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Dankwoord

De voorbije jaren heb ik het geluk gehad om onderzoek te mogen verrichten
in een boeiend domein als dat van de wachtlijntheorie. Met trots kan ik en-
kele van mijn resultaten tonen in dit proefschrift. Maar eerst wens ik graag
mijn dankbaarheid voor enkele personen te vereeuwigen door middel van dit
dankwoord. Here we go.

Vooreerst wens ik mijn drie promotoren te bedanken. Het was heel fijn -en
belangrijk- voor mij dat jullie zo in mij geloofden. Ik kon altijd bij jullie terecht
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Herwig, bedankt voor deze mooie kans die je mij gegeven hebt. Als ik het goed
heb, ben ik de laatste doctoraatsstudent die gestart is onder jouw promotor-
schap. Ik vond het altijd zo boeiend om naar je uitleg te luisteren, gaande
van wachtlijntheorie, de werking binnen de universiteit tot de geschiedenis van
smacs. Ik zal altijd met plezier terugdenken aan deze gesprekken. We zijn er
dan wel niet in geslaagd om het boundary-value probleem volledig op te lossen
zoals we voor ogen hadden, stiekem hoop ik dat je toch trots bent op wat we
hebben bereikt.

Joris, volgens mij kan ik je niet genoeg bedanken. Je stond werkelijk altijd
klaar om te luisteren naar mijn vragen, mijn werk te verbeteren (en dan nog
wel in zeer korte tijd) of om mij gerust te stellen als ik dat nodig had. De
momenten waarop we ons bogen over de laatste wiskundige details in een be-
wijs of berekening, heb ik altijd als één van de meest plezierige momenten van
mijn werk beschouwd (dit is echt veel leuker dan het klinkt!). Onder andere
door deze momenten, durf ik met vrij grote zekerheid zeggen dat we een ijzer-
sterk team vormden om allerhande fundamentele onderzoeksproblemen aan te
pakken binnen de wachtlijntheorie.

Dieter, ook jouw deur stond altijd open voor vragen en discussies, waarvoor
dank. Jij en Joris vulden elkaar goed aan op dat vlak. Naast jouw drive
in het onderzoek naar nieuwe toepassingen voor de wachtlijntheorie, zet je je
ook enorm in voor het onderwijs binnen de vakgroep. Iets wat ik enkel kan
bewonderen.

Ook zou ik graag Bart Steyaert bedanken voor het delen van zijn kennis over
staartbenaderingen in mijn beginperiode bij smacs. Verder wil ik ook prof.
Hans Vernaeve bedanken omdat hij zo vriendelijk was om de tijd te nemen om
uitgebreid te antwoorden op enkele lastige vragen over complexe analyse.
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Samenvatting

In dit proefschrift bestuderen we een welbepaald wachtlijnmodel. Een wacht-
lijnmodel is een wiskundige beschrijving van een reëel wachtlijnsysteem. Onder
een wachtlijnsysteem verstaan wij elk systeem waar entiteiten (die we aandui-
den als de klanten) wachten op één of andere vorm van bediening. Een wacht-
lijnmodel wordt wiskundig beschreven aan de hand van een aantal (stochasti-
sche) elementen zijnde het aankomstproces, de wachtruimte en de werking van
de bedieningsstations. Voor het merendeel van de wachtlijnmodellen is men
geïnteresseerd in het berekenen van de stationaire distributie van het aantal
klanten in het systeem. Eens deze distributie gevonden is, kunnen verschil-
lende interessante prestatiematen van het systeem berekend worden.

Het wachtlijnmodel dat wij in dit proefschrift bestuderen, maakt onderscheid
tussen twee verschillende types klanten, die wij aanduiden als klanten van type
1 en klanten van type 2. Voor beide types klanten is er een aparte wachtrij
voorzien. Het is echter zo dat slechts één klant per keer bediend kan worden.
Klanten van type 1 en type 2 kunnen dus niet tegelijkertijd bediend worden.
Er is met name één bedieningsstation (Engels: server) dat verantwoordelijk is
voor de bediening van beide wachtrijen. De volgorde waarin de verschillende
types klanten bediend worden, kan op verscheidene manieren bepaald worden.
De regels die deze volgorde beschrijven, worden samengevat door de ‘schedule-
ringsdiscipline’. Het opdelen van klanten in verschillende types is noodzakelijk
in wachtlijnsystemen waarbij klanten verschillende vereisten hebben. Een op-
deling die bijvoorbeeld veel gebruikt wordt in computernetwerken is die van
reële-tijdsverkeer (multimediatoepassingen zoals videobellen) ten opzichte van
niet-reële-tijdsverkeer (zoals het versturen van een e-mail). Het eerste type
verkeer (of m.a.w. het eerste type klanten) is gevoelig voor lange wachttijden,
maar niet voor het verlies van ‘klanten’ (wanneer de wachtrij volzet is), terwijl
het laatste type verkeer vereist dat er geen klanten worden verloren (en de
wachttijden spelen typisch ook een minder grote rol). Het spreekt voor zich
dat de scheduleringsdiscipline een belangrijke rol speelt in het voldoen aan de
vereisten van beide types klanten.

In dit proefschrift bestuderen we grondig één specifieke scheduleringsdiscipline,
namelijk waarbij de bediening tussen de twee types klanten op een willekeurige
en afwisselende manier plaatsvindt. Telkens wanneer een nieuwe klant moet
gekozen worden om te bedienen, wordt een muntstuk opgegooid waarvan de
uitkomst kop is met kans α en munt met kans 1 − α. In het geval van kop,
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kan een klant van type 1 bediend worden en in geval van munt kan een klant
van type 2 bediend worden. In het geval dat er geen klanten aanwezig zijn
van het gekozen type (bijvoorbeeld wanneer er kop wordt gegooid maar er
zijn geen klanten van type 1), wordt er niemand bediend en wordt de munt
gewoon opnieuw opgegooid. Het unieke bedieningsstation dat verantwoordelijk
is voor beide wachtrijen, wordt op deze manier proportioneel verdeeld onder
beide wachtrijen. Naargelang de waarde van α zal een wachtrij het unieke
bedieningsstation meer of minder tot zijn beschikking hebben.

Voor dit wachtlijnmodel bestuderen we het aantal klanten van beide types geza-
menlijk. Het is evident dat we dan kunnen spreken van een twee-dimensionaal
wachtlijnmodel. Eveneens vanzelfsprekend is het feit dat het analyseren van
twee-dimensionale wachtlijnmodellen beduidend lastiger is dan het analyseren
van (klassieke) één-dimensionale wachtlijnmodellen. Toch is er al veel succesvol
onderzoek verricht met betrekking tot algemene twee-dimensionale wachtlijn-
modellen. Met behulp van probabiliteitsgenererende functies komt het onder-
zoeksprobleem steevast neer op het oplossen van een functionele vergelijking.
Het moeilijke aspect aan het oplossen van deze vergelijking, is dat de verge-
lijking twee onbekende functies bevat (naast de te vinden functie). Dankzij
eerder onderzoek is er aangetoond dat deze twee onbekende functies te bepalen
zijn als de oplossing van een randwaardeprobleem voor holomorfe functies. Het
numerieke werk dat gepaard gaat bij het berekenen van prestatiematen van het
wachtlijnsysteem is echter zeer omslachtig met deze oplossingsmethode. Deze
scriptie is bedoeld om het wachtlijnmodel, zoals beschreven in vorige alinea, be-
ter te begrijpen. In het bijzonder besteden we veel aandacht aan de wiskundige
moeilijkheid om dit model ‘op te lossen’ door verschillende oplossingsmethoden
aan te reiken en speciale gevallen te beschouwen.

We bestuderen twee discrete toevalsveranderlijken in dit proefschrift, namelijk
het aantal klanten in het systeem van type 1 en type 2, op een lukraak tijd-
stip ‘in the long run’. Het doel is het berekenen van de stationaire gezamelijke
massafunctie (Engels: probability mass function of pmf) van deze twee discrete
toevalsveranderlijken. Om dit doel te bereiken, maken we gebruik van probabi-
liteitsgenererende functies (Engels: probability generating functions of PGFs).
De complexiteit van de analyse blijkt sterk afhankelijk te zijn van de aard van
het aankomstproces van de klanten. Voor een algemeen aankomstproces is het
zelfs zo dat we niet in staat zijn om een exacte uitdrukking in gesloten vorm
te vinden voor de gezamelijke PGF van het aantal klanten in het systeem van
type 1 en type 2.

De twee doelstellingen van dit proefschrift luiden als volgt. Doelstelling 1: na-
gaan welke aankomstprocessen wél aanleiding geven tot een exacte oplossing
in gesloten vorm; Doelstelling 2: bestuderen welke welgekende benaderingsme-
thoden voor één-dimensionale modellen succesvol kunnen worden uitgebreid
en toegepast op ons twee-dimensionaal model in het geval van algemenere aan-
komstprocessen.

Hoofdstuk 2 is gericht op onze eerste doelstelling. In dit hoofdstuk beschou-
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wen we drie specifieke aankomstprocessen. Met behulp van toepassingen uit
de complexe analyse slagen we erin om de gezamelijke PGF van het aantal
klanten in het systeem van type 1 en type 2 te vinden, voor elk van de drie
specifieke gevallen. Aangezien de PGFs telkens rationale functies zijn, is het
slechts een kleine moeite om ook de overeenkomstige pmfs terug te vinden. Cru-
ciaal voor elk van deze drie analyses, is het concept van analytische uitbreiding
van een complexwaardige functie. Deze techniek bleek overigens ook succesvol
om asymptotische uitdrukkingen te bekomen voor de gezamelijke pmf van het
aantal klanten in het systeem, voor algemenere aankomstprocessen (dit is het
onderwerp van Hoofdstuk 3). De resultaten die we bekomen in Hoofdstuk 2
mogen dan wel enkel geldig zijn voor enkele zeer specifieke aankomstprocessen,
toch hebben we inzicht gekregen in de structuur van de functionele vergelijking.
Bovendien geven de bekomen uitdrukkingen voor de verschillende prestatiema-
ten al een vrij goed inzicht in de impact van de scheduleringsdiscipline op het
wachtlijnsysteem. We lichten één van deze inzichten nu toe. In het speciale
geval dat de de klanten van type 1 en type 2 aankomen volgens twee onafhan-
kelijke Bernoulli processen, dan is het zo dat de correlatie tussen het aantal
klanten in het systeem van type 1 en van type 2 steeds negatief is, ongeacht
de waarde van de systeemparameters (zijnde α en de gemiddelde aankomstin-
tensiteiten). Dit is dan ook wat we intuïtief verwacht hadden. Wanneer één
wachtrij zeer groot is, is dit te verklaren door twee zaken: ofwel zijn er veel aan-
komsten geweest de laatste tijd, ofwel heeft de wachtrij het bedieningsstation
weinig tot zijn beschikking gehad (en kunnen er dus geen klanten vertrekken).
In dit laatste geval is het dan zeer waarschijnlijk dat er weinig klanten in de an-
dere wachtrij zijn, aangezien die het bedieningsstation veel tot hun beschikking
hebben gehad.

Hoofdstuk 3, Hoofdstuk 4 en Hoofdstuk 5 focussen op de tweede doelstelling.
Zoals eerder vermeld, worden in Hoofdstuk 3 asymptotische (dus geen exacte)
uitdrukkingen gevonden voor de gezamelijke pmf van het aantal klanten in het
systeem van type 1 en type 2, waar we ons niet langer beperken tot enkele
specifieke aankomstprocessen zoals in Hoofdstuk 2. Met een asymptotische
uitdrukking bedoelen we hier een uitdrukking voor de massafunctie wanneer
het aantal klanten in één wachtrij naar oneindig gaat. Deze uitdrukkingen
zijn zeer elegant en kunnen eenvoudig worden toegepast. De resultaten in dit
hoofdstuk zijn weliswaar enkel geldig wanneer het aankomstproces voldoet aan
een intrigerende voorwaarde. Deze voorwaarde is altijd voldaan wanneer de
klanten van type 1 en type 2 aankomen volgens twee onafhankelijke aankomst-
processen. Vandaar dat deze resultaten algemener zijn dan deze die bekomen
zijn in Hoofdstuk 2.

