
To determine the optimal sensor configuration beforehand, asymptotic 
approximations for the information entropy are generally applied. These 
approximations provide insight in the dependence of the information entropy on 
the number and locations of sensors. 
 
The posterior distribution of the variables of interest represents the uncertainty in 
these variables based on the information contained in the data. The information 
entropy h is hence given by equation (X-1) (Papadimitriou et al., 2000), where 𝑓"(𝜽𝑀|�̅�) is the posterior distribution of the variables 𝜽𝑀 given the measurement 
data �̅�. The variables 𝜽𝑀  are still unknown at this stage and information on them 
will be derived based on the measurement data. With the method that will be 
explained below, the optimal sensor locations can be derived to extract the best 
possible information on 𝜽𝑀. ℎ(𝐿; �̅�) = 𝐸𝜽𝑀[−ln (𝑓"(𝜽𝑀|�̅�)] (X-1) 

 
The information entropy is a unique scalar measure of the uncertainty in the 
estimate of the structural parameters of interest 𝜽𝑀, where a higher information 
entropy corresponds to a higher uncertainty. The information entropy depends on 
the available data �̅� and the sensor configuration L. For a large number of data 
points, an asymptotic approximation of this information entropy can be found 
according to (Papadimitriou, 2004). This asymptotic approximation is useful in 
the experimental stage of designing an optimal sensor configuration. The 
information entropy is approximated according to equation (X-2). ℎ(𝐿; �̅�)~𝐻(𝐿; 𝜽𝑀,0) = 12𝑁𝜃 ln(2𝜋) − 12 ln [det (𝑄(𝐿; 𝜽𝑀,0))] (X-2) 

Here, 𝑁𝜃 is the number of variables in 𝜽𝑀. For the prior estimate, nominal values 𝜽𝑀,0 that are representative for the system can be used for 𝜽𝑀. The matrix 𝑄(𝐿; 𝜽𝑀,0) is an 𝑁𝜃x𝑁𝜃 semi-positive definite matrix, asymptotically 
approximated by equation (X-3). 

𝑄(𝐿; 𝜽𝑀,0) = ∑(𝐿∇𝜃𝑥𝑘)𝑇(𝐿Σ𝐿𝑇)−1(𝐿∇𝜃𝑥𝑘)𝑁
𝑘=1  (X-3) 
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Here, ∇𝜃𝑥𝑘  represents the sensitivities of the data to the variables 𝜽𝑀. The matrix 𝑄 is known as the Fischer information matrix and contains information on the 
uncertainty in the values of the variables 𝜽𝑀 based on the data from all measured 
positions in L. The prediction error covariance matrix ∑ consists out of two 
contributions: a contribution of the measurement error and one of the model error. 
When assuming independence between the measurement error and the model 
error, the total covariance matrix of the prediction error is given by the sum of the 
covariance matrices of the measurement and model error. A reasonable 
assumption is that the measurement error is independent of the location of the 
sensor and hence has a diagonal covariance matrix. However, a certain degree of 
correlation can be expected for the model error between two neighbouring 
locations, arising from the underlying model dynamics. To take into account this 
correlation, the covariance matrix of the model error will be non-diagonal. The 
correlation between the model error of two degrees of freedom i and j can be given 
by Σ𝑖𝑗 = √Σ𝑖𝑖Σ𝑗𝑗𝑅(𝛿𝑖𝑗). This expression accounts for the spatial distance 𝛿𝑖𝑗 
between the two degrees of freedom i and j. The function 𝑅(𝛿𝑖𝑗) is a correlation 
function that should satisfy the condition 𝑅(0) = 1. In theory, the covariance 
matrix should be consistent with the actual errors and correlations as observed 
from measurements. However, these are not available in an experimental design 
stage. Hence, a correlation function needs to be chosen based on prior engineering 
judgement. In the following, for illustrative purpose, an exponential correlation 
function is assumed according to equation (X-4). 𝑅(𝛿) = exp (−𝛿𝜆) (X-4) 

Here, λ represents the length of spatial correlation. In the following, based on 
results observed by Simoen (2013), this length of spatial correlation is taken equal 
to the wavelength of the measured mode shape. 
 
The optimal sensor locations can be found by solving a discrete-valued 
optimization problem. The sensors should be placed such that the resulting 
measurement data are most informative about the variables 𝜽𝑀. The information 
entropy gives the amount of useful information contained in the measured data, 
where a higher information entropy reflects a higher uncertainty in the estimate. 
Hence, the optimal sensor configuration Lopt is the one that minimizes the 
information entropy. This minimization is constrained over the set of Np 
measurable degrees of freedom. Two heuristic sequential sensor placement (SSP) 
algorithms exist in literature: the forward and the backward SSP (Papadimitriou, 
2004). In the forward algorithm, in each iteration the sensor that results in the 
highest reduction in information entropy is added. Hence, at each iteration the 
sensor configuration is selected with the minimum information entropy. The 
backward algorithm works in the reverse order, starting from sensors at all 
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possible locations and each time removing the sensor with the position that results 
in the smallest increase in information entropy. 

X.2.2 Information entropy for model parameter estimation 

The optimal sensor configuration is now formulated for the particular case where 
modal data are used for model parameter estimation. The parameter set 𝜽𝑀 
consists of the variables related to stiffness and mass characteristics. To calculate 
the sensitivity matrix ∇𝜃𝑥𝑘, which represents the sensitivity of the modal data to 
changes in the variables 𝜽𝑀, a sensitivity analysis needs to be performed. If the 
Fischer Information Matrix is singular, instead of the determinant of the matrix, 
the product of the first non-zero eigenvalues should be considered in the 
calculation of the information entropy when applying equation (X-2). 

X.2.2.1 Model parameters in spatially degrading concrete structures 

To determine the extent of damage in concrete structures subjected to degradation, 
the model parameters are the variables governing degradation. For a reinforced 
concrete structure subjected to corrosion, the governing parameters are assumed 
to be the initiation period and the corrosion rate. To account for the non-uniform 
corrosion along the structure, the initiation period and corrosion rate are modelled 
as random fields. Under these modelling assumptions, the variables that need to 
be estimated by the modal data are the standard normal variables 𝜁𝑗  appearing in 
the decomposition of the random field (equation (III-5)). Hence, these form the set 
of variables 𝜽𝑀 governing the stiffness and mass characteristics of the structure. 
To derive the optimal sensor locations, the sensitivities of the mode shapes to these 
variables 𝜁𝑗  are required (to find ∇𝜃𝑥𝑘  to be used in equation (X-3)). 

X.2.2.2 Sensitivities of modal data to model parameters 

Two methods exist to derive the sensitivities of the modal data. A first method is 
described by Fox and Kapoor (1968). However, in this method all eigenvalues and 
eigenmodes are required to calculate the sensitivities. To overcome this issue, 
Nelson (1976) introduced a more efficient way to calculate the sensitivities of 
eigenvectors. This last method will be used in this chapter. 
 
Consider the undamped eigenvalue problem KΦ = MΦΛ, with Φ the matrix 
containing the eigenvectors 𝝓𝑟  and Λ a diagonal matrix with the eigenvalues λr on 
the diagonal. K and M are the stiffness and mass matrix respectively. Out of this 
undamped eigenvalue problem, following expression can be derived: (𝑲 − 𝜆𝑟𝑴)𝝓𝑟 = 0 (X-5) 
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Deriving equation (X-5) to the variables 𝜃𝑗 (elements of the vector 𝜽𝑀) gives: (𝑲 − 𝜆𝑟𝑴)𝜕𝝓𝑟𝜕𝜃𝑗 + (𝜕𝑲𝜕𝜃𝑗 − 𝜆𝑟 𝜕𝑴𝜕𝜃𝑗 − 𝜕𝜆𝑟𝜕𝜃𝑗 𝑴)𝝓𝑟 = 0 (X-6) 

 
Multiplying at the left with 𝝓𝑟𝑇  and considering the fact that 𝝓𝑟𝑇𝑴𝝓𝑟 = 1 and 𝝓𝑟𝑇(𝑲 − 𝜆𝑟𝑴) = (𝑲 − 𝜆𝑟𝑴)𝝓𝑟 = 0, leads to equation (X-7). 𝜕𝜆𝑟𝜕𝜃𝑗 = 𝝓𝑟𝑇 (𝜕𝑲𝜕𝜃𝑗 − 𝜆𝑟 𝜕𝑴𝜕𝜃𝑗)𝝓𝑟  (X-7) 

Hence, the sensitivity of 𝜆𝑟 only depends on the eigenvalue 𝜆𝑟 itself and the 
corresponding eigenvector. 
 
In order to derive the sensitivity of the eigenvectors, equation (X-7) needs to be 
inserted into equation (X-6): (𝑲 − 𝜆𝑟𝑴)𝜕𝝓𝑟𝜕𝜃𝑗 = −(𝜕𝑲𝜕𝜃𝑗 − 𝜆𝑟 𝜕𝑴𝜕𝜃𝑗− 𝝓𝑟𝑇 (𝜕𝑲𝜕𝜃𝑗 − 𝜆𝑟 𝜕𝑴𝜕𝜃𝑗)𝝓𝑟𝑴)𝝓𝑟  

(X-8) 

To simplify the notation, this expression is in the following referred to as 𝑨𝑟 𝜕𝝓𝑟𝜕𝜃𝑗 =𝒃𝑟𝑗. The matrix 𝑨𝑟 has no inverse since it is not of full rank, but has rank Nd-1, 
with Nd the degrees of freedom. Hence, Nelson (1976) suggests to split the solution 
into a particular and homogeneous solution according to equation (X-9). 𝜕𝝓𝑟𝜕𝜃𝑗 = 𝒗𝑟𝑗 + 𝑐𝑟𝑗𝝓𝑟  (X-9) 

 
It can be demonstrated that 𝒗𝑟𝑗 can be calculated based on the system of equations 𝑨𝑟∗𝒗𝑟𝑗 = 𝒃𝑟𝑗∗ . To get this system of equations, a slight modification needs to be 
done to the original matrix 𝑨𝑟 and vector 𝒃𝑟𝑗, according to equation (X-10). 𝑨𝑟∗ : [𝑨𝑟].𝑘 = 0; [𝑨𝑟]𝑘. = 0; [𝑨𝑟]𝑘𝑘 = 1 𝒃𝑟𝑗∗ : [𝒃𝑟𝑗]𝑘 = 0  (X-10) 

In this way, the adapted matrix 𝑨𝑟∗  is again of full rank and has an inverse matrix, 
which is necessary for the calculation of 𝒗𝑟𝑗. The index k in equation (X-10) can 
in principle be chosen freely, as long as  [𝝓𝒓]𝑘 is not equal to zero. However, in 
most cases k is chosen as such that | [𝝓𝒓]𝑘| is maximal. The coefficient 𝑐𝑟𝑗 can be 
found from the orthogonality condition 𝝓𝑟𝑇𝑴𝝓𝑟 = 1, by deriving this equation 
to 𝜃𝑗 and using equation (X-9). As such, equation (X-11) is found. 
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𝑐𝑟𝑗 = −𝝓𝑟𝑇𝑴𝒗𝑟𝑗 − 12 𝝓𝑟𝑇 𝜕𝑴𝜕𝜃𝑗 𝝓𝑟  (X-11) 

X.2.2.3 Sensitivities of modal data to corrosion variables 

The expressions given in previous section will be used to derive the sensitivities 
of the displacement mode shapes to the random fields used to model the initiation 
period and corrosion rate. It is assumed that degradation due to corrosion only 
influences the stiffness of the structure and not its mass (i.e. the effects of spalling 
are neglected). In this case, equation (X-8) simplifies to equation (X-12). (𝑲 − 𝜆𝑟𝑴)𝜕𝝓𝑟𝜕𝜃𝑗 = −(𝜕𝑲𝜕𝜃𝑗 − 𝝓𝑟𝑇 (𝜕𝑲𝜕𝜃𝑗)𝝓𝑟𝑴)𝝓𝑟  (X-12) 

 
The derivative 𝜕𝑲/𝜕𝜃𝑗 is required in equation (X-12). The stiffness will indirectly 
depend on the corrosion variables since these will induce a reduced reinforcement 
section and will lead to a reduced stiffness in the regions were the concrete is 
cracked due to the expansive properties of the formed oxides. 
 
In the following analysis, the simply supported beam as introduced in section 
VI.2.1 is considered. Due to the use of random fields, the beam is subdivided into 
eight beam elements. 
 
The stiffness matrix of one beam element is given by equation (X-13). 

𝑲 =
[  
   
 𝐸𝐴/𝑙 0 00 12𝐸𝐼/𝑙3 6𝐸𝐼/𝑙²0 6𝐸𝐼/𝑙² 4𝐸𝐼/𝑙 −𝐸𝐴/𝑙 0 00 −12𝐸𝐼/𝑙³ 6𝐸𝐼/𝑙²0 −6𝐸𝐼/𝑙² 2𝐸𝐼/𝑙−𝐸𝐴/𝑙 0 00 −12𝐸𝐼/𝑙³ 00 6𝐸𝐼/𝑙³ 2𝐸𝐼/𝑙 𝐸𝐴/𝑙 0 00 12𝐸𝐼/𝑙³ −6𝐸𝐼/𝑙²0 −6𝐸𝐼/𝑙² 4𝐸𝐼/𝑙 ]  

   
 
 (X-13) 

 
For a beam under bending, only the terms in EI will be of importance. For a 
reinforced concrete beam, this bending stiffness EI depends on the reinforcement 
area, which reduces due to corrosion. Besides a reduction in reinforcement area, 
corrosion also induces cracking of the concrete cover due to the expansive 
character of the oxides. This cracking is modelled by a reduction of the Young’s 
modulus of the concrete cover. This reduced Young’s modulus is denoted by Ed. 
The stiffness EI of a beam element hence depends on As and Ed, which on their 
turn depend on the corrosion variables (i.e. the initiation period and corrosion 
rate). Since these are modelled with random fields, these corrosion variables on 
their turn depend on the standard normally distributed variables 𝜁𝑗  in the 
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decomposition of the random fields of the initiation period and the corrosion rate, 
according to equation (III-4). Based on these considerations, the derivative of the 
stiffness matrix to the variables 𝜁𝑗  is found by application of the chain rule 
according to equation (X-14). 𝜕𝑲𝜕𝜁𝑗 = 𝜕𝑲𝜕𝐸𝐼 ∙ 𝜕𝐸𝐼𝜕𝐸𝑑 ∙ 𝜕𝐸𝑑𝜕𝑉𝑐𝑜𝑟𝑟 ∙ 𝜕𝑉𝑐𝑜𝑟𝑟𝜕𝜁𝑗  

                                  + 𝜕𝑲𝜕𝐸𝐼 ∙ 𝜕𝐸𝐼𝜕𝐴𝑠 ∙ 𝜕𝐴𝑠𝜕𝑉𝑐𝑜𝑟𝑟 ∙ 𝜕𝑉𝑐𝑜𝑟𝑟𝜕𝜁𝑗  

(X-14) 

 
This equation is valid for the derivative of K to the standard normal variables 𝜁𝑗  in 
the decomposition of the random field representing the corrosion rate. For the 
standard normally distributed variables 𝜁𝑗  in the decomposition of the random field 
representing the initiation period, a similar equation is found. All the derivatives 
appearing in these equations and the application of the chain rule have been 
checked by comparing them with their estimate based on finite differences. 
 
The sensitivities are a measure for the extent to which a change in a particular 
parameter will affect another parameter. If a very small sensitivity is found, 
changing one parameter will not affect the other. Hence, when the mode shape at 
a particular location has a very small sensitivity to the standard normally 
distributed variables 𝜁𝑗  in the decomposition of the random fields for the initiation 
period and corrosion rate, it will not be beneficial to measure at that location, since 
changes in these standard normally distributed variables 𝜁𝑗  do not affect the mode 
shape at that location. 

X.2.3 Optimal sensor locations to estimate corrosion variables 

based on modal data 

Based on the equations given in the previous sections, the information entropy can 
be calculated for a given number of sensors. Optimal sensor positions can be 
derived based on this information entropy by application of the forward sensor 
placement algorithm. In each iteration, the sensor that results in the highest 
reduction in information entropy is added. Hence, at each iteration the sensor 
configuration is selected with the minimum information entropy. This is illustrated 
in Figure X-1. In the initial stage, no sensors are selected yet. The information 
entropy is calculated accounting for each of the individual possible sensor 
locations. The sensor with the lowest resulting information entropy is chosen (i.e. 
sensor 4 in the example of Figure X-1). This sensor position is then fixed when 
starting the next iteration. In this next iteration, the information entropy is 
calculated accounting for the already placed sensors (i.e. sensor 4 in the example) 
combined with the other possible sensor positions. In the example, following 
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combinations should hence be considered: 1 and 4, 2 and 4, 3 and 4, 5 and 4, and 
6 and 4. In this example, adding sensor 1 to the sensor set (i.e. the combination of 
sensor 1 and sensor 4) results in the lowest information entropy. Hence, sensor 1 
will be added next. In the next stage, sensors 1 and 4 are already part of the sensor 
set and the process continues in a similar way, until the a priori fixed number of 
sensors is reached. 
 

 
Figure X-1: Illustration of the forward sensor placement algorithm 
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When the sensitivities of the mode shapes to the standard normally distributed 
variables 𝜁𝑗  in the decomposition of the random fields are calculated, these can be 
inserted in the expressions for the information entropy. The latter can then be used 
to determine the optimal sensor positions. In the analyses in this chapter, the 
number of sensors will be fixed beforehand. This number of sensors will be 
optimized by evaluating the VoI, as will be explained in the following chapter. 
 
For the example of the simply supported beam, a first case considers possible 
sensor locations at 0.5 m, 1 m, 1.5 m, 2 m, 2.5 m, 3 m and 3.5 m. These sensor 
locations not necessarily need to correspond to the elements used in the 
discretization of the random fields. First, the situation is considered where only 
the first mode is measured, without correlation between the sensor locations. In 
that case, the matrix ∑ in 𝑄 (expression (X-3)) is a diagonal matrix. The optimal 
sensor configuration for this situation is given in Table X-1. For the first (bending) 
mode and assuming no correlation (i.e.  𝑅(𝛿𝑖𝑗) = 0 if i ≠ j and 𝑅(𝛿𝑖𝑗) = 1 if i = j), 
it is expected that the optimal sensor locations are in the middle of the beam, since 
there the largest modal displacements are found. However, the sensitivities of the 
second and fourth KL mode (with corresponding standard normally distributed 
variables 𝜁2 and 𝜁4) in the decompositions of the random fields are very small in 
the middle measurement location and even approach zero. This corresponds to the 
middle of the beam and to a node in the second and fourth KL mode in the 
decomposition in the random field. Hence, this location will provide no 
information on these standard normally distributed variables 𝜁2 and 𝜁4 in the 
decomposition of the random fields. That is why the optimal sensor locations are 
shifted away from the middle of the beam. However, due to the symmetry of the 
first mode shape, the sensors are also placed symmetrically with respect to the 
mid-span of the beam. There is no difference in information entropy of the sensors 
at 1 m and 3 m at the first iteration, hence one of the two is chosen. It should also 
be pointed out that the information entropy indeed decreases when adding sensor 
locations, as visible on Figure X-2. Here, the information entropy is given relative 
to the value when only one sensor is considered. 
 
When assuming correlation between the sensor locations for the first mode 
according to equation (X-4), the correlation length λ equals 2L = 8 m. The optimal 
sensor locations are also given in Table X-1. Here it can be seen that the sequence 
of locations is altered compared to the case considering no correlation. The first 
sensor is still placed at the same location. However, without assuming correlation, 
the sensors are chosen symmetrically, which is not the case when assuming 
correlation. In the latter case, the next sensor is closer to mid-span, where the 
largest mode shape displacement will take place. Furthermore, this measurement 
location corresponds to a large sensitivity of the mode shape displacement to 
changes in the KL modes, resulting in a lot of information. Next, the location left 
from mid-span is added (not the sensor at mid-span itself due to the reason 



 
 

 
 

270 Chapter X   
 

mentioned previously, this is again added last). Sensor locations at 3 m and 3.5 m 
are symmetrical to 1 m and 0.5 m, and are hence added later, since these will 
provide similar information (and have the same contribution to the information 
entropy). 
 

Table X-1: Optimal sensor configuration for the simply supported beam 

Bending 

mode 
Correlation 

Order of sensor positions 

1 2 3 4 5 6 7 

1 No 1 m 3 m 1.5 m 2.5 m 0.5 m 3.5 m 2 m 

1 Yes 1 m 2.5 m 1.5 m 0.5 m 3 m 3.5 m 1 m 

1-3 No 2.5 m 1.5 m 2 m 1 m 3 m 0.5 m 3.5 m 

1-3 Yes 2.5 m 1.5 m 0.5 m 3.5 m 2 m 1 m 3 m 

 

 
Figure X-2: Information entropy as a function of the number of sensors when assuming the 
data from the first mode with or without correlation between the sensor locations for the 
simply supported beam 

 
Also, multiple modes can be considered. In equation (X-3), k then represents the 
considered mode and N the total number of modes considered. As an example, the 
first three bending modes are considered here. The optimal sensor placement is 
also given in Table X-1. This sensor order is again very different from the one 
when only considering one mode. When assuming correlation between the errors 
at different sensor locations, the correlation lengths are dependent on the measured 
mode shapes. The correlation lengths for the first three bending modes are 
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respectively equal to 8 m, 4 m and 2.7 m. Also for this situation, the optimal sensor 
placement is summarized in Table X-1. The optimal sensor placement has also 
been derived for different points in time (i.e. different corrosion degrees), but it 
was found that this has no influence on the optimal sensor configuration. 

X.3 Application to finite element models 

The derivation of the sensitivities as performed in section X.2.2 uses analytical 
expressions for the stiffness matrix. However, for a finite element (FE) model, this 
stiffness matrix is often very large. Moreover, in many cases the stiffness matrix 
is not given as output from the finite element software. Hence, the method of 
Nelson should be slightly adapted to allow for the derivation of sensitivities of the 
mode shape vector based on a FE model. In this work, FE model software DIANA 
FEA (DIANA FEA BV, 2019) is used to calculate the displacement mode shapes. 
However, any other FE software can be used, as long as it allows performing 
similar calculations. The sensitivities of the displacement mode shapes to the 
standard normally distributed variables 𝜁𝑖  in the decomposition of the random 
fields for the initiation period and corrosion rate are derived. The application of 
the method of Nelson on a DIANA FEA model will be explained below. 
 
As explained in section X.2.2, in the method of Nelson derivatives of the stiffness 
matrix K to the variables 𝜁𝑖  are required according to equation (X-15) for the 
corrosion rate, and similar for the initiation period. 𝜕𝐾𝜕𝜁𝑖 =∑𝜕𝐾𝑑(𝑧)𝜕𝐸𝑑(𝑧)𝑧

𝜕𝐸𝑑(𝑧)𝜕𝑉𝑐𝑜𝑟𝑟(𝑧) 𝜕𝑉𝑐𝑜𝑟𝑟(𝑧)𝜕𝜁𝑖+ 𝜕𝐾𝐴𝑠(𝑧)𝜕𝐴𝑠(𝑧) 𝜕𝐴𝑠(𝑧)𝜕𝑉𝑐𝑜𝑟𝑟(𝑧) 𝜕𝑉𝑐𝑜𝑟𝑟(𝑧)𝜕𝜁𝑖  

(X-15) 

Here, z are the different elements in which the random fields and hence the 
structure are discretized. Kd is the stiffness matrix of the finite element elements 
in the damaged concrete, Ed is the Young’s modulus of the damaged concrete, KAs 
is the stiffness matrix of the finite elements modelling the reinforcement, and As is 
the reinforcement area. 
 
When using a FE model, 𝜕𝐾𝑑(𝑧)/𝜕𝐸𝑑(𝑧) and 𝜕𝐾𝐴𝑠(𝑧)/𝜕𝐴𝑠(𝑧) cannot be 
calculated by analytical expressions anymore. Nevertheless, the derivative of the 
stiffness matrix of an element to its Young’s modulus equals the stiffness matrix 
divided by the Young’s modulus, or 𝜕𝐾/𝜕𝐸 = 𝐾/𝐸. Furthermore, the derivative 
of the stiffness matrix of a 2D truss element to its area also equals this stiffness 
matrix divided by the area of the truss element, or 𝜕𝐾/𝜕𝐴 = 𝐾/𝐴. This is only 
applicable when the parameter to which the derivation should be made has only 
one power in the expression of the stiffness matrix. For example, in the case of 
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bending combined with axial forces, the length l appears in the stiffness matrix 
both as 1/l and 1/l³. Here, the power of l equals one or three, depending on the 
location in the stiffness matrix. In this case, the mentioned simplification cannot 
be applied to calculate the derivative of the stiffness matrix to l. 
 
