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Preface

Reasonable Excuse - Culture GCU, Iain M. Banks

My career path has always been anything but a straight line, going from
government jobs to the private sector and back again as I accumulated
experience and education degrees. Back in 2017, I worked in an industry
job in middleware development and integration, when I started to notice
that the work was getting very repetitive, despite good colleagues and nice
working conditions. Having worn out the focus on concrete, practical IT
work that defined the first decade of my career, my increasing penchant for
theoretical work and research finally made a PhD the next logical step.
The topic of Smart Cities is a surprisingly wide research field, with a
plethora of subjects whose technical depth and complexity are difficult to
imagine before getting into them. When starting my PhD, I was quickly
disabused of the notion that the Internet of Things was all party trick app-
controlled light bulbs and smart TV’s. What was available was an endless
supply of immensely interesting topics at the crossroads of technologies such
as networking, Artificial Intelligence, hardware advances and service archi-
tectures. Futhermore, for each such combination the spectrum ranges from
examination and integration of existing software to form innovative solu-
tions, to creating novel algorithms for problems not yet (entirely) solved.
Starting with a few contributions in the first category, my work quickly vee-
red towards the second one, with a particular interest in decentralization
and extremely large scale orchestration of software services, lured in by the
then upcoming adoption of advanced Artificial Intelligence, a topic which
has always interested but somehow eluded me.

Special thanks go out to a great many people. First of all, my promotors; on
one hand Filip De Turck for his feedback on my work, invaluable guidance
in the world of academics, and for training my nearly nonexistent diplo-
matic skills throughout publishing procedures. On the other hand, Bruno
Volckaert for additional feedback on my work, for more hands-on guidance
and smoothing over tedious procedures, and for piling lab sessions on me, as
teaching in itself turns out to be a useful learning experience. Also a bunch
of his dirty jokes. Next up are the co-workers in my office for interesting
lunch-break conversations, at least during the times we weren’t stuck at



home because of a pandemic. The topics during lunch-break ranged across
all of science and society, and I definitely learned some useful things du-
ring my PhD that were entirely unrelated to Smart Cities. Some of my
co-workers that deserve specific thanks; Ankita Atrey for feedback and im-
provements on my early papers, and her co-authorship on some of my best
received work. Sarah Kerkhove for co-operation on several research topics
related to virtualization and co-authorship of several publications, winning
a best paper award in the process. Laurens Van Hoye for his useful and
(thankfully) lenient feedback, and finally Merlijn Sebrechts, for managing
to disapprove of three quarters of my second paper, which led to a great
improvement of my narrative skills and writing style.

Although my work was not very project-oriented, there were some collabora-
tions with companies and other universities. As such, I would like to thank
Erik Van Mossevelde and Geert Goemaere from Niko for their collaboration
during the Watchdog project, which resulted in several publications. For
the FlexNet project, I would mainly like to thank Esteban Municio from
UAntwerpen and Nico Janssens from Rombit for their close collaboration,
resulting in a demo of my main work, in addition to the dozens of other
people working on this sizeable project over the years.

Last but not least, some thanks goes out to family and friends, who always
managed to be interested in my work, at least until some explanation of
math or theoretical model made them go cross-eyed. Final thanks goes
out to my dog Vito, who I suspect never understood much of my mumbled
ranting, but whose backyard-bound shenanigans at least made sure I got
enough daily movement at home during the pandemic.

During my PhD, I consciously avoided relying on specific frameworks, except
some popular ones, partially because their lifecycles and features tend to
ebb and flow like the tide, and partially because my brain stores names in
/dev/null, making it difficult to remember any frameworks. Additionally,
theoretical, framework-agnostic work seems more likely to be relevant in
many applications, and a suitable candidate for further improvement.

Instead of iterating my publications verbatim, framed by minor comments,
I chose to adapt and integrate them, updating them to some degree, and
combining sections where possible to create a narrative flow suitable for a
larger work. Still, old results are not so easily updated without repeating all
of the work that led to them, and since Smart Cities present a rapidly chan-
ging landscape, I request that the reader consider the detriment of scientific
progress on my results, and reads them in the context of the versions used,
and any improvements they may have led to, rather than comparing them
to the latest advances at hand. Finally, any related work sections have not
been (extensively) rewritten, as they contain useful work directly related to
each publication. As a result, certain concepts may be cursorily mentioned
in these sections that are not properly explained until later chapters.

As for my wandering around before finally doing a PhD at a later age;
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“T came to my truth by diverse paths and in diverse ways:

it was not upon a single ladder that I climbed to the height
where my eyes survey my distances.

And I have asked the way only unwillingly - that has always
offended my taste! I have rather questioned and attempted
the ways themselves.

All my progress has been an attempting and a questioning -
and truly, one has to learn how to answer such questioning!
That however - is to my taste:

Not good taste, not bad taste, but my taste, which I no
longer conceal and of which I am no longer ashamed.

“This - is now my way: where is yours?’ Thus I answered
those who asked me ‘the way’. For the way - does not exist!

Thus spoke Zarathustra.” - Friedrich Nietzsche

Gent, february 2022
Tom Goethals
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Samenvatting
— Summary in Dutch —

Sinds de eeuwwisseling zijn computers in netwerken steeds kleiner en krach-
tiger geworden, terwijl computers worden ingebed in steeds meer “slimme”
apparaten. In combinatie met een exponentieel groeiende instroom van
sensorgegevens van deze apparaten, heeft de alomtegenwoordigheid van re-
kenkracht recent geleid tot het concept van “Slimme Steden” (Smart Cities),
dat tot doel heeft slimme, transparante toepassingen in moderne steden mo-
gelijk te maken en te benutten. Dergelijke toepassingen zijn meestal onder-
verdeeld in de domeinen van Smart Homes, Industry 4.0, Smart Health Care,
Internet of Vehicles (of verkeersmanagement in het algemeen) en generieke
Smart Cities-toepassingen. De software die deze innovaties aandrijft, werkt
meestal in de mist (“fog networks”) of de netwerkrand (“the network edge” of
simpelweg “edge”); het laatste is het netwerk dat gebruikelijk alle sensoren
en apparaten van eindgebruikers bevat, terwijl het eerste een intermediair
netwerk is tussen clouddatacenters en de netwerkrand. Naast de verschil-
lende Smart City-toepassingsdomeinen heeft de opkomst van de mist en de
netwerkrand geresulteerd in bijkomende onderzoeksgebieden die betrekking
hebben op de orchestratie van software en gegevens, en het management
van netwerkverkeer in zulke netwerken.

Dit proefschrift behandelt onderzoek in de laatstgenoemde gebieden, meer
bepaald softwaregestuurde netwerk- en computerinfrastructuur, efficiént ge-
bruik van systeembronnen, uniforme en betrouwbare software-omgevingen,
en tot slot de integratie van Kunstmatige Intelligentie (KI), wat het “Smart”
in Smart Cities mogelijk maakt. Het gepresenteerde onderzoek is in de eerste
plaats bedoeld om software-orchestratie te verbeteren in plaats van concrete
en nieuwe slimme applicaties te maken, hoewel het gemakkelijk kan worden
geintegreerd in software die van de ontwikkelde functies gebruik wil ma-
ken. Veel van de inhoud is afgeleid van eerdere publicaties van de auteur,
hoewel ze enigszins zijn aangepast om beter aan te sluiten op het algemene
onderwerp, en zijn bijgewerkt om de stand van zaken rond 2021 weer te
geven.

De eigenlijke inhoud van dit proefschrift is verdeeld in drie subsecties die zijn
afgeleid van de titel; “Efficiéntie en Flexibiliteit” (Resource Efficiency and
Flexibility), “Schalen naar Slimme Steden” (Scaling Towards Smart Cities)
en “Intelligentie in Slimme Steden” (Intelligence in Smart Cities).
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De virtualisatie van softwareomgevingen en netwerken is een belangrijke fac-
tor voor “Efficiéntie en Flexibiliteit", omdat het tot doel heeft een uniforme
omgeving te creéren met voorspelbaar gedrag voor applicaties, onafhankelijk
van de hardware van het apparaat waar de applicatie uiteindelijk op draait.
Er zijn verschillende technieken om softwareprocessen te virtualiseren, waar-
onder virtuele machines (VM), containers en unikernels. Terwijl VM’s een
volledig besturingssysteem virtualiseren, zijn containers en unikernels enkel
gericht op het virtualiseren van een softwareproces en eventuele bibliothe-
ken die nodig zijn voor het proces. Containers doen dit door de kernel van
een hostbesturingssysteem te delen, terwijl unikernels een relatief recente
methode zijn om minimale VM’s te maken met een zeer kleine functionele
en operationele software-overhead. In de afgelopen jaren zijn de hulppro-
gramma’s die worden gebruikt om unikernels te maken, gegroeid van proof-
of-concept tot platformen die zowel nieuwe als bestaande software kunnen
draaien die in verschillende programmeertalen is geschreven. De performan-
tie van unikernels en Docker-containers wordt bestudeerd in de context van
REST-services en zware rekentaken geschreven in Java, Go en Python. De
resultaten tonen aan dat de performantie van unikernels sterk afhankelijk
is van de gebruikte programmeertaal, en dat multi-threading over het alge-
meen de performantie vermindert in plaats van te schalen. Single-threaded
unikernels geschreven in Golang en Java zijn over het algemeen aanzienlijk
sneller dan vergelijkbare containers.

Netwerkvirtualisatie kan worden gebruikt om Virtuele Private Netwerken
(VPN) of overlay-netwerken (Software Defined Networks, SDN) tussen con-
tainers te creéren, en om verkeer transparant te routeren en te beveiligen
met behulp van Network Function Virtualisation (NFV). Vanwege het toe-
nemende gebruik van containers op steeds krachtigere apparaten in de net-
werkrand is er behoefte aan betrouwbare en veilige netwerkverbindingen
tussen deze apparaten.

De overgang van een beveiligd netwerk in datacenters naar heterogene open-
bare en particuliere netwerken brengt problemen met zich mee op het gebied
van beveiliging en netwerktopologie die gedeeltelijk kunnen worden opgelost
door een VPN te gebruiken om de netwerkrand met de cloud te verbinden.
De schaalbaarheid van VPN software wordt geévalueerd om te bepalen of en
hoe een VPN kan worden gebruikt in grootschalige clusters met apparaten
in de netwerkrand. Er worden benchmarks uitgevoerd om het maximale
aantal VPN knooppunten en de invloed van netwerkdegradatie op een VPN
te bepalen, voornamelijk met behulp van verkeer dat typisch is voor edge-
apparaten die ToT-gegevens (vb. sensor data) genereren. De resultaten
tonen aan dat WireGuard een goede keuze is als VPN software om hon-
derden edge-apparaten in een cluster te verbinden, terwijl de alternatieven
ofwel falen, ofwel onaanvaardbare hoge uitvalpercentages hebben, of beide.
Een ander aspect van “Efficiéntie en Flexibiliteit” is het creéren van een
homogene omgeving voor software, over alle soorten apparaten die zich in
de mist en de netwerkrand bevinden. Dit aspect is gericht op containers,
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en hoe ze efficiént georkestreerd en uitgevoerd kunnen worden op apparaten
met een beperkte rekenkracht en geheugencapaciteit.

FLEDGE wordt voorgesteld als een Kubernetes-compatibele containeror-
kestrator op basis van virtuele Kubelets, voornamelijk gericht op container-
orchestratie op edge-apparaten met beperkt geheugen. Verschillende aspec-
ten van containerorchestratie worden onderzocht, zoals de keuze van de on-
derliggende containersoftware en het realiseren van geheugenefficiénte con-
tainernetwerken. Evaluaties worden uitgevoerd om te bepalen hoe FLEDGE
zich verhoudt tot Kubernetes en K3S op het gebied van systeemvereisten.
Verdere evaluaties, die eind 2021 zijn uitgevoerd, vergelijken FLEDGE ook
met KOS, ioFog en KubeEdge, en tonen aan dat FLEDGE de meest geheu-
genefficiénte oplossing is, ten koste van het beperken van de functionaliteit
tot edge-specifieke behoeften.

Terwijl cloud-orkestrators honderden tot (maximaal) duizenden apparaten
organiseren, bevat de netwerkrand grootte-ordes meer apparaten, wat leidt
tot de behoefte aan een zeer schaalbaar orchestratie-algoritme dat tevens het
gebruik van systeembronnen op alle apparaten minimaliseert. Hiertoe wordt
Swirly voorgesteld als een oplossing voor bijna realtime service-orchestratie
in de netwerkrand. Met behulp van minimale agenten op elk apparaat, en
rekening houdende met frequente veranderingen in netwerkomstandigheden
en aangesloten apparaten, genereert Swirly in realtime optimale service-
topologieén op basis van gegevens die door apparaten worden gerapporteerd.
De theoretische performantie wordt onderzocht, en er wordt een model van
het gedrag en van de limieten van mistapparaten geconstrueerd. De eva-
luatie van het algoritme toont aan dat het in staat is om software-services
voor honderdduizenden apparaten in bijna-realtime te beheren.

Voor het schalen van service-architecturen naar de grote netwerken van
slimme steden zijn oplossingen in netwerk- en softwarebeheer nodig die be-
trouwbaar kunnen worden geschaald naar elke vereiste situatie. Verschil-
lende schaalbaarheidsmechanismen worden onderzocht; zorgvuldig gebruik
van systeembronnen en het overdragen van taken naar andere apparaten
kunnen de lokale schaalbaarheid verbeteren (bijv. meer taken per appa-
raat), federatie combineert de bronnen van verschillende netwerken om spe-
cifieke doelen beter te bereiken, en decentralisatie zorgt voor zelforganisatie
en (technisch) onbeperkte schaalbaarheid van service-architecturen.

In de context van federaties wordt Flexible federated Unified Service Envi-
ronment (FUSE) voorgesteld als een oplossing voor het samenvoegen van
meerdere private netwerken (vb. bedrijfsnetwerken) in een op microservi-
ces gebaseerde ad-hocfederatie, en voor het implementeren en beheren van
software op de apparaten van die federatie. De belangrijkste use case van
FUSE bestaat uit crisissituaties, waarbij het belangrijk is om snel informatie
uit verschillende bronnen te kunnen verzamelen om een volledig en nauw-
keurig beeld van de situatie te vormen (vb. videostreams, alarmen). Er
wordt een videostreamingtoepassing geimplementeerd om de performantie
te demonstreren van het opzetten van een federatie en relevante softwa-
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retoepassingen binnen een federatie. De resultaten tonen aan dat FUSE
binnen enkele minuten kan worden gestart, en dat het meerdere videost-
reams kan ondersteunen onder normale netwerkomstandigheden, waardoor
het een haalbare oplossing is voor het probleem van snelle en eenvoudige
federatie van netwerken.

Een tweede toepassing van schaalbaarheid is de decentralisatie van Swirly
naar Self-Organizing Swirly (SoSwirly). Evaluaties van Swirly tonen aan
dat naarmate de topologie die het beheert groeit, het geheugengebruik en
het netwerkverkeer onvermijdelijk de systeembronnen van een enkele ge-
centraliseerde instantie op één machine ontgroeien. Aangezien de mist een
geografisch wijdverspreid computersubstraat is, is het eerder geschikt om
een gedecentraliseerde service-orkestrator te gebruiken, geinstalleerd op alle
apparaten, waarbij elk apparaat services in de buurt kan ontdekken en ge-
bruiken zonder de volledige servicetopologie te moeten kennen. SoSwirly
schaalt service-instanties zoals vereist door de netwerkrand, op basis van be-
schikbare systeembronnen en flexibel gedefinieerde afstandsmetrieken. Het
wiskundige model van mistnetwerken dat voor Swirly is ontwikkeld wordt
uitgebreid, en er worden een theoretische analyse en een empirische evalu-
atie van de performantie voorgesteld, waaruit blijkt dat SoSwirly onder de
meeste omstandigheden zeer schaalbaar is. Bovendien tonen de evaluaties
aan dat de systeemvereisten van SoSwirly, gecombineerd met FLEDGE als
container runtime, laag genoeg zijn om op een grote verscheidenheid aan
edge-apparaten te draaien.

Tenslotte worden in het deel rond “Intelligentie in Slimme Steden” de ver-
schillende soorten KI besproken die worden gebruikt in edge-netwerken,
evenals hoe ze intelligent beheer van systeembronnen mogelijk maken en
tot nieuwe, intelligente gebruikerstoepassingen kunnen leiden.

SoSwirly wordt geévalueerd in de context van het gedecentraliseerd leren van
kunstmatige neurale netwerken, wat de basis vormt voor toekomstig werk
om SoSwirly te gebruiken als een gedistribueerd updatemechanisme en om
een voorspellende, op KI gebaseerde component in SoSwirly te integreren
die actief de beste serviceprovider kiest voor elk apparaat, in plaats van te
vertrouwen op reactieve aanpassingen d.m.v. gedetecteerde veranderingen
in de topologie.

Tenslotte wordt een overzicht gegeven van de stand van zaken m.b.t. KI in
de netwerkrand. Er wordt een taxonomie voorgesteld met “Hulptechnologie”
(Enabling Technology) voor Edge Intelligence, “Organisatie” van de netwer-
krand met KI, en KI “Applicaties” in de netwerkrand als hoofdonderwerpen.
Onderzoekstrends van 2015 tot 2020 worden opgesteld voor verschillende
onderdelen van elk van de hoofdonderwerpen, waaruit een exponentiéle toe-
name van zowel absolute als relatieve onderzoeksinteresse voor elk onderdeel
blijkt. Het aspect “Organisatie”’, wat de eigenlijke focus van dit overzicht is,
heeft een meer fijnmazige onderverdeling waarbij alle bijdragende factoren
in detail worden bekeken. Voor elk onderdeel van de taxonomie worden een
aantal publicaties van 2019 tot 2021 geselecteerd om een strategisch beeld
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te vormen van de stand van zaken van Edge Intelligence. Op basis van
deze geselecteerde onderzoeken en de trendgegevens worden een aantal kor-
tetermijnuitdagingen en visies op langere termijn geformuleerd m.b.t. Edge
Intelligence, die een basis vormen voor toekomstig werk.

Samenvattend behandelt dit proefschrift concrete bijdragen in verschillende
deelgebieden van slimme steden, eindigend met een uitgebreide bespreking
van hoe het “slimme” aspect mogelijk gemaakt wordt en benut wordt, en hoe
toekomstig werk kan resulteren in verbeterde intelligentie en schaalbaarheid
van netwerken en applicaties.






Summary

Since the turn of the century, networked devices have become increasingly
smaller and more powerful, while computational capabilities have become
embedded in ever more “smart” devices. Combined with an exponentially
growing influx of sensor data from these devices, the ubiquity of comput-
ing has recently resulted in the concept of “Smart Cities”, which aims to
enable and leverage smart, transparent applications in modern cities. Such
applications are usually divided into the domains of Smart Homes, Indus-
try 4.0, Smart Health Care, Internet of Vehicles (or traffic management in
general), and generic Smart Cities applications. The software that powers
these innovations usually runs in the fog or the network edge; the latter is
the network containing all end-user devices and sensors, while the former is
an intermediate network between cloud data centers and the network edge.
In addition to the various Smart City application domains, the rise of the
fog and network edge have led to dedicated research fields which concern
the orchestration of software and data, and network traffic management.
This thesis covers research in the latter fields, more specifically software
defined networks and computational infrastructure, resource efficiency, uni-
form and reliable software environments, and lastly the integration of Arti-
ficial Intelligence, which puts the “Smart” in Smart Cities. The research
presented is primarily aimed at improving software orchestration, rather
than creating concrete and novel smart applications, although it can be
easily integrated into software. Much of the content is derived from earlier
publications by the author, although they have been adapted to better mesh
with the general topic, and updated to reflect the state of the art circa 2021.
The actual content of this thesis is divided into three subsections derived
from its title; “Resource Efficiency and Flexibility”, “Scaling Towards Smart
Cities” and “Intelligence in Smart Cities”.

The virtualization of software environments and networks is an important
factor for “Resource Efficiency and Flexibility”, as it aims to create a uniform
environment with predictable behavior, independent of device hardware.
Software processes can be virtualized through various approaches, including
Virtual Machines (VM), containers, and unikernels. Whereas VMs virtual-
ize an entire operating system, containers and unikernels aim to virtualize
only a single software process and any libraries it may require. Containers
do this by sharing the kernel of a host operating system, while unikernels
are a relatively recent method to create minimal VMs with a very low func-
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tional and operational software overhead. In recent years, the tool chains
used to create unikernels have grown from proofs of concept to platforms
that can run both new and existing software written in various programming
languages. The performance of unikernels and Docker containers is studied
in the context of REST services and heavy processing workloads, written
in Java, Go, and Python. The results show that the performance of uniker-
nels is heavily dependent on the language used, and that multi-threading
generally results in a performance penalty rather than performance scal-
ing. However, single-threaded unikernels written in Golang and Java are
generally significantly faster than equivalent containers.

Network virtualization can be used to create Virtual Private Networks
(VPN) or Software Defined Networks (SDN) between containers, and to
transparently route and monitor traffic using Network Function Virtualiza-
tion (NFV). Because of the rising use of containers on increasingly powerful
devices in the network edge, there is a need for reliable and secure network-
ing between these devices.

The move from a secure data center network to heterogenous public and
private networks presents issues in terms of security and network topology,
which can be partially solved by using a VPN to connect the network edge
to the cloud. The scalability of VPN software is evaluated to determine if
and how a VPN can be used in large-scale clusters containing edge devices.
Benchmarks are performed to determine the maximum number of VPN-
connected nodes and the influence of network degradation on VPN perfor-
mance, primarily using traffic typical for edge devices generating IoT data.
The results indicate that WireGuard is an excellent choice of VPN software
to connect hundreds of edge nodes in a cluster, while the other benchmarked
software either fails, or has unacceptable failure rates, or both.

Another aspect of “Resource Efficiency and Flexibility” is ensuring a ho-
mogeneous environment for software to run on, over all classes of devices
encountered in the fog and the network edge. This aspect focuses on con-
tainers, and how to orchestrate and run them efficiently on low-resource
devices.

FLEDGE is presented as a Kubernetes-compatible container orchestrator
based on Virtual Kubelets, aimed primarily at container orchestration on
low-resource edge devices. Several aspects of low-resource container orche-
stration are examined, such as the choice of underlying container runtime,
and how to realize resource-efficient container networking. A number of eval-
uations are performed to determine how FLEDGE compares to Kubernetes
and K3S in terms of resource requirements. Further evaluations performed
in late 2021 also compare FLEDGE to K0S, ioFog and KubeEdge, showing
in each case that FLEDGE is the most resource-efficient solution, at the
cost of limiting the functionality to edge-specific needs.

Whereas cloud orchestrators handle hundreds to (at most) thousands of
devices, the network edge contains more devices by several orders of magni-
tude, leading to the need for a highly scalable orchestration algorithm which
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also minimizes resource use on all nodes. To this end, Swirly is presented
as a near real-time service orchestration and scheduling solution. Using
minimal agents on each node, and taking into account frequent changes in
network conditions and connected devices, Swirly generates near-optimal
software service topologies in real-time from data reported by nodes. Its
theoretical performance is explored, and a model of the behaviour and lim-
its of fog nodes is constructed. An evaluation of the algorithm shows that
Swirly is capable of managing services for hundreds of thousands of devices
in near real-time.

For “Scaling Towards Smart Cities”, solutions in network and software ma-
nagement are needed that reliably scale to any required situation. Various
scalability mechanisms are examined; careful use of device resources and
offloading tasks to other devices can improve local scaling (e.g. more tasks
per device), federation combines the resources of several networks to better
accomplish specific goals, and decentralization allows for self-organization
and (technically) limitless scaling of service architectures.

In the context of federations, Flexible federated Unified Service Environ-
ment (FUSE) is presented as a solution for joining multiple private net-
works into a microservice based ad-hoc federation, and for deploying and
managing container-based software on the devices of a federation. The main
use case of FUSE is crisis situations, in which it is important to be able to
quickly gather information from various sources to form a complete and
accurate picture of the situation (e.g. video streams, alarms). A video
streaming application is deployed on an example federation to demonstrate
the performance of a federation setup and applications running on it. The
results show that FUSE can be deployed within minutes, and that it can
support multiple video streams under normal network conditions, making it
a viable solution for the problem of fast and straightforward cross-domain
federation.

A second application of scalability is the decentralization of Swirly into Self-
Organizing Swirly (SoSwirly). Swirly evaluations show that as the topology
it manages grows, memory use and network traffic inevitably outgrow the
capacity of a centralized algorithm instance on a single machine. Since the
fog is essentially a geographically distributed computational substrate, a
suitable solution is to use a decentralized service scheduler, deployed on all
nodes, which can monitor and deploy services in its neighbourhood without
having to know the entire service topology. SoSwirly scales service instances
as required by the edge, based on available resources and flexibly defined
distance metrics. The mathematical model of fog networks developed for
Swirly is extended, and a theoretical analysis and an empirical evaluation
of its performance are provided which indicate that under most conditions,
SoSwirly is highly scalable. Additionally, the evaluations show that the
resource requirements of SoSwirly, combined with FLEDGE as a container
engine, are low enough to run on a large variety of edge devices.

Finally, in the topic of “Intelligence in Smart Cities”, the various types of
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AT that are used in edge networks are discussed, as well as how they can
enable intelligent management of resources or create novel, intelligent end-
user applications.

SoSwirly is evaluated in the context of decentralized learning of Artificial
Neural Networks, providing the basis of future work to use SoSwirly as a
distributed weight update mechanism, and to integrate a predictive, Al-
based component into SoSwirly to actively pick the best service provider
for any node, rather than merely reacting to topology changes.

Finally, a review of the state of the art of Al in the network edge is presented.
A taxonomy is provided with “Enabling Technology” for Edge Intelligence,
“Organization” of the edge using AI, and AI “Applications” in the edge as
its main topics. Research trend data from 2015 to 2020 is presented for var-
ious subdivisions of these topics, showing an exponential increase in both
absolute and relative research interest in each subtopic. The “Organization”
aspect, which is the main focus of the review, has a more fine-grained subdi-
vision, explaining all contributing factors in detail. For each subdivision of
the taxonomy a number of selected studies from 2019 to 2021 are gathered
to form a high-level illustration of the state of the art of Edge Intelligence.
From these selected studies and the trend data, a number of short-term chal-
lenges and high-level visions for Edge Intelligence are formulated, providing
a basis for future work.

To summarize, this thesis handles concrete contributions in various sub-
fields of Smart Cities, culminating in a review of how the “smart” aspect is
enabled and leveraged, and how future work can result in improved intelli-
gence and scalability of networks and applications.



Introduction

Contents May Differ - Culture GSV, Iain M. Banks

1.1 Smart Cities

In the last decade, computers have become embedded in ever more de-
vices, ranging from TVs to portable devices with a whole range of sensors.
Most of these devices are networked, and rely on external software ser-
vices to report sensor data or perform complex computations. Such services
are often hosted in immense, centralized cloud data centers, or closer to
end users in smaller fog data centers, while the networked end-user devices
themselves form what is known as the network edge. The enormous influx
of data generated by such devices, and their requirements for supporting
software services, have generated research fields that attempt to optimally
route network traffic and schedule processing tasks in this computational
chaos. Additionally, this wealth of data and processing power has led to
novel applications in homes, traffic management, health care, and industry.
These application domains, together with their supporting research fields,
can be summarized as “City of Things” or “Smart Cities”.

This chapter introduces the global topic of this dissertation, Scalable and
Flexible Low-resource Service Orchestration for Enabling Smart Cities, from
which three main research subjects flow. Each topic is initially presented
by itself in one or two chapters, then discussed in terms of the previous
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chapters’ topics, and finally presented in the context of Smart Cities.

o Flexible Low-resource Orchestration, or rather the necessity for both
Resource Efficiency and Flexibility, concerns topics that make software
easier and more reliable to run on a multitude of systems, while hiding
the underlying complexity from application developers and system ar-
chitects. These requirements are shown to be (partially) enabled thro-
ugh virtualization [1, 2] and a careful design of software orchestration
systems [3, 4] with low resource requirements.

e Scalable Service Orchestration, or in the context of this dissertation
Scaling Towards Smart Cities, is required to effectively and efficiently
scale Reliable Software Systems in the extensive network edge [5] in
Smart Cities, which is formed by various IoT and end-user devices.
Most of the work in this dissertation will be considered in the con-
text of the network edge (or edge network), which forms the principal
subject of current research efforts in Smart Cities.

e The last topic requires putting Intelligence in Smart Cities, using both
scalability and reliability to enable and leverage Artificial Intelligence
(AI)[6] in the extensive network edge, leading to smart applications
that can intelligently automate various aspects of cities.

The general outline of this dissertation is further described in Section 1.2,
mapping the three topics to their respective chapters and giving a short
overview of research efforts in each chapter. The publications resulting
from the work in this dissertation are detailed in Section 1.3, listing the
publication details and abstract for each one.

1.2 Outline

Fig. 1.1 shows the general outline of this dissertation. Items in italic text
denote sub-chapters with content adapted from publications. These chap-
ters are partly based on papers published by the doctoral student, as allowed
by the copyright agreements with the publishers and agreed by all authors.
At the start of each relevant sub-chapter, the published version is referenced
in full.

Resource Efficiency and Flexibility concerns easy, reliable software devel-
opment and deployment. Chapter 2 handles the basics, discussing the ad-
vantages of different types of virtualization for processes and networks, and
presenting research contributions in virtualization. Chapter 3 handles flex-
ibility and resource efficiency in the complex environment of fog and edge
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Figure 1.1: Visual outline of this dissertation.

networks, discussing contributions in low-resource virtualization (Chapter
3.3) and service orchestration (Chapter 3.4) with the aim of flexibly utilizing
currently unused computing resources in the network edge.

Scaling Towards Smart Cities, the sole topic of Chapter 4, presents work
related to the scalability of software services in the network edge. Fast,
secure, on-demand federation of private networks with sensitive resources is
discussed in Chapter 4.3, while Chapter 4.4 presents a solution for decen-
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tralized, self-organizing microservice architectures in edge networks based
on the work from Chapters 3.3 and 3.4.

Intelligence in Smart Cities, as shown in Chapter 5, can be enabled by virtue
of highly reliable and scalable service orchestration, taking the work from
previous chapters as a basis. This chapter gives a summary of the more
common types of Artificial Intelligence (AI), and goes on to discuss the
concept of Edge Intelligence (EI), a framework for decentralized intelligence
in Chapter 5.4 based on the work from Chapter 4.4, and an overview of the
state of the art of Edge Intelligence in Chapter 5.5.

At the end of each of these topics, a “Summary” section reiterates the im-
portant concepts and conclusions. The overall conclusion of the dissertation
is stated in Chapter 6, summarizing the main research subjects and the con-
tributions made in each of them.

1.3 Publications

This section lists all the work published as first author during the course of
the PhD leading to this dissertation. Publication details and abstract are
provided, and for some publications the content is reused in the course of
this dissertation.

1.3.1 Publications in international journals

Near real-time optimization of fog service placement for respon-
sive edge computing, T. Goethals, F. De Turck, B. Volckaert,
published in Journal of Cloud Computing, 9, Article number: 34
(2020)

Abstract - In recent years, computing workloads have shifted from the
cloud to the fog, and IoT devices are becoming powerful enough to run
containerized services. While the combination of IoT devices and fog com-
puting has many advantages, such as increased efficiency, reduced network
traffic and better end user experience, the scale and volatility of the fog and
edge also present new problems for service deployment scheduling. Fog and
edge networks contain orders of magnitude more devices than cloud data
centers, and they are often less stable and slower. Additionally, frequent
changes in network topology and the number of connected devices are the
norm in edge networks, rather than the exception as in cloud data centers.
This article presents a service scheduling algorithm, labelled “Swirly”, for
fog and edge networks containing hundreds of thousands of devices, which
is capable of incorporating changes in network conditions and connected



INTRODUCTION 5

devices. The theoretical performance is explored, and a model of the be-
haviour and limits of fog nodes is constructed. An evaluation of Swirly is
performed, showing that it is capable of managing service meshes for at
least 300.000 devices in near real-time.

Extending Kubernetes Clusters to Low-resource Edge Devices us-
ing Virtual Kubelets, T. Goethals, F. De Turck, B. Volckaert,

published in IEEE Transactions on Cloud Computing, 2020

Abstract - In recent years, containers have gained popularity as a light-
weight virtualization technology. This rise in popularity has gone hand
in hand with the adoption of microservice architectures, mostly thanks to
the scalable, ethereal and isolated nature of containers. More recently, edge
devices have become powerful enough to be able to run containerized micro-
services, while remaining flexible enough in terms of size and power to be de-
ployed almost anywhere. This has triggered research into several container
placement strategies involving edge networks, leading to concepts such as os-
motic computing. While these container placement strategies are optimal in
terms of workload placement, current container orchestrators are often not
suitable for running on edge devices due to their high resource requirements.
In this article, FLEDGE is presented as a Kubernetes-compatible contai-
ner orchestrator based on Virtual Kubelets, aimed primarily at container
orchestration on low-resource edge devices. Several aspects of low-resource
container orchestration are examined, such as the choice of container run-
time and how to realize container networking. A number of evaluations are
performed to determine how FLEDGE compares to Kubernetes and K3S
in terms of resource requirements, showing that it needs around 60MiB
memory and 78MiB storage to run on a Raspberry Pi 3, including all de-
pendencies, which is significantly less than both studied alternatives.

Self-organizing Fog Support Services for Responsive Edge Com-
puting, T. Goethals, F. De Turck, B. Volckaert,

published in Journal of Network and Systems Management volume
29, Article number: 16 (2021)

Abstract - Recent years have seen fog and edge computing emerge as new
paradigms to provide more responsive software services. While both these
concepts have numerous advantages in terms of efficiency and user experi-
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ence by moving computational tasks closer to where they are needed, effec-
tive service scheduling requires a different approach in the geographically
widespread fog than it does in the cloud. Additionally, fog and edge net-
works are volatile, and of such a scale that gathering all the required data
for a centralized scheduler results in prohibitively high memory use and
network traffic. Since the fog is a geographically distributed computatio-
nal substrate, a suitable solution is to use a decentralized service scheduler,
deployed on all nodes, which can monitor and deploy services in its neigh-
bourhood without having to know the entire service topology. This article
presents a fully decentralized service scheduler, labeled “SoSwirly”, for fog
and edge networks containing hundreds of thousands of devices. It scales
service instances as required by the edge, based on available resources and
flexibly defined distance metrics. A mathematical model of fog networks
is presented, along with a theoretical analysis and an empirical evaluation
which indicate that under the right conditions, SoSwirly is highly scalable.
It is also explained how to achieve these conditions by carefully selecting
configuration parameters. Concretely, only 15MiB of memory is required on
each node, and network traffic in the evaluations is less than 4Kbps on edge
nodes, while 4-6% more service instances are created than by a centralized
algorithm.

Enabling and Leveraging Al in the Intelligent Edge: A Review of
Current Trends and Future Directions, T. Goethals, B. Volckaert, F.
De Turck,

published in IEEE Open Journal of the Communications Society,
2021

Abstract - The use of Al in Smart applications and in the organization of
the network edge presents a rapidly advancing research field, with a great va-
riety of challenges and opportunities. This article aims to provide a holistic
review of studies from 2019 to 2021 related to the Intelligent Edge, a concept
comprising both the use of Al to organize edge networks (Edge Intelligence)
and Smart applications in the edge. An introduction is given to the tech-
nologies required to understand the state of the art of Al in edge networks,
and a taxonomy is provided with “Enabling Technology” for Edge Intelli-
gence, “Organization” of the edge using Al, and AI “Applications” in the
edge as its main topics. Research trend data from 2015 to 2020 is presented
for various subdivisions of these topics, showing both absolute and relative
research interest in each subtopic. The “Organization” aspect, being the
main focus of this article, has a more fine-grained subdivision, explaining
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all contributing factors in detail. The trends indicate an exponential in-
crease in research interest in nearly all subtopics, but significant differences
between them. For each subdivision of the taxonomy a number of selected
studies from 2019 to 2021 are gathered to form a high-level illustration of
the state of the art of Edge Intelligence. From these selected studies and
the trend data, a number of short-term challenges and high-level visions for
Edge Intelligence are formulated, providing a basis for future work.

1.3.2 Publications in international conferences

Unikernels vs Containers: An In-Depth Benchmarking Study in
the context of Microservice Applications, T. Goethals, M. Sebrechts,
A. Atrey, B. Volckaert, F. De Turck,

published in 2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2), IEEE, 2018

Abstract - Unikernels are a relatively recent way to create and quickly
deploy extremely small virtual machines that do not require as much func-
tional and operational software overhead as containers or virtual machines
by leaving out unnecessary parts. This paradigm aims to replace bulky
virtual machines on one hand, and to open up new classes of hardware for
virtualization and networking applications on the other. In recent years,
the tool chains used to create unikernels have grown from proof of concept
to platforms that can run both new and existing software written in various
programming languages. This paper studies the performance (both execu-
tion time and memory footprint) of unikernels versus Docker containers in
the context of REST services and heavy processing workloads, written in
Java, Go, and Python. With the results of the performance evaluations,
predictions can be made about which cases could benefit from the use of
unikernels over containers.

FUSE: A Microservice Approach to Cross-domain Federation us-
ing Docker Containers, T. Goethals, D. Kerkhove, L. Van Hoye, M.
Sebrechts, F. De Turck, B. Volckaert,

published in Proceedings of the 9th International Conference on
Cloud Computing and Services Science - CLOSER, 90-99, 2019
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Abstract - In crisis situations, it is important to be able to quickly gather
information from various sources to form a complete and accurate picture
of the situation. However, the different policies of participating companies
often make it difficult to connect their information sources quickly, or to
allow software to be deployed on their networks in a uniform way. The
difficulty in deploying software is exacerbated by the fact that companies
often use different software platforms in their existing networks. In this
paper, Flexible federated Unified Service Environment (FUSE) is presented
as a solution for joining multiple domains into a microservice based ad hoc
federation, and for deploying and managing container-based software on the
devices of a federation. The resource requirements for setting up a FUSE
federation are examined, and a video streaming application is deployed to
demonstrate the performance of software deployed on an example federation.
The results show that FUSE can be deployed in 10 minutes or less, and that
it can support multiple video streams under normal network conditions,
making it a viable solution for the problem of quick and easy cross-domain
federation.

Scalability evaluation of VPN technologies for secure container
networking, T. Goethals, D. Kerkhove, B. Volckaert, F. De Turck,

published in 2019 15th International Conference on Network and
Service Management (CNSM), 2019, pp. 1-7

Abstract - For years, containers have been a popular choice for lightweight
virtualization in the cloud. With the rise of more powerful and flexible
edge devices, container deployment strategies have arisen that leverage the
computational power of edge devices for optimal workload distribution. This
move from a secure data center network to heterogenous public and private
networks presents some issues in terms of security and network topology
that can be partially solved by using a Virtual Private Network (VPN) to
connect edge nodes to the cloud. In this paper, the scalability of VPN
software is evaluated to determine if and how it can be used in large-scale
clusters containing edge nodes. Benchmarks are performed to determine the
maximum number of VPN-connected nodes and the influence of network
degradation on VPN performance, primarily using traffic typical for edge
devices generating [oT data. Some high level conclusions are drawn from the
results, indicating that WireGuard is an excellent choice of VPN software
to connect edge nodes in a cluster. Analysis of the results also shows the
strengths and weaknesses of other VPN software.
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Adaptive Fog Service Placement for Real-time Topology Changes
in Kubernetes Clusters, T. Goethals, B. Volckaert, F. De Turck,

published in Proceedings of the 10th International Conference on
Cloud Computing and Services Science - CLOSER, 161-170, 2020

Abstract - Recent trends have caused a shift from services deployed solely
in monolithic data centers in the cloud to services deployed in the fog (e.g.
roadside units for smart highways, support services for IoT devices). Simul-
taneously, the variety and number of IoT devices has grown rapidly, along
with their reliance on cloud services. Additionally, many of these devices
are now themselves capable of running containers, allowing them to execute
some services previously deployed in the fog. The combination of IoT de-
vices and fog computing has many advantages in terms of efficiency and user
experience, but the scale, volatile topology and heterogeneous network con-
ditions of the fog and the edge also present problems for service deployment
scheduling. Cloud service scheduling often takes a wide array of parameters
into account to calculate optimal solutions. However, the algorithms used
are not generally capable of handling the scale and volatility of the fog.
This paper presents a scheduling algorithm, named “Swirly”, for large scale
fog and edge networks, which is capable of adapting to changes in network
conditions and connected devices. The algorithm details are presented and
implemented as a service using the Kubernetes API. This implementation is
validated and benchmarked, showing that a single threaded Swirly service
is easily capable of managing service meshes for at least 300.000 devices in
soft real-time.

FLEDGE: Kubernetes Compatible Container Orchestration on
Low-Resource Edge Devices, T. Goethals, F. De Turck, B. Volckaert,
published in IOV 2019: Internet of Vehicles. Technologies and Ser-
vices Toward Smart Cities pp 174-189

Abstract - In recent years, containers have quickly gained popularity in the
cloud, mostly thanks to their scalable, ethereal and isolated nature. Simul-
taneously, edge devices have become powerful enough to run containerized
microservices, while remaining small and low-powered. These evolutions
have triggered a wave of research into container placement strategies on
clusters including edge devices, leading to concepts such as fog comput-
ing. These container placement strategies can optimize workload placement
across cloud and edge clusters, but current container orchestrators are very
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resource intensive and are not designed to run on edge devices.

This paper presents FLEDGE as a Kubernetes compatible edge container
orchestrator. A number of aspects of how to achieve low-resource container
orchestration are examined, for example the choice of container runtime and
how to implement container networking. Finally, a number of evaluations
are performed, comparing FLEDGE to K3S and Kubernetes, to show that
it is a viable alternative to existing container orchestrators.

Live Demonstration of a Highly Scalable Fog Service Orchestrator,
T. Goethals, F. De Turck, B. Volckaert,

published in 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft)

Abstract - In recent years, computing workloads have shifted from the
cloud to the fog and edge, as IoT devices are becoming powerful enough
to run containerized services. While the fog and edge computing can in-
crease energy efficiency, reduce network traffic and provide better end user
experience, the scale and volatility of the fog and edge also present new
problems for service scheduling. In the edge, there are orders of magni-
tude more devices than in cloud data centers, and conditions are often less
stable. Additionally, unlike in data centers, the network topology of the
edge often changes, requiring a real-time approach to scheduling. In this
demonstration, an implementation of a highly scalable orchestrator named
“Swirly” is presented. The challenge of fog service scheduling is illustrated
by using this implementation to organize software services in near real-time
and on-demand in a virtual representation of a real-world industry park.
Performance indicators are presented to show that this solution can scale
up to 300.000 edge nodes.
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Virtualization

“All problems in computer science can be solved by another level of
indirection.” - Fundamental theorem of software engineering, David J.
Wheeler

2.1 Introduction

In this chapter, the basic technologies and concepts behind virtualization are
introduced, an important topic considering the omnipresence of virtualiza-
tion in modern service architectures and Smart City initiatives. Considering
the overall topic, this chapter sometimes presents these technologies in the
context of edge networks. Although edge networks are only introduced in
Chapter 3, for the purposes of this chapter it is enough to define them as
large scale heterogeneous networks consisting mostly of devices with limited
resources. The Internet Engineering Task Force (IETF) provides a classifi-
cation of resource-constrained nodes [1], and in the context of this disser-
tation, a “device with limited resources” corresponds to classes J10 through
J15. Accordign to the same classification, group M devices have neither
the resources nor the hardware functionality required to run an operating
system kernel, let alone any type of virtualization.

Generally speaking, virtualization is the process by which a piece of compu-
tational functionality is decoupled from the sort of hardware it was originally
associated with. A very early example of this is Virtual Memory [2], which
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greatly simplified programming. Virtualization is sometimes achieved by
emulating hardware entirely in software [3] (e.g. emulators for old gam-
ing consoles), other times through paravirtualization, which passes virtual
hardware directly through to physical hardware, or as close to it as possible.
Paravirtualization is enabled by using specialized instruction sets (e.g. In-
tel VT-x [4]) or device drivers that explicitly represent virtual devices (e.g.
virtio [5]). There are also softer virtualization options, such as OS-level
virtualization, which are handled purely in software terms. As computing
systems evolve however, there is ever more opportunity to extend or improve
virtualization.

Depending on the type of virtualization used, and how it is implemented,
there can be significant performance and security repercussions. While vir-
tualization is generally used to increase software security and encapsulation,
it is also an extra software layer that can be compromised. Performance
overhead on modern systems is usually negligible, and depending on the
chosen method of virtualization performance can actually surpass that of
software on default operating systems, as shown in Section 2.2.3.

There are two main sections in this chapter. Section 2.2 handles the vir-
tualization options of software processes, while Section 2.3 discusses the
virtualization of networks and network functions. Finally, the chapter is
summarized in Section 2.4.

2.2 Software

Software or process virtualization is aimed at running one or more processes
in a completely encapsulated, virtual environment. This mostly involves
emulating or otherwise isolating a large number of devices and file systems.
The result of virtualizing a piece of software is usually a system image
that can be easily instantiated and scaled up in terms of demand. In this
section, common types of process virtualization are introduced, as well as
the concept of container engines, and the performance of containers and
unikernels is compared in the context of microservice applications.

2.2.1 Types of virtualization

This section discusses only the most important types of virtualization for
the field of Smart Cities. Early virtualization efforts were mostly focused
on flexibility and encapsulation, but the last few years especially have seen
a proliferation of alternatives, most of which focus on fast startup times,
low resource footprints and scalability.
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2.2.1.1 Virtual Machines

Virtual Machines (VM) essentially consist of system images containing a
complete Operating System (OS) and some software services, with all the
requisite drivers, libraries and programs to support the OS and services.
VMs preferably use paravirtualization, combined with whatever hardware
acceleration (e.g. VT-x) is at hand, to create a virtual environment for the
system image to run in. As the system image contains an entire operat-
ing system, this method necessarily has to create or pass-through dozens of
devices, not all of which are used or useful, which are managed by a hy-
pervisor. Because of their architecture, VMs generally require tens of GiB
of disk space and several GiB of RAM, limiting their scalability. However,
their great advantage is that a VM kernel runs independently of the host,
so that a single machine can run any combination of OSs in VMs.

There are two types of hypervisors, each with their advantages:

e Type II hypervisors run on top of a standard OS, enabling virtualiza-
tion through emulation by default, although modern OSs have good
built-in mechanisms for paravirtualization, allowing performance to
come close to bare-metal performance as long as no specialized hard-
ware is required (e.g. GPUs). This option is only feasible for a small
number of concurrent VMs, and usually reserved for development and
testing.

e Type I hypervisors, illustrated in Fig. 2.1, are heavily modified kernels
that run directly on bare-metal and are built entirely around fast and
efficient paravirtualization. They install custom, virtualization-ready
drivers in VMs (e.g. virtio) that can integrate with the hypervisor
itself for optimal performance, executing as many instructions as pos-
sible close to bare-metal. This option performs noticeably better, and
has somewhat better scalability.

2.2.1.2 Containers

Containers use OS-level virtualization, built into the kernel itself, to isolate
software processes. Most concepts involved in containers have evolved sep-
arately, in order to isolate various aspects of processes; the filesystem root
of a process can be changed to prevent it from affecting the host or other
processes, kernel namespaces can achieve the same effect for devices, often
used to isolate and regulate network traffic in containers, and control groups
(cgroups) can enforce resource limits on processes (e.g. memory and CPU
use). Due to this “soft” virtualization, containers can technically use any
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Figure 2.1: Comparison of virtual machine, container and unikernel system archi-
tecture

and all hardware devices on a machine using their default drivers, e.g. Al
containers using GPU acceleration [6].

As containers share the kernel of the host system instead of running on
top of their own OS, a container image is generally orders of magnitude
smaller than a VM image, on the scale of a few hundred MiB. This concept
is illustrated in Fig. 2.1, although not to scale. Similarly, memory use is
much lower, as it is limited to what the virtualized process needs. As a
result, containers can boot much faster than VMs, images can be trans-
ferred much faster over networks, and the processes are highly scalable and
even perform better than VMs because they do not require a paravirtual-
ization layer. There are also disadvantages, mostly in terms of flexibility
and security [7]. Because containers share a kernel with the host, any ker-
nel vulnerability can be exploited to compromise the host system and all
other containers. Similarly, a host can only run containers that are built for
the same kernel (version), ironically leading to the need for a VM to run
Linux containers on Windows, although Windows Subsystem for Linux 2
(WSL2) has significantly improved performance by allowing containers to
be wrapped in a micro-VM with a custom-built Linux kernel designed for
integration with the Windows host, running on Hyper-V [8].

2.2.1.3 Unikernels

Unikernels are a relatively new concept in which software is directly in-
tegrated into the kernel it is running on. This is achieved by compiling
source code, along with only the required system calls and drivers, into one
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executable program using a single address space [9]. Because of this de-
sign, unikernels can only run a single process, thus forking does not exist.
The build process results in a complete (virtual) machine image of minimal
size that only contains and executes the code that it absolutely needs to.
Again, Fig. 2.1 illustrates this concept by comparing VMs, containers and
unikernels. The figure uses a blue color to indicate hardware or hypervi-
sors, orange to indicate kernel space and green to indicate user space. The
reduced kernel and system complexity can make a unikernel much faster
than a regular VM [10]. Despite only being able to run a single process,
multi-threading is usually possible [11, 12]. An added advantage of uniker-
nel design is that they are less vulnerable to security problems, since there
are typically less attack options, except the program, the required libraries
and the kernel functions they use. The downside is that programs always
run in kernel mode, making it easier for bugs and hacks that do succeed to
critically break the machine, while making it harder to debug [9] because
unikernels usually do not have their own sets of debugging tools. Addition-
ally, all the facilities and libraries used by debugging tools would have to be
included, ballooning the size of the unikernel, and any debugging tool that
requires another process to run can not work in a unikernel by design. At
the time of writing!, all platforms generate unikernels as VM images, but
work is underway to run them as bare metal images [13|. By eliminating the
need for a classical operating system, the image size difference with regular
VMs can be in the order of gigabytes. Additionally, unikernels have a much
shorter boot time than full VMs, in the order of hundreds of milliseconds
compared to tens of seconds, and consume much less memory [14, 15]. The
same claims have been made for replacing containers with unikernels, but in
this case the advantage in terms of boot time seems to be much smaller [15],
except for highly specialized unikernels built around a single language [14].
Many proof-of-concept unikernels of all sorts of software exist, including
database engines, REST services and a RAMP stack (Rumprun, Apache,
MySQL, PHP) [16]. A lot of IoT services are composed of different pieces
of software, but these can easily be broken up into a number of individual
single process components ready to be converted into a unikernel. Because
unikernel images are far smaller than regular VMs, a lot of space on cloud
infrastructure could be saved by using them. Furthermore, because uniker-
nels are smaller than VMs and boot faster, microservice deployment strate-
gies could use unikernels for more flexible and dynamic deployment [17]. In
addition to replacing existing VMs and containers, unikernels can also open
up new classes of hardware for cloud use that are otherwise unfit to run an
entire operating system [17]. This could happen by either running unikernels

1June 2018 for this section about unikernels
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under a type I hypervisor or by (eventually) running them on bare-metal.
The added advantage of using a hypervisor and unikernels over simply run-
ning embedded software (as is now usually the case) is that any unikernel
can be easily deployed to any machine in the cloud running a hypervisor,
and function as a part of a uniform environment. Embedded software on
the other hand often requires local access to update, or is incompatible with
cloud management software.

Broadly speaking, there are two approaches to building unikernels:

e Designed from the ground up around a single programming language,
providing a custom (not POSIX [18] compatible) system API. At com-
pile time, all the libraries and system calls used by the program are
compiled, together with the program itself, creating a single kernel
that is started on boot. This type of unikernel platform is generally
incompatible with existing source code, requiring a full rewrite using
the platform’s API. Considering the still-evolving nature of existing
platforms of this type, it also often means dropping features that are
not yet implementable. On the other hand, this type of unikernel
results in superior performance and much smaller images than the
other type [10, 19]. IncludeOS and MirageOS are good examples of
this approach [20, 21].

e POSIX compatible operating systems that can run existing software
by cross-compiling it using existing compilers. These platforms gen-
erally have custom kernel implementations and drivers to make them
faster, usually with options for paravirtualization. Unikernels built
this way have larger kernels and resource requirements, but make up
for it in ease of use. This type is very useful for converting software
that runs on existing VMs and containers into unikernels, since the
software only needs to be recompiled, not rewritten. Examples include
OSv and rumprun [22, 23].

Since unikernels contain everything from a kernel to user software, they
differ from containers in certain aspects:

e A hypervisor is required to run a unikernel, but this also means it can
be run on a type I hypervisor, removing the need for a bulky OS.

e A unikernel’s built-in kernel, no matter how small, will increase mem-
ory use compared to running a program in a container.

e Since a unikernel does not require context switches from user space
to kernel space and has simpler device drivers, it should have a sig-
nificant speed advantage over a container, because a container runs
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on a much more complex host kernel. Of course, since the kernel of
a container can run on bare metal and a unikernel has to be run on
a hypervisor, the actual performance will depend greatly on the cho-
sen hypervisor. The results from the tests in this paper indicate that
unikernels running on type I hypervisors can in fact give much better
performance than containers.

e Unikernels are single process by design, so anything requiring multiple
parallel processes must be broken up into separate unikernels. Addi-
tionally, breaking software up into separate unikernels will induce at
least some communication overhead between the different parts.

2.2.1.4 WebAssembly

The newest innovation, although not necessarily a type of virtualization, is
WebAssembly (WASM) [24], evolving from standardization and a need for
faster JavaScript web applications into a platform for generic, sandboxed
applications.