Hoewel de resultaten uit Hoofdstuk 3 elegante en efficiënte benaderingen op-
leveren, zijn deze niet accuraat genoeg voor het schatten van gezamelijke kan-
sen dat er weinig klanten in het systeem aanwezig zijn. Niettegenstaande er
reeds een uitgebreid gamma aan benaderingsmethoden voor twee-dimensionale
wachtlijnmodellen bestaat, stellen we zelf een nieuwe benaderingsmethode voor
in Hoofdstuk 4. Deze nieuwe benaderingsmethode combineert de resultaten uit
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Hoofdstuk 3 met een interpolatiemethode. De combinatie van deze twee is
origineel en verschillend in vergelijking met andere benaderingsmethoden. De
resultaten bekomen met deze nieuwe methode werden vergeleken met simula-
ties. Er kan besloten worden dat de resultaten nauwkeurig zijn in het geval dat
de bezettingsgraden (Engels: the load(s)) van de wachtrijen laag tot middelma-
tig zijn. Er wordt een verklaring gegeven waarom de resultaten onnauwkeurig
zijn in het geval van hoge bezettingsgraden. Bovendien geven we ook suggesties
om de benaderingsmethode nog te verbeteren in de toekomst.

Tenslotte, onderzoeken we in Hoofdstuk 5 nog een andere benaderingsmethode,
namelijk een heavy-traffic benadering. Deze benaderingsmethode is zeer po-
pulair voor één-dimensionale wachtlijnmodellen, waar men typisch het aantal
klanten in het systeem schaalt met de bezettingsgraad en vervolgens de be-
zettingsgraad naar 1 laat gaan. Dit noemt men een heavy-traffic limiet. In
Hoofdstuk 5 veronderstellen we dat de klanten van type 1 en type 2 aankomen
volgens twee gelijke en onafhankelijke aankomstprocessen en dat α = 1

2 . Het
nemen van de heavy-traffic limiet brengt ons nog steeds tot het oplossen van een
functionele vergelijking. Echter, deze nieuwe functionele vergelijking is een pak
eenvoudiger dan de oorspronkelijke en kan nu expliciet worden opgelost. Uit
deze oplossing vinden we onder andere een uitdrukking in gesloten vorm voor
de correlatiecoëfficiënt van het aantal klanten in het systeem van type 1 en type
2, wanneer de bezettingsgraad naar zijn kritische waarde 1 nadert. Aanvullend
in Hoofdstuk 5 bestuderen we een ander, weliswaar gelijkaardig, wachtlijnmo-
del. Het verschil zit hem in het feit dat er nu altijd een klant wordt bediend
zolang er klanten aanwezig zijn in het systeem. In de wachtlijntheorie zegt men
dan dat het systeem werkconserverend (Engels: work-conserving) is. Herinner
u dat in ‘ons’ wachtlijnmodel het zo kan zijn dat zich een mismatch kan voor-
doen wanneer het bedieningsstation beschikbaar is voor een wachtrij zonder
klanten, terwijl er wel klanten aanwezig zijn in de andere wachtrij. We passen
het model nu aan zodat deze mismatch zich niet meer kan voordoen. Met an-
dere woorden, indien juist één wachtrij leeg is, dan zal het bedieningsstation
altijd beschikbaar zijn voor de niet-lege wachtrij. Voor dit aangepast, werk-
conserverend, wachtlijnmodel berekenen we eveneens een heavy-traffic limiet.
Beide modellen worden vervolgens met elkaar vergeleken, aan de hand van het
gemiddeld totaal aantal klanten in het systeem en de correlatiecoëfficiënt tussen
het aantal klanten in het systeem van type 1 en type 2. Het resultaat van deze
vergelijkende studie is dat beide systemen significant verschillend zijn wanneer
de bezettingsgraad kritiek is.



Summary

We present and analyze a specific queueing model. A queueing model is a
mathematical representation of a system where entities (typically called cus-
tomers) have to wait before receiving some kind of service. Such a model is
defined by a number of stochastic processes, describing the arriving flow of cus-
tomers, the waiting room and the service facilities. Ultimately, the target for
many queueing models is to obtain the stationary (or steady-state) distribution
of the number of customers in the system. From this distribution, numerical
characteristics of interest can be calculated.

The queueing model studied in this dissertation has two different types of cus-
tomers, each with their own dedicated queue, but there is only one single server
facility. A maximum of one customer can be served at a time. At this point,
a scheduling discipline is necessary. The scheduling discipline decides in which
order the customers are handled. Customers of type 1 and type 2 thus com-
pete for one and the same service. The differentiation of customers in different
customer types can be necessary because they may have different Quality of
Service requirements, or QoS, such as no loss, minimal delay, maximum band-
width, etc. For example, in computer networks, typically two types of traffic
are distinguished: real-time traffic (delay-sensitive, but loss-tolerant) such as
videoconferencing; and non-real-time traffic (loss-sensitive, but delay-tolerant)
such as file transferring. Ideally, both customer types strive for a maximum
QoS. Providing QoS becomes an issue in case of limited resources, since in this
case there is an obvious trade-off between the QoS of both customer types. It
goes without saying that the choice of the scheduling discipline has a significant
impact on the QoS in a network with limited resources.

In this dissertation, we consider the following scheduling discipline: at each
service opportunity, a weighted coin is flipped so that with probability α a
customer at queue 1 is served (if any) and with probability 1 − α a customer
at queue 2 is served (if any). If a queue happens to be empty at the moment
that a service is allocated to that queue, no service occurs for a fixed amount of
time. We call this discipline the randomly alternating service discipline. The
single server facility is thus proportionally divided between the two customer
types over time.

In the queueing model, we keep track of both the number of customers of
type 1 and of type 2. For obvious reasons, our model is a so-called two-
dimensional queueing model. The study of these models is known to be noto-
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riously hard. Nevertheless, there has already been much research on (general)
two-dimensional queueing models. Using the probability-generatin- function
approach, a functional equation has to be solved. However, in order to solve
this single functional equation, two unknown functions have to be determined.
The standard state-of-the-art methodology exists of reducing it to a boundary-
value problem for analytic functions (Dirichlet, Riemann, Riemann-Hilbert).
However, in practice, cumbersome numerical work is necessary to obtain ac-
tual performance measures of the queueing model, such as the probability that
there are more than a specified number of customers in the (total) system, the
correlation coefficient between the numbers of customers of both types, etc.
This dissertation is devoted to make several contributions towards a better un-
derstanding of the solution of the two-class queue with randomly alternating
service.

The random variables analyzed in this dissertation are the numbers of cus-
tomers of both types in the system in steady state, called the system contents.
The objective is to obtain the joint distribution of these two random variables
in steady state. The analysis makes extensive use of the theory of probability
generating functions (PGFs). Obtaining easy-to-evaluate expressions for the
probability generating function for this general queueing model proves to be
unfeasible. The complexity of the analysis depends on the complexity of the
arrival processes.

The two goals of this dissertation can be stated as follows. Goal 1: to investigate
which arrival processes give rise to an exact closed-form expression of the joint
PGF and the joint probability distribution of the system contents; Goal 2: to
study and apply well-known one-dimensional approximation techniques to the
two-dimensional problem at hand.

Chapter 2 is devoted to the first goal. In this chapter we consider three spe-
cific arrival processes. An expression for the joint PGF is obtained by using
applications of complex analysis. Since all the obtained PGFs in this chapter
are rational functions, the corresponding distributions are easily obtained. The
notion of analytic continuation is not a standard one within queueing theory,
but it is proven to be highly suitable for our case. Moreover, it can be applied
under less severe restrictions of the arrival processes to obtain the asymptotic
behavior of the joint distribution (instead of the exact expression). Despite
the fact that the results in this chapter are only valid for specific arrival pro-
cesses, these give valuable insights in the analysis of the functional equation.
Moreover, the simple expressions allow to show the impact of the scheduling
discipline on the performance of the queueing model. We point out one of such
finding. In the case that customers of type 1 and type 2 arrive according to
two independent Bernoulli processes, it turns out that the system contents are
negatively correlated (at least for the arrival distribution under consideration).
This is in accordance with our intuition. If the number of customers in the first
queue is exceptionally large, then either there have been a lot of arrivals lately
to the first queue, or the first queue is not served often lately. In the latter
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case, it is likely that the number of customers in the second queue is small.

Chapter 3, Chapter 4 and Chapter 5 are devoted to the second goal. As men-
tioned before, analytic continuation can be applied to obtain the asymptotic
behavior of the joint distribution of the system contents (instead of the exact
expression), without having to restrict ourselves to specific arrival processes.
Such an asymptotic analysis is the subject of Chapter 3. In this chapter, we
introduce an intriguing condition for the arrival process in order to compute
the tail asymptotics of the joint distribution of the system contents. Broadly
speaking, with tail asymptotics we mean an expression for the joint distribu-
tion of the system contents, when the number of customers in one queue is
considered to be large. The results of this chapter are important, since the
numerical work to calculate these obtained expressions is negligible (absolutely
and relatively as compared to the boundary-value approach).

While the results of Chapter 3 serve as an elegant and efficient approximation
technique, it is obviously inaccurate to estimate the (joint) probabilities of
small system contents. Although a myriad of approximation schemes exist for
two-dimensional queueing models, we proposed a novel approximation method
which is presented in Chapter 4. Interpolation methods and tail asymptotic
results are combined to approximate the complete joint distribution of the
system contents. The combination of these two concepts is the novelty and
difference of our approach in comparison with previous studies. The results
of this approximation method are compared with simulation results. In case
of low and medium load, accurate results are obtained. We explain why the
results are inaccurate in case of high loads. Moreover, we also suggest how to
improve these inaccuracies in the future.

In Chapter 5, we determine a heavy-traffic limit. This is a renowned tech-
nique and is widely applied to one-dimensional queueing models. For multi-
dimensional (or two-dimensional) models, this turns out to be more difficult
yet again in comparison with the one-dimensional case. In Chapter 5, we as-
sume that customers of type 1 and type 2 arrive according to two equal and
independent arrival processes and α = 1

2 . We linearly scale the steady-state
system contents and derive a functional equation for the corresponding joint
Laplace-Stieltjes transform. After taking the heavy-traffic limit, we show that
the functional equation can be solved explicitly by means of the boundary-
value approach. Several mixed moments of interest can be computed from the
joint Laplace-Stieltjes transform. The most interesting one is the correlation
coefficient. Because the correlation coefficient is invariant under linear trans-
formations of the random variables, we have obtained an explicit expression
of the correlation coefficient between the system contents when the queueing
system is brought to the border of instability. In addition, we compare the two-
class queue with randomly alternating service with its work-conserving variant.
A work-conserving scheduling discipline is one that always serves a customer
when there is a customer in the system. The randomly alternating service dis-
cipline is not work-conserving because there can be customers from one queue
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waiting while the server is allocated to an ‘empty’ queue. It has to be said
that most scheduling strategies examined in the literature are assumed to be
work-conserving. The most prominent reason to assume a non-work-conserving
scheduler is to keep the frequency of switching between the two types at a
predetermined level (this is an advantage when there are costs involved with
switching), while still guaranteeing that no customer types suffer from starva-
tion. In the work-conserving variant of the randomly alternating scheduler, it
is assumed that when only one of both queues is non-empty and the other is
empty, the non-empty queue is served. For both schedulers, we compared the
mean total system content and the correlation coefficient between the system
contents, in heavy-traffic. The result of this study is that both schedulers are
significantly different from each other.