When inserting 𝜕𝐾/𝜕𝐴 = 𝐾/𝐴 and 𝜕𝐾/𝜕𝐸 = 𝐾/𝐸 in equation (X-15), one gets 
expression (X-16) for the derivative of the stiffness matrix to the standard 
normally distributed variables 𝜁𝑖  in the decomposition of the random fields of the 
corrosion rate, and similar for the initiation period. 𝜕𝐾𝜕𝜁𝑖 =∑𝐾𝑑(𝑧)𝐸𝑑(𝑧)𝑧

𝜕𝐸𝑑(𝑧)𝜕𝑉𝑐𝑜𝑟𝑟(𝑧) 𝜕𝑉𝑐𝑜𝑟𝑟(𝑧)𝜕𝜁𝑖 + 𝐾𝐴𝑠(𝑧)𝐴𝑠(𝑧) 𝜕𝐴𝑠(𝑧)𝜕𝑉𝑐𝑜𝑟𝑟(𝑧) 𝜕𝑉𝑐𝑜𝑟𝑟(𝑧)𝜕𝜁𝑖  (X-16) 

 
The derivatives 𝜕𝐸𝑑(𝑧)/𝜕𝑉𝑐𝑜𝑟𝑟 , 𝜕𝑉𝑐𝑜𝑟𝑟/𝜕𝜁𝑖 , etc. can still be derived based on 
analytical expressions. Equation (X-16) can shortly be written as equation (X-17). 𝜕𝐾𝜕𝜁𝑖 =∑(𝑐1(𝑧)𝐾𝑑 + 𝑐2(𝑧)𝐾𝐴𝑠)𝑧  (X-17) 

Here, the matrix Kd differs from zero only for the degrees of freedom (DOF’s) 
corresponding to the nodes located in the damaged concrete. For the other nodes, 
there will be no influence of corrosion and hence of the standard normally 
distributed variables 𝜁𝑖  in the decomposition of the random fields, so the derivative 
equals zero. Similar, KAs only differs from zero in the degrees of freedom of the 
nodes influenced by the reinforcement. 
 
Reconsidering equation (X-8), equation (X-18) is found. (𝑲 − 𝜆𝑟𝑴)𝜕𝝓𝑟𝜕𝜁𝑖 = −𝜕𝑲𝜕𝜁𝑖 𝝓𝑟 +𝝓𝑟𝑇 𝜕𝑲𝜕𝜁𝑖 𝝓𝑟𝑴𝝓𝒓 (X-18) 

 
Filling in equation (X-17) and accounting for the fact that (𝑲 − 𝜆𝑟𝑴)𝝓𝑟 = 0, 
equation (X-19) is found. (𝑲 − 𝜆𝑟𝑴)𝜕𝝓𝑟𝜕𝜁𝑖 = −∑(𝑐1(𝑧)𝐾𝑑 + 𝑐2(𝑧)𝐾𝐴𝑠)𝑧 𝝓𝑟 − 𝑐2𝑲𝐴𝑠𝝓𝑟+ 𝝓𝑟𝑇(∑(𝑐1(𝑧)𝐾𝑑 + 𝑐2(𝑧)𝐾𝐴𝑠)𝑧 𝝓𝒓)𝑲𝝓𝒓𝝀𝒓  

(X-19) 

 
The stiffness matrix is still appearing multiple times in this expression. However, 
in the right hand side, it is always multiplied by the mode shape vector. A stiffness 
matrix times a displacement matrix represents the element forces when the 
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displacement is applied as a displacement load. Since these element forces are 
often available as output to a FE analysis, this principle will be used to derive the 
sensitivities of the mode shapes based on a finite element model. 
 
To calculate the right hand side of equation (X-19), the mode shape vector will be 
applied as a displacement load to the FE model. The corresponding element forces 
will be calculated: 

1) In all elements to calculate 𝑲𝝓𝒓. 
2) In the elements of the damaged concrete to calculate 𝑲𝒅𝝓𝒓. These forces 

will be calculated for the different zones in the discretization of the 
random field and multiplied with the corresponding derivatives appearing 
in the chain rule according to equation (X-17), i.e. the factors c1(z). 
Finally, the forces will be combined in a vector with length equal to the 
number of nodes, with a value of zero in all nodes that do not belong to 
the damaged concrete. 

3) In the elements constituting the reinforcement to calculate 𝑲𝑨𝒔𝝓. These 
forces will be calculated for the different zones in the discretization of 
the random field and multiplied with the corresponding derivatives 
appearing in the chain rule according to equation (X-17), i.e. the factors 
c2(z). Finally, the forces will be inserted in a vector with length equal to 
the number of nodes, with a value of zero in all nodes that are not 
influenced by the reinforcement. 

 
Based on these element forces, the right hand side of equation (X-19) is found, or 
the vector 𝒃𝑟𝑗 to calculate 𝒗𝑟𝑗 (equation (X-9)). Subsequently, 𝒗𝑟𝑗 can be 
calculated by performing a harmonic analysis under the frequency corresponding 
to the eigenvalue λr and force 𝒃𝑟𝑗. However, a similar adaptation as in equation 
(X-10) has to be made. One degree of freedom of the model will be restricted and 
the corresponding value of 𝒃𝑟𝑗 will be set equal to zero. Once 𝒗𝑟𝑗 is found, 𝑐𝑟𝑗 is 
still required to calculate the sensitivities based on equation (X-9). Reconsidering 
equation (X-11), 𝑐𝑟𝑗 is given by equation (X-20). 𝑐𝑟𝑗 = −𝝓𝑟𝑇𝑴𝒗𝑟𝑗 (X-20) 

 
The mass matrix is required to solve equation (X-20). However, it is not given as 
an output of the FE model. This can be circumvented by applying the harmonic 
analysis (𝑲 − 𝜆𝑟𝑴)𝒗𝑟𝑗 = 𝑭, with K equal to zero and 𝜆𝑟 = 1. The forces 
following from this harmonic analysis are then equal to −𝑴𝒗𝑟𝑗 and enable the 
calculation of 𝑐𝑟𝑗 based on equation (X-20). Finally, the sensitivities can then be 
found by applying equation (X-9). It should be pointed out that the calculated 
sensitivities were checked based on finite differences and that a good agreement 
was found. Based on the derived sensitivities, the optimal sensor configuration can 
be calculated in the same way as described above. 
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X.4 Application to a reinforced concrete girder bridge 

X.4.1 Optimal sensor placement for displacement mode shapes 

Based on the method described above, the optimal sensor placement is determined 
for a span of a simply supported RC girder bridge, as already described in section 
VI.2.2. For the determination of the optimal sensor placement, the sensitivities of 
the mode shapes to the variables in the corrosion model should be derived, i.e. 𝜕𝜙/𝜕𝐶𝑠, 𝜕𝜙/𝜕𝜁𝐷,𝑖 , 𝜕𝜙/𝜕𝜁𝑉𝑐𝑜𝑟𝑟,𝑖 . Here, 𝜁𝐷,𝑖 and 𝜁𝑉𝑐𝑜𝑟𝑟,𝑖 are the standard 
normally distributed variables in the decomposition of the random fields for the 
diffusion coefficient of the concrete D and the corrosion rate Vcorr respectively. For 
both random fields, 13 modes are required in the decomposition in order to reach 
a maximum error of 5%. Hence, the sensitivities of the mode shapes are derived 
to these 27 variables in total, based on the method described above and verified 
based on finite differences. The sensitivities are derived assuming an age of the 
bridge equal to 50 years. Based on the sensitivities, the optimal sensor locations 
can be found by application of equation (X-2) and the forward SSP algorithm. The 
sensor locations are picked out of 40 previously selected sensor locations, in the 
middle of the elements in which the structure is discretized. Here, the elements at 
the supports are left out, for practical reasons. The optimal sensor locations for the 
first four modes assuming an uncorrelated model error are visualized in Figure X-
3. Here, the x-axis represents the number of sensors placed on the structure. At a 
vertical line through this axis, there are x markers from the scatter plots, 
representing the x sensors placed on the structure. The different marker types 
correspond to the girder at which the sensor is placed, and the position on the 
vertical axis represents the location along the girder. When looking at Figure X-3, 
the sensors are first placed at the ends of the girders and only later in the middle. 
The girders itself are about equally chosen, without any clear preference for a 
girder. There is a difference in information entropy in the first iteration, but this 
difference is limited for the different girders (from 21.189 in girder 5 to 21.385 in 
girder 3 in the first iteration). The very first chosen sensor is at 1.5 m from the left 
support on the fifth girder. 
 
Also, correlation between the mode shape locations can be assumed (i.e. a 
correlated model error). There can be correlation in two directions, namely the x 
(length of the bridge) and y-direction (width of the bridge). The correlation length 
depends on the wavelength of the mode shape. The correlation lengths of the first 
four modes are given in Table X-2. The correlation function is given by equation 
(X-4), but now with a contribution in both directions. The resulting optimal sensor 
placement when assuming correlation is visualized in Figure X-4. The first sensors 
are placed on all girders at 1.5 m from the left support. For the later sensors, there 
is a preference to the ends of the girders. All girders are about equally chosen. 
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Figure X-3: Optimal sensor placement for the RC girder bridge considering the first four 
modes and no correlation between the sensor locations (uncorrelated model error) 

 

Table X-2: Correlation lengths for the first four modes – case 1 

Mode lc,y lc,x 

1 ∞ 18 m 
2 23.2 m 18 m 
3 11.6 m 18 m 
4 9.28 m 18 m 

 
 
The influence on the information entropy of considering correlation in the model 
error or not is visualized in Figure X-5. Here the information entropy is calculated 
assuming an uncorrelated model error, both for the sensor configurations 
following from Figure X-3 and Figure X-4. It can be seen that for the first sensors 
both configurations would lead to a similar reduction in information entropy. 
Between 10 and 40 sensors, the sensor configuration derived based on a correlated 
model error is suboptimal if there would be no correlation in reality. Nevertheless, 
the relative difference in information entropy is only 2%. When more than 40 
sensors are placed, the difference in information entropy is again negligible. 
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Figure X-4: Optimal sensor placement for the RC girder bridge when considering the first 
four modes and correlation between the sensor locations (correlated model error) 

 
Figure X-5: Influence of the sensor configuration on the information entropy of the RC 
girder bridge when considering the first four modes 
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The influence of the time of monitoring has also been investigated. The sensor 
placement is determined for the first mode for measurements at t = 100 years. 
When no correlation between the sensor locations is assumed (uncorrelated model 
error), the optimal sensor placement remains unchanged. Also when 
measurements would be performed earlier in time, e.g. at t = 20 years, the optimal 
sensor placement remains unaltered. The same optimal sensor placement is found 
at t = 5 years. This is a beneficial observation, since this means that during the 
whole operational life of the structure, the sensors can remain at the same locations 
and still be optimal. 
 
The influence of considering correlation between the sensor locations (correlated 
model error) was already investigated, but only for one assumption on the 
correlation lengths (further denoted as case 1). However, the actual correlation 
lengths can be different from the ones assumed above. Hence, in the following the 
influence of the assumed correlation lengths is investigated. In (Papadimitriou and 
Lombaert, 2012), the correlation length is taken as a fraction of the characteristic 
length, where the characteristic length is the wavelength of the highest 
contributing mode. In the following analyses, the correlation lengths are chosen 
according to two more cases, as summarized in Table X-3. The optimal sensor 
placement for case 2 is visualized in Figure X-6. The sensors are first placed 
between 1 m and 2 m on all girders. In case 1, the next sensors are placed around 
7 m. However, in case 2 due to the smaller correlation length, the next sensors are 
placed around 3 m, which is closer to the first sensors. The optimal sensor 
configuration is still different from the one found without correlation between the 
sensor locations. For correlation case 3 (Figure X-7), the order in which the 
locations along the beam are chosen is more similar to that of case 2. However, at 
3 m, for case 2 first only sensors are placed at girders 1, 2 and 3, whereas for case 3 
all girders are chosen there, except for girder 1. Also, sensor locations around 5 m 
for girders 2 and 3 are chosen much earlier compared to case 2. This difference in 
choice of girders is attributed to the difference in correlation length, not only in 
the length direction of the bridge, but also along its width: the correlation length 
in case 3 in this width direction is for the last modes smaller than the distance 
between the girders. 
 
It could be concluded that the optimal sensor configuration depends on the 
assumed correlation length in the model error. However, the first sensors will be 
placed at the same locations (between 1 m and 2 m on all girders). The chosen 
sensor configuration based on the assumption of one correlation model might be 
suboptimal for another, but it will also not correspond to the worst possible sensor 
configuration. The influence of the different sensor configurations on the 
information entropy when the model error is uncorrelated is visualized in Figure 
X-8. Here it can be seen that there is an error when placing the sensors assuming 
a specific correlation model in the model error, but that the difference between 
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different assumptions on the correlation length is limited. When the actual 
correlation model is according to case 1, the influence of using the sensor 
configuration following from the assumption of another correlation model is again 
limited, as visible in Figure X-9. Hence, the actual assumption on the correlation 
length has a smaller influence in this case than the difference between assuming 
correlation or not. 
 

Table X-3: Correlation lengths assumed in the investigation on the influence of the 
correlation length assumed in the model error for the RC girder bridge 

Mode 
Case 2 Case 3 

lc,y lc,x lc,y lc,x 

1 ∞ 6 m ∞ 2.5 m 
2 7.7 m 6 m 3.3 m 2.5 m 
3 3.8 m 6 m 1.6 m 2.5 m 
4 3.0 m 6 m 1.3 m 2.5 m 

 
 

 
Figure X-6: Optimal sensor placement for the RC girder bridge when assuming correlated 
model error with correlation lengths according to case 2 and all four modes 
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Figure X-7: Optimal sensor placement for the RC girder bridge when assuming a correlated 
model error with correlation lengths according to case 3 and all four modes 

 

 
Figure X-8: Influence of sensor configuration on the information entropy of the RC girder 
bridge when the sensor configuration is determined based on different assumptions on the 
correlation lengths in the model error and in reality the model error is uncorrelated 
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Figure X-9: Influence of sensor configuration on the information entropy of the RC girder 
bridge when the sensor configuration is determined based on different assumptions on the 
correlation lengths in the model error and in reality the model error is correlated according 
to case 1 

 
The abovementioned results are based on a squared exponential correlation model 
for the random fields, as also described in section VI.2.2. To investigate the 
influence of the correlation model of the random fields, the optimal sensor 
configuration has also been derived for an exponential instead of a squared 
exponential correlation model for the random fields of the corrosion variables, 
both when assuming correlation and no correlation between the sensor locations 
(i.e. a correlated and an uncorrelated model error). In both cases, no difference in 
optimal sensor configuration was found for both random field models. When still 
considering an exponential random field but with an increased correlation length, 
the optimal sensor configuration also remains unaltered. Furthermore, the initial 
squared exponential correlation function for the random fields was again 
considered, but now with a lower bound on the correlation of 0.5 (equation (III-
7)). The optimal sensor configuration remains again unaltered. Hence, even 
though the sensitivities change (because of the different number of modes in the 
decomposition of the random fields) the optimal sensor configuration remains 
unaltered and the optimal sensor configuration is to a certain extend robust for the 
chosen correlation model for the random fields used to model the corrosion 
variables. 
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X.4.2 Optimal sensor placement for strain mode shapes 

The optimal sensor locations can also be determined when strain mode shapes are 
used to update the corrosion variables. In general, the strain mode shapes can be 
written according to equation (X-21). Here, B is a matrix giving the relationship 
between the strains and the displacements, and 𝝓 are the mode shape 
displacements. 𝜺 = 𝑩𝑇𝝓 (X-21) 

 
Out of equation (X-21), the sensitivities of the modal strains can be calculated as 
a function of the sensitivities of the mode shape displacements, which are already 
known. Since B is not a function of the variables of interest 𝜽𝑴, the sensitivities 
of the modal strains are given by equation (X-22). 𝜕𝜺𝜕𝜽𝑴 = 𝑩𝑇 𝜕𝝓𝜕𝜽𝑴 (X-22) 

 
In the FE model of the RC bridge, CHX60 elements are used, which are twenty-
node isoparametric solid brick elements (see Figure X-10) and the strains in x-
direction vary linearly in this direction. The matrix B can be derived from the 
interpolation functions for this element type. The polynomial interpolation 
function for the displacement along one of the axes is a quadratic function. For 
example, when the function of the displacement 𝑢 along the line 3-4-5 is required, 
this will be given by equation (X-23). 𝑢 = 𝑢3 (2𝑙2 𝑥² − 3𝑙 𝑥 + 1) + 𝑢4 (−4𝑙2 𝑥2 + 4𝑙 𝑥) + 𝑢5 (2𝑙2 𝑥2 − 1𝑙 𝑥) (X-23) 

Here, l is the element length and x the location along the axis 3-4-5. The strain is 
the derivative of the displacement and is hence given by equation (X-24). 𝜀 = 𝑢3 (4𝑙2 𝑥 − 3𝑙) + 𝑢4 (−8𝑙2 𝑥 + 4𝑙) + 𝑢5 (4𝑙2 𝑥 − 1𝑙) (X-24) 

However, the strain will be measured over a finite length, so equation (X-24) needs 
to be integrated over this length and divided by it, to get the average strain over 
the measurement length. As such, the strain will be given as a function of the mode 
shape displacements 𝑢𝑖, and the matrix B can be calculated. 
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Figure X-10: CHX60 element (DIANA FEA BV, 2019) 

 
Based on the abovementioned considerations, the sensitivities of the strain mode 
shapes can be derived for the same case as considered in the previous sections. 
When all four modes are considered, the sensor placement is given in Figure X-
11. The fact that there is no clear pattern or no clear preference for one of the 
girders could be ascribed to the fact that the modal strains provide more local 
information compared to the mode shape displacements. 
 
In practice, the strain mode shapes will be measured with optic fibres. These fibres 
have different sensors along their length, and hence all these sensors will be used 
at the same time. The influence hereof on the information entropy has been 
investigated. The information entropy is once evaluated for the optimal sensor 
positions as derived above and once assuming the placement of fibres with the 
same length as the girders (considered as ‘suboptimal’). These are first placed 
along the bottom fibre of the beam, with the order of the girders equal to 2-4-3-1-
5. Then they are placed along the top fibre of the beam, with the order of the girders 
equal to 5-4-1-3-2. These choices are based on the optimal sensor placement of 
Figure X-11, considering at which girders sensors are preferably located. The 
resulting information entropy is visualized in Figure X-12. Here it can be seen that 
the information entropy is higher for the suboptimal sensor configuration, with a 
difference of up to 3%, which is still relatively small. The decrease in information 
entropy when adding sensors is also less gradual, with sudden drops almost 
corresponding to the addition of an extra fibre. Adding fibres at the bottom of the 
beam provides also more information than to the top of the beam. 
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Figure X-11: Sensor locations when measuring modal strains on the RC girder bridge when 
considering the first four modes assuming no correlation 
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Figure X-12: Influence of using fibres to measure modal strains (suboptimal sensor 
configuration) on the information entropy of the RC girder bridge 

X.4.3 Optimal sensor placement for static strains under proof 

loading 

The optimal sensor placement is also derived when strains are measured under 
proof loading. Initially, the sensor locations could be chosen as the most critical 
locations following from the updating based on the natural frequencies and 
displacement mode shapes (see Chapter VI). These sensor locations could be 
supplemented by additional sensors, chosen based on the information entropy. As 
such, possibly a better posterior approximation of the random field will be 
achieved. 
 
Similar as for the modal strains, the static strains 𝜺 are written as a function of the 
displacements 𝑼, according to equation (X-25). 𝜺 = 𝑳𝑇𝑼 (X-25) 

To find the derivatives of the strains to the corrosion variables, the adjoint method 
(Haftka and Gürdal, 2012) will be used. According to this method, an extra term 
equal to zero will be added to equation (X-25), which leads to equation (X-26). 𝜺 = 𝑳𝑇𝑼 + 𝝀𝑇(𝑭 − 𝑲𝑼) (X-26) 

Here, F corresponds to the load vector inducing the displacements U, or F = KU. 
The derivatives of the strains to the corrosion variables (denoted by θj in the 
following equations) are then given by equation (X-27). 
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𝜕𝜺𝜕𝜃𝑗 = 𝑳𝑇 𝜕𝑼𝜕𝜃𝑗 + 𝝀𝑇 (− 𝜕𝑲𝜕𝜃𝑗 𝑼 − 𝑲 𝜕𝑼𝜕𝜃𝑗)= (𝑳𝑇 − 𝝀𝑇𝑲) 𝜕𝑼𝜕𝜃𝑗 − 𝝀𝑇 𝜕𝑲𝜕𝜃𝑗 𝑼 
(X-27) 

In the last equation, the term 𝑳𝑇 − 𝝀𝑇𝑲 cancels out if 𝑳𝑇 = 𝝀𝑇𝑲 or 𝑳 = 𝑲𝑇𝝀. The 
latter is called the adjoint loading case and can be solved to 𝝀, which is the 
displacement field under the adjoint load L. When 𝝀 is found, the derivatives of 
the strains can be calculated according to equation (X-28). 𝜕𝜺𝜕𝜃𝑗 = −𝝀𝑇 𝜕𝑲𝜕𝜃𝑗 𝑼 (X-28) 

 
Hence, practically for each possible sensor location, a load case L is considered 
and the corresponding displacements 𝝀 should be calculated. This corresponds to 
many load cases, but in finite element software, this can be done within reasonable 
computational time since there is only one generation of the stiffness matrix 
required to evaluate all these load cases. As such, the vector 𝝀 for each sensor 

location can be derived. The part 
𝜕𝑲𝜕𝜃𝑖𝑼 can be calculated similarly as for the mode 

shape displacements, i.e. based on the element forces. The only difference is that 
now the displacement vector does not consist of mode shape displacements, but of 
the displacements under the proof load. 
 
Figure X-13 gives the optimal sensor configuration for strains measured under a 
proof load located over the middle girder of the beam, when no correlation 
between the sensor locations is assumed (i.e. an uncorrelated model error). Here it 
can be seen that at the upper fibre, only the sensor location at girder 5 at the 
beginning of the beam is chosen in an early stage. The other sensors are first placed 
at the lower fibre. Hence, placing sensors at the lower fibres first is more 
beneficial. This is logical, since there is a higher influence of corrosion on these 
strains at the lower fibre. In the lower fibre, there is a preference to the ends of the 
girders. Furthermore, girders 1, 2, 4 and 5 are preferred over girder 3, over which 
the proof load is applied. This could possibly be ascribed to the very local effects 
that can arise below the proof load. It should be pointed out that the preferred 
locations might correspond to lower strain values. This issue is addressed later in 
the text. When the proof load is located between girder 4 and girder 5, the optimal 
sensor configuration for the strains at upper and lower fibre is given in Figure X-
14. Here it can be seen that depending on the location of the proof load, a different 
optimal sensor layout is found. 
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The optimal sensor configurations are here derived to optimally describe the 
corrosion variables modelled by random fields based on the measured strains. 
Nevertheless, the absolute values of the measured strains are not taken into account 
in these calculations. The strains will be largest underneath the proof load, but 
these sensor locations do not follow from the sensitivities as the optimal ones, even 
though they might still be preferable since strain measurements are also 
accompanied by a possibly quite large measurement error. When the measured 
strains are smaller than this error or equal in order of magnitude, the posterior 
distribution will approach the prior distribution and no updating will be performed. 
Hence, this aspect should also be accounted for when choosing the locations to 
perform strain measurements. In Chapter VI it has also been illustrated how the 
locations with the largest corrosion degree can already be determined based on the 
posterior distribution of the corrosion degree updated accounting for modal data. 
These locations are hence preferable for extra strain measurements under proof 
loading since they are more critical. Nevertheless, if extra sensors are available, 
these can be supplemented by sensor locations based on the optimal sensor 
configuration in order to optimally describe the corrosion variables modelled by 
random fields. Here, attention should be paid to the fact that the expected strains 
to be measured at these locations should be larger than the measurement error. 
Another way to account for the fact that the strains should be large enough to be 
measured is, after a first analysis, only including these points as possible 
measurement locations in the derivation of the optimal sensor configuration. 
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Figure X-13: Optimal sensor configuration for strains measured under proof loading over 
the middle girder on the RC girder bridge assuming no correlation between the sensor 
locations (uncorrelated model error) 
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Figure X-14: Optimal sensor configuration for strains measured under proof loading 
between girder 4 and girder 5 of the RC girder bridge assuming no correlation between the 
sensor locations (uncorrelated model error) 
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X.5 Summary and conclusions 

In this chapter, a method to determine the optimal sensor configuration for 
Bayesian updating of (the random fields of) the corrosion variables is introduced. 
For illustration of the principles, the method is first applied to an analytical model 
where a simply supported beam is considered. The influence of different 
assumptions has been investigated. Assuming correlation between the sensor 
locations (correlated model error) leads to a different optimal sensor configuration 
compared to the case where no correlation is assumed. Furthermore, the sensor 
configuration remains constant in time. Nevertheless, if the random field model 
for variables in the initiation phase would differ from those in the propagation 
phase, this might lead to changing sensitivities over time and hence varying 
optimal sensor positions. 
 
Next, the approach is extended in order to be applicable to finite element models 
too. As an example, the method is applied to an RC girder bridge. Here, optimal 
sensor configurations are derived for displacement mode shapes, strain mode 
shapes and static strains measured under proof loading. The influence of the 
assumption of correlation between sensor locations is again investigated. 
Assuming a correlated model error leads to a different optimal sensor 
configuration compared to the case of an uncorrelated model error, but the 
correlation lengths itself have a smaller influence for the investigated ranges of the 
correlation length.  
 
It should be pointed out that the optimal sensor placement as derived in this chapter 
might depend on the damage type. Another damage type might have another 
influence on the measured response, which can lead to other sensitivities. On the 
other hand, the optimal sensor placement will not depend on the measurement 
accuracy, since this will just scale the matrix Σ in the Fisher information matrix. 
However, the measurement accuracy will influence the posterior distribution (cfr. 
Chapter VI) and the VoI (Chapter XI).  
 