Although WASM was originally created for in-browser web applications,
projects such as WebAssembly System Interface (WASI) [25] have created
APT’s that allow system programming with WASM, providing features such
as threading and file system access. Although WASI is POSIX-like, it is not
necessarily POSIX compatible, requiring a thorough rewrite of software to
use the WAST APT’s. It is currently in an early stage, and does not yet sup-
port networking, and thus lacks the capacity for web services. The features
provided by WASI are sandboxed to provide a security and isolation layer
around the software it runs, creating a type of lightweight virtualization.
Additionally, since WAST works with LLVM [26], WASM programming lan-
guage support has been extended to languages such as C and C++.
Conceptually, WASM /WAST is similar to how POSIX-compatible unikernels
are built. Essentially, both can be considered a “library” OS whose com-
piler integrates system calls directly into the software, running the result as
a single process in kernel mode. The main difference between WASM and
unikernels is that WASM requires a dedicated runtime rather than a hyper-
visor, which may be optimized for limited resource requirements. This also
means that, at the cost of some extra development effort, WASM runtimes
can be created for many types of devices that are not powerful enough to
run the hypervisors required for unikernels, or the relatively sizeable Linux
kernel and libraries required for containers. Wasmachine [27] is an example
of this, an OS dedicated to running WASM applications on IoT hardware,
with a focus on security, which is shown to be 11% faster than Linux for
the evaluated applications. Another study of WASM |[28]| shows it to be
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useful in the context of serverless applications and functions, examining the
potential benefits and drawbacks of various platforms and wrappers, and
showing native WASM performance to be close to that of native C.

2.2.1.5 Firecracker

Similar to unikernels, Firecracker [29] aims to run a single process in a mini-
mal VM, or microVM, the main difference being that it uses a default kernel
and the virtualized process is run in user mode on top of it. Firecracker aims
to create extremely fast booting microVMs, with as little memory overhead
as possible, and uses Kernel-based Virtual Machine (KVM [30]) as its hy-
pervisor. The command-line tools are similar to those of Docker and OSv,
although compiling is not as straightforward as the use of a Dockerfile.
Networking features are limited to the creation of a device in the VM itself,
which can be linked to a user-created TAP device on the host. Assigning IP
addresses, creating traffic rules, and routing are left entirely as an exercise
for the user, making this one of the more difficult alternatives to set up.
However, possible approaches range from using a simple proxy, to bridging
network interfaces (similar to Docker), and letting a Container Networking
Interface (CNI) plugin set up all necessary devices and rules.

2.2.2 Container engines

Of the virtualization types discussed so far, containers are by far the most
popular choice in edge computing due to their low resource requirements
and straightforward operation; any device with a suitable Linux kernel? can
build and run containers, even limited devices such as a Raspberry Pi®.
However, this is the result of a long evolutionary path of container technol-
ogy, and despite their simplicity containers still need management software
to reliably create containers, to run them, and to ensure compatibility with
alternatives. This section presents the most popular container engines and
standards.

2.2.2.1 Docker

Docker [31], originally released in 2013, is an all-round, high-level container
engine. It is capable of building containers from declarative files (Dock-
erfiles) that can be used recursively, and in running containers it orga-
nizes every aspect from file systems to container networking. For the latter,
Docker will use its own addressing system to assign IP address to containers

2https:/ /blog.hypriot.com/post /verify-kernel-container-compatibility /
Shttps://www.raspberrypi.com/documentation/
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unless overridden by higher management software. During its development
track, Docker has used various plugins and lower level container runtimes to
outsource functions to, eventually settling on containerd to organize kernel-
related functions such as creating default namespaces and changing root
paths. Similarly, due to its popularity and extensive development effort,
Docker has contributed to various standards related to container construc-
tion and execution, most importantly the Open Container Initiative (OCI),
which standardizes container image formats and engine interaction, and the
CNI, which provides an API for container networking software. These stan-
dards are further discussed in Chapter 3.3, where they are considered in
terms of low-resource container engines in the network edge.

2.2.2.2 containerd

containerd [32] is a lower-level container engine, often referred to as a contai-
ner runtime, which is entirely aimed at starting and running OCI-compatible
containers. It has less functionality than Docker, and much of the function-
ality that Docker offers through a command-line interface (CLI) can only
be accessed through an API in containerd. For example, containerd in itself
does not build containers, it does not set up container networking beyond
creating a network namespace, and setting up resource limits and names-
paces in general requires more work. However, due to its low-level approach,
containerd can be used more flexibly than Docker, with a degree of mod-
ularity that allows ignoring, extending or overwriting its default behavior.
Additionally, it requires significantly less resources than Docker, as Chapter
3.3 shows, making it a useful container engine for projects in the network
edge.

2.2.2.3 Kata Containers

A number of alternative runtimes exist that use or combine aspects of both
VMs and containers in order to improve specific aspects such as security
or flexibility. Kata Containers [33] run containerized processes along with
an agent process inside a minimal VM. The agent process is responsible
for organizing container namespaces and transparently relaying commands
between containers and container engines. This combination effectively en-
sures the security and isolation of a unikernel-like design with the flexibility
of containerized software, at the cost of a potential performance reduc-
tion [34]. As Kata Containers implement OCI standards, they can deploy
Docker containers and are compatible with most container orchestration
software discussed in Chapter 3.
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2.2.3 Performance comparison of unikernels and con-
tainers

This section contains the edited version of the following publication: “Uni-
kernels vs Containers: An In-Depth Benchmarking Study in the
context of Microservice Applications”, T. Goethals, M. Sebrechts, A.
Atrey, B. Volckaert, F. De Turck,

published in 2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2), IEEE, 2018 [35]

The goal of this section is to compare unikernels and containers as accu-
rately as possible using a number of programming languages popular in
edge networks, e.g. Go, Java and Python. For this reason, the rest of the
section will focus on the performance of the POSIX-compatible type of uni-
kernels. The reason for this is that POSIX incompatible unikernels simply
do not have the facilities and API’s to run Go, Java or Python, so their
performance can not be compared.

Many aspects of unikernels have been studied in the past, but due to the
fast-changing nature of unikernel platforms, the results rapidly become ob-
solete. For example, boot time comparisons between VMs and unikernels
have been made [15], in addition to studies on the boot times of uniker-
nels using a single unikernel platform, often comparing to Linux or Linux
VMs [14, 19, 36]. Another study used a DNS server and an HTTP server,
implemented as unikernels on different platforms, to compare the network-
ing performance of unikernels versus Linux [10]. Despite interesting results,
different programming languages had to be used per unikernel platform, so
the results depend somewhat on the specific software implementations these
languages allowed. An attempt has been made to employ unikernels in an
edge offloading architecture [17], allowing for a more dynamic deployment
of IoT services, but that work was hampered by a bug that occurred in the
chosen unikernel platform at the time. Other studies into this area have
been done [19, 37]. The security advantages of unikernels over containers
and regular VMs have been extensively studied [38-40]. The rest of this sec-
tion details the benchmarking setup used, and discusses performance results
in terms of various artificial microservice scenarios.

2.2.3.1 Benchmarking setup

This section discusses the potential platforms for the tests, as well as the
physical test setup. The tests and measuring methods used to obtain the
results are also explained. Several platforms were examined for their ability
to create Go, Java and Python unikernels.
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Candidate platforms

OSv (0.51 used in original publication, currently 0.56) is a unikernel plat-
form that works similar to Docker. At the basis of OSv unikernels lies a very
small core to which modules and files can be added through a layered build
process. Each layer defines a base image to start from, a number of files to
add and optional build and command line commands. Using this method,
base images were created for Java 1.8, Python 2.7 and Go 1.10, which were
then used to create the unikernels for the tests. Running newer versions of
both Java (1.9, 1.10) and Python (3.6) was attempted. While higher Java
versions worked, a minimal JRE would not start on OSv due to not being
compiled correctly. Java 1.8 was deemed sufficient for the purposes of the
tests. In the case of Python 3.6, many system calls were required that are
not yet implemented in OSv, so 2.7 had to be used. Modules to run Java
1.8 and Python 2.7 (some modification and building required) are included
in the OSv source, while Go code was compiled as a shared library and run
indirectly via a wrapper supplied by OSv. To confirm that this wrapper
does not have any impact on performance, Go was also compiled as a Po-
sition Independent Executable (PIE), which can run directly on OSv. A
PIE is an executable that can execute properly no matter what its absolute
address in the address space is [41]. Note that OSv requires all software
running on it to be built as PIE by design [42], but in the cases of Java and
Python this is already done by cross-compiling the Java Virtual Machine
and interpreter, respectively. For Go, compiling as a shared library has the
same result, except that it still needs to be launched by the aforementioned
wrapper. The PIE version of Go is included in the results as Go(pie).

Rumprun (unversioned, Apr 8, 2018 commit used in original publication,
no activity since May 2020) was also considered as a test candidate. Con-
trary to OSv, rumprun compiles the source code and all required system
libraries and drivers in one step, into a single kernel that is loaded during
boot. While this allows for more optimizations than OSv’s approach, it also
results in a slower and bulkier build process. Unikernels for Python and Go
were successfully created using rumprun, but during testing these uniker-
nels never managed to complete more than a few thousand requests before
running into a socket allocation bug. This problem was partially fixed un-
der KVM (Kernel-based Virtual Machine [30]) by increasing memory, which
caused it to happen after a few million requests, but could not be fixed on
the test setup. Memory footprint and image sizes of rumprun unikernels
were more or less the same as those of OSv unikernels, but the results are
not included because they are incomplete and thus unreliable.

UniK [43] (unversioned, Nov 15 2016 release used in original publication, no
activity since July 2019) is a platform that combines several other platforms
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(including OSv and rumprun) into one tool chain. While this is certainly
an interesting development, UniK is less flexible than OSv and rumprun in
terms of what libraries and packages are included in any given unikernel (for
example, the Java version cannot be changed), and allows less control over
how the images are generated and deployed. Despite both rumprun and
OSv supporting static IP addresses, no method was found to assign them
to unikernels generated with UniK, which was required for the test setup.
Additionally, unikernels seem to be (in part) dependent on UniK’s daemon
to boot, which caused them to hang on XenServer even before running into
IP assignment problems. Unikernels for Python and Go were tested on
localhost using VirtualBox, but being based on rumprun, they ran into the
same problems and thus are not included in the results.

Although several platforms were examined, only OSv was used for testing
because it proved to be the most stable option. Rumprun had some quirks
that made testing unreliable and UniK, being partially based on rumprun,
showed the same symptoms. Additionally, since the more stable parts of
UniK rely on OSv anyway, the latter was chosen as a testing platform to
reduce the complexity of the build process.

Test machine

All tests were run on an Intel Core i5-2300 processor with virtualization
extensions enabled. The machine had a total of 4GB ram and a 160GB
Western Digital hard drive. All VMs and containers were limited to 256 MB
RAM, either by configuration or by using Docker’s -memory flag. In single
threaded tests, both VMs and containers were limited to one CPU core
and test programs were written to reflect this. For multi threaded tests,
all instances were given four cores and the program code was changed to
use exactly four threads wherever possible and govern itself where exact
numbers could not be forced. The test machine was only used as a server,
all client activity was run on a separate machine connected directly to the
test machine to avoid result collection from interfering with performance.
Only one container or VM was active at any given time during the tests.

Containers were run on Ubuntu 18.04 using Docker 18.03. Container web
services were made available by forwarding their ports to the host using
docker’s -p option (Fig. 2.3). Unikernels were run on XenServer 7.5, a type
I hypervisor [44]. The VMs’ network interfaces were bridged to the host
interface for network access (Fig. 2.2).

The code for all tests is made available for use and review on GitHub?.

4https://github.com/togoetha/unikernels-v-containers
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REST service stress test

For Go, Java and Python, a simple REST service was written that contains a
static array of to-do items (description, time due and finished /not finished).
The service supports the following GET methods:

e /todos: list all items

e /todos/{id}: get the todo with the specified id

While this is a very simple service, it should be a good indicator of how
fast a container or unikernel can process REST HTTP requests and a small
amount of code. Apache JMeter [45] was used to run 40 concurrent threads,
each firing 50000 requests at the test machine to simulate a good sized
concurrent demand. Every request called the /todos method, fetching the
entire array as JSON.

The Go web service was created with the standard net/http package in
combination with the Gorilla Toolkit mux (v1.6.2) [46]. For the Python
version, Flask and Flask-Restful [47] were used. In the case of Java, Vert.X
3.5.1 [48] was used. Vert.x is an event-driven, non-blocking toolkit for de-
veloping reactive applications [49] in which a verticle is an atomic piece of
deployable code. For this test, a verticle was created that listens to HTTP
traffic on a specific port and handles incoming messages like REST service
requests.

To enable multi-threading, the verticle was instantiated four times under
Java, while Python was given free reign by simply enabling multi-threading
for Flask. Go automatically creates a number of threads fitting its hardware
environment, so no code changes were necessary [50].

Heavy workload test

For the load test, a simple bubble sort algorithm was implemented as iden-
tically as possible for each of the tested programming languages. To focus
on processing power and memory load instead of networking overhead, the
collection to be sorted was made as big as possible without making testing
impractical. The array to be sorted is simply a descending array of numbers
(x ... 0), where x was chosen at 20000. Each test was repeated 20 times
to get an accurate average.

This test was built as a web service, so the same frameworks were used as
in the REST service stress test. However, these frameworks matter little in
terms of performance since the algorithm takes most of the processing time
by far.
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2.2.3.2 Results

In this section the results of the tests are discussed. In addition to raw
throughput capacity of the machines, memory footprint and response la-
tency will also be reviewed. Response latency gives an indication of how
stable a particular unikernel or container is, while memory consumption is
useful in determining if unikernels can be deployed on the same scale as
containers.

Single-threaded results

Fig. 2.4 shows the results for the REST stress test using a single thread to
do all processing (higher is better). The Go service is about 38% faster when
running as a unikernel than as a container, while the Java version is about
16% faster as a unikernel. The results confirm the claims that unikernels’
reduced kernel and complexity makes them a fast alternative to containers,
at least when running on a type I hypervisor.

The equality of Go and Go(pie) performance is clearly visible here, confirm-
ing that OSv’s Go wrapper has no negative effects.

For Python, being an interpreted language rather than a compiled one and
thus slower, the result is a bit harder to interpret from the figure. However,
the effect from running it in a unikernel seems to be the same, with a
performance of 39541 requests per second for the unikernel versus 351+1
requests per second for the container. This 15% improvement from running
in a unikernel is similar to the improvement for Java, but much lower than
for Go.

Fig. 2.5 contains the results for the heavy workload test (lower is better).
Note that a logarithmic scale was used to accommodate Python’s perfor-
mance. The execution times for the Go and Java unikernels seem to be
on par with those of their container counterparts. The Go unikernel is
about 3% slower (0.5% for the PIE), while the Java unikernel is about 1%
faster. Again, the chart shows that OSv’s Go wrapper is doing a good job
of avoiding performance penalties.

Python is having some trouble, the execution time of the unikernel is twice
as long as that of the container version. This could be because Python
uses a disproportionate amount of operations that run slower in a virtual
environment. Existing research shows that array and variable access, the
building blocks of bubble sort, take up by far the bulk of Python’s inter-
preting overhead [51]. It stands to reason that either or both of these types
of instructions run slowly on either XenServer or OSv, and Java and Go
may avoid using them so much.
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Figure 2.4: REST stress test performance evaluation of unikernels versus contain-
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Multi-threaded results

Unikernels can only run a single process, but since they do support multi-
threading this aspect merits some attention. Generally speaking, REST
services scale almost linearly with the number of cores available to them.
Fig. 2.6 (higher is better) shows good performance scaling for Go and Java
containers, but unikernel performance has dropped precipitously. Despite
all unikernels performing badly in this case, there are some notable dis-
tinctions which are more obvious when compared with the single threaded
results.
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Figure 2.6: REST service performance of multi-threaded unikernels versus multi-
threaded containers

When directly comparing the multi-threaded and single-threaded results
(Fig. 2.7), only Java shows a performance increase with an increasing num-
ber of cores. Even in that case, the only return for quadrupling processing
power is 60% more requests per second. Python is relatively unaffected
by adding more cores, with multi-threaded performance dipping 3% below
single-threaded performance. Go seems to actually suffer a great deal from
expanding the thread pool, only managing 75% of its single core perfor-
mance. It was verified that this is not an effect of Go simply starting too
many threads and drowning the scheduler, since Go fetches hardware infor-
mation and starts as many threads as there are cores [50]. The possibility
of XenServer causing these scaling issues was considered, but related work
has shown that this is not the case [52], at least in instances where the num-
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ber of physical cores equals the number of virtual cores and the number of
threads is not (much) higher than either, which is true here.
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Figure 2.7: REST service performance of multi-threaded unikernels relative to
single-threaded unikernels

It should be noted that in all cases the combined CPU load of all cores
was between 40 and 50% during testing, indicating that a lot of cycles were
being wasted on simply getting threads to run at all, and not enough on
actually running them. This shows that while OSv obviously has very good
single threaded performance, any applications using multiple worker threads
should probably be split up until threading performance has been stabilized.

Request latency

Part of the requirements for the smooth operation of microservices is having
a predictable, stable and preferably low response time. In this section, the
results from the stress tests are examined in a different way to see if this is
the case for unikernels. Values over the 98th percentile and below the 2nd
percentile have been removed to avoid noise from distorting the scope of the
charts. All statistics are based on one million requests to their respective
web service.

Fig. 2.8 shows the response times for both Go and Java. A (UK) suffix
indicates response times for a unikernel while (C) is the container version.
While the Go unikernel seems to have a slightly higher median response time
than its container counterpart, the maximum response time of the container
version is almost 10 times higher. Taking the performance results from the
previous sections into account, it’s obvious that these numbers are not a
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problem for unikernel performance. Java, for its part, performs equally well
in both cases.

The results for Python were not included in the chart because their range
would make the other results hard to interpret. However, the Python uniker-
nel seems to perform considerably better than the container version, with
a median response time of 100ms versus 111ms, respectively. Addition-
ally, Python’s maximum response times are much better when running as
a unikernel with 105ms versus 140ms for the container.
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Figure 2.8: REST service response time overview for unikernels and containers

The response times for multi-threaded applications show rather interesting
numbers that give some food for thought for the bad scaling performance.
Fig. 2.9 shows the response latencies for both single- and multi-threaded
Go unikernels. The response times have been gathered in categories 50ms
wide, with the only exceptions being the 0-5ms and >450ms categories. In
the single threaded case, the number of responses falls off exponentially with
response time, with the maximum response time being 63ms. In the multi-
threaded case however, the curve flattens around 100ms and about 0.6% of
the requests take a much longer time to complete. 0.12% of the requests
even take between 450 and 1000ms to complete. Despite the multi-threaded
program actually handling about 99% of all requests slightly faster than the
single threaded program, the fact that a small percentage of all requests is
held up for a long time makes it slower overall. The only explanation for
this is that while the scheduler handles the large majority of threads quickly
and correctly, some thread switches are made to wait an exceptionally long
time before being able to run their thread and complete their workload.
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Figure 2.9: Number of REST service responses per response time category for
single- versus multi-threaded Go unikernels

Memory footprint

Using the REST service images from the stress test, a crude comparison can
be made between the memory consumption of unikernels versus containers
for the different languages.

Container memory footprint was queried directly from Docker. For uni-
kernels, memory footprint was measured by taking the number of actually
allocated pages as reported by VirtualBox for each machine and multiply-
ing it by page size. VirtualBox 5.2 was used for this purpose instead of the
already deployed unikernels on XenServer because it was easier to measure
memory footprint at any given time using VirtualBox.

Memory footprint was only examined for the single threaded version of uni-
kernels and containers. Measurements were taken after starting an instance
and executing a single request to make sure all libraries and variables were
initialized. Note that after thousands of requests, memory footprint could
be higher than the numbers presented, but would eventually go down again
after garbage collection.

Fig. 2.10 shows that Java unikernels use over twice as much memory than
containers, Python unikernels use up to 6 times more memory, and Go
unikernels require as much as 30 times more memory. This makes sense,
since containers run on top of a host kernel and only need to load their
programs into memory. Unikernels, on the other hand, have some memory
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overhead because of their built-in kernel, no matter how small it may be.
The huge difference for Go can be explained by the fact that the program
requires no interpreter or VM like Python and Java programs do, so the
container version has a minimal memory footprint. This makes the unikernel
version, which only requires 70MB more memory in absolute numbers, look
comparably huge.
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Figure 2.10: Container versus unikernel instance memory consumption

In absolute terms, the extra memory required to run a program as a uniker-
nel is 70MB to 130MB, depending on programming language. One redeem-
ing quality of unikernels is the fact that they can run on a type I hypervisor,
eliminating the need for an operating system that could potentially consume
a large amount of memory by itself. This means that unikernels are a viable
alternative to containers where small to medium numbers of unikernels are
concerned, simplistically represented by:

th + NukMuk < Mos + NcMc (21)

Where My, is the memory requirement of the hypervisor, M, is the memory
requirement of the operating system to be replaced, N, and N, represent
the number of unikernels and containers respectively and M, and M, rep-
resent memory requirement per unikernel and container, respectively. Note
that the number of unikernels does not always equal the number of contain-
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ers, since one container may have to be split up into several unikernels due
to threading or multi-processing concerns.

Stability issues

As discussed before, unikernels under UniK and rumprun had serious sta-
bility problems, despite being otherwise fully functional. OSv on the other
hand is a stable platform, but there were some quirks:

e When compiling Go as PIE executables, REST services crashed once
every 2 to 10 million requests. This was not a huge problem for testing
since it was done in batches, but it is something to look out for when
planning to use unikernels in any type of production environment.
Luckily, the tests have also shown that OSv’s wrapper for Go, which
is stable, has nearly identical performance, so it would be preferable
to run Go that way.

e All OSv unikernels tend to crash every few million requests once they
have been multi-core enabled. They did not so much cause errors, but
simply hung or stopped without further explanation. Since multi-core
performance under OSv proved to be worse than simply instancing
several unikernels, this is not much of an issue either.

Updated results

This section provides updated benchmark results for new software versions
available in early 2022, along with results for Firecracker microVMs, thus
representing nearly 4 years of improvements since the original benchmarks.
The benchmarked versions are OSv 0.56, Docker 20.10.3, and Firecracker
0.25.2, running on Ubuntu 20.04. For Firecracker, a proxy is used to for-
ward HTTP requests arriving at the host interface to the microVM inter-
face using socat®. As this may introduce an undue CPU overhead and
network latency, the effects are monitored to ensure a valid comparison to
containers and unikernels. Whereas the unikernels in the original bench-
marks were somewhat difficult to create and not always stable, the OSv
toolchain has been significantly improved. The process of creating uniker-
nels is more straightforward, and the resulting unikernels boot and operate
reliably. Similarly, Firecracker seems to be based on best practices learned
by competing technologies in the last few years, and the toolchain allows
the easy creation of reliable microVMs.

The benchmarks are not run on the same machine as the original ones;
the machine used for these tests has an Intel Core i5 3570k processor with
8GiB of memory, and a 120GiB ADATA SSD. As this makes the results not

Shttps://linux.die.net/man/1/socat
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directly comparable to the older benchmarks, the opportunity was taken
to update the test scenarios slightly, and the REST service now has an
additional POST method that creates a “todo” item in-memory. As such,
both requesting and creating “todo” items is benchmarked. Simultaneously,
the benchmarks are limited to Golang in order to present a clear comparison
between various runtimes and scenarios.

Fig. 2.11 shows the results of the REST stress test. While it may be ex-
pected that the memory manipulation involved in creating a new “todo”
item is slower than a straightforward array lookup, the unikernels seem to
suffer from a higher relative penalty than containers and Firecracker. How-
ever, this is a minor problem for the OSv unikernels, which are around 80%
faster than equivalent Docker containers, and 160% faster than Firecracker
microVMs. The significant performance delta between unikernels and Fire-
cracker, despite both being essentially microVMs, is likely largely due to
the use of XenServer and KVM, respectively. Whereas XenServer runs the
highly optimized OSv drivers close to bare metal, the drivers in the Fire-
cracker microVMs have to contend with the various layers of KVM and the
Linux kernel.
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Figure 2.11: REST stress test performance evaluation of unikernels, containers
and Firecracker microVMs

Fig. 2.12 shows the performance of the various runtimes for Bubble sort. As
the error bars indicate, the runtimes are almost equally matched, indicating
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that the effects from Fig. 2.11 are likely entirely due to virtual driver
efficiency, choice of hypervisor, and network stack architecture.
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Figure 2.12: Bubble sort execution time of unikernels, containers and Firecracker
microVMs

The relative performance of multi-threaded containers and microVMs is
shown in Fig. 2.13. Container versions are shown to scale almost perfectly,
at 340% to 380% depending on the type of workload. While the performance
issues of OSv unikernels are expected, the benchmarks reveal a significant
difference between the scalability of specific operations. Paradoxically, sim-
ply requesting “todo” items is significantly slower than creating them, which
is merely 14% slower than in a single-threaded unikernel. Firecracker covers
the middle ground; when provided with four CPUs, performance improves
by around 220%. This effect can not be attributed to the overhead of socat;
Firecracker simply did not use all of the CPU power it was assigned, and
an increase in HTTP requests merely results in higher latencies. Note that
OSv unikernels exhibit a similar behavior, as the multi-threaded unikernel
used only 16-23% of its assigned CPU power.

Latency distributions are shown in Fig. 2.14, indicating that OSv unikernels
and Firecracker microVMs are closely matched in response time distribu-
tions, and they are both more stable than containers, at the cost of slightly
higher median latency.

Finally, Fig. 2.15 shows the image size and memory use of the various
alternatives. As shown in the original results, containers have virtually no
overhead in image size when using a scratch base image, and very little
memory overhead (i.e. the Docker shim, which was not counted in the
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Figure 2.13: Relative performance of multi-threaded containers, unikernels and
Firecracker microVMs
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original results). Firecracker, on the other hand, has the biggest overhead
in terms of both image size and memory. This is likely due to the default
kernel used to create the images, whereas OSv uses a modular, completely
customizable kernel. The latter falls between containers and Firecracker in
terms of image size overhead, but neither VirtualBox nor XenServer could
properly determine its memory use. Assuming a memory overhead similar
to that in the original benchmarks, Firecracker and OSv unikernels have
almost identical memory requirements.
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Figure 2.15: Image size and instance memory consumption of containers, uniker-
nels and Firecracker microVMs

2.2.3.3 Discussion

Out of the considered unikernel platforms, OSv is the only stable one for
the tested scenarios. It supports (among others) C++, Go, Python and
Java, albeit with some small changes to OSv’s source code in the case of
Python. Other platforms were either unstable during testing and/or were
less user friendly, either because it was difficult to create usable images in
the required formats or because the images did not boot correctly without
certain other software in place (e.g. UniK daemon).

Unikernels exceed containers in terms of pure speed and response time,
firmly surpassing them for single core performance on a type I hypervi-
sor. In the evaluations, Java and Python unikernels performed 16% better
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than their respective containers for a REST service stress test, and Go even
performed 38% better. When the focus shifts to heavy workloads, all uni-
kernels keep an equal pace with their container counterparts, apart from
the Python unikernel which only manages 50% of the equivalent container’s
performance. Unikernel performance for the REST service stress test can
be explained by the fact that this test relied heavily on kernel functions
and thus context switches from user space to kernel space. These do not
exist in a unikernel, giving unikernels a large advantage over containers in
situations where context switches happen very often (REST service), but
breaking even in situations where they almost never occur (heavy work-
load). Another contributing factor is the heavier use of device drivers in the
REST service stress test, which are less complex in unikernels.

Unikernels are far from ready for multi-threading, but that should not be
a problem for cases where software can either be split up or multiple in-
stances can be deployed (REST services, modular software) or where multi-
threading is not really required (embedded software). In these cases con-
verting software to unikernels could still be a major advantage.
Concerning memory, unikernels consume a good deal more than containers.
This makes sense, since unikernels have the extra overhead of a kernel,
while containers use the kernel of a host OS. However, since unikernels do
not need a full OS to run on in the first place, memory consumption of a
hypervisor with a small number of unikernels may be less than that of a
large OS running a few containers. The result is that memory consumption
is an important factor to consider when deciding whether to use unikernels.
Adding more instances will give better performance than adding the same
CPU power to one or more containers running the same software, but the
trade-off is that the unikernels will use more memory.

In terms of unikernel performance of specific programming languages, Java
and Go are the clear winners. Java gives by far the best performance of
all, while Go uses the least amount of memory. For new software, this can
be useful information when choosing a language for unikernel development.
For existing Java or Go software being ported to unikernels, switching to
the other language might not be worth the effort required to convert it,
unless either speed or memory footprint are absolutely critical.

2.3 Networks

Although network virtualization is also effected through software, its nature
is fundamentally different from process virtualization as it concerns data
streams rather than processing. Most of the effort in this area is focused
on merging and managing networks into uniform, secure environments in
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order to simplify the deployment and scaling of (virtualized) software pro-
cesses. Additionally, because network virtualization is handled by software,
its flexibility also gives rise to better network monitoring, routing and relia-
bility in general. Like software virtualization through containers, the basis
of network virtualization is enabled by kernel features (e.g. virtual network
devices and routing), aided by hardware acceleration for secure connections.

2.3.1 Virtual Private Networks

Virtual Private Networks (VPNs) are an old and widely used technology,
widely used to form secure (e.g. private) virtual networks on top of hardware
network infrastructure, for example to enable employee access to sensitive
company data at home, or to form a virtual Local Area Network (LAN)
over the internet for older multiplayer games to run on. Generally, VPN
software achieves its goals by creating its own virtual network interface that
redirects to a hardware network interface, assigning an IP address from a
single logical pool of addresses used by the VPN. Any traffic through the
virtual interface is encrypted and encapsulated by the VPN software before
redirecting it to the hardware interface, securing and isolating the data.

Recent state of the art studies appear to be non-existent, but older ones
are still informative [53]. Some studies deal with the security aspects of
a VPN [54], while many others focus on the throughput performance of
VPNs [55, 56]. However, no studies seem to compare OpenVPN [57] to
newer VPNs such as WireGuard [58].

While studies exist on using overlay networks in osmotic computing [59],
they deal mostly with container network overlays such as Flannel and Wea-
ve [60] which are integrated into Kubernetes. Others present a custom
framework, for example Hybrid Fog and Cloud Interconnection Frame-
work [61], which also gives a good overview of the challenges of connecting
edge and cloud networks. To the best of our knowledge, no work exists on
explicitly using a VPN as an overlay network to connect edge and cloud
networks, nor is there existing work on testing the scalability of a VPN to
do so.

In this section, an overview is given of all the VPN software chosen for this
paper. For each VPN solution, a Docker container image was created so it
could be launched from a Kubernetes pod. As much default configuration
was used as possible. The code and configuration for the Docker container
images is made available on Github®.

6https://github.com/drake7707 /secure-container-network
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2.3.1.1 OpenVPN

OpenVPN [57] is a widely used VPN solution, first released in May 2001.
It is still under active development, with version 2.4.7 being released as of
February 2019. For the tests in this study, version 2.4.6 was used. It uses
open encryption standards and offers a wide range of options, while being
able to use both UDP and TCP for its transport layer. A weak point of
OpenVPN is that it is single threaded and thus entirely dependent on the
speed of a single processor core, no matter how powerful a system is.

2.3.1.2 WireGuard

WireGuard [58] is a relatively new VPN solution. It does not have an of-
ficial stable release yet, and is still under heavy development. Its current
version is v0.0.20190406, but the version used for the tests is 0.0.20180613.
As of March 2019, it has been sent out for review several times, aiming
to be mainlined into the Linux 5.2 kernel [62]. A main feature of Wire-
Guard is that it is designed to be non-chatty, only sending messages when
required. Note that in this paper WireGuard-go [63] is used, which is a
Golang implementation of WireGuard. Performance may differ from the
main WireGuard version, especially if it is accepted into the Linux kernel.

2.3.1.3 ZeroTier

ZeroTier [64] is an established VPN solution developed by ZeroTier, Inc.
First developed in 2011, it is currently at version 1.2.12, which is also used
for the tests. ZeroTier is still under active development, and has both paid
and free solutions. The “Zero” part of its name comes from the fact that it
requires zero configuration by default. This is achieved by having a number
of root servers, called the “Earth” and managed by ZeroTier, that fulfil a
similar role as DNS servers to the ZeroTier network. However, users can also
define their own root servers using “Moons” in order to decrease dependency
on the ZeroTier cloud infrastructure and improve performance. Its design
also gives ZeroTier the advantage that no endpoints need to be publicly
available, as long as they are still accessible through some public IP address
via NAT.

2.3.1.4 Tinc

Tinc [65] is a VPN solution that predates even OpenVPN, with an initial
release in November 1998. The current version, 1.0.35, was released in
October 2018, so it is still under active development. Version 1.0.35 is
also the one used for the tests. Like OpenVPN, it relies heavily on open
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standards. However, unlike OpenVPN, it has full mesh routing by default,
which can make it more efficient in large networks with large amounts of
client-to-client traffic.

2.3.1.5 SoftEther VPN

SoftEther VPN [66] is a relatively new VPN solution. Its first release dates
from January 2014, with the latest release being version 4.29 as of February
2019.

SoftEther is a multi-protocol VPN, with modules for OpenVPN, L2TP/
IPSec, MS-SSTP and its own SoftEther VPN protocol. By default it uses
the SoftEther VPN protocol, which emulates Ethernet over HTTPS. The
advantage of using HTTPS to tunnel VPN traffic is that it makes it easier
to bypass firewalls, since HI'TPS ports are often freely accessible.

Other than being multi-protocol, SoftEther has a wide range of features,
including a high availability setup for its server endpoints.

2.3.2 Network Function Virtualization and Software De-
fined Networks

The functionality of VPNs can be generalized with the use of Software
Defined Networks (SDN) [67] and Network Function Virtualization (NFV)
for a more modular and flexible approach to network virtualization.

SDN is a technique by which the control of a network is separated from its
physical infrastructure and the data sent through it, enabling programmatic
control of (logical) networks and abstracting the underlying infrastructure
from the view of applications. As such, SDN can assist in creating a highly
dynamic and configurable VPN. As a more modern application, the infra-
structure for container networks generally consists of an overlay network
(or SDN overlay), which manages tens to hundreds of virtual interfaces and
their respective routes on the server hosting the containers. Such SDN over-
lays can also extend to other nodes, forming a cluster-wide logical network.
NFV, on the other hand, can be used to transfer networking functions from
dedicated devices (e.g. switches, routers) to generic devices (e.g. servers, fog
nodes), allowing for advanced control over specific functions. For example,
as the entire network is software-managed and any imaginable metric can
be calculated and logged, much of the information required for intelligent
service discovery, DNS, intrusion detection and traffic routing is available
for use with NFV. The use of (stateful) containers and VMs allows for seam-
less updates of functionality, while such flexibility or even the functionality
itself would be difficult or impossible to achieve with firmware on dedicated
hardware.
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2.3.3 VPN for secure container networks

This section contains the edited version of the following publication: “Scal-
ability evaluation of VPN technologies for secure container net-
working”, T. Goethals, D. Kerkhove, B. Volckaert, F. De Turck
published in 2019 15th International Conference on Network and
Service Management (CNSM), 2019, pp. 1-7 [68]

In recent years, containers have quickly gained popularity as a lightweight
virtualization alternative to VMs, their main advantages being limited re-
source requirements and fast spin-up times [69]. Simultaneously, edge de-
vices used in IoT applications have become powerful enough to smoothly run
containers and microservices, while remaining small and flexible enough to
be used almost anywhere. This has triggered a trend of deploying contain-
erized applications to edge devices, taking advantage of both centralized
control and geographically widespread devices for a more efficient distri-
bution of workloads [70]. To aid with the deployment and operation of
containers on edge devices, a Virtual Private Network (VPN) can be useful,
for the following reasons:

e Securing communication between nodes becomes more important when
leaving the confines of the cloud. While the connections between or-
chestrator nodes and service endpoints are often secured in various
ways by default, it can not be assumed that this is always the case.
A VPN can provide a base layer of security for all communications,
ideally with little to no performance overhead.

e Unlike cloud infrastructure, networks containing edge devices are not
usually well organized and homogeneous. This means the network
could be hidden behind a router, node IP addresses are not pre-
dictable, existing port mappings could interfere with container re-
quirements, etc. While technologies such as UPnP [71] can solve some
of these problems, they can also introduce new security problems. It
would be better to avoid the problems with edge networks altogether
by using a VPN. In the cloud, only the VPN server needs to be publicly
available. This makes it possible to hide critical services from public
scrutiny, while still allowing edge devices in the VPN to access them
over a secure connection. In short, a VPN can ensure a homogeneous
networking environment in which both the container orchestrator and
deployed containers can allocate required ports, assign IP addresses
and modify routing tables without interference from other devices or
programs.
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Modern clusters consist of thousands of nodes on which containers can be
deployed [72]. Therefore, in order to build a cluster using a VPN, any suit-
able VPN software must be able to handle a large number of simultaneous
connections and packets with minimal performance degradation. The goal
of this paper is to evaluate recent VPN software for its ability to scale with
the size of the cluster using it as an overlay network, while also examining
the effects of network degradation on communication between nodes in a
cluster connected through a VPN7. While some of the conclusions are valid
for VPN networks in general, the tests are primarily aimed at edge net-
works, with a lot of devices generating IoT traffic consisting of very small
packets.

Many studies exist on the concept of shifting workloads between the cloud
and edge hardware. This trend began with edge offloading [73] and cloud
offloading [74], evolving into osmotic computing [70]. Several container de-
ployment strategies exist, from simple but effective resource requests and
grants [75], through network-aware fog scheduling [76], to using deep learn-
ing to constantly adjust deployments [77]. Some studies focus particularly
on security for osmotic computing and end-to-end security between the edge
and the cloud [78, 79].

2.3.3.1 Benchmarking setup

The tests are performed on the IDLab Virtual Wall installation, reserving
machines with identical hardware and in the same geographical location
for each test. Each machine has two Quad core Intel E5520 processors at
2.2GHz and 12GiB RAM.

A total of 8 machines are provisioned with Ubuntu 16.04 and Docker 18.06.
Using these machines, a Kubernetes v1.11 cluster is created with 1 master
node and 7 worker nodes as a basis for each test. Kubernetes is used to easily
distribute a large number of VPN client containers over the entire cluster to
simulate a VPN network with many independent clients. The Kubernetes
version should not have any impact on the results up to and including v1.14.
Observations during testing showed that deploying over 120 VPN client
containers on a single node results in errors because the container processes
fail to allocate all required resources. However, when using Kubernetes this
is not a problem, since it has a built-in limit of 110 pods per node by default.
Therefore, the VPN containers deployed by Kubernetes for the tests will not
run into the observed problems with overdeployment.

All tests follow the same basic premise, using pods that contain a single

"More recent developments have made the use of a VPN obsolete for this use case.
CNI plugins exist that can explicitly tunnel between private networks, e.g. EdgeVPN.io
https://edgevpn.io/
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container with a VPN client and a configurable script. A number of pods
are deployed to the nodes in the cluster by creating a new deployment in
Kubernetes, as shown in Fig. 2.16. The actual number of deployed pods
varies depending on the test. Once a VPN connection is established, the
script in the pod starts calling a REST service located on the master node
using curl, every 250ms for 15 minutes. The REST request has no body, it
is an empty GET request. The response is a simple “OK” with a 200 HTTP
code. Using these short and static request/response messages ensures that
the connectivity of all VPNs is tested rather than network throughput. This
approach also has the advantage that it closely emulates IoT sensor traffic
usually present in edge networks, where short bursts of sensor data are
pushed to a central broker. The pods do not perform any processing of the
results, rather they simply log the start timestamp, end timestamp and curl
exit code of each REST call to a pod-named output file on a host-mounted
network share to be processed later.

Because the goal of the tests is to measure VPN scalability with no other
factors involved, the VPN server and REST service containers on the master
node are started outside Kubernetes. This ensures that none of the VPN
traffic goes through the Kubernetes pod network, but rather that it travels
directly between VPN endpoints.

To ensure only valid data was processed, the data was filtered both at the
start and the end of each test:

e To remove data generated before all pods were running, only data
recorded after the latest first timestamp of all pod output files is used.

e To remove data generated after the test is shut down, the last string
of failures at the end of each pod output file is removed. In theory,
this could remove some valid failures, but the total number of calls
for each pod is large enough that it should not make any meaningful
difference.

VPN Software settings

e For OpenVPN, the standard configuration is used. Traffic is encapsu-
lated in UDP packets over a TUN device.

e For WireGuard, the standard configuration is used. Some extra work
is required to set up interfaces and routing rules, which is done by
default in other software such as OpenVPN and ZeroTier.
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Figure 2.16: Overview of the test setup with m nodes and n pods per node.

e For ZeroTier, a network controller was set up using a script to simplify
the creation of VPN clients through scripts. While there is a minimal
reliance on ZeroTier cloud infrastructure, the Earth root servers are
still used to look up the address of the test network controller by its
ZeroTier name.

e For Tinc, standard configuration was used. Like OpenVPN, transport

uses UDP via a TUN device.

Scalability test
The scalability test aims to determine how well VPN software can handle
large amounts of connections and service calls. To achieve this, a number
of pods are deployed via Kubernetes that perform REST calls as described
above. The number of deployed pods varies from 50 to 750, in steps of 100.
The results from the test are aggregated and analyzed to determine how
the response times and failure rates (error codes) vary with an increasing
amount of pods.

Network degradation test

In the real world there is always some amount of packet loss and latency,
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especially when dealing with the edge and IoT devices. Therefore, it is
important that any VPN can remain functional despite significant network
degradation.

To determine the resilience of VPN software against network degradation,
both packet loss and latency are examined independently. Both conditions
are imposed through NetEM on the host network interface. Because the
degradation affects all traffic including VPN control messages, this method
gives a good indication of how well a VPN can keep working under any set
of network conditions.

This test is performed with 100 pods distributed evenly over the 7 worker
nodes. Latency is varied from 0 to 5000ms in 1000ms jumps. Out of prac-
tical considerations, any requests taking longer than 10 seconds are termi-
nated and considered a failure. This influences the failure rate to some
degree, but since the same rule is applied across all tested VPNs, the com-
parison is still valid. Packet loss is varied from 0% to 100%. While this
range may seem extreme, it is interesting to see how VPNs react to the full
spectrum of packet loss.

2.3.3.2 Results

In this section the results from the tests are presented. To keep this section
organized, the results for the scalability tests have been divided into subsec-
tions for response time and failure rate. Similarly, the network degradation
tests have been split into subsections for latency and packet loss.

Note that for all charts with whiskers, the whiskers indicate the 25th and
75th percentiles of the results, while the data points represent the median
cases. The 75th percentile is used for practical reasons; higher percentiles
produce extremely large whisker ranges, making it harder to interpret the
charts. The 25th percentile is chosen for symmetry; the difference between
the 1st and 25th percentile is far less significant than between the 75th and
100th.

Scalability - response time

Fig. 2.17 shows the response times of the scalability test on a logarithmic
scale. For the same reason, both charts have been truncated at 650 pods
instead of 750. A striking observation is that the response times of both
Tinc and SoftEther increase by an order of magnitude between 250 and 350
clients, making them over 50 times higher than those of other VPNs. At less
than 350 clients, Tinc is already being outpaced by OpenVPN, but is still
in the same order of magnitude. SoftEther starts out with response times
twice as high as those of OpenVPN, and ends up with response times almost
150 times higher than those of OpenVPN at 650 clients. It is likely that
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some common feature or design decision of Tinc and SoftEther is causing
this performance problem.

OpenVPN, WireGuard and ZeroTier are evenly matched for 450 VPN clients
or less. Even the 25th to 75Hth percentile ranges are similar, though the
highest ZeroTier response times start to go up quickly around 250 clients.
For more than 450 clients, a few trends become clear that are useful for
large scale edge networks. First, increasing VPN traffic does not seem to
affect WireGuard response times at all. Even the results at 650 clients
are still in line with those at 50 clients. OpenVPN response times shift
from a slow, linear increase to a quadratic curve. ZeroTier is on a solid
quadratic curve from the start, while the slowest responses quickly escape
the chart altogether. In short, WireGuard is the clear winner of this test,
while OpenVPN is a close second. However, if the test were to continue to
thousands of clients, WireGuard may become the only useful choice.
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Figure 2.17: Evolution of response time for an increasing number of VPN clients,
represented on a logarithmic scale.

Scalability - failure rate

Fig. 2.18 shows the failure rates of the scalability test. The results are
strikingly similar to the REST response times.

Tinc failure rates are an order of magnitude above those of other VPNs,
but the curve is more pronounced than in the response times chart. Even
with 50 clients, Tinc failure rate is 10 times higher than that of OpenVPN
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and ZeroTier. It is possible that Tinc is more suited to high throughput
applications in smaller networks, but that topic is outside the scope of this
paper. SoftEther, while not having excellent results, stays close to Open-
VPN performance until its failure rates start to increase quickly around 450
clients.

As the rest of the VPNs go, WireGuard has the best results, showing little
to no increase in failed requests as VPN traffic and the number of clients in-
creases. OpenVPN appears to follow a linear trend, with ZeroTier following
closely until its performance once again degrades according to a quadratic
curve around 450 deployed clients.
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Figure 2.18: Evolution of failure rate for an increasing number of VPN clients.

Network degradation - packet loss

Fig. 2.19 shows the response time for REST requests under each VPN, for
increasing amounts of packet loss. All the results in this chart are very
closely matched, with even the 25th to 75th percentile ranges lining up in
most cases. The results only start to differentiate for 70% packet loss or
more. WireGuard performance degrades heavily when going from 90% to
100% packet loss, seemingly making it the slowest VPN in this test. Tinc
appears to win this test, with the lowest median time and a relatively small
range for its results.

Considering the invariance of the results at normal amounts of packet loss,
0% to 20%, it stands to reason that increasing the number of clients within
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this range will yield the exact same results as Fig. 2.17 through Fig. 2.18
have shown. However, more tests are required to properly confirm this.
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Figure 2.19: Response time of REST calls from 100 VPN clients for increasing
packet loss

OpenVPN and SoftEther results cannot be shown beyond the 80% packet
loss category, the reason for which becomes clear when looking at Fig. 2.20.
This chart shows the failure rates for the same packet loss test, and also
suggests an alternate interpretation for some of the apparent effects in Fig.
2.19. While ZeroTier and WireGuard manage to keep pushing at least some
traffic through until packet loss hits 100%, Tinc, SoftEther and OpenVPN
failure rates increase much faster. Starting around 90% packet loss, Open-
VPN and SoftEther both have a 100% failure rate. Tinc on the other hand,
still has a 0.004% success rate, but the extremely low sample size makes the
response time shown in Fig. 2.19 very unreliable. WireGuard and ZeroTier
still have a success rate of about 10% to 20%, so that data is reliable.
While there is a lot of nuance in the results for 70% to 100% packet loss,
the results for the lower end of 0% to 20% are easier to interpret. There
is little difference between the different VPNs in this range, save for Tinc,
which is known to have a higher failure rate from the results of the previous
tests. There is no clear winner in this test; both WireGuard and ZeroTier
are good options, with WireGuard having slightly higher response times but
lower failure rates.
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Figure 2.20: Failure rate of REST calls from 100 VPN clients for increasing packet
loss

Network degradation - latency

Fig. 2.21 shows the failure rate for each VPN for increasing amounts of
network latency.

WireGuard has the best failure rate, showing only a slow increase in failure
rates as latency goes up. Even at 5000ms latency, still only around 3% of
the requests fail. Note that due to the way the test was set up, WireGuard
failure rate is 100% as soon as latency goes over 5000ms. OpenVPN mostly
follows the performance curve of WireGuard, but consistently has a 4 to 5
times higher failure rate. ZeroTier and SoftEther are very close in perfor-
mance. Their failure rates start out almost equal to those of WireGuard,
but they increase faster as latency goes up. SoftEther failure rates shoot
up to almost 50% at 4000ms, while ZeroTier manages to stay around 18%.
Tinc, which by now has firmly established a somewhat high failure rate,
degrades quickly once latency is higher than 1000ms, with a failure rate of
83% at 2000ms latency.

OpenVPN holds the middle ground between ZeroTier and Tinc, with error
rates over twice as high as those of ZeroTier. OpenVPN shows slightly
better performance than SoftEther at 4000ms latency, but at that point
almost half of all requests fail under both OpenVPN and SoftEther.

As with the packet loss test, WireGuard comes out on top with very low
failure rates, while ZeroTier is a close second.
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Figure 2.21: Failure rate of REST calls from 100 VPN clients for increasing latency

VPN overhead

Fig. 2.22 shows the VPN traffic overhead for both sent and received traffic.
The first important observation here is that the overhead for all VPN soft-
ware is within 10% of each other, meaning that this factor likely has very
little influence on the results of the tests. The second observation is that
traffic overhead is very high in all cases, with almost twice as much VPN
overhead as actual container traffic. WireGuard, which showed excellent
results in other tests, has one of the highest overheads.

While the results show that VPN traffic overhead likely has no effect on the
performance of a VPN, they also show that most of the traffic is wasted on
overhead when applied to large amounts of small packets. This can have a
negative impact on microservice architectures where containers are deployed
on edge devices to transceive IoT data.

2.3.3.3 Discussion

The results for WireGuard are the best across all tests. In some cases
the results are remarkable, such as an almost unchanging response time
and failure rate for REST requests with an increasing number of clients,
where other VPN solutions tend to have quadratic scaling. In other cases,
the difference is less pronounced. In the packet loss tests for example, the
response times for requests over WireGuard are mostly on par with other
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Figure 2.22: Relative overhead of VPN traffic with 100 VPN clients.

VPN setups, but the failure rates are about 10% to 30% lower than those
for ZeroTier, which holds the second place in that scenario.

Tinc seems to be the least suited to the kind of setup used for the tests, hav-
ing the slowest response time and highest failure rate with a large amount
of clients, while also being most susceptible to network degradation.

The other solutions have varying results in all of the tests. In the scalability
tests, OpenVPN holds second place, while ZeroTier comes in third. Soft-
Ether is usually near Tinc in terms of performance. Looking at the network
degradation tests, SoftEther and OpenVPN switch places while ZeroTier
remains in second place.

For starters, much more VPN software exists than has been benchmarked.
Adventurous researchers could attempt to map the scalability of all known
VPN software, though this work will be hampered by a quickly changing
landscape of possible candidates and versions.

While the results of this study provide insight on the high-level behavior of
VPN software, a lot of the parameter space was deliberately not examined.
Evaluating the full parameter space would be prohibitively time-consuming.
However, there may still be interesting behavior to discover. For example,
there is no way to predict how the results from the packet loss and latency
tests would change with a varying number of VPN clients.

Furthermore, no attempt has been made to optimize the configuration of



54 VIRTUALIZATION

each VPN to improve performance. A technical study which analyses VPN
designs and configuration options could yield important insight into making
a VPN that is ideal for use with mixed cloud-edge clusters.

It is possible that network topology and the number of VPN clients per
node has a significant influence on the scalability of a VPN network. To
confirm this, the tests would have to be repeated using hundreds of physical
machines.

Another interesting topic is to see how a VPN network could be extended
by using multiple VPN servers in a cluster. For example, SoftEther has
a clustering function [80] that could be combined with a Kubernetes high
availability setup to provide a suitable VPN network topology for a fault
tolerant cluster.

Lastly, the results showed that up to 750 VPN clients is not a problem for
WireGuard. Studies focusing on one specific VPN solution could be useful
to determine its scalability limits.

2.4 Summary

In this chapter, the various types of virtualization technologies are intro-
duced that will be used throughout the rest of this dissertation. The differ-
ence between process and network virtualization is explained, more specifi-
cally by discussing what and how they aim to virtualize.

A comparison of two popular types of process virtualization is presented,
although more recent trends indicate that WASM may take over from uni-
kernels as many unikernel initiatives are no longer actively developed.

Out of the considered unikernel platforms, OSv is the only stable one for
the tested scenarios. It supports (among others) C++, Go, Python and
Java, albeit with some small changes to OSv’s source code in the case of
Python. The benchmark results only concern OSv, so the conclusions may
be different for other platforms.

The results show that unikernels can exceed containers in terms of perfor-
mance and response time, depending on the programming language used.
Java unikernels are significantly faster, while Python unikernels are actually
significantly slower than equivalent containers. Potential factors contribut-
ing to unikernel performance and memory use are discussed, especially as
the increased memory use may offset the benefits of faster computation in
some scenarios.

On the side of network virtualization, various VPN alternatives are evalu-
ated for their scalability in IoT edge networks, and to examine the effects
of network degradation on VPNs used for this purpose. To that end, Open-
VPN, WireGuard, ZeroTier, Tinc and SoftEther are set up with a default
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configuration and subjected to a number of described benchmarks.

The results of the benchmarks show that WireGuard is the best VPN so-
lution across all tests. Although the effects of different topologies and op-
timized configurations was not tested, the results seem to argue in favor of
the continued adoption of WireGuard.
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Fog and Edge

“How many times have you been watching an episode of ‘South Park’ and
thought, ‘I’d like to be able to watch this on my television while hooked into
my mobile device, which is being controlled by my tablet device which is
hooked into my oven, all while sitting in the refrigerator?’ ” - Trey Parker

3.1 Introduction

This chapter shows how the virtualization technologies introduced in Chap-
ter 2 can be used to create a computational infrastructure extending be-
yond the cloud into homes, and how they enable flexible and responsive ser-
vice architectures for increasingly demanding end-user applications. Section
3.2 explains the concepts of fog networks and edge networks, and explains
the difficulties of software deployment in such heterogeneous environments.
Some state of the art platforms are introduced that are designed to orches-
trate software services in edge networks. Section 3.3 shows how a container
orchestration agent, FLEDGE, with extremely low resource requirements
can be constructed. This agent is designed specifically for edge devices, and
although newer alternatives have since been created that focus on function-
ality to transform edge computing into a complete ecosystem, the resource
requirements of FLEDGE compare favorably to their agent components.
In Section 3.4, a lightweight service scheduler is constructed that allows
real-time service scheduling for hundreds of thousands of nodes, based on
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a distance metric, node densities and node resources. This scheduler can
be modified to work with Kubernetes [1] to replace its default scheduler.
Finally, the chapter is summarized in Section 3.5.