1
Introduction

1.1 What is queueing theory?

Queueing theory is literally the scientific study of queueing phenomena. Since
the input and output variables of a queue are usually of a random, non-
deterministic nature, queueing theory mainly uses the apparatus of probability
theory. Queueing theory is considered to be one of the oldest, and also most
notable and prominent, subareas of the field of (applied) probability theory
[1, Ch. III]. Additionally, it should be mentioned that queueing theory dates
back to the pioneering work of the Danish mathematican Agner Krarup Er-
lang (1878-1929) who used -what we now call- queueing theory to establish
how many operators would be necessary in a telephone exchange so as to avoid
overly long waiting times. Agner Krarup Erlang is widely recognized as the
founder of queueing theory.

When thinking about “a queue”, it is natural to consider actual humans that are
standing in line, patiently waiting to receive some kind of service from a cashier.
However, there are many other kinds of queueing situations from daily life. To
name a few: we wait patiently to be answered by technical support when we call
a phone service provider; clear the security check at an airport; experiencing
delays while browsing the world wide web; and so on. Queueing models are
useful to performance modeling and analysis of (tele)communication networks,
transportation systems, manufacturing systems, and in other fields that involve
scheduling and logistics [2, Ch. 23]. Without going into great detail, we want to
draw attention to the application of queues in communication systems since the
evolution of queueing theory is intimately tied to communication systems. In
communication systems, multiple information units are sent over shared links.
Queues are provided to store the information units temporarily during time
periods that more information arrives than can be simultaneously transmitted.
Within the performance evaluation community, typically other terminology is
used than the classic queueing terminology. The most prominant examples are
buffers instead of queues and packets instead of customers. According to [3,
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Ch. 1], the goals of performance analysis are twofold. The first one is predicting
the system performance. For example, one wants to estimate the probability
that the queue length exceeds a given threshold. While prediction is important
and useful, an even more important goal for a system engineer is finding a
superior design to improve the system performance. Mathematical queueing
models allow for getting insight into the dynamics of a queueing process prior
to its costly implementation. Or, put differently, queueing models are to a
system engineer what architectural models are to architects.

We emphasize that this dissertation is of a fundamental nature. A particular
mathematical queueing model can be used for multiple applications, but a
fundamental queueing theorist is in the first place interested in capturing the
essential aspects of the queueing problem at hand, regardless of the application.
Throughout this dissertation, the emphasis is put on the mathematical analysis
of a particular queueing model, rather than on the possible applications as
described above.

To conclude this introductory section on queueing theory, we want to remark
that there are two main analytical approaches to analyze queueing models,
namely the transform method and the matrix-analytic method. The latter trans-
lates the queueing problem at hand to a linear system with an infinite number of
unknowns -usually the stationary probabilities of the system contents- and an
infinite number of linear equations in these unknowns. By exploiting the struc-
tural properties of the (infinite) coefficient matrix, computationally efficient
algorithms are developed. We refer to [4–6] for further details. The transform
method makes extensive use of the theory of probability generating functions
and Laplace-Stieltjes transforms. Which analytical approach out of these two
to choose is often a matter of taste. Broadly speaking, researchers who prefer
the matrix-analytic method are more interested in stable algorithms and lin-
ear algebra, while researchers with a preference for the transform method are
likely more interested in closed-form expressions and in mathematical analy-
sis (in which we mean that branch of mathematics studying functions, limits,
derivatives, etc.). Throughout this dissertation we will use the transform ap-
proach. Good walking shoes, i.e. a solid introduction to probability theory
and complex analysis, are all the equipment that is needed to walk trough this
dissertation.

1.2 From probability theory to complex analysis

Throughout this dissertation we heavily rely on the use of generating functions
-in particular probability generating functions and Laplace-Stieltjes transforms-
to analyze random variables of interest. In fact, we even dare to say that gen-
erating functions are the central object of this dissertation. Therefore, in this
section we list some of the main properties of probability generating functions
and Laplace-Stieltjes transforms. In particular, we already want to draw at-
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tention to the fact that a crucial part of the analysis of this dissertation is to
interpret generating functions as functions of a complex variable. Most part of
this section is based on the books [1, 7–11].

The probability generating function (PGF) of a discrete random variable X,
with values in Z≥0, is by definition

X(z) , E[zX ] (1.1)

=

∞
∑

k=0

Pr[X = k]zk , (1.2)

where E[·] denotes the expectation operator and Pr[·] the probability measure.
Note that speaking of the PGF of a random variable is abuse of language. More
correctly would be to say that X(·) is the generating function of the probability
mass function Pr[X = · ]. However, in this dissertation we will always speak
about the PGF of a random variable, referring to the complex-valued function
with power series representation (1.2).

PGFs have many useful properties. Since all probabilities must sum up to one,
we have that

X(1) = 1 . (1.3)

The moment generating property of PGFs allows one to obtain factorial mo-
ments of the random variable, i.e.

E[X(X − 1) . . . (X − k + 1)] =
dk

dzk
X(z)

∣

∣

∣

∣

z=1

. (1.4)

For example for k = 1 and k = 2, we get

E[X] =
dX(z)

dz

∣

∣

∣

∣

z=1

, E[X(X − 1)] =
d2X(z)

dz2

∣

∣

∣

∣

z=1

. (1.5)

The variance of X is thus found as

var[X] = E[X2]− E[X]2

=
d2X(z)

dz2

∣

∣

∣

∣

z=1

+
dX(z)

dz

∣

∣

∣

∣

z=1

−
(

dX(z)

dz

∣

∣

∣

∣

z=1

)2

. (1.6)

Equations (1.5) and (1.6) provide the simplest means to calculate E[X] and
var[X], provided that an explicit expression for the PGF X(z) is available.
Higher moments of X can of course also be obtained by taking the appropriate
derivatives and evaluating at z = 1.

We now come to the complex analysis part. According to (1.2), X(z) is a power
series in z with coefficients Pr[X = k]. Let R be the radius of convergence of
X(z). For a function X(z) that has a Taylor series with non-negative coeffi-
cients (which is the case for PGFs), Pringsheim’s theorem [11, Th. IV.6] states
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that R is a singularity of the function X(z). Furthermore, R ≥ 1 since the
power series (1.2) converges absolutely for |z| ≤ 1. Singularities of X(z) which
lie on the boundary of the disc of convergence, are called dominant singularities.
Or in other words, dominant singularities are singularities with smallest norm.
It has to be said that in practice, most of the time there is a unique dominant
singularity (which is then necessarily equal to the radius of convergence R).

Let us now introduce the concept of analytic continuation. A function X(z)
which is given originally in the form of a power series with a finite radius of
convergence can be investigated beyond the circumference of the circle of con-
vergence by a procedure termed analytic continuation. A more formal definition
of this concept, based on [7, Ch. III], is given by:

Definition 1.1 (Analytic continuation). Let X(z) be an analytic function de-
fined over Ω. If there exists an analytic function X⋆(z) defined over some open
set Ω⋆, with Ω∩Ω⋆ 6= ∅, and such that X⋆(z) = X(z) in Ω∩Ω⋆, one says that
X is analytically continuable in Ω⋆ and that X⋆ is the analytic continuation of
X at Ω⋆.

A very useful theorem in the concept of analytic continuation is the following
theorem (based on [10, Th. 3.2.6]).

Theorem 1.1. Let X(z), Y (z) be analytic in the open domain Ω. If X(z) =
Y (z) in some subportion Ω′ ⊂ Ω, then X(z) = Y (z) everywhere in Ω. In
particular it is sufficient that X(z) and Y (z) coincide on a curve interior to Ω.

Using Theorem 1.1, it can be proven that analytic continuation is unique.
Analytic continuation is often established using a functional equation. To il-
lustrate this, we cannot think of a better example than that of the gamma
function, defined by Γ(z) =

∫ +∞
0

tz−1e−tdt. One can easily show that this
integral converges for Re(z) > 0. Consequently, Γ(z) is an analytic function
on the right half-plane Re(z) > 0. The identity Γ(z) = Γ(z+1)

z , valid for real
z > 0 (obtained via partial integration), remains valid for complex z for which
Re(z) > 0 by Theorem 1.1. We can use this functional equation to analytically
continue Γ(z) as follows. The function g(z) := Γ(z+1)

z is an analytic function
on {z ∈ C : Re(z) > −1} \ {0} which agrees with Γ on the right half-plane
Re(z) > 0. If we keep denoting this extended function with Γ, then g(z) is well
defined and analytic in {z ∈ C : Re(z) > −2} \ {0,−1}, etc. until we get a
unique analytic continued function on C \ {0,−1,−2, . . .}.
Generating functions can also be defined for a pair of random variables X and
Y , with values in Z≥0. The PGF of X and Y is given by

P (z1, z2) , E[zX1 zY2 ] (1.7)

=
∞
∑

k=0

∞
∑

l=0

Pr[X = k, Y = l]zk1z
l
2 . (1.8)
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Such a generating function will be called the joint PGF of X and Y . In this
context, we will call (1.1) the marginal PGF of X. Cross-moments between X
and Y can be computed from P (z1, z2). For instance, the covariance between
X and Y is given by

cov[X,Y ] = E[XY ]− E[X]E[Y ] (1.9)

=
∂2P (z1, z2)

∂z1∂z2

∣

∣

∣

∣

z1=1,z2=1

−
(

dX(z)

dz

∣

∣

∣

∣

z=1

)(

dY (z)

dz

∣

∣

∣

∣

z=1

)

, (1.10)

with X(z) and Y (z) the marginal PGFs of X and Y , respectively.

We point out three properties that are evident from definition (1.7). First, the
marginal PGFs of X and Y can be found from the joint PGF as X(z) = P (z, 1)
and Y (z) = P (1, z), respectively. Secondly, the marginal PGF of the sum X+Y
is obtained as P (z, z). Finally, the variables X and Y are independent if and
only if P (z1, z2) = X(z1)Y (z2).

We now turn our attention to Laplace-Stieltjes transforms. The Laplace-
Stieltjes transform (LST) is a widely used integral transform with many appli-
cations in applied mathematics, and in particular in applied probability theory
to study continuous random variables. The LST of a random variable X with
values in R≥0 is by definition

X(s) , E[e−sX ] (1.11)

=

∫ ∞

0

e−stdFX(t) , (1.12)

with FX the cumulative distribution function of the random variable X. If X
is a continuous random variable with density function fX , then the LST (1.12)
corresponds to the Laplace transform of fX . Since limx→+∞ FX(x) = 1 and
FX(0) = 0, we then have the normalization condition

X(0) = 1 . (1.13)

Furthermore, the LST exhibits the moment generating property as follows

E[Xn] = (−1)n
dX(s)

dsn

∣

∣

∣

∣

s=0

. (1.14)

It is known from Laplace transform theory that if the LST converges at s = s0,
then it automatically converges for all s with Re[s] > Re[s0]. Since X(0) = 1,
the region of convergence is (at least) the half-plane Re[s] > 0. In particular,
it is analytic in this region. The concept of dominant singularities applies for
LSTs as well. The dominant singularities of an LST will always be located on
a line Re[s] = −a, with a ≥ 0. Furthermore, the unique real value a on this
line, will always be a singularity of the LST.

LSTs can also be defined for a pair of continuous random variables X and Y
with joint density function fXY as follows
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F (s1, s2) = E[e−s1Xe−s2Y ] (1.15)

=

∫ ∞

0

∫ ∞

0

e−s1xe−s2yfXY (x, y)dxdy . (1.16)

Cross-moments between X and Y can be computed from F (s1, s2). For in-
stance, the covariance between X and Y is given by

cov[X,Y ] = E[XY ]− E[X]E[Y ] (1.17)

=
∂2F (z1, z2)

∂s1∂s2

∣

∣

∣

∣

s1=0,s2=0

−
(

dX(s)

ds

∣

∣

∣

∣

s=0

)(

dY (s)

ds

∣

∣

∣

∣

s=0

)

, (1.18)

Furthermore, we also point out three properties that are evident from definition
(1.15). First, the marginal LSTs of X and Y can be found from the joint LST
as X(s) = F (s, 0) and Y (s) = F (0, s). Secondly, the marginal LST of the sum
X + Y is obtained as F (s, s). Finally, the variables X and Y are independent
if and only if F (s1, s2) = X(s1)Y (s2).