It is important to indicate that the optimal sensor configurations are determined 
only for some given predefined (practical) possible sensor positions. The number 
of sensors is also fixed. This number of sensors will later be optimized by 
evaluating the value of information for different numbers of sensors (see Chapter 
XI). The optimal positions of these sensors can then be selected using the method 
described in the current chapter. In practical situations, there will be a lower bound 
for the number of sensors to be considered, since mode shapes need to be available 
at sufficient locations to be able to make a distinction between the different modes. 
 
Even though the optimal sensor positions are derived based on some simplified 
relations between stiffness reduction and corrosion, they provide a helpful tool to 
determine optimal sensor positions before performing any measurements. If 
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models that are more detailed are available for the relations between stiffness 
reduction and corrosion, these can also be included in the analyses for determining 
the optimal sensor placement. 
 
Most of the principles applied in this chapter are based on existing literature. A 
novel contribution is the fact that the sensitivities are based on the finite element 
analysis directly, without metamodels and Monte Carlo sampling. Also the 
derivation of the sensitivities towards the corrosion variables and not to the 
stiffness, and the inclusion of the random fields are an addition to the scientific 
state-of-the-art. 
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XI.1 Introduction 

In Chapter V, it has been pointed out why condition-based maintenance should be 
preferred over predictive-based maintenance. In Chapter VI it has been illustrated 
how based on obtained site-specific data (from dynamic tests or diagnostic load 
tests), prediction models of the structure (i.e. corrosion models) can be updated by 
application of Bayesian methods (Val et al., 2000). Nevertheless, monitoring the 
condition of the bridge also comes at a certain cost. In Chapter IX it has been 
illustrated how the Value of Information (VoI) can be used as a metric to 
investigate whether this monitoring is worth its cost. In the current chapter, it will 
be explained how the VoI can be used as a metric to optimize the monitoring 
strategy, i.e., the type of measurements performed, the time at which the 
measurements are performed, and the locations of the sensors. Moreover, by 
calculating the VoI for different monitoring strategies, the best strategy can be 
chosen as the one with the highest VoI. 
 
In Chapter V and Chapter IX, it has been illustrated how the costs in the calculation 
of the VoI correspond to the life-cycle costs, including costs for maintenance 
actions and repairs, costs for monitoring and inspection, and failure costs. For all 
these costs, relevant values should be used as input in the VoI analysis. Moreover, 
from Chapter V and Chapter IX it is also clear that prior distributions to be used 
in the pre-posterior analysis should also be defined. Assigning prior distributions 
to the model parameters and estimating the different costs required in the analysis 
can be a difficult task. Investigation is needed to determine whether the 
assumptions on these parameters influence the resulting VoI, and whether a robust 
result is obtained or not. Furthermore, the calculation of the VoI can be 
computationally challenging, for example because evaluation of the posterior 
distributions is often based on sampling based methods (as also applied in 
Chapter VI), where many model evaluations are required. 
 
In general, different works on the VoI analysis have contributed greatly to the 
introduction of the VoI as an objective tool in decision-making (Li and Pozzi, 
2019; Cappello et al., 2016; Nielsen and Sørensen, 2018; Thöns et al., 2017; 
Björnsson et al., 2019). However, it is not always clear how sensitive the computed 
VoI is to different choices for the relevant input parameters. Literature is especially 
lacking applications for the optimization of monitoring strategies in the case of 
reinforced concrete structures. Some publications can be found where the 
influence of assumptions on the input variables is investigated. However, this is 
often very limited and applied to simplified conceptual models of structures. In 
(Zhang et al., 2019), the effects of different system properties on the VoI are 
demonstrated. In addition, Konakli et al. (2016) illustrate how the decision 
problem is influenced by the assumed probabilistic models, i.e., the type of 
probability distribution, the level of uncertainty, the choice of degradation law, the 
quantity and quality of information, and the probabilistic dependencies between 
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components of systems. The influence of the measurement accuracy on the VoI is 
investigated in (Straub, 2014). The challenges in the selection of suitable 
monitoring thresholds for action alternatives are also pointed out. These concern 
both defining the threshold values for monitoring outcomes triggering an action 
and the choice among different actions. In (Thöns et al., 2015), the influence of 
the threshold on the annual probability of component fatigue failure is 
investigated, and in (Qin et al., 2015) the influence of the inspection time and 
monitoring plan is studied. In (Straub et al., 2017), the computational burden of 
the VoI is pointed out as one of the main challenges in real world applications. 
From this work and others, it can be concluded that computational cost is an 
important bottleneck in the calculation of the VoI, since calculations over the 
whole service life are required. In (Zambon et al., 2020), the VoI analysis is 
applied to a reinforced concrete structure to determine the cost effectiveness of 
measuring the chloride content as an alternative to visual inspections. The work 
provides a valuable basis for the application of VoI analysis to reinforced concrete 
structures affected by chloride ingress. However, some issues for future work are 
mentioned, such as the fact that actual costs should be known and might influence 
the results. No particular case study is considered in that work, discrete inspection 
outcomes are assumed (depassivation is detected or not detected), and it is 
recognized that the accuracy of the measurements might influence the results. 
 
In this chapter, the practical use of the VoI as a tool for optimization of a 
monitoring strategy is investigated, particularly focusing on reinforced concrete 
structures. Section XI.2 provides a short recapitulation of the calculation of the 
VoI, and section XI.3 focuses on some issues in the practical implementation. In 
section XI.4, a realistic case is introduced in the form of a reinforced concrete (RC) 
girder bridge subjected to corrosion for which the monitoring strategy should be 
optimized. In section XI.5, the sensitivity of the VoI to initial assumptions on the 
input values is investigated. 

XI.2 Calculation of the VoI 

The calculation of the VoI for a spatially degrading reinforced concrete structure 
is explained in Chapter IX, where it is illustrated how the VoI depends on the 
expected prior (E[Cprior]) and posterior (E[Cpost]) costs. To calculate these expected 
values, a series of steps are required. First, the structure needs to be defined 
together with all relevant input parameters. Since the evaluation of the VoI 
requires the calculation of service life costs, the service life tSL and different costs 
C need to be defined. The evaluation of the VoI takes place in a Bayesian 
framework. Hence, probabilistic analysis is required and stochastic distributions 
are assigned to the relevant model parameters. By application of Bayesian 
analysis, these prior distributions of the model parameters f′ are updated to 
posterior distributions f” based on (yet unknown) monitoring data. Hence, the 
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prior distributions of the model parameters need to be defined at the start of the 
VoI analysis. 
 
The prior cost is the life-cycle cost accounting for no monitoring, eventually taking 
into account a standard inspection strategy (i.e., for example regular visual 
inspections, indicated further with subscript ‘st’). In the posterior cost, the 
monitoring strategy for which the VoI is calculated is taken into account. Hence, 
this monitoring strategy should also be defined: what type of measurements, when 
and where to measure, and the corresponding costs. In both the prior and posterior 
analysis, different decision alternatives a should be considered, which can be 
based on reliability thresholds or monitoring outcomes. To calculate an expected 
value of the costs, all possible inspection and/or monitoring outcomes should be 
sampled, inducing the samples y. These contain both the outcomes yst from the 
reference scenario (prior analysis) and those of the additional monitoring strategy 
in the posterior analysis yadd. For each set of monitoring outcomes, the life-cycle 
cost CT(y) is calculated. This is the minimum of the life-cycle costs for the different 
possible action alternatives in the maintenance strategy of the structure, i.e., 
min(CT(tSL|a,y)). The costs for each of these action alternatives are evaluated by 
calculating failure probabilities at every timestep between the current time t0 and 
the service life tSL. The corresponding failure costs CF are accounted for, 
depending on the cumulative probability of failure pF(t). At times where 
measurements are obtained, the relevant distributions are updated, i.e., at tinsp, prior 
distributions of the model parameters f′ are updated to posterior distributions f″. 
The costs of monitoring/inspections CI are also accounted for. When maintenance 
actions are performed at ta, model parameters are changed accordingly, and the 
relevant costs CR are accounted for. 
 
This framework allows accounting for different types of data gathered from the 
monitoring strategy, possibly at different locations along the structure. Chapter VI 
illustrates how strain data obtained from proof loading and modal data obtained 
from dynamic tests can be used to infer the state of corrosion of the structure for a 
reinforced concrete bridge. These data can be incorporated into the VoI 
framework. This enables the optimization of a monitoring strategy itself, or 
choosing the most optimal strategy among different possible strategies. 
 
As pointed out above, different (modelling) assumptions are required in the 
evaluation of the VoI such as costs, prior distributions, etc. Moreover, since the 
calculation of the VoI involves Bayesian updating and the consideration of the 
entire service life, calculating the VoI can be computationally expensive. Using 
the VoI both for optimizing a monitoring strategy itself and for choosing the most 
optimal strategy among a set of possible strategies requires many evaluations of 
the VoI. Hence, some approximations might be required to limit both the number 
of required evaluations of the VoI and the computational time of a single VoI 
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evaluation. For example, to reduce the number of evaluations of the VoI, part of 
the optimization of the monitoring strategy can be performed outside the VoI 
analysis. Optimal sensor positions can be determined beforehand based on optimal 
sensor placement algorithms as explained in Chapter X. In the following sections, 
a balance is made between accuracy and computational time, and the influence of 
different choices related to the input parameters is investigated. 

XI.3 Practical implementation of the calculation of the VoI 

XI.3.1 Approximating the posterior distribution 

In section XI.2, it is mentioned that the prior distributions f′ of the model 
parameters are updated to posterior distributions f″ based on the available 
monitoring data. For this purpose, Markov Chain Monte Carlo (MCMC) sampling 
is generally used (Chapter VI). However, the application of MCMC requires a 
considerable computational effort when the posterior distribution has to be derived 
for different possible monitoring outcomes, as is the case when calculating the 
VoI. To overcome this issue, approximate methods can be used to estimate the 
posterior distributions. Since for the calculation of the VoI, the sign of the resulting 
VoI and the relative difference between different monitoring alternatives are most 
important, an approximation that leads to an error that is small compared to this 
difference in VoI is justified. 
 
According to (Beck and Katafygiotis, 1998; Papadimitriou et al., 1997), when a 
large amount of data is available, the posterior Probability Density Function (PDF) 
can be asymptotically approximated by a normal distribution, centred around the 
Maximum A Posteriori (MAP) point and with a covariance matrix �̂�𝑝𝑜. For a set 
of variables 𝜽𝑀 to be estimated, with prior probability f′(𝜽𝑀), the MAP estimate 
is given by equation (XI-1) (Beck and Katafygiotis, 1998; Papadimitriou et al., 
1997). 𝜽�̂�𝑀𝐴𝑃 = argmin𝜽𝑀 (𝐹𝑀𝐴𝑃)  with 𝐹𝑀𝐴𝑃 = − log (𝐿(𝜽𝑀|�̅�)) − log(𝑓′(𝜽𝑀)) = 𝐹𝑀𝐿 + 𝐹𝑀𝐴𝑃𝑟 

(XI-1) 

Here, 𝐿(𝜽𝑀|�̅�) is the likelihood function accounting for data �̅�. When this 
likelihood function is Gaussian, the first term 𝐹𝑀𝐿 corresponds to a generalized 
least-squares objective function. The term 𝐹𝑀𝐴𝑃𝑟  corresponds to a regularization 
term based on the available prior information. 
 
The approximate posterior covariance matrix �̂�𝑝𝑜 is computed as the inverse 
Hessian of the MAP objective function 𝐹𝑀𝐴𝑃, evaluated at the MAP point 
according to equation (XI-2). 
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�̂�𝑝𝑜−1 = ∇𝜽𝑀2 𝐹𝑀𝐴𝑃|𝜽𝑀=𝜽�̂�𝑀𝐴𝑃 (XI-2) 

In many optimization algorithms, this Hessian is computed as a by-product in the 
solution of the optimization problem to solve for the MAP point. 
 
For more background on the MAP approximation, the reader is referred to 
(Papadimitriou, 2020). The error of the asymptotic approximation with a Gaussian 

distribution with mean vector 𝜽�̂�𝑀𝐴𝑃 and covariance matrix �̂�𝑝𝑜 equals N-1, with 
N the number of data (Papadimitriou, 2020). Furthermore, for a linear prediction 
model and a Gaussian prior and prediction error model, the asymptotic 
approximation becomes exact (Simoen, 2013). 

XI.3.2 Optimization of time of monitoring 

In addition to choosing the locations of the sensors (see Chapter X), the time at 
which monitoring is performed also needs to be defined. Very often, time bounds 
when monitoring is useful can already be defined beforehand. For example, when 
it is the aim of monitoring or inspection to collect data that allow assessing the 
corrosion degree of a reinforced concrete structure, these measurements are only 
useful when it is likely that corrosion has initiated. For this reason, the initial time 
range following construction is not considered in the search for optimizing the 
point in time at which monitoring should be performed. To optimize this time to 
perform the measurements, a number of steps are followed to arrive at a maximum 
value for the VoI. No minimization algorithm is used in this work, but a greedy 
search is applied in order to detect local optima, similar to the optimization of the 
sensor locations. In the first step, the posterior cost is calculated for different points 
in time at which the monitoring could be performed, and for one possible 
monitoring strategy. Then, the point in time leading to the lowest posterior cost is 
chosen. At this point in time, gradually, the number of sensors is increased or 
decreased, until the minimum posterior cost is obtained. For a given number of 
sensors, the sensor locations are chosen based on the optimal sensor placement as 
explained in Chapter X. As illustrated in Chapter X, these optimal sensor locations 
are time-independent. 

XI.4 Case study: a simply supported RC girder bridge 

XI.4.1 Problem description and probabilistic models 

In this case study, the same reinforced-concrete (RC) girder bridge is considered 
as described in section VI.2.2. The bridge is subjected to chloride-induced 
corrosion, which leads to a reduced resistance over time. The probability of failure 
Pf(t) and the corresponding reliability index β(t) are quantified based on the 
bending limit state given by equation (XI-3). The probability of failure can be used 
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to evaluate the cumulative probability of failure pF(t) according to equation (IX-
4). Based on this cumulative probability of failure, the cost of failure at time t 
(CF(t)) can be calculated (see equation (IX-6)). 𝑔(𝑿, 𝑡) = 𝐾𝑅min (𝐴𝑠(𝑡)𝑓𝑦 (ℎ − 𝑐 − ℎ𝑓2 ) ; 𝑓𝑐 (ℎ − 𝑐 − ℎ𝑓2 )𝑏𝑓ℎ𝑓) −𝐾𝐸(𝑄 + 𝐺) (XI-3) 

 
In equation (XI-3), 𝐴𝑠(𝑡) is the reinforcement area at time t, which changes over 
time due to corrosion (see equations (II-8) and (II-9)), and 𝐺 represents the load 
effects due to permanent loads, which are among others a function of the concrete 
density ρc (see Table XI-1). The other variables in the limit state function and their 
probability distributions are summarized in Table XI-1. The characteristic values 
of the load effects relate to a traffic load according to the Eurocode (CEN, 2003). 
The reference period for the probabilistic load models and hence for the resulting 
probability of failure is equal to one year. 
 
The probability of failure is evaluated based on the assumption of a parallel/series 
system, considering the different element reliabilities of the elements in which the 
structure is discretized. The load effects are recalculated towards the maximum 
load effect within the considered element, and the corrosion variables from the 
appropriate element within the random field discretization are selected. 
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Table XI-1: Probabilistic distributions for the evaluation of the probability of failure of the 
considered RC girder bridge 

Var. 

[Unit] 
Name Distr. Mean Stdev. Ref. 

fy  

[MPa] 
Yield stress of 
reinforcement 

LN 550 11 (JCSS, 2001) 

h  
[mm] 

Height of the  

beam + slab 
Det. 790 / (Yang et al., 2019) 

c  

[mm] 
Concrete cover Det. 69 / (Yang et al., 2019) 

hf  

[mm] 
Height of the slab Det. 190 / (Yang et al., 2019) 

fc  

[MPa] 

Concrete 

compressive  

strength 

N 25.9 3.9 (Yang et al., 2019) 

bf  

[mm] 
Slab flange width Det. 2500 / (Yang et al., 2019) 

KR  

[-] 
Resistance  

model error 
LN 1.05 0.105 (JCSS, 2001) 

ρc 
[kg/m³] 

Concrete density N 2500 75 
(Holicky and Sykora, 

2010) 
KE  

[-] 
Load effect  

model error 
LN 1 0.1 (JCSS, 2001) 

Q  

[kNm] 
Variable load effect 

(traffic loads) 
GU 0.728Qk 0.146Qk 

(Caspeele et al.,  
2016) 

XI.4.2 Time-dependent degradation 

The bridge is subjected to chloride-induced corrosion, leading to a reduction of its 
resistance over time. The reduction in resistance of the RC structure due to 
chloride-induced corrosion depends on the reduction of the reinforcement area 
over time 𝐴𝑠(𝑡), as given by equation (II-8). 
 
The prior distributions assumed for the corrosion variables are the same as in 
section VI.2.2. The corrosion rate Vcorr is modelled by means of a 2D lognormal 
random field, with mean 0.0116 mm/year and a coefficient of variation of 0.2 
(Yang et al., 2019), and the correlation model of the underlying Gaussian random 
field is a squared exponential correlation model with a correlation length of 2 m 
along the length of the bridge and a correlation length of 5.8 m along the width of 
the bridge. For the diffusion coefficient D, a similar random field is applied, with 
mean value 129 mm2/year and a coefficient of variation of 0.10. The chloride 
concentration at the surface Cs is modelled by a scalar random variable with a 
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lognormal distribution with mean 0.1% and a coefficient of variation of 0.1. To 
account for the spatial variation of the properties that are modelled by random 
fields, the bridge is discretized in 50 elements, i.e. each of the five girders is 
divided into 10 elements of equal length (similar as in section VI.2.2). 

XI.4.3 Monitoring strategies 

The required service life of the bridge is equal to 100 years. The standard 
inspection strategy consists of visual inspections every 5 years. Diagnostic load 
testing (e.g. measuring strains under a proof load applied to the bridge) or dynamic 
tests can provide information on the real deterioration state of the bridge (Chapter 
VI). Hence, the question arises whether performing these tests on the bridge would 
be worth their costs, or whether it would be better to perform only the regular 
maintenance schedule. The different investigated monitoring strategies are: 

1. Dynamic tests using accelerometers from which natural frequencies and 
displacement mode shapes can be derived; 

2. Dynamic tests with optic fibres from which natural frequencies and strain 
mode shapes can be derived; 

3. Static proof loading tests during which strains are measured. 
 
The considered strategies are referred to as strategy 1, strategy 2, and strategy 3, 
respectively. For strategy 1, the considered data vector contains the natural 
frequencies of the first four modes and the corresponding displacement mode 
shapes at multiple sensor locations. The number of sensor locations is varied in 
the following analyses. The natural frequencies and displacement mode shapes are 
accounted for in the Bayesian updating procedure according to the likelihood 
function given by equation (VI-6). The error on the natural frequencies 𝜎𝜆 is 
initially assumed 0.001 (i.e. 0.1% of the experimental frequency), and the error on 
the norm of the mode shapes 𝜎𝜙 is assumed 0.01 (i.e. 1% of the norm of the 
experimental mode shape). 
 
For strategy 2, the considered data vector contains the natural frequencies of the 
first four modes of the bridge and the corresponding strain mode shapes at top and 
bottom fibre of the girders. The natural frequencies are accounted for in the 
likelihood in a similar way as in equation (VI-6). The strain mode shapes are 
accounted for in a similar way as in equation (VI-3). The error on the natural 
frequencies is the same as for strategy 1, and the error on the strain mode shapes 
is assumed 0.5 µε (measured strains have an order of magnitude of some 
microstrain). 
 
For strategy 3, static strains are assumed to be measured under proof loading, and 
the data vector contains these strains measured at different locations along the 
girders, at both top and bottom fibre. The maximum likelihood function FML is 
given by equation (VI-3). The error on the strains 𝜎𝜀 is initially assumed equal to 
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0.5 µε. This can only be achieved for very accurate strain measuring techniques. 
Hence, the influence of this measurement error will also be investigated. 
 
In the following, the measurement locations of accelerations, as well as static and 
dynamic strains, are assumed to be in the middle of the elements in which the 
structure is discretized. The abovementioned monitoring strategies can be 
performed at different points in time, with a varying number of sensors. 

XI.4.4 Repair strategy 

In the maintenance strategy, repair is assumed to be performed once a reliability 
threshold βrepair (which will be defined later) is reached. At this time of repair, the 
reliability index is considered to return to its initial value (i.e. a perfect repair). 
Repair can also be performed immediately after monitoring, before the planned 
repair based on the reliability index. This repair is only performed if the posterior 
mean of the corrosion degree following monitoring is larger than a critical value 
for the corrosion degree αcr. Furthermore, when the posterior corrosion degree has 
a mean value larger than the a priori expected corrosion degree at the timestep 
under consideration, the planned repair is assumed to be performed in such a way 
that the corrosion rate of the repaired structure is reduced compared to the initial 
structure (for example by the use of better repair mortars).  

XI.4.5 Costs 

For the calculation of the life-cycle costs, different cost values are required: costs 
of maintenance/repair actions, costs of the monitoring strategy itself, and costs of 
failure. Although the importance of life-cycle cost analysis is generally 
acknowledged (Matos et al., 2017, 2018), data on these costs might be difficult to 
obtain. Even though some information on the costs can be available, some of them 
might still be hard to estimate. 
 
As a first estimate for the monitoring costs, cost values for the three considered 
monitoring strategies are summarized in Table XI-2. The number of sensors for 
strategy 1 refers to the number of uniaxial accelerometers used. The corresponding 
costs are the costs for a modal analysis, which include the costs for instrumentation 
of the bridge and the data processing. The number of sensors for strategy 2 refers 
to the number of elements (in the discretization of the random fields) equipped 
with a sensor of an optic fibre, both at lower and upper fibre of the girder. The 
optic fibres have a length equal to the length of the girder and are applied each 
time to the top fibre and bottom fibre of the girder. Each of these fibres has 10 
sensors along its length, measuring the strains. These 10 sensors correspond to the 
10 elements in which the girders are discretized. For strategy 3, the number of 
sensors refers to the number of discrete strain sensors applied on the bridge. 
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Table XI-2: Assumed monitoring costs for the example bridge. 

Type of monitoring data 
Number of 

sensors 
Costs 

Natural frequencies and displacement mode 
shapes 

(strategy 1) 

20 € 9000 

35 € 10 000 

50 € 11 000 

Natural frequencies and strain mode shapes 
(strategy 2) 

10 € 10 000 

20 € 15 000 

30 € 20 000 

40 € 25 000 

50 € 30 000 

Static strains  
(strategy 3) 

20 € 20 000 

35 € 25 000 

50 € 30 000 
 
To estimate the costs of failure and repair, in (Skokandić and Ivanković, 2020), it 
is stated that these costs could be monetized and presented as a percentage of the 
total bridge value CBV, which is given by CBV = fB∙C0, with C0 the 
structural/construction costs defined as the initial bridge value per square meter of 
bridge deck, and fB a factor for multiplication of the bridge value due to its 
importance in the network. The basic structural costs C0 can be based on (SeRON, 
2012), where a value of 1200 euros per square meter of bridge deck is suggested. 
The importance of the bridge in the road network fB is evaluated based on: 

- Road category (GRC); 
- Average annual daily traffic (GAADT); 
- Detour distance (GDD); 
- Largest span (GLS); 
- Total length of the bridge (GTL). 

 
Each of these variables have grade 1 to 5 and 
fB = 1 + 1/5∙[0.25∙(GRC + GAADT + GDD) + 0.125∙(GLS + GTL)]. Values for these 
variables can be found in (Ivanković et al., 2019). For the bridge under 
consideration, a structural/construction cost of C0 = € 126 672 is estimated, and a 
factor fB equal to 1/5∙[0.25∙(2 + 2 + 5) + 0.125∙(2 + 2)] = 1.55. This construction 
cost C0 only relates to the superstructure of the bridge and is in line with global 
cost estimates provided by the local road authorities in Flanders (personal 
communication with the Ministry of Public Works Flanders (MOW)). 
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According to (Thöns and Stewart, 2019), a cost of failure of the bridge equal to 
five times the total bridge value is assumed, resulting in a cost of failure of 
€ 981 708. 
 
The influence of different assumptions on the repair costs is investigated in section 
XI.5.2.1, where the considered cost models are also summarized. 

XI.4.6 Approximation of the posterior distribution by MAP 

estimates 

As pointed out in section XI.3.1, approximate methods can be used to estimate the 
posterior distributions of the model parameters instead of the computationally 
expensive MCMC sampling. Before using these approximations of the posterior 
distribution of the model parameters in the VoI calculations, it should be 
investigated whether the approximation is accurate enough. For the considered 
bridge, the MAP estimate of the posterior distribution of the diffusion coefficient 
and the corrosion rate is compared with the posterior distribution found when 
applying MCMC for the three monitoring strategies. For monitoring strategy 2 
implemented at 35 years, the resulting posterior distribution of the diffusion 
coefficient is visualized in Figure XI-1. Here, it can be seen that the approximation 
is quite good when considering the mean and uncertainty of the distribution. 
Similar results are obtained for the corrosion rate. 
 