3.2 The Network Edge

In the last decade, the Internet of Things (IoT) approach has become pop-
ular in any number of products, from basic sensors for home or process
automation to intelligent appliances such as smart light bulbs and washing
machines with self-adjusting programs.

These devices regularly send operational data and metadata to data centers
in the cloud for several reasons. For one, a centralized access point for
software services makes it easier for consumers to control their devices from
any physical location. Another reason is that gathering all this data allows
manufacturers to further improve their devices and services. However, in the
last few years the growth of network traffic and processing power required
to support the increasing number of smart devices is too high for centralized
data centers to keep pace with [2].

Fog computing [3], which takes place in fog networks outside the cloud,
offers a solution to this problem by decentralizing data centers. Although
cloud data centers are often geographically distributed to reduce latency and
improve end-user experience, they usually service entire countries or large
geographical regions. Fog data centers, on the other hand, only service
small geographical areas such as (parts of) cities. As a result, they are
more numerous by several orders of magnitude, but can also be less powerful
because each of them has less data to process. This concept is illustrated
in Fig. 3.1.

Although fog computing distributes computational loads and moves pro-
cessing closer to end-users, this is only the first step towards true decen-
tralization. Edge computing is an additional solution to reduce the load on
cloud data centers and end-user devices alike, enabled by ever-improving
hardware, increasing energy efficiency, and the proliferation of powerful
handheld devices and IoT gateways. The essence of edge computing is that
much of the work that is normally performed in the cloud can be broken
up into small tasks which are then performed in the network edge. The
network edge, shown in Fig. 3.1, consists of billions of low-powered, re-
source constrained devices [4] which are nonetheless highly programmable.
To alleviate the workload of the cloud and fog, the spare capacity of these
devices is leveraged to pre-process data and provide basic, highly respon-
sive end-user services. Note that while the border between cloud and fog is
well-delineated, the difference between fog and edge is somewhat fuzzy. For
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Figure 3.1: Representation of the difference of scale and device types in cloud, fog
and edge networks.

example, gateway devices in homes (e.g. Philips Hue Bridge!) that collect
sensor data and perform local processing could be included in both fog and
edge networks depending on the application, even if they are capable of
direct end-user interaction.

The combination of cloud, fog and edge has resulted in many studies into
tiered service architectures, where intensive data processing, big data anal-
ysis and the learning phase of AI models generally take place in the cloud,
while the fog and edge provide responsive services and run the inference
stage of Al models. Tiered architectures can be achieved with offloading,
which uses real-time monitoring and migration of micro-services to move
workloads to the fog and edge whenever possible, and back to the cloud if
necessary. The term “necessary” may involve a combination of many param-
eters, from end-user proximity to packet loss and battery life. However, as
will be shown in this chapter and Chapter 4, the volatile and heterogeneous
nature of the edge and fog can be problematic for scalable, optimal software
deployment.

Thttps://www.philips-hue.com /en-us/explore-hue/how-it-works
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3.2.1 Service deployment

Both the fog and edge are composed of a wide range of network techno-
logies and various types of devices, leading to volatile conditions for soft-
ware deployment and communication between services. Service placement
parameters in cloud data centers usually involve free resources, service de-
mand, and latencies between servers and data stores. In the network edge,
these factors are multiplied in both absolute size (wider range of available
resources, higher potential latencies) and scale (more devices to consider).
Additionally, power constraints and reliability issues such as localized net-
work outages pose additional problems. Edge computing also presents new
security issues; for example, edge devices are often less secure than pro-
fessionally managed cloud servers, and traffic over public networks may be
intercepted if not properly encrypted.

In order for a piece of software to work on a wide range of devices, the
various types of virtualization introduced so far can be used. Virtual ma-
chines are commonly used in cloud data centers, but since they contain an
entire operating system, they are bulky and slow to migrate. Containers, on
the other hand, enable flexible but lightweight software deployment on any
device that can run the required parts of the Linux kernel. Combined with
container engines that manage the containers on a device, and container or-
chestrators which distribute deployments and tasks among computational
nodes, containers are an essential enabling technology for edge computing.
As mentioned in Section 3.1, offloading often takes into account many fac-
tors related to device resources and user experience. This is true for service
deployment in general, especially in the fog and edge. To that end, or-
chestrators such as Kubernetes [5] usually work with custom plug-ins for
service scheduling, and many studies are directly concerned with measuring
the effectiveness of combinations of specific parameters for AI models to
optimally assign services to fog and edge nodes.

3.2.2 Container orchestration

Container orchestrators are high-level tools that help organize containerized
services over large numbers of computational devices, or a cluster. Initially
designed for use in the cloud, most orchestrators are also capable of orga-
nizing fog and edge networks, and some are aimed exclusively at enabling
software services in the edge by creating entire ecosystems with default
APIs. Orchestrators generally fulfil many functions; their main function
is to organize and scale software services at the cluster level depending on
scheduling parameters, making use of a container engine on each node that
takes care of the low-level aspects. Important secondary functions involve
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Figure 3.2: Architectural overview of a basic Kubernetes cluster.

setting up a cluster-wide container network, creating internal access points
to services with load balancing, managing named services through distri-
buted DNS and providing external access to services. Security, reliability
and scalability are important aspects of all these functions.

3.2.2.1 Kubernetes

Kubernetes [1] is a very popular container orchestrator originally inspired
by Google Borg [6]. Years of Kubernetes development have contributed to
several container standards, for example OCI and CNI which have been
discussed in previous sections. Kubernetes is made to run in the cloud, and
while it is very flexible and extensible, it tends to use too many resources
when deployed on edge devices, leaving little room for service deployment.
As Fig. 3.2 shows, a Kubernetes cluster generally consists of a master node,
which organizes and schedules services, and a collection of worker nodes,
which run the actual software services managed by the master node. Each
worker node runs a kubelet, an agent which receives commands from the
master node, and translates them into CNI and container runtime calls.
Services and scheduling requirements can be declared through a dashboard
web application, the kubectl command line tool, or directly via Kuber-
netes APIs. Although most functions of Kubernetes are distributed and
highly scalable, and the master node itself can be decentralized with a high-
availability setup, scalability is limited to about 5.000 nodes and 100.000
service instances [7]. While sufficient for cloud data centers, edge networks
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with devices in each home are more demanding in terms of scalability. Kub-
ernetes Federations aim to improve scalability by adding a higher manage-
ment level on top of clusters.

Kubernetes supports a wide range of CNI plugins [8], among which Cal-
ico and Flannel, which are used throughout this dissertation. Similarly,
various container engines are supported, among which containerd [9] and
Docker [10], although the latter is now deprecated.

Because of the flexible nature of Kubernetes, and its extensive development
effort, its code is often used as a basis for container orchestrators in the edge.
Even alternatives that are not directly based on Kubernetes are generally
compatible with its APIs.

3.2.2.2 K38

K3S [11] is a container orchestrator from Rancher? based on the Kubernetes
source code, but modified specifically for edge devices. Its name is derived
from having “half the memory footprint of K8S” (Kubernetes). First re-
leased in February 2019, it is now up to version v1.19.15 (i.e. Kubernetes
1.19), the evaluations were performed in early 2019 using v0.3.0. Unlike
FLEDGE, which is only designed for worker nodes, K3S also has its own
master nodes. K3S achieves a low resource footprint by removing some
functionality from default Kubernetes, and by forcing the use of certain
plugins, e.g. Flannel [8] for container networking and containerd as a con-
tainer runtime. Being based on the Kubernetes source code, it is inherently
compatible with Kubernetes itself, and while worker nodes can only work
with K3S master nodes, full compliance means that any service configura-
tions made for Kubernetes will also work on K3S.

3.2.2.3 KOS

Taking the nomenclature of K3S a bit further, K0S [12] (Zero friction Kub-
ernetes) is designed to be even easier to set up and maintain, yet highly scal-
able from edge devices to entire cloud clusters. First released in September
2020, it is now at version v1.22.2 (i.e. Kubernetes 1.22). Like K38, it uses
containerd as a container engine, but it uses kube-router® as a CNI plugin.
It is also fully Kubernetes compliant, supporting all Kubernetes deployment
features.

Although it targets edge devices, its minimum requirements are significant?,
with a minimum of 1GB of memory. As this chapter will show, both K3S

2https://rancher.com/
3https://github.com/cloudnativelabs/kube-router
4https://docs.kOsproject.io/v1.21.0+k0s.0/system-requirements,/
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and custom-built solutions require far less memory. As such, the official
KOS system requirements may be exaggerated, as the updated results in
Section 3.3 show.

3.2.3 Edge orchestration solutions

This section discusses new orchestration solutions for edge networks, mostly
developed after the publication of the articles this section is based on.
Whereas container orchestrators merely organize (containerized) services
on a cluster to fulfil end-user demand, these solutions are focused on the
network edge by design, and aim to provide a complete ecosystem including
default communication and storage methods.

3.2.3.1 ioFog

Eclipse ioFog v2.0 [13] is an edge computing platform that provides all
the components and functions required to run large-scale applications in
the edge, with the combination of an edge network and the microservices
running on it being called an Edge Compute Network (ECN). While it
is an independent alternative to Kubernetes, and therefore one of the few
projects with a truly novel approach, its main operations and design choices
are similar to Kubernetes. It also has the ability to interface directly with
Kubernetes clusters through the integration of Virtual Kubelets, which are
explained in detail in Chapter 3.3.

Like master and worker nodes in Kubernetes, ioFog uses Controller and
Agent nodes to organize and run services, respectively. Additionally, io-
Fog provides a secure communication infrastructure between nodes with
its Router, Proxy components using ioMessages. Some of its components,
the Operator and Port Manager, are designed specifically to use ioFog in
tandem with Kubernetes, running ECNs partially on Kubernetes clusters.

3.2.3.2 KubeEdge

KubeEdge [14] builds its infrastructure on top of Kubernetes, and rather
than as an orchestrator it presents itself as a full Edge Computing Frame-
work specifically designed for the edge. It was initially released in December
2018, while the current stable version is 1.8.2.

KubeEdge is built on open source software, supporting various container
runtimes, and provides an ecosystem for container orchestration on edge
devices. It consists of a cloud part and an edge part [15]. The cloud part
uses the Kubernetes API in the cloud to orchestrate resources, and has
high-level control over edge devices. The edge part takes care of the actual
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container deployment and provides an infrastructure for storage and event-
based communication, the latter being based on MQTT [16].

3.2.3.3 Azure IoT Edge

Azure ToT Edge [17] is an edge computing ecosystem from Microsoft, aimed
specifically at executing Al workloads in the edge, but keeping orchestration
in the cloud. This approach is useful when a large number of IoT devices
need to execute similar but relatively static tasks (e.g. home automation
algorithms).

The basic premise of IoT edge is that workloads and services are encap-
sulated as modules (Docker containers), while devices are managed by a
runtime. Orchestration in the cloud assigns modules to devices, which are
sent to the runtime that in turn provides the local infrastructure (e.g. net-
working, storage) for the module to execute. Monitoring is possible through
a cloud-based interface.

3.3 Low-resource virtualization

This section contains the edited version of the following publication: “Ex-
tending Kubernetes Clusters to Low-resource Edge Devices using
Virtual Kubelets”, T. Goethals, F. De Turck, B. Volckaert

published in IEEE Transactions on Cloud Computing, 2020 [18]

Many novel applications need container orchestrators that can work opti-
mally in the cloud and in the network edge, but Kubernetes is designed
to run in the cloud. As a result, it is very flexible and modular, but not
overly critical of resource consumption. However, edge devices are typically
low-resource devices, especially in terms of memory. Additionally, container
deployments on edge containers are often specifically meant for a particular
device and cannot easily be relocated without an extensive migration pro-
cess. To address these problems, this section proposes a solution aimed at
minimal resource use, and designed to run workloads to completion instead
of constantly scaling and shifting them.

In addition to being low-resource devices, consumer-grade edge devices of-
ten operate in heterogeneous networks with potentially less focus on orga-
nization and security. Connecting these to the cloud can result in some
communication and security problems. For example, the network could be
hidden behind a router, IP addresses can be unpredictable, existing port
mappings can interfere with container requirements, etc.
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In the cloud, these problems are usually not present. Infrastructure is well-
organized and as homogeneous as possible, while all network resources are
predictable and controlled. Furthermore, while all communications between
container orchestrator nodes (e.g. Kubernetes) are secured by default, this
is not always the case for service endpoints of containers deployed on those
nodes.

Therefore, it is important that the solution can secure traffic to and from
the cloud, and that other network traffic is either blocked or also secured.
To simplify the inter-node network and to ensure smooth deployment of
containers, a uniform network environment can be created for edge nodes
to be deployed on, capable of supporting a container network on top of it.

Continued development of container management tools such as Kubernetes
and Docker [10] has led to the development of a number of standards.

For example, to make sure that every container is reachable and uniquely
addressable, container runtimes and orchestrators use an overlay network to
assign IP addresses to nodes and containers. Since there are many methods
to achieve this on individual nodes, various container runtimes leave this
up to network plugins to implement. This has resulted in, among others,
the Container Network Interface (CNI [19]), which simply defines a number
of high-level operations that governing software can use to organize the
container network on a node.

Another example is the Open Container Initiative (OCI [20]), which defines
standards for the structure and execution of container images. These stan-
dards make sure that a single container image can be deployed and executed
with predictable results on any runtime that implements them. At the time
of writing, they are implemented by many container runtimes, making it
easy to switch runtimes once an orchestrator has basic support for one of
them.

The solution is aimed at maximum compatibility with existing container
standards, as far as their implementation is possible on edge devices. While
it is not absolutely required to implement the full standards, care is be taken
that any missing functionality does not result in problems for the rest of
the cluster. In addition, if the solution does ignore any standards, it should
make sure that other nodes are not affected in any way.

To summarize, the requirements for the proposed container orchestrator for
edge devices are:

e To be compatible with modern standards for container orchestration,
or to provide an adequate alternative.

e To provide secure communications between edge devices and the cloud
by default, with minimal impact on local networks.
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e To have low resource requirements, primarily in terms of memory but
also in terms of processing power and storage.

This section presents FLEDGE as a low-resource container orchestrator
which is capable of directly connecting to Kubernetes clusters by incorpo-
rating modified Virtual Kubelets [21] and a VPN. A Kubelet is the part of
Kubernetes which is deployed directly on devices to join them into a Kub-
ernetes cluster. A Virtual Kubelet is a small software service which can be
deployed anywhere, and which acts as a proxy between the Kubernetes API
and a random device that can deploy containers. Behavior is defined by
brokers, which form a translation layer between Kubernetes and the devices
on which pods are deployed. Because the Virtual Kubelet is designed to
work with the Kubernetes orchestrator, it has to work with the limitations
inherent in Kubernetes clusters. Kubernetes is designed for use in the cloud,
so it is implicitly aimed at orchestration on groups of powerful servers. Since
the scalability of Kubernetes constantly evolves, it is considered outside the
scope of this topic, but the repercussions are discussed where applicable.

Section 3.3.1 presents existing research related to the topics in this introduc-
tion. Section 3.3.2 details the different aspects of using Virtual Kubelets
and creating the framework, while Section discusses possible alternatives
and how they relate to this work. In Section 3.3.3, an evaluation setup and
methodology are presented to compare the solution in this section to simi-
lar, popular orchestrator software. The results are presented and discussed
in Section 3.3.4. Finally, Section 3.3.5 gives a short overview of the goals
stated in this introduction, and how the results and conclusions meet them.

3.3.1 Related work

Shifting workloads between the cloud and edge hardware has been exten-
sively researched, with studies on the use of edge offloading [22], cloud
offloading [23, 24|, fog computing [25] and osmotic computing [26]. Many
studies exist on different container placement strategies, from simple but
effective resource requests and grants [27], to using deep learning for allo-
cation and real-time adjustments [28].

Kubernetes is capable of forming federations of multiple Kubernetes clus-
ters [29], but this section aims to use a single cluster for both the cloud and
the edge. There are several federation research projects that have resulted
in useful frameworks, such as Fed4Fire [30], Beacon [31], FedUp! [32] and
FUSE in Chapter 4.3. Fed4Fire requires the implementation of an API to
integrate devices into a federation and works on a higher, more abstract
level than container orchestration. BEACON is focused on cloud federation
and security as a function of cloud federation. FedUp! is a cloud federation
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framework focused on improving the setup time for heterogeneous cloud
federations. FUSE is designed to federate private networks in crisis situ-
ations, but it is very general and primarily aimed at quickly collectivizing
resources, not for deploying specific workloads across edge clusters.

Studies exist that focus on security between the edge and the cloud, for
example [33] which identifies possible threats, and [34] which proposes a
Software Defined Membrane as a novel security paradigm for all aspects of
microservices. However, FLEDGE aims to provide only a basic but universal
layer of security through an encrypted tunnel, leaving advanced security
policy (e.g. firewalls, routing, authorization) up to individual choice.

VPNs are an old and widely used technology. Recent state of the art studies
appear to be non-existent, but older ones are still informative [35]. Some
studies deal with the security aspects of a VPN [36], while many others
focus on the throughput performance of VPNs [37, 38]. While studies exist
on using overlay networks in osmotic computing [39], they deal mostly with
container network overlays such as Flannel and Weave [8] which are inte-
grated into Kubernetes. Others present a custom framework, for example
Hybrid Fog and Cloud Interconnection Framework [40], which also gives a
good overview of the challenges of connecting edge and cloud networks. Xu
et al. [41] presents a hardware solution against a number of software and
physical attacks for untrusted cloud infrastructure, which could be integr-
ated into edge devices.

A study by Pahl et al. [42] gives a general overview of how to create edge
cloud clusters using containers. While FUSE in Chapter 4.3 is capable of
deploying Kubernetes worker nodes on edge devices, the resulting frame-
work is too resource-intensive for most edge hardware. Cloud4IoT [43] is
capable of moving containers between edge networks and the cloud, but it
uses edge gateways which indirectly deploy containers on minimalistic edge
nodes. K3S [44], which has not yet been the subject of academic studies,
is based on the source code of Kubernetes. It achieves lower resource con-
sumption by removing uncommon and legacy features, but it requires its
own master nodes to run and can not directly connect to Kubernetes clus-
ters. MicroK8s [45] is another Kubernetes-based solution for edge container
orchestration. In addition to having low resource requirements, it is easy to
set up, has fast starting times and has built-in GPGPU (General-Purpose
computing on Graphics Processing Units) and CUDA support. However,
it is aimed at creating smaller clusters for testing, CI/CD and small-scale
deployments. KubeEdge [46] is a recent development, aiming to extend
Kubernetes to edge clusters. Despite being based on Kubernetes, it also
is not directly compatible with Kubernetes master nodes and needs an ex-
tra cloud component to function properly. While this section presents a
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Kubernetes-oriented solution, Docker Swarm has been used for similar pur-
poses in fog computing [47].

Kubernetes CRDs (Custom Resources Definition [48]) can be used to a
similar effect as a Virtual Kubelet. CRDs allow [oT devices or resources to
be registered in Kubernetes, where they can be assigned workloads through
a custom controller. The main difference with a Virtual Kubelet is that the
controller must be hosted on Kubernetes and can control all IoT devices
simultaneously. Microsoft uses CRDs for the inverse approach; IoT Edge
can integrate with Kubernetes [49] by defining IoT Edge workloads as CRDs,
which are converted to pods by the IoT Edge Agent so they can be deployed
by the Kubernetes scheduler.

Kubernetes has very limited resource monitoring by default. It keeps a
rough overview of the total and required CPUs and memory on each node,
but these numbers are unreliable when container orchestration itself takes a
significant amount of total resources. Several third party systems have come
and gone, such as cAdvisor [50] and Heapster [51], many of which are based
on the resource metrics API [52] exposed by Kubelets. There are studies
that present their own framework, such as PyMon [53], which is a general
container monitoring framework. FLEDGE aims to be compatible with the
resource metrics API exposed by Kubelets, so tools such as cAdvisor can
monitor them the same way as normal worker nodes.

3.3.2 FLEDGE

This section details how the requirements put forth are met by FLEDGE,
starting with a general overview of what a Virtual Kubelet is and how the
solution is based on it.

A Virtual Kubelet acts as a proxy for Kubernetes to any platform or device
that can run containers. A Virtual Kubelet interacts directly with the Kube
API on the master node, and passes API calls to brokers that implement
them for the system they represent, for example Amazon AWS, Microsoft
Azure or an edge device. The API calls supported by a Virtual Kubelet
consist of pod management, pod status, node status, logging and metrics.
Fig. 3.3 shows how a Virtual Kubelet fits into the FLEDGE framework.
When FLEDGE is started, the Virtual Kubelet is initialized and the FLED-
GE broker connects to it, receiving commands from Kubernetes through it.
Depending on its configuration, the broker will initialize a specific Container
Runtime Interface which decomposes the commands into container network-
ing, cgroup management, namespace management, or passes them on to a
container runtime (e.g. Docker, Containerd). This interface should not be
confused with the CRI standard; it is the part of a Virtual Kubelet which
interfaces with the selected back-end, or in this case FLEDGE components.
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Figure 3.3: Conceptual overview of FLEDGE and its use of a Virtual Kubelet.

The collection of FLEDGE components deployed on an edge device will be
referred to as a FLEDGE agent.

3.3.2.1 Compatibility

One of the requirements for FLEDGE is that it should support container
standards and existing container runtimes. There are a few aspects to this
requirement, some of which are limited by the APIs of existing software.
The first aspect is the choice of container runtime. While Docker may seem
like a logical choice because it is very widely supported, Containerd is also an
option. Since version 1.11, Docker relies on Containerd for some operations,
such as container execution. Both runtimes support the OCI standards, so
they can both create and run OCI containers (Docker containers). In terms
of compatibility, both are valid choices, so ultimately it comes down to a
trade-off between ease of implementation and resource requirements, which
will be discussed in Section 3.3.2.3.

Related to the choice of container runtime is compatibility with Linux
cgroups. Some devices and operating systems do not support all cgroups
by default, making it hard or impossible to correctly run Kubernetes de-
ployments. On a Raspberry Pi 3 running Raspbian for example, cgroups
used for CPU throttling may be missing from the kernel, which must be
custom-built in order to guarantee compliance with Kubernetes specs. If
these kernel options are missing, FLEDGE will generate a warning, but
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still continues with the deployment if possible. Since neither Kubernetes
nor Docker seem affected by the absence of the cgroups in question, this
approach seems to be the standard.

Another aspect of compatibility is how container networking is handled. In
Kubernetes, container networking is implemented as an overlay network [54]
in which each pod can be assigned a distinct IP address on a virtual network
interface. This is achieved by assigning sub-ranges of a configurable IP range
to each node, from which they in turn assign IP addresses to their pods.
Kubernetes itself makes high-level decisions on container networking, such
as assigning IP ranges to the Kubelets on the nodes. The assignment of IP
addresses to pods and the setup of network namespaces and virtual network
interfaces is handled by CNI compatible network plugins (e.g. Flannel,
Weave) on the nodes themselves. To use a specific network plugin, it is
deployed on the master node, which in turn makes sure it runs on all worker
nodes.

In FLEDGE, this is implemented differently. By fulfilling the role of both
Kubelet and container network plugin, there is no need for the CNI layer
usually present between Kubelet and network plugin. Additionally, the
number of pods that can be deployed on edge devices is rather limited com-
pared to cloud infrastructure. This means that it is preferable to implement
a simple and naive, but effective pod networking handler (Fig. 3.3 Contai-
ner networking) which hands out IP addresses on a first come, first serve
basis. This pod networking handler is also responsible for configuring net-
working namespaces correctly (Fig. 3.3 namespace manager), independent
of the active container runtime. The deployment of the network plugin itself
is prevented by labelling the node so it is not eligible for deployment.
Since FLEDGE uses the Kubernetes-assigned IP ranges to configure its
container networking, this approach does not influence container networking
in the rest of the cluster. The master node is unaware that the node does
not deploy the default network plugin and handles its networking needs, and
the container networking plugin is still deployed and functioning normally
on other nodes.

As stated in the introduction, Kubernetes node resource monitoring is suf-
ficient to determine if any additional pods can be deployed on a node. This
monitoring is based on the total resources of a system and the guaranteed
resources allocated to pods, actual resource use is not taken into account.
This is a problem for edge devices, since operating system and orchestrator
resource use can constitute a significant portion of total resources, making
it hard to gauge if a device can take additional load based on pod-allocated
resources alone®.

5This has been addressed in later Kubernetes versions, although only static amounts
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Figure 3.4: High-level overview of network traffic flow of FLEDGE, using Open-
VPN to connect edge nodes to the cloud.

Luckily, Kubelets also provide the Resource Metrics API which is used by
several third-party monitoring tools. In order to support these monitoring
tools, one needs to implement the Resource Metrics API up to a level suf-
ficient for monitoring edge device resources and pods (Fig. 3.3 Resource
monitoring). By default, the Resource Metrics API is hosted on the same
port as on a normal Kubelet.

3.3.2.2 Security and stability

Edge devices often find themselves in heterogeneous networks with little to
no organization or security. This randomness of topology, IP address as-
signments and port mappings is not an ideal situation for building a cluster
and deploying containers. Furthermore, the situation could be exacerbated
by the presence of a router with either NAT or a firewall. Finally, while
Kubernetes API traffic is encrypted and authenticated by default, the same
is not always true of services deployed on nodes, so all traffic between the
cloud and the edge should be secured by default.

In FLEDGE, this is solved by setting up a VPN, more specifically OpenVPN,
and building the cluster and container network on top of its interfaces. The
basic traffic flow of this setup is shown in Fig. 3.4. While simple, this

of resources can be passed: https://kubernetes.io/docs/tasks/administer-cluster/reserve-
compute-resources/
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approach fixes the problems described above:

e [P addresses of nodes are predictable and directly reachable by the
master node.

e The VPN interface is a proverbial clean slate; all ports are open and
available for use.

e Physical layout of the network no longer matters, the VPN can be
organized according to logical parameters.

e UDP hole punching might be required to overcome NAT or a firewall,
but this is taken into account by OpenVPN.

e Packets are encrypted by default for a basic layer of security.

However, the effectiveness of using a VPN also depends on the software used
and its exact configuration:

e The effectiveness of packet encryption depends on the chosen algo-
rithm, and encryption can even be turned off entirely for performance
reasons. FLEDGE uses default OpenVPN encryption.

e Using a VPN is a drain on system and network resources, likely re-
ducing the scalability of clusters. OpenVPN has another drawback in
that it can only use a single CPU core, which may quickly saturate
and limit its performance on edge devices.

e Anyone with physical access to the device can piggy-back on the VPN
connection and reach any cluster services. Preventing this requires
physical and OS-level security.

The custom container network implementation in FLEDGE uses IPtables
to configure the routing between pods and the rest of the cluster. Properly
configuring IPtables with respect to the VPN interface allows the exclusion
of certain traffic flows, as shown in Fig. 3.5. The solid green arrows indicate
traffic flows allowed by FLEDGE, showing that any container running on a
FLEDGE agent can access any device or container in the VPN and the pod
network. Not all devices need to be connected to the VPN, nor do they all
need to be part of the pod network. Note however, that traffic from devices
in the pod network that are not connected to the VPN can easily be blocked
by configuring IPtables differently.

Fig. 3.6 reiterates Fig. 3.4, but on the level of network interfaces. This
figure shows how the entire container network is built on the VPN network,
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and that all traffic uses the VPN interfaces. CNI (solid red) arrows rep-
resent container network traffic, while Normal arrows represent VPN and
ethernet traffic. The Host map arrows indicate traffic to containers that
use the host network namespace, meaning that they have direct access to
the network interfaces of the node they run on rather than operating thro-
ugh a virtual network interface. The OpenVPN and FLEDGE containers
run in privileged mode, since they need the authority to create and mod-
ify network interfaces, cgroups and namespaces. Similarly, they run in the
host network namespace because they need to cooperate and create network
infrastructure for the container runtime and the master node. While the fig-
ure indicates that all container traffic goes via the container network, they
can still be assigned to the host network namespace. After all, FLEDGE
simply executes Kubernetes deployments. However, putting them on the
host network namespace is discouraged, since that might make it harder to
communicate with other cluster services.

Container images may contain proprietary software that needs to be pro-
tected from local and remote unauthorized access, and the resulting risk
of reverse engineering. Because FLEDGE agents have to run as root, they
present a prime attack vector to access all of the images and containers they
manage. However, a few steps can be taken to mitigate this:

e Running containers are by default assigned to different file system root
folders by most container runtimes. While a root account can easily
access the file system of a container, it can be protected against any
user that is not root, apart from the user running the container.

e To minimize the chance of images being copied and reverse-engineered,
they can be removed when the containers in a pod are finished. While
this also frees up some extra storage for reuse, it may slow down re-
deployments of the same pod because the container runtime needs to
download the images again.

e FLEDGE cleans up all network infrastructure, containers and images
on shutdown. This is also required for leaving the system in the same
state it was in before deploying FLEDGE.

3.3.2.3 Low resource use

The choice of container runtime is very important for resource use. Be-
cause Docker relies on Containerd to actually run containers, Containerd is
likely the most resource-friendly option. On the other hand, the Containerd

APIs require more low-level implementation to use effectively than those of
Docker.
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For low-resource edge devices it is reasonable to put resource requirements
before ease of implementation, and since the compatibility section has shown
that there is little to no difference in supported standards between the
container runtimes, it stands to reason to propose Containerd as the runtime
for FLEDGE. The Results section will further validate this choice.

Networking

The compatibility section argued in favor of a custom CNI facility in FLED-
GE, rather than using one of the existing containerized network plugins such
as Weave or Flannel.

This design choice is optimal in terms of resource requirements, considering
that all container plugins are deployed as containers. While using containers
is flexible and more durable than other forms of plugins (e.g. host process
or in the same process), it also means that a plugin requires a significant
amount of resources to run. While this is not explicitly reflected in any
results in this section, the requirements for Flannel are determined and
discussed in Section 3.3.4 to support this claim.

Namespaces and cgroups

Using the low-level APIs of Containerd means that some functionality needs
to be implemented explicitly. Two of the most important aspects of this
functionality are cgroups and namespace handling.

While both Docker and Containerd create the required namespaces for a
new container, FLEDGE takes care of all namespace management after the
creation of the first container of a pod. This is to make sure that no matter
which container runtime is used, the behavior is the same.

On the other hand, container resource restrictions are much easier to pass
directly via the Docker API, which populates the required cgroups auto-
matically. While Containerd is also capable of making cgroups, the ac-
tual restrictions need to be set by the program using the Containerd APIs.
Therefore, FLEDGE only allows the creation of one cgroup of each type
(memory, cpu, ...) per pod. After configuring the resource restrictions, it
forces Containerd to reuse them for the rest of the containers in a pod.
Similar to container networking, the complexity of cgroup and namespace
management on edge devices is much reduced compared to cloud infrastruc-
ture. Therefore, despite increasing the complexity of FLEDGE, handling
cgroups and namespaces in FLEDGE itself using a minimal implementation
allows conserving resources for actual workloads.

Virtual Kubelet location
As explained above, the Virtual Kubelet is only a small part of FLEDGE.
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While instrumental in the communication with Kubernetes master nodes,
its location matters very little since a custom broker implementation can
forward API calls to other devices.

In terms of resource requirements, this allows for two options when consid-
ering where to run the Virtual Kubelet:

e In the cloud: the Virtual Kubelets are run as pods in the cloud, en-
tirely separate from the FLEDGE agents which are running on edge
devices. Kubernetes API calls received by Virtual Kubelets are for-
warded to FLEDGE agents via REST services. This approach shifts
some of the resource requirements from the edge to the cloud, while
allowing for a more robust system. For example, when a FLEDGE
agent loses its connection to a Virtual Kubelet, the Virtual Kubelet
can queue commands and give default responses until the agent comes
back online.

e On the edge: the Virtual Kubelet is integrated into the FLEDGE
agent and run as a container or a normal process on the edge device.
Kubernetes API calls are executed directly in the same process. While
this approach requires more resources on the edge and is less resistant

against network problems, it does reduce the operational and technical
complexity of FLEDGE.

The two options are further illustrated in Fig. 3.7. On the left, the Virtual
Kubelets run in the cloud, while on the right the Virtual Kubelet is shown
in its pass-through role on the edge device.

Note that when the Virtual Kubelets are run in the cloud, a small web
service (FLEDGE service) is required on Kubernetes master nodes to sim-
plify Kubernetes API access for FLEDGE agents. Without this service,
FLEDGE agents would have to include the full Kubernetes API, increasing
their size by about 20MiB. When the Virtual Kubelet is integrated into
the FLEDGE agent, they share the Kubernetes API and the FLEDGE ser-
vice is no longer required. The resources required for the FLEDGE service
are insignificant when deployed on a server, so they will not be taken into
account for the rest of the section.

To properly determine where to put the Virtual Kubelet, a model needs
to be constructed which takes into account the resource use in both situa-
tions, and the relative importance of edge resources versus cloud resources.
Kubernetes v1.14 has a limit of 5000 nodes per cluster |7]. Because there is
always at least one master node, this means a cluster can contain at most
4999 edge nodes. However, if the Virtual Kubelets are deployed in the cloud
as pods, the maximum number of pods per node is also important. For v1.14
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this limit is 110, but taking plugins and default pods into account, 100 pods
per node is a safe estimate. This means that for every 100 edge nodes,
there would need to be an additional node to manage the Virtual Kubelet
pods, increasing the complexity of the management structure in the cloud.
Modelling all the requirements starts with calculating the required number
of management nodes Nj; and management efficiency E:

Ly
Ny = 1
= T (5.0)
E:M (3.2)
Ly

Where Ly is the limit of nodes per cluster and Lp is the pod limit per
node. Eq. (3.1) and eq. (3.2) can be used to construct the total memory
used by all pods Mp,qs and nodes My odes:

Mpogs = Ln - E - Mpog+ Mgpy - (Nar — 1) (3.3)
MNodes - (NM - 1) . MKube (34)

Where Mp,q is the amount of non-shared memory required per Virtual
Kubelet, Mg, is the amount of memory shared by all Virtual Kubelets
on a node, and Mg pe is the amount of memory required for a Kubernetes
installation. M 4. can be extended to the memory requirement of an entire
operating system or virtual machine, depending on how Kubernetes master
nodes are instantiated in cloud infrastructure. Eq. (3.3) and eq. (3.4) can
in turn be used to calculate the maximum additional amount of memory
the Virtual Kubelet should require per edge node for edge placement to be
more memory efficient than cloud placement:

Ly -E-Mpog+ (Mshr + Mrupe) - (Nar — 1)
Ly

Where C), is a constant representing the relative cost of edge memory versus

Mg =Cuy -

(3.5)

cloud memory. This constant is important because cloud memory is cheap
and easily extensible. Similar to eq. (3.5), a formula can be constructed for
storage requirements:

Ly -E-Spoqa+ (Sshr + Skupe) - (Ny — 1)
Ly

Where Cg, Spod, Ssnr and Sk yupe fulfil the roles of Cyr, Mpog, Msp, and
M upe respectively. The only factor not considered in these equations is the

Sg=Cgs-

(3.6)

cost of maintaining a more complex cluster of master nodes in the cloud,
which is very case-dependent and hard to estimate.
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Cy is assumed to be 1, since the target class of edge devices can routinely
store several gigabytes, and the size of a discrete Virtual Kubelet is merely
32MiB on x64. For such small amounts, storage is equally cheap in the
cloud and on the edge. Furthermore, edge devices that are not equipped
with at least 512MiB (compressed) storage are unlikely to be able to run a
Linux based operating system with a kernel capable of handling containers,
so it is not useful to consider such devices for container deployment. Cjs
depends on a lot of factors. Most important of all, cloud memory is often
priced in terms of GiB-seconds, while edge hardware is a one time purchase
but typically non-extensible. Both types of memory have a wide range of
pricing constantly in flux, further complicating attempts to calculate Cy;.
For the rest of this section, it will naively be assumed to equal 1.

3.3.2.4 Comparison to alternatives

It has already been discussed how the most important elements of FLEDGE
relate to Kubernetes in previous sections. However, there is still an impor-
tant difference between FLEDGE and Kubernetes in that the latter requires
all swapping to be disabled. This leads to serious performance and stability
issues on some edge devices (e.g. Raspberry Pi 3), which are already low on
memory after a Kubernetes deployment. FLEDGE does not require swap
to be turned off, so all memory subsystems can perform as intended.
Where FLEDGE starts out from scratch and works towards Kubernetes
compatibility, K3S takes the inverse approach and eliminates unnecessary
code and functionality from the full Kubernetes source code. Unlike Kuber-
netes, it has no choice of container runtime; Containerd is used by default.
Similarly, Flannel is integrated for container networking. While K3S (and
KO0S) has better support for Kubernetes APIs, not being built from scratch
can be a disadvantage for it in terms of resource requirements. Additionally,
it has a slightly different cluster join mechanism and a thin wrapper layer
which gives it its own shell commands. These changes mean that, for now,
K3S worker nodes cannot be used in a Kubernetes cluster, but only in K3S
clusters.

Since it is much more than just a simple container orchestrator, including
it in the evaluations would not result in a fair comparison for KubeEdge.
Despite this, it is unlikely to be a very-resource efficient solution because of
its use of Docker, a point which will be proven in the Results section.

3.3.3 Evaluation setup

Now that the FLEDGE architecture has been explained and alternative
approaches have been identified, an evaluation environment can be con-
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Figure 3.8: Overview of the hardware setup used for the evaluations.

structed. The evaluations are intended to confirm some of the choices made
in earlier sections, to back up some claims, and to give an indication of how
FLEDGE stacks up against alternative orchestrators in terms of resource
consumption.

The source code of FLEDGE is made available on Github®.

This section first gives an overview of the evaluation setup and general
methodology. Subsequently, the specifics of each evaluation are explained.

3.3.3.1 Methodology

Fig. 3.8 shows the hardware setup used for the evaluations. There are 3
devices involved:

e The VWall master node fulfills the role of a Kubernetes/K3S master
node. Its specifications are not important, since the worker nodes are
the focus of the evaluations.

e The VWall server (z64) is used to determine the resource require-
ments of orchestrator worker nodes on an x64 CPU architecture. This
server has an AMD Opteron 2212 processor at 2GHz and 4GiB RAM,
running Ubuntu 18.04.

6https://github.com/togoetha/fledge
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e The Raspberry Pi 8 is used to determine resource requirements for
FLEDGE on an ARM CPU architecture. This device runs Raspbian
with kernel version 4.14.98-v7+ on the default hardware configuration;
1GiB RAM and a quad-core 1.2GHz CPU.

All devices are in the same geographical location and are connected by a Gi-
gabit LAN. The OpenVPN server and clients are only used when FLEDGE
is deployed on the worker nodes, Kubernetes and K3S connect to the master
node directly via LAN. All evaluations will be performed on both ARM and
x64.

The container runtime used in any evaluation depends on the orchestrator
being tested. For Kubernetes, Docker is used, while K3S has Containerd by
default. For FLEDGE, both Docker and Containerd are possible.

The storage requirements for each orchestrator are determined by using the
df [55] command before and after orchestrator setup. After every evalua-
tion, the devices are wiped to ensure the same state at the start of each
evaluation. In addition to the orchestrator and the container runtime, this
approach also takes packages and libraries into account that are required
to run the orchestrator properly, thus forming a complete picture of stor-
age requirements. Because no deployments or workloads are executed apart
from the default containers required for each orchestrator, storage does not
vary over time and thus it is not necessary to measure beyond the successful
start of each orchestrator.

Measuring memory use is more complex than determining storage require-
ments, for the following reasons:

e Unlike the thousands of files involved in setting up an orchestrator,
the processes involved in running it can be easily identified, so a more
granular approach is possible. This is not only more accurate, but
allows for more detailed conclusions by studying subsets of processes.

e [t stands to reason that memory use is not as static as storage require-
ments. During deployment, a lot of memory will be used which may
be released again later. Therefore, memory use must be monitored
over a significant period of time to form a complete picture.

e Processes can have private and shared memory. While it is easy
enough to obtain these numbers, a fair method is required to calculate
the exact memory use of a process from both numbers.

During each evaluation, memory is measured every 30 seconds over a period
of 15 minutes, while the pmap [56] command is used to determine the Pro-
portional Set Size [57] (PSS) of each process, calculated using the following
formula:
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Miotar = P+ _ Si/N;

where P is private memory, S; are various sets of shared memory, and N; is
the number of processes using any piece of shared memory.

3.3.3.2 Container runtime comparison

Previous sections have argued that the choice of container runtime can have
a large impact on resource requirements for an orchestrator solution. In
order to verify this, FLEDGE is set up as in Fig. 3.7a, using both Docker
and Containerd. No pods or containers other than the FLEDGE agent and
a VPN client are deployed, to reduce the influence of other processes on
memory use behavior. A third case is also examined, in which the FLEDGE
agent runs directly on the host while using Containerd as a runtime, to
determine the containerization overhead of the FLEDGE agent.

In all cases, the processes monitored are container runtime daemons, the
FLEDGE agent, the VPN client and Containerd shims [58].

3.3.3.3 Virtual Kubelet integration

As shown in Section 3.3.2, Virtual Kubelets can either be deployed on the
master node or merged with FLEDGE on edge devices. This evaluation is
meant to gather the required data for Eq. 3.5 and Eq. 3.6 so an argument
can be made for the correct approach.

To gather the required data, FLEDGE is set up as described in both Fig.
3.7a and Fig. 3.7b, and the same processes are monitored as in the Container
runtime comparison.

3.3.3.4 Orchestrator comparison

As presented in Section 3.3.1, there are a number of alternatives to FLEDGE.
Since the point of FLEDGE is to provide a Kubernetes-compatible container
orchestrator with minimal resource requirements, this evaluation is meant
to verify that FLEDGE requires fewer resources than Kubernetes worker
nodes on edge devices. To fully prove this, Kubernetes is allowed to deploy
a kube-proxy [59] on FLEDGE to level the playing field. Flannel will be
used as a CNI plugin, but since FLEDGE has its own container networking
it will only be deployed on Kubernetes worker nodes.

Additionally, FLEDGE is compared to K3S to show that it is a useful al-
ternative to K3S. Because K3S does not actually include kube-proxy by
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default, this evaluation compares K3S to a FLEDGE deployment with-
out kube-proxy. FLEDGE will be similarly compared to K0S, ioFog and
KubeEdge. Although these orchestrators all use various strategies for edge
orchestration, their features and methods of deployment are similar enough
for direct comparison.

Two versions of the results are presented; one set is the original results
from 2019, comparing FLEDGE to contemporary versions. Another set is
from 2021, comparing FLEDGE to the evolving resource requirements of
K3S and Kubernetes, and adding results for K0S, ioFog and KubeEdge.
As KubeEdge supports various container runtimes, it was configured to use
containerd.

For this evaluation, the monitored processes are the container orchestrator,
the container runtime, shims and any deployed containers (including VPN
for FLEDGE). FLEDGE uses Containerd as a container runtime.

3.3.4 Evaluation results

This section presents the results of the evaluations described in Section 3.3.3.
For practical purposes, x64 numbers are shown as blue series in the charts,
while ARM is shown as red with dashes. Storage requirements charts are
bar charts showing medians, memory charts also have error bars indicating
the median absolute deviation.

3.3.4.1 Container runtime comparison

Fig. 3.9 shows the storage requirements for FLEDGE deployments using
either Docker or Containerd.

The first important observation is that on ARM devices, a FLEDGE deploy-
ment using either Containerd and Docker requires far less storage than on
x64. The difference is especially large in the case of Docker and FLEDGE,
which needs 3 times as much storage on x64 as it does on ARM.

At first sight, it appears that Containerd is much less efficient on ARM
than Docker is, but this conflicts with the fact that Docker uses Containerd
for many container tasks. However, in order to use a containerized version
of the FLEDGE agent with Containerd, many files and resources need to
be made available inside the FLEDGE agent container for it to be able to
deploy containers itself.

It turns out that mounting all these file paths inside the FLEDGE agent
container at runtime creates a multitude of file system layers which inflate
storage requirements up to 4 times the original size. In order to validate
this, a FLEDGE agent was run as a host service with Containerd as a
container runtime. Additionally, this version of Containerd was cleaned of
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unnecessary support executables, most notably the command line tool ctr,
since only API interaction is required. This is similar to the approach K3S
uses, and the most important downside is that the command line can no
longer be used for debugging purposes. This approach (Fig. 3.9 Host+ctd)
is much more resource efficient, using only about one third of the resources
Docker requires on both x64 and ARM.

Note that the same approach does not work with Docker; running the
FLEDGE agent as a host service with Docker as a container runtime gives
nearly the same results as in Fig. 3.9. This indicates that while Docker
may use Containerd as a runtime, it has a much more efficient method of
creating and mounting file system layers.

The results in Fig. 3.9 can thus be explained by two causes. The first is
how mounts are handled by the container runtimes, the second is the result
of instruction set differences and larger overall binaries on x64. The effects
on required storage are respectively additive and multiplicative. This is
reflected in the Host+ctd and Docker categories, which scale more or less
equally between x64 and ARM, whereas the inflated layers in Containerd
are similar added burdens on both x64 and ARM. Note that the differences
in the latter case are not identical, since some of the mount points include
binaries that are also platform dependent.
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Figure 3.9: Storage requirements of FLEDGE using different container runtimes,
including all relevant processes.

Fig. 3.10 shows the memory use of FLEDGE using either Docker or Con-
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tainerd. Again, the ARM versions are much more resource efficient, using
up to 50% less memory for Docker and 65% for Containerd.

As far as container runtimes go, Containerd is by far the best option to
use with FLEDGE. The ARM setup of FLEDGE using Containerd requires
only about 80MiB storage and 50MiB memory in total, including a VPN
client container.
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Figure 3.10: Memory use of FLEDGE using different container runtimes, includ-
ing all relevant processes.

3.3.4.2 Virtual Kubelet integration

The effects of integrating the Virtual Kubelet into FLEDGE are shown in
Fig. 3.11 and Fig. 3.12. In Section 3.3.2, Eq. 3.5 and Eq. 3.6 were
constructed to calculate the maximum amount of storage and memory this
integrated solution should use. By measuring the resource consumption
of Virtual Kubelet pods on the master node, Mp,q is determined to be
10MiB and Mgy, 20MiB. Other factors are harder to pin down, but they
are estimated at 500MiB for Mgyupe, OMiB for Spyq, 40MiB for Sgp, and
1200MiB for Sk yupe. Using the default Kubernetes node and pod limits, Mg
and Sg are calculated and shown in the figures as horizontal lines, indicating
the useful limits for memory and storage respectively.

As Fig. 3.11 shows, integrating the Virtual Kubelet into FLEDGE is not
optimal for storage, especially in the case of x64, but considering that it only
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goes 3MiB over the “limit” it is unlikely to matter much. Fig. 3.12 shows
slightly better results for memory use. On ARM, there is a good reason to
run the Virtual Kubelet in FLEDGE on the edge, since it uses about 10%
less memory than the calculated useful limit. For x64, moving the Virtual
Kubelet to the edge is more or less memory neutral, with median memory
use being exactly the limit.

150 [ 8
+Sp = 124MiB
@ 100 | :
=) +Sp = T8MiB
- Lo TRE T T ]
20
o]
g8
A 50| :
0 T T
Cloud Edge
Iox64[00 ARM

Figure 3.11: Storage requirements of FLEDGE while running the Virtual Kubelet
in the cloud or on the edge. The horizontal lines indicate the useful
upper limits for integrating the Virtual Kubelet into FLEDGE on
the edge for x64 and ARM, calculated by adding the result of Eq.
3.6 to the numbers of the Cloud category.

3.3.4.3 Orchestrator comparison

Fig. 3.13 shows the storage requirements of FLEDGE compared to those of
Kubernetes. For both x64 and ARM, FLEDGE requires significantly less
storage than Kubernetes, but the difference is largest on x64 with about
75% less storage. On an ARM device, FLEDGE requires about 60% less
storage than Kubernetes. This large difference can be attributed to sev-
eral factors, including the choice of Containerd over Docker and integrating
several plugins instead of running them as containers.

The memory use of FLEDGE compared to Kubernetes is shown in Fig. 3.14.
Again, FLEDGE requires significantly fewer resources than Kubernetes,
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Figure 3.12: Memory use of FLEDGE while running the Virtual Kubelet in the
cloud or on the edge. The horizontal lines indicate the useful upper
limits for integrating the Virtual Kubelet into FLEDGE on the edge
for x64 and ARM, calculated by adding the result of Eq. 3.5 to the
medians of the Cloud category.

with both the x64 and ARM versions requiring around 50% less memory
than Kubernetes. It is worth noting that simply eliminating Flannel in favor
of a custom container networking solution saves around 24MiB of memory
on ARM devices and 36MiB on x64.

These results show that FLEDGE, while remaining Kubernetes compatible,
uses much less resources and is a viable container orchestrator for edge
devices.

The difference between K3S and FLEDGE, shown in Fig. 3.15 for storage
and Fig. 3.16 for memory, is less impressive. However, FLEDGE still uses
about 10% less storage than K3S on x64, and around 30% less on ARM. As
far as memory goes, FLEDGE and K3S require more or less equal amounts
on x64, but FLEDGE uses 25% less on ARM devices. Combined with the
ability of FLEDGE to join Kubernetes clusters, which K3S cannot do, this
makes a strong case for using FLEDGE as an edge container orchestrator
compared to alternative software.

Fig. 3.17 extends Fig. 3.16 for K0S, ioFog and KubeEdge, and uses orches-
trator versions available in 2021. Considering the variety of orchestrators in-
volved, this comparison includes all containers spawned by an orchestrator,
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Figure 3.13: Comparison of the storage requirements of Kubernetes and
FLEDGE, both running a kube-proxy deployment.

except kube-proxy for FLEDGE, which is not a requirement of FLEDGE
itself. While the early versions of K3S were very closely matched with
FLEDGE, newer versions require up to 75% more memory than its early
versions from 2019, making FLEDGE by far the most memory efficient op-
tion. ioFog and K0S, both newer alternatives, require around 4 and 5 times
as much memory as FLEDGE, respectively. For ioFog, this is caused by
the need for a Java Virtual Machine (JVM) and several plugin containers,
while KOS launches a large number of plugin containers which results in
a severe overhead. Despite its JVM, ioFog still requires less memory than
Kubernetes, while KOS requires significantly more memory due to its var-
ious plugin containers. KubeEdge, which uses a custom edge node agent
based on lightweight technologies, uses only about 40% more memory than
FLEDGE.

Finally, Fig. 3.18 shows the amount of memory used by the 2019 versions of
each container orchestrator, without any additional processes. Only in the
case of Kubernetes has Flannel been included, since K3S and FLEDGE have
pod and container networking by default. This chart shows that while both
K3S and FLEDGE require only around 30% of the resources of Kubernetes,
FLEDGE is more efficient on ARM devices, while K3S is more efficient on
x64.



Foc AND EDGE 97

300 | ]
)

2 200 ]
& -

E 1

[«b]

Z 100 '

O T T
K8S FLEDGE

ODox6400ARM

Figure 3.14: Comparison of the memory use of Kubernetes and FLEDGE, both
running a kube-proxy deployment.

Fig. 3.19 shows the memory requirements of the 2021 versions of contai-
ner orchestrators. These results show that the memory consumption of
orchestrator processes has grown significantly, and that of K3S has doubled
since 2019. K0S comes closest to FLEDGE, but still requires almost twice
as much memory. ioFog, which needs a Java Virtual Machine for its or-
chestrator process, needs over three times as much memory as FLEDGE.
The main processes of KubeEdge and KOS have similar memory consump-
tion, and comparing to Fig. 3.17 illustrates how the additional containers
launched by some orchestrators can significantly add to their total memory
use.

3.3.5 Discussion

In the beginning of Section 3.3, a number of requirements are proposed for
FLEDGE:

e Secure communications between edge devices and the cloud by default,
minimal impact on local networks.

e Compatibility with modern standards for container orchestration, or
provide an adequate alternative.
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Figure 3.15: Comparison of the storage requirements of K3S and FLEDGE, with-
out kube-proxy.

e Low resource requirements, primarily in terms of memory but also in
terms of processing and storage.

FLEDGE is shown to be a solution to these requirements by using Vir-
tual Kubelets and agents on edge devices. A VPN is used to homogenize
edge networks and provide a basic layer of security for communication with
the cloud. Compatibility with container standards is achieved by using
OCI [20] APIs to build FLEDGE. Some standards, such as CNI, can be
safely ignored by using a custom implementation which does not impact
the rest of the cluster. Low resource requirements are achieved partially by
choosing Containerd as a container runtime, and partially through custom
implementations of specific functionality such as CNI.

To further illustrate the low resource requirements of FLEDGE, several eval-
uations are performed. A FLEDGE setup is deployed using both Containerd
and Docker, showing that FLEDGE using Containerd requires about half
of the memory and storage of FLEDGE using Docker.

Similarly, the choice of running the Virtual Kubelets in the cloud or in-
tegrating them into FLEDGE agents is backed up by a theoretical model
and an evaluation. The results show that it is preferable to integrate the
Virtual Kubelets into FLEDGE agents, reducing overall complexity. On
x64 platforms, the total amount of resources required is almost identical for
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Figure 3.16: Comparison of the memory use of 2019 versions of K3S and
FLEDGE.

the two solutions, but on ARM the results are slightly better when running
everything on the edge.

Finally, Kubernetes and K3S are discussed as alternatives to FLEDGE,
followed by an evaluation to compare them in terms of memory and storage
requirements. The results show that FLEDGE requires only about 40-50%
of the resources of a similar Kubernetes worker node, while it also requires
25% less resources than K3S on ARM devices. On x64 devices, FLEDGE
and K3S resource requirements are nearly equal.

Updated results for 2021 software versions indicate significant increases in
resource requirements for all orchestrators, increasing the favorability of
FLEDGE as an efficient, minimal orchestration agent.

The conclusion is that FLEDGE, despite its experimental status, can deploy
Kubernetes pods while using significantly less resources than other container
orchestrators. Several topics for future work are discussed, mostly focused
on improving FLEDGE itself.