For the remainder of this section, we list some theorems from complex analysis
that are frequently used throughout this dissertation. The first one is Rouché’s
theorem [10, Th. 4.4.2]. We remark that the use of Rouché’s theorem is quite
common in the analysis of queueing models via the transform method.

Theorem 1.2 (Rouché). Let f and g be two analytic functions inside and on
a closed contour C in the complex plane such that |g(z)| < |f(z)| for all z on
C. Then the functions f and f + g have the same number of zeros inside C.

Another classic theorem from complex analysis that can be found in many
textbooks is Liouville’s theorem. However, application of this theorem is less
common within queueing theory in comparison with Rouché’s theorem. We
first state Liouville’s original theorem (see for example [9, Page 122]).

Theorem 1.3 (Liouville). A function which is analytic and bounded in the
whole complex plane must reduce to a constant.

In fact, we will also use the following extended version of Liouville’s theorem
in this dissertation.

Theorem 1.4 (Extended Liouville). Suppose f is a function which is analytic
in the whole complex plane and |f(z)| < M |z|m for sufficiently large |z|, then
f must reduce to a polynomial of degree at most m.

1.3 Two-class queueing systems and scheduling

Two-class queueing systems are queueing systems where two types of customers
need (and compete for) the same service. The concept of having two different
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customer types can be based on any kind of binary classification variable. Some
concrete examples of such a binary variable are: male or female (in case of
human customers), real-time traffic or non-real-time traffic (in case of computer
networks), premium or regular service, urgent or non-urgent service, etc. A two-
class queueing system can be pictured as maintaining two separate subqueues
for the two customer types. A scheduling discipline of the server then decides
in which order the customer types have access to the server, as shown in Figure
1.1. Once the server has chosen a queue, it can take a customer from that queue
on a first-come-first-served (FCFS) basis. We say then that the server takes the
oldest customer from that queue, this is the customer with the longest residing
time in that queue.

type-1
customers

type-2
customers

Figure 1.1: When the server becomes free, the next customer to take place in the
server is decided by the scheduling discipline.

Different scheduling strategies give rise to different queueing behavior. We
start with a list of some of the main types of scheduling strategies in case of a
two-class queueing system.

Global First Come First Served The customers are served on a FCFS
basis, regardless of their type. The scheduling rule is thus that at each service
opportunity, the oldest customer in the system is served [12, 13]. For the
analysis of a two-class queueing system with global FCFS and a discrete-time
parameter we refer to [14]. More recently, in [15], the discrete-time two-class
queueing system with global FCFS and batch service is analyzed.

Fixed Priority A customer of the highest available priority type is served
when a new service opportunity occurs. Therefore, customers of lower priority
classes have no (or only a limited) influence on the number of customers of
higher priority in the system (see e.g. [16, 17] and references therein for the
treatment of queues with fixed-priority scheduling with two customer types).

Round Robin When both queues are non-empty, the next customer type
to be served is the opposite type as the previous served customer type. When
only one of both queues is non-empty and the other is empty, the non-empty
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queue is served. The server alternately serves thus one type-1 customer and
one type-2 customer (if any). This scheduling discipline was introduced to give
each queue a guaranteed share of the available server capacity.

Random When both queues are non-empty, the server serves a customer
according to the outcome of a single Bernoulli trial (with fixed probabilities).
When only one of both queues is non-empty and the other is empty, the non-
empty queue is served. In discrete-time queueing theory, this scheduling dis-
cipline can be seen as a discrete-time probabilistic version of Generalized Pro-
cessor Sharing (GPS) (see e.g. [18, 19] for the discrete-time versions and see
[20] for the original version of GPS). Just as with Round Robin, the random
scheduling discipline gives each queue a guaranteed share of the available server
capacity.

It is worth noting that our definition of two-class queueing systems can be more
or less seen as a subclass of polling systems. In this type of systems, there are
M servers, which are shared by N customer types. The order in which the
servers serve these queues, i.e., the rules by which the next queue to be served
(after the service of queue i has been completed) is determined, is called the
polling order, while the rule by which the server decides to stop servicing a
given queue is called the queue service discipline [21–25]. We emphasize that
there exist many queue service disciplines and polling orders, see e.g. [23]. The
most usual polling orders are cyclic and random. The most popular queue
service disciplines in case of a single-server are the exhaustive, gated, number-
limited and time-limited discipline. In the exhaustive service discipline, the
server serves customers until the queue is emptied. See for example [26], where
the time when the server switches queues is non-zero. In [27], the exhaustive
scheduling policy is analyzed with more than two customer types. A gated
discipline places a (fictitious) gate behind the customers present in the queue
when the server arrives at this queue, and only the customers in front of the
gate will be served before the server goes to the next queue. In contrast to
the exhaustive discipline, newly arriving customers are not served during a
visit of the server. In a polling system with a number-limited discipline, the
server serves k customers at a queue (if any). The number k can be either a
deterministic or a random variable. The hard-to-analyze two-queue model with
1-limited service is studied in [28, 29]. Finally, in the time-limited discipline,
the server serves customers at the current queue until a time limit T expires.
This time limit T can again be either a deterministic or a random variable. In
both the number- and time- limited disciplines, the server also typically leaves
the current queue when it becomes empty. For further references on time-
limited polling systems, we refer to the works of [30–34]. For M = 1, N = 2
and a 1-limited service discipline our definition of two-class queueing systems
can be mapped to that of polling systems (if we allow for the polling order
that the same queue can be served again). For example, the 1-limited service
discipline with a cyclic polling order is equivalent to round-robin scheduling
and the 1-limited service discipline with a random polling order is equivalent
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to random scheduling.

The most common scheduling strategies depend on the number of customers
present in the system. For example, with fixed-priority scheduling, the server
picks a low-priority customer as soon as the number of high-priority customers
is zero. Thus the scheduling discipline here depends on the number of high-
priority customers. Likewise, with round robin and random scheduling, the
scheduling discipline depends on both the number of customer types since the
server “switches” when a queue becomes empty. Most of the time, the schedul-
ing strategies depend on the number of customers present in the system in order
to keep the system work-conserving. A work-conserving scheduling discipline
is one that always serves a customer when there is a customer in the system.
Obviously, all the aforementioned scheduling strategies are work-conserving.
To the best of our knowlegde, one of the first scheduling strategies that does
not possess the work-conserving property and that is analyzed in the context of
server-sharing models is found in the Fixed Time Loop System (FTLS) [35]. In
the FTLS, a multi-class queueing system is considered where the server visits
the queues for a fixed amount of time in a deterministic, cyclic order. The
FTLS discipline is motivated by the fact that it is applicaple to systems where
the switching rule is set by the system manager (the server) and not by the
customers. This enables to keep the frequency of switching between the queues
at a predetermined level (this is an advantage when there are costs involved
with moving the server) and no queues suffer from starvation (which can hap-
pen with global-FCFS and fixed-priority scheduling). Without going into a
detailed description, we refer to [36–39] for more recent scheduling strategies
that do not possess the work-conserving property.

In this dissertation, we analyze a simple, conceptual, discrete-time two-class
system where the scheduling discipline is like the random scheduling discipline,
except that now the server is available to a certain customer type according
to certain probabilities, regardless of the number of customers in the queue.
We emphasize that there can be customers from one type waiting while the
server is dedicated to an empty type. Hence, this randomly alternating service
discipline is part of the class of non-work-conserving ones discussed in the
previous paragraph.

1.4 Queueing model

In this section, we define the basic stochastic processes of the queueing model
under investigation in this dissertation. A mathematical description of the
arriving flow of customers, the waiting room and the service facilities stand as
a basis of any queueing model. On top of that, the time parameter (discrete
or continuous), can also be considered as a major component of a queueing
model. Firstly, we specify the time parameter that is used in this dissertation
and provide some background information. Secondly, the arrival process is
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defined. Thirdly, we discuss the assumption with respect to the waiting area
and finally the service process is characterized. The scheduling discipline is
logically incorporated in the service process, but we will treat this separately
since this is the main feature of the queueing model.

1.4.1 Time parameter

We consider a discrete-time queueing model. That is, the time axis is divided
into fixed-length intervals referred to as (time) slots. New customers may enter
the system at any given (continuous) point on the time axis, but services are
synchronized to (i.e. can only start and end at) slot boundaries. This means
that an arriving customer cannot enter the server during its arrival slot, even
when the server is empty when the customer arrives. In the literature, this is
sometimes referred to as the late-arrival system with delayed access [16].

1.4.2 Arrival process

The arrival process of a queueing model characterizes how new customers enter
the queueing system. In most queueing models, the arrival process is character-
ized by the inter-arrival times, which are defined as the time intervals between
two consecutive (batch) arrivals. If customers arrive in batches, i.e. multiple
customers arrive in the same slot, then the batch sizes must also be specified,
otherwise it is assumed that only single arrivals occur. In this dissertation,
we assume that the inter-arrival times constitute a series of independent and
identically distributed (i.i.d.) random variables with common geometric distri-
bution and the batch sizes constitute a series of i.i.d. discrete random variables
(which can have any generic distribution). Because the geometric distribu-
tion is memoryless, this assumption is equivalent to that of assuming that the
numbers of arrivals in consecutive time slots constitute a sequence of i.i.d. non-
negative discrete random variables (which can have any generic distribution).
Therefore, we may alternatively use this characterization as well. It is this lat-
ter characterization that we will use in the following, but we think it is useful
for the reader to indicate the equivalency. Note that in both characterizations,
the exact moment at which customers arrive within slots is not specified. How-
ever, this is of no importance since in discrete-time queueing models, system
changes are only observed at slot boundaries. We refer to [40] for a more elab-
orate discussion on this topic. Finally, the i.i.d. nature of the arrival process is
a typical assumption in discrete-time queueing theory, but we emphasize that
this does not have to be the case. For examples how to model arrivals that are
correlated during consecutive slots, we refer to [41–44] and references therein.

We will now define the arrival process of the queueing model studied in this
dissertation and fix notations. Two types of customers, named type-1 and
type-2, enter the system. We denote the numbers of arrivals of type-j during
a slot k by aj,k (j = 1, 2). Both types of customer arrivals are assumed to
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be i.i.d. from slot to slot and are characterized by a common joint probability
mass function (pmf) a(i, j) and common joint probability generating function
(PGF) A(z1, z2) respectively. More specifically,

a(i, j) , Pr[a1,k = i, a2,k = j], i, j ≥ 0, (1.19)

and

A(z1, z2) , E[z
a1,k

1 z
a2,k

2 ] (1.20)

=
+∞
∑

i=0

+∞
∑

j=0

a(i, j)zi1z
j
2 . (1.21)

We denote the marginal PGFs of the number of type-1 and type-2 arrivals per
slot by

A1(z) , E[za1,k ] (1.22)

= A(z, 1) (1.23)

and

A2(z) , E[za2,k ] (1.24)

= A(1, z) (1.25)

respectively. The mean numbers of arrivals of type-1 and type-2 per slot, in the
sequel referred to as the (mean) arrival rates of type 1 and type 2 respectively
are given by

λj , A′
j(1) j = 1, 2. (1.26)

1.4.3 Queue(s) and queue capacity

Arriving customers are stored in one or multiple queues. For mathematical con-
venience, we assume that all customers are able to enter the system. Equivalent
to this, it means that we assume that the queue(s) have infinite storage capac-
ity. Because of this assumption, it becomes irrelevant for the mathematical
analysis whether we assume that both customer types are stored in a com-
mon queue or if we assume two separate queues. In the remainder, we will
always say there are two separate queues since this seems more logical to bear
in mind the general picture of Figure 1.1. For further references, we refer to
the queue of type-1 and type-2 customers as queue-1 and queue-2, respectively.
Summarized, we thus assume that all arriving customers can enter their dedi-
cated queue and will eventually be served and leave the system, if the system
is stable.

1.4.4 Servers and service process

We assume that the service area of the queueing system consists of a single
server, who is responsible for the service of both customer types. Consequently,
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this means that at most one customer can be served during a slot. Further,
we assume that the service of each customer requires exactly only one slot,
regardless of whether the customer is of type-1 or type-2.