 
Figure XI-1: Posterior distributions of the diffusion coefficient based on strain mode shapes 
at all elements derived with MCMC and MAP. The shaded areas correspond to the 68% 
credibility intervals. 
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The influence of the use of approximate posterior distributions based on MAP 
estimates instead of MCMC sampling on the resulting VoI is also investigated. 
When the VoI is calculated, the difference in posterior costs found based on the 
MAP estimates and MCMC calculations is very small, especially compared to the 
total bridge value (less than 0.5%). Hence, for this specific case, the difference in 
VoI by applying MAP estimates instead of MCMC does not influence the 
decisions made based on the resulting VoI, and the MAP estimates can be used to 
more efficiently calculate the VoI. Whether an error on the VoI is acceptable 
depends on the order of magnitude of the error and the order of magnitude of 
differences between the VoI’s of the different considered monitoring strategies. 
Hence, before using the approximate posterior distributions, a few checks should 
be made on the performance of the approximate method by evaluating the 
posterior distribution both with the approximate method and with MCMC 
simulations. In addition, the influence on the VoI should be checked at least once. 

XI.4.7 Determination of optimal sensor positions 

As pointed out before, the optimal sensor positions can be determined beforehand, 
by applying the procedures developed in Chapter X. For the bridge under 
investigation, the optimal sensor positions were already derived in section X.4. 
 
The optimal sensor placement could also be determined based on the VoI analysis 
itself. However, this requires many evaluations of the VoI and hence a large 
computational effort. This is illustrated by the following example. Consider a 
beam of 10 m length. Assume that there are 20 possible sensor positions, spaced 
0.5 m apart. When one wants to determine the optimal sensor positions based on 
the VoI analysis, the VoI should be evaluated for all possible combinations of 
sensor positions. When 10 sensors are picked out of the 20 possible locations, there 
are 6.7e+11 possible combinations, and many evaluations of the VoI are required. 
Also a greedy search algorithm could be considered such as in Chapter X. The VoI 
could first be evaluated based on all 20 locations. Then the VoI could be evaluated 
when removing one sensor and this for all 20 sensors, resulting in again 20 
evaluations of the VoI, etc. Hence, also in this greedy search approach many 
evaluations of the VoI are required. 

XI.4.8 Optimization of the point in time to perform monitoring 

To determine its optimal value, the point in time at which monitoring is performed 
is increased in steps of five years, where only timesteps between the time at which 
the prior reliability index starts to decrease and the prior time of repair (also based 
on the reliability index) are considered. Hence, the initially considered points in 
time at which monitoring could be performed are 15, 20, 25, 30, 35, 40 and 
45 years (counting from the time of construction). The minimum posterior costs 
for measuring strain mode shapes (strategy 2) are found at 35, 40, and 45 years. 
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Hence, the time range [34 years, 46 years] years is subsequently considered, with 
step sizes of 1 year. The lower and upper boundaries of the interval are taken one 
year apart from the previously identified optimal points in time to perform the 
monitoring, to verify whether there is no increase in VoI just before or after these 
points in time. The results are visualized in Figure XI-2 for two cases. The first case 
(case 1) assumes repair model 7 (cfr. infra, section XI.5.2.1) and a reliability 
threshold of βrepair = 3. The monitoring strategy is strategy 2 with strain mode shapes 
measured at 10 elements. The second case (case 2) gives the VoI as a function of 
time for repair model 1 (cfr. infra) with reliability threshold βrepair = 3 and monitoring 
strategy 2 with strain mode shapes measured at 50 elements. In both cases, the VoI 
generally increases if the point in time at which monitoring is performed increases. 
This could be ascribed to the fact that at the later timesteps, monitoring is more likely 
to induce repair based on the monitoring outcomes. At most timesteps, the VoI is 
also higher for case 1 than for case 2, due to the difference in the assumed repair 
criterion and cost model for repair (see also section XI.5.2.1). When looking at 
Figure XI-2, for case 1 the maximum VoI is reached at 35 years and at 44 years. For 
case 2, the maximum VoI is reached for monitoring at 35 years. The VoI is also 
different for the two cases and hence depends on the repair model and the considered 
monitoring strategy. 
 
In the next step for case 1, the number of sensors is increased for monitoring at 
35 years or 44 years since for these times of inspection the largest VoI was found 
(Figure XI-2). These results are given in Figure XI-3 (label ‘Strategy 2’). Here, it 
can be seen that under these specific assumptions, applying a larger number of 
sensors is not worth the extra cost. Moreover, the behaviour is almost the same for 
the two considered points in time at which monitoring could be performed. Only 
when sensors are placed at all elements in which the structure is discretized, a 
noticeable difference in VoI is found between the two points in time. 
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Figure XI-2: Influence of the point in time at which monitoring is performed on the VoI for 
the considered case study. 

 

 
Figure XI-3: Influence of the number of elements equipped with sensors on the VoI (for the 
strategies, reference is made to Table XI-2). 
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For strategy 1, where displacement mode shapes are available as monitoring data, 
20, 35 and 50 sensor locations are considered. These values are chosen based on 
experience from practice, where for dynamic monitoring of a bridge of this size, 
generally 20–50 accelerometers are used. The influence of the number of sensors 
on the VoI is visualized in Figure XI-3 (labelled ‘Strategy 1′). Here, the largest 
VoI is found for the lowest number of sensors at t = 44 years, but the influence of 
the number of sensors on the VoI is very small. The VoI is also larger than for 
strategy 2 when monitoring is performed at 44 years, but smaller for monitoring 
at 35 years. 
 
Finally, in strategy 3, static strain data is considered, respectively, at 20, 35 and 50 
locations. The number of sensors is based on advice from experts. The results are 
given in Figure XI-3 (labelled ‘Strategy 3’). Under the current assumptions, for 
monitoring at t = 44 years, the influence of the number of sensors on the VoI is 
limited, and the VoI is lower than for strategy 1. For monitoring at t = 35 years, a 
larger VoI is found for the lowest number of sensors, and the VoI is larger than for 
strategy 1. 

XI.5 Sensitivity of the VoI to initial assumptions 

XI.5.1 Type of monitoring technique and accuracy 

The posterior distributions of the corrosion variables depend on the uncertainty of 
the monitoring technique applied, since this is an important parameter in the 
likelihood function used in the Bayesian updating. For some techniques, this might 
be hard to estimate accurately. For this, reference can be made to Chapter VI where 
different orders of magnitude are given for the measurement error on the static 
strains, and to Chapter VII, where a first estimate of this measurement error is 
provided. In this section, the influence of the measurement uncertainty on the VoI 
is investigated and visualized in Figure XI-4. The error on the measured static 
strain σ𝜀 is varied from 0.5 µε (“low error”) to 10 µε (“high error”) (Heitner et al., 
2019; Neild et al., 2005; Sousa et al., 2020; Section VII.4.2), the error of the strain 
mode shape from 0.5 µε (“low error”) to 1.95 µε (“high error”) (Heitner et al., 
2019; Neild et al., 2005; Sousa et al., 2020), the error on the natural frequency σ𝜆 
from 0.001 (“low error”) to 0.01 (“high error”) (Reynders et al., 2016; Simoen et 
al., 2013), and the error on the norm of the mode shape σ𝜙 from 0.001 (“low 
error”) to 0.01 (“high error”) (Reynders et al., 2016; Simoen et al., 2013). Figure 
XI-4 shows that there can be a substantial effect of the measurement error. For this 
specific case and under the assumed cost values, the VoI increases with decreasing 
measurement error. The influence on the VoI is largest for the error on the static 
strains. The influence of the error on displacement mode shapes is the second 
largest, followed by the error on the natural frequencies and the error on the strain 
mode shapes, respectively. It is important to indicate that depending on the 
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adopted values for the errors, a different most optimal monitoring technique can 
be obtained. 
 

 
Figure XI-4: Influence of the measurement error on the VoI. 

XI.5.2 Costs of repair and failure 

XI.5.2.1 Influence of the cost of repair 

The cost of repair can be described as frep∙CBV, where frep, for example, depends on 
the reliability index at the time of repair or on the damage extent. For the repair 
costs, seven different models are adopted in this work (Table XI-3 and Table XI-
4). The model proposed by (Skokandić and Ivanković, 2020) is considered as cost 
model 1, where frep is a function of the reliability index, as provided in Table XI-
3. 
 

Table XI-3: Values for frep based on (Skokandić and Ivanković, 2020). 

Damage Level 
(SeRON, 

2012) 

Minor 
Damage 

Slight 
Damage 

Medium 
Damage 

High Damage 
Demolition 
Imminent 

Reliability 
index [-] 

β > 3.82 3.3 < β ≤ 3.82 3.0 < β ≤ 3.3 2.3 < β ≤ 3.03 β ≤ 2.3 

frep [%] 1.00 8.40 29.15 70.50 140 
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The other six models for the cost of repair are based on (Van Coile et al., 2014), 
where the cost of repair is given as a function of the ratio of the maximum load 
that can be sustained by the damaged structure to the service load requirement for 
the design specifications. In this work, this is slightly adapted to arrive at the cost 
models given in Table XI-4, by replacing the calculation of the load or resistance 
by the reliability index or the number of damaged elements. In Table XI-4, nel is 
the total number of elements in which the structure is discretized, and nd is the 
number of damaged elements, which are the elements with a posterior mean 
corrosion degree that is larger than the a priori expected corrosion degree. 
 
The different cost models are visualized in Figure XI-5. The considered models 
can be subdivided into three categories. The first model (from Table XI-3) can 
reach values larger than 100% for frep, whereas the other models are restricted 
between 0 and 100%. Moreover, models 2–4 still depend on the reliability index, 
whereas models 5–6 depend on the number of damaged elements. 
 

Table XI-4: Cost models based on (Van Coile et al., 2014), adapted in order to account for 
the reliability index or for the number of damaged elements. 

Cost model frep [-] 

2 1 − 𝛽3.8 

3 1 − ( 𝛽3.8)2 

4 
1 + cos ( 𝛽3.8 𝜋)2  

5 1 − 𝑛𝑒𝑙 − 𝑛𝑑𝑛𝑒𝑙  

6 1 − (𝑛𝑒𝑙 − 𝑛𝑑𝑛𝑒𝑙 )2 

7 
1 + cos (𝑛𝑒𝑙 − 𝑛𝑑𝑛𝑒𝑙 𝜋)2  
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Figure XI-5: Different assumed cost models. 

 
The influence of each of these cost models on the VoI is investigated. The VoI is 
calculated for a critical reliability of βrepair = 3 and for accelerations measured at 
20 locations (strategy 1), strain mode shapes measured at 10 elements (strategy 2) 
or static strains measured at 20 locations (strategy 3). The models for the cost of 
repair are numbered 1–7, and the VoI for the different cost models is visualized in 
Figure XI-6 for the three mentioned monitoring strategies. Here, it can be seen that 
the model used for the cost of repair has a large influence on the VoI. The absolute 
difference can reach up to more than € 20 000, which is 10% of the total bridge 
value. Hence, inaccurate estimates of the costs of repair might lead to a large over- 
or under-estimation of the VoI. The monitoring strategy with the highest VoI is in 
all cases related to the extraction of modal data from acceleration measurements. 
 
When considering the three categories of models, it can be seen that the third 
category (models 5–7) provides a larger VoI. This can be ascribed to the fact that 
a low number of damaged elements can be present, resulting in a low repair cost. 
However, when these damaged elements become critical, a few damaged elements 
can already result in a large influence on the reliability index, leading to a larger 
frep according to the first four models. When comparing model 1 with models 2–4, 
it can be seen that the difference is relatively small since the low reliability levels 
for which frep becomes larger than 1 (i.e., larger than 100%) in model 1 are not 
reached. 
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Figure XI-6: Influence of the cost model for repair on the VoI for the three considered 
monitoring strategies (for the strategies, reference is made to Table XI-2). 

XI.5.2.2 Influence of the cost of failure 

Three different values are assumed for the cost of failure: 2∙CBV, 5∙CBV, and 10∙CBV. 
The results are given in Figure XI-7 for three different monitoring strategies: 
measuring accelerations at 50 locations (Strategy 1), measuring strain mode shapes 
at all 50 elements (Strategy 2) and measuring static strains at 50 locations 
(Strategy 3). If the cost of failure increases, the prior cost increases together with the 
posterior cost, but still results in a larger VoI. 

XI.5.3 Prior distribution of the corrosion variables 

The diffusion coefficient can be difficult to estimate when one is not sure about 
the properties of the concrete in the existing structure and when no monitoring 
data are available. Furthermore, the diffusion coefficient varies in time, and hence 
the prior estimate at a certain point in time might differ from the actual value. 
When changing the prior mean of the diffusion coefficient from 64.5 to 
258 mm2/year, the VoI can vary with an amount of € 34 000, as illustrated in 
Table XI-5. While the monitoring strategy with the highest VoI remains the same, 
the difference in VoI between two techniques is not always of the same order of 
magnitude. When the COV of the diffusion coefficient is varied, the influence of 
the VoI is also given in Table XI-5. Here, the influence of the VoI is of the order 
of magnitude of € 35 000, which is 18% of the total bridge value for a change in 
COV of the diffusion coefficient from 0.05 to 0.2. Moreover, the influence differs 
depending on the monitoring technique considered. The VoI remains the largest 
when displacement mode shapes are available (strategy 1), but for the smallest 
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COV the difference with the static strains (strategy 3) is limited. Furthermore, 
when comparing the strain mode shapes (strategy 2) with the static strains, another 
technique might be chosen depending on the assumed COV for the diffusion 
coefficient. 
 

 
Figure XI-7: Influence of the cost of failure on the VoI for the three considered monitoring 
strategies (for the strategies, reference is made to Table XI-2). 

 
For the corrosion rate, different parameters are available in literature for different 
exposure classes. A selection of prior models is given in Table XI-6. When there 
is doubt on which model to use, the impact on the VoI can be large, ranging from 
a large positive to a large negative VoI, as can be seen in Table XI-5. Moreover, 
the optimal monitoring strategy might change, with large differences in VoI 
between the different strategies. 
 
The surface chloride concentration is also a difficult variable to estimate a priori. 
The initial value assumed for the mean surface chloride concentration and the 
COV is once taken half and once double the value originally considered. It is found 
that the influence on the VoI is very large and can range from a negative VoI to a 
large positive VoI, as can be seen in Table XI-5. Moreover, depending on the value 
of mean of the surface chloride concentration (µCs), the difference in VoI between 
two techniques might change. When changing the COV of the surface chloride 
concentration, the optimal monitoring strategy might change depending on the 
prior assumptions. 
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Table XI-5: VoI for different monitoring strategies as a function of the prior parameters of 
the distributions of the corrosion variables (for the strategies, reference is made to Table 
XI-2). 

 VoI Strategy 1 VoI Strategy 2 VoI Strategy 3 

µD    

64.5 4524 3483 −3309 
129 46 538 37 620 36 306 
258 33 276 32 789 28 497 

COVD    

0.05 37 391 31 551 36 853 
0.1 46 538 37 620 36 306 
0.2 69 726 66 850 63 571 

Vcorr    

Model 1 98 36 049 70 780 
Model 2 4633 5173 1427 
Model 3 −25 940 −38 187 −15 587 
Model 4 81 156 65 126 53 845 

µCs    

0.05 −3821 −4265 −8793 
0.1 46 538 37 620 36 306 
0.2 35 813 35 472 31 155 

COVCs    

0.05 43 967 34 010 40 857 
0.1 46 538 37 620 36 306 
0.2 31 631 39 037 30 337 

 

Table XI-6: Different parameters for the prior distribution of the corrosion rate based on 
(Lay et al., 2003). 

Model Exposure Class µVcorr [mm/year] σVvorr [mm/year] 

1 Wet—rarely dry 0.004 0.006 

2 Cyclic wet–dry 0.030 0.020 

3 Airborne seawater 0.030 0.040 

4 Tidal zone 0.070 0.070 



 
 

 
 

Application of the pre-posterior framework for the optimization of monitoring 315 
 

XI.6 Conclusions 

This chapter provides one of the first applications of the VoI analysis to a real-
case RC structure subjected to degradation. In the scientific state-of-the-art, the 
VoI is presented as an important tool for the optimization of monitoring strategies 
of structures, but mostly applied to simplified examples. Application of the VoI 
analysis to real-case RC structures comes with some computational challenges. In 
this chapter, solutions are proposed to reduce the computational effort. One of 
these solutions is the use of approximate posterior distributions based on MAP 
estimates instead of the computationally expensive MCMC sampling to evaluate 
the posterior distributions. Another solution is performing part of the optimization 
of the monitoring strategy outside the VoI calculations. As an example, the 
locations of the sensors can be determined beforehand by applying an optimal 
sensor placement algorithm. As such, given the number of sensors, the optimal 
locations of these sensors are fixed. This leads to a reduced number of evaluations 
of the VoI. This heuristic solution method can lead to a suboptimal solution, but 
the influence on the resulting VoI will be limited when compared to the large 
reduction in computational effort. 
 
In the scientific state-of-the-art, the influence of the assumed input parameters for 
the VoI analysis is often not investigated. Nevertheless, in a practical case, it might 
be difficult to decide on the values of the required input parameters, especially for 
complex structures. From the investigations performed in this chapter, it is 
concluded that the choice of these input parameters can have a significant impact 
on the VoI and the optimal monitoring strategy. Hence, caution is required when 
interpreting results of a VoI analysis and the results of a VoI analysis should 
always be evaluated with a critical mind-set. In practice, it might be beneficial to 
calculate the VoI for different scenarios to validate the final conclusion (for 
example with respect to the choice of the monitoring strategy). 
 
Even though the VoI approach has a rather high computational cost, these costs 
are generally very small compared to the costs of the actual monitoring system or 
the costs of failure of critical infrastructure. The VoI approach seems particularly 
useful for the management of large and critical bridges (in terms of traffic flow). 
For such bridges, large costs can be involved in the closure and/or failure of the 
bridge, and it can be beneficial to investigate beforehand whether investing in a 
monitoring strategy is beneficial or whether one can better stick to an a priori 
determined maintenance schedule. 
 
In the analyses provided in this chapter, the VoI is evaluated based on the expected 
values of the costs. Nevertheless, also the corresponding uncertainty on these 
estimates can be evaluated. Here, a more accurate monitoring strategy will lead to 
a lower uncertainty, and the uncertainty on the posterior costs will be lower than 
the uncertainty on the prior costs. These uncertainties can also be taken along in 



 
 

 
 

316 Chapter XI   
 

the definition of the VoI. For more background and corresponding results, the 
reader is referred to (Vereecken et al., 2021). 
 
It should be pointed out that all results in this chapter depend on the assumptions 
made for the errors in the likelihood function (i.e. measurement and modelling 
errors). Other assumptions could be made here, which might influence the results. 
Nevertheless, more research is required on the appropriate quantification of these 
measurement and/or model errors. 
 
The proposed steps for finding the most optimal monitoring strategy, based on the 
results in this chapter, are the following: 

1. The model of the structure, limit state equations, degradation models, 
probabilistic distributions, costs, etc. should be defined. 

2. The prior life-cycle cost should be evaluated. 
3. Boundaries for the appropriate point in time at which monitoring could 

be performed should be selected. 
4. Values for the degradation parameters should be sampled from the prior 

distributions. 
5. A monitoring technique should be selected. 
6. Optimal sensor positions should be derived (Chapter X). 
7. Between the boundaries selected in step 3, different timesteps should be 

selected for the maximum number of sensors. The corresponding 
monitoring outcomes should be evaluated based on the samples for the 
degradation parameters generated in step 4. 

8. The posterior costs and value of information should be estimated. 
9. Around the points in time leading to the highest VoI, extra timesteps can 

be selected and steps 7 to 8 can be repeated. As such, the optimal point 
in time to perform monitoring can be found. 

10. For this point in time, the number of sensors can be decreased. The 
optimal number of sensors can be determined in the same way as the 
optimal point in time to perform monitoring. 

11. For the given monitoring technique, the optimal point in time to perform 
monitoring and the optimal number of sensors and corresponding 
locations are known, together with the corresponding VoI. 

12. Steps 5 to 11 can be repeated for another monitoring technique. 
13. The monitoring strategy resulting in the lowest VoI should be selected. 

If required, the sensitivity to some assumptions made in the first step should be 
checked. 
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XII.1 Introduction 

In this chapter, a case study is considered, applying the methods developed in the 
earlier chapters to a real bridge geometry. The Bayesian inference procedure will 
be used to update the corrosion degree (and corresponding corrosion variables) of 
the bridge. Levelling data is available for this bridge and will be used for the 
updating procedure. Since no other detailed measurement data is available for this 
bridge, additional data will be generated based on a finite element model of the 
bridge in order to illustrate the potential and feasibility of the methodology 
developed in the previous chapters. Different monitoring techniques will be 
considered together with different assumptions on the input used for generating 
the data. In addition, the influence of a model error or model bias will be 
investigated. 
 
The VoI analysis will also be applied to the bridge (section XII.4). Costs and 
actions will be defined and the VoI will be evaluated for two cases: one with 
limited exposure (corrosion due to carbonation) and one with high exposure 
(corrosion due to chlorides). 
 
The focus of this chapter is on the application of the developed procedures on an 
actual geometry, making use of simulated data. For Bayesian inference of the 
corrosion degree based on real data, reference is made to Chapter VII, where the 
corrosion experiments are discussed. 

XII.2 Description of the case 

The bridge under investigation has been built in 1948 and is at the moment of 
analysis (2020) 72 years old. It is an RC girder bridge with a constant height, i.e. 
the bridge consists of a reinforced concrete slab supported by 14 reinforced 
concrete girders. The bridge is located on the Belgian national road N177 and 
passes over the Kolonel Silvertopstraat in Reet (Flanders, Belgium). On this 
bridge, the last available inspection has been performed in 2019. According to the 
inspectors, the bridge is in an acceptable condition and no important defects are 
present. The driving lanes on top of the bridge, which carry intense heavy traffic, 
have been recently refurbished and renewed. 
 
The bridge consists of two parts divided by a joint, which are symmetrical with 
respect to each other. The longitudinal girders of the first part are visualized in 
Figure XII-1 and Figure XII-2. The reinforcement of the longitudinal girders is 
given in Figure XII-3. The shear reinforcement has a spacing of 200 mm. The 
reinforcement of the slab consists of bars of 14 mm with a spacing of 200 mm. 
The numbering of the girders, as will be referred to later in this chapter, is 
visualized in Figure XII-4. Here it can be seen that the two smaller girders next to 
the joint are considered as one (i.e. girder 7). The influence of these girders on the 
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resistance and structural behaviour of the bridge is limited. The bridge has a length 
of 13 m and a skew angle of 7°. 
 
 

 
Figure XII-1: Cross-section of the outer part of the bridge (dimensions in m) 

 
 

 
Figure XII-2: Cross-section of the part close to the joint (dimensions in m) 

 
 

  

 

a) Main girders b) Outer girders c) Girders next to joint 

Figure XII-3: Reinforcement layout of the longitudinal girders (dimensions in mm) 

 
 

 
Figure XII-4: Numbering of the girders 
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XII.3 Bayesian inference of the corrosion degree 

In the following sections, the corrosion degree of the bridge will be updated based 
on different types of data. Moreover, different situations will be considered for 
generating the measurement data. Finally, also the influence of a model error will 
be investigated. 

XII.3.1 Prior distributions 

The bridge is assumed to be subjected to degradation due to corrosion. The 
assumed corrosion model is the same as described in Chapter II, and no prior 
assumption on carbonation-induced or chloride-induced corrosion is made. The 
corrosion degree is assumed dependent on the initiation period and the corrosion 
rate, which are modelled as stochastic variables. Corrosion is assumed spatially 
variable along the structural elements and the corrosion variables are modelled 
with random fields. The prior marginal distribution of the corrosion rate is a 
lognormal distribution with a mean of 0.05 mm/year and a standard deviation of 
0.02 mm/year. The marginal distribution of the initiation period is a lognormal 
distribution with a mean of 50 years and a standard deviation of 15 years. This 
distribution is valid for the bars with a concrete cover of 40 mm. For the other 
bars, the value of the initiation period is adjusted according to the change in 
concrete cover. When considering equation (II-1), the initiation period is 
proportional to the square of the concrete cover. Hence, if initiation period Ti1 is 
defined for concrete cover c1, the initiation period Ti2 for concrete cover c2 is given 
by Ti2

 = c2²∙Ti1/c1². For each longitudinal girder, independent random fields are 
assumed to model the spatial correlation of the initiation period and corrosion rate, 
each with a correlation length of 5 m. A similar assumption holds for the transverse 
girders. For the slab, a 2D random field is assumed with a correlation length of 
5 m in both directions. The random fields of the longitudinal girders, the transverse 
girders and the slab are considered independent. The assumed correlation model 
is a squared exponential correlation model for all random fields. Since the random 
fields for the different girders are independent, there can be accounted for 
scenarios where only one of the girders is subjected to corrosion or to more severe 
corrosion than the others (see section XII.3.7). An example of such a situation is 
when the girders next to the joint are subjected to corrosion due to penetration of 
road salts through the joint. 
 
Based on the initiation period and corrosion rate, both corrosion of the shear 
reinforcement and longitudinal reinforcement are evaluated. Nevertheless, in the 
following, only the corrosion degree of the longitudinal reinforcement will be 
visualized, since this is linked to the general behaviour of the structure. Even 
though only graphs are provided for the posterior distribution of the corrosion 
degree, the distributions that are inferred are the random fields for the initiation 
period and corrosion rate. The distribution of the corrosion degree at different 
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timesteps can then be evaluated based on the degradation models provided by 
equations (II-8) and (II-9) and the (posterior) distributions of the initiation period 
and corrosion rate. 