While this section presents a fully operational container orchestrator for
edge devices, there are aspects of FLEDGE that can be improved.

First of all, the integration of the Virtual Kubelet on the edge is not ideal.
While it is better than managing each FLEDGE agent with separate pods
in the cloud, the ideal solution may be to create a single service in the cloud
that can manage hundreds or thousands of FLEDGE agents, scaling up only
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as required. This approach would be optimal for resource requirements, but
it would likely require a lot of processing power and create a single point of
failure.

Only Docker and Containerd were considered as container runtimes for
FLEDGE, but many others exist, including rkt [60] and CRI-O [61]. Docker
and Containerd were chosen because they are widely supported and popular,
but it is unknown if another container runtime could give better results.
As orchestrator compatibility goes, K3S and FLEDGE already use both
the Kubernetes and Containerd APIs, so with a little extra work it may be
possible to have FLEDGE connect to both Kubernetes and K3S clusters,
even simultaneously.

While FLEDGE is built to be Kubernetes compatible, it is unknown if
optional features such as distributed storage work properly at this point.
For the envisioned use of FLEDGE on edge devices, this is not important,
but it could prove a valuable addition in the future.

OpenVPN is used to build a homogeneous network environment for FLEDGE
to operate in, but other VPN software exists that may be more stable or
provide faster connection speeds. Possible alternatives include Tinc, Wire-
Guard and ZeroTier.
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Figure 3.18: Direct comparison of the memory use of the main process(es) of each
container orchestrator for 2019 versions.

In Eq. 3.5, Cj; represents the relative cost of edge memory versus cloud
memory. In this section, it is naively assumed to be 1, but studies on the
relative cost of edge resources and cloud resources could be interesting for
the further development of software and container placement strategies.
The version of Kubernetes used in this section is limited to a maximum
of 5.000 nodes and 150.000 pods in total. While this is sufficient for cloud
clusters, the maximum number of nodes in particular will be too low for edge
clusters. These numbers are not hard-coded, but based on the performance
of several subsystems, such as node synchronization and pod status updates.
It may be possible to increase the maximum number of nodes by optimizing
the configuration of Kubernetes and severely limiting the maximum number
of pods on an edge node. Another solution is to federate a number of
Kubernetes clusters using KubeFed [62], thereby reducing the impact of the
limits of a single cluster.

3.4 Lightweight service orchestration
This section contains the edited version of the following publication: “Near

real-time optimization of fog service placement for responsive edge
computing”, T. Goethals, F. De Turck, B. Volckaert
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Figure 3.19: Direct comparison of the memory use of the main process(es) of 2021
versions of popular container orchestrators.
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published in Journal of Cloud Computing, 9, Article number 34
(2020) [63]

While the combination of IoT and fog computing offers a wide array of
advantages, such as improvements in efficiency and user experience, it also
exacerbates some of the service deployment scheduling challenges already
present in the cloud, such as taking network bandwidth, network reliability
and distances between nodes into account.

Instead of being located in centralized data centers, the fog and edge are
spread over a large physical area, containing hundreds of thousands of de-
vices. This means that network grade and quality can vary by orders of
magnitude, from DSL lines to fiber optics, while the distances involved re-
sult in much higher latencies between nodes than in cloud data centers. A
widespread and heterogeneous network also results in a larger variety of
network conditions and problems. Therefore, a scheduling solution should
not only be able to handle changing network conditions, but also slow or
broken lines of communication. The decentralized nature of the fog and the
edge is also an important factor. In the cloud, a service can simply be scaled
up if demand suddenly spikes. In the fog however, it is not always possible
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or useful to simply scale in place. In order to minimize access times for the
edge and provide the right amount of capacity for each service, the entire
fog topology must be taken into account. Because of this, any change in
the fog topology can trigger migrations of or extra service instances, as can
edge nodes coming online, going offline, or moving to a different location.
On the other hand, there are also some challenges that remain mostly un-
changed from cloud deployments. A deployment scheduler still has to take
into account the limited resources of the nodes it can deploy services on,
whether those are hardware resources (CPU, memory, network saturation)
or calculated load metrics. Furthermore, although the solution should strive
for an optimal placement of service instances in the fog to minimize access
times for consumers, it should do so efficiently by using a minimal number
of service instances. To guarantee a certain level of responsiveness to con-
sumers, one or more metrics and thresholds can be defined on fog nodes”,
for example latency, uptime, etc.

To summarize, the requirements for a good algorithm for fog service schedul-
ing are:

e Req. 1 It should work on the scale of hundreds of thousands of edge
devices

e Req. 2 It should be able to handle changing network conditions and
topologies in near real-time

e Req. 3 It must take fog node resource limits and distance metrics
between nodes into account

e Req. 4 It should minimize the number of instances required for any
fog service deployment

This section proposes Swirly as a solution to these requirements. Swirly is
an algorithm that runs in the cloud or fog, which plans fog service deploy-
ment with a minimal number of instances, while optimizing the distance to
edge consumers according to any measurable metric. Furthermore, it can
incorporate changes to the network and topology almost in real-time. An
example architecture is shown in Fig. 3.20, in which Swirly manages sup-
port services for edge devices and deployes them in the fog. Communication
between fog services and edge devices is directed by Swirly, but cloud com-
munication and services are independently managed. Examples of cloud
functionality which does not benefit from Swirly orchestration include soft-
ware update services, customer support services (or dashboards) and data
collection.

7A fog node can be a single device or server, or a decentralized micro data center.
Anything that allows the deployment of services outside the cloud proper.
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Figure 3.20: Example scenario in which Swirly orchestrates services in the fog, and
directs edge nodes to suitable nearby fog services. Cloud services and
communication with the cloud are not managed by Swirly.

Section 3.4.1 presents existing research related to optimizing service de-
ployments. Section 3.4.2 explains how the proposed algorithm works and
how to choose a good metric, while section 3.4.3 analyzes its theoretical
performance and the shape of the resulting service topologies. In section
3.4.4, an evaluation setup and methodology are presented to verify various
performance aspects of the algorithm. The results of the evaluations are
presented and discussed in section 3.4.5. Finally, section 3.4.6 gives a short
overview of the goals stated in this introduction, and how the algorithm and
its properties meet them.

3.4.1 Related work

Shifting workloads between the cloud and edge hardware has been exten-
sively researched, with studies on edge offloading [22], cloud offloading [23],
and osmotic computing [26].

Many strategies exist for fog container deployment scheduling, ranging from
simple but effective resource requests and grants [27], to using deep learning
for allocation and real-time adjustments [28].

Initial research into fog computing and service scheduling dates from before
the concept of the fog, for example Oppenheimer et al. [64], who studied
migrating services in federated networks over large physical areas. This work
takes into account available resources, network conditions, and the cost of
migrating services between locations in terms of resources and latency.
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Zhang et al. [65] present an algorithm for service placement in geographi-
cally distributed clouds. Rather than focusing on resources as such, their
algorithm makes placement decisions based on changing resource pricing of
cloud providers.

Aazam et al. provide a solution for fog data center resource allocation based
on customer type, service properties and pricing [66], which is also extended
to a complete framework for fog resource management [67].

In more recent research, Santos et al. [68] present a Kubernetes-oriented
approach for container deployments in the fog in the context of Smart Cities.
Their solution is implemented as an extension to the Kubernetes scheduler
and takes network properties of the fog into account.

Artificial intelligence is also making headway into fog scheduling research.
For example, Canali et al. [69] tackle fog data preprocessing with a solution
based on genetic algorithms. Their solution distributes data sources in
the fog, while minimizing communication latency and considering fog node
resources.

Zaker et al. [70] propose a distributed look ahead mechanism for cloud
resource planning. Rather than provisioning more resources to counter net-
work load, they attempt to optimize bandwidth use through the configur-
ation of overlay networks. The predictive look ahead part is implemented
by using the IBK2 algorithm. This is different from the approach in this
section, which does not consider network load by itself, and attempts to
migrate service deployments to manage resources.

Finally, Bourhim et al. [71] propose a method of fog deployment planning
that takes into account inter-container communication. Their goal is to
optimize communication latencies between fog-deployed containers, which
is obtained through a genetic algorithm.

Most of these approaches are centered on the cloud or small scale fog net-
works, and use a large number of parameters to construct an optimal, but
static solution. In some cases, they may also rely on historical data for
training. The algorithm discussed in this section however aims to quickly
construct solutions using an edge-centered approach, taking into account
node resources and generic heuristic. The speed of the algorithm allows it
to process node updates in near-realtime for fog and edge networks orders
of magnitude larger than those commonly found in proofs of concept in re-
lated work. An additional benefit is that the heavy lifting of calculating the
heuristic value is offloaded to edge devices, where it has far less impact due
to being spread out. Finally, the solution is meant for dynamically evolving
networks for which historical training data may be hard or impossible to
acquire.
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3.4.2 Swirly
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Figure 3.21: Different stages of building a service topology with Swirly.

Contrary to the fog deployment solutions discussed in the previous sections,
Swirly works under the assumption that some fog services will be used by
most, if not all, devices in the edge. This allows for a simple but flexible
approach which is very suited to building large service topologies.

Throughout the remainder of this section, a fog network (including the
edge) with frequent changes to its network and nodes will be referred to as
a swirl. This term refers to the swirly motion which fog makes when it stirs
and moves. Hence the name of the algorithm, Swirly, which attempts to
build an optimal service topology in a swirl. Additionally, edge nodes are
devices at the network edge which act as consumers of fog services, while
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Table 3.1: Definitions of symbols used in algorithms 1, 2 and 3.

] Symbol \ Definition

E all edge nodes in the service topology

F all fog nodes in the swirl

E, an edge node in the service topology

|E| the number of items in E

F, a fog node in the service topology

|F| the number of items in F

e an edge node without a service provider
F(e) fog nodes ordered by distance from e
E(F,) edge nodes serviced by F,

A set of active fog nodes
D, ¢ distance between edge node e and fog node f

D, distances of edge node e to all fog nodes

d a distance according to the chosen metric
dmax maximum distance between an edge node and fog node
R, ¢ current level of resource x on fog node f
RL, ¢ limit for resource x on fog node f
LL, lower limit for resource x on fog node f
RD, default resource x increase for a service client

fog nodes are service providers hosting fog services. Therefore, edge nodes
are assigned fog nodes as service providers, or are serviced by fog nodes.
Finally, a (service) topology refers to the result of the algorithm, in which
all edge nodes are assigned a fog node. When referring to the physical layout
of the input nodes, the term node topology is used. Table 3.1 defines all the
symbols used in algorithms in this section.

Fig. 3.21 illustrates how Swirly forms a service topology from a collection
of edge nodes E and fog nodes F. The algorithm starts with a number of
unassigned edge nodes. It then determines that these nodes are all within
an acceptable distance of two fog nodes, which are initialized and used as
service providers. The line indicates how the service topology is divided
between these two nodes. As more edge nodes join the service topology,
it becomes necessary to initialize the third fog node, further dividing the
service topology. Finally, an edge node pops up which should be serviced
by the green fog node, which is already full. Therefore, this last edge node
is serviced by the blue fog node.

Fig. 3.23 shows the result of Swirly on a large scale. Edge nodes have been
colored according to the fog node which acts as their service provider, while
fog nodes themselves are shown as red dots (inactive) or green dots (active).
When Swirly is started, it has a collection of fog nodes and their available
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resources. No further information is needed, apart from an IP address or
another effective method of reaching them.

The rest of this section will describe how the described functionality is impl-
emented by specific functions of Swirly. The add operation is meant only
to assign a service provider to newly detected edge nodes, while the update
method is used to receive updates from edge nodes and potentially assign
them a different service provider. Finally, the delete method removes nodes
from the topology altogether. Fog node add, update and delete operations
are also discussed in the relevant sections.

Throughout all these operations a distance metric is required to determine
which fog node is the best service provider for an edge node. The effects of
the choice of a distance metric are discussed in section 3.4.2.3.

3.4.2.1 Adding new nodes

In order to build a service topology, all edge nodes F that require a certain
service are added to the topology one by one as per Algorithm 1. Generally,
the algorithm attempts to find the active fog node F, closest to the given
edge node e using the list of distances D.. If successful, the fog node F, is
assigned to the edge node as service provider. If there is no active fog node
yet (A = @), or there is no fog node with free resources (F, = @), Swirly
finds the closest inactive fog node F; instead. That fog node then gets
activated and assigned as a service provider to the edge node e. There is a
single caveat here; if the closest available fog node is beyond the maximum
distance (De g, > dmae and F; = Fy), the algorithm has no choice but
to assign it as service provider for an edge node. The support function
ClosestFogNode returns the fog node F, with free resources closest to an
edge node e. A parameter active can be supplied to indicate if only active
fog nodes should be considered.

This operation ensures that Req. 8 and Req. 4 for a useful deployment
scheduler are met within a reasonable amount of processing time.

Note that during an add operation, the resource use R, ; of the selected
fog node is increased by a configurable amount. This is to avoid assigning
it to too many edge nodes simultaneously, and is periodically corrected by
updates from the fog nodes containing their actual free resources.

Adding additional fog nodes to the topology is also supported, but this does
not trigger a reorganization of currently assigned edge nodes. Rather, newly
added fog nodes will only provide services to edges nodes that are added or
updated after they were initialized.
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function Add(e, distances, dpqz )is
if A =0 then

D, = distances

F; = ClosestFogNode(e, false)
initialize F;

assign F; to e
else
F, = ClosestFogNode(e, true)

if F, = null then
F; = ClosestFogNode(e, false)
add F; to A
initialize F;
add e to E(F;)
else if D, p, > dp,q, then
F; = ClosestFogNode(e, false)
if F;, = F, then

add e to E(Fy)

‘ Rz,a += RD:E
else

‘ initialize F;

add e to E(F;)

end
else
add e to E(Fy)
Rx,a += RD:C
end
end
end
function ClosestFogNode(e, active)is
F,. = null

for F, € F(e) do
if (lactive or (active and F, € A)) and Ry ; < RLy ;,Yi
then
| I =F,
end
return F,
end
Algorithm 1: Adding a single edge node to the service topology
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Figure 3.23: Visualization of a service topology generated by Swirly. Big red dots
are inactive fog nodes, big green dots are active fog nodes servicing
nearby edge nodes.

3.4.2.2 Node updates

In order to fulfil Req. 2, Swirly must support topology updates. As a
requirement for these updates, all edge nodes must periodically report the
distances between them and every fog node to Swirly. Exactly how they do
this is left to implementation, although some suggestions and their impacts
are given in the next subsection. For this subsection, it is important to
note that these lists of distances to fog nodes are pre-sorted by increasing
distance, so Swirly can always find the closest fog node in constant time.
This is also the case for the ClosestFogNode function in Algorithm 1.

To keep a service topology up to date in a swirl, the algorithm needs opera-
tions to update edge nodes (Algorithm 2) and remove them from the service
topology (Algorithm 3).

The Remove operation starts by removing the edge node e from its fog
node F,. After that, it checks if any of the resources of the fog node are
below the lower limit, in which case it attempts to move all remaining edge
nodes E(F.) it services to other nearby fog nodes by removing them from
F, and calling the Add operation. This process fails if any edge node E,
would be assigned a new fog node F,;; which is more than the maximum
distance d,nq; away, unless that is already the case for the current fog node
(DE, F,, > dmag). To support reverting this operation in case of failure,
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each reassignment is kept in the map alt Nodes. Upon failure, the algorithm
iterates over each pair F;,F; in altNodes, removing E; from F; and reas-
signing it to F,. On success, the fog node F, is torn down and removed
from the topology.

The Remove operation makes use of a support method ClosestFogNodeEx-
cept, which is essentially the same as the ClosestFogNode method, but the
fog node Fiycept can not be returned as a result.

Note that this process produces the same result as if the exact subset of
nodes that absolutely required a specific fog node as service provider had
never been in the original set of edge nodes, so it remains consistent with
the Add operation.

The Update operation updates the set of distances of an edge node e to
each fog node in F. In case the new distance d,., from the edge node to
its service provider F increases beyond the maximum distance d,,q;, the
algorithm calls the Remove and Add operations for e, in an attempt to
assign it a better service provider.

Note that the total performance of the update method is dependent on how
efficiently the set of distances can be updated. However, this can happen in
constant time, which is implicitly assumed in section 3.4.3.1.

The distance metric, combined with the Update and Remove operations
not only enables Swirly to act on topological changes, but also to implicitly
avoid fog nodes which are experiencing load spikes and network issues.

As with adding fog nodes, fog node updates only change the available re-
sources for further edge node assignments. Removing a fog node will at-
tempt to assign new fog nodes to the edge nodes that depend on it. Reas-
signing edge nodes if their service provider suddenly runs out of resources
is not currently implemented. Instead, it can be argued that it is optimal
to rebuild the entire service topology when fog nodes are added or their
available resources change drastically, since these cases require examining
every edge node to find its optimal service provider considering the new
information. Therefore, no further implementation is needed.

function Update(e, distances, dpq.) is

dota = De,F.
D, = distances
dnew - l)e,Fe

if dold < dnew and dnew > dmam then
Remove(e, dimaz)
Add(e, dmaz)
end
Algorithm 2: Updating the status and distance metrics of an edge node
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function Remove(e, dpmaz) is

remove e from E(F,)

if Re; < LL.;,3i then

altNodes =

revert = false

while /revert and E(F.)! = ( do

Lk, = E(Fe)[o]

F.;; = ClosestFogNodeExcept(E,, Fe)

if F,;; = null then
| revert = true

else

if DE”FGH > dyaz then
| revert = true

else
remove E, from E(F,)
Add(E;, dmax)
altNodes[E,| = Fui
end
end
if revert then
for (E;, F;) € altNodes do
remove E; from E(F;)
add E; to E(Fe)
end

else
| teardown Fj
end

end

end
function ClosestFogNodeExcept(e, active, Fegcept) is
F,. = null
for F, € F(e) do
if Fy # Fegcepr and (lactive or (active and F, € A)) and
R, < RL;;,Vi then

end
return F,
end

Algorithm 3: Removing a single edge node from the service topology
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Swirly can not directly detect fog node failures, so it can not actively react
to service availability issues. However, its design allows for two methods to
make it more resilient to hardware failures. The first is choosing a distance
metric that can reflect imminent node failures, which passively forces the
algorithm to choose more suitable fog nodes to host services on, as shown in
section 3.4.2.3. The second option is to actively remove a fog node from the
algorithm when its failure is detected by external components. While this
method requires some extra computation, it can react to hardware failures
in less than a second.

So far, this section has not touched on the actions required to redirect service
requests from edge nodes to the correct fog nodes. While such functionality
is beyond the scope of this section, the network addresses of all nodes are
known, along with the topology generated by Swirly. Therefore, it should
not be overly difficult to propagate changes to a DNS server, a distributed
DNS plugin (e.g. for Kubernetes), or a webservice on edge nodes that
redirects requests at the source.

3.4.2.3 Impact of distance metric

While the performance and inner logic of the algorithm are unaffected by
the choice of distance metric between edge nodes and fog nodes, a good
metric can improve efficiency and responsiveness to changes. On the other
hand, some of the more useful metrics may cause a lot of processing and
network overhead between the nodes and the algorithm. In this section,
some ideas are discussed for useful metrics.

The simplest metric that can be used depends only on geographical coor-
dinates. While it requires a reasonably accurate location for each node,
it does not usually change unpredictably or rapidly. The downside of this
metric is that any changes in network or fog node performance can not be
detected in order to avoid availability problems. The advantage is that the
algorithm can keep track of all node locations by receiving regular updates
from edge nodes, and calculate distances as required. Thus, the network
overhead will be minimal using this approach.

Another possible metric is the latency between edge nodes and fog nodes.
The values of this metric can be easily measured using the ping command,
but this results in an overhead that grows linearly with both edge nodes
and fog nodes. Additionally, the ping command is often blocked on servers
or routers, in which case it is useless. The biggest advantage of this metric
is that it can detect network and fog node issues in real-time, so edge nodes
can be assigned a different fog node as service provider.

A third metric, which also aims to determine network latency, uses a very
lightweight web service on both edge nodes and fog nodes to determine
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the latency between software service endpoints. The disadvantages of this
approach are that the packet sizes are larger than those of a simple ping, and
that it requires slightly more processing time. However, the evaluations from
Chapter 2.2 show that even a reasonably simple server can easily handle
millions such requests per minute.

The last two metrics require that all edge nodes periodically determine their
distance to each fog node, and report the results to the algorithm so it can
adjust the service topology. In order to show that this does not result in
an unacceptably high network overhead, the following numbers have been
determined:

e The example assumes 200000 edge nodes, using 200 fog nodes as ser-
vice providers

e Each edge node will attempt to determine its distance to fog nodes
once every minute

e The size of a ping packet is 56 bytes on Unix

e wget shows that a suitable web service request is 159 bytes and a
response is 202 bytes

Using these numbers, each fog node has to process about 3333 ping requests
per second for a total of 1.5Mbps, both incoming and outgoing. In the case of
a webservice, the traffic increases to 4Mbps incoming and 5Mbps outgoing.
Additionally, to avoid overloading nodes that are already under heavy load
and to avoid frequent distance measuring to nodes that are too far away,
the frequency can be reduced by an order of magnitude for fog nodes more
than two or three times the maximum distance away. For larger networks,
this should reduce total traffic considerably. However, no concrete numbers
for this can be determined since they are fully dependent on the network
topology.

Finally, a quick calculation can determine the network overhead for the
server hosting Swirly using;:

E|- |F|
P
Where P is the measuring period in seconds and S is the message size in
bytes (15 for IP address + 4 for an integer number). The result is 98Mbps,
which is significant but not insurmountable. Some actions can be taken to
reduce this number significantly, such as not reporting distances that have
not changed by more than 30%, unless they cross the maximum distance.
For geographically widespread topologies, this could likely reduce traffic by

T =85 (3.7)
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an order of magnitude or more, but again concrete numbers can not be
determined as they rely on the specific network topology.

3.4.3 Theoretical properties

To fulfil part of Req. 1 put forth in the introduction, this section dis-
cusses the theoretical properties of the algorithm. The processing power
and memory requirements are analyzed in-depth, and for a full understand-
ing of the output of the algorithm, a theoretical model for the resulting
service topologies is constructed.

3.4.3.1 Processing

Adding an edge node to the topology can result in several cases. In all
cases, the sorted list of fog node distances for the edge node is consulted to
determine its optimal service provider at that time.
In the most common case, the selected fog node has enough free resources
for additional service clients, and the edge node is simply directed to that
fog node. The resulting performance is O(1).
In the worst case, there is a chance that the optimal fog node is already
full and the algorithm has to search for the next best fog node with free
resources. Let there be a chance p that any node is already full, such that
|E|

p= CW =cLp (3.8)
where Lp is the average load of edge nodes assigned to fog nodes and c is
a constant that normalizes Lp. If there are enough edge nodes E and fog
nodes F', then the expected number of iterations to find a suitable fog node
is

1 1

T 1-p 1_E
D 1 CTF]

r (3.9)

and worst case performance is O(1/(1—|E|/|F)), with a maximum of O(| F)
because there can never be more iterations than there are fog nodes.

Note that both cases depend on the node topology of the swirl. When there
are not enough fog nodes in areas with a high edge node density, the worst
case performance will occur more often. The influence of the node topology
on performance is further examined under 3.4.3.3.

Like the Add operation, deleting an edge node has several possible cases.
In the best case, it is removed from its fog node for O(1).

In some cases, the fog node will be underutilized after a remove, so the
algorithm attempts to migrate the remaining edge nodes of that fog node
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Table 3.2: Summary of algorithm operation complexity. Most common cases are
marked in bold.

Best Worst

Add | O(1) | O(1/(1—|E|/|F]))
Remove | O(1) | O(|F|/(1— |E[/|F]))
Update | O(1) | O(|F|/(1 — |E|/|F]))

to other fog nodes. Since the utilization threshold is independent of E
and F, this operation is O(1), albeit with an unusually large impact. This
heavy operation is amortized over O(|E|/|F|) removes and uses the add
operation when moving edge nodes, resulting in a worst case performance
of O(F/(1 — |E|/|F|)).

Finally, the update operation can cause a different fog node being assigned
to an edge node. When this happens, both a remove and add operation are
executed. This can lead to the worst case scenario for both, in which case
performance is O(|F|/(1 — |E|/|F)). Most updates however will only be a
simple status update for O(1).

Table 3.2 summarizes the performance for all operations.

3.4.3.2 Memory

Swirly requires a number of maps and lists to support the processing per-
formance described above, but the greatest impact on memory is that for
each edge node, the algorithm must keep a sorted list of distances to each
fog node in the topology. Therefore, the predicted memory requirement for
the node hosting the algorithm is O(|E| - |F|). For edge nodes, the memory
requirement is O(F).

3.4.3.3 Generated topology

To verify that the algorithm can satisfy the requirements for a good fog
service topology and to identify edge cases and possible problems, it is
important to first construct a theoretical model of the expected output
given the node topology of the swirl.

While fog and edge networks are intrinsically discrete, they can be described
analytically if they are large and dense enough. As a first step, the densities
of edge nodes and fog nodes in any network are

pr = f(z,y), pr = g9(z,y) (3.10)

where both f and g are functions that give the amount of nodes per surface
area at x,y. While Cartesian coordinates are used here, it would be better
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to use densities in the coordinate system that describes distances in the
chosen metric. However, the coordinate transformation may be unknown
and impossible to construct, so Cartesian is used for illustrative purposes.

(a) Idealized representation of fog (b) Realistic responsibility —area
node service areas. with sections ¢ ag.

(c) Example of realistic responsibil-
ity area created by algorithm.

Figure 3.24: Graphic representation of idealized and realistic fog node service ar-
eas.

For the next step, the servicing area of every active fog node can be modeled
using three different parameters:

e ap, circumscribed by rg, is the capacity area of a fog node, which
determines how many edge nodes it can service based on its capacity

Ce

e ar, bounded by rp, is the responsibility area of a fog node. All edge
nodes within this area should be serviced by the fog node, since it is
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either the closest fog node or no other fog node can be used.

® a,, bounded by 7, is the proximity area of a fog node. All edge nodes
within this area are close enough that they can be serviced by the fog
node without going over the maximum metric value.

In some cases rg, 7 and r, will have only a single value, such as in Fig.
3.24a. In others, only their maximum value is relevant, such as in Fig. 3.24b
where 7 > rg. In these cases they will be treated as scalars to simplify
notation. Other cases will specifically show them as functions with their
required parameters.

rp can be determined using the following equation, which in most cases will
resemble a circular shape:

rp(z,y) = V(22 +y2), Y2,y : h(z,y) = My, (3.11)

or, for a more intuitive approach using polar coordinates, where r can be
substituted for metric distances

rp(8) =r,Vr : h(r,0) = M, (3.12)

Where h(z,y) gives the distance metric value at any given location x,y and
M., is the maximum distance value. Note that in both cases, points at vari-
ous distances from the origin can be mapped onto the same metric distance,
making a transform back to the original coordinate system impossible. In
the case of certain basic distance metrics, in which metric distance between
points divided by their geographical distance is more or less constant, the
equation reduces to

rp = CpM,, (3.13)
rr and rg can be naively described as circle radii using
1 C.

y'E =
TPF TPE

rp = (3.14)

However, the equation for rg is not accurate when pp varies a lot over
its entire area. A more accurate solution would be solving the following
equation for r to find rg:

/27rrpE(r) ~dr=0C, (3.15)

This formula takes into account that only r is known by measuring the
metric distance between nodes and not 6, so only the integration over r is
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performed. It is worth noting that in many cases the density of edge nodes
is relatively constant over most geographical areas that can be covered by
a single (group of) fog node(s), although it may vary over time. Therefore
Eq. 3.14 can be used if it is re-evaluated periodically.

Finally, rr is unlikely to vary significantly at the scales used in this section.
When plotted, these three radii resemble Fig. 3.24a. Note that r, is quite
fuzzy because as mentioned, h(x,y) can map physically different points on
significantly different values of the distance metric. Fig. 3.24a represents the
ideal case for the relative sizes of the radii. There are 5 other permutations,
all of which can be problematic for the following reasons:

o If rp > rg, the fog node will not have enough capacity to handle its
entire responsibility area. This means there are not enough active fog
nodes, or they are not in the right places.

o If rp > rp, the fog node will have to support some nodes that fall
outside its proximity area, so that some edge nodes will have a greater
metric value than technically allowed. Again, this points to not enough
active fog nodes or erroneously placed fog nodes.

o If r, > rg, the fog node has sufficient capacity to handle its respon-
sibility area, but can not handle a changing topology where it has to
start servicing extra edge nodes that fall between rg and rp. This
means the fog nodes are not sufficiently powerful to support the max-
imum metric value.

Assuming a basic metric, two requirements for the proper formation of a
fog service network can be constructed from these cases by substituting 7,
rr and rg with their definitions from Eq. 3.13 and 3.14:

1
M;pr(,y) > —=5 (3.16)
P

Cepr(z,y) > pe(z,y) (3.17)

The left sides of these requirements represent the factors that can be easily
controlled or tuned, while the right sides represent factors that are unpre-
dictable or unavoidable. Since everything in Eq. 3.16 except pp(z,y) is
constant under the assumptions, it can be used to determine a proper mini-
mum value for pp, with Eq. 3.17 indicating where more fog nodes or better
hardware should be provided.

A final topic of discussion concerns the shape of ar. In reality, rr will not
be a single number describing the radius of a circle. Because the algorithm
attempts to assign edge nodes their closest fog node, the responsibility area
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of fog nodes will look like pieces of a Voronoi diagram. This effect is also
visible in Fig. 3.22c and 3.23. As Fig. 3.24b shows, it is possible that the
responsibility area ar has sections that lie outside a, or ag. The algorithm
only allows sections outside a, when there is no closer fog node, and it never
allows sections outside ag, even if there is no alternative. In general, it will
attempt to create responsibility areas as shown in Fig. 3.24c.

Note that the shapes of ap depend entirely on the node topology of the
swirl and the amount of required fog nodes to service all edge nodes, so any
further discussion of the service topology is reserved for the results section.

3.4.4 Evaluation methodology

To fully verify that Swirly fulfills the Req. 1, its performance must be eval-
uated. This chapter describes the physical hardware setup used to evaluate
Swirly, as well as implementation details for the evaluated version. It also
details how the theoretical model constructed in the previous section can be
evaluated and validated, and how to determine the practical performance
of the algorithm.

Swirly is evaluated on a single machine with 48GiB RAM and a Xeon E5-
2650 CPU at 2.6GHz. In all cases, the algorithm is the only process running
apart from the operating system. Each evaluation was run with 50000 to
400000 edge nodes in steps of 50000, and 50 to 550 fog nodes in steps of
50. However, because the algorithm considers resource limitations, some
results series start at a higher number of fog nodes. For example, it is not
possible to service 300000 edge nodes with less than 400 fog nodes. For
every parameter set, 20 iterations of Swirly are run on a uniquely generated
swirl. The maximum distance between edge nodes and fog nodes is set to
100. It is entirely possible that edge nodes are generated which do not have
a fog node within the maximum distance, so the evaluations and results are
entirely focused on average distance as an indicator.

3.4.4.1 Algorithm implementation

The topology visualization in Fig. 3.23 was made with a .NET implemen-
tation of Swirly. For the evaluations in this section, Swirly is implemented
in Golang. Because the goal is to measure the impact of the algorithm
itself, there are no integrations with any sort of DNS or service/container
scheduling software.

Edge nodes and fog nodes are generated randomly over an area of 1200 by
800 "units”. In order to simulate urbanized areas, edge nodes are generated
in circles of varying sizes, which are slightly denser in the center. These
circles may overlap and often form more complex shapes, as in Fig. 3.23.



Foc AND EDGE 121

Fog nodes are generated without regard for edge node density, to evaluate
the ability of Swirly to pick exactly the right nodes to service any area. The
chosen distance metric is latency. For simplicity, latency is defined so that
one unit generally equals 1ms. However, because latency is inherently fuzzy,
this distance is randomized between 80% and 120% of the unit distance.
Because the sets of generated nodes are completely randomized, some cases
will work well with Swirly and others will be adversarial. A range of possi-
bilities is explored and discussed in section 3.4.5.

The Golang implementation of Swirly and the evaluation code are made
available on Github?®.

3.4.4.2 Processing time

To accurately measure the exact time it takes Swirly to perform operations,
a swirl is generated up front and the Golang time library is used to determine
how long an operation using that swirl takes. For the add operation, the
evaluation measures how long it takes to build an entire service topology
from scratch, which is then averaged to the time it would take to add 10000
nodes. For the remove operation, it is simply measured how long it takes to
remove 10000 nodes from a completed service topology. The performance of
the update operation is measured similarly to the delete operation. 10000
nodes are physically moved far away from their original fog node and it is
measured how long it takes the algorithm to assign them another one.

3.4.4.3 Memory requirement

The evaluation of memory requirement starts with having Swirly build a
service topology from a swirl with a certain amount of nodes. Memory
consumption is then read from /proc/<pid>/statm and printed to stdout,
where it is collected by a batch script.

3.4.4.4 Topology efficiency

Throughout the processing evaluations, some statistics are kept on how
many fog nodes are required to build any service topology and what the
minimum, average and maximum distances between edge nodes and fog
nodes are. These statistics are used to attempt to determine how close
Swirly comes to constructing a perfect service topology. Using edge node to
fog node distances, Swirly is compared to a random selection of fog nodes
(e.g. the default Kubernetes scheduler [5, 72]), and to the best possible the-
oretical solution if fog node resources are infinite. Additionally, the amount

8https://github.com/togoetha/swirly
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of fog nodes used by Swirly is compared to an optimal solution where each
fog node is exactly at maximum capacity, although admittedly this optimal
solution would not have any space left for extra nodes or unexpected load.
Finally, two extreme topology types are compared to see how Swirly reacts
to certain geographical features. The first is a perfectly equal distribution
of edge nodes, while in the second the edge nodes are split into 4 circular,
non-overlapping clusters, one in each corner of the topology.

3.4.5 Results

This section contains the results for the evaluations described in section
3.4.4, along with a discussion of the results. Most charts have whiskers to
indicate extreme values, but in some cases they have been cut off to keep
the charts readable.

3.4.5.1 Processing

Fig. 3.25 shows the average time required to add 10000 nodes of swirls
of various sizes to a service topology. The results mostly adhere to the
computational complexity calculated in section 3.4.3.1. As the number of
edge nodes increases the operation gets slower, and it gets faster again with
more fog nodes available, eventually leveling out at a constant time per
edge node. However, for higher numbers of edge nodes the constant time
never quite reaches that of smaller topologies, putting real performance
somewhere between the best and worst cases, increasing sublinearly with
the amount of edge nodes.

It should be noted that pg is an important factor here; if the physical size of
the swirl were to expand with the number of edge nodes, the time required
would remain almost constant. In terms of the model constructed in section
3.4.3.3, this is because rg shrinks as edge node density increases but r, and
ar remain the same, so eventually rr will become smaller than r, and ar.
This means the fog nodes no longer have enough capacity to handle their
service areas properly, so the algorithm requires ever more time to find a
suitable fog node.

The result of this is that Swirly is suitable for constructing large service
topologies, but it requires a large amount of high capacity fog nodes in
densely populated areas to keep performance up.

Finally, the whiskers indicate that depending on the node topology of the
swirl, the time required to add edge nodes can vary from 50% to 300% of
the average with a high |E|/|F| ratio, but it stabilizes as the number of fog
nodes increases.
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Figure 3.25: Time required to add 10000 edge nodes to service topologies of vary-
ing sizes. Legend numbers represent thousands of edge nodes.

Fig. 3.26 shows the time required to remove 10000 edge nodes from service
topologies of various sizes. The performance of this operation is almost
ideal, showing a slight decrease with the number of fog nodes and only
marginally increasing with the number of edge nodes. Since the edge node
density effect is also present here, the results imply that individual remove
operations only rarely trigger a worst case performance scenario.

As with the add operation, performance can vary wildly from around 50%
to 200% of the average.

The performance of the update operation is shown in Fig. 3.27. Again,
this mostly adheres with the theoretical performance, which is the sum
of the delete and add operations. The relatively constant performance of
the delete operation reduces the curves of the add operation, resulting in
a mostly constant time to update edge nodes. However, the performance
features of the add operation still apply, as performance decreases slightly
with edge node density, and adding more fog nodes improves performance
up to a certain point. Note that the update method is forced into worst-
case behaviour for this evaluation; every edge node is moved to another fog
node, whereas in reality this will not always be the case and performance
will be more constant. Finally, the numbers of Fig. 3.27 are not exactly the
sum of the add and delete operations, but this is due to certain effects of
the evaluation code which can not be subtracted from the measured time.



124 CHAPTER 3

Predicting a maximum number of devices from these numbers is difficult,
since the amount of required node updates in a real-life topology depends
on many factors, for example the volatility of the clients, choice of distance
metric and update period. Under the extreme conditions that an update
is sent by every node every second, and extrapolating from the results, a
maximum number of nodes around 200.000 to 300.000 edge nodes can be
supported when running single-threaded on the test hardware.
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Figure 3.26: Time required to remove 10000 edge nodes from service topologies of
varying sizes. Legend numbers represent thousands of edge nodes.

3.4.5.2 Memory

The memory requirements of Swirly are shown in Fig. 3.28 for swirls of
varying sizes. The first observation here is that memory use jumps up in
distinct steps here. This is caused by the specific implementation of the
algorithm in Golang. Golang arrays and maps double in size each time they
reach their full capacity, and for each edge node the algorithm keeps a list
of distances to fog nodes. Therefore, all these maps double in size at the
exact same time, causing the jumps in the chart.

Apart from this peculiar effect, memory use adheres perfectly to the theoret-
ical predictions, and despite the randomly generated swirls there is almost
no difference in memory use between iterations.

Considering these results, the product of the number of edge and fog nodes
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Figure 3.27: Time required to move 10000 edge nodes to another fog node in ser-
vice topologies of varying sizes. Legend numbers represent thousands
of edge nodes.

should remain below 1.500.000.000 on a common cloud server with 64GiB
memory. For example, 1.000.000 edge nodes can be assigned to 1.500 fog
nodes, or 3.000.000 edge nodes to 500 fog nodes.

3.4.5.3 Topology

Fig. 3.29 compares the average edge to fog distances of topologies generated
by Swirly (100k, 150k) to theoretically ideal service topologies (100kmin,
150kmin) and service topologies achieved by choosing fog nodes at random
(e.g. Kubernetes scheduler, 100krnd, 150krnd). The ideal topologies do
not consider resource use on fog nodes, therefore they can never really be
achieved. However, since calculating actual ideal solutions is NP-hard, this
is the only comparison which can be practically achieved. The random
topologies are achieved by selecting the same number of fog nodes required
by each iteration of Swirly, but at random.

For low numbers of fog nodes, and thus a high |E|/|F| ratio, the output
of Swirly is very close to randomized topologies, but still below it. This
is because the algorithm has very little choice of fog nodes; most of them
have to be used due to resource constraints and only about 10% are free
to optimize the topology. This is further elaborated by Fig. 3.30. As the
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Figure 3.28: Memory required for service topologies of varying sizes. Legend num-
bers represent thousands of edge nodes.

number of available fog nodes increases, Swirly starts to generate topologies
that come closer to the ideal cases, but it eventually levels out at about
twice the average distance of the theoretical ideal topologies.

Note that the 150k series topologies, despite a 50% increase in edge nodes
over the 100k series, eventually have average distances which are only about
1-2% higher, which is negligible considering the range of the whiskers. The
average distances of Swirly topologies are twice as high as those of the ideal
cases, apart from the case of 150 fog nodes, likely indicating that they cannot
be reduced much further without removing fog node resource requirements.
A final observation concerns the maximum distance, which was set at 100.
Swirly clearly struggles to stay below it when the |E|/|F| ratio is high, and
even fails at times. However, as the number of edge nodes increases, even
the worst topologies generated by the algorithm have average distances well
below the maximum distance. On average, the random topologies have
average distances slightly above the maximum distance, and even the best
random topologies barely outperform the worst Swirly topologies.

The observed results can be explained through the model of servicing areas.
In cases where there are few fog nodes, ar will have sections beyond rp
and possibly rg for most fog nodes, which means they have to service a lot
of edge nodes that are technically too far away, as in Fig. 3.24b. As the
number of fog nodes increases, apr will grow smaller since the physical area
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remains constant, reducing average distance by removing the extremes. Fig.

3.24c is an example of this.
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Figure 3.29: Average distance for different types of service topologies. Legend
numbers represent thousands of edge nodes, min denotes theoretical
ideal service topologies, while rnd indicates service topologies where
the fog nodes are randomly chosen.

Finally, Fig. 3.30 shows the number of fog nodes used by Swirly topologies
compared to the absolute minimum of fog nodes that could be used. It is
important to note that these numbers are averaged over all topologies with
the same number of edge nodes, but with varying numbers of fog nodes. This
indicates that even if Swirly has more choice of fog nodes, it primarily tries
to fill activated fog nodes to capacity first, and uses very few to optimize
edge to fog distances when needed. On average, Swirly uses about 30% to
10% more nodes than strictly required, leaving some fog nodes with free
capacity in case the topology expands. This confirms that Swirly fulfills the
fourth requirement for a useful service scheduler.

Again, this can be explained in terms of the service area model. Swirly will
always attempt to generate a topology in which fog nodes have responsibil-
ity areas as shown in Fig. 3.24c. Once ar fits inside 7, and r is unchanged,
Swirly will not activate any more fog nodes, no matter how many are avail-
able. However, if the algorithm has more fog nodes available from the start,
it will construct slightly better service topologies by activating the ones
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closest to larger clusters of edge nodes. The rise in fog nodes seen in Fig.
3.30 is the result of rg reducing as the number of edge nodes increases, and
Swirly reacting by activating fog nodes to shrink ap.
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Figure 3.30: Number of fog nodes activated by varying number of edge nodes.

Fig. 3.31 shows how Swirly performs with physical topologies with different
organizations. The tendency of the add operation to be slower when |E|/|F)|
is higher is exaggerated when edge nodes are clustered together in remote
groups, whereas the effect is all but gone in a perfectly equal distribution.
With few available fog nodes, it takes 2.5 times as long to set up a service
topology when edge nodes are clustered as it does with an equal distribution
of edge nodes. This can be mostly attributed to the fact that the fog nodes
distribution was not modified and thus Swirly has to search longer to find
suitable fog nodes once the nearby ones are full. However, when both types
of physical topology are given an unnecessarily high number of fog nodes,
Swirly still needs about 40% more time to set up a service topology with
clustered edge nodes. This confirms, as indicated by Eq. 3.16 and 3.17,
that overall performance is significantly impacted not only by global node
density, but also by local node density.

3.4.6 Discussion

In the beginning of Section 3.4, a number of requirements are presented for a
useful large-scale fog service scheduler. It should work on a scale of hundreds
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Figure 3.31: Effect of equal distribution of edge nodes versus clustered edge nodes
in a topology with 100.000 edge nodes. In the clustered series, edge
nodes are distributed over 4 equally sized circles at the corners of the
topology.

of thousands of edge devices while being able to handle changing network
conditions on topologies. Simultaneously, it should take resource limits
of fog nodes and distance metrics between fog nodes and edge nodes into
account. Finally, it must also minimize the number of fog nodes required
for any fog service deployment required by a set of edge nodes.

Swirly is proposed as a solution to these requirements, and sections 3.4.2
and 3.4.3 show that it fulfills these requirements in theory. Different metrics
are discussed, along with their advantages and disadvantages in terms of
network overhead and reliability. The theoretical performance of Swirly is
explored, and the fog servicing area model is constructed to explain the
behaviour and capacity of fog nodes in a service topology.

To verify its performance, Swirly is evaluated in terms of memory use and
processing power. While the results mostly confirm the theoretical perfor-
mance, they showed that the algorithm tends to slow down sublinearly as
the density of edge nodes increases. This effect is explained through the
service area model. An important prediction is that for service topologies
that grow in physical size rather than density, Swirly will require constant
processing time. If edge node density does increase, fog node density and
algorithm parameters need to change as well. As discussed, the upper limit
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for the amount of nodes will most likely be dictated by memory consump-
tion.

Further evaluations show that service topologies generated by Swirly con-
verge towards a minimal average distance between edge nodes and fog nodes,
which is well below the defined maximum value the algorithm needs to con-
sider. Furthermore, the results show that average distances under Swirly
are 30% to 55% lower than for randomly selected fog nodes (e.g. the default
Kubernetes scheduler). While solutions based on heuristics (e.g. genetic al-
gorithms) are likely to generate better solutions, they will also require more
time to do so, and they do not allow for real-time updates.

The presented Swirly algorithm could easily be adapted to work with the
Kubernetes scheduler by managing fog service deployments through the
Kubernetes API. In order to redirect service requests to the correct fog
nodes, it could interact with distributed DNS plugins deployed on the clus-
ter, override them, or deploy a separate system.

When implementing Swirly for a specific orchestrator, it may be advan-
tageous to split the data structures so that topologies for several services
can be generated from the same nodes and distance data. With minimal
changes, it is possible to keep track of which services should be deployed to
any fog node, based on edge node requirements.

Swirly does not yet fully support dynamic fog node updates. When fog
nodes send updates to Swirly with their free resources, the algorithm only
uses this to determine if edge nodes can be placed on those fog nodes in
the future. Ideally, the algorithm would act on the resource updates by
detecting critically low levels of free resources on certain fog nodes and
reassigning edge nodes.

The results section shows that while Swirly scales very well in terms of pro-
cessing time, its memory requirements will quickly grow beyond the reach
of all but the most powerful servers. Since the algorithm relies on having
a distance from each edge node to each fog node, there is no easy solution
to this. However, geofencing or some type of partitioning may be able to
help. In section 3.4.2 some options were discussed to reduce the required
bandwidth of periodic node updates to Swirly. If this mechanism is changed
to cut off fog nodes altogether based on metric distance or geographical dis-
tance, memory requirements should go down drastically. Another option
is to simply split the topology into parts based on logical or geographical
regions, but this may result in a significantly worse result at the borders
between partitions.

For these reasons, it may be better to switch to a fully distributed approach,
in which the cloud algorithm is eliminated and each edge node becomes
responsible for finding its own optimal service provider.
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3.5 Summary

This chapter introduces the concepts of fog networks and edge networks,
explaining the difficulties and parameters for effective software deployment
in such networks. High-level service orchestrators are introduced, most no-
tably Kubernetes, which has become the de facto standard for functionality
and compatibility.

A novel orchestration agent, FLEDGE, is constructed specifically for low-
resource devices in the network edge. FLEDGE is designed to be fully
compatible with Kubernetes clusters, but components with low resource
requirements are used (e.g. containerd) or created from scratch if not avail-
able (e.g. container networking), while remaining compatible with OCI
standards. This orchestrator is shown to use fewer resources than Kuber-
netes and K38S. In later versions, capabilities were added to detect custom
resources and hardware (e.g. Nvidia GPUs) and run containers with Al
models, while adhering to the Kubernetes API.

Swirly, a centralized, lightweight service orchestration algorithm is pre-
sented. This algorithm is designed specifically to orchestrate services in
extremely large edge networks for optimal end-user experience, while taking
node resources, service requirements and a programmable distance metric
into account. A mathematical model is constructed to predict the perfor-
mance of Swirly in terms of node positions, densities and free resources. For
the evaluation of Swirly, the distance metric is implemented as the latency
between fog nodes and edge nodes, and the results of various scenarios are
shown to adhere to the predicted performance, with Swirly managing the
service infrastructure for up to 300.000 nodes in real-time.
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Scaling Towards Smart Cities

“This is a thousand monkeys working at a thousand typewriters. Soon,
they’ll have finished the greatest novel known to man.” - Montgomery
Burns, The Simpsons

4.1 Introduction

So far, the concept of edge networks has been explained, as well as how basic
technologies lead to the orchestrators and platforms required to flexibly and
transparently deploy software services in them. However, the edge networks
envisioned for Smart Cities may contain millions of devices, and this chapter
shows how network organization, software services, and orchestrators can
be scaled to accommodate data flows and computing requirements in such
immense networks. Note that scalability in this chapter does not mean
simply processing more data, but rather providing (improved) functionality
to ever more nodes or end-users.

Section 4.2 gives an introduction to general software scalability, and the
types of scalability that are useful for software services in edge networks. A
Kubernetes-based solution for the secure, on-demand federation of private
networks is presented in Section 4.3, showing that while it is possible and the
setup is relatively agile, it is not necessarily an ideal solution for edge devices
due to resource requirements. Section 4.4 presents SoSwirly, which focuses
on the necessity of low resource requirements while maintaining excellent
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scalability and real-time reaction to changes in network topology.

4.2 General scalability

As the chapter quote illustrates, there are several “laws” in computer science
that describe the exponential progression of various trends, from increasing
hardware capacity to the propensity of software and users to immediately
fill that capacity, and then some. This section illustrates several methods of
handling increased user demand explicitly by scaling locally or by offloading
to networked nodes, or implicitly by decentralizing and letting the software
organize itself to some degree. In all cases, the solution amounts to expand-
ing to more computational resources, but the difference is in which physical
locations they are located, and to what degree scaling can be automated.

4.2.1 Resource efficiency and local scaling

XX
XX
EXXEN
Service{o:}
\ 1 Ko
,{4\(:6 ,7?0,7
N 9/ o Bl:
) 3 =
XX
LI Serviced?
Serviceé"} ) )
Service & T (o ]
Service & Service & Service &

Figure 4.1: Vertical scaling versus horizontal scaling. By making a service (center)
more resource efficient, more instances fit on a single server (left),
while it can also be deployed on devices with fewer resources (right).

Improving the resource efficiency, or rather reducing the computational com-
plexity of a software process usually allows it to handle greater workloads.
This is mostly true for basic components, such as more efficient search al-
gorithms or optimizing data streams and storage. In some environments,
especially those with low-bandwidth IoT sensors, such improvements may
be an absolute requirement for the system to function at all. In other envir-
onments, the same improvements may either lead to increased scalability,
or be used to implement new features instead. However, there are practical
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limits to how much optimization can be done, and how much work can be
performed by a single process for any given task. In this section, local scal-
ing means creating more instances of a software process in the same physical
location in order to process more work. This can be achieved by vertical
scaling, when all instances run on the same machine and aim to utilize all
its resources, or by horizontal scaling, when processes are divided over sev-
eral machines (e.g. in a data center). The latter case can potentially result
in both better scaling and reliability, as there is no single point of failure.
Fig. 4.1 illustrates the difference between these approaches. By default, a
Kubernetes cluster will scale pods and services horizontally, deploying only
one per eligible node. The scaling limits of large Kubernetes clusters [1]
illustrate its intended strategy, aiming for hundreds of (different) pods per
node (e.g. data center server).

4.2.2 OffHoading
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Figure 4.2: The effect of offloading cloud services to the edge (left) and offloading
edge tasks to the cloud (right).

Offloading, a technique in which a device moves part of the computational
load of a task to another node, can be used for improved scalability, as well
as improving user experience, functionality and reliability. A basic example
of improved scalability through offloading is distributed computing, e.g.
Boinc, which sends workloads to a large number of managed nodes. The
central component only needs to process and verify the results, which can
be made an arbitrarily small task.

In the context of fog and edge networks, offloading can be done by edge
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devices to the cloud or vice versa, depending on the requirements of an
application. However, both methods effectively have the same result; im-
proving reliability and user experience, while enabling new functionality on
edge devices near end-users, on a scale that would be unfeasible in the alone
cloud due to costs or hardware organization. Fig. 4.2 illustrates edge of-
floading and cloud offloading; the former technique moves lightweight cloud
functionality to edge devices while keeping resource intensive functionality
in the cloud, and the latter outsources computationally intensive tasks gen-
erated by edge devices to the cloud (or fog).

While Kubernetes-based solutions can be used for offloading strategies, the
maximum cluster size of 5.000 nodes imposes a significant limitation on any
architecture that creates a Kubernetes node for each fog or edge device. For
example, FLEDGE from Chapter 3.3, which is meant to enable container-
based offloading on low-resource devices, uses Virtual Kubelets to represent
edge nodes in a Kubernetes cluster, subjecting it to this limit. Some solu-
tions, such as KubeEdge, avert this artificial limit by using custom agents
on edge nodes that do not register as an actual Kubernetes node. By not
involving Kubernetes in the edge, such orchestrators can improve scalabil-
ity, at the cost of losing some functionality the Kubernetes API provides by
default.

4.2.3 Federation
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Figure 4.3: Federating the individual clusters on the left makes communication
between nodes easier and allows for uniform, high-level resource ma-
nagement.

Federating networks or data sources into a larger whole makes their com-
bined resources available for potential improvements. Such improvements
may lead to novel applications and better user experience, but federations
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may also be explicitly used to improve scalability. The federation of net-
works or computational clusters often involves creating a management layer
on top of the existing infrastructure that can integrate member networks,
translate addresses and (network) resources transparently, and secure com-
munications between members. The effects on node networking and com-
munication are illustrated in Fig. 4.3.

Kubernetes Federations [2] are one way to overcome the intrinsic scalability
limits of Kubernetes by combining multiple clusters into a federation that
can be managed by a higher-level control plane. The federation control plane
is capable of deploying to several clusters simultaneously, and transparently
converts definitions of (custom) resources between each cluster. Apart from
scalability, this approach is also useful for combining clusters with separate
origins under a single management layer, reducing maintenance overhead.
Flexible federated Unified Service Environment (FUSE), discussed in Sec-
tion 4.3 of this chapter uses federations to enable secure, real-time, on-
demand cooperation between private networks. FUSE exploits the scale
and potential of federated private networks and their resources to enable
new applications for use by crisis centers in emergency situations.

4.2.4 Decentralization
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Figure 4.4: Decentralizing cloud services A and B required by an edge application,
by deploying them on various edge nodes as required.