Although logically incorporated in the service facility, we will put a special
emphasis on the characterization of the scheduling discipline, i.e. the rule de-
termining the order in which customers are served (type-1 or type-2), in a
separate section below.

1.4.5 The scheduling discipline: randomly alternating

At the beginning of every time slot, the single server randomly selects either
queue-1 or queue-2 to serve. This selection occurs independently of the system
state and is modeled by a single parameter α (0 < α < 1), that is defined as

α , Pr[server is available to type-1 customers during a slot] .

This directly means that the server is available to type-2 customers during a
slot with probability 1−α. Moreover, it is assumed that the state of the server
(available to either queue-1 or queue-2) during a certain slot is independent
of the state of the server during previous slots, and also of the other random
variables present in the model.

More concretely, let rk denote the number of available servers (0 or 1) for
queue-1 during slot k. Consequently, the random variable 1 − rk denotes the
number of available servers for queue-2. By assumption, the sequence {rk}k∈N

constitutes a sequence of i.i.d. Bernoulli random variables with probability mass
function

Pr[rk = 0] = 1− α

Pr[rk = 1] = α ,

and generating function
1− α+ αz .

It can be easily shown that the parameter α has the following physical meaning:
the fraction of time that the server is available to queue-1.

Finally, we want to draw attention to the following non-work-conserving prop-
erty of the scheduling discipline. Implicitly, we have assumed that when the
server is available to an empty queue, no service occurs in that slot, even when
the other queue is non-empty. Hence, the scheduling discipline is not work-
conserving.

1.5 Analysis of the single-queue model

The marginal distributions of the numbers of customers present in both queues
in this model can be obtained in a relatively easy way, since from the perspective
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of one queue, this is a single-server single-class queueing system with server
interruptions. In such a model, it is assumed that the server is subjected to
random interruptions such that no service can occur during these slots. In
our case, the interruption process is modeled by means of a sequence of i.i.d.
Bernoulli random variables. This queueing model is in the classic textbook [40,
Ch. 3.2] referred to as a Bernoulli model.

It is worth noting that the single-queue Bernoulli model with single-slot service
times can also be seen as a single-queue model with geometric service times.
This can be understood as follows. Without loss of generality, let us focus
on type-1 customers. If there is at least one type-1 customer to serve, then
one type-1 customer is served with probability α and no type-1 customers are
served with probability 1−α, independently of the previous time slots. Hence,
the effective service time of a type-1 customer is geometrically distributed with
parameter 1− α, i.e.

Pr[service-time of a type-1 customer = n slots] = α(1− α)n−1, n = 1, 2, . . .

In the remainder of this section, we show the analysis of the single-queue
Bernoulli model. We feel it is useful to do so, since it permits us to show
some elementary techniques of discrete-time queueing theory using transforms.
Moreover, we hope to convince the reader of the difference in difficulty of an-
alyzing the queues separately compared to analyzing both together. To that
end, let us define

u1,k , the number of type-1 customers at the beginning of slot k .

Furthermore, the PGF of u1,k is denoted by U1,k(z), i.e.

U1,k(z) , E[zu1,k ] . (1.27)

The evolution of the number of type-1 customers is described by the following
system equation (cf. Fig. 1.2):

u1,k+1 = (u1,k − rk)
+ + a1,k , (1.28)

where (·)+ denotes the maximum of the argument and 0.

Using generating functions, equation (1.28) yields

U1,k+1(z) = E[zu1,k+1 ]

= E[z(u1,k−rk)
++a1,k ]

= E[z(u1,k−rk)
+

]E[za1,k ] ,

where we used that the random variable a1,k is statistically independent with
respect to u1,k and rk. The second factor E[za1,k ] in the equation above is
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slot k

a1,k rk

u1,k u1,k+1

time

Figure 1.2: Time axis to illustrate the system equations.

nothing else than the pgf A1(z). The first factor can be calculated, using that
u1,k and rk are independent:

E[z(u1,k−rk)
+

] = E[z(u1,k)
+

](1− α) + E[z(u1,k−1)+ ]α

= U1,k(z)(1− α) +
U1,k(z) + (z − 1)U1,k(0)

z
α .

We thus obtained the following relation between U1,k+1(z), U1,k(z) and U1,k(0):

U1,k+1(z) =
A1(z)

z
(((1− α)z + α)U1,k(z) + α(z − 1)U1,k(0)) . (1.29)

Our goal is to obtain the stationary distribution of {u1,k}k∈N. Therefore, we
define p1(i) and U1(z) as

p1(i) , lim
k→∞

Pr[u1,k = i] (1.30)

U1(z) , lim
k→+∞

U1,k(z) (1.31)

=

∞
∑

i=0

p1(i)z
i . (1.32)

Taking the limit for k → +∞ in (1.29) and solving for U1(z) yields

U1(z) = U1(0)
α(z − 1)A1(z)

z −A1(z)(α+ (1− α)z)
. (1.33)

There is one quantity yet to be determined, namely the constant U1(0). This
constant can be found from the normalization condition U1(1) = 1, yielding

U1(0) = 1− λ1

α
, (1.34)

where we have used l’Hôpital’s rule and (1.26). We finally get the following
expression:

U1(z) =
(α− λ1)(z − 1)A1(z)

z −A1(z)(α+ (1− α)z)
. (1.35)
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Theoretically, this PGF contains all information of the system content of type-
1 customers. For example, we can compute relatively easy the mean and the
variance of the number of type-1 customers. The mean is given by

E[u1] =
dU1(z)

dz

∣

∣

∣

∣

z=1

(1.36)

=
2λ1(1− λ1) +A′′

1(1)

2(α− λ1)
. (1.37)

The stability condition for the Bernoulli model (cf. [40, Ch. 3.2], Equation
(3.71)) is given by

λ1 < α . (1.38)

The stability condition is intuitively clear. The average number of customers
entering queue-1 should be strictly less than the average number of customers
that can be served from queue-1, per time-slot. Further notice that equation
(1.34) shows that the stability condition is nothing else than the prerequisite
that there is a positive probability that, at the beginning of a slot, there are
no type-1 customers in the system. It can also easily be seen that the stability
condition is incorporated in expression (1.37), since the mean number of type-1
customers increases to infinity when λ1 approaches its critical value α.

Considering only type-2 customers, it is now easily seen that this is equivalent
to a Bernoulli model with parameter 1 − α and arrival PGF A2(z). From the
previous analysis we obtain, mutatis mutandis, the PGF U2(z) describing the
stationary type-2 system content:

U2(z) =
(1− α− λ2)(z − 1)A2(z)

z −A2(z)(1− α+ αz)
. (1.39)

The mean type-2 system content is given by

E[u2] =
2λ2(1− λ2) +A′′

2(1)

2(1− α− λ2)
. (1.40)

The stability condition for the type-2 system content reads

λ2 < 1− α . (1.41)

The analysis of a single queue with random server interruptions and single slot
times is carried out in [40, Ch. 3.2] in a much more general setting. In this book
it is assumed that the series of consecutive “available-periods” as well as the
series of consecutive “interrupted-periods” share common general distributions.
The only restriction is that the common probability generating function of the
available periods must be a rational function. In the literature, queueing models
with server interruptions are sometimes also referred to as systems with server
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vacations or server breakdowns [45]. Queueing models with server interruptions
can for instance be used to evaluate the performance of the individual queues
in queueing systems with multiple queues sharing a common server such as
priority systems or polling systems, see e.g. [46, 47] and [17, Sect. 5].

1.6 Goals and outline

Throughout this dissertation we study the joint distribution of the station-
ary system contents of a rudimentary, but conceptual, discrete-time two-class
queueing system with a probabilistic scheduling discipline that does not depend
on the system contents, which up till now has not been investigated in discrete-
time queueing theory. Since we make extensive use of probability generating
functions, the primary goal of this research is

Goal: To obtain an exact closed-form expression for the joint PGF
of the stationary system contents, as a function of the input

parameters.

From the joint PGF, every numerical characteristic of interest can be computed
(in theory). However, in this dissertation we focus on finding expressions for
the covariance of the two system contents and for the probability mass func-
tion of the total system content. The reason is that these quantities are both
interesting and cannot be obtained from the single-queue analysis from Section
1.5.

Analysis of two-class queues is (obviously) more difficult than the analysis of
single queues. In order to calculate most numerical characteristics, the joint
distribution of the number of type-1 and type-2 customers in the queueing
system has to be found. When the capacities are infinite, as it is the case in
this dissertation, the domain of the joint distribution is unbounded in more
than one dimension, turning an easy problem for the one-dimensional case into
a problem that is almost infeasible to tackle exactly in the two-dimensional
case. The analysis of this kind of models is considered to be notoriously hard
[48]. The most well-developed analytical method for this kind of problems
is the so-called boundary value method [49]. While this method provides an
exact expression for the joint PGF, it is not a closed-form expression in the
sense that it typically contains functions that most of the time have to be
computed numerically through solving singular integral equations. Moreover,
we emphasize that obtaining the probability mass function from this PGF will
be a cumbersome task if the expression for the joint PGF is not in closed-form.
Therefore, we downsize our primary goal to the following goal:

Goal I: To investigate which arrival processes give rise to an exact
closed-form expression of the joint PGF and the joint pmf.
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The study of this goal is carried out in Chapter 2 ‘Exact analysis: specific
arrival distributions’, in which we find three specific cases for the pmf a(i, j)
(i, j ≥ 0) describing the numbers of arrivals within a slot. The chapter is first
introduced with the problem for general arrival processes and an extensive dis-
cussion of the analytical solution methods to this class of problems. Hereafter,
three specific cases for a(i, j) are discussed and analyzed. The emphasis is put
on how the solution is obtained, rather than on the final result itself. However,
we do provide explicit expressions for the most interesting numerical charac-
teristics and discuss the influence of the scheduling discipline on some of these
characteristics.

The urge for closed-form expressions can be questioned. Therefore we point
out some of the main benefits of closed-form expressions. First and foremost, a
closed-form expression for the solution of a problem involving many parameters
is the most desirable one since the solution for any choice of parameters is then
instantly obtained by just substituting the parameter values into the expres-
sion. Since closed-form expressions are easy to implement, they are the most
suitable to investigate the sensitivity of input parameters on the output and to
do optimization. Furthermore, closed-form expressions for physical quantities
provide more insight compared to a complicate (whether or not exact) expres-
sion. Finally, closed-form expressions are also easier to present to a broader
audience which may be primarily interested in the final results (and not how
those results were obtained).

From the vast literature concerning similar two-class queueing models and
based on our own experience, it seems very unlikely that a closed-form ex-
pression for the joint PGF exists for a general arrival PGF A(z1, z2). Hence,
the next step is to find closed-form expressions which are approximations for
the problem at hand. There already exist well-developed approximation tech-
niques for one-dimensional queueing problems. Hence, the second goal of this
dissertation is:

Goal II: To study and apply well-known one-dimensional
approximation/asymptotic techniques to the two-dimensional

problem at hand.

The second goal of this dissertation is studied in Chapters 3-5. In Chapter 3, the
goal is to obtain asymptotic formulas for the joint pmf of the stationary system
contents. This will be accomplished using the theory of dominant singularities.
Chapter 4 focuses on a method to approximate the joint PGF by a simple
rational function, using the results from Chapter 3. Chapter 5 focuses on the
joint heavy-traffic limit for the symmetric queueing model. Both singularity
analysis (Chapter 3) and heavy-traffic analysis (Chapter 5) are well-known
and among the most popular approximation techniques for one-dimensional
queueing models. However, at present, the approximation technique we propose
in Chapter 4 is actually not a state-of-the-art technique. While this novel
technique is not accurate for every choice of parameters, it can pave the way
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to new simpler and efficient approximation techniques.

In Chapter 6 we summarize the findings of this dissertation and address some
interesting directions for future research.