XII.3.2 Monitoring strategies 

In the following, different monitoring strategies will be considered. These are 
summarized in Table XII-1. In addition, the influence of the assumed 
measurement error for each of the strategies will be investigated. How the different 
data types are accounted for in the Bayesian inference procedure has been 
described in Chapter VI. Strains, displacements and accelerations are assumed to 
be measured at different locations along the bridge. For the acceleration 
measurements, the optimal sensor positions will be derived in section XII.3.4. For 
the strains measured with optic fibres, fibres are assumed to be attached along the 
bottom fibres of the girders, with sensors at each of the elements in which the 
girders are discretized (cfr. infra). The static strains are measured at the same 
locations as the dynamic strains. 
 

Table XII-1: Monitoring strategies considered in this case study 

Strategy Measurement scenario Data obtained 

1 
Strains measured under a proof 

load 
Static strains 

2 
Deflections measured under a 

proof load 
Static deflections 

3 
Accelerations measured under 

ambient conditions 
Natural frequencies and 

displacement mode shapes 

4 
Strains measured with optic fibres 

under ambient conditions 
Natural frequencies and 

strain mode shapes 
 
To generate the measurement data, samples of the initiation period and corrosion 
rate for the different elements in which the structure is discretized (cfr. infra) are 
generated. Based on these samples, the actual corrosion degrees are calculated as 
well as the corresponding remaining reinforcement area and the Young’s modulus 
of the concrete cover. Then, strains or deflections under a proof load and modal 
data are generated by the finite element model (cfr. infra). To these generated 
results, a measurement error is added. Different values for the measurement error 
are assumed in this chapter. For very accurate measurements, a measurement error 
of 0.5 µε is assumed for the static strain data, 0.1% of the experimental natural 
frequency for the natural frequencies, and 1% of the norm of the experimental 
mode shape for the displacement mode shapes. These errors are also increased to 
simulate less accurate measurements, i.e. errors of 3 µε and 10 µε for the static 
strain measurements, and 1% or 5% of the experimental natural frequencies for 
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the natural frequency data. For the deflection measurements, a measurement 
uncertainty of 0.5 mm is assumed (e.g. camera-based deflection measurements 
(Heitner et al., 2019; Sousa et al., 2020)). In the likelihood function, these 
measurement errors are combined with the error of the response surface (cfr. 
infra). 

XII.3.3 Model of the bridge 

A finite model of the bridge is made in DIANA FEA (DIANA FEA BV, 2019). 
For the reinforcement steel, a characteristic yield strength of 400 MPa and a 
characteristic ultimate tensile strength of 420 MPa are assumed, based on the steel 
quality known for this bridge. The concrete strength class is C25/30, with all 
properties according to EN 1992-1-1:2004. In the finite element model used to 
simulate the proof load test, a uniform load of 1.2 kN/m² is applied to represent 
the permanent loads of the sidewalk. This is applied over the outer 4.5 m of the 
bridge deck (Figure XII-5). The permanent load of the road equals 3.9 kN/m² and 
is applied to the part where the actual driveway for the cars is present. For the 
modal analysis, these permanent loads representing the self-weight should be 
added as mass, influencing the resulting natural frequencies and mode shapes of 
the bridge. 
 

 
Figure XII-5: Permanent loads on the bridge deck 

 
For a given corrosion degree, the main reinforcement of the longitudinal and 
transverse girders is adjusted according to equations (II-8) to (II-9). Accordingly, 
the shear reinforcement of those girders exposed to corrosion is also adjusted, and 
also the bottom reinforcement of the slabs is assumed to be subjected to corrosion. 
As mentioned in section XII.3.1, the initiation period is adjusted according to the 
concrete cover of the considered reinforcement bars. The reinforcement area is 
modelled to vary according to the subdivision originating from the design of the 
bridge. By making use of the grid of both longitudinal and transverse girders, the 
girders are subdivided automatically in parts between the crossing points of both 
types of girders. It is assumed that in between these crossing points, the 
structure/structural elements are subjected to common exposure conditions. This 
means that all longitudinal girders are subdivided into four elements (i.e. in 
between the transversal girders, see Figure XII-6), the transversal girders are 
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subdivided into 11 elements (see Figure XII-6, note that the two parts to the left 
and right from the middle transversal girder are taken as one (i.e. element 6 of the 
first transversal girder)) and the slab is subdivided into 44 elements (see Figure 
XII-6, note that similar as for the transversal girders the parts to the left and to the 
right of the middle longitudinal girders are combined). For the girders, also the 
Young’s modulus of the concrete cover is adapted to model the cracking of the 
concrete according to equations (II-10) to (II-13). 
 

 

 

 
 

Figure XII-6: Subdivision in elements of the longitudinal girders, transvers stiffeners and 
slab 

 
The different measurement scenarios of Table XII-1 are simulated by the finite 
element model, i.e. a modal analysis and a simulation of a proof load are modelled 
in DIANA FEA (DIANA FEA BV, 2016). The applied load for the proof load is 
based on models retrieved from the Ministry of Public Works Flanders (MOW) 
(2020), and consists of loaded surfaces of 2.33 m by 0.5 m with a load of 
84.35 kN/m², representing trucks driving over the bridge. A number of trucks are 
placed on the different lanes of the bridge resulting in a large enough proof load, 
which does not exceed the cracking load. Linear calculations are assumed since 
no bending cracks are observed yet and the proof load will be applied as such that 
no cracking will be induced in the structure. 

XII.3.4 Sensor placement 

The accelerometers are point-like sensors and could be installed anywhere on the 
bridge. A priori, it might be difficult to decide which sensor positions will provide 
the most information regarding the displacement mode shapes. Hence, the optimal 
sensor configuration for the accelerometers is derived according to the method 
described in Chapter X. The possible sensor locations from which a selection is 
made consist of the nodes at the bottom of the finite element model. It is assumed 

Transverse girder Longitudinal girder 
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that the first four modes should be extracted from the dynamic data and will be 
used to update the corrosion degree along the bridge. The preferred sensor 
locations for the first forty sensors are visualized in Figure XII-7. This figure 
provides a bottom view of the bridge, with the width along the horizontal axis (y-
coordinate) and the length of the bridge along the vertical axis (x-coordinate).The 
ten most preferable sensor locations are indicated with the blue dots. If ten more 
sensors can be applied to the bridge, they are preferably placed at the locations 
indicated by the green crosses. The next ten sensors are indicated by the red 
triangles, and if in total forty sensors are available, the last ten sensors should be 
positioned at the locations of the black triangles. 
 
The strains under ambient conditions are measured with optic fibres. These are 
attached along the whole length of the bridge, with strains measured in between 
the clamping blocks (assumed measurement locations at each of the elements in 
which the girders are discretized). The static strains are assumed to be measured 
at the same locations as the dynamic strains. 
 

 

Figure XII-7: Optimal sensor placement for acceleration measurements when determining 
the first four modes. The dashed grey lines indicate the girder positions (longitudinal and 
transverse girders). 

XII.3.5  Response surface fit to the finite element model 

In order to avoid evaluations of the finite element model at every iteration of the 
MCMC sampling procedure to perform the Bayesian inference, response surfaces 
are used. The response surfaces have as output the data given in Table XII-1. 
Displacement mode shapes, strain mode shapes, static strains and static deflections 
are evaluated at different locations along the bridge. The input of the response 
surface is given by the corrosion degrees in the different elements in which the 
bridge is subdivided. The response surfaces are based on a set of Latin Hypercube 
samples (LHS). 500 sets of LHS samples are generated, i.e. for each of the 
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different input parameters 500 samples are generated, resulting in the model 
results to which the response surface is fitted.  
 
Response surfaces of different orders are generated, and the fit of the response 
surface is evaluated by calculating the coefficient of determination R², with a 
correction for the number of unknowns in the response surface (see equations (VI-
1) and (VI-2)). The risk of overfitting the response surface is addressed in the same 
way as discussed in section VI.3.1. For the natural frequencies, the values of R² 
are larger than 0.99999. For the mode shapes, the R² values are larger than 0.999, 
and for the strains, the R² values are larger than 0.9999. In addition, the error of 
the response surfaces is quantified and this is later taken along in the likelihood 
function. For each verification sample xk, the value zk-yRS(xk) is evaluated, with zk 
the result of the finite element model and yRS(xk) the result of the response surface. 
The variance of these values is calculated and added to the variance of the 
measurement error considered in the likelihood function (i.e. a zero mean white 
noise error is assumed with a normal distribution, and the error of the response 
surface is assumed independent from the measurement error). 

XII.3.6 Posterior distribution of the corrosion degree based on 

levelling 

When bridges are inspected in Flanders, during these inspections often level 
measurements are performed. During levelling, the height of one level relative to 
another level is determined, i.e. the elevation of a point relative to a datum. Data 
from levelling is available from the inspections performed every 4 years. It is 
investigated whether this data can provide some information on the corrosion 
degree of the bridge under investigation. The last available level measurements 
(2019) are represented in Figure XII-8 and Table XII-2. The posterior distribution 
of the corrosion degrees taking into account the data from these level 
measurements is given in Figure XII-9 for the left part of the bridge. When the 
posterior distribution of the corrosion degree is visualized further in this chapter, 
only the left part of the bridge is shown. To arrive at the posterior distribution 
visualized in Figure XII-9, a measurement error of 1 mm is assumed in the 
likelihood function, and a similar likelihood function is adopted as in section 
VI.3.2.2. The measurement error assumed for the level measurements is larger 
than the one mentioned in section XII.3.2 due to the inaccuracy of the level 
measurements. It can be seen that vague posterior distributions of the corrosion 
degree are found due to the limited amount of available data and the relatively 
large measurement error accompanied with these measurements. Hence, in the 
following it will be investigated whether other monitoring strategies will provide 
more accurate information on the corrosion degree. The considered monitoring 
strategies were already introduced in section XII.3.2. The different considered 
situations are summarized in the next section. 
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Figure XII-8: Locations of the level measurements for the case study bridge. The locations 
of the measuring points are indicated by the circles and a number. 

 

Table XII-2: Difference between latest level measurement (2019) and reference level 
measurement (basic levelling) for the measuring locations indicated in Figure XII-8. 

Measuring 

point 

Difference with 

basic levelling [mm] 

Measuring 

point 

Difference with 

basic levelling [mm] 

L1 0 6 0 
L2 0 7 2 
L5 1 8 3 
L6 -1 9 1 
1 -1 10 2 
2 1 11 1 
3 3 12 1 
4 0 13 0 
5 2 14 1 
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Figure XII-9: Posterior distribution of the corrosion degree in the longitudinal girders based 
on level measurements. 

 

XII.3.7 Investigated situations 

Different simulated situations for the state of corrosion of the bridge are 
considered as given in Table XII-3. For each situation, the different data types as 
provided in Table XII-1 are considered. The results for each of these situations are 
summarized in the following sections. In all these situations, the errors on the 
individual data components are assumed independent, since they solely represent 
measurement errors. For model errors, a certain degree of correlation is expected. 
A short discussion on a case with a (correlated) model error is provided in section 
XII.3.9. 
 
 

Table XII-3 Considered cases in the analysis, i.e. the corrosion layout for generation of the 
measurement results 

Model for data generation Section 

Spatially variable corrosion XII.3.8.1 
Corrosion only in girder next to joint  

(girder 7 in Figure XII-4)  
XII.3.8.2 

Corrosion only in outer girder  
(girders 1 and 13 in Figure XII-4)  

XII.3.8.2 
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XII.3.8 Results of the Bayesian inference procedure 

The posterior distribution of the corrosion degree of the longitudinal girders is 
generated by Markov Chain Monte Carlo (MCMC) simulations, in which the 
abovementioned response surfaces are used for the model evaluations. 
 
In the following, posterior distributions will only be visualized for the longitudinal 
girders (and for the left part of the bridge). The posterior distributions of the 
transverse stiffeners and of the slabs are very close to the prior distributions and 
hence not updated. This could be expected beforehand since the influence of 
corrosion in these structural element types on strains and natural frequencies is 
limited. When increasing the corrosion degree in the longitudinal girders from 0% 
to 20%, a difference in strains of the longitudinal girders of maximum 28% is 
found, and a difference in natural frequencies of maximum 9%. When increasing 
the corrosion degree of the transverse stiffeners from 0% to 20%, the maximum 
increase of the strain equals only 1%, and there is almost no influence on the 
natural frequencies. Finally, when increasing the corrosion degree in the slab from 
0% to 20%, a maximum increase in strains of 5% is found, and the largest 
influence on the natural frequencies equals 2.9%. 

XII.3.8.1 Spatially variable corrosion 

In this section, the different types of measurements are used to update a spatially 
variable corrosion degree. 
 
The posterior distributions of the corrosion degree of the longitudinal girders for 
the different types of measurements are given in Figure XII-10 to Figure XII-12. 
Here it can be seen that the overall pattern of the spatial distribution of the 
corrosion degree in each girder is present in the posterior distribution derived 
based on the displacement mode shapes and corresponding natural frequencies. 
The posterior distribution of the corrosion degree approaches better the actual 
value when the updating is performed based on the strain mode shapes. Figure 
XII-13 gives the posterior distribution of the corrosion degree of the longitudinal 
girders when static strains are measured at the locations where the posterior mean 
of the corrosion degree µα” based on the displacement mode shapes and natural 
frequencies of the first four modes exceeds 0.2. When the data of different tests 
are combined, i.e. natural frequencies, displacement mode shapes and static 
strains, a more informative posterior distribution of the corrosion degree is found 
(i.e. a posterior mean closer to the actual value and a smaller posterior standard 
deviation) compared to the situation where only the modal data is accounted for. 
It could indeed be expected beforehand that, when more data is incorporated in the 
likelihood function, the uncertainty reduces. However, the quantitative 
combination of the different types of data is unique compared to existing literature. 
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Figure XII-10: Posterior distribution of the corrosion degree of the longitudinal girders 
based on the natural frequencies (𝜎𝜆,𝑟 = 0.001�̅�𝑟) and displacement mode shapes (𝜎𝜙,𝑟 =0.01‖�̅�𝑟‖) of the first 10 modes extracted from accelerations measured at the 26 most 
optimal sensor positions. 

 
 

 
Figure XII-11: Posterior distribution of the corrosion degree of the longitudinal girders 
based on the natural frequencies (𝜎𝜆,𝑟 = 0.001�̅�𝑟) and strain mode shapes (error 0.5 µε, 
measured strains order of magnitude some microstrain) of the first four modes. 
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Figure XII-12: Posterior distribution of the corrosion degree of the longitudinal girders 
based on strains measured under proof loading (error 0.5 µε). 

 
 

 
Figure XII-13: Posterior distribution of the corrosion degree of the longitudinal girders 
based on the natural frequencies (𝜎𝜆,𝑟 = 0.001�̅�𝑟) and displacement mode shapes (𝜎𝜙,𝑟 =0.01‖�̅�𝑟‖) of the first 4 modes and static strains (error 0.5 µε) measured at the locations 
where µα” based on the modal data is larger than 0.2. 
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Figure XII-14: Posterior distribution of the corrosion degree of the longitudinal girders 
based on deflections measured under proof loading (error 0.5 mm). 

 
In Figure XII-14, it can be seen that if the data only consists of the static 
deflections, the posterior distribution of the corrosion degree is almost equal to the 
prior distribution. When looking at the samples of the deflections generated to fit 
the response surface, the maximum difference in deflection is estimated to be 
0.61 mm. This is a quite small value, indicating that the influence of corrosion on 
the deflection results of the proof load test is limited. Moreover, deflections are 
more dependent on the global stiffness of the structure and not to local changes in 
stiffness. The influence of local corrosion on the global stiffness can be rather 
limited. Even though a small measurement error of 0.5 mm is assumed (accurate 
measurements), it is relatively large with respect to the influence of corrosion on 
the measured deflections. Due to this large relative uncertainty, deflection 
measurements under proof loading lead to a vague posterior distribution of the 
corrosion degree, not approximating the actual corrosion degree. 
 
All results are also summarized in Table XII-4, with different assumptions on the 
errors adopted in the likelihood function. Different conclusions can be made when 
looking at Table XII-4. When considering the deflections, the RMS value between 
the actual corrosion degree and the posterior mean and the posterior standard 
deviations are very close to the ones found when considering the prior distribution. 
For the natural frequencies and displacement mode shapes, incorporating more 
modes already leads to a more informative posterior distribution of the corrosion 
degree, with a reduction in RMS value and average posterior standard deviation 
σaverage. In addition, when increasing the error on the natural frequencies, the RMS 
value and average posterior standard deviation increase. When increasing the error 
on the norm of the displacement mode shapes, the RMS value and posterior 
uncertainty also increase. For the static strains, the same observations are found 
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when increasing the measurement error on the strains. Furthermore, the accurate 
strain measurements lead to a smaller RMS value and a smaller posterior standard 
deviation compared to the modal data with 10 modes and a small error on the 
natural frequencies. For the modal strains, the RMS value is smaller than for the 
static strains, but the average posterior uncertainty is higher. If the error on the 
natural frequencies increases, the RMS value and posterior average standard 
deviation increase. This increase is most remarkable when increasing the error on 
the natural frequencies from 0.1% to 1% of the experimental value, and is more 
limited when increasing from 1% to 5% of the experimental value. When the error 
on the modal strains increases, the RMS value and posterior uncertainty also 
increase, and this for different assumptions for the error on the natural frequencies. 
Finally, when considering the combination of modal data and static strain data, for 
an error on the natural frequencies of 0.1% of the experimental frequency and an 
error on the static strains of 0.5 µε, the RMS value and average posterior standard 
deviation decrease compared to only including the modal data. They are higher 
than for the static strains, but the number of strain sensors is not the same in both 
situations. When the error on the static strains increases to 3 µε, the RMS value 
and the average posterior standard deviation increase. When also the error on the 
natural frequencies is increased to 5% of the experimental frequency, the RMS 
value and posterior uncertainty again increase. However, the RMS value and 
average posterior uncertainty are still smaller than the situation where only the 
modal data is accounted for. 

XII.3.8.2 Corrosion in one of the girders 

In this section, when generating the measurement data, corrosion is assumed to 
occur in only one of the girders. First, corrosion is assumed to be only present in 
the girders next to the joint (i.e. girders 7 in Figure XII-4). All data, except for the 
static deflection data, enabled to localize the girder with corrosion. Nevertheless, 
the actual corrosion degree is not accurately represented by the posterior 
distribution of the corrosion degree. The results are summarized in Table XII-5 
assuming different data types. 
 
If there is already a visual proof of corrosion (e.g. rust stains), this can be taken 
along in the updating procedure. As also pointed out in section VII.7.2, in 
(Andrade and Izquierdo, 2020) a proposal is made for the reduction in rebar 
diameter corresponding to the cracking stage which is required for corrosion 
products to leak from cracks in the concrete cover. Based on this reduction of 
diameter, for the structure under consideration a corrosion degree of 2% is found. 
Hence, in the updating procedure, this is assumed as a lower bound for the sampled 
corrosion degrees. The posterior distribution of the corrosion degree is visualized 
in Figure XII-15 for the static strain data. The influence of adding the visual 
observations is also represented by a reduction in RMS value, as can be seen in 
Table XII-6. 
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Table XII-5: Comparison of the posterior distribution of the corrosion degree for 
the different data types and varying experimental errors (RMS, maximum 
standard deviation σmax and average standard deviation σaverage) 

Data RMS σmax σaverage 

Prior 0.0724 0.0846 0.0846 
Static deflections 0.0715 0.0833 0.0745 

Displacement mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) 

0.0568 0.0951 0.0650 

Displacement mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.05𝜆̅𝑟 , 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) 

0.0678 0.0860 0.0720 

Displacement mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜙,𝑟 = 0.1‖�̅�𝑟‖) 

0.0650 0.1123 0.0668 

Displacement mode shapes (10 modes) and 
natural frequencies (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟) 

0.0529 0.0937 0.0611 

Displacement mode shapes (10 modes) and 
natural frequencies (𝜎𝜆,𝑟 = 0.01𝜆̅𝑟) 

0.0546 0.0871 0.0609 

Displacement mode shapes (10 modes) and 
natural frequencies (𝜎𝜆,𝑟 = 0.05𝜆̅𝑟) 

0.0553 0.0943 0.0630 

Static strains (𝜎𝜀  = 0.5 µε) 0.0496 0.0868 0.0505 
Static strains (𝜎𝜀  = 3 µε) 0.0478 0.0768 0.0583 
Static strains (𝜎𝜀 = 5 µε) 0.0471 0.0812 0.0634 
Static strains (𝜎𝜀  = 10 µε) 0.0579 0.0877 0.0708 

Strain mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜀 = 0.5 µε) 

0.0464 0.0820 0.0540 

Strain mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.01𝜆̅𝑟, 𝜎𝜀 = 0.5 µε) 

0.0491 0.0832 0.0577 

Strain mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.05𝜆̅𝑟, 𝜎𝜀 = 0.5 µε) 

0.0490 0.0842 0.0581 

Strain mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.01𝜆̅𝑟, 𝜎𝜀 = 3 µε) 

0.0624 0.0872 0.0706 

Strain mode shapes (4 modes) and natural 
frequencies (𝜎𝜆,𝑟 = 0.05𝜆̅𝑟, 𝜎𝜀 = 3 µε) 

0.0674 0.0908 0.0710 

Displacement mode shapes (4 modes) and natural 
frequencies + static strains (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 ,𝜎𝜀 = 0.5 µε, 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) 

0.0503 0.0975 0.0621 

Displacement mode shapes (4 modes) and natural 
frequencies + static strains (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 ,𝜎𝜀 = 3 µε, 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) 

0.0550 0.0910 0.0676 

Displacement mode shapes (4 modes) and natural 
frequencies + static strains (𝜎𝜆,𝑟 = 0.05𝜆̅𝑟 ,𝜎𝜀 = 3 µε, 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) 

0.0616 0.0934 0.0701 
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Table XII-6: Characteristics of the posterior distributions of the corrosion degree (RMS, 
maximum standard deviation σmax and average standard deviation σaverage) if there is only 
corrosion in the girders next to the joint 

Data RMS σmax σaverage 

Prior 0.1031 0.0713 0.0713 

Static strains (𝜎𝜀 = 0.5 µε) 0.0178 0.0552 0.0145 
Static strains (𝜎𝜀 = 0.5 µε) + visual 0.0115 0.0375 0.0142 

Natural frequencies and displacement mode 
shapes (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) 0.0217 0.0464 0.0067 

Natural frequencies and displacement mode 
shapes (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜙,𝑟 = 0.01‖�̅�𝑟‖) + 

visual 
0.0105 0.0444 0.0074 

Natural frequencies and strain mode shapes 
(𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜀 = 0.5 µε) 

0.0177 0.0511 0.0114 

Natural frequencies and strain mode shapes 
(𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜀 = 0.5 µε) + visual 

0.0091 0.0449 0.0105 

 
 

 

Figure XII-15: Posterior distribution of the corrosion degree in the longitudinal girders 
based on static strain data (error 0.5 µε) and visual observations considering corrosion only 
in the girders next to the joint. 
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When there is local corrosion at one of the outer girders, the posterior distribution 
of the corrosion degree for the left part of the bridge is visualized in Figure XII-
16 when Bayesian updating is performed based on static strain data. This corrosion 
degree is better represented than the one in the girders close to the joint, since the 
strains in these outer girders are more influenced by corrosion. The relatively 
smaller strains in the girders next to the joint and the larger relative error of the 
response surface also result in a larger uncertainty at these girders and a less 
accurate posterior distribution of the corrosion degree. A similar posterior 
distribution of the corrosion degree as the one obtained based on static strain data 
is found based on the modal data. The resulting RMS values and posterior 
uncertainties are summarized in Table XII-7. 

 
Figure XII-16: Local corrosion in outer girders: posterior distribution of the corrosion 
degree based on static strain data (error 0.5 µε). 

 

Table XII-7: Characteristics of the posterior distributions of the corrosion degree (RMS, 
maximum standard deviation σmax and average standard deviation σaverage) if there is 
corrosion in the outer girders 

Data RMS σmax σaverage 

Prior 0.1017 0.0692 0.0692 

Static strains (𝜎𝜀  = 0.5 µε) 0.0277 0.0482 0.0202 
Natural frequencies and displacement mode 
shapes (10 modes) (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜙,𝑟 =0.01‖�̅�𝑟‖) 

0.0341 0.0594 0.01514 

Natural frequencies and strain mode shapes (4 
modes) (𝜎𝜆,𝑟 = 0.001𝜆̅𝑟 , 𝜎𝜀 = 0.5 µε) 

0.0314 0.0636 0.0206 
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XII.3.9 Influence of a model error and prior distributions 

In reality, the bridge is skewed with a skew angle of 7°. Nevertheless, in bridge 
design, for limited skew angles, it is common to model the bridge as straight. When 
bridges are skewed, they have a smaller maximum live load bending moment 
compared to straight bridges. Hence, modelling them as straight bridges is 
conservative. Furthermore, the maximum live load deflections decrease, the shear 
forces increase for the exterior beams and decrease for the interior beams and 
torsion effects increase, together with the support reactions (Bucur et al., 2008). 
Nevertheless, AASHTO standard specifications recommend that bridges with 
skew angles smaller than 20° are designed as straight (Harba, 2011). Moreover, 
(Nguyen et al., 2019) found that vertical accelerations are hardly affected by 
skewness, and that the effect is even less noticeable for small skew angles, as is 
the case for the structure under consideration. 
 