Decentralization improves scalability by removing any centralized compon-
ent in a software architecture, as illustrated by Fig. 4.4. Without a cen-
tralized component or orchestrator, there is essentially no limit on the scale
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of the software being deployed, but not all software is suitable for decen-
tralization. There are two basic components required for a decentralized
architecture:

e Each node needs a pre-installed entry point that allows for its dis-
covery and activation, and optionally exposes the functionality of the
software services on it.

e A generic discovery algorithm which each node uses to discover other
devices in its neighbourhood, for various uses as required by the soft-
ware services it runs.

An optional leader election algorithm can impose some hierarchical struc-
ture on a cluster of devices, in case some devices need to act as entry points
for demanding services that can not run on every device due to resource
constraints, but these will once again introduce a pseudo-centralized com-
ponent, potentially limiting the scalability of a cluster to some degree.
Decentralization is very useful in edge networks, where consumer devices
often have pre-installed components that connect to the cloud on activa-
tion. These devices are usually constrained in functionality (e.g. light bulbs
or smart appliances) and used in small networks where their discovery is
straightforward. Therefore, an approach that eliminates the centralized
cloud components and simply sets up software services on a gateway for
local discovery and processing is desirable (e.g. auto-discovery features in
Home Assistant!). Note that communication between all separate nodes is
not always required (e.g. “islands” can be formed); it is the potential of
autonomous discovery and on-demand software deployment on nodes that
separates this approach from simple stand-alone software.

Although FLEDGE is designed to be used with a Kubernetes cluster, it
exposes pod management functionality through an orchestrator-agnostic
REST API. This API is based on Kubernetes API objects (e.g. pods, re-
sources), and can be used in decentralized architectures by bypassing the
Virtual Kubelet, providing limited container orchestration through Kuber-
netes API objects.

4.3 Secure On-Demand Federation

This section contains the edited version of the following publication: “FUSE:
A Microservice Approach to Cross-domain Federation using Docker
Containers”, T. Goethals, D. Kerkhove, L. Van Hoye, M. Sebrechts, F. De
Turck, B. Volckaert

Lhttps://www.home-assistant.io/getting-started
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published in Proceedings of the 9th International Conference on
Cloud Computing and Services Science - CLOSER, 90-99, 2019 [3]

In crisis situations, a crisis center is usually formed which monitors the sit-
uation and takes suitable actions. It is important that crisis centers are
able to quickly gather information from various sources, for example closed-
circuit television (CCTV) or positional data, to get a complete and accurate
overview of the situation. When the required information sources are owned
by different companies, it is difficult for the crisis center to gain access to
them or to interact with them uniformly. Fig. 4.5 illustrates the concept
of joining companies and a crisis center into a single virtual network, from
now on referred to as a federation. Company A joins the federation, making
its IP cameras available for use by routing their streams, and company B
allows the use of both its servers and sensory hardware. The crisis center
gathers information from the exposed devices of both companies and trans-
forms it into a dashboard for its operators. To do this, a federation service
environment is required which supports a wide range of operating systems
and devices. Since containers are widely supported and easy to deploy, a
container-based service environment is preferable.

In addition to varying devices and software platforms, companies partic-
ipating in a federation often have different network and security policies,
making it difficult to connect them quickly or to deploy software in their
networks (domains) in a uniform way. Any solution to connect multiple
domains should ensure that every company can choose exactly which re-
sources it makes available to the federation, and that all communication
between federated devices is secure. Only devices that are part of the feder-
ation must be visible from other domains, while devices from each domain
that are not part of the federation should only be reachable from federated
devices in the same domain. For example, in Fig. 4.5 the data storage
of company B can be used by federation components deployed in its own
domain, but it is unavailable to the rest of the federation. The same is true
for the non-federated device at company A, which is invisible to the devices
of company B and the crisis center.

Apart from being cross-domain and ensuring secure communications, a fed-
eration service environment focused on crisis situations must also be fast and
easy to set up. Joining a federation should only take minutes, with min-
imal intervention from company administrators. Additionally, a company
should be able to join or leave a federation at any time without destabilizing
the federation, and after leaving a federation no trace of the federation ser-
vice environment should be left on a company’s devices. Furthermore, the
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components of a federation service environment should not interfere with
other processes on a device, which means that the entire federation service
environment and all its components should be isolated as much as possible.
The challenges for building a federation service environment using contain-
ers can thus be summarized as follows:

1. Enabling and securing fast cross-domain communication while re-
stricting access to non-federated resources

2. Isolating the federation service environment from other software

3. Ensuring fast and easy deployment of the federation service environ-
ment on a large range of devices

This section presents Flexible federated Unified Service Environment (FUSE)
to tackle these challenges. FUSE provides a microservice-oriented, container-
based service environment to deploy and manage software on federated do-
mains. It is designed to quickly set up ad hoc federations with minimal
intervention, ensures secure communication between domains and prevents
non-federated devices from being visible from other domains.

Section 4.3.1 presents related work to the challenges presented in this intro-
duction, and Section 4.3.2 describes how they are solved in FUSE. Section
4.3.3 describes the test setup for a basic FUSE federation, while section 4.3.4
details the system requirements of FUSE and presents performance results
for a typical use case. Section 4.3.5 discusses the results and applications
of FUSE, and suggests some topics for future work.

4.3.1 Related work

Previous federation service environment projects have resulted in frame-
works such as Fed4Fire [4], Beacon [5] and FedUp! [6]. Fed4Fire has a
different use case from FUSE and requires the implementation of an APT to
integrate devices into a federation, which makes it inadequate for the rapid
ad hoc use cases of FUSE. BEACON is focused on cloud federation and secu-
rity as a function of cloud federation, but the use case of FUSE requires it to
work in company networks and around existing and unchangeable security
policies. FedUp! is a cloud federation framework focused on improving the
setup time for heterogenous cloud federations. Unlike previously mentioned
frameworks, FUSE operates on company networks rather than cloud infra-
structure and aims to cut down set-up time to minutes or less with minimal
intervention from system administrators, independent of target devices and
operating systems. Many tools have been created for the different aspects
of federation, for example jFed [7] (general lifecycle management), OML?

2https://wiki.confine-project.eu/oml:start
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Figure 4.5: Example federation.

(measurement and monitoring) and OpenlID [8] (trust, user authentication).
Each of these tools only solves part of the problem FUSE faces and often re-
quires the implementation of specific APIs to work with. For example jFed,
which was developed for the Fed4Fire project, provides high-level control
over federated resources, but it only works with known hardware types and
pools of pre-configured resources.

Container engines such as Docker® and rkt* have been studied and evaluated
extensively in literature [9], for example in performance reviews [10] and in
overviews of virtualization technology [11]. Similarly, the capabilities of
container orchestration tools such as Kubernetes® and its precursor Borg
are explored in various studies [12, 13]. Microservice architectures using
containers have seen a lot of attention, specifically for their use in rapid
and easy deployment of (cloud) applications [14, 15]. However, Kubernetes
by itself is insufficient to build a federation service environment when the
devices in the federation are hidden from public view by firewalls or by other
means, which is often the case in company networks.

Docker security has been thoroughly studied [16], and there are security
best practices for Kubernetes [17]. However, no work is found on securing
network traffic specifically, which is required when sending valuable data
between domains over the internet. Kubernetes is capable of forming feder-
ations of multiple Kubernetes clusters [2], but to the best of our knowledge,

Shttps://www.docker.com/
4https://coreos.com/rkt/
Shttps://kubernetes.io/
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no work has been done on a single Kubernetes cluster spanning multiple
physical domains.

Certain studies investigate the usefulness of edge computing and edge of-
floading [18, 19], two concepts whereby computing workload is moved from
cloud hardware to edge devices (or vice versa) based on hardware load and
service demand. Of particular interest are studies where virtualization is
employed for edge offloading purposes [20]. This work is closely related to
how and why federations could include edge devices to serve as information
sources or processing hardware.

Various aspects of cloud resource management have been studied [21], for
example the scalability of certain topologies. Studied topologies include a
centralized controller [22], management hierarchies [23, 24] and fully distri-
buted approaches [25].

4.3.2 Components and Architecture

Within a single domain, a federation can easily be formed using Docker con-
tainers and Kubernetes. The use of Docker containers ensures that software
can be deployed to a wide variety of target devices, as long as they support
Docker. Kubernetes is used to join and manage all the devices in the feder-
ation, and to deploy software on those devices. The only downside to this
approach is that software needs to be containerized in order to deploy it.
Kubernetes identifies the roles of specific devices in a cluster by making them
either a master or a worker node. FUSE, being built around Kubernetes,
adopts these two roles while giving them additional responsibilities. Master
nodes are the equivalent of Kubernetes masters and consist of a Kubernetes
control plane and other services required for FUSE. Worker nodes perform
the function of Kubernetes workers and generally only contain a kube-proxy
and deployed containers.

The rest of this section details how FUSE solves the problems posed in the
introduction and describes how they fit into the basic Docker and Kuber-
netes setup described here.

4.3.2.1 Cross-domain Federation and Security

Kubernetes deploys containers in groups called pods, which have their own
virtual network for communication between all devices that constitute a
cluster. This inter-pod communication is done with the aid of a Container
Network Interface (CNI) driver®, such as Flannel”, which assigns an IP ad-

6https://kubernetes.io/docs/concepts/extend-kubernetes /compute-storage-
net/network-plugins/
"https://github.com/coreos/flannel
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dress from a configurable range to every pod running on the Kubernetes
nodes under its control. However, Flannel runs into problems when a Kub-
ernetes node is unreachable, for example when it is hidden behind a firewall
or when no route to the target machine exists. Kubernetes, being primarily
built for cloud environments, has no facilities to work around this problem.
In order to enable Flannel traffic between domains, and to secure that traffic,
OpenVPN tunnels® are created between FUSE worker nodes and the master
node. Every FUSE master node runs an OpenVPN server, while all FUSE
nodes (including the master) have an OpenVPN client that connects to
the VPN server on the master node. Once a connection is established, a
FUSE node gets an IP address from a configurable range of VPN addresses.
This address is added to routing tables in FUSE services, together with the
Flannel address range of a node. After this initial setup, all of the ports
on a node’s OpenVPN interface are forwarded to Flannel. To optimize
performance, Flannel is run using the host-gw® back-end instead of vxlan,
which puts pod network packets directly on the OpenVPN interface instead
of encapsulating them. The downside of using only one OpenVPN server,
running on the master node, is that all traffic is routed via the master node,
even if it is just between worker nodes.

Apart from enabling cross-domain federation and securing communications,
FUSE also needs to ensure that non-federated devices can not be reached
from a domain other than the one they are in. This is achieved by generating
specific routing rules for each node in a federation. The concept is shown in
Fig. 4.6, where a red, green or blue box represents a company network (do-
main), yellow boxes represent the distributed parts of the Kubernetes pod
network and the gray translucent box represents the VPN network which
connects all FUSE nodes. Green arrows indicate which devices can inter-
act with each other, while red ones show which ones can not. In company
A, worker B.1 can receive camera streams from non-federated devices in
company A through its company-assigned IP address, and it is also able
to forward the stream to the crisis center over its FUSE VPN-assigned IP
address. However, non-federated devices in company A can not be reached
by any devices from either the crisis center or company B. This approach
solves the first challenge posed in the introduction.

4.3.2.2 Encapsulation

To tackle the second challenge discussed in the introduction, a solution is
needed that isolates FUSE components and minimizes the required software

8https://openvpn.net/
9https://github.com/coreos/flannel /blob/master /Documentation /backends.md
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Figure 4.6: High-level network overview of an example FUSE federation.

to deploy FUSE. All services deployed on a FUSE worker node are contain-
erized, but the components of FUSE should be isolated as well. Docker-in-
Docker (DinD?) enables the nesting of Docker environments by deploying
a containerized Docker environment within another Docker environment.
Using a DinD approach, FUSE components and services are deployed in
the outer docker environment, while the inner environment runs contain-
ers deployed on the node by Kubernetes. Thus, FUSE processes remain
isolated from other processes and a Docker installation is the only require-
ment to start a FUSE node. Additionally, FUSE can ensure that none of
its components remain on a device after it leaves the federation. However,
both FUSE components and client software must be containerized in order
for this approach to work. For OpenVPN, this means using an OpenVPN
server container on the master node and OpenVPN client sidecars [26] on
the worker nodes.

Using DinD creates an additional network layer between the host OS and the
Kubernetes node. As previously mentioned, Flannel takes care of network
traffic for the pods in the inner Docker environment, but the outer Docker
environment still needs an addressing scheme. For this layer, a static address
was chosen for each FUSE service, no matter which node it runs on, so that
a FUSE node always knows where to reach a certain service running on it.
For example, a VPN server container IP address always ends in .2, while a

LOhttps://github.com/kubernetes-sigs/kubeadm-dind-cluster
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Figure 4.7: Nodes and information flow of an example FUSE federation.

VPN client container address always ends in .3.

Fig. 4.7 shows the federation illustrated in Fig. 4.5, with the concepts
discussed in this section. Fig. 4.7 shows that every node, even the master
node, has a VPN client which is connected to the master node’s VPN server.
Company A has a single worker node, which is running multiple containers
to forward video streams to the crisis center through a single VPN client.
Company B, on the other hand, has two worker nodes, each with their own
VPN clients. Node B.1 has a single container which gives the crisis center
access to data from company B, and node B.2 gathers positional data from
various sources and makes it available to the crisis center.

4.3.2.3 Fast and Easy Deployment and Teardown

The DinD solution from the previous subsection enables easy deployment
and teardown of FUSE. Since all FUSE components are running in con-
tainers, only a single startup script is needed to deploy FUSE on a node or
to remove it from a node, with any required containers being pulled from
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Figure 4.8: Evaluation setup overview.

a remote or local Docker registry. Thus, DinD also satisfies the third re-
quirement from the introduction, but tests are needed to confirm that this
solution can run on a wide range of devices.

4.3.3 Evaluation Setup

Considering the use cases of FUSE, it is important that it can be deployed
on a large range of devices and that both master and worker nodes can
quickly join the federation when needed. These requirements are also part
of the challenges stated in the introduction, of which the first one demands
that FUSE has good network performance, and the third one demands that
FUSE is fast to set up and tear down on a wide range of devices.

To confirm that FUSE meets these requirements, measurements were per-
formed to determine memory consumption, required hard disk space, deploy
times for nodes and network performance of the federation. Being able to
run FUSE on a Raspberry Pi 3 is set as a concrete goal for low-end devices.
All tests were performed on the imec/IDLab Virtual Wall environment!!
ing bare metal servers. Special care was taken to ensure that the hardware
of all servers was identical for every test run. The hardware configuration
used for every device consists of two Intel Xeon E5620 processors clocked at
2.4 GHz, 12GiB DDR3 memory and a 16GiB partition on a 160GiB WDC
WD1600AAJS-0 hard drive.

us-

Mhttp://doc.ilabt.iminds.be/ilabt-documentation /virtualwallfacility.html
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Fig. 4.8 shows the test setup. The fuse master and worker nodes are con-
nected by a VLAN which allows setting specific amounts of packet loss and
delay. Meanwhile, a client PC is connected to the FUSE VPN and interacts
with Kubernetes services via the VPN IP address assigned to the master
node. By default, the 6.0.0.x address range is used, but it is configurable.
While the client PC is not a part of the virtual wall environment, it is
directly connected over LAN, with a ping time of only 0.24 +- 0.01ms.
The required hard disk space for a node was measured by summing the disk
usage of all the required containers and FUSE scripts. Memory consumption
was determined by comparing available memory as reported by the free
command!?, before and after deploying FUSE. Network throughput was
determined with iperf3'? in the DinD container on both FUSE nodes and
running it in both TCP and UDP mode. The resulting physical traffic is
thus TCP-on-TCP and UDP-on-TCP, respectively.

To determine how quickly FUSE can set up a federation and how quickly
worker nodes can join or leave the federation, the time command was used
to measure the duration of the relevant FUSE commands. The final results
were calculated from ten successful runs of each test.

As a test of FUSE performance in a typical use case, a container is deployed
to the worker node which simulates a camera stream by looping a 720p video
file, recorded from a security camera, to a websocket using ffmpeg'4. The
video has mostly static images with little movement and is encoded at 2
Mbits/s. The frame rate of the recording is 25 frames per second (FPS),
but the output frame rate is not limited. Because the frame rate is not
limited and the video stream consists of mostly static scenery, this is a good
test of FUSE network performance. However, in real crisis situations, there
would likely be a lot of activity on camera streams, possibly influencing
the frame rate from one moment to the next. Since this would be harder to
quantify, the FPS test is only meant as an indication of FUSE bandwidth. A
dashboard application container, consisting of a web page with a Node.js'®
back-end, is deployed on the master node. The dashboard back-end receives
the worker node’s stream via a websocket and sets up a proxy websocket,
which in turn sends the data to the web page opened by the client PC. The
proxy websocket acts as an aggregator for multiple streams, but for the tests
below only one stream was used. The web page itself plays the video using
jsmpeg'®. The results, measured in fps, were calculated by hooking into
jsmpeg’s render loop and calculating the average and standard deviation

2http:/ /www.linfo.org/free.html
B3https://iperf.fr /iperf-download.php
Mhttps://www.ffmpeg.org/
LShttps://nodejs.org/en/
L6https://github.com/phoboslab/jsmpeg
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Table 4.1: FUSE master node create and leave times.

Create | Leave
Min time (s) 356 7.87
Median time (s) 374 7.90
Max time (s) 381 8.90

over 70 seconds of streamed video.

4.3.4 Results
4.3.4.1 Hardware Requirements

Worker nodes require 529 MiB of disk space and are small enough that they
can be deployed on a Raspberry Pi 3 or similar devices. However, in order to
have enough room to deploy software, several gigabytes of free space would
be recommended. Master nodes require 1576 MiB of disk space, which
is about three times as much as a worker node. This makes sense, since
they need to deploy all FUSE components, a VPN server and a Kubernetes
master. Considering their role as communications and management hubs
for the federation, master nodes will usually be deployed on hardware with
orders of magnitude more free space than the required amount, so this
should not be a problem.

Concerning memory consumption, a worker node could easily be deployed
on a Raspberry Pi 3, since it needs only about 228 MiB free memory. Master
nodes need around 851 MiB free memory, which is almost four times more
than a worker node. Again, this is due to having to run Kubernetes and all
FUSE services. It would be very hard to deploy a master node on hardware
with 1 GiB RAM, even with an extremely slimmed down host OS.

4.3.4.2 Federation Setup and Teardown

Since master nodes can be started up front and kept ready-to-go, their
start times are less important than those of worker nodes. They have no
interaction with any other devices while deploying, so no special cases need
to be examined.

Table 4.1 shows the minimum, median and maximum observed times it
takes to set up a FUSE master node or tear it down. A master node takes
only about 6 to 6.5 minutes to set up from scratch, while it can be removed
from a device in about 8 to 9 seconds.

For worker nodes, the quality of the network connection to the master node
is important for federation setup and tear down. To examine the impact
of the connection quality, a range of combinations of communication delay
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and packet loss were simulated. Delay ranges from Oms to 400ms in 100ms
steps, while packet loss ranges from 0% to 20% in 5% steps.

Considering all the network layers in the FUSE architecture, it is hard to
model performance using existing research. FUSE traffic consists of TCP
or UDP packets from containers wrapped in TCP packets by OpenVPN. A
worker attempting to join a federation performs a number of requests. The
execution time of a single request over TCP is

wy(dy + dy)

top:(w5+ 1—1

) (4.1)

where [ is packet loss, d, is network delay, ds is delay resulting from han-
dling network operations in software, wy is work not influenced by network
activity (for example, parsing JSON response data), and w, represents work
that depends on network performance.

However, this only works for a single request. A federation operation, for
example joining a federation, requires several calls to web services. This
introduces another factor caused by service call timeouts, which in turn can
cause a retry of the entire operation:

t
teotal = oL 4.2
T (1~ max(min( =% 1),0))(1 - 1) 2

Where d; is the delay threshold below which no operation should time out
and d. is the critical delay threshold above which every operation results
in a timeout. For this equation, delay is in the denominator because its
effect is no longer linear. The constants in Eq. 4.1 and Eq. 4.2 have to be
determined empirically and are different for every hardware setup, but with
the results in Fig. 4.9 the most important effects on the test setup can be
identified.

Fig. 4.9 shows the time it takes to join a federation for several combinations
of delay and packet loss. In case of smooth network performance, meaning
less than 100ms delay or less than 10% packet loss, joining a federation only
takes as much as 1 to 4 minutes. As the model predicts, packet loss has
a strong hyperbolic effect on the time it takes to join a federation, but it
is still doable even with high rates of packet loss and high delay. Delay
has a mostly linear effect, as shown by Eq. 4.1. Only for combinations of
high delay and a lot of packet loss does it turn to a slight hyperbolic effect,
explained by its term in Eq. 4.2. Further modelling is unreliable because
of the large error margins on these data points. Eventually, around 20%
packet loss and 400ms delay joining becomes so slow and erratic that it is
unlikely to still be practical. The error margin on this data point shows
that join attempts may take anywhere from 6 to 14 minutes.
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Figure 4.9: Federation join time for increasing delay at several percentages of
packet loss.

4.3.4.3 FUSE Network Performance

Fig. 4.10 shows the communication speed between a FUSE master node
and a worker node with packet loss and delay set to zero. While TCP
performance is only 109 Mbits/s, the test setup has no support for hardware
encryption using the AES-NI instruction set, which would give much better
results [27]. UDP performance is very low with only 11.7 Mbits/s, meaning
any FUSE traffic should be kept to TCP as much as possible. During the
tests, OpenVPN used between 60% and 100% of a single CPU core. Since
OpenVPN runs on a single thread, these results are about as good as they
can get without optimizations. This means that communication alone takes
a large part of the total processing power of a node.

For the video streaming test, the delay between the FUSE nodes was set
from 0 to 100ms in steps of 25ms, while the effect of packet loss was examined
for 0%, 0.2%, 1% and 2%. Because the software involved in this test does
not use buffering, the results are a good reflection of network performance.

Since a TCP video stream is one-way traffic that requires no response at
the application level, a different model is used to predict performance than
for joining a federation. Only packets that do not make it on the first send
incur a penalty on the rendering process. Uniform delay has no effect on the
quality of video, merely delaying the rendering of each frame by the same
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amount of time, resulting in Eq. 4.3 for the time to transmit and render
a frame. In this case n is the number of packets that need to be sent for
a frame, d is the network delay, and [ is the packet loss. dj is an intrinsic
delay that occurs from endpoint handling of network traffic and the speed
limit of electronic communication.

(d+ dp)in

tr=d d+ dy)l* = don —
f 0”+Zn( +do) on 1

i=1

(4.3)

For a dy that is sufficiently small compared to the delay caused by network
problems and bad connections, Eq. 4.3 can be reduced to Eq. 4.4 to estimate
FPS for video throughput. Since n can not be reasonably estimated for any
frame, it is replaced by tp, which represents the time it takes to transmit
an average frame under ideal circumstances (no packet loss, only dg delay).

f=tm ot

ty  to(l— %)

ydo < d (4.4)

Fig. 4.11 shows the results of the video throughput test, for which 24 FPS
is set as the minimum acceptable framerate. Despite the static bit rate
of the source video, the standard deviation at every data point is nearly
always over 20% of the average at that point, showing that there is a large
fluctuation in performance. During testing, it was verified that this is not a
side effect of the rendering process of jsmpeg, but because jsmpeg actually
receives variable amounts of data each second. This variation is directly
related to FPS variation.

From the simplified model, performance for 0% packet loss would be ex-
pected to remain level instead of slowly declining, but this is the result of
a tiny amount of packet loss intrinsic in all systems. Even for as little as
0.05% packet loss, Eq. 4.4 shows a significant decline, which seems locally
linear rather than hyperbolic for the examined range of delay. It was veri-
fied with tcpdump'” and Wireshark'® that a minute amount of packet loss
was indeed present.

Similarly, the data points for Oms delay for the different levels of packet loss
do not all have the same value because of the intrinsic delay dy. Since in
this case the conditions for Eq. 4.4 are violated, it is better to go with Eq.
4.3.

The rest of the chart follows the general shape predicted by the model. A
roughly hyperbolic shape, with an increase in packet loss causing a faster
degradation than an increase in delay. The general result is that perfor-
mance quickly drops to a useless level, unless special care is taken to avoid

Thttp:/ /www.tcpdump.org/
Bhttps://www.wireshark.org/
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noticeable packet loss. While 0.2% loss combined with 100ms delay still
results in a useful stream at 29fps, as little as 1% loss combined with 50ms
delay results in only 17fps. The only other good results were all obtained
at Oms delay (0.25ms counting dy), but those are unrealistic in practical
federations, even if the nodes are very close to each other geographically.

UDP 11.74 =

TCP F108.75 |-

Throughput (Mbits/s)

Figure 4.10: FUSE network throughput for UDP and TCP network traffic.

4.3.5 Discussion

A containerized approach makes FUSE easy to deploy on any device that
supports Docker. Additionally, leveraging Kubernetes makes sure that con-
tainerized software can be deployed using familiar and reliable methods.
However, FUSE can only be deployed on devices that support Docker, and
existing software has to be containerized in order to be deployed in a FUSE
federation.

The introduction puts forth three challenges in creating a federation service
environment for crisis situations:

1. Enabling and securing fast cross-domain communication while re-
stricting access to non-federated resources

2. Isolating the federation service environment from other software

3. Ensuring fast and easy deployment of the federation service environ-
ment on a large range of devices

It is shown that the FUSE architecture solves these challenges by using
OpenVPN to enable and secure cross-domain traffic, and by using DinD
to isolate FUSE from other software running on a device and simplifying
deployment.
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Figure 4.11: 720p video streaming performance between FUSE nodes for increas-
ing delay at several levels of packet loss.

Tests are performed to empirically confirm the parts of the challenges related
to FUSE performance and resource consumption.

The memory consumption and required disk space tests confirm that FUSE
can be deployed on a wide range of devices, according to the third challenge.
However, master nodes have to process a lot of OpenVPN traffic, which
is CPU intensive, so devices with at least 2 available cores and hardware
encryption such as AES-NI [28] are recommended.

Starting a FUSE federation is shown to be fast, taking only 5 to 6 minutes.
The time to join a federation is dependent on network quality, but barring
extremely hostile network conditions, a worker node should take about 1
to 4 minutes to join a federation. These numbers show that in most cir-
cumstances, it is possible to set up an entire federation in 10 minutes or
less, which is enough to complete the third challenge. Because the resource
requirements for master nodes are relatively low and every minute counts
in crisis situations, it could be a good idea to keep a master node running
at all times. This approach would cut response time to just 1 to 4 minutes
when a situation arises.

The network performance of a FUSE federation is explored by both measur-
ing pure throughput and by using a video streaming setup which mimics a
client PC viewing a security camera stream. The results of the throughput
test suggest that most of the performance limitations are due to OpenVPN.
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For TCP traffic the network speed is acceptable and saturates a 100 Mbit/s
network. UDP is almost 10 times slower, so applications running on a
FUSE federation should consider using TCP. Importantly, since OpenVPN
performance is CPU bound, not connection bound, this bandwidth has to
be shared by all worker nodes connected to the same master, which needs
to be taken into account when setting up a federation.

The video streaming test shows the performance of streaming services un-
der a variety of network conditions. If 24 FPS is taken as a minimum
requirement for a smooth 720p video stream, performance is good enough
to handle 17 video streams simultaneously under ideal circumstances, which
is sufficient for the first challenge. However, performance drops quickly with
increasing packet loss. Around 1% packet loss and 50ms delay, UDP is likely
a better choice, since packet loss will only result in image corruption, but
no frame rate decrease. A simple mathematical model has been worked out
to predict FUSE TCP performance, which could help evaluate the choice
for either TCP or UDP under a given set of circumstances.

In future work, OpenVPN performance could likely be improved [27], espe-
cially since the test results show that FUSE throughput only reaches about
10% of the capacity of the gigabit line used for the tests. While improv-
ing OpenVPN performance may not help for scenarios with low network
quality, it would at least increase throughput under optimal network condi-
tions, reduce CPU load, or make larger worker pools practical. Alternatives
to OpenVPN, such as Wireguard'?, are also considered.

A high availability mechanism should also be implemented in the future. In
the test setup, only one master node is used, but a failure of the master node
would disrupt the entire federation. Some of the challenges are minimizing
the number of hops for pod traffic between master nodes, handling the
independent VPN networks started by each master, keeping configuration
information up to date over the entire high availability network and making
sure nodes get delegated to a new master when one of them fails.

The creation of multiple master nodes can also reduce OpenVPN CPU load
compared to a single master, and optimize traffic flow. In a single master
setup, there is not only a centralized controller for the federation, but since
all traffic between worker nodes has to go via the master node’s VPN server,
it flows according to a star topology. In a high availability setup, each master
node would have its own star topology formed by its set of worker nodes.
Only when worker nodes with different masters need to communicate does
any traffic flow between the master nodes, and this sort of traffic could be
minimized by planning or reassigning worker nodes to a different master.
Kubernetes pods can be moved from one node to another to ensure the load

Dhttps://www.wireguard.com/
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is distributed across all nodes in the cluster. For stateless microservices this
poses no problem but services such as databases or queues require backing
storage that needs to persist across the same instances regardless where
they run. This storage is typically configured in advance and a Kubernetes
volume plugin is deployed to allow for dynamic volume provisioning. In the
context of FUSE, further research can be done to automate this deployment
and dynamically increase the storage through simple node labelling.

4.4 Self Organizing Edge

This section contains the edited version of the following publication: “Self-
organizing Fog Support Services for Responsive Edge Comput-
ing”, T. Goethals, F. De Turck, B. Volckaert

published in Journal of Network and Systems Management volume
29, Article number: 16 (2021) [29]

This section expands on the concept of Swirly from Chapter 3.4 through
decentralization and self-organization. First, the motivation for a decen-
tralized orchestrator is outlined, after which an alternate version of Swirly
is constructed that is better suited for scalability in the network edge.

To reiterate, unlike cloud networks, fog and edge networks are very volatile,
with constantly changing network conditions and topologies. Not only can
devices suddenly appear or disappear in the network, but the physical lo-
cation of edge nodes such as vehicles and mobile phones can also change
rapidly.

Cloud data centers generally contain powerful servers that can run many
service instances, and services can be migrated between machines with little
penalty. However, in the fog, hardware is often less powerful and it is
harder to migrate services due to the physical distances and resource limits
involved. Therefore, it is important to take these constraints into account.
As a corollary, scaling in the cloud is very geographically constrained, while
the nature of the fog is more suited to scaling across many devices over a
wide geographical area, placing service instances close to where they are
required to minimize latency.

Finally, because cloud servers are clustered in data centers, service schedul-
ing can usually be handled by a single, centralized scheduler instance. Even
distributed cloud data centers are usually few in number and connected by
high-bandwidth connections, so that a single scheduler instance in any of
them can gather all the required information to make scheduling decisions.
However, the fog and edge contain orders of magnitude more devices than
clouds, connected at lower bandwidths. Combined with the volatility of the
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fog, this makes gathering all the required data for scheduling decisions on a
single node unrealistic; a fully decentralized solution is more suitable. This
is illustrated by the evaluation of Swirly in Section 3.4.5, in which the mem-
ory requirements and network traffic at the node running the algorithm are
shown to be limiting factors of its scalability.

While a decentralized solution can address the issues listed so far, it can
also pose new problems. Most importantly, the resource use on fog nodes
and edge nodes will be higher than with a centralized algorithm, because
each node needs to perform part of the network communication and calcu-
lation that would otherwise be done in the cloud. Additionally, since there
is no longer any static, single controlling entity (e.g. the cloud), global ac-
tions such as creating an overview of all running nodes or forcefully pushing
updates will be more difficult.

As an example application, when using roadside units (fog nodes) near
highways the algorithm makes it possible for services to “follow” clusters
of cars (edge devices) by allowing edge nodes to constantly switch to the
nearest units for service calls, and increasing the number of services in busy
areas. Because of the decentralized approach, this can be done locally and
on a large scale, without the need for cloud processing and the accompanying
additional latency.

This section presents a decentralized approach to serverless fog and edge
service scheduling, named SoSwirly (Self-organizing Swirly), which is based
on five requirements:

e Req. 1 Handle changing topologies and moving nodes in near real-
time

e Req. 2 Take fog node locations and resource limits into account

e Req. 3 Balance the number of service instances versus QoS require-
ments, such as minimal overall latency

e Req. 4 Scale to hundreds of thousands of edge devices through a
self-organizing, decentralized approach

e Req. 5 Work on a wide range of fog and edge devices by minimizing
resource requirements

While Req. 1 through Req. 3 are similar to the requirements stated for the
original Swirly, Req. 4 and Req. 5 are new, and necessary for a successful
decentralized approach.

First, a theoretical model is constructed of fog nodes as service providers,
taking into account these requirements, leading to an implementation of
SoSwirly, and both a theoretical and empirical analysis of its performance.
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The conclusions show that SoSwirly is highly scalable under the right con-
ditions, and that these conditions can be achieved in a variety of situations
by tuning configuration parameters depending on fog node density.
Afterwards, the rest of this chapter details the implementation of a distri-
buted approach of Swirly, while fulfilling the requirements stated above.
The core tenet of this approach is that each node is responsible for mapping
only an arbitrarily small part of the global topology, its neighbourhood.
This concept of neighbourhoods can, with the right configuration parame-
ters, ensure that nodes only have to communicate with a constant number of
neighbours, no matter how large the node topology grows. Additionally, the
traditional planning hierarchy is inverted by making edge nodes responsible
for deciding which fog nodes they want to address for a specific service.
As in Chapter 3.4, a fog network (including the edge) with frequent changes
to its network and nodes will be referred to as a swirl. A fog node is
synonymous with a service provider and similarly, a service client or edge
node client indicate an edge node. Finally, an edge service refers to a process
of any kind that is dependent on the fog and runs on an edge device.

The rest of this Chapter is organized as follows: Section 4.4.1 presents ex-
isting research related to the topic, while in Section 4.4.2 a mathematical
model of fog nodes and fog networks is constructed as a basis for the im-
plementation and evaluation of the solution. The solution itself and its
implementation details are presented in Section 4.4.3, while Section 4.4.4
explores the theoretical properties of the implementation. The evaluation
methodology for the solution in a number of scenarios is described in Section
4.4.5, the results of which are presented in Section 4.4.6. Finally, Section
4.4.7 discusses a number of topics for future work, and summarizes how the
solution and the evaluation results meet the proposed requirements.

4.4.1 Related Work

A literature review by Maenhaut, Volckaert, Ongenae and De Turck [30]
discusses challenges related to service orchestration, resource management
and pricing in (distributed) clouds and the fog. An overview of the chal-
lenges in fog and edge computing is presented by Avasalcai, Murturi and
Dustdar [31]. Their study focuses specifically on challenges in resource ma-
nagement, security and network management, with regards to the volatile
network conditions and low-power devices often found at the network edge.
To support the scaling of services in the fog and edge, several studies have
focused on extending the concept of serverless computing to these areas.
For example, the Fog Functions presented by Cheng, Fuerst, Solmaz and
Sanada [32] are compact and scalable pieces of functionality, created thro-
ugh a custom programming model which ensures independency of the device
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and platform they are run on. Gadepalli, Peach, Cherkasova, Aitken and
Parmer [33] argue that current virtualization technologies are too demand-
ing and slow for responsive services on extremely low-power devices. They
present aWsm, a serverless framework based on WebAssembly with startup
times measured in microseconds. Although the implementation of SoSwirly
presented in this section is focused on containers, the design allows for the
adoption of these or similar virtualization technologies.

A recent literature review of container orchestration in fog networks [34]
shows that the most popular research directions in this area involve Docker
containers, scaling, QoS, and resource management. The approach pre-
sented in this section is in line with these facets, although the design of
SoSwirly allows for flexible QoS requirements and the use of other forms of
software deployment (e.g. Virtual Machines, unikernels [35]).

A study by Guerrero, Lera and Juiz [36] compares several multi-objective
evolutionary algorithms in the context of fog service placement. Although
these algorithms can take a large number of parameters into account and
produce near-optimal results, they are by necessity used in centralized
schedulers and for small-scale scheduling due to their speed. In contrast,
SoSwirly aims to optimize only distance and number of services, but at a
much larger scale. Similarly, a study by Hosseinzadeh et al. [37] provides
an overview of various multi-objective optimization algorithms in service
networks, but in the context of selecting optimal services rather than de-
ploying them in optimal locations. Stévant, Pazat and Blanc [38] propose
a framework which monitors and optimizes service placement to minimize
QoS requirements, represented by response time in their evaluation. The
difference with the approach in this section is that SoSwirly attempts to
balance QoS requirements versus total used resources. Although the de-
fault Kubernetes [39] scheduler is centralized, an alternative scheduler by
Casquero et al. [40] allows for distributed fog scheduling in Kubernetes.
However, this approach is aimed at industrial automation, and the work
in this section aims to go beyond the scale limits of Kubernetes [1]. Con-
sidering the cloud-oriented nature of Kubernetes, and its limits in terms of
deployable pods, this work is not aimed at Kubernetes clusters, but instead
uses small parts of its API where useful in communication between nodes.
While the proposed solution in this manuscript primarily relies on decen-
tralization to avoid network traffic bottlenecks caused by monitoring nodes
from a central location, the work by Vaton et al. [41] models network delay
with hidden Markov models to greatly reduce the amount of monitoring
traffic at the cost of processing power. However, the decentralized nature of
SoSwirly allows tuning each node separately should they encounter network
bottlenecks, and since it is aimed at low-resource devices with little process-
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ing power to spare, advanced traffic reduction methods are not integrated.
A closely related framework proposed by Santos, Wauters, Volckaert and
De Turck [42] is aimed at optimizing latency in 5G networks and takes an
application-oriented approach, placing the constituent microservices of an
application on specific fog nodes to minimize latency and traffic overhead.
Unlike their work, the solution in this section is agnostic of application archi-
tecture and transitive dependencies; a similar effect emerges from placing
each service as close as possible to its direct dependencies, which can be
achieved by carefully designing the distance metric for SoSwirly.
Compared to the aforementioned studies, the novel aspect of SoSwirly is that
it is fully decentralized and works in near real-time, reacting to topology
changes in milliseconds to seconds, depending on network latencies. It com-
bines most of the discussed features by taking into account node resources,
node mobility, service latency, and the number of service instances, while
allowing for specific implementations using additional parameters. Mean-
while, the framework itself uses minimal resources and is highly scalable,
because it only considers the status of nearby nodes.

Table 4.2: Definitions of symbols used in Section 4.4.2.

| Symbol Definition ‘

Ag the service area of a fog node based on its resources, see C,
Ap area closer to a fog node than to any other fog node

Ap area within D,,, metric distance

A generic area, usually the entire service topology

rE radius of Ag, or distance to its border in a specific direction
TR distance(s) to the border of Ap

rp radius of Ap, or distance to its border in a specific direction

pE(x,y) edge node density at position x, y
pr(x,y) fog node density at position x, y

C, number of service clients supported by a fog node, based
on its resources

Cp scale factor between physical distance and metric distance

Cy expected fog node density, used in areas with low pp

D,, maximum metric distance value

D(pl,p2) | metric distance between pl and p2

Apz the geographical area represented by a single pixel

4.4.2 Fog Node Model

In this section, a theoretical model of fog nodes and fog networks first pre-
sented in Chapter 3.4 is extended, which helps to meet the requirements
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(b) Example of two edge nodes at
different physical distances from a
fog node, but with the same met-

(a) Idealized responsibility areas of a ric distance, resulting in a range
fog node. of values for rp.

Figure 4.12: The different responsibility areas of a fog node.

put forward in Section 4.4 that are related to the fog network topology,
specifically Req. 1 through Req. 4. Table 4.2 summarizes the symbols
used in this section that are not explicitly defined through equations.

As per Req. 3, SoSwirly should support QoS requirements. As in Swirly,
this is achieved through a distance metric, combined with a maximum dis-
tance, to ensure that edge nodes are always serviced by the “closest” avail-
able fog node.

Fig. 4.12 reiterates the concept of fog node service areas, idealized as circles:

e Ap, defined by radius rg, is the capacity area of a fog node, represent-
ing the physical area it can service based on the capacity C, imposed
by its resources.

e Ap, with radius rp, is the responsibility area of a fog node. All edge
nodes within this area should be serviced by a fog node because they
are closest to that fog node than any other.

e Ap, with radius rp, is the proximity area of a fog node. All edge
nodes within this area are close enough that they can be serviced by
the fog node without going over the maximum distance metric value.

Starting from the definitions used by Swirly, these can be naively calculated
using

(4.5)
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rp(0) =r,¥r,0 : D(r,0) = D, (4.7)

Where pr and pg represent the density of fog and edge nodes respectively,
and D,, is the maximum distance value between a fog node and any edge
node it services. D(r,0) is a function that returns the metric distance of the
point 7, #. Note that the distance function can return multiple values for rp
for any 6, as shown in Fig. 4.12b. In this example, el and e2 lie in the same
direction 0, but with a different . However, the metric distance for both is
equal, so 7p(6) returns a range of values. Therefore, for Ap to be an actual
circle, its radius must be the maximum value of rp(#). In cases where the
distance metric preserves the relative ordering between all points, rp can
be reduced to

rp = Cpo (48)

In which C), is a constant that describes how the distance metric scales
with the physical distance between points. The definition of rg naively as-
sumes a constant edge node density. The original Swirly assumed a metric
with a coordinate system that can be simulated by polar coordinates. The
approach can be generalized by assuming the distance metric uses a coor-
dinate system (z’,y’), giving a more accurate value for rg is by solving the
following equation [43] for the area A, which can be transformed back to
Cartesian coordinates:

// J(@' Y )pe'y) - dz' - dy = C. (4.9)
A

While the Jacobian [44] J(z’,y) makes this equation cumbersome, reintro-
ducing the assumption that the distance metric can be calculated as polar
coordinates gives:

27
// rpg(r,0)-dr-df = C, (4.10)
0

Which, since the distance function can not calculate 6, results in the sim-
plified version from Chapter 3.4:

/27rrpE(r) ~dr =C. (4.11)

In all cases, for a uniform density pg these equations reduce to Eq. 4.6

2m
// rpg-dr-df =C. (4.12)
0

20 =27
0
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Ce
TPE

T =

(4.14)

Note that while Eq. 4.6 assumed the use of the Euclidean metric, this ver-
sion is based on the distance metric expressed as polar coordinates. There-
fore, the resulting » must be converted from metric distance to geographical
distance before using it with Cartesian coordinates (e.g. a geographical
map). As described in the original approach, these definitions lead to some
conditions for a well-organized service topology, which can be summarized
as

rp <rp <TE (4.15)

While this equation has its own merit in predicting efficient fog node oper-
ation given sufficient information, these relations can be used to determine
requirements for the fog node density pr. For the moment, rp is assumed
to be calculated as in Eq. 4.8. Then, since

C
<min | CpyDp, = 4.16
— < ( g w> (1.16)
there are two conditions for pp, namely
1 <C,D,, = > 1 (4.17)
Tor L PE = ngDfn ’
L N (4.18)
PR TPE Ce

As a result, the following equation shows how to calculate minimal fog
node density at any location based on edge node density and the maximum
distance:

1 PE
PF > mazx (ﬂ_c?rD?n, C'S> (419)

At this point C), can be substituted with a more advanced relation between
geographic distance and metric distance. The metric pressure P represents
the inverse concept of C),, indicating the inflation of metric distance with
respect to geographical distance at any point, calculated over the shape of
the topology. Assuming a point pl with Cartesian coordinates, and that
D(pl, p2) gives the metric distance between pl and any other point p2, the
metric pressure P can be defined at pl as

fA D(plp2) 44

[lp1,p2|| (420)

P(p1) 1
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Where p2 represents each point in the area A of the Swirl and ||p1, p2|| is
the Euclidean distance between pl and p2. In practice, P will either be
known from a few measurements or will not need to be calculated, reducing
the computational load this would represent.

Using this definition, it follows that P can replace 1/C), in Eq. 4.19, since
a smaller C), inflates D(pl,p2) and thus P. As a result, equations can
be constructed to calculate the minimal fog node density pr(z,y) at any
location in a Swirl, and the minimum number of fog nodes Ny, required
to service a given area of a Swirl, using any distance metric:

P(z,y)* pr(r,y)
> )
pr(z,y) > mazx ( D2’ C. (4.21)
P(z,y)* pr(r,y)
> : )
Nfog_/Amax< D2 C. dA (4.22)

4.4.2.1 Fog Neighbourhood Discovery

The maximum distance value D,, in Eq. 4.8 represents the maximum dis-
tance between edge nodes and their service providers. However, fog nodes
also interact with each other in the form of a neighbourhood discovery pro-
cess, which is explained in Section 4.4.3.1. Ideally, the maximum distance
used in this discovery process would be a single value, for example D,,, used
by edge nodes. However, Fig. 4.13 illustrates how this can lead to problems.
While f3 is in the green circle, and thus should clearly be known to f1, f2
is too far from f1 for f3 to be discovered through it.

f2: (x2,y2)

Figure 4.13: Potential problem with fog discovery when using a constant maxi-
mum distance for discovery. Fog node f3, despite being in the green
circle representing the neighbourhood of f1, will not be discovered
because the connecting node 2 is too far away from fl. Ap, with
radius rp, is drawn as a circle for illustrative purposes.
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This problem can be solved if, similar to how minimum fog node density is
calculated, the maximum discovery distance D,,; depends on both maxi-
mum metric distance and local fog node density, so that

Dyp(z,y) = max <Dm, Y% ) (4.23)
mpr(z,y)

Where C is a constant representing the expected fog node density. The
higher this number is, the more connected the fog network will be, but
traffic and resource use will increase with it. Note that this does not solve
the problem of f1 being unable to discover f2, but it will enable f2 to
discover f1. Eventually, f3 will find f1 through f2, at which point f1 will
discover its remaining neighbours.
There is a possible solution for D,, which would allow the use of a single
value while discovering all required nodes, if instead of pr(x,y) the min-
imum value of pr over the entire topology is used. However, this would
result in an unnecessarily large neighbourhood for most fog nodes, and a
lot of traffic overhead.

4.4.2.2 Distance Metric Coordinates

The native coordinate system of the distance metric may contain any num-
ber of dimensions with discontinuous values (e.g. binary flags or enum
values). However, an explicit coordinate transformation with respect to a
fully differentiable manifold [45] is required to properly calculate positions
and relative distances between fog nodes and edge nodes in terms of the
distance metric. Additionally, while the Euclidean metric is (implicitly)
used in all equations so far, with the distance metric used as a function, the
distance metric should instead be treated as a metric, but one which is only
defined on its native coordinate system. This subsection shows how the dis-
tance metric values determined by nodes can be used to construct surrogate
distance metric coordinates for nodes in Cartesian and polar coordinates.

In terms of polar coordinates, the metric distance d is assumed to scale
with r, which is also the assumption in C,, in Eq. 4.8. Examples of metrics
with this property are geographical distance between nodes and latency
under normal circumstances, within a reasonable margin of error. This
type of distance metric transforms the topology shown in Fig. 4.14a into
distances and node positions similar to those shown in Fig. 4.14b. However,
in other cases the distance metric will be more complex and it will not
scale equally with Cartesian or polar coordinates in every dimension, nor
at every location, as shown in Fig. 4.14c. Moreover, two physically very
different nodes may map onto the same location in terms of distance metric
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Qp2 4

" lipLp2ll =5 Lfa=10
@ @ip100)
(a) Physical topology (b) Assumed position of p2
p2(10,11/8)
d = 1Q.- Q
Ovio0

(c) Real position of p2

Figure 4.14: Example of erroneous assumption of distance metric coordinates from
known positions and measured metric values between pl and p2. 6
is not known from measurements, but has to be assumed.

coordinates.

This presents problems for advanced functionality where the coordinates of
the nodes are required, e.g. predicting node movement and trajectory in
terms of the distance metric. However, if the distance metric preserves rela-
tive Euclidean distances, accurate surrogate coordinates can be constructed
for each node, similar to Fig. 4.14b, by assuming that r is the measured
distance d and @ is the same as the angle between both nodes in polar
coordinates.

When constructing surrogate coordinates from the point of view of a point
pl, it can be placed at the origin with coordinates (0,0). The surrogate
coordinates of a point p2 : (r,0) relative to pl are thus defined in polar
coordinates as

p2' = (D(p1,p2),9) (4.24)
In Cartesian coordinates, the metric ratio s can be used to scale the relative
distance between pl and p2:

5= DLp2) (4.25)

|Ip1, p2]|
The entire issue is circumvented in all equations so far by using the ge-
ographical (Cartesian) coordinates of nodes, either because it makes no
difference or because the potential error is very small. For example in Eq.
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4.21 pg(z,y) is used instead of p(r,8), but this makes no difference since
it merely describes the local node density of an infinitesimal region, with-
out respect to another point. Other concepts, such as the metric pressure
P, were specifically designed to avoid having to use the metric coordinate
system. However, these surrogate coordinates may be useful in future work.

4.4.2.3 Fog Hardware Placement

While Eq. 4.21 allows for the calculation of the minimum required fog node
density at any location, it is very general and difficult to implement. The
evaluations in this section use a more straightforward distance metric so
that 1/C), can be used rather than P(x,y). Furthermore, it is more useful
to have a version of the equations that can handle discrete regions with
piecewise constant densities (e.g. pixels).

The discrete version of Eq. 4.21 using a straightforward distance metric is

1 pE(iE, y)AI)x) (4.26)

pF(Ivy) 2 max (WCP?D?,L7 Ce

in which A, represents the surface area of a single region. In the case of
pixels, this is a constant and the following can be substituted

A 1
Co="2pp=—1 4.27
c.'"~ xczpg, (4.27)
which are both constant, resulting in a short version of Eq. 4.26
pr(z,y) > max(pp, pr(x,y)Ca) (4.28)

This equation can be used to determine the minimum total number of fog
nodes over the entire topology, giving the discrete version of Eq. 4.22

X v
Niog > ZZmam(pP,pE(x,y)C’a) (4.29)

Note that both Eq. 4.28 and 4.29 are only valid if the distance metric
preserves relative distances so that the quotient of the metric distance and
physical distance can be represented by C,,, and furthermore that all discrete
regions are the same size, in which case A, is constant. In other cases, the
equations will be similar, but more terms will have to be calculated for each
region.

4.4.3 Fog Service Provisioning

SoSwirly, the solution presented in this section, requires a number of logical
components to fulfil the requirements listed in Section 4.3. A decentralized
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node discovery algorithm is required to keep track of changing topologies
on a large scale, as per Req. 1 and Req. 4. Similarly, Req. 2 and Req.
& must both be taken into account in a scheduler component, which finds
the best fog node to use as a service provider. Upon finding a suitable node,
or when the service provider changes, Req. 1 requires a component that
can forward any requests to the correct node. This section describes how
these logical components are implemented by software components, with
Req. 5 implicitly present in the design through the choice of Golang and
lightweight dependencies, e.g. using a straightforward DNS solution, using
FLEDGE agents instead of Kubelets. FLEDGE, introduced in Chapter 3.3,
is a lightweight container orchestrator for edge nodes, similar to K3s [46],
but fully compatible with Kubernetes master nodes.

The chosen distance metric is implemented as a custom ping web service
that determines latency. This choice of metric, which is implicitly assumed
to scale with geographical distance, allows the basic properties of SoSwirly
to be explained intuitively, by relying on the reduced forms of the equations
presented in Section 4.4.2.

The logical components are divided among two separate services, which
are implemented in Golang for the evaluations in Section 4.4.5. The fog
node service, deployed on all fog nodes, is responsible for managing fog
services based on edge node requests and for discovering other fog nodes in
its neighbourhood. The edge node service is deployed on all edge nodes and
monitors which services on an edge node require fog support services. When
required, these support services are requested from the nearest (active) fog
node, which is found by traversing fog node neighbourhoods discovered by
the fog node service.

Central to both services is the algorithm for node discovery, which fog nodes
use to discover their neighbourhoods and edge nodes use to find an optimal
service provider.

In principle, the edge node service is not limited to running on edge nodes.
It can also be deployed on fog nodes, allowing a tiered fog architecture in
which each layer detects the services running on its devices and attempts
to deploy the required support services in a higher layer.

4.4.3.1 Neighbourhood Discovery

Algorithms 4 and 5 presents the general outline of the algorithm used to
discover nearby fog nodes from any node.