Finally, we remark that the model studied in this dissertation can be easily
simulated using a computer program. Confidence intervals for any numerical
characteristic of interest can be obtained via this way. But notice that each
specific choice of the input parameters, i.e. in our case α and a(i, j) (i, j ≥ 0),
requires a separate simulation run. While these simulation runs are nowadays
very fast for most numerical characteristics, experience learns that simulation
can be very time consuming if one is interested in the accurate estimation of the
probability of rare events (such as joint tail probabilities). This is especially
true if one wants to estimate rare events for numerous sets of parameters.
Hence, for the case of estimating rare events, the analytical method certainly
beats the simulation method.

1.7 Publications

The research conducted during the doctoral research has resulted in a number
of publications. Most of the following publications have provided the material
for this dissertation, aside from [50] and [51], that deal with a priority retrial
queue with constant retrial policy. Although the model studied in [50] and [51]
can also be interpreted as a two-class queueing model, we have decided to not
include it in order to keep this dissertation as self-contained as possible.

1.7.1 Publications in international journals

1. A. Devos, J. Walraevens, T. Phung-Duc, H. Bruneel, Analysis of the
queue lengths in a priority retrial queue with constant retrial policy, Jour-
nal of Industrial & Management Optimization 16(6), p. 2813-2842, 2020.

2. A. Devos, J. Walraevens, D. Fiems, H. Bruneel, Analysis of a discrete-
time two-class randomly alternating service model with Bernoulli arrivals,
Queueing Systems 96(1), p. 133-152, 2020.

3. A. Devos, J. Walraevens, D. Fiems and H. Bruneel, Heavy-Traffic Com-
parison of a Discrete-Time Generalized Processor Sharing Queue and a
Pure Randomly Alternating Service Queue, Mathematics 9(21), Article
2723, no. of pages: 25, 2021.

4. A. Devos, J. Walraevens, D. Fiems and H. Bruneel, Approximations for
the performance evaluation of a discrete-time two-class queue with an
alternating service discipline, Annals of Operations Research 310(2), p.
477-503, 2022.
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1. A. Devos, J. Walraevens, H. Bruneel, A priority retrial queue with con-
stant retrial policy, Proceedings of the 13th International Conference on
Queueing Theory and Network Applications, QTNA 2018 (Tsukuba, 25-
27 July 2018), Lecture Notes in Computer Science, 2018, vol. 10932, pp.
3-21. Edit.: Y. Takahashi, T. Phung-Duc, S. Wittevrongel, W. Yue.

2. A. Devos, D. Fiems, J. Walraevens, H. Bruneel, An Approximate Analysis
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2019 (Ghent, 27-29 August 2019), Lecture Notes in Computer Science,
2019, vol. 11688, pp. 314-329. Edit.: T. Phung-Duc, S. Kasahara, S.
Wittevrongel.

1.7.3 Abstracts

1. A. Devos, J. Walraevens, D. Fiems, H. Bruneel, Heavy-traffic limit for
a discrete-time two-class single server queueing model, Abstracts of the
31st European Conference on Operational Research, EURO 2021 (Athens,
online, 11-14 July 2021), p. 249.
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2
Exact analysis: specific

arrival distributions

In this chapter, we derive a functional equation for the joint PGF of the station-
ary system contents in our queueing model as described in Section 1.4. This
functional equation will play a key role throughout this dissertation. Various
special cases from the perspective of the nature of the joint arrival distribution,
are analyzed in detail in this chapter.

In our paper [52], we have obtained the joint PGF of the system contents in
the special case that the numbers of type-1 and type-2 arrivals per time slot
constitute two mutually independent sequences of i.i.d. random variables with
common Bernoulli distribution. The analysis of Section 2.3 runs mainly parallel
as in our contribution [52]. In addition, we also study two other arrival processes
in this chapter. More specifically, we consider the case where the arrivals in
both queues constitute two identical sequences of i.i.d. random variables with
common Bernoulli distribution; and the case when the arrivals to the complete
system constitute a sequence of i.i.d. random variables with common geometric
distribution, which are randomly routed to one of the two queues.

The outline of the rest of this chapter is as follows. We give an overview of
some literature on the exact analysis of two-dimensional queueing models via
generating functions in Section 2.1. In particular, we focus on the -difficult
to analyze- class of queueing models that can be solved using the theory of
boundary-value problems for analytic functions. In Section 2.2 we establish
the functional equation for the joint PGF of the stationary system contents.
Section 2.3 is devoted to the special case of two independent Bernoulli arrival
processes in the two queues. In section 2.4, we consider the case that the
arrivals to the two queues are identical and Bernoulli distributed. Further, in
section 2.5 we consider a single stream of geometrically distributed arrivals and
probabilistic routing to the two queues. Finally, some conclusions are drawn
in Section 2.6.
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2.1 Exact analysis of two-dimensional queueing

models

The analysis of queueing models involving two queues is substantially different
from the analysis of a classical single-queue-single-server model. This is because
these models often give rise to the problem of solving a functional equation of
the form

K(z1, z2)Φ(z1, z2) =L1(z1, z2)Φ(z1, 0) + L2(z1, z2)Φ(0, z2)

+ L3(z1, z2)Φ(0, 0) , |z1| ≤ 1, |z2| ≤ 1;
(2.1)

where K, Lj (j = 1, 2, 3) are known functions and Φ(z1, z2) is the unknown
function which represents the joint PGF of the numbers of customers in both
queues, in steady state. Solving this equation requires finding the partial PGFs
Φ(z1, 0) and Φ(0, z2), which is the non-straightforward objective of the analysis.
It is worth mentioning that substitution of {z1 = z, z2 = 0} or {z1 = 0, z2 = z}
into (2.1) always leads to the tautology “0 = 0”. The crucial part of the analysis
is studying the function K, which is referred to as the kernel of the functional
equation. This is because whenever a zero (ẑ1, ẑ2) of K lies inside the region
of convergence of the PGF Φ(z1, z2), this relates Φ(ẑ1, 0) with Φ(0, ẑ2). More
precisely, let Λ denote the set of zero-tuples of K which lie in the region of
convergence of the joint PGF Φ(z1, z2). Then it is clear from (2.1) that for any
(ẑ1, ẑ2) ∈ Λ,

L1(ẑ1, ẑ2)Φ(ẑ1, 0) + L2(ẑ1, ẑ2)Φ(0, ẑ2) + L3(ẑ1, ẑ2)Φ(0, 0) = 0 ,

which gives us an equation in terms of Φ(ẑ1, 0) and Φ(0, ẑ2).

In the pioneering paper [53], it is shown that Φ(z1, 0) as Φ(0, z2) can be found
as the solution of a boundary-value problem for analytic functions. In [53], two
parallel M/M/1 queues with coupled service rates are analyzed. Because the
approach as per [53] needs an explicit expression of the kernel K, the approach
is limited to kernels of sufficiently simple type (which corresponds typically to
Markovian assumptions). Cohen and Boxma [49] investigated if the boundary-
value approach can be applied when the kernel has a more general character.
For instance, for continuous-time queueing models, they considered the so-
called Poisson kernel, i.e.,

K(z1, z2) = z1z2 −B∗(λ1(1− z1) + λ2(1− z2)) ,

with B∗(·) the LST of a non-negative continuous random variable (typically the
service times of the customers), and λj the rates of two independent Poissonian
arrival streams. Cohen and Boxma showed that in case of a Poisson kernel, the
problem of determining Φ(z1, 0) and Φ(0, z2) from (2.1) can also be reduced to
a boundary-value problem.

A myriad of queueing models have been analyzed by means of the boundary-
value approach. Examples can be found in [54–56]. A detailed study of the
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boundary-value approach is presented in the classic textbooks [49, 57]. While
the theory behind the boundary-value approach was developed during the late
70s and early 80s, it is still frequently applied to solve functional equations like
(2.1). Examples of discussions and applications of the theory of boundary-value
problems to recent queueing models can be found in [38, 58–68].

Solving (2.1) is considered to be a notoriously hard problem, because the stan-
dard state-of-the-art methodology exists of treating it as a boundary-value
problem. Moreover, in practice, cumbersome numerical work is necessary af-
terwards to obtain actual numerical characteristics of the queueing model, such
as the probability that there are more than a specified number of customers
in the (total) system, the correlation between the numbers of customers in
both queues, etc. This is because in order to evaluate the expressions obtained
through the boundary-value method, a numerical solution of singular integral
equations is required. See for example the papers [58, 69] where this numerical
approach is carried out.

As mentioned in the introductory chapter, we are interested in closed-form
expressions. The boundary-value approach (although it is powerful) seems
to be limited in that perspective. Up till now, only a few queueing models
can be analyzed exactly via generating functions, avoiding the boundary-value
technique. We discuss three two-dimensional queueing models which have been
well-studied in this context.

(A) The continuous-time shortest queue: consists of two queues with two
dedicated homogeneous servers. There is a single Poisson arrival process.
A newly arrived customer joins the shortest of the two queues. If the
queue lengths are equal, the customer joins either with probability 1

2 .

(B) The discrete-time 2 × 2 switch queue: consists of two queues with two
dedicated homogeneous servers. The arrival process is characterized by
means of a sequence of i.i.d. discrete random vectors with common PGF:

A(z1, z2) =
(

1− λ+ λ
2 (z1 + z2)

)2
.

(C) The continuous-time fork-join queue: consists of two queues with two
dedicated heterogeneous servers. Customers arrive in batches of size two
according to a Poisson arrival process. Two newly arrived customers
from the same batch each enter a different queue. The two customers
that arrived in the same batch leave the system only if both customers
have been served.

These three models do not exhibit a product-form solution1, because the ar-
rivals at the two queues are correlated. Among the classic papers analyzing
model (A) are [71] and [72]. Using generating functions, it is proven that

1Product-form basically means that the system contents are independent and one can just
multiply the marginal distributions [70].
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the partial PGFs Φ(z1, 0) and Φ(0, z2) are meromorphic functions. In [72],
this is accomplished by finding a suitable parametrization of the manifold
{(z1, z2) : K(z1, z2) = 0}. The approach as per [71] is comparable to the
one in [72], but the latter is more elaborated in detail. Because the essential
element in these two approaches is a parametrization, this method goes by the
name of the uniformization method. This method can also be used for models
(B) and (C). For example, in model (B) it is also shown that the partial PGFs
are meromorphic by means of the uniformization method [73]. On the other
hand, in [74] and [75] it is shown for model (A) and model (B), respectively,
that meromorphicity can also be established from the functional equation di-
rectly, i.e., without the need of a parametrization of {(z1, z2) : K(z1, z2) = 0}.
The joint pmf of the system contents in (A) and (B) can be expressed as in-
finite sums, which in practice require truncation to compute. The analysis of
the asymmetric versions of (A) and (B) have been accomplished in [76, 77]. In
these papers, the analysis does not make use of a parametrization, but directly
uses analytic continuation as per [75]. Further, the same author shows in [78]
that his method is also applicable to a larger class of queueing models. Namely,
to the class of nearest-neigbour random walks in {0, 1, . . .}2 with no one-step
displacements to the North, North-East and the East.

Model (C) as described above was introduced in [79] and the model was later
generalized in [80] by adding an extra Poisson arrival stream without batches.
The uniformization method is used in [79] to obtain the unknown partial PGFs.
While in models (A) and (B) the parametrization is accomplished by a pair of
rational functions, model (C) requires a pair of elliptic functions, say z1 = v(t)
and z2 = w(t). In [79], it is shown that Φ(v(t), 0) and Φ(0, w(t)) admit analytic
continuation as meromorphic functions. We emphasize that the analysis of (C)
involves some ingenious applications of complex analysis.

The approach as per Section 2.3 is comparable to the one in [75] and [76]. More
precisely, we will solve the functional equation using the notion of analytic
continuation as in [75, 76]. However, since the kernel in our case is different
from the ones in [75, 76], new difficulties arise. We emphasize that, for the case
as in Section 2.3, we are unable to solve the the functional equation using the
boundary-value approach, since we are unable to find the conformal mapping
in closed form. The kernels that we encounter in Section 2.4 and Section 2.5
have the same structure as the one in [81]. Therefore the analysis of the kernel
K in these sections is comparable to the one in [81]. The difference between
[81] and Sections 2.4 and 2.5 is that the RHS of the functional equation does
not have the same structure. Hence, at some point in the analysis, a different
approach is used in Sections 2.4 and 2.5 (in comparison with [81]).