The influence on bending moments in slabs and beams is investigated based on 
some preliminary calculations. The moments in the slab are evaluated based on 
equations (XII-1) to (XII-3), and the moments in the girder based on equation (XII-
4). In equations (XII-1) to (XII-3), p is the load per m². In equation (XII-4), p is 
the load per m. G is the shear modulus, E the Young’s modulus, C the torsion 
constant and I the second moment of area. L is the span length of the bridge and 𝛽 
is the skew angle. Equations (XII-1) to (XII-4) are based on (Van Bogaert, 2003). 

𝑚𝑥 = 𝑝𝐿212 𝐺𝐶𝐸𝐼 tan²(𝛽)1 + 𝐺𝐶𝐸𝐼 tan²(𝛽) (XII-1) 

𝑚𝑦 = 𝑝𝐿212 (98 𝑏2𝐿2 + 𝐺𝐶𝐸𝐼 (2 − tan²(𝛽)) tan(𝛽)1 + 𝐺𝐶𝐸𝐼 tan²(𝛽) ) (XII-2) 

𝑚𝑥𝑦 = 𝑝𝐿212 𝐺𝐶𝐸𝐼 tan(𝛽)1 + 𝐺𝐶𝐸𝐼 tan²(𝛽) (XII-3) 

𝑀 = 𝑝𝐿212 𝐺𝐶𝐺𝐶 + 𝐸𝐼tan²(90° − 𝛽) (XII-4) 

 
When applying equations (XII-1) to (XII-4) to the bridge under consideration, the 
error on mx is 0.9%, the error on my is almost zero and the error on mxy is 7%. The 
latter is the largest since this is the contribution of the torsion moments. The error 
on the bending moments M in the girder is again equal to 0.9%. Hence, it is found 
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that the influence of accounting for the skewness of the bridge is very limited due 
to the small angle of skewness. 
 
To investigate the influence on the dynamic behaviour, a simple model of the 
bridge is generated, without reinforcement and transverse stiffeners. The natural 
frequencies and mode shapes of the skewed bridge and the straight bridge are 
compared, and the error on the natural frequencies is given in Table XII-8 for the 
first 10 modes of the bridge. 
 

Table XII-8: Error on the natural frequencies when not accounting for the skew angle of the 
bridge 

Mode 
Error on the natural frequency 

[Hz] 

Error on the natural frequency 

[%] 

1 0.229 3.8% 
2 0.291 3.6% 
3 0.054 0.5% 
4 0.097 0.9% 
5 0.013 0.11% 
6 0.055 0.45% 
7 0.127 0.89% 
8 0.236 1.6% 
9 0.674 3.8% 

10 0.003 0.02% 
 
In the following, the influence of the model error by modelling the bridge as 
straight instead of skewed is investigated. The finite element model based on 
which the measurement data is generated is a skewed model of the bridge. The 
finite element model for which the response surface is generated to be used in the 
Bayesian inference is a straight model of the bridge. This corresponds to a practical 
case, where measurements are obtained from an (actual) skewed bridge, whereas 
the modelling is performed using a simplified straight model of the bridge. 
 
Static strains obtained from proof loading are generated for different values of the 
corrosion degree, both for the straight and for the skewed model. The strains of 
the skewed model are approximately 30% larger than the strains of the straight 
model for the investigated situation. The observation that the strains in the skewed 
bridge are higher than in the non-skewed bridge could be expected based on the 
analysis performed above. Hence, a multiplicative model error could be accounted 
for in the Bayesian inference procedure. In this situation, the measurement results 
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�̅� are given by equation (XII-5). Here, 𝜂𝑀 is the model error, 𝑮(𝜽𝑀) the model 
with input variables 𝜽𝑀, and 𝜂𝐷 the measurement error. �̅� = 𝜂𝑀𝑮(𝜽𝑀) + 𝜂𝐷 (XII-5) 

When accounting for this model error, the maximum likelihood function is 
adjusted to equation (XII-6). Here, N is the number of data points, and 𝜎𝐷2 the 
variance of the measurement error. 

𝐹𝑀𝐿 =∑(�̅� − 𝜂𝑀𝑮(𝜽𝑀))2𝜎𝐷2𝑁
𝑗=1  (XII-6) 

 
The analytical analysis above gives a difference in strain of +- 10%, with higher 
strains expected for the skewed bridge. This error can be even larger for the 
difference between the actual structure and the model. Hence, a priori, for the 
model error on the strains, a uniform distribution between 1 and 1.5 is assumed. A 
multiplicative model error is assumed in the analysis. 
 
For the uniform corrosion degrees, the natural frequencies of the skewed bridge 
equal 0.96 to 1.01 times the natural frequencies of the non-skewed bridge. 
Furthermore, deviations from 0.5 to 15% between model and reality are found in 
literature (Bautista-De Castro et al., 2018; Brownjohn et al., 2001; Liu et al., 2017; 
Mankar et al., 2019; Zapico et al., 2003). Hence, a multiplicative model error with 
a uniform distribution between 0.85 and 1.15 is assumed. 
 
When performing the Bayesian inference, in a first analysis uniform corrosion 
over all the longitudinal girders is assumed. A uniform prior distribution between 
0% and 30% is assigned to the corrosion degree. Later, also spatial variation of the 
corrosion degree will be accounted for. The considered situations are summarized 
in Table XII-9. 
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Table XII-9: Considered situations with a model error. 

Measurement result based 

on 
Data included in updating Section 

Uniform corrosion 

Natural frequencies 

XII.3.9.1 
Static strains 

Natural frequencies and static 
strains 

Spatially distributed corrosion 
– corrosion in one girder 

Natural frequencies and 
displacement mode shapes 

XII.3.9.2 
Static strains 

Natural frequencies and 
displacement mode shapes + 

static strains 

XII.3.9.1 Uniform corrosion 

When updating is performed based on the natural frequencies, an experimental 
error of 1% of the experimental frequency (𝜆̅𝑟) has been assumed, i.e. 𝜎𝜆 = 0.01 
in equation (VI-6). The resulting posterior distributions of the corrosion degree, 
considering different actual underlying corrosion degrees, are represented in 
Figure XII-17. Here, it can be seen that for the lowest corrosion degrees the 
posterior distribution is close to the prior distribution. This could be ascribed to 
the limited influence of small corrosion degrees on the natural frequencies, 
especially compared to the model error. When the actual corrosion degree 
increases, there is indeed a shift of the posterior distribution of the corrosion 
degree to higher values, with small to zero probability for the very low corrosion 
degrees. When comparing the results from the straight and skewed model, a 
difference in natural frequencies of 10%-15% is found. This is high compared to 
the influence of corrosion on the natural frequencies: for very large corrosion 
degrees, the difference in natural frequency is only 3.5 to 11% compared to the 
uncorroded case. This might explain why the posterior distribution of the corrosion 
degree has a large remaining uncertainty and that the actual corrosion degree is 
not located in the high probability regions of the posterior distribution. 
 
The bounds of the prior distribution could also be adjusted taking into account 
some visual observations. According to (Ouzaa and Oucif, 2019), spalling will 
occur at a crack width of 1 mm, which corresponds to a corrosion degree of 8% 
according to equation (VII-18). Assuming a margin of 4% corrosion, the upper 
bound of the prior distribution is set equal to 12% if no spalling has been observed 
and the lower bound has been set equal to 4% if spalling has been observed. When 
comparing the posterior distributions, it can be seen that those based on a more 
informative prior give a better representation of the actual corrosion degree. 
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When for the strains the multiplicative model error with the uniform distribution 
between 1 and 1.5 is assumed, the posterior distributions of the corrosion degree 
are visualized in Figure XII-18. Here, a measurement error of 10 µε has been 
assumed. If the actual corrosion degree increases, the posterior distribution of the 
corrosion degree is also located around higher corrosion degrees. Nevertheless, 
the actual corrosion degree is smaller than the posterior mean corrosion degree 
and lies not in the high probability region of the posterior distribution. Similar as 
for the natural frequencies, the fact that the actual corrosion degree is not located 
in the high probability regions of the posterior distribution could already be 
expected beforehand. The difference between the strains for the skewed and the 
non-skewed bridge is on average 30%. When comparing the modelled strains 
between the uncorroded bridge and a bridge with a uniform corrosion degree of 
30%, there can be a difference in strains up to 23% to 37%. This is of the same 
order of magnitude as the model error. For the strain data, the influence of 
changing the prior distribution to a more informative prior is much more limited 
compared to the case where updating is performed based on the natural 
frequencies, and there is still a large overestimation of the corrosion degree. 
 
It is also investigated how the posterior distribution of the corrosion degree 
approximates the actual value when both the natural frequencies and static strains 
are accounted for in the likelihood function. These results are visualized in Figure 
XII-19. Here it can be seen that the distributions more closely resemble those 
obtained when the data only consists of the strain measurements. Furthermore, still 
an overestimation of the corrosion degree is found. The first aspect could be 
ascribed to the larger amount of static strain data incorporated, compared to only 
10 natural frequencies. In Figure XII-19, it can be seen that the influence of 
choosing a more informative prior is rather limited. All these results are also 
summarized in Table XII-10 and Table XII-11. 
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(a) Vague prior 

 

(b) More informative prior 

Figure XII-17: Posterior distribution of the uniform corrosion degree based on natural 
frequencies (error 1% of the experimental value) when the actual bridge is skewed and the 
model for the bridge used in the likelihood function is straight – influence of different priors 
and different actual corrosion degrees. In figure (b), the prior distributions for α = 0.15 and 
α = 0.25 coincide. 
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(a) Vague prior 

 

(b) More informative prior 

Figure XII-18: Posterior distribution of the uniform corrosion degree based on static strains 
(error 10 µε) when the actual bridge is skewed and the model for the bridge used in the 
likelihood function is straight – influence of different priors and different actual corrosion 
degrees. In figure (b), the prior distributions for α = 0.15 and α = 0.25 coincide. 
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(a) Vague prior 

 

(b) More informative prior 

Figure XII-19: Posterior distribution of the uniform corrosion degree based on static strains 
(error 10 µε) and natural frequencies (error 1% of the experimental frequency) – influence 
of different priors and different actual corrosion degrees 
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Table XII-10: Difference between posterior mean corrosion degree and actual value, and 
posterior standard deviation for the different data types. Each time a value is given for 
different considered actual corrosion degrees [0.05, 0.15 and 0.25] – vague prior 
distribution 

Data 

Difference between posterior 

mean corrosion degree and 

actual value 

Posterior standard 

deviation 

 0.05 0.15 0.25 0.05 0.15 0.25 

Natural 
frequencies 

0.114 0.046 -0.037 0.077 0.062 0.053 

Static strains 0.063 0.116 0.046 0.010 0.018 0.004 
Natural 

frequencies and 
static strains 

0.068 0.127 0.042 0.007 0.016 0.006 

 

Table XII-11: Difference between posterior mean corrosion degree and actual value, and 
posterior standard deviation for the different data types. Each time a value is given for 
different considered actual corrosion degrees [0.05, 0.15 and 0.25] – more informative prior 
distribution 

Data 

Difference between posterior 

mean corrosion degree and 

actual value 

Posterior standard 

deviation 

 0.05 0.15 0.25 0.05 0.15 0.25 

Natural 
frequencies 

0.027 0.038 -0.024 0.028 0.062 0.050 

Static strains 0.053 0.121 0.046 0.007 0.015 0.004 
Natural 

frequencies and 
static strains 

0.060 0.111 0.046 0.005 0.012 0.003 

XII.3.9.2 Spatially distributed corrosion 

Next, it is investigated how the presence of modelling errors affects localisation 
of damage. Measurement results are generated with the model of the skewed 
bridge, assuming there is 10% corrosion in the outer girders at the left and right 
side of the bridge (girders 1 and 13 in Figure XII-4). When the posterior 
distributions are generated, there is no localisation of damage possible based on 
static strains (see Figure XII-20) or displacement mode shapes (see Figure XII-
21), and the posterior distribution deviates significantly from the actual corrosion 
degree. When the data consists of both the static strains and the displacement mode 
shapes, the posterior distribution of the corrosion degree along the whole bridge is 
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close to zero, and hence here the damage is not detected from this distribution (see 
Figure XII-22). At the outer girder at the right part of the bridge, there is a shift 
towards higher corrosion degrees, and hence damage could be detected in this 
girder (see Figure XII-23). However, the exact corrosion degree is not located in 
the high probability regions of the posterior distribution. 
 

 
Figure XII-20: Posterior distribution of the corrosion degree based on static strains (error 
10 µε) when the model used to generate the data is skewed and the model used in the 
identification is straight. 

 

 
Figure XII-21: Posterior distribution of the corrosion degree based on natural frequencies 
(error 1% of the experimental frequency) and displacement mode shapes when the model 
used to generate the data is skewed and the model used in the identification is straight. 
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Figure XII-22: Posterior distribution of the corrosion degree based on natural frequencies 
(error 1% of the experimental frequency) and displacement mode shapes and static strains 
(error 10 µε) when the model used to generate the data is skewed and the model used in the 
identification is straight. (left half of the bridge) 

 
 

 
Figure XII-23: Posterior distribution of the corrosion degree based on natural frequencies 
(error 1% of the experimental frequency) and displacement mode shapes and static strains 
(error 10 µε) when the model used to generate the data is skewed and the model used in the 
identification is straight. (right half of the bridge) 
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Again, the influence of changing the prior distribution has been investigated. The 
bounds are adjusted in a similar way as described above. For the static strain data 
and modal data, the posterior distributions are visualized in Figure XII-24 and 
Figure XII-25 respectively. These posterior distributions approximate better the 
actual values compared to the results with the more vague prior distribution. When 
considering a combination of modal data and static strain data, it can be seen in 
Figure XII-26 that a better approximation of the actual corrosion degree is found, 
especially at the girders without corrosion. Hence, once again the beneficial effect 
of combining different types of data is illustrated. 
 
 

 
Figure XII-24: Posterior distribution of the corrosion degree based on static strains (error 
10 µε) when the model used to generate the data is skewed and the model used in the 
identification is straight, accounting for adjusted bounds in the prior distribution of the 
corrosion degree. 
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Figure XII-25: Posterior distribution of the corrosion degree based on natural frequencies 
(error 1% of the experimental frequency) and displacement mode shapes when the model 
used to generate the data is skewed and the model used in the identification is straight, 
accounting for adjusted bounds in the prior distribution of the corrosion degree.  

 
 

 
Figure XII-26: Posterior distribution of the corrosion degree based on natural frequencies 
(error 1% of the experimental frequency) and displacement mode shapes and static strains 
(error 10 µε) when the model used to generate the data is skewed and the model used in the 
identification is straight accounting for adjusted bounds for the prior distribution of the 
corrosion degree. Only the results related to the right half of the bridge are represented here. 
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Based on the results given in this section, it can be concluded that modelling errors 
may strongly affect the inverse identification of corrosion damage. Modelling 
assumptions that are reasonable in design may lead to misleading estimations of 
the corrosion degree. The impact of modelling errors is largest if localization of 
damage is required, because the ratio of measurement values at multiple locations 
should more closely correspond to reality, whereas for uniform corrosion it might 
be sufficient to only observe an increase or decrease in measurement output. If the 
model deviates significantly from the actual structure, more data and/or 
information is required to have a posterior distribution that approximates the actual 
corrosion degree. For example, by including visual observations the posterior 
approximation of the actual corrosion degree can be improved. However, this 
might not be generally valid, since the inclusion of more data might also push the 
posterior distribution further away from the actual value. Nevertheless, the 
inclusion of visual observations might always result in a posterior distribution 
better approximating reality, since these lead to the exclusion of corrosion degrees 
that are not in line with these visual observations. In general, it can be concluded 
that, to obtain a posterior distribution that corresponds to the actual value as 
closely as possible, the model error should be kept as small as possible, with a 
model that corresponds to the actual structure as good as possible. 

XII.3.10 Discussion 

When considering the results in section XII.3.8, the static deflections lead to very 
vague posterior distributions of the corrosion degree, close to the prior 
distributions, because of the limited influence of corrosion on the deflections. The 
measurement uncertainty is relatively large compared to the difference in 
deflection that can be expected due to corrosion. The inclusion of natural 
frequencies and displacement mode shapes in the likelihood enabled localisation 
of damage, but generally led to larger posterior uncertainties and RMS values 
compared to the static strain data. However, caution should be taken when 
comparing measurement techniques, since the RMS value and the posterior 
uncertainty also strongly depend on the amount of information considered in the 
likelihood function and the accompanying experimental error. These aspects 
depend on de data type, the number of data points and the uncertainty on the data. 
 
Considering localisation of corrosion, it could be concluded that corrosion of one 
girder can be localized if it has a large enough influence on the measured quantity. 
The influence of corrosion in the girders next to the joint on the static strains and 
modal data is smaller than the influence of corrosion in the outer girders on these 
properties, especially when compared to the error assumed in the likelihood 
function. Hence, localisation of damage in the outer girders is better than in the 
girders next to the joint. 
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Finally, the influence of a model error has also been investigated. The 
measurement results are generated based on a skewed model of the bridge and the 
model used in the likelihood function is based on a straight bridge. The latter was 
chosen since in design this simplification is often justified. However, it is found 
that this simplification has a large influence on the inverse estimation of the 
corrosion degrees. Since only the corrosion degree is updated based on the 
measurement data, all differences in modelled and measured output are ascribed 
to the corrosion degree and a model error. For uniform corrosion, this generally 
leads to an overestimation of the corrosion degree. When corrosion is spatially 
variable, localisation of corrosion becomes very difficult, but can be improved by 
also including the information from visual observations in the definition of the 
prior distribution. From all these results, it can be concluded that it is important 
that the model resembles the actual structure as good as possible. This means that 
all information that is available prior to the analysis should be considered when 
designing the finite element model and/or the prior distributions. Examples are the 
proper modelling of the geometry of the structure (based on plans, but also 
measurements on site), the proper inclusion of permanent loads and their effects 
on the stiffness, modelling of the support conditions, etc. The less accurate the 
model, the higher the model error that should be accounted for. 
 
It should be pointed out that all results depend on the assumptions for the errors in 
the likelihood function (i.e. measurement and modelling errors). Other 
assumptions could be made, which might influence the shape and/or uncertainty 
of the posterior distribution. Nevertheless, more research is required on the 
appropriate quantification of these measurement and/or model errors. 

XII.4 Value of Information 

In the following, the VoI framework as introduced in Chapters IX and XI will be 
applied to the case study under consideration in this chapter. The limit states 
considered for evaluating the probability of failure will be given, the costs to be 
considered in the VoI analysis, as well as the different decision alternatives. The 
VoI will be evaluated for three monitoring strategies, and the influence of some of 
the input parameters will be investigated. Two situations will be considered, i.e. 
one with limited exposure to chlorides, where carbonation-induced corrosion will 
be more important, and one with high exposure to chlorides, where the bridge will 
be subjected to chloride-induced corrosion. It should be pointed out that the first 
situation corresponds to the actual exposure conditions of the bridge. Nevertheless, 
the two situations are considered in order to show the possible influence of the 
environment on the VoI. In the following analyses, the effect of a model error is 
not considered. 
 
The VoI will be evaluated as explained in Chapter IX. Different input and 
assumptions are required for the evaluation of the VoI. The limit states to evaluate 
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the probability of failure are summarized in section XII.4.2. The different 
considered costs are given in section XII.4.3, and the different actions or decision 
alternatives are given in section XII.4.4. The variables that are updated based on 
the monitoring data are the initiation period and corrosion rate of the corrosion 
process. The prior models used for these degradation variables are summarized in 
section XII.4.1. The different considered monitoring strategies and data types are 
the same as applied in the previous sections: 

- Static strains measured under proof loading measured at 20 or 52 
locations with a measurement error of 3 µε; 

- Natural frequencies and displacement mode shapes extracted from 
ambient vibration tests with accelerations measured at 36 locations and 
assumed errors in the likelihood function of 0.1% of the experimental 
frequency and 1% of the norm of the experimental mode shape; 

- Natural frequencies and strain mode shapes extracted from ambient 
vibration tests with strains measured at 52 locations and assumed errors 
in the likelihood of 0.1% of the experimental frequency and 0.5 µε for 
the strains. 

The results of the VoI analysis are given in section XII.4.5. 

XII.4.1 Degradation of the bridge 

The bridge is assumed to be subjected to degradation due to corrosion. Depending 
on the situation, chloride-induced corrosion or carbonation-induced corrosion is 
considered. The models for the initiation period and corrosion rate are already 
given in Chapter II. The assumed distributions are given in the following and are 
all based on (fib, 2006). 

XII.4.1.1 Carbonation-induced corrosion 

For carbonation-induced corrosion, the initiation period can be derived based on 
equation (II-7). Here, the concrete cover c is modelled by a truncated lognormal 
distribution with mean equal to the nominal value and a standard deviation of 
8 mm. The upper limit is 5∙c, and a lognormal distribution is chosen since the 
concrete cover cannot be negative. When calculating the factor ke (according to 
equation (II-4)), the reference value for the relative humidity RHref equals 65%, ge 
equals 2.5, and fe equals 5. For calculation of the factor kc, bc is modelled by a 
normal distribution with mean value -0.567 and standard deviation 0.024, and tc 
equals 28 days. For RACC

-1, a value between 0.3e-11 and  
80e-11 (mm²/years)/(kg/m³) is assumed. Cs is modelled by a normal distribution 
with mean 0.00082 and a standard deviation of 0.0001 kg/m³. In the function W(t) 
(equation (II-6)), according to (Lay et al., 2003), ToW equals 0.75. The factor pSR 
equals 1, and bw is modelled by a normal distribution with mean 0.446 and 
standard deviation 0.163. Finally, t0 equals 0.0767 years. Hence, following 
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distributions are found for different concrete covers (corresponding to the different 
concrete covers of the different reinforcement bars in the bridge): 

- c = 40 mm  Ti = LN(51 years; 21 years); 
- c = 35 mm  Ti = LN(47 years; 20 years); 
- c = 30 mm  Ti = LN(41 years; 21 years). 

 
The corrosion rate depends on Vcorr,a (µ = 0.005 mm/year, σ = 0.003 mm/year), 
ToW (µ = 0.75, σ = 0.2) and αp (= 2) (Duracrete, 2000; Lay et al., 2003). Based on 
a Taylor approximation and accounting for the fact that the corrosion rate cannot 
be negative, following distribution is assumed for the rate of reduction of the 
reinforcement radius: LN(0.0075, 0.005) [mm/year]. 

XII.4.1.2 Chloride-induced corrosion 

For chloride-induced corrosion, the initiation period can be derived based on 
equation (II-1). Here, the concrete cover c has the same distribution as mentioned 
in the previous section. For calculation of the diffusion coefficient D according to 
equation (II-2), for DRCM a value between 1.4e-12 and 25e-12 m²/s is assumed, or 
[44, 788] mm²/year. For a, a uniform distribution between 0.3 and 0.6 is assumed, 
kt = 1 and t0 = 0.0767 years. Tref = 293 K, be ~ N(4800, 700). Ccr ~ N(0.6, 0.15), 
but with a lower boundary of 0.2 and an upper boundary of 2. For different 
concrete covers, following distributions are found: 

- c = 40 mm  Ti = LN(33 years; 26 years) 
- c = 35 mm  Ti = LN(29 years; 25 years) 
- c = 30 mm  Ti = LN(26 years; 23 years) 

 
The corrosion rate depends on Vcorr,a (µ = 0.03 mm/year, σ = 0.02 mm/year), ToW 
(µ = 0.75, σ = 0.2) and αp (µ = 9.28, σ = 4.04). Based on a Taylor approximation 
applied to equation (II-1) and accounting for the fact that the corrosion rate cannot 
be negative, following distribution is assumed for the rate of reduction in 
reinforcement radius: LN(0.21, 0.18) [mm/year]. 

XII.4.2 Limit states to evaluate probability of failure 

The most important failure mechanisms are retrieved from an analysis in DIANA 
FEA and appeared to be bending and shear failure of the longitudinal girders. The 
limit state equations are given by equations (XII-7) and (XII-8). The probability 
distributions used herein are given in Table XII-12. 𝑔(𝑿, 𝑡) = 𝐾𝑅,𝑀𝐴𝑠(𝑡)𝑓𝑦 (ℎ − 𝑐 − 0,5 𝐴𝑠(𝑡)𝑓𝑦𝑏𝑓𝑐 ) − 𝐾𝐸,𝑀(𝑀𝐺 +𝑀𝑄) (XII-7) 

𝑔(𝑿, 𝑡) = 𝐾𝑅,𝑉 [𝐴𝑠𝑤(𝑡)𝑠 𝑧𝑓𝑦 cot(𝜃)] − 𝐾𝐸,𝑉(𝑉𝐺 + 𝑉𝑄) (XII-8) 
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For the considered reinforcement scheme (with a double pair of stirrups close to 
the supports), in most situations bending failure will be the governing limit state. 
 
In equations (XII-7) and (XII-8), As(t) and Asw(t) represent the remaining area at 
time t of the longitudinal an shear reinforcement respectively. These can be 
evaluated based on equations (II-8) and (II-9). When evaluating the probability of 
failure, the distributions assigned to the variables in these degradation models are 
considered. When evaluating the probability of failure at timesteps before the 
measurements are performed, the prior distributions of the initiation period and 
corrosion rate will be assumed to evaluate the probability of failure. At timesteps 
after the measurements, the posterior distributions of the initiation period and 
corrosion rate are considered. Here, a constant corrosion rate over time is assumed. 
If a time-dependent model for the corrosion rate is desirable, this could also be 
incorporated in the analysis. 