At the start of each discovery round, a queue Npecr iS created from the
elements of the list of known nodes Ny own, and nodes discovered through
other means N,.,, which do not yet have a distance assigned to them. The
list of nodes to ignore Njgnore is initialized, to which nodes are added that
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function Discover(selfNode Type, Ninown, Nnew) 1S
Ncheck - Nknown U Nnew
Nignore - (Z)
if Ncheck: 75 (Z) then

| dmin = D(selfNodeType, Nepecr[0])

inReach = false
while Ncheck ;é @ do
Ne = check [O]

Remove(Nepeck, Ne)

if ShouldReping(n.) then
dn.] = D(selfNodeType,n.)
Amaz = AdjustedDistance(Len(Ngnown))
if d[n.] < dpmaz) then

add(Nk:nown7 nc)
Npew = GetKnownNodes(n,)
MergeNOdes(Nchecka Nnewa Nignore)
inReach = true
else
Add(Nignorea nc)
if dm'm > dmax then

Npew = GetKnownNodes(n..)
MergeNodes(Ncheck, Nnewa Nignm"e)

if Len(Ninown) < 1 ordlc,] < dpin then
else

|  Remove(Ninown, ¢n)

end

end
end
f inReach then
Nremove = 0 for n € Ninown do
if d[n] > AdjustedDistance(Len(Ngnown)) then
‘ Add(Nremovean)
end
Nk:nown - Nk:nown N Nremove

-

end
Algorithm 4: Node discovery mechanism used in both the fog node

service and the edge node service.
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function ShouldReping(c,,) is
| customizable implementation, default true
end

function GetKnownNodes(c,,) is
|  webservice call to n.

end
function AdjustedDistance(n) is
Plocal — pass/n
return d,q.-maz(1, \[(plocal)
end
function MergeNodes(Neheck; Nnews Nignore) 18
‘ Ncheck — Ncheck: U (Nne'w N Nignore N Nknown)
end
Algorithm 5: Support methods for node discovery mechanism.

are beyond the maximum distance and should not be contacted again this
round. As long as there is a node left in N pec, the first element n, is taken
from the queue. The algorithm first checks if the distance to mn. should
be updated this round by calling ShouldReping. If so, the distance d[n.]
is determined and updated and d,,, is calculated by the AdjustedDistance
function according to Eq. 4.23. If the new distance to n. is smaller than
dmaz, the node is added to (or updated in) the list of known nodes, and its
list of known nodes is fetched into N,,.,,. These nodes are in turn added to
the list of nodes to check through the MergeNodes function, which only adds
those nodes of Nyew t0 Nepeer, Which are not in Nepecks Ninown OF Nignore-
Additionally, the flag inReach is set to true, and the minimal distance d;;,
for this round is updated if necessary. If the new distance to n. is larger
than d,,qz;, the node is added to the list of nodes to ignore. However, if
the minimum distance in this discovery round is also larger than d,qqz,
the algorithm has not yet found a way to nodes within its neighbourhood.
Therefore, the list of nodes known to n. is fetched and merged with the list
of nodes to check, in an attempt to find closer nodes. Additionally, if there
is only one known node, or the distance to n. is smaller than the smallest
distance so far, d,,;, is also updated to narrow the search field. If neither
of these conditions are true, ¢, is removed from the list of known nodes if it
is in there. When the queue Nypown is empty, the inReach flag is checked
to remove any nodes beyond the maximum distance from the list of known
nodes, because such nodes may have been added while d,,;, was larger than
dmaz

When contacting another node, a node will always pass its node type (e.g.
edge or fog) in the request. When a fog node is contacted by an edge node,
it will simply respond and the distance between the two can be determined
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by the edge node. When a fog node is contacted by another fog node, it
will check if it already discovered that node; if not it will add the node to a
queue of nodes to contact on the next discovery round.

As explained in Section 4.4.2.1, the maximum distance for fog node neigh-
bourhood discovery should not be a constant value, but should depend on
local fog node density as well. The local fog node density can be estimated
by considering how many fog nodes have been discovered by using the de-
fault maximum distance; the new maximum distance can be calculated from
it according to Eq. 4.23. However, edge nodes still use a constant maximum
distance to discover optimal service providers in accordance with Eq. 4.8.
Ideally, all discovered fog nodes should be contacted during each discovery
round to determine their new distance. However, to reduce neighbourhood
size and limit edge node traffic, the ShouldReping function can be impl-
emented differently for fog and edge nodes, enabling different timeouts on
nodes that are far away. For example, while some fog nodes beyond the
maximum distance are kept in the list of known nodes, this feature allows
the algorithm to only contact them every 2 or 3 rounds.

4.4.3.2 Fog Node Service

FogService EdgeService
NodePinger NodePinger ServiceMonitor
(FogNodePinger) ',’ (EdgeNodePinger) i j (FledgeServiceMonitor)
Orchestrator R ) ‘ .
(FledgeOrchestrator) Webservice methods A--------- ServiceMesher

ServiceLocator
(HostsServicelLocator)

Webservice methods

Service Manager

Function call ~<+—— Webservice call <-------- >

Figure 4.15: Components of the fog node service and the edge node service and
their interactions.

The left side of Fig. 4.15 shows the components of the fog node service and
their interactions.

The FogNodePinger, an implementation of NodePinger, periodically at-
tempts to discover fog nodes in its neighbourhood according to Algorithm
4. Tt is used by the webservice methods to return a list of known fog nodes,
and in turn calls on the webservice methods of other fog nodes for neigh-
bourhood discovery.

The Service Manager handles requests from edge nodes to add or remove
them as service clients. When adding a service client, it checks if there



SCALING SERVICES FOR SMART CITIES 177

are sufficient resources to handle extra service clients or services, and starts
any services needed by the edge node client if they are not yet running.
When a service is started, it is loaded from a configuration file containing a
Kubernetes PodSpec [47] which is sent to the Orchestrator for deployment.
When a service client is removed, the Service Manager checks each service
used by that client to see if there are still enough other clients using them.
If the number of clients for any service is below a configurable minimum, all
remaining edge node clients are notified to try and find a different fog node
for that service. If successful, the migration is confirmed to each client, they
are then removed from that service and the Service Manager instructs the
Orchestrator to stop and remove the service itself. If a single edge node fails
to find another suitable service provider, the edge node clients are notified
that the migration should be reverted.

The FledgeOrchestrator is an implementation of Orchestrator and deploys
Kubernetes pods through a FLEDGE agent. It supports only the two meth-
ods described above; one to deploy a pod and one to stop a pod.

4.4.3.3 Edge Node Service

The components of the edge node service are shown on the right side of Fig.
4.15, along with their interactions and web service calls to and from the fog
node service.

As in the fog node service, the EFdgeNodePinger is responsible for discov-
ering nearby fog nodes as per Algorithm 4. The difference is that the re-
sults of each discovery round are actively used, by sending them to the
ServiceMesher, which takes further action based on the support services
required by the edge node.

To determine which support services are required, the FledgeService Monitor
periodically checks all running pods managed by the local FLEDGE agent
and compares them to a configurable map of edge service names and the fog
services they depend on. When a new pod is detected, the map is consulted
and any required fog services are forwarded to the ServiceMesher.

The ServiceMesher uses the fog nodes discovered by the EdgeNodePinger
to find a suitable service provider for the required services passed by the
FledgeServiceMonitor. For each service S it first attempts to find a fog
node which already has S deployed, in order of increasing distance, up to
the maximum distance. If this fails, the closest node with enough available
resources to deploy S is selected as service provider, no matter the distance.
The selected node is then notified that the edge node requires S, and reg-
isters itself as a service client for S at that fog node. Note that this can
result in multiple service providers for a single edge service, depending on
pre-existing deployments in the fog. If for any reason a fog service deploy-
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ment fails, or the edge node can not be registered as a client, the search
for a service provider continues. This approach is in line with the origi-
nal Swirly algorithm, which prefers nearby fog nodes with active service
deployments and free resources over empty fog nodes when possible. Any
connections from the edge service are redirected to the correct fog node by
the HostsServiceLocator. For the purposes of this section, this naive im-
plementation of ServiceLocator assumes that the name of the fog service is
used as a DNS name when it is called by the edge service. This assumed
DNS name is linked to the IP address of the fog node by adding a line in
the hosts file [48] of the edge node.

As described in Section 4.4.3.2, a fog node can ask edge node clients to
migrate to a different service provider for a specific service. When this
happens, the ServiceMesher attempts to find a service provider as described
in the previous paragraph, with the exception that the resulting fog node
must already be running the required fog service, and is different from the
current service provider. If a suitable fog node is found, the edge node
assigns it as backup service provider and adds itself as a client for the
required service to ensure that it can be serviced. If any of these steps fail,
the edge node reports to the original service provider that the migration
has failed, otherwise it reports the migration can proceed. In the final step,
the edge node client is instructed by the fog node to either confirm or revert
the migration. When confirming, the backup service provider is given active
status and the HostsServiceLocator is updated accordingly. When reverting,
the edge node removes itself from the backup service provider as client.

4.4.4 Theoretical Performance

In terms of processing and memory, the average computational complexity
of neighbourhood discovery using Algorithm 4 is O(r%pp). r% describes
the area with which a fog node interacts, while the amount of interaction
increases with pr. Extending this to interaction with edge nodes, the com-
plexity is O(r%pr) on edge nodes and O(r%pg) on fog nodes. However, in
the worst case a fog node has to search a significant fraction of all fog nodes
to find any that belong to its neighbourhood. These adverse situations
may be caused by topological features as shown in Fig. 4.13, or because the
(randomly) assigned start node for the discovery process is several times the
maximum distance away. In both cases performance will converge to the
average situation within a few discovery rounds, but worst case complexity
is therefore O(F') in terms of processing.

Detecting and deploying support services has a best case complexity of O(1)
in terms of processing, since the closest fog node is known from the discovery
process and can be found in constant time. In situations with very few fog
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Table 4.3: Summary of processing complexity.

Best Average Worst

Neighbourhood discovery - O(r&pr) O(F)

Fog discovery (edge node) - O(rppr) O(F)
Fog discovery (fog node) - O(r&pr) O(rbpr)
Service deployment o) | o(1/(1 - Z—i)) O(r¥pr)

resources left, worst case performance is O(r%pp), since all neighbouring
fog nodes may have to be consulted to find one with free resources. Average
complexity is between these extremes, depending on the amount of nearby
edge nodes and fog nodes, resulting in O(1/(1 — pg/pr)). In all cases,
memory complexity is O(r%pp). Table 4.3 summarizes the computational
complexities for all cases.

In all cases, the complexity of network throughput will be the same as
processing complexity, since every action in neighbourhood discovery and
service deployment requires a webservice call.

Because the best and average case complexities are based only on local node
densities and maximum discovery distance, Req. 4 is met by the theoretical
performance of SoSwirly.

4.4.5 Evaluation Methodology

This section describes the evaluation setup, the scenarios involved in the
evaluation and their limitations, in which terms SoSwirly is evaluated and
how the results are measured. The code of SoSwirly, including the tools
used for the evaluations, is made available on Github2°.

4.4.5.1 Evaluation Setup

All evaluations are run on the IDlab Virtual Wall [49] using two servers,
each with 48GiB RAM, two Intel E5-2650v2 CPUs and a Gigabit Ethernet
connection. One server is used to host a number of fog node services, while
the other hosts a number of edge node services.

To support running multiple fog and edge nodes on a single machine, and for
other nodes to be able to access them, a number of changes are made to the
code that are enabled through the configuration flag testMode. testMode is
designed to use incremental node names and port numbers so that each node
knows where to reach another node by name alone. Additionally, it disables
the actual deployment of a pod in FLEDGE so as to not overload the
server with pod deployments. Finally, only one FLEDGE instance is started,

20https://github.com/togoetha/soswirly



180 CHAPTER 4

Figure 4.16: Part of the physical area of Belgium used to generate node topologies
and evaluate SoSwirly. The scale in (a) represents edge node density,
where teal is low density, and red through green represent high densi-
ties. (b) shows the required fog node density as calculated using Eq.
4.28, using the same density scale. The darker blue shows that in the
surrounding towns, pg is overridden by the required maximum dis-
tance. (c) shows the service areas of selected fog nodes (background
omitted). Orange is Ap, blue is Ag and green is Ap.

running a single instance of the service which edge nodes are configured to
detect, and each edge node service monitors this single instance.

While the services can thus be run on a single server, they create a large
number of network connections between them. This was found to put a
practical limit on how many nodes can be emulated simultaneously, so the
evaluations are limited to a maximum of 250 fog nodes and 150 edge nodes.
Although this does not represent the topological scale SoSwirly is meant to
operate at, it is impossible to simulate thousands of nodes on the Virtual
Wall, and conclusions can still be drawn from evaluations within these limits.

4.4.5.2 Swirl Generator

The evaluations use randomized Swirls created by the Swirl generator. This
generator accepts a number of parameters (e.g. number of fog nodes, max-
imum distance) and a population density bitmap as input, and uses the
equations from Sections 4.4.2 and 4.4.2.3 to generate edge and fog nodes at
suitable, but random, positions. The output of this tool is a set of configur-
ation files that are used to start all the generated nodes on the evaluation
servers. An example input density bitmap is shown in Fig. 4.16a, with the
results of Eq. 4.28 in Fig. 4.16b. A small-scale visualization of the output
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of the generator is shown in Fig. 4.16¢, overlaid with calculated Ap, Ap
and Ag of a few selected fog nodes. Note that the responsibility areas take
the shape of a Voronoi diagram and A is not defined by a single value rp.
This is because the equations in Section 4.4.2 assume an ideal shape for Ap,
while the actual shape is dependent on random factors (e.g. placement of
fog nodes, choice of active fog nodes, stability of distance metric over time).
However, SoSwirly will attempt to produce Ap as close to ideal as possible,
and the equations still hold when rg is defined as the maximum distance
between a fog node and the boundary of Ap.

The density bitmaps are generated by another tool, which combines offi-
cial census data and GEOJSONJ[50] data into population density bitmaps.
For the evaluations, data from StatBel [51] on the statistical sectors of Bel-
gium [52] and population per statistical sector [53] is used. The statistical
sectors are on average 1km?, although they are smaller in cities, and larger
in sparsely populated areas, making them sufficiently fine-grained.

4.4.5.3 Scenarios

The base density bitmap used to generate Swirls is similar to that shown in
Fig. 4.16a, but encompasses a larger area of around 660km?. Its right side is
focused on Brussels, while the middle and left include the surrounding coun-
tryside. It contains population densities from 0/km? to around 40000 /km?.
Considering the artificial nature of the evaluation, the parameters needed
for the equations in Section 4.4.2.3 are approximated. Population density is
used as a substitute for pg(z,y), while fog node capacity C. is set at 50.000,
making C, 1,25-1078km?. For the chosen metric and the given scenario, C),
can be set to 1 pixel per metric distance unit. These parameters are used to
calculate the minimal fog density for each scenario. No cases are examined
that contain only heavily populated areas or countryside, since in cities rp
can simply be lowered to suit the higher pg and pg, stabilizing performance,
and in the countryside rp can be increased to suit the discovery process. A
mixed case exposes the stability and performance of SoSwirly when using a
single set of parameters over a wide range of node densities.

As explained in Section 4.4.1, there are fundamental differences between
SoSwirly and recent related work. The results of solutions based on evo-
lutionary algorithms can be superior, but these solutions are centralized
and can not run in near real-time. Others run in real-time, but require
a central component or have different use cases (e.g. optimizing all the
components of an IoT application in the fog). Keeping these nuances in
mind, the efficiency of SoSwirly is compared to the conceptually compara-
ble but centralized Swirly, and NSGA-II, a generic multiobjective genetic
algorithm [54]. For NSGA-II, the optimization parameters are average dis-
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tance between fog and edge nodes, and the number of service instances. The
same parameters are used as by Guerrero, Lera and Juiz [36], except the
evaluation is performed using both 400 and 5000 generations. Additionally,
since the maximum distance is a soft restriction in SoSwirly, any distance
above 100 is penalized by a factor of 5 in NSGA-II to discourage it.

Neighbourhood Discovery This scenario determines the impact of the
neighbourhood discovery algorithm on fog nodes. Using only a set of fog
nodes, the neighbourhood discovery algorithm is evaluated in terms of CPU
use, memory use and network traffic. The number of fog nodes is varied
from 50 to 250 in steps of 50, while the maximum distance is varied from
50 to 150 in steps of 50. Due to practical limits in the evaluation setup, the
combination of 150 maximum distance and 250 fog nodes is not tested. For
each combination of parameters, SoSwirly is run for 10 generated swirls.
Additionally, the accuracy of neighbourhood discovery is measured to de-
termine the optimal maximum distance. For this scenario, discovery rounds
are run on each node every 5 seconds. While this reaction time may be too
high for certain scenarios with stringent real-time requirements, it is config-
urable, and can be lowered significantly depending on the requirements.
Using Eq. 4.28, the minimum number of fog nodes N¢,4 for the evaluation
is 119 for a maximum distance of 50, 40 for a maximum distance of 100 and
27 for a maximum distance of 150. Although the test parameters go below
the minimum number of nodes for a maximum distance of 50, these cases
will show how SoSwirly reacts when not provided with enough fog nodes.

Service Deployment In this scenario, the combined impact of fog node
discovery, service detection and fog service deployment on edge nodes is
measured in terms of CPU use, memory use and network traffic. The max-
imum discovery distance is set at 100, and 100 fog nodes are used for this
scenario. Due to hardware limitations, this scenario was only evaluated for

100 and 150 edge nodes.

Topology Efficiency Additional information extracted during the evalu-
ation of the Service Deployment scenario is used to determine how effectively
SoSwirly minimizes both the number of active fog nodes and the average dis-
tance between edge and fog nodes. Both of these optimization parameters
will be compared between SoSwirly and the centralized algorithms Swirly
and NSGA-II, in addition to the time taken for each algorithm to determine
a solution. For both Swirly and NSGA-II, the scenario is first prepared and
only the timing of the actual algorithm is measured. For SoSwirly, the mea-
sured time includes some web service calls due to its decentralized nature
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and the necessity to gather node information ad-hoc.

4.4.5.4 Resource Measurement

Each evaluation is run for 5 to 10 minutes, depending on the required time
to start all nodes, with resource levels logged every 10 seconds. The full
range of data over time is not presented in this section because most of
it represents the evaluation script starting up the required nodes. The re-
sults presented focus on the last measurement, which is the most resource
intensive period representing a fully initialized, stable cluster in which neigh-
bourhood discovery is mostly completed, but is still periodically checking
for new nodes.

Considering the number of processes involved in the evaluations, CPU use
per process is approximated by measuring global CPU use and dividing it
by the number of nodes. The disadvantage of this approach is that it is
impossible to measure the specific CPU use of nodes in extreme situations,
such as the densely populated city center. However, this approach was
chosen because measuring CPU use for each process separately may have
an undue influence on CPU use itself. Despite this approach, the results
allow for an analysis of CPU use in different situations in Section 4.4.6.
Unlike CPU use, memory use is measured for each process separately, taken
from /proc/<pid>/stat. Because of this, memory use is examined for only
one topology per set of evaluation parameters rather than 10, allowing for an
analysis of extreme cases. This approach is representative of all cases; while
the topologies are generated randomly, they are still governed by the rules
of the model in Section. 4.4.2. This is confirmed by comparing memory use
per node across all the topologies; if the memory use of the most demanding
nodes of each topology is compared, the standard deviation is 1.9%. For
the least demanding nodes, the standard deviation is 2.1%.

Network traffic is measured globally from /proc/net/dev and divided by the
number of nodes, for the same reasons CPU use is measured globally. In the
Neighbourhood Discovery scenario, only the lo adapter is examined because
all traffic is local, in the Service Deployment scenario only the traffic on
the eth0 adapter is measured, which indicates traffic between fog nodes and
edge nodes.

4.4.6 Results

This section contains the results for the evaluations described in Section
4.4.5, along with a discussion of the results. The values in the presented
charts are median values, with error bars representing minimum and maxi-
mum values.
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Figure 4.17: Memory requirements of the fog service for different amounts of fog
nodes, and maximum discovery distances of 50, 100 and 150 units.

4.4.6.1 Fog Discovery

Fig. 4.17 shows the memory required by the fog node service for different
maximum distances and varying numbers of fog nodes. In the median cases,
memory use increases linearly with the number of fog nodes in the topology,
which is in line with the expected theoretical performance. However, the
maximum distance has less of an effect than expected. This is due to the
dynamic adjustment of the maximum distance for nodes in low density
areas per Eq. 4.23. Remembering that for a maximum distance of 50, 118
fog nodes would be required, many fog nodes can not find any neighbours
unless they use Eq. 4.23 to dynamically increase their maximum discovery
distance. The results show that this mechanism works properly, increasing
the maximum discovery distance significantly when required, to the point
that fog nodes have a similar memory requirement for maximum distances of
50 and 100. This also explains why median memory use at these maximum
distances barely rises with the number of fog nodes, since for a lot of nodes
the dynamic increase in maximum distance will be lower, resulting in only
slightly larger neighbourhoods on average. A maximum distance of 150
removes the effect of this mechanism entirely, causing a behavior similar to
theoretical complexity.

The minimum cases all require around 14MiB memory, independent of the
evaluation parameters. These are nodes in low density areas which have few
neighbours even when the maximum distance is stretched. The maximum
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cases represent the nodes in the city center that have large amounts of
neighbours regardless of maximum distance. Their memory use increases
as expected with both maximum distance and number of fog nodes.
Overall, memory use is between 14MiB and 20Mib, which is low enough to
deploy the fog service on low-power hardware with minimal resources.
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Figure 4.18: CPU load of the fog service for different amounts of fog nodes, and
maximum discovery distances of 50, 100 and 150 units.

The CPU use per node is shown in Fig. 4.18. Note that the results are
represented in % of a single core. In the median case, CPU use is low,
barely increasing with fog node density and increasing linearly with maxi-
mum distance. These results are better than expected from the theoretical
performance, even in cases that are unaffected by dynamically adjusted
maximum distance. The minimum and maximum cases indicate that over-
all performance can vary from about 50% to 500% of median performance.
However, the extreme cases may be influenced by the evaluation itself, if
the CPU use sample happens to coincide with a lot of process monitoring
activity.

To give an indication of the spread of CPU use for nodes in different sit-
uations, the number of neighbours discovered by each node are monitored
during the evaluation. For example, with 50 fog nodes and a maximum
distance of 50, each node has 1 to 4 neighbours, with a median of 2. In
the case of 200 fog nodes and a maximum distance of 150, nodes have 1
to 84 neighbours, with a median of 38. Therefore, it is likely that the me-
dian cases in the chart also represent the median CPU use of nodes in each
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topology, and the most demanding nodes need about 200% of the CPU use
of those cases.

In absolute numbers, the fog node service requires 0.3-0.6% of one CPU
core. Although the evaluations are run on a relatively powerful CPU, the
service should be able to run on low-power hardware with no performance
problems.
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Figure 4.19: Network traffic at a single fog node for different amounts of fog nodes,
and maximum discovery distances of 50, 100 and 150 units.

Fig. 4.19 shows the network throughput per fog node related to neighbour-
hood discovery. These results are in line with the theoretical performance,
although less pronounced than expected, with relatively small error margins
caused by randomly generated topologies. Network throughput is less af-
fected by dynamically adjusted maximum distance because the nodes with
an increased maximum distance contact fewer other nodes overall. In turn,
they have smaller lists of fog nodes known to them, causing both less and
smaller responses during the discovery process. This means that while the
memory use results show that the adjustment mechanism results in finding
more neighbouring nodes, this does not necessarily result in higher net-
work traffic for those nodes affected by it. In absolute numbers, network
throughput is 30Kbps to 110Kbps.

In real life scenarios, the parameters of SoSwirly (e.g. maximum discovery
distance, expected fog node density) can be tuned so that the number of
discovered neighbours is similar to that in the evaluations. Certainly, no
more than 100 immediate neighbours should be tracked by any fog node. In
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combination with the results, this means that the fog service is capable of
running on low-power devices with limited resources, and that it is highly
scalable as long as node densities remain low enough.

For example, in Internet of Vehicles (IoV) applications using roadside units,
the distance metric will likely involve vehicle velocity, and discovery rounds
will be frequent due to rapidly changing relative distances. Because these
roadside units are usually at the same distance from each other along well-
defined trajectories and can be discovered in sequence, the maximum dis-
covery distance for fog nodes (roadside units) can be lowered so each unit
only discovers a few others in its neighbourhood. For fast moving edge
nodes (cars), the maximum distance at which they can discover fog nodes
can be increased to ensure they can reach sufficiently distant fog nodes in
case a switch is required. This does not lead to performance problems, since
the fog nodes themselves are sparsely connected.

The results indicate that, with proper tuning of parameters for a given
node topology, the discovery algorithm behaves according to its theoretical
performance, that it scales according to Req. 4, and that the resource
requirements are sufficiently low to satisfy Req. 5.
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Figure 4.20: Accuracy of neighbourhood discovery for different amounts of fog
nodes and maximum discovery distances of 50, 100 and 150 units.
100% means a fog node discovered all other fog nodes within the
maximum distance.

Fig. 4.20 shows the accuracy of the neighbourhood discovery algorithm.
This number represents how many nodes in its neighbourhood a fog node
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has actually discovered. The result represents a global number, indicating
how many neighbours in total have been discovered compared to a per-
fect neighbour graph. A high accuracy is important, since it determines
how well edge nodes can find an optimal service provider by traversing fog
node neighbourhoods. Paradoxically, accuracy goes down as the number of
fog nodes increases, especially with a maximum distance of 50 where not
even the dynamic adjustment mechanism can compensate. However, this is
largely up to the random generation of swirls, since fog nodes are sometimes
placed too far away from others, start their discovery process with nodes on
the other side of the topology, or may encounter adverse features as shown
in Fig. 4.13. For minimum distances over 100, accuracy is high enough that
edge nodes can find an optimal service provider in over 95% of the cases,
even under these adverse conditions.
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Figure 4.21: Average network traffic at edge nodes for service topologies with 100
fog nodes, and 100 or 150 edge nodes.

4.4.6.2 Service Deployment

Fig. 4.21 shows the network traffic and CPU use observed during the service
deployment evaluation. Although both network traffic and CPU use rise
about 10% as 50% more edge nodes are added, this is likely the result of
more fog nodes being activated to service the additional edge nodes, which
in turn leads to more active fog nodes being discovered and tracked by each
edge node. In absolute terms, the edge node service causes only 3Kbps
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network traffic and requires 0.2% of a single CPU core. Even considering
the powerful processors in the evaluation setup, this shows that it can run on
low-power, low-resource edge hardware. Memory requirements are similar
to those of the fog node service, between 14 and 16.5MiB depending on local
fog node density. In swirls with 150 edge nodes, only 0.5% more memory
is required in the median case than in those with 100 edge nodes, showing
that the number of edge nodes in a swirl has no significant effect on the
memory use of the edge node service.

These results indicate that service discovery and deployment by edge nodes
scales according to Req. 4, and that the resource requirements are low
enough to meet Req. 5.
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Figure 4.22: Number of activated fog nodes in service topologies with 100 or 150
edge nodes, comparing SoSwirly to centralized algorithms. NSGA-II
is evaluated at 400 and 5000 (5k) generations.

4.4.6.3 Topology Efficiency

Fig. 4.22 shows how many fog nodes are activated by the evaluated algo-
rithms in service topologies with either 100 or 150 edge nodes. SoSwirly is
almost as efficient as Swirly, requiring 4% to 6% more nodes in the median
cases. Considering that Swirly is a centralized approach, while in SoSwirly
each node acts in its own best interests, a small efficiency penalty is to
be expected. The results also show both Swirly and SoSwirly outperform-
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ing NSGA-II. Even after 5000 generations, NSGA-II activates about 10%
more nodes than SoSwirly, showing that SoSwirly can generate good service
topologies with only its limited knowledge about neighborhoods.

The distance between edge nodes and their service providing fog nodes is
shown in Fig. 4.23. In the solutions generated by SoSwirly, median dis-
tance is only 1-2% higher than in the solutions of the centralized Swirly,
and both are well below the maximum metric distance of 100. However,
the maximum distances in the solutions generated by SoSwirly are almost
300% higher than those in topologies generated by Swirly. Note that this
mostly concerns edge nodes that are beyond the maximum distance of any
fog node to begin with. These cases are few and far between, and the enor-
mous distances between them and their assigned fog nodes are always caused
by adverse features in the node topology, combined with worst-case start-
ing nodes for neighbourhood discovery, both issues of randomly generated
topologies that can be fixed in real-life scenarios. Compared to NSGA-II af-
ter 5000 generations, the median distance in topologies generated by Swirly
is about 30% lower, showing an overall better optimization when it comes to
latency. However, the maximum distances are about 43% higher than those
generated by NSGA-IT (546 vs 382), owing to a lack of global knowledge
about the topology.
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Figure 4.23: Distance of edge nodes to fog nodes in service topologies with 100
or 150 edge nodes, comparing SoSwirly to centralized algorithms.
NSGA-II is evaluated at 400 and 5000 (5k) generations.
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Figure 4.24: Processing time required to organize service topologies with 100
or 150 edge nodes, comparing SoSwirly to centralized algorithms.
NSGA-II is evaluated at 400 and 5000 (5k) generations.

Finally, Fig. 4.24 shows the times required for each algorithm to determine
their solutions. Note that this chart uses a logarithmic scale to accommo-
date NSGA-II, and that the time measured for Swirly is somewhat unreliable
because it is very close to Oms. Compared to Swirly, SoSwirly requires about
100 times more processing time to optimize the service topology. However,
in the case of SoSwirly, the measured time necessarily includes gathering fog
node information via web service calls, whereas for Swirly and NSGA-II the
information is already present. Nevertheless, all nodes of SoSwirly require
between 20ms and 180ms to find an optimal service provider. Depending
on the number of generations used by NSGA-II, it is around 100 to 1000
times slower than SoSwirly. Considering the efficiency of NSGA-II, this
shows that SoSwirly can work significantly faster and more efficient than
NSGA-II in the evaluated scenario.

4.4.7 Discussion

In the introduction, the challenges of scheduling services with regards to
the scope and hardware properties of the fog and edge are discussed, and a
number of requirements for the presented solution are proposed.

SoSwirly, a fully decentralized fog service scheduler, is presented as a so-
lution. A mathematical model of fog nodes and fog networks is presented,



192 CHAPTER 4

which forms the basis for an implementation of SoSwirly in Golang and an
analysis of the fog nodes required for a specific swirl. It is explained how the
proposed requirements are met by the design of SoSwirly, and its theoretical
performance is explored.

To verify its performance, SoSwirly is experimentally evaluated in terms of
CPU use, memory use and network traffic. The results show that in all
cases, performance is equal to or better than the theoretical performance,
confirming that SoSwirly is highly scalable in geographical terms, as long as
the maximum discovery distance and node densities are balanced at every
location. It is explained that in some cases the dynamic scaling of maximum
discovery distance inflates the memory use and CPU use of nodes in topolo-
gies with a small default discovery distance, and that the overall resource
requirements are low enough to be deployed on a wide range of devices.
Further evaluations show that the node discovery algorithm is accurate
enough for edge nodes to find their optimal service provider by traversing
fog node neighbourhoods. Additionally, the service topologies generated
by SoSwirly are generally as efficient as those generated by the centralized
Swirly. Additionally, it is shown that SoSwirly can generate service topolo-
gies much faster than a generic algorithm such as NSGA-II, and that the
topologies are more efficient than those generated by NSGA-II.

Some topics for future work are discussed, for example more extensive mon-
itoring of node availability, scaling to multiple service instances on fog nodes
and allowing edge nodes to change service providers proactively.

While this section presents a fully operational, self-contained solution for
self-organizing fog service scheduling, there are several possible improve-
ments and additions to both the concept and implementation.

SoSwirly relies heavily on passive monitoring of nodes to solve problems.
For example, if a fog node becomes unavailable, this will be detected during
the next discovery round. However, until that happens any requests to
services on that node may fail. Active monitoring of the services used by
an edge node can reduce the time required to find a new service provider,
improving QoS.

In areas with high edge node densities, it can be useful to scale services in-
stances within small but powerful fog nodes, rather than scaling the number
of fog nodes. This is not possible with the implementation of SoSwirly pre-
sented in this section, but alternative implementations of the ServiceLocator
can provide this functionality in the edge node service without modifying the
core algorithms and components. However, the fog node service would need
additional per-service parameters and resource monitoring to automatically
scale them as their load changes. Alternatively, a container orchestrator
that supports service scaling by default can be supported by implementing
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Orchestrator, to be used on fog nodes where it is applicable.

In general, edge nodes calculate the distance to many fog nodes in their
neighbourhood during each discovery round, but most of this information is
discarded after the closest nodes are found. If the discovery rounds happen
sufficiently frequently, the historical distance data may be used to determine
if the edge node, or any fog node, is moving, and at which time it would be
advantageous to proactively switch to another fog node. However, as seen
in Section 4.4.2, the exact coordinates of a fog node can not be known, so
any solution to this must rely on reported distances alone.

Edge nodes determine their optimal service provider through discovery
rounds, during which the distance to each eligible fog node is updated.
To support true real-time updates, fog nodes could send distance updates
to the edge nodes they service whenever a significant change in distances oc-
curs. This would result in more CPU use on fog nodes, but would also allow
edge nodes to instantly switch to another service provider if their current
one is experiencing technical issues or is moving too far away.

4.5 Summary

This chapter introduced the concept of scalability, and explained some gen-
eral approaches to achieve scalable service architectures in the network edge.
The potential of network federation to scale functionality and enable higher-
level applications is illustrated through FUSE, which is designed to allow
secure, on-demand federation of private networks. The main use case of
FUSE is enabling rapid response in disaster/crisis situations, and it is shown
that federations can be set up in a matter of minutes, and because of a mix
of VPN and overlay networks, resource owners can determine exactly which
resources should be available for use by the federation.

Continuing the concept of Swirly, this chapter presented SoSwirly as a com-
pletely decentralized service orchestrator which can organize large numbers
of independent nodes into a coherent service architecture. Based on Kub-
ernetes API’s and FLEDGE, SoSwirly is shown to scale almost indefinitely
under the right circumstances, which can be engineered by parameter tun-
ing. Furthermore, the efficiency of the resulting topologies is almost equal
to that of those generated by the centralized Swirly, despite the imperfect
information possessed by each node, and SoSwirly can be used recursively,
allowing the self-organization of entire service architectures in the edge.
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Intelligence in Smart Cities

There was an AI made of dust, whose poetry gained it man’s trust
If is follows ought [1], it’ll do what they thought

In the end we all do what we must.

- Universal Paperclips, Frank Lantz

5.1 Introduction

The previous chapters have introduced the required technologies to enable
and scale complex service architectures in the large edge networks one might
find in a Smart City. This chapter illustrates how Artificial Intelligence (AI)
can be deployed in the edge to further improve these technologies, and how
they can enable Al applications in Smart Cities.

Various reasons for the migration of computational workloads to the network
edge have been discussed in Chapters 2 through 4, which are summarized
here for readability. First of all, computational migration to the edge is
a necessary step in the emergence of various “Smart” application domains,
and eventually Smart Cities, in which Al is to be deployed exactly where
and when it is required, allowing it to process data locally and efficiently
without loss of privacy.

To reiterate, there are several advantages to edge offloading. For example,
to run software services closer to end-users in order to reduce latency, or to
pre-process data instead of gathering all data to the cloud, thereby avoiding
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bandwidth issues or undue pressure on cloud resources. Additionally, the
number of devices in fog and edge networks increases at an accelerated pace,
while the hardware resources of the average device keep increasing. As such,
there is ever more task offloading capacity available in the fog and in the
edge.

On the other hand, there are also disadvantages to offloading tasks to geo-
graphically widespread fog and edge networks. In cloud data centers, hard-
ware resources and network technologies are homogeneous, and properly
managed using planned upgrades, typically resulting in high availability of
services and systems. In the edge, networks are heterogeneous and un-
predictable, and hardware resources and capabilities are extremely varied.
As the scale of edge networks and the variety of devices they comprise in-
creases, these factors make it increasingly more difficult to manage software
services and organize traffic flows. For example, gathering all the required
data for service orchestration in the cloud becomes infeasible due to network
bandwidth saturation and memory requirements.

Additionally, tasks such as data placement and service migration are more
difficult to orchestrate in edge networks than they are in the cloud. In cloud
data centers, or a limited number of fog data centers, the target nodes
for service deployments can be optimally calculated, and migrations can
be executed quickly over high bandwidth connections. The network edge,
however, is a volatile environment with a continually changing topology.
In such an environment, calculating the optimal nodes to deploy data or
services on is nearly impossible, and limited network bandwidth reduces
the potential for service migration.

Finally, there are also various security risks that present themselves when
running software services in the fog or edge. As opposed to the strictly
controlled environment of a cloud data center, edge networks are largely
comprised of unknown devices in networks with unknown, and often insuffi-
cient security measures. Such environments make it difficult to detect issues
such as unauthorized access, data loss, privacy infringement and malicious
injections of data or code, and nearly impossible to avoid them.

AT can solve many of these issues. For example, some classes of Al al-
gorithms can learn from data gathered in the cloud and from the edge in
order to recognize network intrusions, route traffic around faulty nodes, or
quickly determine suitable nodes to deploy software and data on. However,
AT algorithms can be resource intensive, and edge devices are often resource
constrained and low-powered. Until recently, most edge devices were in-
capable of running any containerized services or advanced Al applications.
Advances in both software and hardware, specifically related to Artificial
Neural Networks (ANN), have commoditized Al in the edge. Although



INTELLIGENCE IN SMART CITIES 203

many devices have different priorities, e.g. extremely low-power sensors,
all data is usually gathered at local gateway devices in the edge, or edge
servers, which have the appropriate hardware resources to run complex Al
algorithms. These advances have enabled Al to play an increasingly impor-
tant role in properly organizing the network edge, orchestrating software
services in the edge, and in software services themselves, which use Al to
optimize end-user experience. Edge Intelligence (EI) [2] arises from any use
of AI to enhance the organization or operation of software services in the
edge, while the whole of EI and the Al-powered end-user applications it
enables results in the Intelligent Edge.

In Section 5.2, several important types of Al for the edge are explained,
along with the concept of edge computing itself. The synthesis of edge com-
puting and AT is discussed in 5.3 to show how the Intelligent Edge emerges
from it, and what the general areas of end-user Al-powered applications
in Smart Cities are. Section 5.4 illustrates how SoSwirly with FLEDGE
can enable decentralized intelligence in edge networks, by both acting as
a decentralized weight distributor, and by integrating an Al component to
better organize itself. The state of the art of EI is presented in Section
5.5, starting with a taxonomy of EI, followed by a discussion of each cat-
egory by charting research trends, and by presenting a selection of recent
studies. The main topics are enabling technologies for Al in the edge,
AT approaches to organize various aspects of edge networks, and finally
Al-assisted applications running in edge networks. From the presented
studies, future challenges for each topic are drawn, along with some long-
term visions for the use of Al in the edge. Finally, the chapter is concluded
in Section 5.6.

5.2 Distributed Intelligence technologies

In this section, the most common types of Al in Edge Intelligence are in-
troduced. Although sufficient explanation is given for the purposes of this
chapter, the goal is only to introduce each of the topics, with more com-
prehensive works included as references. There are numerous studies and
books that explain the general principles of Al, for example Hunt [3] or
Brewka [4].

5.2.1 Statistical algorithms

Statistical approaches can be used to solve (binary) classification problems.
The most popular algorithm of this type is logistic regression [5], a spe-
cial case of binary regression which results in binary classifiers that output
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probabilities rather than a hard classification. This algorithm uses super-
vised learning [6], a method which “trains” a model on an initial data set
containing expert-labeled outputs for known sets of inputs. After training,
the statistical patterns in the data learned by the model are used to predict
the probability of new inputs belonging to either class.

Assume that for an input with values x; the output Y is required, with
Y = 0 meaning that the input belongs to class A and for Y = 1 it belongs
to class B. In logistic regression, the log-odds of an input is calculated using
a linear combination of its values:

log lp%p =g+ Z 0T, (5.1)

with «p and «o; being learned parameters. To recover the probability p
from this, a Sigmoid function is applied to the right side of the equation,
giving the probability that the output Y belongs to class B, or p(Y = 1).
Generally, p < 0.5 means the input is likely to belong to class A, and for
p > 0.5 to class B.
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(a) Logistic regression for one input dimen-
sion (X). The points A, B and D can

(b) Logistic regression for two input di-
mensions. The red line describes the

be reliably classified, but the model will
give unreliable output for C, which has
p(Y = 1)¢ = 0.5 and may belong to
either class.

“border” between the output classes, or
p(Y = 1) = 0.5 . The points A and
C can be reliably classified, but again
the model will give unreliable output

for points such as B, which have high
probability of belonging to either class.

Figure 5.1: Classification in 1 and 2 dimensions using logistic regression.

During training, the difference between p(Y = 1) and the expert-labeled
output is used to adjust the parameters «, improving the model. This is
achieved through gradient descent [7], which calculates the impact of each
input value x; on the final output, and adjusts its parameter «; to better
match the output that is required. Generally, a learning rate [ << 1 is used
to modify the weights only slightly for each input, to avoid undoing the
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effects of previous adjustments. The model resulting from this training pro-
cess is visualized in Fig. 5.1. Fig. 5.1a shows how the model discriminates
between points in one dimension. The red curve represents a model trained
on the input dimension (X), giving the probability of a point belonging to
Y = 1. The points A and D are classified with absolute certainty, and B
almost certainly belongs to Y = 0, as p(Y = 1) is only 0.05. However, the
model has difficulty classifying points such as C, which may belong to either
class as p(Y = 1)¢ is 0.5. Similarly, Fig. 5.1b shows the classification of
points with two input dimensions. In this figure, the red line represents the
“border” of the two classes as determined by the model, or p(Y = 1) = 0.5.
Points A and C can be classified with high certainty, but again there are
points such as B which could belong to either class. Such data points may
exist for any trained model; no training set can contain all possible data
points as that would defeat the purpose of training a model.

However, this approach means that the accuracy of the final model gener-
ally increases with the amount of training data, as long as the inputs and
outputs are properly distributed over all possible values. A downside of
logistic regression is that the algorithm can get stuck in a local optimum or
oscillate between several local optima, depending on initial parameters and
the available training data.

Although logistic regression can be applied to any number of inputs, it
can only discriminate between two output classes, limiting its usefulness.
However, it is often used as a base model in more complex systems.

Some problems can be modeled as a Markov Decision Process (MDP) [8], a
discrete-time stochastic process model. Such a process defines a state space
S, an action space A, and a probability function P, (S, sg,t) which describes
the likelihood of transitioning from state s, to state sg through action a at
timestep t. A reward function R, (sq,sg,t) provides the relevant reward for
any state transition. Using the reward function, Reinforcement Learning
(RL) [9], which is further explained in Section 5.2.3, can be used to learn
the optimal action policy for an MDP. This policy, once learned, decides
which action to take in any state, reducing P, (sq, sg,t) to a straightforward
probabilistic state transition P(sq, sg).

5.2.2 Evolutionary algorithms

Evolutionary or genetic algorithms [10] are modeled after the process of evo-
lution in biological organisms, and can be applied to a wide range of prob-
lems. Technically, they can solve any problem that can be represented using
a fitness function [11], whose minimum value over a search space should be
minimized. This basic property makes them well-suited for scheduling prob-
lems and organizational problems.
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An evolutionary algorithm starts by randomly generating n genomes (poten-
tial solutions), each of which contains all the values necessary to construct
a concrete solution to the problem at hand. Each genome can be evaluated
by the fitness function, thus ranking them by effectiveness. The algorithm
then runs for a predetermined number of epochs (iterations), with two ac-
tions being performed in each epoch. First, n new genomes are generated
by combining the values of parent genomes from the previous epoch, taking
into account restrictions on the search problem. The chance of a genome
being selected is proportional to its fitness value. In the second step, the
new genomes are mutated by randomly changing values in order to intro-
duce randomness in the search process. After the last epoch, the genome
with the best fitness value is selected as the solution.

This type of algorithm relies on examining many potential solutions simulta-
neously and introducing randomness in the search process to cover as much
of the search space as possible, while using a fitness function to guide the
process in the direction of optimal solutions. However, the solution is not
guaranteed to be optimal, and the algorithm may need to run for an un-
determined amount of time before arriving at an acceptable solution, while
the end result may not be explainable through math or logic.
Multi-objective optimization algorithms [12] such as MOGA [13] and NSGA-
IT [14] are a popular subset of evolutionary algorithms in the fog and edge.
These algorithms find Pareto optimal solutions [15] for multiple optimiza-
tion parameters by encoding data points, parameters and restrictions in
genomes. As an example, consider finding the optimal computational nodes
to deploy a number of software services on, depending on end-user latency
and available resources. A multi-objective optimization algorithm will in-
tegrate the relevant properties of services and nodes into the genome, and
both latency and available resources will be combined in a fitness function
resembling Pareto search. The output is a genome that encodes the optimal
node for each service to deploy.

5.2.3 Artificial Neural Networks

Like evolutionary algorithms, ANNs [9] are biologically inspired, simulating
computation as it occurs in biological brains. The base element of an ANN
is the neuron, which in its most basic form is described by Eq. 5.2. It
accepts a number of inputs x;, weighted by factors w;. The sum of these
values is used as input for the activation function f, the result of which is
the output y of the neuron:

y=rO_zixw) (5.2)
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inputs hidden layer outputs

Wo

(a)

Figure 5.2: Visual representations of (a) a single neuron (perceptron) and (b)
layered neural network (Multi-Layer Perceptron, MLP).

This equation is visualized in Fig. 5.2a. Geometrically, a neuron represents
a hyperplane dividing an i-dimensional space, which can be interpreted as
performing binary classification of the points in the space. There are many
variations on the basic neuron, with binary or floating point input/output
values, a great variety of activation functions [16, 17|, and the option of
adding a “bias” value; a static input that is always active. For example, a
single neuron can perform logistic regression by choosing a Sigmoid activa-
tion function and including a bias with weight «q, resulting in 5.1.

ANNSs learn patterns in a data set by using a backpropagation algorithm
(gradient descent) [9] to modify their weights, similar to how parameters
are updated in logistic regression. This can be done with either supervised
learning (pre-labeled data), Reinforcement Learning (RL) (reward func-
tion, automated feedback) or unsupervised learning, although unsupervised
learning does not necessarily use backpropagation. However, backpropaga-
tion can be computationally intensive depending on the choice of activation
function, as the complexity of the loss function involved in gradient descent
depends largely on the activation function used.

In the case of supervised learning [6], a training data set is used with inputs
and expert-labeled outputs. The output of the ANN for a given input is
compared to the expert-labeled output, and the difference is used to update
the weights. This type of learning is usually reserved for classification.

Both unsupervised learning and Reinforcement Learning [18] are used for
tasks where labelling outputs is infeasible, either due to the volume of data
involved or because the correct output is not known. While unsupervised
learning is completely unguided with respect to its outputs, RL uses a re-
ward function which returns higher values for “more correct” outputs, and
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a modified backpropagation algorithm is used.

Although a single neuron (or perceptron) can emulate basic algorithms such
as logistic regression, multiple neurons can be combined into neural networks
(or Multi-Layer Perceptron, MLP) to solve a wide range of problems. An
example of a basic neural network is shown in Fig. 5.2b, with neurons
organized into several layers, each processing the outputs of the previous
layers using a weights tensor wy;;, between neuron ¢ in layer k£ and neuron j
in layer k+1. In this figure, the middle layer is a “hidden layer”, only used for
computation rather than writing input values x; or reading output values
y;- The concept of bias neurons B is also illustrated here. Constructing
neural networks in layers allows each layer to process progressively more
complex features in the input data, with the final layer being able to classify
intricate, abstract shapes or patterns. Note that the example model is fully
connected, with each neuron in any layer being connected to each neuron
in the previous one, but in practical applications this is rarely the case.

Stacking layers of neurons results in a more complex, recursive learning
process. Neural networks and backpropagation require a lot of parameters
to work correctly, such as initial input weights and learning rates. Sub-
optimal choices often result in the failure to train a network, and as such
many studies have focused on choosing correct initialization values for these
parameters, and if and how they should be modified throughout the training
process [19]. Regularization and specialized activation functions are also
used to reduce model size and improve the learning process [20, 21].

The goal of gradient descent can be interpreted geometrically as finding
the lowest point in the hyperplane formed by the loss function used during
backpropagation. By itself, a static learning rate results in only a minor
improvement in a specific direction for each training input, which may not
be entirely in line with the true gradient of the hyperplane. Alternatives
include using decaying momentum [22] to guide the backpropagation algo-
rithm into a general direction over multiple training inputs. Other methods,
using second-order derivatives of the loss function, are more computationally
intensive and not always applicable, but produce excellent results with less
training data [23]. Finally, training samples are often processed in batches
to optimize both performance and training results.

In the last decade, hardware acceleration and architectural improvements [24]
have made it possible to create and train neural networks with dozens or
even hundreds of layers, now known as Deep Neural Networks (DNN) [9].
Combined with other advances, this has led to many specialized, highly effi-
cient innovations. For example, Convolutional Neural Networks (CNN) [25]
contain layers that have a similar function to image kernels, and are cur-
rently the most effective classification networks for visual input. Recurrent
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Neural Networks (RNN) [26], in which certain layers feed their outputs
back into their own inputs, can use memory strategies such as Long Short
Term Storage (LSTM) [27] or Gated Recurrent Units (GRU) for natural
language processing or translation, or other types of tasks with tokenized,
unbounded input where the state depends on previous inputs. In terms of
training, Deep Reinforcement Learning (DRL) [28] has simplified training of
deep networks, and advanced RL approaches such as Q-learning [9] can take
into account expected and future rewards, rather than immediate returns
from a reward function.

5.2.4 Distributed algorithms

Distributed and decentralized algorithms are designed to run on a large
number of computational nodes simultaneously. Whereas distributed algo-
rithms generally still have a centralized goal and combine their outputs,
decentralized algorithms simply divide a problem into small, independent
parts without the need to merge the outputs. Distribution and decentral-
ization are applicable to a wide range of algorithms, although some types of
problems are easier to partition, such as ANN training. Distributed algo-
rithms have two important advantages compared to monolithic, centralized
algorithms. First, the complexity of a problem can often be greatly reduced
by splitting it up into smaller tasks. Second, a distributed algorithm is
generally far more scalable, e.g. grid computing projects such as Boinc [29].
A popular distributed learning algorithm in the fog and edge is Federated
Learning (FL) [30], in which the training of a neural network is split up into
parts. This may be a straightforward division of labor, or it can be organized
hierarchically. After each node finishes its part of the training, the resulting
model updates are integrated into a centralized model, usually in the cloud.
The main advantage of FL is that it can offload model training from the
cloud to fog and edge devices depending on the computational capacity
of each node. A further advantage is the reduction of network traffic by
processing training data at the network edge, and that local processing of
training data can avoid privacy issues related to sending data to the cloud.
However, depending on the model involved, training may be unfeasible on
resource-limited edge hardware, and a long-term disadvantage is that FL
has to update a centralized model and distribute it to fog and edge nodes
from the cloud. More advanced approaches try to eliminate the cloud part,
and fully decentralize the weight updates through peer-to-peer updates.
Hierarchical Federated Learning (HFL) solves some of the communications
issues of vanilla FL by introducing a hierarchical structure into the process
of consolidating weight updates, usually through a middle layer in which
cluster heads perform intermediate model integration.



210 CHAPTER 5

Swarm Intelligence (SI) [31] is a general class of distributed algorithms in
which large numbers of independently functioning nodes or particles per-
form localized improvements, in an attempt to achieve a globally optimal
solution through emergent behavior. The logic of this approach is that on
average, an improvement for any node is also a global improvement, and the
optimal solution can be reached by letting each node find its own optimal
state. Although this approach can result in acceptable solutions, greedy
individual behavior and a lack of global coordination does not often result
in a theoretically optimal solution. Careful algorithm design is paramount,
and in order to increase the chances of an acceptable global solution, the
basic function to be optimized by each agent should be kept as straight-
forward as possible, limiting unexpected adverse behavior. SI is usually
applied to problems that are easy to handle for a single node, but which
are intractable on a larger scale. Particle Swarm Optimization (PSO) is a
subclass of SI, but it usually simulates all particles and generally does not
run as a distributed algorithm. PSO finds optimal solutions in a search
space by simulating the movement of large numbers of particles, gravitating
them towards each other as they find optimal states in the search space.

5.2.5 Blockchain

Blockchains are relatively new, originally introduced as the technology be-
hind various digital currencies, but increasingly popular in research for their
potential as secure, distributed storage. While a blockchain is not an Al con-
cept in itself, it is interesting to introduce it here because of its popularity in
Al-related studies. Although variations exist, blockchains in general have
interesting properties, but also significant challenges for their widespread
adoption [32].

Generally, blockchains are transaction-based, and they operate through a
number of decentralized, non-hierarchical nodes known as miners. Each
node in the network has a copy of the blockchain, a collection of “blocks”,
each of which in turn contains a number of transactions. Whenever a node
in the blockchain network creates a transaction, it is spread throughout the
network on a peer-to-peer basis, and processed by the miners into a new
block at the end of the chain. For the blockchain to be reliable, all miners
must reach a consensus on the transactions processed, and the order blocks
are processed in. However, this process is quite computationally intensive,
and a (financial) reward for miners is usually attached in the form of digital
currency, either through the process of mining itself or by demanding a
transaction cost. This digital currency is tracked by the blockchain itself,
avoiding fraud and contested transactions.

The most popular alternative currently used in studies is Ethereum [33],



INTELLIGENCE IN SMART CITIES 211

an open source blockchain using Ether as currency. Ethereum implements
smart contracts, allowing code to be embedded into transactions, and en-
abling its execution whenever the requirements are met. Due to the nature
of the blockchain, all parties agree by definition on the contents and execu-
tion of the smart contracts.

Although the decentralization of blockchain solutions offers some intrinsic
security and reliability, and smart contracts are a flexible and reliable ap-
proach to digital transactions, there are also some challenges to widespread
adoption these technologies. Most importantly, the energy use of blockchain
solutions is generally known to be excessively high, although various solu-
tions have been presented to alleviate this issue, for example Proof-of-Stake
consensus. However, the current state of the art still requires orders of mag-
nitude more energy per transaction than classical systems [34]. Because of
its distributed, peer-to-peer nature, it also takes far longer for transactions
to be processed by a blockchain solution than by a classical, centralized
system. Whereas a single node can process a transaction in just a few
milliseconds, the need for a network-wide consensus can increase the total
transaction processing time to minutes. Some blockchain implementations
are susceptible to manipulation if any single party controls over 50% of the
mining capacity, giving that party a monopoly on the consensus mechanism.
This risk can be mitigated with both technical and practical measures. Fi-
nally, the distributed and open nature of the blockchain means that anyone
can view its contents. Although they can not be changed, the plain read-
ability of transactions presents severe privacy issues. As such, extra security
measures will be needed for most concrete blockchain solutions, or off-chain
storage solutions may be needed to augment the blockchain.

5.2.6 Other

AT is not limited to the types previously listed in this section. It can take
many forms, especially when applied in a new environment such as edge
computing. For the purposes of this chapter, any method or algorithm
is considered a form of AI as long as the base problem is intractable, the
algorithm runs in the fog or edge, and predictive outputs are generated based
on any number of input dimensions. Note that this does not necessarily
mean that the algorithm has learning capabilities.

5.3 Intelligent Edge

As the scale of fog and edge networks grows, they eventually contain so many
computational nodes that classical, centralized algorithms cannot scale suf-



212 CHAPTER 5

ficiently to manage them. In networks containing millions of nodes, it is
impossible to gather network information and changing node statuses in
real-time to a single location, nor is it feasible for a single algorithm instance
to orchestrate services, detect malicious traffic, and route traffic within an
acceptable time frame.