Finally, we want to draw attention to the compensation method [106]. This
method provides an exact expression for the joint stationary distribution of
certain two-dimensional random walks as an infinite sum of product-form terms.
However, we note that this method is not based on PGFs. Some further details
and references of the compensation method are discussed in Section 4.1.
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2.2 A functional equation for U(z1, z2)

The purpose of this section is to show that the joint PGF of the stationary
system contents of our model satisfies a functional equation like (2.1).

As introduced in Section 1.4, the number of type-j arrivals in slot k is denoted
by aj,k. The joint PGF of a1,k and a2,k is denoted by A(z1, z2). Further, we
defined the sequence {rk}, which is a sequence of i.i.d. random variables with
common Bernoulli distribution with parameter α.

Let uj,k (j = 1, 2) denote the system content of type j at the beginning of slot
k. The corresponding joint PGF of u1,k and u2,k is denoted by Uk(z1, z2), i.e.

Uk(z1, z2) , E[z
u1,k

1 z
u2,k

2 ] . (2.2)

The evolution of the system content from slot k to slot k + 1 is described by
the following system equations:

u1,k+1 = (u1,k − rk)
+ + a1,k , (2.3)

u2,k+1 = (u2,k − 1 + rk)
+ + a2,k . (2.4)

The system equations follow from the fact that if rk = 1, type-1 customers
can be served. In this case, type-2 customer cannot be served, even if there
were no type-1 customers at the beginning of slot k. Analogously, we have the
symmetric case when rk = 0.

From the system equations we obtain a relation for the joint PGF Uk+1(z1, z2)
of the number of type-1 and type-2 customers at the beginning of slot k + 1
and the joint PGF Uk(z1, z2) of the number of type-1 and type-2 customers at
the beginning of slot k:

Uk+1(z1, z2) ,E[z
u1,k+1

1 z
u2,k+1

2 ]

=E[z
(u1,k−rk)

++a1,k

1 z
(u2,k−1+rk)

++a2,k

2 ]

= (1− α)E[z
u1,k+a1,k

1 z
(u2,k−1)++a2,k

2 ]

+ αE[z
(u1,k−1)++a1,k

1 z
u2,k+a2,k

2 ]

=A(z1, z2)
{

(1− α)E[z
u1,k

1 z
(u2,k−1)+

2 ] + αE[z
(u1,k−1)+

1 z
u2,k

2 ]
}

=A(z1, z2)

{

(1− α)

z2
(Uk(z1, z2) + (z2 − 1)Uk(z1, 0))

+
α

z1
(Uk(z1, z2) + (z1 − 1)Uk(0, z2))

}

=
A(z1, z2)

z1z2
{[(1− α)z1 + αz2]Uk(z1, z2)

+ (1− α)z1(z2 − 1)Uk(z1, 0) + αz2(z1 − 1)Uk(0, z2)} . (2.5)
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Notice that

Uk(z1, 0) = E[z
u1,k

1 1{u2,k = 0}] (2.6)

=

∞
∑

n=0

Pr[u1,k = n, u2,k = 0]zn1 , (2.7)

and

Uk(0, z2) = E[z
u2,k

2 1{u1,k = 0}] (2.8)

=
∞
∑

n=0

Pr[u1,k = 0, u2,k = n]zn2 , (2.9)

by definition. Since we are interested in the joint stationary distribution of u1,k

and u2,k, we define

p(i, j) , lim
k→∞

Pr[u1,k = i, u2,k = j] , (2.10)

U(z1, z2) , lim
k→∞

Uk(z1, z2)

=
∞
∑

i=0

∞
∑

j=0

p(i, j)zi1z
j
2 . (2.11)

Assuming that the system reaches a steady state, then both functions Uk(z1, z2)
and Uk+1(z1, z2) converge to the common limit function U(z1, z2). As a result,
by taking the limit k → ∞ in equation (2.5) we obtain the following functional
equation for U(z1, z2):

K(z1, z2)U(z1, z2) = A(z1, z2)

× [(1− α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2)] , (2.12)

where we defined

K(z1, z2) , z1z2 − [(1− α)z1 + αz2]A(z1, z2) . (2.13)

Throughout the rest of this dissertation, we will use the following notation

K(j)(x, y) ,
∂K(z1, z2)

∂zj

∣

∣

∣

∣

z1=x,z2=y

, (2.14)

K(ij)(x, y) ,
∂2K(z1, z2)

∂zi∂zj

∣

∣

∣

∣

z1=x,z2=y

, i, j = 1, 2. (2.15)

Finally, the joint PGF can be expressed as

U(z1, z2) =
A(z1, z2)[(1− α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2)]

z1z2 − [(1− α)z1 + αz2]A(z1, z2)
.

(2.16)

There are two unknown functions yet to be determined in the right-hand side
of (2.16), namely the functions U(z1, 0) and U(0, z2).
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2.3 Independent Bernoulli arrivals in the two

queues

In this section, we assume that the random variables a1,k and a2,k constitute
two independent sequences of independent and identically Bernoulli distributed
random variables. As a consequence, the joint PGF A(z1, z2) is given by

A(z1, z2) = (1− λ1 + λ1z1)(1− λ2 + λ2z2) . (2.17)

This is the simplest model in the case that the numbers of arrivals of type-
1 and type-2 customers are independent, i.e. A(z1, z2) = A1(z1)A2(z2). The
results of this section are based on our contribution [52]. As we will show, the
two unknown partial generating functions U(z, 0) and U(0, z) admit analytic
continuation as rational functions with two poles each.

2.3.1 The marginal distributions p1(n) and p2(n)

In Chapter 1, Section 1.5, we showed that the marginal PGFs of the system
contents can be easily obtained. From (2.17), it easily follows that

A1(z) = A(z, 1)

= 1− λ1 + λ1z .

Substituting this arrival PGF into (1.35) yields

U1(z) =
(α− λ1)(1− λ1 + λ1z)

α(1− λ1)− λ1(1− α)z
, (2.18)

in which we canceled the common factor (z−1) in numerator and denominator.
Notice that this PGF can also be deduced from (2.16) by substituting {z1 =
z, z2 = 1}, i.e.

U1(z) = U(z, 1) .

Recall that (cf. Definition (1.31)) U1(z) is defined by

U1(z) =

∞
∑

i=0

p1(i)z
i .

Hence, by writing down the Taylor series expansion of (2.18) and by equating
coefficients, it follows that

p1(0) = 1− λ1

α
,

p1(n) =
α− λ1

α(1− α)

1

τn1
, n ≥ 1 ,
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where τ1 is the unique zero of the denominator in (2.18), given by

τ1 =
α

1− α

1− λ1

λ1
. (2.19)

Obviously, τ1 satisfies the equation K(z, 1) = 0.

We can obtain the PGF U2(z) describing the system content of type-2 cus-
tomers in a similar way. It follows that

U2(z) =
(1− α− λ2)(1− λ2 + λ2z)

(1− α)(1− λ2)− αλ2z
. (2.20)

Further, because

U2(z) =
∞
∑

i=0

p2(i)z
i ,

we obtain that

p2(0) = 1− λ2

1− α
,

p2(n) =
1− α− λ2

α(1− α)

1

τn2
, n ≥ 1 ,

where τ2 is the unique zero of the denominator in (2.20), given by

τ2 =
1− α

α

1− λ2

λ2
. (2.21)

Obviously, τ2 satisfies the equation K(1, z) = 0.

Finally, we consider the marginal PGF UT (z) of the total number of customers
in both queues together. A correct expression is obtained by choosing {z1 =
z, z2 = z} in (2.16):

UT (z) , U(z, z)

=
(1− λ1 + λ1z)(1− λ2 + λ2z)

(1− λ1)(1− λ2)− λ1λ2z
[(1− α)U(z, 0) + αU(0, z)] , (2.22)

which, unfortunately, contains the unknown terms U(z, 0) and U(0, z) again.
We briefly take a look at the dominant singularities of (2.22). The dominant
singularity of UT (z) is either the dominant singularity of U(z, 0), the dominant
singularity of U(0, z) or the zero of the denominator τT , given by

τT =
(1− λ1)(1− λ2)

λ1λ2
. (2.23)

Obviously, τT satisfies the equation K(z, z) = 0. Further, it is worth noting
that τT = τ1τ2.
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2.3.2 Areas of convergence

For definiteness we recall definitions (2.7) and (2.10). The boundary function
U(z, 0) is defined by

U(z, 0) =

∞
∑

i=0

p(i, 0)zi , (2.24)

the power series of the horizontal boundary probabilities. Similarly, the bound-
ary function U(0, z) is defined by

U(0, z) =

∞
∑

i=0

p(0, i)zi , (2.25)

the power series of the vertical boundary probabilities. We now investigate for
which values of z these two infinite series converge. To accomplish this, we
observe that for every i ∈ N

p(i, 0) ≤ p(i, 0) + p(i, 1) + p(i, 2) + . . .

=

∞
∑

j=0

p(i, j)

=

∞
∑

j=0

lim
k→∞

Pr[u1,k = i, u2,k = j]

= lim
k→∞

Pr[u1,k = i]

= p1(i) .

Hence, the radius of convergence of U1(z) is a lower bound for the radius of
convergence of U(z, 0). Analogously, the radius of convergence of U2(z) is a
lower bound for the radius of convergence of U(0, z). From Section 2.3.1, it
easily follows that the radius of convergence of U1(z) and U2(z) is given by τ1
and τ2, respectively. Consequently, U(z, 0) and U(0, z) have to be analytic in
|z| < τ1 and |z| < τ2, respectively.

Next, we investigate the joint PGF U(z1, z2). For any z2 with modulus smaller
than or equal to 1, we have

|U(z1, z2)| ≤
∞
∑

i=0

∞
∑

j=0

p(i, j)|z1|i|z2|j

≤
∞
∑

i=0

∞
∑

j=0

p(i, j)|z1|i

=

∞
∑

i=0

p1(i)|z1|i

= U1(|z1|) .
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From the fact that the radius of convergence of U1(z) is given by τ1, we further
obtain that

|U(z1, z2)| < ∞, if |z1| < τ1, |z2| ≤ 1 .

For reasons of symmetry, we can similarly prove that

|U(z1, z2)| < ∞, if |z1| ≤ 1, |z2| < τ2 .

Let us define two regions in C
2:

Ω1 = {(z1, z2) | |z1| < τ1, |z2| ≤ 1} , (2.26)

Ω2 = {(z1, z2) | |z1| ≤ 1, |z2| < τ2} . (2.27)

We have thus shown that for (z1, z2) ∈ Ω1 ∪ Ω2, the double power series ex-
pansion of U(z1, z2) (cf. (2.11)) converges and it is consequently finite in this
region.

2.3.3 Analysis of the kernel K(z1, z2)

As mentioned in the general introduction of this chapter, a central role in the
analysis of the functional equation (2.1) is played by the kernel

K(z1, z2) = z1z2 − ((1− α)z1 + αz2)A(z1, z2)

= z1z2 − ((1− α)z1 + αz2)(1− λ1 + λ1z1)(1− λ2 + λ2z2) . (2.28)

Since the kernel is at most quadratic in z1 and z2, we can make a detailed study
of the zeros of the kernel K.

The function Y1(z)

We can rewrite K(z1, z2) as follows

K(z1, z2) =− αλ2A1(z1)z
2
2 + (z1 −A1(z1)[α(1− λ2) + (1− α)λ2z1])z2

− (1− α)(1− λ2)z1A1(z1) , (2.29)

with A1(z) = A(z, 1) = 1 − λ1 + λ1z. Observe that K(z1, z2) is for each
z1 6= − 1−λ1

λ1
a polynomial of degree 2. The corresponding discriminant, denoted

by DY (z1), is given by

DY (z1) = {z1−A1(z1)[α(1−λ2)+(1−α)λ2z1]}2−4α(1−α)λ2(1−λ2)z1A
2
1(z1) .