XII.4.3 Costs in the VoI analysis 

XII.4.3.1 Cost of failure 

The cost of failure can be calculated as a function of the cost of the bridge itself 
(i.e. the total bridge value). For the bridge under investigation, the cost of the 
bridge itself (bridge deck, abutments, finishing) and removal of the old bridge 
mounts up to € 1 700 000. 
 
The costs of failure also include indirect costs such as property damage, traffic 
closure, traffic jams on alternate routes, loss of reputation, etc. Besides these 
economic costs, bridge failures can also cause fatalities. Estimating all these costs 
for an individual bridge is very hard. Because of this reason, authors often estimate 
the failure costs as a percentage of the total bridge value, such as in the SERON 
project (SeRON, 2012), where the total cost rises to 700% of the bridge value. 
Thöns and Stewart (2019) estimate the total costs up to 5 times the bridge value in 
case of bridge closure prior to collapse, and up to 25 times the bridge value for 
iconic bridge failure. In this work, based on the mentioned sources, a failure cost 
of 10 million euros will be assumed. 

XII.4.3.2 Cost of repair 

Repairs of the bridge are based on the desire to keep the risk of falling concrete 
debris as small as possible, even for bridges in the worst condition. Costs for 
required sudden repairs to maintain this condition are in the range of € 10 000 to 
€ 100 000 (Ministry of Public Works Flanders (MOW), 2020, personal 
communciation). However, in some cases, the total costs of these repairs can even 
exceed the costs of a new bridge. Examples of advanced repairs performed are 
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scraping off the road surface, cathodic protection on the bridge pylons, new joints 
in the bridge deck, steel reinforcement at the sides of the bridge deck, etc. 
 
When repairs/maintenance are planned, they can often be performed in the 
weekends or during the night, when less traffic is present on the roads. As such, 
the costs of blocking the roads will be much smaller than in the cost of failure. The 
cost of building a new bridge (without failure), is estimated as € 1 700 000. The 
cost of just upgrading the structure to an increased reliability (see further) equals 
€ 340 000. This cost includes the costs corresponding to economic damage 
resulting from roadblock during the upgrading works and the costs of the repairs 
itself. These costs are based on (Skokandić and Mandić Ivanković, 2021) and 
(Kong and Frangopol, 2004) respectively. 

XII.4.3.3 Cost of monitoring 

For the dynamic measurements, following costs are assumed: 
- € 10 000 for triaxial acceleration measurements on 36 locations; 
- € 10 000 for modal strain measurements with optic fibres; 
- € 20 000 for a combination of acceleration and strain measurements in 

ambient conditions. 
 
For the static strain measurements, following costs are assumed: 

- € 20 000 for 20 strain sensors; 
- € 28 000 for 52 strain sensors. 

 
These costs are based on estimations by research groups involved at KU Leuven 
and Ghent University. 
 
To install the sensors, the bridge itself and/or the road underneath the bridge might 
need to be closed for traffic. To account for the economic damage due to 
roadblock, a cost of € 30 000 is added to the abovementioned costs of monitoring. 
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Table XII-12: Probability distributions used in the evaluation of the limit states 

Symbol 

[Unit] 
Definition Dist. Mean Std. Ref. 

KR,M [-] 
Resistance model 

uncertainty bending 
LN 1.2 0.18 (JCSS, 2001) 

As [mm²] 
Reinforcement steel 

section 
- 5026 - - 

fy [MPa] 
Yield strength of 

steel 
LN 560 30 

(Holicky and 
Sykora, 2010) 

fc [MPa] 
Concrete 

compressive strength 
LN 39.1 7.03 

(Holicky and 
Sykora, 2010) 

h [mm] Beam height - 885 - - 

c [mm] Concrete cover - 40 - - 

b [mm] Beam width - 500 - - 

KE,M [-] 
Load model 

uncertainty for 

bending 

LN 1 0.1 (JCSS, 2001) 

MG 
[Nmm] 

Bending moment due 

to permanent loads 
N Gk 0.1Gk 

(Holicky and 
Sykora, 2010) 

MQ 
[Nmm] 

Bending moment due 

to variable loads 
GU 0.728Qk 0.146Qk 

(Caspeele et al., 
2016) 

KR,V [-] 
Resistance model 

uncertainty for shear 
LN 1.4 0.35 (JCSS, 2001) 

ρl [-] Reinforcement ratio - 0.02 - - 

d [mm] 
Effective depth of 

reinforcement 
- 845 - - 

KE,V [-] 
Load model 

uncertainty for shear 
LN 1 0.1 (JCSS, 2001) 

VG [N] 
Shear load effect due 

to permanent loads 
N Gk 0.1Gk 

(Holicky and 
Sykora, 2010) 

VQ [N] 
Shear load effect due 

to variable loads 
GU 0.728Qk 0.146Qk 

(Caspeele et al., 
2016) 

Asw 
[mm²] 

Shear reinforcement 

section 
- 452 - - 

s [mm] 
Spacing between 

stirrups 
- 200 - - 

cot(θ) [-] 
Cotangent of angle 

of shear cracks 
- 1.19 - 

(Ministry of Public 
Works Flanders 
(MOW), 2020) 
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XII.4.4 Decision alternatives 

Decisions can be made based on reliability thresholds. For these reliability 
thresholds, values can be found in fib bulletin 80 (Caspeele et al., 2016), the draft 
of fib Model Code 2020 (TG 3.1 fib MC 2020, 2020) and (ISO, 2015). These 
sources provide different values for the critical reliability indices, which will be 
summarized in the following. 
 
When considering the draft of fib Model Code 2020 (TG 3.1 fib MC 2020, 2020), 
the bridge under consideration is of consequence class 2 (CC2), and for existing 
structures a large relative cost of safety measures might be assumed. This leads to 
a reliability index of 3.3 based on economic optimization only. When there are 
multiple equally important failure modes, a value of 0.5 should be added to this 
reliability threshold. Regarding the human safety requirements, a critical 
reliability index of 3.57 is proposed. When upgrading the structure, compliance 
with design levels is required, and hence the structure should be upgraded at least 
to a reliability level of 4.2. All these reliability levels are given for a reference 
period of one year. 
 
When looking at fib bulletin 80 (Caspeele et al., 2016), a reliability index of 2.3 is 
proposed for the economic criterion and a reference period of 50 years. For the 
human safety criterion, fib bulletin 80 gives equation (XII-9). 𝛽𝐻𝑢𝑚𝑎𝑛 𝑠𝑎𝑓𝑒𝑡𝑦 = −Φ−1 (2.75 ∙ 10−5(0.09 ∙ 𝐿)−2𝑡𝑟𝑒𝑓0.055 ) (XII-9) 

In this equation, L is the span length of the bridge, which equals 13 m. According 
to fib bulletin 80, the reference period tref is taken equal to the remaining service 
life and at maximum equal to 50 years. This leads to a reliability index of 2.1. 
Hence, the economic criterion is the governing criterion, and the critical reliability 
index equals 2.3. When inserting a reference period of 1 year in equation (XII-9), 
a reliability index of 3.4 is found. The latter is in line with the reliability index 
provided by the draft version of fib Model Code 2020. fib bulletin 80 also provides 
a reliability index for upgrading of the structure, which equals 3.3 for consequence 
class 2 and a reference period of 50 years. For a reference period of one year, a 
corresponding reliability index of 3.5 is found when based on imposed loads and 
a reliability index of 4.3 when based on climatic loads. This calculation of the 
reliability index is performed based on equation (XII-10), with k = 1 and n = 50 
for climatic loads, and k = 5 and n = 10 for imposed loads. Φ(𝛽50) = Φ(β1)𝑛𝑘  (XII-10) 

 
In the following, a reference period of 1 year will be assumed and the reliability 
thresholds provided in the draft of fib Model Code 2020 will be applied. 
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Following action alternatives will be considered: 
1) Do nothing; 
2) Upgrade the structure to βup (4.2) if β < βcrit (3.57); 
3) Replace the structure by a new one if β < βcrit (3.57). 

 
These action alternatives are based on the reliability index only, and are also 
applied in the prior situation, i.e. without measurements. In the pre-posterior 
situation, the measurements are additionally assumed to trigger an action (i.e. 
cathodic protection) if the following criterion is met: 𝑃[𝑥(𝑡) > 𝑥𝑐𝑟𝑖𝑡] ≥ 𝑃𝑐𝑟𝑖𝑡  (XII-11) 

The critical reduction in rebar radius 𝑥𝑐𝑟𝑖𝑡 is determined based on (Andrade and 
Izquierdo, 2020), where for pitting corrosion a critical reduction in rebar radius of 
0.1 to 0.5 mm is proposed, and for general corrosion a reduction of 0.01 to 
0.05 mm. For the probability Pcrit, different values will be assumed, i.e. 25%, 50% 
and 75%. For each element in which the structure is discretized the probability that 
the reduction in reinforcement radius is larger than 𝑥𝑐𝑟𝑖𝑡 is evaluated, and if the 
probability exceeds Pcrit, cathodic protection is applied to the considered element. 
The corresponding costs for cathodic protection are also taken into account. In this 
work, these costs are based on (Polder et al., 2016) and assumed equal to € 125/m² 
for application of the cathodic protection itself, and € 100/year for checking the 
equipment. These costs correspond to those of an active cathodic protection and 
are also in line with those mentioned in (Wyatt, 1993). 
 
Another possible trigger for an action after monitoring is based on the following 
criterion: 𝑃[𝛼 > 𝛼𝑐𝑟𝑖𝑡] ≥ 𝑃𝑐𝑟𝑖𝑡  (XII-12) 

Here, the critical corrosion degree 𝛼𝑐𝑟𝑖𝑡 is the one corresponding to the critical 
reliability index as provided above. The value of Pcrit will be assumed the same as 
in criterion (XII-11). For each element in which the structure is discretized 
P[α > αcrit] is evaluated, and if it exceeds Pcrit, cathodic protection is applied, but 
also additional strengthening is provided at the considered location. The 
corresponding costs of strengthening and cathodic protection are also taken into 
account. 

XII.4.5 Results of the VoI analysis 

In this section, the results of the VoI analysis based on the input provided above 
are summarized. This is done for the two considered situations: 

1. Carbonation-induced corrosion; 
2. Chloride-induced corrosion. 

The whole service life of the structure is considered, i.e. between the time of 
construction (t = 0 years) and the anticipated service life (t = 100 years). Different 
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points in time to perform monitoring are considered. The investigated points in 
time lie in between the time at which the reliability index starts to decrease in the 
prior analysis (which depends on the investigated situation) and the anticipated 
service life of 100 years. 

XII.4.5.1  Situation 1 – Carbonation-induced corrosion 

In the first situation, the bridge is considered to be located in an environment where 
carbonation will be the most important phenomenon inducing corrosion. For the 
three considered monitoring strategies, the VoI is visualized in Figure XII-27 for 
different points in time to perform the monitoring, ranging between 50 years and 
90 years, in steps of 10 years. The lower bound is chosen based on the mean of the 
initiation period and the point in time at which the reliability index starts to 
decrease in the prior analysis. The upper bound is chosen to cover the whole 
service life (100 years) but not the final value of 100 years, since no monitoring 
will be performed in the last year. The resulting VoI is always negative, since the 
corrosion process proceeds rather slow (because of the assumed corrosion due to 
carbonation), and the results from the measurements would only reveal very small 
corrosion degrees without triggering any intervention. For all sampled monitoring 
outcomes, the optimal action remains the same as the prior optimal action, i.e. 
upgrade the structure to βup if β < βcrit. Hence, the quantitative measurements are 
found not worth their costs. This is also why the static strain measurements at 52 
locations result in the most negative VoI, since they are most expensive. 
 
As mentioned above, the influence of the assumption on Pcrit has also been 
investigated, by changing the value of 50% to 25% and 75%. However, for the 
case under investigation, the influence on the VoI is limited. In addition, the 
influence of changing the cost of failure has been investigated. For this purpose, 
CF0 is once multiplied by 10 and once divided by 2. For this specific case, the 
influence on the VoI is limited. 
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Figure XII-27: VoI as a function of the point in time at which monitoring is performed for 
the different types of measurements – situation 1: carbonation-induced corrosion 

XII.4.5.2 Situation 2 – Chloride-induced corrosion 

For the second situation, the bridge is assumed to be placed in an environment 
susceptible to chlorides, and the corrosion process is modelled with the initiation 
period and corrosion rate for chloride-induced corrosion. Critical values for the 
reliability index will be reached much earlier, and hence the considered times of 
monitoring are between t = 25 years and 90 years. These bounds are determined 
based on the same criteria as for situation 1. 
 
First, the VoI for the different inspection strategies is evaluated and visualized in 
Figure XII-28. Here it can be seen that the VoI differs significantly from the case 
with exposure to carbonation-induced corrosion (situation 1). The largest values 
for the VoI are found at 40 years. The VoI is largest for the situations where 
updating is performed based on natural frequencies either combined with strain 
mode shapes or displacement mode shapes. This can be ascribed to the fact that 
after monitoring, a larger part of the structure is repaired/maintained based on 
criterion (XII-11) compared to updating based on the static strains, as can be seen 
in Figure XII-29, where the number of repaired elements is provided as the mean 
over the different sampled monitoring outcomes. Also, for updating based on these 
modal data types, more often another action than the prior optimal one (i.e. 
upgrade the structure) is chosen, as can be seen in Figure XII-30. It should also be 
pointed out that the cost of the dynamic monitoring techniques is estimated smaller 
than those of the static strain measurements. 
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Figure XII-28: Influence of the point in time at which monitoring is performed on the VoI 
for different monitoring techniques – situation 2: chloride-induced corrosion 

 
 

 
Figure XII-29: Influence of monitoring data (S = static strains, M = natural frequencies + 
displacement mode shapes, and MS = natural frequencies + strain mode shapes) on the 
number of repaired elements after inspection. The number of repaired elements is provided 
as the mean over the different sampled monitoring outcomes. 
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Figure XII-30: Influence of monitoring data on the chosen action as a function of time. The 
left bar at each timestep corresponds to static strain measurements, the middle bar to 
updating based on natural frequencies and displacement mode shapes, and the right bar to 
updating based on natural frequencies and strain mode shapes. 

 
Also for this case, the influence of the choice for Pcrit is investigated, and these 
results are visualized in Figure XII-31 for the static strain measurements. Here it 
can be seen that for Pcrit equal to 25% a higher VoI is found at the earlier timesteps. 
This can be explained by looking at Figure XII-32, where for Pcrit = 25%, the 
optimal action changes to ‘Do nothing’ for some of the sampled inspection 
outcomes, where this is not the case for the higher values of Pcrit. When Pcrit is 
increased to 75%, less elements will be repaired or maintained after the inspection 
(as visible in Figure XII-33), and a smaller VoI is found compared to Pcrit = 50%. 
 

 
Figure XII-31: Influence of Pcrit on the VoI for static strain measurements as a function of 
the point in time at which monitoring is performed – situation 2: chloride-induced corrosion 
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Figure XII-32: Influence of Pcrit on the chosen action as a function of time when static strain 
measurements are performed (situation 2). The left bar at each timestep corresponds to 
Pcrit = 25%, the middle bar to Pcrit = 50%, and the right bar to Pcrit = 75%. 

 

 
Figure XII-33: Influence of Pcrit on the number of repaired elements after monitoring based 
on static strains measured at different points in time (situation 2). The number of repaired 
elements is provided as the mean over the different sampled monitoring outcomes. 

 
In addition, the influence of the cost of failure has been investigated. For this 
purpose, the cost of failure is once divided by 2, once divided by 5, once multiplied 
with 5, and once multiplied with 10. The influence on the VoI is given in 
Figure XII-34 for static strain measurements. Here it can be seen that the influence 
of overestimating the failure cost by a factor 5 or 10 is relatively small. An 
underestimation of the failure cost by a factor 2 also does not largely influence the 
resulting VoI. When underestimating the failure cost by a factor 5, the VoI 
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drastically increases. This could be ascribed to the fact that for a failure cost 
reduced by a factor 5, the posterior most optimal action is to do nothing in all cases 
and the prior most optimal action is to upgrade the structure to βup if β < βcrit. The 
general behaviour of the VoI remains the same in all cases: starting at a negative 
VoI and then increasing over time until a maximum is reached, after which the 
VoI starts to decrease again. 
 
The influence of increasing the cost of failure with a factor 10 has also been 
investigated for the case where modal data is collected. The influence hereof is 
visualized in Figure XII-35. Similar as for the static strain data, the influence of 
increasing the cost of failure is limited until t = 40 years. At later timesteps, the 
VoI is larger for the higher failure costs. It can also be seen that when the failure 
cost is increased, the optimal inspection strategy remains unaltered compared to 
Figure XII-28. 
 

 
Figure XII-34: Influence of the cost of failure on the VoI for static strain measurements as 
a function of the point in time at which monitoring is performed – situation 2: chloride-
induced corrosion 
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Figure XII-35: Influence of increasing the failure cost when considering natural frequencies 
combined either with displacement mode shapes (M) or with strain mode shapes (MS) – 
situation 2: chloride-induced corrosion 

XII.4.6 Discussion 

In this section, the VoI has been evaluated for the bridge under investigation. 
Different monitoring strategies are considered and different points in time at which 
monitoring can be performed are evaluated. The influence of some parameters, 
such as the failure cost and the threshold for performing an action based on the 
monitoring results (Pcrit) has been evaluated. Two cases are considered: 
carbonation-induced corrosion and chloride-induced corrosion. In the first case, 
the degradation rate is very small and no repairs are required. Monitoring does not 
induce an intervention and hence will lead to a negative VoI. This is also the reason 
why changing some of the parameters in the analysis has a limited effect on the 
VoI. In the case of chloride-induced corrosion, a positive VoI is found for some 
timesteps, and the VoI reaches a maximum. This could be ascribed to the fact that 
monitoring triggers an intervention for this situation. 
 
In the analysis in Chapter XI, it was found that changing the repair model could 
have a large influence on the VoI and on the most optimal monitoring strategy. In 
the current analysis, it was also found that in the case of chloride-induced 
corrosion the value assigned to Pcrit influences the VoI. Furthermore, in Chapter XI 
it was found that if the cost of failure increases the VoI increases. However, this 
does not seem a general trend when considering the results in the current chapter. 
Hence, it could be concluded that for many of these influences, it is difficult to 
find a general pattern. The results might significantly depend on the considered 
structure, costs, decisions, prior models, etc., and preferably, for each situation a 
sensitivity analysis to the most important input variables should be performed. 
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All results provided in this chapter depend on the assumptions made for the errors 
in the likelihood function (i.e. measurement and modelling errors). Other 
assumptions could be made here, which might influence the shape and/or 
uncertainty of the posterior distribution and the resulting VoI. Nevertheless, more 
research is required on the appropriate quantification of these measurement and/or 
model errors. 
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“We must accept the end of something in order to begin to build something 
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XIII.1 General conclusions 

As a first part of this final chapter, some major findings and conclusions of this 
PhD research are highlighted. In section XIII.2, also some general 
recommendations for further research are provided. 

XIII.1.1 Bayesian updating based on monitoring data 

To gain information on the structural behaviour of an existing structure, 
measurements can be performed. These often lead to a lot of data, for which it 
remains unclear how to use this data in asset management strategies for the 
planning of maintenance activities. In current practice, mostly data-based methods 
are applied, triggering actions once the measurement data cross a predefined 
threshold. However, this procedure does not allow to predict the future behaviour 
of the structure and to evaluate its time-dependent reliability and corresponding 
remaining service life. For the latter, model-based methods are more appropriate. 
Here, data is used to improve a model of the investigated structure, which can then 
be used to make predictions about the structural behaviour. If a time-dependent 
deterioration model is also included, a more accurate prediction of the remaining 
service life can also be achieved. In this work, it has been illustrated how different 
types of data can be used to update the probabilistic distributions appearing in the 
(time-dependent) model of a degrading structure based on a Bayesian procedure. 
Prior probabilistic distributions for the variables in the degradation models are 
updated to posterior distributions by properly accounting for the monitoring data 
and the associated uncertainties. Based on the resulting posterior distributions of 
the variables in the degradation models, the remaining service life can be predicted 
more accurately. Both reinforced concrete structures and prestressed concrete 
structures have been studied, including different types of data and combinations 
of data types. Moreover, the spatial correlation of the degradation process is also 
accounted for by modelling (some of) the variables in the degradation models by 
random fields. Due to the correlation modelled by these random fields, inspections 
or measurements at one location might also provide information on another non-
inspected location, if the correlation between both locations is sufficiently high. 
 
In this thesis, it has been illustrated how different data types can be used to update 
the initiation period and corrosion rate, and hence the corresponding corrosion 
degree, of a corroding reinforced concrete structure. To account for the spatial 
correlation of the corrosion degree along the structure, the initiation period and 
corrosion rate are modelled with random fields. Hence, these random fields of the 
initiation period and corrosion rate are updated based on the different data types, 
resulting in a posterior distribution of the corrosion degree at the considered 
timestep. It was shown how static displacement data generally leads to a rather 
vague posterior distribution of the corrosion degree, due to the limited dependence 
on local stiffness changes. Static strain data on the other hand can provide a locally 



 
 

 
 

General conclusions and further research 377 
 

more accurate estimate of the actual corrosion degree, with a posterior mean 
corrosion degree close to the actual value and a small posterior uncertainty. 
However, the disadvantage is that for statically determinate structures the static 
strains only depend on the local stiffness and do not provide any information on 
locations not equipped with strain gauges. Only for locations not equipped with 
strain gauges that lie close to the measurement locations, limited information on 
the stiffness can be retrieved due to the random field modelling and the assumed 
correlation. Hence, the critical locations where static strain measurements should 
be performed are preferably determined beforehand. A possible solution is to 
derive these locations based on the posterior distributions derived from modal data 
retrieved from acceleration measurements or strain measurements with optic 
fibres. Natural frequencies depend on the general stiffness of the structure, and 
local changes in stiffness might result in changes in the displacement mode shapes 
or strain mode shapes. As such, localization of damage is enabled. Nevertheless, 
it was found that updating based on these modal data generally leads to a more 
vague posterior distribution compared to a posterior distribution derived based on 
static strain measurements. There is a larger deviation between the posterior mean 
corrosion degree and the actual value, and the posterior uncertainty is still 
relatively large. It has been illustrated in this work how combining information 
from both data types leads to a more accurate posterior distribution compared to 
considering each of them separately. 
 
Besides combining dynamic and static data, also visual observations can be 
included when determining the posterior distribution of the corrosion degree. 
When investigating a structure, visual signs of corrosion (rust stains, corrosion 
cracks, etc.) can be present. Generally, these have a filtering effect on the initiation 
period (lower initiation periods are excluded) and lead to larger posterior corrosion 
degrees. It has been illustrated by several examples how combining the visual 
observations with the static or modal data leads to an improved posterior 
distribution compared to the one found when the visual observations are not 
considered. The benefit of including the visual observations is largest in the case 
where only including the static or dynamic data leads to a relatively vague 
posterior distribution, or if the model used in the likelihood function deviates 
significantly from the actual structure under investigation. The latter has been 
illustrated by the case study bridge considered in Chapter XII, where the influence 
of a model error by neglecting the skewness of the bridge has been investigated 
(cfr. infra). Also in Chapter VII, it has been illustrated that using more informative 
prior distributions, defined based on information from visual observations, leads 
to a posterior distribution better approximating the actual value. 
 
The Bayesian updating procedure has also been applied to some simplified 
prestressed structures. Here, only static strain data has been used due to the limited 
influence of corrosion of prestressed structures on the modal data. For the 
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investigated prestressed beam, the corrosion degree of the prestressing 
reinforcement could be updated based on the static strain data, together with an 
underlying distribution for the initiation period and degradation rate. For the 
investigated post-tensioned girder, the corrosion degree of both the prestressing 
reinforcement and the unstressed reinforcement bars has been updated based on 
the static strain data. Here, a grouted as well as an ungrouted duct have been 
considered. In the first situation, the corrosion degree of the unstressed 
reinforcement bars could be updated based on the strain data, but not the corrosion 
degree of the prestressing steel. This could be ascribed to the fact that the latter 
only influences the strains to a noticeable extent once the strands have failed. 
When the duct is ungrouted, vague posterior distributions are found for the 
corrosion degree of both the unstressed reinforcement and the prestressing steel, 
but still approaching the actual underlying value. However, this only holds for 
very accurate strain measurements and an accurate inverse model, resulting in a 
small error to be considered in the likelihood function. If the error in the likelihood 
function increases, e.g. due to the use of less accurate measuring techniques or less 
accurate inverse models, the posterior distribution is almost equal to the prior 
distribution, due to the limited strain differences between the corroded case and 
the uncorroded case. In addition, the remaining prestress of two 70-year old post-
tensioned beams tested up to failure has been estimated by a Bayesian procedure. 
The most likely value for the prestress has determined for both beams based on 
three points in an experimental load-displacement curve, i.e. the cracking moment, 
the moment of reopening of the cracks and the load corresponding to a 
displacement of 40 mm (i.e. in the non-linear branch). The obtained results have 
been verified based on the load-displacement curve of the finite element model, 
accounting for the a posteriori most probable prestress. The obtained load-
displacement curve closely approximated the experimentally observed curve. An 
important advantage of the applied procedure is that besides the most probable 
value of the remaining prestress, also the uncertainty on this value can be 
estimated. 
 