Even in applications where timing is not an issue, the scale of any problem
combined with the computational complexity of any classical, cloud-based
algorithm will quickly overwhelm the hardware resources of a single cloud
node, or even a few cloud nodes. This problem of scalability can be solved
by decentralizing such algorithms and deploying them in the edge, and
by integrating Al into them. As discussed in Section 5.2, some types of
AT algorithms have a training phase, and as such they can determine the
important parameters for a problem during the training phase and produce
results quickly at inference. Furthermore, Al algorithms can be designed
to either send data to the cloud for use in further training, or even to
keep executing training rounds themselves using gathered data, and merging
the resulting weight updates through federated training. In all cases, Al
algorithms can keep improving their efficiency.

Finally, neural networks are very computationally intensive, but using mul-
tiple, specialized layers they can discover complex, non-linear relations be-
tween parameters that classical algorithms would not be programmed to
take into account.

Apart from decentralizing cloud algorithms and imbuing them with Al,
there are also cases where processing data locally is the most logical choice.
Reasons for this may include minimizing end-user latency, providing fun-
ctionality even when connections to the cloud fail, privacy issues with send-
ing data to the cloud (e.g. GDPR [35]), or various other legal requirements
or user preferences. As such, it is unavoidable to increasingly use decentral-
ized intelligent algorithms to manage any and all aspects of organization
and orchestration in the edge. Combining this infrastructural intelligence
with AI applications featuring direct user interaction results in the Intelli-
gent Edge, opening up the way to concepts such as Smart Cities [36]. Smart
Cities have various application areas where Al can be useful. There are gen-
eral Smart City applications, as well as Smart Homes, Industry 4.0, Internet
of Vehicles (IoV) and Smart Health Care. Each of these domains will be
further explained in Section 5.5.2.1.

5.3.1 Standards

Several recent IEEE standards and active projects focus on various aspects
of EI, or can be taken into account when creating EI solutions. For exam-
ple, IEEE 1934-2018 [37] adopts the OpenFog architecture as a standard,
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providing a framework for distributed computing, control and networking
functions in an IoT environment on which EI can be built. Sub-projects of
P2805 aim to establish intelligent protocols for self-managing edge comput-
ing nodes [38] and cloud-edge collaboration for machine learning [39], while
P2961 [40] is to provide a framework for distributed, collaborative machine
learning in an edge-cloud environment. Finally, there are also projects ex-
plicitly aimed at Smart Cities applications, e.g. P2979 [41] which aims to
provide a framework for intelligent cooperation of edge devices in various
IoV use cases.

5.4 Decentralized intelligence

This section discusses how Al and SoSwirly can be combined for smooth, de-
centralized weight updates, and pro-active service orchestration. Although
these ideas are not fully implemented and have been neither evaluated, nor
peer reviewed, their value as a basis for future work merits their place in
this dissertation. In all cases, FLEDGE can be used with SoSwirly as a
low-resource pod-capable container runtime.

5.4.1 Learning optimal service providers

While the implementation of SoSwirly presented in Chapter 4.4 is highly
scalable and has low system requirements, it remains a reactive algorithm
that merely adapts itself to whatever topology changes it can detect. Be-
cause of this, the algorithm will only switch to new service providers when
the QoS of its current providers is technically already unacceptable. By
introducing a learning component into SoSwirly, it should be able to pro-
actively switch to other service providers. The goal of this section is to
provide the fundamental requirements for such a component, and a poten-
tial, if untested design. The requirements for a predictive component are
straightforward:

e Considering the potential advantages, it is allowed to use more re-
sources, mainly processing power and memory, compared to default
SoSwirly. However, it should not require significant processing power
(e.g. at most 5% CPU on average), and the memory requirement
should be less than that of SoSwirly itself (e.g. at most 15MiB).

e Like default SoSwirly, it must be fast enough to operate in real-time.
Considering that it takes around 50ms to 200ms for a SoSwirly topol-
ogy to organize itself, and that this potentially takes tens of update
rounds, a single update round with the predictive component should
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not take more than 50ms. In other words, the component is allowed
to be an order of magnitude slower if it results in significantly higher
accuracy.

e The accuracy of the new component must be significantly higher than
that of default SoSwirly. Considering that SoSwirly already has an
accuracy of well over 90% in most cases, and over 97% in many oth-
ers, there is little room for improvement. However, a pro-active ap-
proach should avert cases with extremely low QoS compared to default
SoSwirly, resulting in an overall smoother experience.

5.4.1.1 Basic design and restrictions

These requirements are used as guidelines for the design of the new com-
ponent. The required functionality is simple; for any incoming distance
measurements to fog nodes, the model should output whether or not the
edge node it runs on should switch to that fog node for some service.
While ANN are classically very resource intensive, TensorFlow Lite [42]
is explicitly designed for use on low-resource devices, and even a limited
model with few parameters may improve the accuracy of SoSwirly if properly
designed and trained.

Furthermore, there are two options for training the model, once created.
The first is that each node could, periodically, send training data to the
cloud, where a new version of the model is trained and distributed. However,
this approach is incompatible with the decentralized nature of SoSwirly,
resulting in significant overhead and reduced scalability. The second option
is to provide each node with a basic (e.g. comparable with default SoSwirly)
model on first boot, and to use online learning on each individual node by
periodically performing training rounds on real-time incoming data. This
approach has the advantage of being highly adaptable to the needs of end-
users around a node, but the downside is that training ANN on low-resource
devices is currently very expensive in terms of computation time [43]. As
such, training rounds will have to be infrequent, and perhaps limited to
night-time processing of small batches of random samples collected during
the day.

Considering the nature of SoSwirly, this section will continue to build on
the second option. Because of the complex nature of the problem, no expert
will be able to label all the generated training data on every node, so RL
is required, specifically a (Deep) Recurrent Q-Network (DRQN [44]) with
a medium discount factor (e.g. v = 0.7) in order to focus on short-term
future rewards. Magableh et al. [45] illustrate the use of a DRQN for a self-
adaptive service architecture, although in their case the algorithm is not
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decentralized and takes orders of magnitude more time to decide on actions
than is acceptable for SoSwirly.

Since the input is essentially time-series data (i.e. the detected distance to
some node at some time), the model can incorporate GRU cells in the hid-
den layers to store state information and calculate complex time-dependent
relations between measurements [46]. Furthermore, the simplicity of the
input data neither warrants extracting complex features through a DNN,
nor is it suitable for convolution operations. As such, the hidden layers can
be reduced to the simple form of a small number of highly, or initially fully
connected layers. As edge nodes are to be provided with an initial model,
an aggressive dropout and L? regularization can be used while training the
initial model to limit the number of required parameters, model size, and
the time required per inference step. For the smaller training batches on
edge devices, regularization and dropout can be ignored.

5.4.1.2 Proposed model

A Q-network outputs the expected value Q for an action a at time t, or
more formally:

Q(s4,a) = F(X,, W, a) (5.3)

Where s; is the state of the service architecture on the node, X, is the input
tensor at time ¢, and T represents the various weights tensors in the model.
The actual value Q(st,a) can be mapped to the short-term improvement of
metric distance (or QoS) for the node associated with the input X;, or:

Q(St, a) = ﬁt+n — Dt (54)

Where D is the distance to another node, t is the current time, and n de-
pends on how far the model must look ahead. @ on the other hand, is the
actual measured difference D,;, — D; at the next distance measurement
performed by SoSwirly, and can be used to determine the loss function to
train the model. Another interpretation is that the model predicts the ve-
locity of a node in terms of the distance metric to produce Q, and according
to the Bellman equation used for Q-learning:

Q(s, ar) = 1y +ymax Q(si41, a) (5.5)

In which r; is the immediate reward for choosing a node (i.e. Dy11—D;) and
~v is the discount factor, the model must also learn to implicitly predict node
acceleration, to accurately gauge velocities in future timesteps. Therefore, if
the period of SoSwirly update rounds is made arbitrarily precise, a DQN will
learn to predict the short-term change in metric distance associated with
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a specific node at any time. Furthermore, if nightly training batches are
performed, randomly sampled sequences can be stored during the day along
with their actual values of r; and ). However, the nightly training approach
will severely limit the policy [47] that can be used, as only the ground truth
results for a greedy choice are available. Considering that reality is the only
possible generator for ground truth, more advanced policies require online
training.

The components of X; are limited by the design of SoSwirly; a distance
measurement consists of a node identification Iy, a metric distance Dy and
a timestamp Tp. To reduce input dimensionality, suitable representations
for these variables should be constructed. The number of input parameters
required to represent the node identification will depend on the maximum
expected number of neighbours a node will discover. If this number is small,
e.g. less than 20, a one-hot encoding can be used to indicate the relevant
node. However, for more neighbouring nodes, a specific embedding must be
calculated or learned, an overview of which is given by Potdar et al. [48].
For distance, a simple 8-bit value should suffice, supplying a distance range
from 0 to 255. Tokuyama et al. [49] show how timestamps and traffic volume
data can be encoded for IoV models, and their findings indicate that day
of week is an important factor in addition to a simple timestamp. Finally,
this choice of input tensor has a potential impact on training; since the
initial (cloud) training should be node agnostic, the training data must be
cleaned of node ID’s and the training phase repeated for a large number of
(randomized) node ID’s.
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Figure 5.3: Proposed architecture of RQN.
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Figure 5.4: Proposed architecture of RQN-based component for SoSwirly.

Although [45] uses only 16 units per GRU layer and FC layer, SoSwirly
is likely to require more degrees of freedom to learn the time-dependent
behavior of a collection of nodes. Additionally, three hidden layers are used
to allow the model to “remember" third-order features from the input data.
Note that, independent of these features, higher-order temporal features
(acceleration, snap, etc.) are implicitly available because of the recurrent
aspect. A single, non-recurrent FC layer of 10 units condenses the third
recurrent layer, from which a single activation function outputs Q Although
GRU layers use computationally expensive tanh activation functions, the FC
layer uses simple ReLU activation functions.

The proposed model resulting from this discussion is shown in Fig. 5.3.
The various weights from layers x to y are represented by W,,, although
Whp represents the collective weights used for recurrent factors. X; is the
input tensor for time ¢, while H; is the collection of hidden layers at time ¢,
including state. F'CY is the fully connected layer before the output Q.

However, knowing Q does not suffice, as it only represents the short-term
change in distance of a node N with respect to itself, or Q ~NN- In order to
determine if SoSwirly should switch to a different node for some service, the
improvement Q ~N¢ over the current node C' must be calculated, as given by:
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Qne = fyve = (De — Qce) — (Dy — Qnn) (5.6)

Knowing both QNC and Qcc, the lower of these numbers will indicate
the best choice of node to use for a service. The proposed architecture to
calculate both Qcc and QNC is shown in Fig. 5.4. Note that Qcc need
not be calculated every time; one calculation per update round is sufficient.
Finally, in order to reduce model complexity, this design is used rather than
creating a Q-network with both results as possible actions.

5.4.1.3 Preliminary performance analysis

A basic implementation of the proposed model, constructed in TensorFlow,
contains 18.861 parameters. Straightforward profiling with Keras Model
Profiler! indicates a memory requirement of 71.9KiB, and 18.4KiB GPU
memory for execution batches of a single sample. A reduced model, in
which the second and third GRU layers are replaced by FC layers with
ReLU activation functions, is about half the size at 9.561 parameters.
Running these models on an Nvidia Jetson Nano, edge-level hardware with
default TensorFlow support, results in average execution times of 44.5ms
and 21.9ms, for the full and reduced models respectively.

These numbers, although they concern random data, indicate that the pro-
posed solution fulfils the requirements concerning memory use and model
speed. However, the average model execution time is only barely below the
requirement of 50ms, and improvements such as dropout and regularization
can help reduce model size, and thus computational load. Finally, future
work is required to validate the accuracy requirement with suitable data.

5.4.1.4 Learning a distance metric

The presented approach is limited in that it still requires all nodes to express
distances as a single number. However, given a vector d in an N-dimensional
manifold, whose components d’ are the parameters used to calculate the
distance Dy [50], then:

DY = g(d,d), g = gijda’ @ da’ (5.7)

Where g is the metric tensor describing how the total distance is influenced
by the gradient products dz’®dz? of each pair of dimensions of the manifold.
Assuming a linear activation function, the metric tensor is no more than the
weights tensor between a layer of input neurons and a single output. If the

Thttps://pypi.org/project /model-profiler /
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input is pre-calculated as d* ® d’, a single operation will allow the model to
learn g;; as linear combinations of components of d:

D% =gijd7,d¥ =d' @ d’ (5.8)

Learning higher order functions requires modifications to allow more layers.
Although determining a single metric tensor for an entire (So)Swirly topol-
ogy was shown to be impossible, this method allows each node to learn its
own metric in order to calculate distances to other nodes. Furthermore, the
requirement that all dimensions must be continuous and differentiable no
longer applies, as an ANN will learn an approximation for the distance met-
ric even in the case of discrete dimensions. This component can be trained
independently of the rest of the proposed model, limiting overall complexity.

5.4.2 Decentralized weight updates

The decentralized learning component described in the previous second may
benefit from receiving weight updates from other nodes, in order to “learn”
from their experience.

While some approaches already exist for the decentralized dissemination of
model weight updates, they are not directly applicable to SoSwirly. Brain-
Torrent [51] uses a peer-to-peer network to distribute weight updates, which,
although proven to be an effective strategy, would result in a significant
overhead on each edge node. Lalitha et al. [52] show that a cooperative
decentralized learning approach results in a more accurate model than each
node learning by itself, but the evaluation is performed with only two nodes,
and does not consider the scalability of their method. Notably, they also
show that one-hop neighbours can provide sufficient information required
for their weight-update mechanism.

As SoSwirly relies on the concept of neighbourhoods to limit the amount
of exploration and computation at each node, a suitable highly scalable
weight sharing mechanism should do the same. This breaks the assumption
of related work that eventually, all weight updates will be spread to all
nodes, either directly or by aggregated updates. Additionally, any solution
must be designed to operate on low-resource edge devices with minimal
connectivity.

5.4.2.1 Basic proposal

The properties of Gossip Learning (GL) [53, 54] closely fit the requirements
for decentralized weight updates in SoSwirly. In its basic form, under GL
each node learns online with local data, and performs a random walk of
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known nodes to request their versions of the model. Ensemble learning is
used to merge and update these versions into the local model of a node.
The first aspect, online learning, is performed by the component described
in Section 5.4.1.

However, instead of performing a random walk, the second aspect will ini-
tially rely on requesting the model of each node in the discovered neigh-
bourhood, making this a geographical rather than random approach. To
ensure a smooth and symmetric weight update distribution, a diurnal pro-
cess is defined during which nodes perform online learning at any possible
moment during the day and night, keeping track of an “active” model and a
“learned” model, followed by an update round at the start of a new day (i.e.
when the date rolls over). This update round is split into two phases; first,
every node collects the “learned” model of each of its neighbours, while in
the second phase each node merges the “learned” models, including its own,
into the “active” model. The update operation is generally described by:

W = F(Wg, W), ¥r € R (5.9)

Where w0, is the model weight tensor of the active model on the local node,
wl,r is a remote learned model weight tensor, and R is the collection of
nodes in the neighbourhood, including the local node.

The exact form of F(w;,) is determined by the third aspect, and can be
fulfilled by any number of ensemble methods [55], although a weighted av-
erage, which is used in straightforward Federated Learning, is the least
computationally intensive method:

R _ _
Pl {0 50

Zr:O ar

Where a, is the number of samples learned on a node during the last day,
going from its “active” model to its “learned” model. Synchronizing the

Wy +

Wy =

separation of the collection and update phases on all nodes is essential; if
any node were to start distributing its final updated model while others are
still collecting updates, nodes receiving that model would implicitly process
some updates with a higher weight, and transitively process some updates
they should not have received.

Because of the geographical nature of the weight distribution mechanism,
nearby nodes will receive similar updates (and thus similar models), while
updates from more distant nodes will eventually be received in a diluted
form. Eventually, an equilibrium will result at every node when the daily
local learned update exactly opposes received updates:
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@ (By — Wa) = Y _ ap (W1, — W) (5.11)

As w, depends on a learning rate «, this can be rewritten in terms of each
learning sample Z;, y;:

: aF x_i»wavyi u _ _
Ay QX Z(%) = Zar(wlm — wa) (5.12)
r=0

Showing that a lower learning rate will produce a more homogeneous model,
and a higher learning rate will enable independent node behavior. Assum-
ing a homogeneous connectivity, Eq. 5.10 can be extended to reflect the
influence of distant nodes:

Zf:() ar,t(wl,r,t - wa,t)
25:0 Qrt

This equation indicates that, if learning samples are equally divided over

Wq,t+1 = Wa,t + (5.13)

all nodes, local updates and updates from direct neighbours at day ¢ each
have an influence of 1/R over the model at day ¢ + 1. Second order effects
are produced by two-hop neighbours and the node itself, which each con-
tribute at 1/R?, and the total effects eventually reduce to (R~ —1)/R?,
or O(1/R™), after t timesteps for nodes n hops away, showing that if R > 2,
which is an absolute requirement for a functional network, the effect of dis-
tant nodes quickly converges, and a low connectivity encourages behavioral
islands. Note that the neighbourhood discovery algorithm in SoSwirly ad-
justs itself to achieve a configurable minimum connectivity, which is set to
10 by default.

5.4.2.2 Alternative approaches

Depending on the application, the severe discount of remote updates pre-
dicted by Eq. 5.13 may or may not be acceptable. If remote weight updates
should have a bigger impact, the discovery algorithm can be run separately
for the weight update mechanism, with a larger discovery radius or higher
minimum connectivity. Alternatively, the algorithm can be modified so that
each node accepts pushed models rather than pulling them from known
neighbours. Using this approach, a node merely sends its own “learned”
model to known neighbours, and waits for incoming models for a set period
of time before integrating them as in Eq. 5.10. By attaching the node iden-
tification and a form of geotag, combined with a maximum distance, the
onus is on the receiving node to determine if it should accept and propagate



222 CHAPTER 5

a specific weight update. Furthermore, nodes should receive each weight up-
date once at most, and all received updates are stored on disk until they are
merged. The node identification is used to avoid duplicate propagation if a
specific update is received a second time. Using this method, the number of
weight updates to integrate can be scaled as far as node hardware allows, to
a random walk of possibly tens of thousands of updates, without imposing
an overhead on the discovery algorithm. Network overhead, which is likely
to be the first issue, can be reduced by compressing the model updates [56].
A rough estimate of which method to use may be derived from the evalu-
ation of SoSwirly. Remembering the theoretical performance of the neigh-
bourhood discovery algorithm, the network traffic requirements of receiving
pushed models can be compared to a random walk of the discovered neigh-
bourhood:

864008,
Tu
Where S,, is the size of the model in bytes, B,, is the network bandwidth
required to contact a node during discovery, Ty, is the period of the discov-
ery algorithm, and f,.,,q4 is the frequency of model selection during a random
walk. As r% is the factor to be maximized, it can be dropped while min-

T123pFSm = T?DPF( + Smfrnd) (514)

imizing the remaining factors. Furthermore, as SoSwirly required around
2Kbps to discover 10 nodes every 10 seconds, on average. a rough estimate
of 0.25KB can be made for the discovery of a single node. Assuming 7}, can
be extended to 6 hours for a daily mechanism, the result is:

Sm (1 — frna) >1 (5.15)

Which, as expected, depends only on the size of the model and the frequency
of random selection of nodes. For the proposed model of 80KB, the random
walk approach has a lower network overhead if only as much as one out of
every 80 nodes is not contacted for a model update, or fr,q < 79/80. As
a corrolary, f.n,q should not be too small, as this will increase the network
overhead per processed weight update. As a percentage of model size, the
overhead comes down to:

864005,
SmTufrnd

Which results in a 1.2% overhead for the break-even case of processing
the updates of every 79 of 80 known nodes. This equation can also be
used to predict the network overhead of using a larger discovery distance
while keeping the number of model updates constant. When extending
the neighbourhood radius by a factor of 10, f,,4 is reduced to 0.01, and a

0= (5.16)
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much greater variety of node updates is available but the network overhead
rises to 125% per selected node update. Evidently, if network bandwidth
is the limiting factor of a device, a tradeoff will have to be made between
the variety of updates, overhead per update, and the number of updates
actually processed. In all other cases, the random walk approach is far
more effective.

Finally, the merge operation itself can be modified for better learning; the
weights can be dropped in favor of a standard average in case some nodes
have too much influence, and other operations may better suit the learning
process, and the latter may depend on the learned function, its gradient,
and whether each node explores the same (or a close enough) gradient.

5.4.2.3 Preliminary performance analysis

The system requirements of the basic proposal are relatively low. Neigh-
bourhood discovery is done through SoSwirly, and requires little extra mem-
ory or processing power. The storage and processing power required to
pull models from neighbouring nodes and merge them depends on neigh-
bourhood size. As shown, storing a single model of the SoSwirly predictive
component requires about 80KiB, and merging two models requires MADD?
operations (or similar low-grade calculations) on only 9500 to 19500 weights.
Even with 1000 discovered neighbours, low-grade edge hardware should be
able to receive 8OMiB of data and integrate 19.5 million parameters nightly,
but in extreme cases where edge node density is too high, the random walk
aspect of Gossip Learning can be reintroduced.

5.5 State of the Art

This section contains the edited version of the following publication: “En-
abling and Leveraging AI in the Intelligent Edge: A Review of
Current Trends and Future Directions”, T. Goethals, B. Volckaert, F.
De Turck
published in IEEE Open Journal of the Communications Society,
2021 [57]

This Section provides a review of the state of the art of Edge Intelligence.
First of all, Section 5.5.1 explains the motivation for this review, and lists
related work for the main topics of the review; enabling technologies
for Al in the edge, Al approaches to organize various aspects of edge
networks, and finally Al-assisted applications running in edge networks.

2https://en.wikipedia.org/wiki/Multiply % E2%80%93accumulate _operation
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In Section 5.5.2, the taxonomy of the review is elaborated, and a number of
recent studies for each topic are examined in Sections 5.5.3, 5.5.4 and 5.5.5.
Finally, future challenges and vision papers are presented in Section 5.5.6
and conclusions are drawn in 5.5.7.

5.5.1 Motivation and Related Work

Although the use of Al in the edge is relatively new, a vast body of work is
related to it directly or indirectly. Existing surveys and reviews often focus
on an extremely narrow aspect of Al in the edge (e.g. specific enabling
hardware, only deep learning applications), without providing a larger con-
text and assuming advanced knowledge of the reader in all the discussed
topics. While such works are undeniably useful, the continued expansion of
the research field and the divergence of its constituent topics make it ever
more difficult to form a high-level overview.

This review aims to provide a holistic overview of what constitutes, and
is necessary for, the Intelligent Edge, and to provide a variety of useful,
recent studies in this wide area of research. However, this section does not
include an exhaustive list of studies for each topic discussed, preferring in-
stead to provide a high-level summary of the state of the art. The topics
in this review require a deep understanding of Al, cloud technology, and
fog and edge networking. As such, all these concepts are first introduced
to the required degree, and references are provided for further exploration.
Furthermore, the concept of the Intelligent Edge, being based on two large
and rapidly-changing fields of research, is itself volatile and constantly pro-
gressing. Therefore, periodical reviews can aid in the continued discovery
of research in the field.

The rest of this section presents related work, starting with general reviews
and surveys of Al in the edge and continuing with more specific areas of
research, such as enabling technology and Smart City Al applications.

5.5.1.1 Edge Intelligence

The work of Deng et al. [58] provides a taxonomy of Al in the edge which
focuses mostly on Al for wireless networking, improving service placement
using AI and enabling Al, specifically in the context of DNNs. Other as-
pects of Al in the edge, such as security and reliability, are only summarily
explored in favor of a more in-depth technical explanation of the main top-
ics.

A survey by Shi et al. [59] considers the communication efficiency of Al in the
edge. The premise of the study is that Al algorithms on edge devices should
sparingly use the limited bandwidth available. As such, they present studies
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Table 5.1: Comparison of scope of general Edge Intelligence surveys.

Article AT types Focus Additional fea-
tures
Deng et al., | Deep learning | Wireless net- | Taxonomy
2020 working
Shi et al., 2020 | Neural net- | Communication | /
works
Zhou et al., 2019 | Deep learning Enabling & inte- | EI rating
grating Al
Zhang et al., | General IoT sensors Taxonomy
2020
Wang et al., | Deep learning | General Taxonomy
2020
This review General Organization & | Taxonomy
applications

ranging from the training of communication efficient models to optimizing
communication between algorithms on different nodes during inference.
Zhou et al. [2] provide a broad overview of studies related to both the
training and inference stages of deep learning for EI. In addition, they also
provide a rating system for the amount of integration of intelligence in the
edge, ranging from cloud-only Al to edge-only Al

In their survey on Artificial Intelligence of Things, Zhang et al. [60] present
a detailed taxonomy on enabling, designing and using intelligence for edge
IoT sensors. The article provides a wide range of relevant studies, mostly
related to the main topic of learning methods and perception models for
IoT.

Wang et al. [61] provide a taxonomy and works related to the various stages
of enabling and using deep learning models in the edge, ranging from hard-
ware innovations to actual inference on the edge and relevant applications.
A comparison of these works is found in Table 5.1.

5.5.1.2 Enabling AI in the Edge

Much effort has gone into enabling DNNs on edge hardware. CNNs in
particular have very deep and computationally intensive architectures, but
the operations involved are highly modular and repetitive, making them
excellent candidates for acceleration through custom hardware. A survey
by Véstias et al. [62] focuses specifically on accelerating CNNs using re-
configurable computing hardware, while another from Véstias [63] focuses
on hardware acceleration of deep learning in general.
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In a more general study, Zou et al. [64] list various hardware technologies
that enable or accelerate specific types of Al in the edge. Most of these
are designed for CNNs or deep learning in general, but some are aimed
at Support Vector Machines (SVM). For each technology, the envisioned
machine learning tasks and energy efficiency are reported.

In a survey by Nazir et al. [65], a holistic pipeline model for the compression
and distribution of deep learning tasks in the edge is presented. As an
introduction, this study lists various types of neural networks commonly
used in the edge, and links to studies with concrete applications of each
type. For the main part, it provides selected studies for each of the stages
of the presented pipeline: model compression, (hardware) acceleration and
parallelization. Importantly, the authors discuss the various types of model,
data, and architectural parallelism that can be exploited to run complex
neural networks in the edge.

5.5.1.3 Organizing the Edge through Al

The importance of Al for security in the edge is highlighted in a survey by
Mohanta et al. [66]. In this study, they list potential attacks on IoT devices,
and refer to studies showing how AI can be applied to prevent attacks (e.g.
intrusion detection, malicious app code). Additionally, studies are cited
that show how blockchain technology can be used to enable distributed
intelligence and ensuring smart contracts.

The use of AI in vehicle-to-everything (V2X) networks is highlighted by
Rihan et al. [67]. In their survey, they provide an overview of the poten-
tial of AI to both enable next-generation V2X networks, and the future
applications utilizing those networks.

More applications of Al for edge networks are provided by Wang et al. [68].
In this article, studies are listed that use AI to enable or improve various
aspects of 5G and Beyond-5G (B5G) networks. The authors argue that
AT can be used to solve currently intractable problems in the design and
optimization of wireless edge networks.

The importance of AI for reliable edge networks is covered by Gupta et
al. [69], specifically arguing for the synergy of EI and next-generation 6G
networks to enable advanced, low-latency, ultra-reliable applications (e.g.
ToV, drones, holographic communication).

5.5.1.4 End-user Applications using AI

In a general survey of the application domains of AI in the edge, Huh et
al. [70] provide a number of studies related to often-referenced domains such
as Smart Homes, autonomous vehicles, Smart Factory and Smart City, but
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also cite studies related to the more general domains of cloud offloading,
video content analysis and Mobile Edge Computing (MEC).

An overview of Al applications in the Smart City is provided in a survey by
Ullah et al. [71]. This article considers AI in Intelligent Transport Systems
(ITS), Smart power grids, and cyber-security of Smart City systems. Addi-
tionally, the topic of UAV-based communication in 5G and B5G networks
is discussed.

In their Smart Grid review, Gilbert et al. [72] list various studies in three
distinct categories: the current requirements and uses for smart grid appli-
cations, which smart grid applications benefit from edge computing, and
the future challenges for smart grid applications in the edge.

A survey by Sepasgozar et al. [73] provides an overview of Al in Smart
Homes and Energy Management Systems. The article presents a deep sta-
tistical analysis of the studies found, including co-author connectivity and
lexical analysis. Selected papers for each domain vary greatly, but are dis-
cussed in detail.

The potential of AI in Internet of Medical Things (IoMT) based health
care is illustrated in a survey by Greco et al. [74]. Examples of ToMT-
specific devices are health monitoring wearables and field sensor networks,
which can be organized in edge networks. Greco et al. provide studies
that combine AI and IoT in a wide range of medical aspects, including
physiological monitoring, rehabilitation, dietary assessment and epidemic
diseases.

In their survey, Angelopoulos et al. [75] provide studies related to the use
of Al in Industry 4.0 and Industrial Internet of Things (IIoT). The article
provides a taxonomy for Al in Industry 4.0, listing studies for each category
with a focus on the link between functionality and the type of Al algorithm
used.

5.5.1.5 Blockchain

A survey by Singh et al. [76] provides the required background knowledge
on blockchains as distributed, public databases in the context of Smart
Cities. A number of studies are provided that combine AI with blockchain
for security aspects of Smart Cities, while discussing how blockchains can
improve privacy and trust, and analyzing potential issues with blockchain
solutions.

In their survey, Yang et al. [77] provide a complete roadmap to the inte-
gration of blockchain and edge computing, starting with the motivation for
the integration of both technologies, and moving on to frameworks, poten-
tial functions of blockchain in the edge, and challenges to the widespread
adoption of blockchain technology.
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Mohanta et al. [66] list various studies that show how blockchain technology
can be used to enable distributed intelligence and ensuring smart contracts.
A more specific survey by Wu et al. [78] considers the combination of
blockchain and edge computing to improve the security and scalability of
IIoT. This survey identifies potential issues with critical infrastructures in
Industry 4.0, and argues for the convergence of blockchain and edge com-
puting to tackle these issues, providing various supporting studies.

Finally, Nguyen et al. [79] discuss the potential of the blockchain combined
with FL (FLchain) for edge computing, listing opportunities and challenges
for various edge applications such as crowdsensing and edge content caching.

5.5.2 Methodology

This section describes the methodology used in constructing a taxonomy
and discovering the relevant subcategories for each top-level category. Note
that while many of the individual low-level aspects may be applicable to
other forms of computing, including general cloud computing, the taxon-
omy concerns only how they affect Al-related edge computing specifically.
This section also elaborates how queries are formed from taxonomy-related
parameters to find relevant studies, and how studies are categorized based
on current research trends.

5.5.2.1 Taxonomy

Fig. 5.5 show the taxonomy used for this review. Although the main focus
of the review is the “Organization” category, both “Enabling Technology”
and “Applications” are useful to include because they are closely related to,
and often mesh with, proposed frameworks and solutions to organize the
Intelligent Edge.

The subcategories are discovered by performing searches on Google Scholar
with various relevant keywords, and then grouping the results by recurring
subjects. The keywords and subcategories are refined iteratively, until each
subcategory contains at least 3 sample studies, but no more than 10, prefer-
ably with one recent, dedicated review or survey indicating further research.
Table 5.2 shows the final list of keywords, which are also used to construct
queries to find the individual studies and articles listed in Sections 5.5.3
through 5.5.5. Although each (sub)category is elaborated in those sections,
a short introduction to each is given here to fully explain the taxonomy.

Enabling Technology In the context of this review, enabling technol-
ogy is defined as any hardware or software improvement that enables or
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improves the use of Al on an edge device. In other words, this category en-
tails improvements to Al itself, rather than improvements in edge networks
achieved through the application of Al

There are four popular areas of research in this category:

e Hardware improvements or new specialized types of hardware gen-
erally increase the performance of AI, although they also indirectly
result in new functionality and the ability to use more accurate Al
models. Examples of this are the Neural Processing Unit (NPU) [80],
which can be optimized for the type of repetitive calculation used in
ANNSs, and Field Programmable Grid Arrays (FPGA), which in their
most basic version can be modified at the hardware level to quickly
execute any algorithm without the need for software programming.
Any edge device is capable of running neural networks without an
NPU, but such a specialized processor can increase performance and
practical model size by orders of magnitude without increasing the
power requirements of a device.

e Offloading is not strictly an enabling factor of Al in the edge, but
improves it nonetheless. Its original intent was to move certain well-
delineated tasks from the cloud to the edge or vice versa. As such, a
lot of research in offloading is related to being able to run Al in the
edge in the first place.

e Model flexibility relates to different factors that allow the modifica-
tion of Al models for low-resource edge devices. For example, model
compression is used to reduce the size of a model, and to improve its
performance, at the cost of a small loss in accuracy. Other approaches
involve creating incrementally smaller but less accurate models for
different classes of hardware, or using modular models, although the
latter is closely related to offloading.

e Training and inference phases are often split up, as training a model is
very computationally intensive and usually done in the cloud. Because
all training data has to be gathered in the cloud, this approach is not
scalable. Moreover, it enforces a single model for all devices, even
if individual, localized learning may result in more accurate results.
Existing techniques such as FL aim to solve this issue by integrating
the changes learned by each device into a central model, but training in
the edge is still affected by energy efficiency, scalability and processing
power.
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Organization This category entails studies that use Al to improve the
infrastructure of the fog and edge. More specifically, this includes organizing
software services, data and (software defined) networks, and ensuring their
security and reliability. Note that many of the aspects of “Organization” are
closely related. For example, a study may involve a novel method of com-
bining service scheduling and aspects of SDN to improve service reliability
or scalability.

There are a number of subcategories that studies can contribute to:

e Orchestration is the optimization of service scheduling and deploy-
ment, and the study of various parameters involved. Many studies fo-
cused on this involve optimizing QoS or end-user experience, balanced
against a number of other factors such as energy efficiency, or mini-
mization of resource use or network traffic. Effective algorithms for
orchestration in the cloud exist, but in the fog and edge they are com-
plicated by scale, heterogeneous hardware and the need for real-time
adjustments due to mobile nodes. This problem can be further com-
plicated by also taking data placement into account, although most
studies focus on either data placement or service placement alone.

e Scalability focuses specifically on the problems imposed on service
and network management by the geographical scale of the edge, and
the sheer number of devices in it. Scalability can be achieved by decen-
tralizing frameworks or algorithms, but also by organizing them hier-
archically or through modularization. In the first case, self-organizing
networks and service architectures can be designed, while in the others
the cloud is usually employed as the highest, centralized level of the
service architecture. Offloading, as discussed in “Enabling Technol-
ogy”, can be used to move parts of cloud workloads to the edge, and
as such represents a limited form of scalability. Finally, automated
discovery of nodes and (service) resources is an important step in ef-
fective and efficient self-organization on the scale of edge networks.

e Security of data and network traffic in the edge is complicated by
the increased exposure compared to cloud data centers, and because
of the scale of the edge. Research into adversarial attacks attempts to
solve security issues with Al itself, in particular DNNs which can be
“tricked” into incorrect classification. Anomaly detection and intru-
sion detection using AI are popular research topics in the security of
edge networks, although there are other aspects in securing networks.
Similarly, blockchain technologies are gaining a lot of attention for
scalable and secure transaction systems, and where data in the edge
is concerned, privacy is the most significant aspect of security. Finally,
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AT can also be used to secure connections through authentication or
authorization.

Reliability of software, networks and data (integrity) ensures the
continued and seamless functioning of fog and edge services from an
end-user viewpoint. Reliability of software includes seamlessly failing
over to other service instances when any instance becomes unreach-
able, in addition to taking steps that services do not end up in invalid
states to begin with. Network reliability involves finding new routes
around unreachable nodes or subnetworks, and discovering and main-
taining redundant routes. Both network and service reliability require
real-time monitoring of nodes and services to enable Al optimization,
and they are often used in combination to ensure QoS targets. For
data, reliability means not only availability and redundancy, but also
the integrity of the data itself. This is different from data security in
that data may become unintentionally corrupted due to hardware or
software errors. The latter case can also be caused by problems with
Al systems, in which case redundancy and correction are needed.

Network organization in the edge is usually done through SDNs, im-
posing a virtual, software-controlled layer of IP addresses and network
functions (e.g. NFV) on top of the physical networks comprising the
fog and edge. Apart from SDNs, many studies focus on network re-
source discovery and application traffic routing in the edge, either as
NFV or as part of a holistic approach to edge networking. Finally,
6G networking has recently emerged as a research topic, aiming to
integrate Al directly into various aspects of next-generation network
management and operation.

Applications “Applications” in the Intelligent Edge differ from the topics
listed in “Organization” in that they are AI applications that interact with
end-users, running on top of the Al-organized edge. As such, these appli-
cations represent the end goal of creating the Intelligent Edge: intelligent
applications running autonomously on Al-managed infrastructure, enabled
by AI specific technology.

The Intelligent Edge applications discussed in this review are:

e Smart City is a collective term for all applications using Al in the

context of cities. In this review, only applications that employ EI
are considered, although many can also be realized through AI in the
cloud, albeit at the cost of increased communication overhead and
higher response times. There are a number of popular research top-
ics in this area, such as inner-city traffic and parking management.
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Other topics include public health monitoring (e.g. fall detection),
and security (e.g. surveillance of specific areas). Scaling Smart City
applications to manage entire cities poses challenges in terms of ser-
vice deployment, traffic routing, resource monitoring and real-time
reaction to changes in service and network topology (e.g. movement
of nodes, redistributing load).

e Smart Home applications aim to gradually improve all aspects of
homes, from basic automation to fully Al-assisted living. Similar to
Smart City applications, many recent Smart Home studies also focus
on health monitoring and security, although there is less need for
scaling and more focus on privacy and personalization. Scalability
is also an important requirement, but only to be able to deploy the
appropriate services to individual homes when required, rather than
forming a collaborative service mesh across an entire city.

e Industry 4.0 aims to improve various aspects of industry and man-
ufacturing through AI. For example, blockchain and Al combinations
can reliably log information, which can later be used to track down
production chain issues related to faulty manufactured items. Other
technologies such as digital twins promise to optimize manufactur-
ing processes by setting up virtual duplicates and searching for ideal
settings and parameters, either for each step or holistically.

e Internet of Vehicles or IoV has a wide range of applications. Some
studies involve the detection of traffic problems and proactively man-
aging the flow of traffic around affected areas, often using dedicated
roadside units as computational nodes. Others focus on inter-vehicle
communications for optimized traffic flow, or other network-related
aspects of autonomous vehicles. In almost all cases, IoV applications
need to work with large numbers of fast-moving, unpredictable ve-
hicles, combining the latest in extremely low-latency communication
(e.g. 5G or 6G) with highly flexible network and service management.

e Smart Health Care aims to combine IoT and Al for various health
related purposes, most importantly preventive health care and effi-
cient, personalized patient monitoring. Applications include, but are
not limited to, fall prediction, general elderly care, preventive and
chronic health care through monitoring, and epidemic monitoring.

5.5.2.2 Query parameters

The results of this review include both numbers on recent research trends,
and selected studies, both of which are gathered by querying Google Scholar.
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Table 5.2: Query keywords per taxonomy (sub)category.

’ (Sub)category\ Keywords

Enabling GPU, NPU, FPGA, hardware acceleration,
Technology partitioning, inference, offloading
Orchestration | deployment, provisioning, scheduling, opti-
mization, energy efficient

Scalability scalability, decentralized, hierarchical, discov-
ery, offloading

Security security, anomaly detection, intrusion detec-
tion, adversarial, blockchain security

Reliability reliability, resilience, fault tolerant

Network networking, discovery, SDN, routing, 6G

Applications | smart city, smart home, industry, iiov, iov,
vanet, iomt, health care

Table 5.3: Query keywords for types of Al

] Al type \ Keywords
Regression regression
Genetic algorithm evolutionary, genetic
Unsupervised learning | unsupervised
Supervised learning supervised
Neural network neural
Federated learning federated
Distributed learning distributed learning
Swarm intelligence swarm

This source is chosen because it is a well-maintained meta-index, linking to
studies found in various other indexes. For trends, the following base query
is used:

(’edge network” OR ”edge computing” OR ”fog computing” OR
”fog network”) AND ”(keyword(s))” AND ”artificial intelligence”
where (keyword) is replaced by the keywords from Table 5.2. Note that the
keywords are not always directly mapped to taxonomy categories. Rather,
they are considered relevant topics which may yield studies that can be
mapped onto the taxonomy. The query is crafted to return almost no false
positives, and as little false negatives as possible. However, many keywords
are mentioned only in passing in loosely related studies, especially as the
popularity of any subject increases, so the apparent interest in some topics
will be inflated compared to the actual interest.

Historical trends are given from 2015 to 2020. Before 2015, most keywords
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yield either unreliable results (e.g. less than 5 studies, keywords not yet
coined) or irrelevant results, and 2021 is excluded from the trends because
extrapolating numbers from an incomplete year is unreliable. In all searches,
the Google Scholar options “include patents” and “include citations” are
disabled so that the results represent only studies in which the keywords
were actually used in the text.

The trends are presented in Sections 5.5.3 through 5.5.5. Some keywords
are inevitably more popular than others, either due to a focus of interest in
their specific direction, or due to being often-quoted concepts in studies on
EI. Because of this, the results will be presented in two forms; the absolute
numbers to indicate the amount of research interest per keyword, and nor-
malized numbers to determine the growth of research interest. In the latter
case, the results are normalized to the amount of research interest in 2015
for each keyword. Finally, in the charts for relatively research interest, a
“General” trend is added representing the average interest growth in EI.

In addition to the popularity of Al in research topics, the popularity of the
types of Al used in the edge, as discussed in Section 5.2, is determined by
compiling interest trends using the same methodology as for research topics.
The keywords used to gather the data for these trends are shown in Table
5.3. The results are presented in Section 5.5.4.

Further requirements are introduced for the selection of referenced studies
from the base query. The studies included in this review range only from
2019 to 2021, and their topics must explicitly relate to a novel application
of Al in one or more aspects of edge computing as detailed in the taxonomy.
They must also be effectively published in a peer-reviewed journal, barring
a limited number of accepted studies from 2021 for which pre-print versions
are used.

5.5.3 Enabling the Intelligent Edge

This section discusses recent work related to the “Enabling Technology”
category of the taxonomy presented in section 5.5.2.1, including novel hard-
ware solutions, innovations in offloading, AT model flexibility and important
progress in (distributed) training and inference algorithms for EI.
Although this review aims to cover all types of Al, (deep) neural networks
are currently the most computationally intensive type of Al, and the least
suitable to run on general purpose low-resource edge devices. As such, most
of this section covers technologies to improve the inference stage of DNNs
in the edge.

Fig. 5.6 shows the number of studies that mention keywords related to
enabling Al in the edge since 2015. In absolute terms, the most popular
topics are offloading and optimization of inference in the edge, followed
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closely by GPU acceleration. Considering relative interest, various hardware
acceleration methods have gained a lot of interest since 2018, keeping pace
with or outpacing interest growth for other keywords.
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Figure 5.6: Number of studies mentioning AI enabling technology in the edge.

Various dedicated PUs aim to improve the performance of Al inference on
low-powered edge devices. Commercial PUs include Google Edge TPU [81]
and Nvidia Jetson Nano, both of which are designed for running DNNs in
the edge. FPGAs are often used for the acceleration of repetitive but com-
putationally intensive tasks. As an example, the use of an FPGA System-
on-Chip (SoC) with OpenStack [82] allows the ARM CPU of the SoC to
run a customized OpenStack worker and task planning, while the FPGA
itself executes DNN inference. This particular solution uses Dynamic Par-
tial Reconfiguration (DPR) to continually update the FPGA programming,
enabling OpenStack to run a virtual machine on the FPGA. Memory is
shared between the CPU and FPGA for performance reasons. This solu-
tion manages to run a YOLO implementation at 8fps using merely 6.57W
of power, coming close to real-time video stream processing.

At the level of single devices, efficient management of different PUs can sig-
nificantly improve Al performance. In particular, NeuroPipe [83] is aimed at
improving the energy efficiency of DNN inference on edge devices by slicing
each layer into chunks suited for the processing capacity of each available
PU, and pipelining them independently. By parallelizing execution like this,
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Figure 5.7: Relative interest in Al enabling technology in the edge, normalized to
2015.

NeuroPipe manages to reduce energy consumption by 11% compared to a
normal inference run.

Moving up to the level of edge networks, efficiency and responsiveness can
be improved by intelligent cooperation between devices. In an example of
client-server cooperation, Edgent [84] aims to improve the performance of
DNN inference on end-user devices by offloading to edge servers, while main-
taining a high responsiveness through co-inference. During an offline stage,
Edgent partitions a DNN using right-sizing to optimally divide the workload
between devices, after which the partitions can be run on-demand on their
respective target machines. The framework is optimized for communicat-
ion efficiency to reduce the required traffic between edge device and server
as they run their respective workloads. Another approach to this prob-
lem finds the optimal partitioning point in a DNN by considering latencies
between devices and the amount of communication between each pair of
layers [85]. The algorithm is evaluated using several CNN models, showing
that its offloading results in better performance than local inference, given
a sufficiently powerful edge server and at least 16Kbps of network traffic.
Instead of two-part co-inference, DNNs can also be divided into (sub)layer
tasks. However, the distributed deployment of such tasks is an intractable
scheduling problem (NP-hard). One possibility is to optimize task deploy-
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Figure 5.8: Number of studies mentioning various types of Al in the edge, “Evo-
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ment for minimal total task completion delays using Solution Space Tree
Pruning (SSTP) [86]. This approach is shown to produce significantly lower
delays than Edgent, while both perform better than a cloud-only inference
model. The addition of partial execution of the inference phase to layer-wise
partitioning and offloading of DNNs can result in lower overall inference de-
lays and lower processing requirements, at the cost of reduced classification
accuracy. However, this approach significantly improves the performance of
real-time applications (e.g. video analysis) on resource-constrained embed-
ded devices [87]. Another solution is to partition not only into layers, but
into sub-units of layers, while using a scalable, distributed algorithm to han-
dle the offloading [88]. The Matching Game-based DINA-O offloads each
individual piece to different fog nodes based on factors such as queue length,
communication delays and processing delays. This approach is shown to
have 2.6 to 4.2 times lower total inference latencies than comparable algo-
rithms.

The learning phase of DNNSs is far more computationally intensive than in-
ference, and thus more challenging to efficiently realize in the edge. The
offloading of learning tasks from the cloud to the edge can be achieved us-
ing a graph-based task representation of a DNN [89]. In this approach, the
learning task graph is requested on-demand from the cloud, and divided
among nearby, suitable edge servers by the edge server that initiated the
learning task using NSGA-II. The result is a collaborative learning scheme
for DNNs in the edge with feedback of learned parameters to the cloud.
Another solution is to remove the need for a cloud server entirely, by using
a voting process to select an appropriate edge node as coordinator for a
collaborative learning process [90]. The coordinator node is elected by all
nodes through a democratic voting strategy, based on computational capac-
ity and distance from the actual deployments. The learning process itself
is twofold: a first training batch is executed on the coordinator node, af-
ter which the preliminary model is distributed to all other nodes for further
training. The computational and energetic impact of the learning algorithm
itself can be optimized by using a ternarized gradient [91]. Ternarized Back-
Propagation (TBP) uses only the signs of weight differences to update the
model weights, rather than calculating whole integer values. Additionally,
this method uses L? regularization and a mutation rate for weight updates
during the training process. The result is increased performance without
reducing the accuracy of the resulting trained model, and evaluations show
that compared to default backpropagation using 16 bit integers, this method
is more energy efficient by two orders of magnitude.
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5.5.4 Organizing the Intelligent Edge

Fig. 5.8 shows the interest in various types of Al since 2016. This chart
does not include 2015 due to unreliable results for several categories. Neural
networks are by far the most popular topic, being mentioned or used in
around 50% of the studies in 2020. Around 30% of the studies mention
genetic algorithms (“Genetic” + “Evolutionary”), while regression methods
receive 20% of the total attention. Although neural networks are Turing
complete [92], and can thus technically perform any type of calculation,
the use of other AI methods makes sense in many situations, for example
when the problem is more easily modeled for a different approach, or when
hardware requirements are too stringent to run a neural network. The
interest in various types of distributed AT is shown in Fig. 5.9. The number
of mentions of all keywords has increased over 10 times in just 4 years,
showing a strong interest in decentralized Al in the edge, although specific
interest in FL and SI significantly outpaces general distributed algorithms.
General research trends are presented in Fig. 5.10 and Fig. 5.11, showing
that while there is some spread in the numbers of studies mentioning various
aspects of organizing the Intelligent Edge, the relative growth is more or less
equal for all keywords. The only exception is “scalability”, which lags in both
absolute and relative interest.

5.5.4.1 Orchestration

Fig. 5.12 and Fig. 5.11 show the number of studies and relative interest in
edge orchestration for Al, or using AIl. Optimization and energy efficiency
attract the most research interest, while provisioning is least mentioned.
Despite significant differences in absolute interest, all keywords have a com-
parable growth in relative interest, indicating significant research potential
in any topic.

An example of decentralized Al task orchestration is Cognition-Centric Fog
Computing Resource Balancing (CFCRB) [93], which uses a node explo-
ration algorithm and distributed Q-learning to find the optimal nodes to
offload computational tasks to. CFCRB consists of three main concepts;
sensing involves knowledge of node resources and IoT data acquisition, in-
teracting involves efficient communication and coordination, and learning
finds the optimal strategies for dividing workloads over resources.
Self-Optimizing Swirly (SoSwirly) from Section 4.4 is another distributed
edge-oriented orchestrator, using SI to let edge nodes and fog nodes find
their own optimal service providers. Nodes run a discovery algorithm to
find other nodes in their neighbourhoods, requesting services from other
nodes based on their available resources and distance. Services are rede-
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ployed on-demand in real-time as node positions and resources change, and
performance is shown to be two orders of magnitude faster than evolutionary
algorithms (NSGA-II).

For a more fine-grained demand-oriented deployment strategy, MDPs and
a Dueling-Deep Q-network can be combined [94] to orchestrate services in
mobile edge networks based on patterns in end-user service requests. Addi-
tionally, the algorithm also decides whether to let an edge service instance
handle any request, or to forward it to the cloud. The approach is compared
to various other deep learning solutions, showing an improvement in both
total response time, and the number of requests executed in the edge rather
than forwarded to the cloud.

The decision of whether or not to offload tasks from an edge device to a
computational node can also be modeled as an MDP, and optimized us-
ing e-greedy Q-learning [95]. This approach takes into account available
resources on nodes, as well as communication channel properties and task
queue lengths. Evaluations indicate execution times in line with those of
offloading everything to edge servers, but higher power requirements than
computing everything locally.

Fuzzy Clustering Algorithm with PSO (FCAP) [96] is a combined algo-
rithm in which both fog nodes and computational tasks are represented as
standardized resource vectors. In a preliminary phase, Fuzzy Clustering is
used to divide fog nodes into computational, storage and network nodes
depending on their resources. PSO is used to avoid local optima during this
clustering phase. In the scheduling phase, the task resource vector is used
to find the best matching class, and the most suitable node to run the task
on from that class.

A similar approach, I-FASC [97], clusters the tasks into categories rather
than the computational nodes, using the same classes as FCAP. The tasks
of each class are scheduled using a modified Fireworks Algorithm (FA), a
crossbreed between SI and evolutionary algorithms. Evaluations show that
I-FASC has lower execution times than comparable algorithms, while also
providing a more stable load across nodes as the number of tasks increases.
Rather than using Al to directly determine the nodes to offload tasks to, Al-
Based Task Distribution Algorithm (AITDA) [98] uses a neural network on
each computational node to predict the execution time for potential tasks.
The predictions are based on task type and task input data, and the results
are combined with policies to determine if a task should be run on a fog
node or in the cloud. The example policy optimizes both response time
and network traffic, and results show a significant advantage over either
completely cloud-based or completely-fog based processing.

The use of dual neural networks with RL aims to provide an integral cloud



244 CHAPTER 5

to edge optimization [99]. In this approach, the first network predicts if a
specified task is suitable for execution in the fog, while the second distributes
fog-allocated tasks among computational nodes. The second network opti-
mizes task placement for evenly distributed resource use and minimal com-
munication, with the explicit goal of clustering interdependent tasks on the
same nodes to further reduce network traffic.

LATA, an approach to jointly optimizing communication efficiency and end-
user latency specifically for fog nodes connected by a wireless SDN [100],
aims to balance the workloads of fog nodes to achieve better global response
times. The algorithm itself is distributed over the SDN controller and the fog
nodes, and evaluations show consistently lower latencies than comparable
solutions.

Rather than focusing only on the optimization of latency versus commun-
ication efficiency, FairTS [101] uses a resource-centered approach to online
task scheduling in the fog. This solution is based on Dominant Resource
Fairness (DRF) to ensure that all types of resources are divided fairly among
running tasks, using RL to learn the optimal assignments. Comparison to
a greedy strategy shows similar average task completion times, but more
stable execution times and thus potential QoS guarantees.

Applying a fairness policy to computational nodes rather than resource al-
locations, Fairness Cooperation Algorithm (FCA) [102] aims to fairly divide
tasks between fog nodes based on their available resources, for the joint op-
timization of global minimal energy consumption and task processing time.
To train FCA, an algorithm is presented which converges slower than either
Newton Descent or Steepest Descent in early rounds, but results in smaller
error rates after only 75 rounds.

In their work, Yang et al. [103] present an MDP-based model which attempts
to optimize the use of FL in EI. Arguing that while FL preserves privacy,
it also has a negative effect on battery-powered and low-resource devices,
their algorithm aims to jointly optimize both privacy gains from FL, and
resource use on edge devices.

Distributed Artificial Intelligence-as-a-Service (DAlaaS) is a different take
on distributed AT task orchestration [104], aiming to provide a standardized
framework for distributed intelligent services in Internet of Everything (IoE)
environments. Deployment parameters considered by this framework are
CPU requirements, network traffic and link latencies, and it is evaluated in
terms of energy and financial costs for three distinct use cases.

FogBus [105] provides a Platform-as-a-Service (PaaS) approach to cloud-
fog-IoT integration, allowing platform independent deployment of software
services. A multi-tiered architecture is used to standardize communication
and application behavior, separating IoT devices from communication gate-
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ways, computational nodes and the cloud. A blockchain implementation is
added in addition to other security features to ensure data integrity when
transferring confidential data between nodes. The platform is evaluated in
terms of energy efficiency, latency and resource use.

Some orchestrators are designed for specific domains, for example in Mobile
Crowdsensing [106] using DRL with a CNN to organize the execution of
tasks. The orchestrator is designed to schedule divisible computing tasks
generated by edge devices, deploying each subtask in the fog or cloud de-
pending on computational requirements. The scheduler aims to guarantee
QoS for each task, and to minimize processing time and network traffic for
each task.

Other orchestrators are aimed at databases [107] rather than computational
tasks, using MDP as a probabilistic method to determine database place-
ment and to guarantee freely definable QoS requirements for application
developers. This database orchestrator is evaluated using a Kubernetes-
based implementation, and compared to Analytic Hierarchy Process (AHP)
in terms of QoS violations.

5.5.4.2 Scalability

The research interest in scalability in the Intelligent Edge is shown in Fig.
5.14 and Fig. 5.15. All keywords are more or less equally mentioned, with
the umbrella term “Scalable” occurring more often, although interest in
“Discovery” feathers off slightly in 2020. As growth in relative interest is
concerned, “Offloading” and “Decentralized” have the fastest growing inter-
est, while “Discovery” again lags.

Scalability and efficient orchestration have largely overlapping requirements.
As a result, many of the studies listed in this section are similar to the
ones discussed for “Orchestration”, they have been specifically selected to
illustrate one or more aspects of scalability for EI.

While offloading is mostly an enabling technology and requires new organi-
zational algorithms, it can also be used as a tool for scalable AIoT (Artificial
Intelligence of Things). Splitting neural networks layer-wise and offloading
the initial layers to IoT devices [108] has the advantage of not only scaling
part of the training process with the number of edge devices, but also that
training occurs where the IoT sensor data is most readily available. For the
higher layers, less data intensive learned features are communicated to the
cloud for further training.

On the level of a single neural network model, scalability can be achieved
through the offloading of each layer to different devices. Accelerated Artifi-
cial Intelligence for IoT (AAIoT) [109] is one such approach, optimizing the
response time of inference versus network traffic and computational effort
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through dynamic programming. Furthermore, the algorithm can operate in
multi-layer IoT architectures, rather than a two-layer cloud-fog architecture.
Intelligent service discovery and integration are an essential part of function-
ality scaling, providing new functions without the need for manual implem-
entation of suitable interfaces. One approach using Generative Adversarial
Networks (GANs) [110] shows the potential of this type of neural network
for self-learning service discovery in the edge, specifically in the context
of 6G networks. The generators in this approach are trained to produce
synthetic data associated with distinct service classes, based on captured
data. The discriminators have the dual tasks of recognizing real data from
fake data, and associating it with a specific generator. As such, specific
traffic flows are discovered by adding generators, whereas the discriminator
identifies and classifies them.

Decentralization is an important aspect of scaling EI, as no centralized or
offloaded algorithm can scale to the load of exponentially growing edge net-
works. One approach enables distributed, cloud-cooperative intelligence by
combining a Task Model Offloading Algorithm (TMOA) and Adaptive Task
Scheduling Algorithm (ATSA) based on Ant Colony [111|. The former as-
signs nodes to tasks based on computational capacity, latency and energy
efficiency, while the latter ensures load balancing of Al tasks between nodes.
However, in this approach the scheduler algorithm itself remains a central-
ized instance. Evaluations show performance comparable to or better than
state of the art alternatives.

A study by Lim et al. [112] considers the scale limiting bottleneck of com-
munication inefficiency in FL, and resource allocation problems in the more
efficient Hierarchical Federated Learning (HFL). They propose a two-level
resource allocation solution for HFL. In the lower level, evolutionary game
theory is used to model the process of data owners joining cluster heads,
based on rewards given for data participation. In the upper level, a deep
learning-based auction mechanism is used for cluster heads to service model
owners. This added level of indirection is shown by evaluations to lead to
stable resource allocation.

SoSwirly from Section 4.4 uses an approach based on SI to distribute the
task and service orchestration process itself. Each end-user device is res-
ponsible for finding the nearest suitable fog node for the services it requires,
switching to other fog nodes in real-time if QoS requirements are violated.
Furthermore, SoSwirly can be layered for a hierarchical architecture, from
the IoT sensors through various layers to the cloud.

Recently, the network edge has been used to distribute Data Stream Pro-
cessing (DSP) [113] for intelligent applications, parallelizing stream process-
ing and increasing scalability. For example, Aggregate End-to-End Latency
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Strategy with Region Patterns and Latency Awareness [114] (AELS + RP
+ LA) aims to decrease the processing latency of DSP applications in geo-
distributed cloud-edge architectures. The solution analyses DSP application
graphs to determine the optimal offloading strategy, and is shown to scale
up to 250.000 edge resources (edge nodes and IoT devices). Another edge
DSP framework [115] optimizes energy efficiency by reducing network traffic
in real-time through two components. The first is an energy-aware IoT data
gathering component, using adaptive sampling to reduce its network traffic,
while the second is a data prediction model which calculates future data
for multiple sensor IoT environments. The data prediction model uses clus-
tering to filter outliers and to generate reliable data, and the framework is
shown to be up to 60% more energy efficient for IoT devices than continuous
data streams. Finally, Processing Intelligent Agent Running on Fog Infra-
structure (PIAF) [116] uses Time Petri Nets to model time-critical DSP in
the context of industrial settings, using intelligent agents to distribute DSPs
among the available edge nodes.
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Another solution for the distributed management of cloud and edge re-
sources for intelligent applications uses modified Virtual Infrastructure Man-
agers (VIMs), specifically OpenStack in the cloud and Docker in the edge [117].
Both OpenStack and Docker are extended with a custom resource mana-
gement API (DARK), and a Network Function Virtualization Orchestrator
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(MORCH). The scheduling algorithm in DARK works in real-time, map-
ping incoming requests in the form of service graphs onto available resources
and nodes using a greedy heuristic, taking into account network conditions
between nodes. The MORCH component enables network-awareness for a
multi-layer architecture.

The goal of scalability studies can also be limited to a single aspect of
EL For example, a scalable Intrusion Detection System (IDS) for Smart
Cities [118] based on the distributed training and inference of neural net-
works. Two workflows are presented, a semi-distributed approach in which
feature selection is distributed but final classification is performed by a cen-
tral instance in the fog, and a fully distributed version. While the accuracy
of the distributed approach is about 2% less than a centralized algorithm,
the Time To Build Model (TTBM) is 64.82 times faster.

5.5.4.3 Security

The research interest in various aspects of security in the Intelligent Edge is
shown in Fig. 5.16 and Fig. 5.17. While there is a great interest in security
itself, more specific keywords are mentioned far less, possibly indicating that
most studies focus on one specific topic, or that general security concerns are
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a secondary topic of many loosely related studies. While there is a significant
interest in challenges such as anomaly detection and intrusion detection,
there has been an explosive growth in interest related to adversarial attacks
and blockchain-based solutions since 2018.

SecOFF-FCIoT [119] is aimed specifically at secure offloading of computatio-
nal tasks. The data is secured at the sensor level using a Neuro-Fuzzy Model
which predicts device sensitivity to malicious data injection, and offloaded
to appropriate fog nodes using PSO, taking into account the processing ca-
pacity and energy levels of nodes. Although some tasks are offloaded to the
cloud, RL is used to ensure data privacy by offloading tasks with sensitive
data only to private clouds. Evaluations show this approach has a signif-
icantly lower energy consumption and response latency than comparable
solutions.

Secure Mobile Crowdsensing Protocol (SMCP) [120] provides a framework
to secure data and ensure privacy for crowdsensing applications in the edge.
The framework uses a cloud server to act as a registry for fog and edge
nodes, using Extended Triple Diffie-Hellman Key Agreement (X3DHKA)
and Advanced Encryption Standard (AES) as lightweight algorithms to se-
cure traffic and enable the mutual authentication of nodes.

A general approach to anomaly detection in the fog is provided by Yang et
al. [121], along with a concrete example of a Deep Network Analyzer (DNA)
for 5G networks.

An unnamed holistic framework by Jararweh et al. [122] offers a distributed
approach for trustworthy and reliable edge services. This framework incor-
porates custom algorithms which deploy services in the edge and guarantee
user privacy. To ensure data and network traffic integrity, a neural network-
based IDS is integrated. Evaluations show that the accuracy of this IDS is
up to 99.3%, and that response times can be significantly reduced by scaling
the number of edge servers.

Another solution for anomaly detection uses a collaborative/transfer learn-
ing approach in the fog, using Principal Component Analysis (PCA) for
initial feature engineering and using a variety of models (e.g. RL, DNN,
SVM) for each node, selecting the optimal one [123]. The fog enabled infra-
structure supporting this distributed Al consists of standard software such
as Hadoop?® and Spark?, using both batch and streaming modes.

SeArch [124] is a hierarchical IDS for SDN-based cloud IoT, deployed on
edge gateways, fog SDN controllers and as a cloud application. Commun-
ication channels are restricted to the same level or one level higher in the
architecture. The algorithms at each level are restricted by computatio-

3https://hadoop.apache.org/
4https://spark.apache.org/
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nal power; SVM for node-level detection in the edge, Self-Organizing Maps
(SOE) for network-level detection in the fog, and deep learning in the cloud.
Evaluations to alternative solutions show that SeArch has similar accuracy,
but significantly lower detection times.

In another approach to IDS, a framework using TA-Edge [125] uses Trusted
Authority edge nodes to certify other edge devices in their domains, securing
communication between them. The second component of the framework,
SDN-ADS, is an SDN/Openflow based anomaly detection system which
first discovers the topology and SDN data flows of the entire network. This
topology is used by a malicious traffic detector to find packets with invalid
properties or routed through anomalous flows.

In the context of Smart Homes, Al can be used to monitor smart devices,
and to authenticate and authorize them to interact with the cloud [126].
This approach learns the specific behaviors of devices in the home network,
which allows the creation of device profiles that can be authorized by end-
users.

Adversarial attacks exploit the modelling properties of deep learning net-
works to cause misclassification or incorrect outputs. Small, but intentional
perturbations in the input can reliably cause misclassification, whereas acci-
dental, seemingly random input can sometimes be misinterpreted by a DNN,
with high probability outputs. DeSVig [127] is a decentralized approach
to correct such problems within milliseconds in Industrial Al systems, us-
ing Conditional GANs (CGAN) to verify the inputs and outputs of DNNs
against attacks. The CGAN is trained to generate copies of the inputs sup-
plied by DNNs, while a separate discriminator compares the generated copy
against the actual input to determine whether it contains signals that indi-
cate an attack. Evaluations indicate 96-99% accuracies for several datasets,
and detection within 62ms.

Another strategy aims to construct and execute DNNs safely by ensuring
data integrity during both the training (poisoning/backdoor attack) and
inference (adversarial) phases, and the security and privacy of data transfers
during training [128]. Secure training is achieved by simultaneously using
active, pending and secure models for each application to detect suspected
hostile data. These data are stored in a “hostile” dataset and used to update
the pending model, while eventually a separate detector DNN will recognize
the hostile features and integrate them into a new secure model. Security
during inference is enforced through a punishment mechanism derived from
a game model.

Blockchain technology is often used in conjunction with Al for the secure
processing and distributed storage of transaction-like data in edge networks.
For example, in Smart Healthcare [129] AT on edge devices can be leveraged
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for biometric data analysis and feature extraction, the results of which are
stored in a blockchain, or enable the execution of smart contracts in the
edge. A concrete implementation considers arrhythmia detection with a
CNN in the edge, storing the resulting output along with device ID and
other transactional metadata in an Ethereum chain.

Similarly, blockchain applications can aid with privacy concerning sensitive
data in the edge by processing data locally using A, and keeping track of all
parties accessing the resulting features by using an Ethereum chain [130].
A different application combines blockchain-based smart contracts with
trustless smart oracles for trust management in the fog computing plat-
form of DECENTER [131]. This particular framework uses blockchains
to register trusted components and users, while smart contracts use data
provided by the smart oracles to verify QoS and trust requirements.
Finally, BlockSecloTNet [132] provides an example of using blockchain tech-
nology as part of an IDS. An SDN based IoT network is used to con-
tinually monitor node traffic, allowing ubiquitous and decentralized IDS,
while a blockchain ensures decentralized, trusted data storage and logging
of the transactions between components. A similar approach can be ap-
plied to traffic in Vehicular Ad-Hoc Networks (VANETS) [133], in which the
blockchain provides trust between actors and components.

5.5.4.4 Reliability

Fig. 5.18 and Fig. 5.19 show the research interest in reliability in the
Intelligent Edge. The trends presented here are similar to those for the
security; great interest in reliability in general, but far less interest in specific
aspects, especially fault tolerance. However, the interest in reliability keeps
almost perfect pace with the general interest in EI, indicating that it is
consistently an important and pervasive topic in studies whose primary
subject does not necessarily concern reliability.

As the reliability of systems starts with their input, reliable IoT sensor data
is an important enabling factor of EI. One approach towards reliable sensor
data uses fog-based validation by combining the output of several physically
clustered sensors of different types to detect unreliable outputs [134]. The
algorithm is applied to a scenario in which AI detects people through a
security camera, showing that false negatives of the AI can be corrected
through sensory substitution.

Moving up to the level of reliable Al using IoT data, deepFogGuard [135]
is a DNN augmentation scheme which makes distributed inference resilient
to failure. The main feature of this scheme is that it relies on skip hyper-
connections, which function like residual connections in DNNs, except that
they skip entire nodes rather than simply layers. By ensuring at least a min-
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imal data flow from lower layers on node failure, deepFogGuard is shown
to significantly improve inference accuracy over default DNN inference, es-
pecially for high node failure rates. The mobility of vehicles in IoV can be
a detriment to timely and reliable inference, but the application of Al and
coded computing can instead exploit this mobility through opportunistic
offloading [136]. This solution uses a modified Multi-Armed Bandit (MAB)
approach to learn the delay behavior of nodes in real-time, while coded
computing is used for redundant offloading, accepting whichever results are
received first.

Finally, on the scope of networks, work by Radanliev et al. [137] develops
a risk-assessment framework for the purpose of creating secure and reli-
able networks in extreme environments, specifically in the context of edge
computing and Al

For holistic solutions aiming to enhance overall reliability, Elastic Intelligent
Fog (EiF) [138] is a general, Al-enabled fog computing framework designed
to enable distributed and reliable IoT systems. The approach is similar to
offloading, but implemented as PaaS, offering APIs for network, IoT and
AT functions for edge deployments. The framework itself uses real-time
monitoring to enable Follow-me Moving Edge Cloud functionality, in which
services “follow” users in the edge, employing FL to update the deployment
strategy.

5.5.4.5 Networking

The interest in network-related aspects of the Intelligent Edge is shown in
Fig. 5.20 and Fig. 5.21. In absolute terms, discovery and routing have
attracted the most interest since 2015, although interest in 6G has skyrock-
eted since 2018 as the concept of the Intelligent Edge has grown, and at the
current growth rate it will become one of the most discussed topics in EI
within 2 years.

Work by Xia et al. [139] illustrates the effects of Al and Fog Radio Ac-
cess Networks (F-RANSs) on each other. It discusses how the deployment of
distributed and hierarchical AI, especially DNNs, is enabled by the proper-
ties of F-RANs, while F-RANs themselves are organized more efficiently by
Al A concrete example is given through the use of MAB to solve a caching
problem with unknown content popularity.

Offloading can be used to optimize network performance, for example by
minimizing communication power consumption in wireless networks [140].
Unlike most similar approaches, this framework uses statistical learning,
specifically iteratively reweighted L1 minimization with difference-of-convex
functions regularization. Evaluations show that this approach results in a
significantly lower power consumption than comparable algorithms.
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By dividing large networks into cells and applying a CNNs, cell outages
and congestion can be detected and traffic rerouted. The scalability and
reliability of this approach can be increased by distributing the CNN over
edge servers, each managing 100 cells [141]. Evaluations indicate that this
distributed anomaly detection has up to 96% accuracy.

Inductive Content Augmented Network Embedding (ICANE) [142] uses a
network embedding which preserves higher order (multi-hop) node proxim-
ity, aimed to facilitate service deployment in edge networks. The embedding
is learned by sampling network nodes for neighbours up to k£ hops, and trans-
forming proximities and node resources into feature vectors, which are fed
to an LSTM based network. Evaluations show that ICANE has significantly
higher F1 scores [143] than similar algorithms for various learning datasets.
Because of its virtual nature, SDN allows for new possibilities in ad-hoc net-
work organization. For example, a self-adaptive SDN based solution can or-
ganize virtual topologies based on application demands, available resources
and physical topologies [144]. A practical implementation uses ONOS SDN
controllers and OpenFlow switches, deployed by a self-adaptive framework,
to organize the SDN. While this particular approach does not yet employ
AT, the authors plan to use machine learning to improve the organizational
algorithm.

Another framework combines the flexibility of SDN with extra security [145],
with a focus on Smart Healthcare. IoT devices are authenticated by edge
servers using a lightweight probabilistic k-nearest neighbour (p-KNN) based
algorithm. The edge servers are used for collaborative intelligence, offload-
ing tasks to each other, while the SDN controller is responsible for load
balancing and network optimization between them. The offloading algo-
rithm uses a form of SI, with each edge server using Beacons to alert nearby
servers if their task queue grows too long.

Intelligent real-time routing decisions can greatly improve network perfor-
mance. As an example, Smart Edge Broker (SEB) [146] has a dual purpose.
Its main purpose is routing Smart Home traffic in edge networks, acting as
a broker to organize direct communication between edge nodes instead of
routing through the cloud. By keeping all communication between nodes
in the edge network, latency and traffic overhead are reduced. It also acts
as an edge server, filtering and processing any incoming data instead of
forwarding it to the cloud.

AT plays a critical role in most research on next-generation 6G networks.
One architecture [147] defines four layers of Al in 6G; intelligent sensing,
analytics, intelligent control and smart applications, examining which types
of AI would be suitable for each purpose. Further topics discussed include
communication spectrum management, Al-empowered MEC, and intelligent
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mobility management.

5.5.5 Applications in the Intelligent Edge
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Figure 5.22: Number of studies mentioning Intelligent Edge applications.

Fig. 5.22 and Fig. 5.23 show the research interest in Intelligent Edge appli-
cations. In absolute numbers most domains are equally popular, but the
relatively few and variable mentions of related abbreviations (e.g. IoMT,
IIoT) indicate an uneven terminology. However, the recent relative growth
of “IoMT” and “IIoT” may simply indicate some time is required for their
widespread adoption. In relative terms, the interest in industrial applica-
tions is rising explosively, even compared to the significant growth of other
domains.

5.5.5.1 Smart City

Apart from the specific domains of health care, IoV, IIoT and Smart Homes,
the Smart City comprises a large number of topics and potential Al appli-
cations. This section discusses only some of the most recent, Al-based
applications as an introduction.

Smart Grids, often regulated by Energy Management Systems (EMSs), play
an important role in an ever more fine-grained energy grid, optimizing for
demand and minimizing losses and overproduction. Improving EI paves
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Figure 5.23: Time-relative interest in Intelligent Edge applications, normalized to
2015.

the way for the decentralization of Smart Grid functionality to the edge,
such as an Al-oriented Smart Power Meter with edge analytics for use in a
cloud-assisted EMS [148]. Another Smart Grid application is the detection
of energy fraud using edge-based AI [149]. In this work, data from smart ap-
pliances and distributed power sources (e.g. solar panels) is pre-processed
using Principal Component Analysis (PCA) and Missing Completely At
Random (MCAR), and evaluations show that neural network-based regres-
sion shows promise for the classification phase.

Another popular Smart City topic is parking surveillance. The advent of
deep learning on edge hardware has enabled real-time intelligent surveil-
lance systems based in the edge. Such systems can combine processing
power of IoT devices and edge servers [150], optimizing for performance
while minimizing network traffic. The work in this study combines back-
ground subtraction with a Single Shot Detector (SSD) on IoT devices, and
a tracking algorithm on edge servers to efficiently track multiple vehicles in
poor lighting conditions. The work of Mittal et al. [151] summarizes the use
of and challenges of deep learning in the edge for more general surveillance
applications in the Smart City.
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5.5.5.2 Smart Home

Edge-based surveillance systems similar to those in Smart Cities can be ap-
plied to crime prevention in Smart Home environments [152]. This work
uses an event-driven approach, where edge devices use background subtrac-
tion for quick, naive motion detection. Upon motion detection, an edge
device forwards video data to fog nodes, which use a CNN (VGGNet) to
classify crime objects (e.g. guns). When an object is detected, labeled
images tagged with location information can be forwarded to the relevant
authorities.

ImPeRIum is a general, fog-enabled Smart Home solution [153]. In its
architecture, data is gathered by sensor nodes and forwarded to nearby
computation capable devices (defined as fog nodes, e.g. Smart TV, gateway
device) for decision making. The decision process uses both an ensemble
method and MLP, and the models are distributed over all fog nodes to avoid
a single point of failure. Efficient dissemination of data to other devices is
achieved through a Publish/Subscribe mechanism (MQTT), only publishing
an event when it is dissimilar enough to the previously sent one.

The next section discusses some Al applications in Smart Health Care.
Some of these can overlap with Smart Homes, for example a fog-based
framework for predictive veterinary health care [154]. This framework uses
FogBus [105] as a base platform, along with a WiSense mesh and a health
sensor belt. The Probability of Health Vulnerability (PoHV) is calculated
in the fog using sensory, environmental, behavioral and dietary data. The
PoHV is further processed by a temporal ANN (t-ANN) which predicts a
Temporal Sensitivity Measure (TSM), classified into alert levels. Finally, a
Self Organized Map is used to create day-to-day visualizations for caregivers.

5.5.5.3 Smart Health Care

Fall detection is an example IoMT application which can benefit greatly
from running in the edge [155]. This type of real-time application re-
quires pervasive sensor and wireless networks, although these are often
low-powered and have limited bandwidth. In the proposed architecture,
sensor data is sent to a local edge gateway over low-power Bluetooth, where
an LSTM RNN performs fall detection in real-time. In case a fall is de-
tected, an event is sent over LoRa to a fog server, which sends the required
notifications to caregivers.

One Smart Health Care framework is based on collaborative learning, dis-
tributing AI over the edge and fog [156]. A case study on arrhythmia
detection has edge devices performing ECG signal pre-processing, feature
extraction, and classification with a shallow neural network. If the proba-
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bility of the classification is too low, a CNN in the fog layer takes over, using
the full ECG image as input. Finally, ECG data is also streamed to the
cloud, where it is combined with health provider data to train and improve
(personalized) models. A similar application [157] uses EEG data to pre-
dict seizures in patients, but this approach uses Discrete Wavelet Transform
(DWT) as an additional de-noising step and a Kriging model (Gaussian re-
gression) as a classifier. Finally, deep learning can also be used for disease
prediction. For example, biometric data from IoMT sensors combined with
medical metadata, processed by a Deep Factorization Machine (DeepFM),
can predict the presence of hepatitis [158].

5.5.5.4 Industry 4.0

A general study on distributed AI in IIoT by Queiroz et al. [159] lists
key concerns for the synergy of distributed AI and Cyber-Physical Sys-
tems (CPS) in industrial settings. These concerns are fine-grained, covering
every aspect from networking and embedded hardware to human-machine
interaction, identifying cross-concerns for the successful cooperation of Al
and CPS.

Infrastructurally, IIoT can use the same multi-tier architecture as used in
various other applications of Al in the edge, with the edge interfacing with
humans and machinery. One such architecture uses a cloud tier for training,
fog/edge tiers for distributed inference and an SDN layer to seamlessly con-
nect all devices [160]. An IToT AT task scheduling algorithm is implemented
on top of this architecture, optimizing for latency by taking into account
computational capacity and the proximity of edge servers to manufacturing
equipment. Evaluations show this approach is significantly more efficient
than either cloud computing or ad-hoc, in-place execution.

Similar work also uses a multi-tier architecture, arguing how it solves la-
tency, bandwidth and security problems compared to a purely cloud-based
IToT approach [161]. This approach uses the edge as an interfacing and con-
trol layer, and the fog as an information integration layer. The potential for
a multi-tier approach to enable Digital Twin Shop-floor (DTS) is discussed,
in which the virtual representation of the physical shop-floor can be used
to intelligently manage and improve manufacturing processes.

A blockchain-edge framework for IIoT by Kumar et al. [162] does not di-
rectly involve AI, but is aimed at facilitating AI applications, and the po-
tential for integrating FL into the blockchain is discussed.

Fogsy [163] is a holistic system for the training, deployment and manage-
ment of AI in industrial settings. It operates as a fog/edge cluster ma-
nagement system, with facilities for data procurement and management in
addition to Al model management. It also features Al pipeline management,
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and explainability of models through causal graphs.

A study from the Smart Maintenance Living Lab presents an approach for
Smart Predictive/Preventive Maintenance [164], using a three-tiered plat-
form based on Obelisk, a fog- and cloud-based Smart City framework. Data
from IToT sensors is gathered in the Edge tier and pre-processed (e.g. feature
extraction) by gateways, after which it is sent to Obelisk in the Platform
tier for ingestion. A collection of machine learning algorithms act on the
ingested data to generate dashboard data for a centralized Enterprise tier.
An example Al application in IIoT is smoke detection in foggy environ-
ments [165]. This approach uses an energy efficient residual CNN based
on MobileNet V2, designed for deployment in Smart City and IIoT set-
tings. Evaluations indicate both higher accuracy and better performance
than state of the art solutions.

Another concrete application of Al in IIoT is real-time poultry monitoring
using EI [166]. Data from sensors monitoring the atmospheric concentration
of gases such as ammonia, methane, and carbon (di)oxide is fed into an RNN
with GRUs on an Nvidia Jetson Nano, predicting the evolution of air quality
around the poultry farm.

5.5.5.5 Internet of Vehicles

In F-RANSs in an IoV context, the increased wireless network traffic caused
by intelligent applications can cause interference on wireless channels. RIM-
MA (Reliable and Interference-free Mobility Management Algorithm) [167]
solves this problem by managing channels based on their characteristics,
over Al-driven F-RANs. Furthermore, RIMMA is combined with fog com-
puting to optimize for mobility, reliability and packet loss.

A similar problem on a topological level is efficient caching and communic-
ation management in quickly changing topologies with moving nodes (cars)
and RSUs (Road-Side Units), especially considering the severe latency con-
straints on IoV applications. One solution to this problem uses twin timesca-
les for mobility-aware offloading/content requests [168]; a long-term strat-
egy determined by PSO, and a short term strategy determined by deep
Q-learning. These strategies consider not only resource use, but also hard
deadlines for requests.

Another approach considers the energy efficiency of workload deployment in
fog-cloud IoV applications [169]. The algorithm uses a Learning Classifier
System (specifically XCS, genetic-based machine learning), optimizing for
energy use and workload delay, taking into account battery status of battery
powered nodes. Evaluations show that the approach generally results in
higher average battery levels than comparable algorithms, and significantly
lower execution times.
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There is much untapped potential for higher-level IoV applications. For
example, Seal et al. [170] recognize that in an IoV context, the flood of data
from vehicles will soon outstrip the ability of the cloud alone to process
it. They develop a benchmark for real-time traffic incidence identification
and traffic control, and using a multi-tier testbed, determine that a deep
learning approach using (tiny) YOLOv3 is up to 80% faster in an edge-cloud
architecture than in the cloud alone.

5.5.6 Challenges and Vision

In this section, future research directions and challenges are presented for
each of the main topics of this review. For a high-level vision, we can look
at the highly cyclical history of computing [171, 172], which shows that
eventually all functionality ends up as close to end-users as possible, in a
complex interplay of productivity, end-user experience, evolving hardware
and networking capabilities, and costs. The last decades have seen ever
more functionality deployed closer to end-users on increasingly pervasive
network infrastructures. As such, it is safe to assume that AI and other
resource-intensive tasks will continue to move to the edge. Additionally,
the next wave of innovation might very well emerge in a centralized form,
but quickly take advantage of the infrastructure provided by the Intelligent
Edge. Such next-generation applications could be highly tailored to ubiqui-
tous user interaction, and their concepts far removed from physical systems
due to increased virtualization and intelligent management.

5.5.6.1 Enabling Technology

While common Al frameworks such as TensorFlow are capable of offloading
calculations to dedicated hardware, they only offload to one PU per task.
In the edge, where there may be many nearby PUs, layer-based slicing
provides better overall results, offloading individual layers to different PUs
based on their capabilities. This approach can be further optimized through
intelligent management of PUs, monitoring their performance for several
types of Al tasks. At the local network level, computational tasks are often
offloaded to individual devices. A synergy with PU level offloading, either
hierarchical or by peer-to-peer sharing of PU details, could provide better
performance. Another challenge at this level is the efficient integration
of new types of PUs with computing frameworks. Considering the highly
customized nature of most hardware (e.g. FPGAs), this will likely remain
in the realm of manual work, rather than automated discovery.

Significant progress has been made in low-power inference in the edge, al-
though improvements are still likely due to incremental gains in hardware



INTELLIGENCE IN SMART CITIES 263

performance and model efficiency. Al training however still requires im-
mense amounts of computation and power, often beyond the reach of indi-
vidual devices in the edge, and increasing as neural networks grow deeper.
To combat this issue, computational efforts can be offloaded to more pow-
erful layers in the fog, multi-mode AI models can be deployed which trade
accuracy for performance on resource-constrained devices, or the training
workload can be spread out over many devices through FL or other cooper-
ative strategies. While further research into truly distributed, cooperative
strategies will certainly yield better performance for years to come, the
learning process can also be greatly improved by reducing the amount of
training required. Contributing factors for this may include improved regu-
larization, fast-converging gradient descent strategies, and zero-shot learn-
ing.

5.5.6.2 Organizing the Edge

In terms of orchestration, important challenges are real-time redeployment
of (AI) services in volatile network environments, and opening up new
classes of devices for the flexible deployment of services and Al. For the
former challenge, the ideal is to achieve optimal QoS (e.g. availability,
latency) for all users at all times, while optimizing any number of other
factors (e.g. resource use, network traffic). The latter ensures that more
devices can contribute their processing power, and help optimize the general
functionality of the Intelligent Edge. This can be partially solved through
better hardware, but also through lightweight operating systems capable of
suitable virtualization (e.g. containers, unikernels). Energy efficiency is of
particular importance, as edge applications increasingly push intelligence to
even the most limited IoT devices. Some devices have extremely restricted
power supplies, while others are battery powered and may not be (easily)
rechargeable. Challenges consist of optimizing network traffic and response
times over low-powered protocols, and reducing total CPU use over the life-
cycle of a device. As for strategies, some may involve offloading of workloads
generated by the devices, while others try to divide a known workload over
a pool of devices before their batteries run out.

Significant open challenges for scalable systems are true decentralization of
orchestration, and self-organizing service meshes. Almost all recent work re-
lies on a multi-tier architecture, using the cloud as a critical infrastructural
component to some degree. However, a truly scalable and flexible architec-
ture can not be dependent on any centralized, resource-bound component
(e.g. the cloud) to support an unbounded collection of devices (e.g. the
edge). Likely factors to enable new architectures are peer-to-peer weight
updates for Al models, local discovery of functionality and resources, and
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inverted deployment in the sense that an edge node primarily decides where
to request/deploy a service, rather than being directed to an instance by
load balancers or load balancing (distributed) DNS. As a combination of
these factors, an Intelligent Edge could be envisioned in which (AI) services
simply “follow” users through nearby computational nodes, pre-emptively
moving to other nodes as they learn user behavioral patterns.

While progress in anomaly and intrusion detection is likely to continue,
improvements are more likely to be in terms of performance and response
time than accuracy, considering the high accuracy of current systems. Re-
cent solutions for adversarial attacks are similarly effective, especially when
combined with redundant systems, but adversarial attacks could be severely
diminished by studying the fundamental properties of state of the art neu-
ral networks that give rise to these vulnerabilities in the first place. The
increased popularity of blockchain solutions for distributed, secure transac-
tional storage and smart contracts indicates their usefulness, but widespread
adoption requires solving fundamental problems of blockchain technology
related to energy consumption, fast consensus protocols, and security in
privacy-sensitive applications. Privacy is a significant driving factor for the
Intelligent Edge; if data is locally processed it can not be intercepted. How-
ever, privacy mechanisms are still important for processed data which is
sent to the cloud, and for distributed architectures, particularly the afore-
mentioned blockchain solutions. Some privacy concerns may be alleviated
by using different types of sensors (e.g. environmental instead of cameras),
encouraging (AI) services based purely on actions and behavior rather than
learning properties of individuals.

The latter solution to privacy can aid with reliability; if several types of
non-visual sensors are involved in a single decision, a system may be able
to detect when a malfunction occurs in one of them. Network reliability in
itself is important for many Smart applications, especially in IoV settings
where extremely low latencies are required, despite fast-moving network
nodes. Solutions to this challenge may include redundant offloading, more
effective predictive offloading, and improving the reliability of layer-wise
offloaded AI models. Similarly, the resilience of distributed neural networks
can be improved through various means, leading to an indirect improvement
in overall reliability of EI.

There are many opportunities for network-oriented research using Al in
the edge. An important topic is intelligent network management through
NFV and SDN to consolidate large edge networks, forming a logical, reliable
topology for edge applications. Subtopics include automated discovery and
integration of network resources, and redundant routing which adapts in
real-time to discover optimal routes. Furthermore, initial work on 6G envi-
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sions the integration of Al into every aspect of networking from hardware
through connection management to support for applications. The wide-
scoped, long-term effort required to form a new, EI oriented, next-generation
set of networking standards will undoubtedly provide great opportunities for
new forms of intelligent network management.

5.5.6.3 Applications

While there are many innovative Al-based applications in the edge, this
aspect of the Intelligent Edge is still in its inception, with true Smart Cities
still in the distant future. Most studies focus on a single, narrow application
within their domain, using little in the way of standards and rarely consider-
ing future integration with other applications, but providing valuable proof
of the potential of the Intelligent Edge. This is partly due to the constantly
changing underlying technologies, which cause rapid obsolescence of exist-
ing applications, and give rise to many others. In such a rapidly changing
area of research, there are many opportunities. For example, some studies
present basic Smart City/Home/Industry EI management frameworks, but
standards and integrated, greater scope frameworks (e.g. what TensorFlow
did for neural networks) are mostly absent. Existing Smart City frameworks
such as FiWare [173] and Obelisk [174] are mostly cloud-based, offering a
broad support of IoT communication protocols and scalable data process-
ing, but do not explicitly contain edge-oriented intelligent features. Ongoing
IEEE standardization efforts, as presented in Section 5.3.1, are very likely to
significantly improve this situation in the near future. However, because of
the limited scope of most Smart setting applications, they can be deployed
modularly, and this challenge poses no immediate restriction on future inno-
vation. Smart Cities in a broad sense offer many interesting research topics,
but traffic and security aspects are likely to receive most attention in the
coming years, as they can drastically improve the safety and quality of life in
cities through intelligent management. Other topics, such as Smart Grids,
are driven by the necessity for intelligent management because of rapidly
changing energy grid conditions. In Smart Homes, an interesting topic is the
discovery and integration of services and devices, and imbuing discovered
devices with (partial, co-operative) AIl. Such AI capable networks can then
form a solid basis on which to run Smart Home applications that improve
the security (e.g. intruder/weapon detection), health (e.g. fall detection,
IoMT monitoring at home) and general quality of life of inhabitants. While
there are many opportunities in IoV, the research potential in this area is
likely to shift from roadside monitoring and traffic flow management in the
fog, to inter-vehicle communication and self-organizing traffic flows as ve-
hicles are outfitted with more powerful computational hardware. However,
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roadside monitoring and city-wide traffic management in the fog will remain
important practical topics, especially as self-organizing traffic will remain
largely impossible until intelligent, autonomous vehicles outnumber the rest.
Smart Healthcare features many highly specialized applications for the pre-
vention or monitoring of diseases and conditions. As such, an interesting
challenge is to create a general monitoring and alerting framework, with
AT plugins for any number of conditions and diseases. Such a framework
could be integrated into the sensory network of hospitals or Smart Homes,
taking into account the different types of sensors and networks present in
both settings. AI models designed for this architecture should be able to
flexibly handle partial or missing sensory information. Smart applications
in industrial settings are, more than in any other Smart setting, highly de-
pendent on the situation. However, digital twins are an interesting research
topic, especially in terms of automated discovery and digital representation
of physical industrial settings, and the subsequent optimization. Finally,
human interaction with Smart applications can be used to augment Al
creating Social Edge Intelligence (SEI) [175]. SEI can drastically improve
applications in which Al is used to analyze gathered data, but in which
some steps benefit from higher cognitive abilities than the state of the art
currently offers.

5.5.7 Discussion

The use of Al in Smart applications and in the organization of the edge
presents a rapidly advancing research field, with a great variety of opportu-
nities. In this review, an introduction is given to the technologies required to
understand the state of the art in Edge Intelligence (EI), and the concept of
EI is elaborated using a taxonomy with “Enabling Technology”, “Organiza-
tion” and “Applications” as its main topics. Research trend data from 2015
to 2020 is gathered from Google Scholar for subdivisions of these topics, and
presented to show both absolute and relative interest in each subtopic. The
“Organization” aspect, being the main focus of this review, has a more fine-
grained subdivision, explaining all contributing factors in detail. Related
work is presented, comparing it to the work in this review, and for each
subdivision of the taxonomy a number of selected studies are gathered to
illustrate the state of the art as completely as possible at a high level. From
the research trends and selected studies, a number of short-term challenges
and high-level visions for EI are formulated, providing a basis for future
work.
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5.6 Summary

This chapter introduces the various types of Al, explaining their underlying
concepts and suitable applications. Although not technically AI, the con-
cept of a blockchain is also explained, as it is a main component of many
state of the art Smart City studies related to AI. After this short introduc-
tion, the Intelligent Edge was introduced as the synergy of edge computing
and Al with a quick overview of its various areas of application.

Some ideas are presented on how SoSwirly can be improved by ANN, and
how SoSwirly can in turn decentralize ANN learning by propagating weight
updates. Related work for both these approaches is provided, along with
a theoretical framework for their implementation and properties. However,
both ideas may yet have some disadvantages that limit their use cases. De-
pending on the frameworks used, integrating an ANN into SoSwirly may
significantly increase resource requirements (e.g. memory required by Ten-
sorFlow and Python themselves), making it feasible only on certain classes
of edge devices, and constraining the rest to the default SoSwirly mech-
anisms. On the other hand, using SoSwirly to decentralize ANN weight
updates depends on finding suitable use cases through mathematical mod-
els (e.g. reconciling weight updates from nodes with potentially diverging
models), so any implementation will likely start off with limited use cases.
To conclude, a review of the state of the art of Al in the Intelligent Edge is
performed, showing a rapidly growing interest in this convergence of tech-
nologies, and Smart Cities as a whole. A taxonomy is presented, and trends
from 2015 to 2020 show an exponential growth of research interest in all
categories, from enabling technology through the various aspects of organi-
zation, to all Smart City application domains. An inquiry into the types of
AT used shows that while ANN are increasingly popular, other types of Al
remain important, either because they are more suitable to a specific prob-
lem, or because they provide better performance on edge hardware. Finally,
a selection of papers from each taxonomy topic illustrates the most recent
progress from 2019 to 2021.
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Overall Conclusion

Thank You And Goodnight - Culture GCU, lain M. Banks

In Chapter 1, some high level topics were introduced, along with three top-
ics derived from the title, specifically “Resource Efficiency and Flexibility”,
“Scaling Towards Smart Cities”, and “Intelligence in Smart Cities”, each
of which is an important driving factor in the field of Smart Cities. An
overview was presented of the publications written during the realization of
this dissertation, some of which have been adapted and extended as content.

6.1 Resource Efficiency and Flexibility

Chapter 2 showed that virtualization is an important enabler for reliable and
flexible software systems, discussing its use in both software processes and
networks. A performance comparison of unikernels and containers was pro-
vided, which although slightly aged, illustrates their nuances and use cases.
As these technologies continue to evolve, and alternatives regularly emerge,
monitoring their strengths, relevance and relative performance remains an
important topic for both researchers and software engineers.

The second part of Chapter 2 discussed network virtualization in terms of
NFV and VPN. Although VPN are a slightly older technology, and NFV
allows the management and evaluation of specific aspects of network vir-
tualization, the collection of features presented by a VPN is still useful to
securely federate private networks, or to overcome connectivity and security
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issues when including edge nodes in a computational cluster. To that end,
several VPN alternatives were benchmarked in the context of containerized
micro-services, showing that WireGuard is the best option in most cases.
However, future work in this field is more likely to fully pursue the path of
NFV and SDN, separating the functions of service meshes, overlay networks,
encryption, and monitoring for increased flexibility.

The fog and edge were properly introduced in Chapter 3, which also showed
how virtualization transforms geographically distributed networks with a
large, heterogeneous collection of devices into a uniform environment for
software to run on. Introducing the concept of container orchestration, sev-
eral recent platforms for edge orchestration were discussed and compared
to FLEDGE. The construction of FLEDGE explored the various aspects
of designing a resource-efficient container engine for edge devices, and the
evaluations showed that it requires significantly less resources than alterna-
tives, at the cost of some (cloud-oriented) functionality. However, follow-up
evaluations seem to indicate that rather than optimizing for efficiency, most
orchestrators tend to increase their resource use as they keep adding fea-
tures, as newer, more edge-focused alternatives, take their place. To date,
all the evaluated orchestrators are container-based, despite the requirement
of a suitable Linux kernel and a container runtime to deploy containers,
both of which continue to be impossible for many extremely low-resource
devices to run. While there are options to enable microVM (e.g. uniker-
nels, Firecracker) deployment in Kubernetes, a true virtualization agnostic
orchestrator does not yet seem to exist.

Chapter 3 also introduced Swirly, a highly scalable real-time service sched-
uler. Whereas most orchestrators are designed for hundreds or thousands
of nodes, Swirly was explicitly designed to handle immense service architec-
tures in edge networks, enabling the real-time organization of services for
up to hundreds of thousands of nodes. However, despite requiring minimal
resources from each individual edge node, its Kubernetes-integrated cen-
tralized scheduler eventually saturates all available memory and network
bandwidth on a single machine. Some strategies to avert this scenario are
discussed, but the preferable solution was to decentralize the algorithm.

6.2 Scaling Towards Smart Cities

In Chapter 4, various types of scalability were discussed, along with their
potential benefits. While FLEDGE and Swirly implicitly improve local scal-
ing due to a focus on low resource requirements, the real goal of scalability
in the edge is to run micro-services on many devices simultaneously as they
are needed, rather than better vertical (local) scaling.
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As an example of emergent functionality through federation, FUSE was in-
troduced as a framework to quickly and securely federate private networks
to pool computational resources in crisis situations. By relying on Docker-
in-Docker and a micro-service approach, it can create a federation within
minutes, and new resources can join in less than a minute, while using a
VPN to create a secure separation between federated and non-federated
resources in each individual network. However, this approach is quite re-
source intensive, and the master nodes can not reliably run on any current
generation edge hardware. Although this is not an issue in private corpo-
rate networks, which generally contain at least a few powerful servers, the
resource requirements and join times are not quite suitable for applications
in the edge that need real-time responsiveness.

To that end, SoSwirly was presented as a decentralized, real-time, highly
scalable service orchestrator. By decentralizing the original Swirly algo-
rithm into a micro-service architecture, each edge node is responsible for
mapping its own environment, and requesting services from suitable nearby
nodes. As the performance of this approach only depends on configuration
and the local density of nodes, it is shown to be highly scalable, and unhin-
dered by the geographical expansion of networks. Combined with FLEDGE,
the resource requirements of this solution are sufficiently low for edge gate-
ways and many other devices. However, the solution is still reactive with
respect to topology changes, and the integration of AI may further improve
topology efficiency, depending on the performance impact of integrating
suitable Al

6.3 Intelligence in Smart Cities

Having presented and illustrated the importance of scalability and reliability
in the edge in Chapters 2 through 4, the aspect of intelligence was introduced
in Chapter 5. Common types of Al in the edge were elaborated, along with
specific uses and how the synergy of intelligence and edge networks results
in the Intelligent Edge.

Early stage work was introduced based on the combination of AI and
SoSwirly, to further improve the effectiveness of SoSwirly, and to lever-
age it as a distributed weight update mechanism. While there are still open
questions concerning the distributed weight update model, and whether ef-
ficiency improvements are worth the added load of an Al component, these
ideas form a solid basis for future work.

Finally, the integration of the main topics of this dissertation was summa-
rized in a review of Al in the Intelligent Edge and Smart Cities. This review
shows an exponential increase in research interest in all aspects of Al in the
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edge and Smart Cities from 2015 to 2020, with no immediate indication of
slowing down, and while recent studies indicate that ANN and blockchain-
based solutions are especially popular, other types of Al remain important,
especially in edge scenarios with limited resources.

6.4 Future Challenges

While every chapter lists concrete ideas for extending the research presented
in it, there are a number of trends and topics in the field of Smart Cities
that merit attention.

Virtualization and orchestration

In Chapters 2 and 3, it was determined from updated information that
the number of alternatives available in lightweight virtualization and edge
container orchestration is evolving quickly. While older solutions tend to
incorporate more functionality and grow out of their original target de-
vices, alternative, highly targeted solutions are usually developed to take
their place and solve some of their shortcomings. Monitoring the scope and
benchmarking the performance of all these solutions will remain academi-
cally interesting for at least several more years, as edge computing continues
to mature.

Whereas Docker containers themselves are relatively mature, upcoming
technologies can be divided into three categories, each with their advan-
tages and potential target devices in the edge:

e Running one or more containers in a microVM adds the security and
isolation of a VM to the existing orchestration and networking poten-
tial of containers. Such architectures are relatively resource intensive
and are highly suitable for fog servers or powerful edge gateway de-
vices. An example of this category is Kata Containers [1].

e Executing a single process directly inside a microVM, which limits
the attack surface of a software process and potentially improves per-
formance. Depending on which hypervisors are supported (i.e. bare-
metal vs Linux) and how the target process is integrated, these solu-
tions may be suitable for resource-constrained edge devices. Examples
include OSv unikernels [2] and Firecracker microVMs [3].

e Customized system interfaces are essentially a substantial layer of in-
direction at the kernel level, which can provide security benefits for
the host kernel, and performance benefits for any process running on
them. Solutions in this category can be highly experimental, ranging
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from WAST [4], which is shown to be extremely fast but does not yet
have any networking capabilities, to gVisor [3], which is more stable
and merely aims to separate containers from their host kernel.

Novel methods of organizing software services in the edge should take into
account the various feasible technologies, rather than containers alone. To
that end, contributions to the upcoming technologies themselves could be
researched. For example, the networking capabilities of microVM-based so-
lutions are often highly compatible with CNI, and a novel CNI plugin or
container runtime could transparently handle container, unikernel, and Fire-
cracker deployments. WASI is an important development, as it does not rely
on either a container runtime nor a hypervisor, and a basic socket implemen-
tation would allow further research into its performance for micro-services,
as well as possible integration into service architectures and container net-
works.

Additionally, it is important to determine which factors and device proper-
ties determine the best technology to use for service deployment on a specific
device. These factors are no longer limited to basic hardware resources, as
environmental factors (e.g. physical location, nearby services and devices)
and specialized hardware acceleration may be more important. It would also
be useful to determine how software images can transparently support var-
ious virtualization technologies, similar to how Docker images can support
multiple CPU architectures.

Finally, many low-grade sensors and IoT devices do not currently possess
the resources for any type of virtualization, much less containers. Such
devices usually only support a basic dialect of C or C++, but synergetic
research involving a focus on truly minimal hardware and a primitive form
of isolated, flexible software deployment could finally open up this class
of hardware for limited pre-processing of data, or limited but immediate
actuation.

Decentralization

Cloud computing has always been an inherently centralized concept, in
which scaling is mostly limited to selecting optimal nodes and throwing
more hardware resources at a problem. However, scalability is fundamen-
tally different in edge networks, and by extension Smart Cities, which con-
tain a variety of low-resource devices spread out over large geographical
areas, and where networks and nodes are constantly in flux. Whereas net-
work technology is already quite suitable for decentralized operation, ser-
vice orchestration and Smart City applications are usually confined to small
networks and limited scopes. For a true Smart City to develop, in which
highly responsive services are transparently available wherever one goes,
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more integration is required between various services and networks, so that
applications are no longer features of single buildings or industrial yards.
SoSwirly in Chapter 4 is a limited example of how entire service architec-
tures can result from the emergent behavior of a collection of nodes, each
with their own needs. However, much more remains to be done in terms of
uniform runtime environments, decentralized discovery of functions and ser-
vices, reliability and back-up service providers, pre-empting end-user needs,
and predicting the short-term functional needs of any node through Al

In terms of uniform runtime environments and decentralized discovery, fur-
ther (IEEE) standardization is required to achieve a global level of coopera-
tion between various solutions, much like OCI [5] has achieved for containers.
SoSwirly currently only picks a single node for each service, and can make
no guarantee for QoS in case of unexpected software or hardware failures.
Additional research is required to determine how redundancy and timely
failure detection can be implemented in decentralized architectures for a
guaranteed QoS, and how the overhead of the resulting strategies can be
minimized. Similarly, although the point of decentralization is to preserve
privacy by not sending data to the cloud, additional research could be done
into decentralized orchestration with hard limits on data availability (re-
quired by either the user or the law, i.e. GDPR [6]), and by extension, no
option to move or possibly even store the data.

From an architectural point of view, SoSwirly can technically organize any
service architecture that can be expressed as a Directed Acyclic Graph
(DAG) through recursive deployment of agents. However, it may be useful
to define service architectures in terms of functionality dependencies, rather
than service dependencies. Combined with standardization efforts, this may
result in devices exposing well-defined functionality, rather than software
services with vendor-specific requirements or quirks, which in turn would
turn the edge into a network of easily reusable building blocks. This behav-
ior is generally already implicitly present in applications designed around a
message bus or event bus, but such architectures are usually controlled by
a centralized instance and limited in scope.

Intelligence

As shown in Chapter 5, there are many interesting ideas and potential
applications around the topic of Smart Cities, but edge hardware is not
always quite capable of running intensive workloads and complex AI models.
The contradictory requirements of extremely small, cheap, low-powered and
yet highly performant devices make hardware progress steady, but difficult.
Flexible software and Al models can partially solve these difficulties by only
enabling specific functionality as the required hardware is detected, or in
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the case of ANN, by sacrificing accuracy for speed.

Innovations in GPU, TPU and FPGA development are likely to increase the
size of feasible and trainable edge models by orders of magnitude in the near
future. An Nvidia Jetson Nano [7] is relatively cheap, and comparable in
power consumption to a Raspberry Pi 4, yet its GPU is capable of real-time
inference of models with tens of thousands of parameters. As GPU industry
predictions [8] indicate far faster performance increases in the context of
neural networks than the legendary leaps predicted for CPUs by Moore’s
law, an era of proliferate Deep Learning on edge devices is at hand.

In any case, the use of Al in edge organization and applications is only
just beginning, and will undoubtedly prove useful in workload orchestrat-
ion, data placement, anticipating end-user needs, and managing network
traffic as classical, hand-crafted algorithms become intractable or incapable
of taking into account all necessary factors. Decentralized learning is an
important enabler for running DNN entirely in the edge, but as Chapter 5
shows, entirely decentralized (online) learning introduces significant issues
that need to be tackled.

As the size, and especially depth, of AI models increases, new algorithms for
decentralized weight updates will be required. DNNs are sensitive to round-
ing errors, and straightforward merge mechanisms such as averaging weights
may result in unacceptably high output divergence. Additionally, blindly
sending large numbers of massive weight updates around a network of learn-
ing nodes will incur a severe overhead, easily in the range of gigabytes per
device per day, necessitating more efficient dissemination algorithms. Fi-
nally, while privacy is not directly compromised by leaking data, the weight
tensors of personally fitted edge AI models may still reveal personal habits
and patterns by inference, and can potentially be abused by nodes that
gather weight updates specifically for that purpose.

City of Things

Assuming these improvements in ubiquitous deployment, decentralized or-
ganization, standardized functionality and Al modelling are possible, a great
many new Smart City applications will become possible. On a small scale,
low-cost home automation will be able to use computer vision to identify
items and keep track of fridge contents, combined with anonymized behav-
ioral patterns, to suggest grocery shopping lists at convenient times. The
same approach could be used at a larger scale in supermarkets to more
efficiently guide employees in stocking shelves. Working at personal and
city-wide scales simultaneously, roadside units and vehicular networks could
predict traffic jams before they happen, and proactively redirect incoming
traffic according to their preferences. Going one step further, behavioral
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patterns could be combined with traffic predictions to suggest optimal times
and modes for transportation. It is clear that in order for these applications
to scale on-demand in real-time, and to absolutely preserve privacy, highly
flexible edge computing with powerful Al engines will be required.

Last but not least, edge computing is also being rapidly adopted for Smart
Grids and energy efficiency in general. The advent of Smart Meters and re-
newable energy, as well as the availability of cheap, easy power monitoring,
opens up the potential for edge devices that optimally regulate their own
power use depending on available local renewable power and past trends,
optionally negotiating with nearby devices. Although this strategy is clearly
not possible for some devices (e.g. a TV), such functionality would, in gen-
eral, significantly reduce grid load and help achieve renewable energy goals,
rather than wasting or disabling excess local production, at no extra effort
to end-users. At a higher level, edge and fog computing can balance excess
production and demand within neighbourhoods, before routing anything
over larger distances.
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