As already pointed out, in the case study in Chapter XII, it has been illustrated that 
it is important that the model used in the Bayesian updating procedure resembles 
the actual structure as good as possible. Simplifications that are allowed in the 
design can have large consequences when also applied in the inverse model used 
for the Bayesian analysis. It can lead to posterior distributions largely deviating 
from the actual situation because all differences between the actual structure and 
the model are ascribed to the variables to be updated, in this case the corrosion 
variables. The error can be limited to some extent by application of more 
informative priors, e.g. also accounting for visual signs of corrosion cracking (cfr. 
supra). 
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In most examples, the posterior distribution that was visualized was the 
distribution of the corrosion degree of the longitudinal reinforcement. 
Nevertheless, due to the smaller concrete cover, the shear reinforcement might be 
more susceptible to corrosion. Since not directly the corrosion degree is inferred, 
but the distributions of the variables describing the initiation phase and 
propagation phase, these can also be used to evaluate the posterior distribution of 
the corrosion degree of the shear reinforcement by applying the models provided 
in Chapter II and accounting for the reduced concrete cover of this shear 
reinforcement. 
 
All results from Bayesian inference in this work depend on the assumptions made 
for the errors in the likelihood function (i.e. measurement and modelling errors). 
In the different chapters, these assumptions and their influence on the results have 
been discussed. Other assumptions could be made for the measurement and 
modelling errors, which might influence the shape and/ uncertainty of the posterior 
distribution. Nevertheless, more research is required on the appropriate 
quantification of these measurement and/or model errors. 
 
In the Bayesian analyses performed in this work, a near-perfect relation (with some 
model and measurement error) is considered between the corrosion level and the 
monitoring responses. This relation was validated with finite element models in 
Chapter XII, yet the experiments in Chapter VII showed a different view. On this 
aspect, some critical notes could be made. First of all, the influence of the cracking 
direction could be considered, where corrosion mostly induces longitudinal 
cracks. As a consequence, corrosion will have a lager influence on lateral bending 
modes than on vertical bending modes. Moreover, as stated in Chapter II, 
corrosion also influences the bond between steel and concrete, which can also 
influence the stiffness and the behaviour of the structure. Furthermore, corrosion 
is not the only factor influencing the structural responses. There might also be 
influences from the environment, effects from creep and shrinkage, etc. When 
performing Bayesian inference based on the measured responses, these effects 
should either be filtered out from the data, also considered in the model, or 
accounted for by introducing an additional model uncertainty. This model 
uncertainty can be rather large, as also has become apparent from the different 
analyses considered in this work, especially when looking at the results from the 
experimental investigations in Chapter VII. Also the choice for the type of sensors 
and the history of the structure (e.g. handling of the beams in the case of the 
experiments) influence the measurement output. Furthermore, the response for a 
certain corrosion degree will also depend on the layout of the reinforcement. How 
a given corrosion degree influences the structural behaviour will be different for 
different structures with different reinforcement layouts. Important influences here 
are the position of the longitudinal reinforcement, the presence/absence of stirrups, 
etc. There are two possible ways to cope with these issues: either the model is 
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refined, taking into account all these possible influences, either a model error is 
included. Very often, a combination of both will be required, and there will be 
some kind of trade-off, where a more accurate model will lead to a lower model 
error and vice versa. 

XIII.1.2 Experimental investigations 

In Chapter VII, the results of an experimental campaign have been discussed. In 
this experimental campaign, reinforced concrete beams have been subjected to 
accelerated corrosion by application of a salt solution and a direct current. 
 
Static strains have been measured on the corroded beams, under a load not 
exceeding the cracking load. These static strains have been considered in a 
Bayesian inference procedure applied to update the distribution of the corrosion 
degree of the beams (uniform along the beam). When updating the distribution of 
the corrosion degree based on the static strains and assuming both a vague and a 
more informative prior distribution for the corrosion degree, quite good results 
were found for the posterior distribution. Furthermore, using a more informative 
prior distribution showed to be beneficial in the identification of the corrosion 
degrees. 
 
The beams have also been tested until failure. When looking at the resulting load-
displacement curves and the corresponding finite element simulations, the effects 
of spatial variation of the corrosion process become very clear. When the corrosion 
degree would be determined very locally by removing the cover concrete, and this 
would be done at a location with a limited corrosion degree, a large overestimation 
of the failure load might be achieved. 
 
Dynamic tests have also been performed on the beams. Considering the resulting 
modal data, natural frequencies decreased for a reinforced concrete beam 
subjected to corrosion. Nevertheless, also the uncorroded reference beam showed 
a decrease in natural frequencies, due to the young age of the concrete. This effect 
should be accounted for when estimating the corrosion degree based on the natural 
frequencies. When considering strain mode shapes and displacement mode shapes, 
no effects of the corrosion process were present, due to the application of the salt 
solution along the whole length of the beam. 
 
Further, this experimental campaign provides some important lessons for future 
experiments to be performed. Amongst others, when looking at the displacement 
mode shapes, there are very local changes observed which could not be ascribed 
to the corrosion process. Hence, caution should be paid to attachment of the 
accelerometers and the plates. Similarly, for the strain mode shapes proper 
clamping of the fibres should be assured, and contact with the corrosion products 
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should be avoided. Moreover, the optic fibres are very sensitive to breakage and 
should be properly protected. 

XIII.1.3 Optimization of monitoring strategies 

Monitoring strategies can be optimized by evaluation of the Value of Information 
(VoI) for different strategies, and choosing the strategy with the largest VoI as the 
most optimal one. It has been shown how the pre-posterior framework for the 
evaluation of this VoI can be extended in order to account for the time-dependent 
and spatial character of degradation in RC structures. To account for the time-
dependent character, calculations of the service life cost are required over the 
anticipated service life of the structure under investigation, and time-dependent 
models should be applied, from which the variables could be updated based on the 
monitoring data. To account for the spatial behaviour, the use of random fields 
and/or hyperparameters is suggested to model spatial correlation of the variables 
of interest. As such, inspections or measurements at one location might also 
provide information about other, non-inspected but correlated locations. 
 
Evaluating the VoI requires a high computational effort since calculations over the 
whole service life are required, and updating based on monitoring data is often 
performed based on MCMC sampling, which requires a lot of iterations. 
Moreover, for optimizing a monitoring strategy, many evaluations of the VoI are 
required, which can result in a large computational demand. In Chapter XI, 
suggestions are made to reduce the computational cost of the VoI calculation and 
of the optimization of monitoring strategies.  
 
One of the suggestions to reduce the computational effort when optimizing a 
monitoring strategy is to determine the optimal sensor locations beforehand based 
on a greedy search procedure and the information entropy (as explained in 
Chapter X). As such, the VoI should only be evaluated for different numbers of 
sensors and not for different sensor locations, drastically reducing the required 
number of (computationally expensive) evaluations of the VoI. The procedure 
developed in this work differs from existing literature since it is derived for 
optimisation of the sensor positions when the purpose is to update random fields 
of the corrosion variables instead of general stiffness distributions that are not 
correlated (i.e. no random fields are used to model correlation between the 
stiffness at different locations along the structure). Furthermore, the procedure is 
based on a finite element model, without the need of fitting a meta-model to it. 
Consequently, optimal sensor positions can be derived for the extraction of 
displacement mode shapes, strain mode shapes and static strains. 
 
Another way to limit the computational effort is to use approximations of the 
posterior distribution instead of sampling based methods. It has been illustrated 
that the error made by this approximation both on the posterior distribution and on 
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the estimate of the VoI is negligible. However, it is suggested to always check this 
for the case under investigation. 
 
Also, the influence of varying some of the input parameters in the VoI analysis 
has been investigated, such as the cost of failure, the cost of repair, the assumed 
prior distributions for the corrosion variables, etc. It has been illustrated that the 
effect can be rather large and caution should be made when selecting the values 
for the input parameters. In case of doubt, it is advised to perform a sensitivity 
analysis. 
 
Even though the VoI approach developed in this work requires a rather high 
computational cost, this cost is generally very small compared to the cost of the 
actual monitoring system or the cost of failure of critical infrastructure. The VoI 
approach seems particularly useful for the management of large and critical 
bridges, e.g. in terms of traffic flow. For such bridges, large costs can be involved 
in the closure and/or failure of the bridge, and it can be beneficial to investigate 
beforehand whether investing in a monitoring strategy is beneficial or whether one 
can better stick to an a priori determined maintenance schedule. 
 
Finally, the VoI approach has also been applied to the case study bridge discussed 
in Chapter XII. Here it was found that, when the degradation rate is very small and 
no repairs are a priori required, the VoI is negative, as could be expected 
beforehand since monitoring does not induce an intervention. In such a case, the 
output of the VoI analysis is also less sensitive to changes in the input parameters. 
In the case of higher degradation rates, a positive VoI can be found for some 
timesteps, and the VoI will reach a maximum. This could be ascribed to the fact 
that monitoring triggers a repair based on the monitoring outcomes instead of only 
the planned repairs based on the reliability index. This repair based on the 
monitoring outcomes could happen before the a priori planned repair based on the 
reliability index. Also, when comparing the results of Chapter XII with those of 
Chapter XI, it could be concluded that for many input parameters, it is difficult to 
find a general pattern when considering the influence on the VoI. The results might 
significantly depend on the considered structure, costs, decisions, prior models, 
etc., and preferably, for each situation a sensitivity analysis to the most important 
input variables should be performed. 
 
All results from the VoI analyses in this work depend on the assumptions made 
for the errors in the likelihood function (i.e. measurement and modelling errors). 
Other assumptions could be made here, which might influence the results. 
Nevertheless, more research is required on the appropriate quantification of these 
measurement and/or model errors. 
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In the considered examples, the optimization has been carried out for statically 
determinate RC girder bridges subjected to corrosion. Nevertheless, the 
framework could also be applied to other bridge types, such as statically 
indeterminate bridges. Influences of degradation on monitoring outcomes might 
differ, but could be accounted for by appropriate models of the structures. For 
prestressed and post-tensioned bridges, additional research will be required on the 
monitoring strategies to be applied. Other damage scenarios can also be included 
by altering the degradation models. 

XIII.2 Recommendations for further research 

In this section, recommendations for further research complementing the current 
work are provided. 

XIII.2.1 Bayesian updating based on monitoring data 

In this work, specific data types have been considered for updating the 
distributions of the corrosion variables, i.e. static strains and deflections, and 
modal data such as natural frequencies, displacement mode shapes and strain mode 
shapes. These different types have also been combined, and the influence of 
including visual observations has been investigated. However, also other data 
types providing information on the stiffness or directly on the corrosion degree 
could be included. Examples are results from acoustic emission monitoring, cover 
measurements, chloride penetration depths, etc. Incorporation of these data types 
in the methodology can be investigated. Moreover, in the present work, inference 
is performed based on a direct relation between the measurement output and the 
model parameters. Nevertheless, if probability of detection (PoD) curves would 
be available for the considered measurement technique, these could also be 
incorporated. These PoD curves give the probability of damage detection as a 
function of the damage extent (e.g. a defect size such as a crack width). As 
explained in (Straub, 2004), a PoD curve can be interpreted as a likelihood 
function. For example, if the measurement outcome would be an indication of 
damage, in the MCMC sampling, the likelihood of a sample corresponding to a 
certain damage extent will be the probability of detection of damage for this 
damage extent. A more optimal strategy will have a higher probability of detection 
(and a lower probability of false alarm). Different strategies can be combined by 
combining the different likelihood functions. Multiple measurement techniques 
could be considered when defining the PoD, which will lead to an increased PoD 
and a reduced probability of false alarm. Nevertheless, more research is required 
on the definition of this PoD curve for different measurement techniques. 
 
In the current work, it has also been illustrated how a mismatch between the model 
and the actual structure can influence the resulting posterior distribution. Hence, 
effects of corrosion could be investigated in more detail. Whereas the application 
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of simplified corrosion models is often justified, the framework could also be 
applied to more complex corrosion models or even other degradation phenomena. 
For example, to simulate the influence of corrosion on the modal data, the cracks 
resulting from the corrosion process could be explicitly modelled instead of 
applying a stiffness reduction to the cracked concrete. As such, the influence of 
longitudinal cracks on lateral bending modes and the influence of transverse 
cracks on vertical bending modes will be accounted for in a more appropriate way. 
 
In the Bayesian analyses performed in this work, values for the measurement 
errors have been assumed based on literature, and the influence of changing these 
measurement errors has been investigated. In the experimental program, a first 
quantification of the measurement error for static strain measurements was 
performed using measured strains on plain concrete prisms. However, this might 
still differ from the error when measuring strains on reinforced concrete structures. 
More detailed investigations on this measurement error might be required. Further, 
additional investigations on the quantification of the error of modal data could be 
performed, together with further research on deriving the model error. The latter 
includes the error of the finite element model (and the response surface fitted to 
it), but also the error of the corrosion model. 
 
Measurement (and model) errors have also been assumed to be uncorrelated, 
because an uncorrelated measurement error is in correspondence with maximum 
data entropy in the prior estimate. However, introducing correlation can lead to a 
recombination of data and alter the weighing of the prior information. It also does 
not necessarily lead to an increase in posterior uncertainty compared to the 
uncorrelated case (Simoen et al., 2013). Hence, if correlation is present, neglecting 
this correlation is not always conservative. When considering different correlation 
models for the measurement and/or model error and also inferring the 
corresponding correlation parameters, the true correlation structure can be 
accurately estimated in the Bayesian inference procedure, provided sufficient data 
are available. As such, a more realistic joint structural-probabilistic model and 
corresponding Bayesian model updating results can be assured. Besides 
correlation, bias could also be present in the measurements. There are different 
options to account for this bias. The mean value of the measurement error could 
be assumed different from 0, an additional term in the relation between the 
measured and modelled output could be introduced, a multiplicative model error 
with mean value different from 1 could be inserted, etc. The bias from different 
sources could also be reduced by the consideration of redundancy in the 
measurement information. 
 
The main focus of this research was on reinforced concrete structures. 
Nevertheless, preliminary investigations have been performed on prestressed 
concrete structures. Further research on this topic is advised. Information on the 
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state-of-the-art on the assessment of prestressed structures can be found in 
(Vereecken et al., 2021), which can serve as a starting point for further research. 
 
The examples discussed in this work were often illustrative or based on literature. 
In the case study in Chapter XII, a real bridge geometry is considered, but 
simulated data is still used. In Chapter VII, real data is available for the beams 
subjected to accelerated corrosion, but these are tests in a rather controlled 
environment and on beams of limited scale when compared to a real bridge 
geometry. Hence, it would be very interesting to be able to perform measurements 
on a corroded bridge, and apply the methodology to a real bridge geometry and a 
rather complete data set. 

XIII.2.2 Experimental investigations 

With respect to the experimental investigations, additional configurations of 
beams could be tested. A first interesting option would consist of beams with 
higher corrosion degrees, to investigate whether the influence on natural 
frequencies and static strains would be more distinguishable for these higher 
corrosion degrees. Moreover, instead of applying the salt solution along the whole 
length of the beam, local corrosion might be induced by applying the salt solution 
over a smaller surface. As such, the influence of local corrosion on the 
displacement mode shapes and strain mode shapes can be investigated. Besides 
changing the corrosion process variables, other cross-sections of the concrete 
beam might be investigated, with different concrete covers, etc. It would also be 
interesting to apply the accelerated corrosion process to a reinforced concrete slab 
to investigate the spatial distribution of corrosion in more detail, and enable the 
derivation of appropriate correlation lengths. Finally, a similar experimental 
campaign could also be applied to prestressed concrete elements. This would 
provide a valuable addition to the current state-of-the-art, and can lead to relevant 
knowledge on the influence of corrosion on the behaviour of such structures. 
Moreover, this might deliver better insights in how to assess the corrosion degree 
and resistance of prestressed concrete structures. An important consideration in 
this experimental campaign should be the relation between prestress losses and the 
dynamic parameters. 
 
The experimental campaign performed in this work can be used as a starting point 
for further experimental research. The lessons learned from the current 
experiments should be taken along in these future tests. 

XIII.2.3 Optimization of monitoring strategies 

Similar as for the Bayesian updating procedure, also the extended pre-posterior 
framework allows the incorporation of other monitoring techniques, more accurate 
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degradation models, etc. Furthermore, for the evaluation of the failure 
probabilities, other techniques than a FORM analysis could be relied on. 
 
When optimizing a monitoring strategy, some suggestions are made to limit the 
computational effort, i.e. by optimizing sensor positions beforehand and by using 
approximate methods for the derivation of the posterior distribution. Nevertheless, 
it has also been illustrated that the resulting VoI still largely depends on different 
values of the input parameters, such as the costs and prior distributions. Further 
research might be conducted on this topic to provide general guidelines on which 
cost models and prior distributions should be used when evaluating an existing 
structure. 
 
In the VoI analyses in the present work, the effects of repair are modelled in a 
simplified way. Further research could focus on which repairs are to be considered 
for different types of RC structures subjected to different types of degradation, 
their influence on the variables of interest, and the corresponding influence on the 
probability of failure. As such, repairs could be included in a more detailed manner 
in the VoI framework. 

XIII.2.4 Further recommendations 

Currently, research is also ongoing within the research group on a definition of 
appropriate and practical threshold levels related to damage. Such threshold levels 
could be derived based on an adjusted partial factor approach, where for example 
a critical value for the remaining steel section can be derived based on a target 
reliability index. When evaluating a (finite element) model of the structure with 
this adjusted steel section, corresponding displacements, strains etc. can be 
evaluated, which can then be used as damage thresholds. These damage thresholds 
can serve two purposes, i.e. in the definition of PoD curves for defining the 
accuracy of a monitoring/inspection strategy (cfr. supra), and in the VoI analysis 
as thresholds for performing a repair or maintenance action. 
 
Generally, the aspects discussed in this work could be included in an all-
encompassing framework for the assessment, evaluation and decision-making of 
existing reinforced concrete structures. Whereas in the current work different 
models are used and combined, a global workflow incorporating all aspects 
discussed (and which is easy to use and interpret by decision-makers) might be of 
very high value. This might for example be combined in a software tool that is 
easy to use, without requiring a full background knowledge on all the underlying 
calculations. This tool could enable the performance prediction, optimization of 
inspection and monitoring, and assessment of interventions for existing structures. 
For sure, this framework would still incorporate the time-dependent and spatial 
character of degradation and a Bayesian updating procedure to account for 
information from monitoring and inspections. It could also include an inspection-
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based condition assessment tool, linking mechanical effects to damage parameters 
in a practical way. The tool could also include a framework for multi-objective 
performance-based optimization of maintenance strategies and repair or 
strengthening interventions. Extra focus could be given to modelling of the repair 
strategies. Choices of repair technologies and materials could then be made by 
explicitly considering their lifetime performance. Finally, for such a framework, 
suitable target performance levels for existing structures need to be derived. The 
whole developed methodology could then be integrated within an information 
management system enabling continuous life-cycle supervision based on linked 
data and a digital twin approach. 
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A.1 Corrosion degree 

Below, the results of the corrosion degree for the individual bars in each beam are 
presented. 
 

 
Figure A-1: Corrosion degree of beam 1.1 (6.2%) (x = 0 corresponds to the left when 
looking at the side with the strain gauges) 

 

 
Figure A-2: Corrosion degree of beam 1.2 (2.7%) (x = 0 corresponds to the left when 
looking at the side with the optic fibres) 
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Figure A-3: Corrosion degree of beam 2.1 (6.6%) (x = 0 corresponds to the left when 
looking at the side with the strain gauges) 

 
 

 
Figure A-4: Corrosion degree beam 2.2 (5.2%) (x = 0 corresponds to the left when looking 
at the side with the optic fibres) 

 



 
 

 
 

394 Appendix   
 

A.2 Concrete properties 

Below the experimental values for the concrete properties at the different testing 
ages are provided for the different concrete casts. 
 
 

Table A-12: Test results material characterization set 1 

 fc,cyl 

[MPa] 

fc,cube 

[MPa] 

fct 

[MPa] 

Gf 

[N/mm] 

DRCM
 

[mm²/year] 

Ec 

[GPa] 

Set 1 – 28 days 
 38.5 42.5 3.5 4.0 2.7 0.11 1432 31.4 
 38.3 43.8 3.5 3.6 3.1 0.10 1443 31.3 
 40.4 42.4 3.3 3.8 2.2 / 1627 30.4 

Mean 39.0 42.9 3.3 / 1500 31.0 
COV 0.03 0.02 0.16 / 0.07 0.02 

Set 1 – 63 days 
 37.8 / 3.0 2.8 2.7 0.16 / 37.6 
 / / 3.0 2.6 2.6 0.16 / / 
 / / 2.6 2.6 3.0 0.14 / / 

Mean 37.8 / 2.8 0.15 / 37.6 
COV / / 0.07 0.08 / / 

Set 1 – 330 days 
 36.0 / 2.1 2.5 2.3 0.20 / 33.5 
 33.3 / 2.5 2.4 2.4 0.14 / / 
 / / 3.1 2.9 3.2 / / / 
 / / 3.6 3.2 3.3 / / / 

Mean 34.7 / 2.8 0.17 / 33.5 
COV / / 0.17 / / / 
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Table A-13: Test results material characterization set 2 

 fc,cyl 

[MPa] 

fc,cube 

[MPa] 

fct 

[MPa] 

Gf 

[N/mm] 

DRCM
 

[mm²/year] 

Ec 

[GPa] 

Set 2 – 28 days 
 42.6 42.9 4.8 4.9 3.2 0.16 1496 34.3 
 42.9 44.6 4.5 4.2 2.7 0.20 1645 31.1 
 41.8 42.3 3.2 3.9 2.6 / 1752 / 

Mean 42.4 43.3 3.8 0.18 1631 32.7 
COV 0.01 0.03 0.23 / 0.08 / 

Set 2 – 182 days 
 39.8 / 3.0 3.5 0.09 / 30.2 
 39.7 / 3.5 3.0 / / 30.8 
 42.3 / 2.9 3.6 / / 30.7 

Mean 40.6 / 3.2 / / 30.6 
COV 0.04 / 0.11 / / 0.01 

Set 2 – 285 days 
 38.9 / 4.0 3.5 0.13 / 36.8 
 42.1 / 3.9 3.1 0.11 / 33.4 
 41.9 / 3.9 4.1 0.13 / 30.5 
 40.0 / / / / / / 

Mean 40.7 / 3.7 0.12 / 33.6 
COV 0.04 / 0.10 0.09 / 0.09 
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Table A-14: Test results material characterization set 4 

 fc,cyl 

[MPa] 

fc,cube 

[MPa] 

fct 

[MPa] 

Gf 

[N/mm] 

DRCM
 

[mm²/year] 

Ec 

[GPa] 

Set 4 – 28 days 
 37.8 41.6 3.3 3.6 2.8 0.11 1824 33.9 
 38.2 41.1 3.8 3.2 2.9 0.12 1764 32.2 
 36.7 40.4 3.6 2.7 2.9 0.16 2097 30.7 

Mean 37.6 41.0 3.2 0.13 1895 32.3 
COV 0.02 0.01 0.13 0.20 0.09 0.05 

Set 4 – 63 days 
 40.7 / 3.6 0.12 / / 
 / / 3.1 / / / 
 / / 3.1 / / / 

Mean 40.7 / 3.3 0.12 / / 
COV / / 0.07 / / / 

Set 4 – 182 days 
 36.6 41.7 3.0 3.1 0.25 / 30.0 
 / 40.3 3.0 3.4 0.17 / / 
 / / 3.0 3.8 / / / 

Mean 36.6 41.0 3.2 0.21 / 30.0 
COV / / 0.10 / / / 

Set 4 – 285 days 
 36.3 40.9 3.2 3.8 0.14 / 35.0 
 / 41.0 3.3 3.8 0.13 / / 
 / / 3.4 3.3 / / / 

Mean 36.3 41.0 3.5 0.14 / 35.0 
COV / / 0.08 / / / 

Set 4 – 330 days 
 35.2 41.9 2.9 3.2 3.2 0.17 / 33.8 
 37.4 40.3 3.0 3.2 3.0 0.15 / 31.0 
 35.5 / 3.0 3.3 3.1 / / 31.6 
 37.7 / 3.3 3.2 2.9 / / / 
 / / 3.1 3.4 3.2 / / / 
 / / 3.5 3.4 2.9 / / / 

Mean 36.5 41.1 3.2 0.16 / 32.1 
COV 0.04 / 0.06 / / 0.05 
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A.3 Displacement mode shapes and strain mode shapes 

Below the displacement mode shapes and strain mode shapes of the different 
corroded beams are provided. 
 
 
 

 

Figure A-5: Displacement mode shapes beam 1.2 (2.7% corrosion) (x = 0 mm corresponds 
to the left of the side of the beam with the optic fibres) 
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Figure A-6: Strain mode shapes beam 1.2 (2.7% corrosion) (x = 0 mm corresponds to the 
left of the side of the beam with the optic fibres) 
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Figure A-7: Displacement mode shapes beam 2.2 (5.2% corrosion) (x = 0 mm corresponds 
to the left of the side without measuring equipment (side with optic fibres for the other 
beams)) 
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Figure A-8: Displacement mode shapes of beam 1.1 (6.2% corrosion) (x = 0 mm 
corresponds to the left of the side with the optic fibres) 
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Figure A-9: Displacement mode shapes of beam 2.1 (6.6% corrosion) (x = 0 mm 
corresponds to the left of the side with the optic fibres) 
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Figure A-10: Strain mode shapes beam 2.1 (6.6% corrosion) (x = 0 mm corresponds to the 
left of the side with the optic fibres) 
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