It is easily verified that DY (z) is a polynomial of degree 4. Let us denote the
zeros of the polynomial DY (z) by x1, x2, x3 and x4.

Lemma 2.1. The zeros of DY (z) are real, moreover

0 < x1 < x2 < 1 < τT < x3 < x4 < ∞ .
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Proof. We define

h(x) , x−A1(x)[α(1− λ2) + (1− α)λ2x] ,

which is a polynomial of degree 2. It follows that DY (x) = h2(x) − 4α(1 −
α)λ2(1− λ2)xA

2
1(x). Because

h(0) = −A1(0)α(1− λ2) ,

h(1) = 1− α− λ2 + 2αλ2 ,

one can easily verify that h(0) < 0 and h(1) > 0 (using the stability condition
λ2 < 1 − α). Furthermore, limx→∞ h(x) < 0. Hence, h(x) must have a zero
in ]0, 1[, and in ]1,∞[. Moreover we have that the latter zero is larger than τT
because

h(τT ) = τT (α− 2αλ1 + λ1)

= τT (α(1− λ1) + λ1(1− α))

> 0 .

It now easily follows that DY is strictly negative in the two zeros of h(x).
If we combine these observations with DY (0) > 0, DY (1) > 0, DY (τT ) > 0
and limx→∞ DY (x) > 0, we can conclude that DY (x) changes sign twice in
[0, 1] and twice in [τT ,+∞[. Hence, the zeros of DY (z) are real and we have
necessarily that 0 < x1 < x2 < 1 < τT < x3 < x4 < ∞.

The function DY (z) can thus be factorized as

DY (z) = (1− α)2λ2
1λ

2
2(z − x1)(z − x2)(z − x3)(z − x4) .

Further we define,

∆(z) , (1− α)λ1λ2

√
z − x1

√
z − x2

√
z − x3

√
z − x4 , (2.30)

with
√· the principal value of the square root. Next we define the following

two functions

Y1(z) ,
z −A1(z)[α(1− λ2) + (1− α)λ2z] + ∆(z)

2αλ2A1(z)
(2.31)

Y2(z) ,
z −A1(z)[α(1− λ2) + (1− α)λ2z]−∆(z)

2αλ2A1(z)
(2.32)

One easily sees that K(z, Y1(z)) = 0, K(z, Y2(z)) = 0 ∀z ∈ C \ {− 1−λ1

λ1
}, and

Y1(z)Y2(z) = τ2z, ∀z ∈ C \ {− 1−λ1

λ1
} . (2.33)

The denominators in (2.31) and (2.32) have one unique zero, namely z =
− 1−λ1

λ1
. The numerator in (2.31) vanishes for z = − 1−λ1

λ1
. Therefore Y1 is
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analytic in C \ {[x1, x2]∪ [x3, x4]}. Y1 has one zero, namely z = 0, while Y2 has
no zeros. Further, we have that

Y1(z)

Y2(z)
→ 0, as z → ∞ ,

and |Y1(z)| = |Y2(z)| for z ∈ [x1, x2]∪[x3, x4] (since Y1(z) and Y2(z) are complex
conjugate in this interval). Applying the maximum principle [9, Th. 12, page
134] to the function Y1(z)

Y2(z)
yields

|Y1(z)| < |Y2(z)|, z ∈ C \ {[x1, x2] ∪ [x3, x4]} . (2.34)

Finally, based on Rouché’s theorem, we deduce two bounds on the modulus of
Y1(z) that will turn out useful in the analysis of the functional equation.

Lemma 2.2.

1. If 1 < |z| < τ1, we have that |Y1(z)| < 1

2. If 1 < |z| < τT , then |Y1(z)| < τ2.

Proof. (1): First notice that

x− ((1− α)x+ α)(1− λ1 + λ1x) = K(x, 1) > 0 for x ∈ ]1, τ1[ , (2.35)

since 1 and τ1 are the two zeros of the quadratic function x 7→ K(x, 1) and
limx→+∞ K(x, 1) = −∞.

Let the complex value z1 be fixed, 1 < |z1| < τ1. On |z2| = 1, we have

|((1− α)z1 + αz2)A(z1, z2)|
= |((1− α)z1 + αz2)(1− λ1 + λ1z1)(1− λ2 + λ2z2)|
≤ ((1− α)|z1|+ α|z2|)(1− λ1 + λ1|z1|)(1− λ2 + λ2|z2|)
= ((1− α)|z1|+ α)(1− λ1 + λ1|z1|) .

On the other hand, we have that |z1z2| = |z1| on the circle |z2| = 1. Because
of (2.35), we have the inequality

|((1− α)z1 + αz2)A(z1, z2)| ≤ ((1− α)|z1|+ α)(1− λ1 + λ1|z1|)
< |z1| .

By virtue of Rouché’s theorem, the number of zeros of z1z2 inside |z2| ≤ 1
is then the same as the number of zeros of K(z1, z2). The former number is
1 (due to the trivial zero z2 = 0). Hence, we have found that for fixed z1,
1 < |z1| < τ1, the function z2 7→ K(z1, z2) has exactly one zero inside the unit
disk, say R(z1). Since the only two zeros of z2 7→ K(z1, z2) are Y1(z1) and
Y2(z1), |Y1(z1)| < |Y2(z1)|, we necessarily have that R(z1) = Y1(z1).
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(2): Notice now that

xτ2−((1−α)x+ατ2)(1−λ1+λ1x)(1−λ2+λ2τ2) = K(x, τ2) > 0 for x ∈ ]1, τT [ ,
(2.36)

since 1 and τT are the two zeros of the quadratic function x 7→ K(x, τ2) and
limx→+∞ K(x, τ2) = −∞.

Let the complex value z1 be fixed such that 1 < |z1| < τT . On |z2| = τ2, we
have

|((1− α)z1 + αz2)A(z1, z2)|
= |((1− α)z1 + αz2)(1− λ1 + λ1z1)(1− λ2 + λ2z2)|
≤ ((1− α)|z1|+ α|z2|)(1− λ1 + λ1|z1|)(1− λ2 + λ2|z2|)
= ((1− α)|z1|+ ατ2)(1− λ1 + λ1|z1|)(1− λ2 + λ2τ2) .

On the other hand, we have that |z1z2| = |z1|τ2 on the circle |z2| = τ2. The
remainder of the proof is analogous to the proof of part (1), making use of
Rouché ’s theorem on the contour |z2| = τ2 and (2.36).

The function X1(z)

We now consider K(z1, z2) as a polynomial in the variable z1 with z2 6= − 1−λ2

λ2
.

The discriminant is again a polynomial of degree 4, given by

DX(z2) = {z2−A2(z2)[(1−α)(1−λ1)+αλ1z2]}2−4α(1−α)λ1(1−λ1)z2A2(z2)
2 .

The zeros of DX(z) are denoted by y1, y2, y3 and y4.

Lemma 2.3. The zeros of DX(z) are real, moreover

0 < y1 < y2 < 1 < τT < y3 < y4 < ∞ .

Proof. The proof is the same as the proof of Lemma 2.1 and is therefore omit-
ted.

Let us define

Ψ(z) , αλ1λ2

√
z − y1

√
z − y2

√
z − y3

√
z − y4 , (2.37)

and two functions

X1(z) ,
z −A2(z)[(1− α)(1− λ1) + αλ1z] + Ψ(z)

2(1− α)λ1A2(z)
(2.38)

X2(z) ,
z −A2(z)[(1− α)(1− λ1) + αλ1z]−Ψ(z)

2(1− α)λ1A2(z)
(2.39)

It can be seen that K(X1(z), z) = 0, K(X2(z), z) = 0 ∀z ∈ C \ {− 1−λ2

λ2
} and

X1(z)X2(z) = τ1z, ∀z ∈ C \ {− 1−λ2

λ2
} . (2.40)
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One can then again verify that X1(z) is an analytic function for z ∈ C\{[y1, y2]∪
[y3, y4]}. Finally, using the maximum principle, one can show that

|X1(z)| < |X2(z)|, z ∈ C \ {[y1, y2] ∪ [y3, y4]} . (2.41)

Finally, we have the equivalent of Lemma 2.2 for the modulus of X1(z).

Lemma 2.4.

1. If 1 < |z| < τ2, we have that |X1(z)| < 1

2. If 1 < |z| < τT , then |X1(z)| < τ1.

Proof. The proof is the same as the proof of Lemma 2.2 and is therefore omit-
ted.

2.3.4 Analytic continuation of U(z, 0) and U(0, z)

We analytically continue the functions U(z, 0) and U(0, z). Such a continuation
is unique and the extended functions restricted to |z| < τ1, |z| < τ2, coincide
with the power series expansions (2.24) and (2.25). We will denote the analytic
continuation also by U(z, 0) and U(0, z). The final result of this procedure will
be that the (analytically continued) functions are rational functions with only
two simple poles.

Continuation to |z| < τT

We are now ready to continue analytically U(z, 0) and U(0, z) outside |z| < τ1
and |z| < τ2 respectively.

Theorem 2.1.

1. The function U(z, 0) can be analytically continued to τ1 ≤ |z| < τT ,
z 6= τ1.

2. The function U(0, z) can be analytically continued to τ2 ≤ |z| < τT ,
z 6= τ2.

Proof. (1): Because of Lemma 2.2 we have that |Y1(z)| < 1 if 1 < |z| < τ1,
hence U(z, Y1(z)) remains finite. Therefore, substituting {z1 = z, z2 = Y1(z)}
into the functional equation (2.12) yields

(1− α)(Y1(z)− 1)zU(z, 0) + α(z − 1)Y1(z)U(0, Y1(z)) = 0, 1 < |z| < τ1 ,

or

(1−α)(Y1(z)−1)zU(z, 0) = −α(z−1)Y1(z)U(0, Y1(z)), 1 < |z| < τ1 . (2.42)
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Both sides of this equation are analytic functions in 1 < |z| < τ1 because
U(z, 0), Y1(z) and U(0, Y1(z)) are. According to Lemma 2.2, we have that
|Y1(z)| < τ2 whenever 1 < |z| < τT . Because of this bound, it follows that
the RHS in (2.42) is an analytic function in the larger region 1 < |z| < τT .
Hence, we can analytically continue (1− α)(Y1(z)− 1)zU(z, 0) into the region
τ1 ≤ |z| < τT via (2.42). Because (1 − α)(Y1(z) − 1)zU(z, 0) is now analytic
in τ1 ≤ |z| < τT , it follows that U(z, 0) is meromorphic in τ1 ≤ |z| < τT . The
poles of U(z, 0) in τ1 ≤ |z| < τT (if any) are the roots of Y1(z)− 1 = 0.

Without using the expression for Y1(z), it can be shown that z = 1 and z = τ1
are the only zeros of Y1(z)− 1. The proof goes as follows. First, the two zeros
of K(1, z) are z = 1 and z = τ2. By definition of Y1 and Y2, it holds that
Y1(1) = 1 and Y2(1) = τ2. Secondly, the two zeros of K(τ1, z) are z = 1 and
z = τT . Hence, it holds that Y1(τ1) = 1 and Y2(τ1) = τT . Up till now, we have
thus shown that indeed z = 1 and z = τ1 are two zeros of Y1(z) − 1. Finally,
there cannot exist another value, say z∗, such that Y1(z

∗) = 1. This is because,
otherwise K(z∗, 1) = 0 which is impossible since K(z, 1) has only two zeros,
namely z = 1 and z = τ1. Since z = τ1 is the only root of Y1(z)− 1 = 0 in the
region 1 < |z| < τT , statement (1) is proven.

(2): From Lemma 2.4 we know that |X1(z)| < 1 if 1 < |z| < τ2. Substituting
{z1 = X(z), z2 = z} into (2.12) causes that the LHS vanishes, yielding

(1− α)(z − 1)X1(z)U(X1(z), 0) = −α(X1(z)− 1)zU(0, z), 1 < |z| < τ2 .
(2.43)

According to Lemma 2.4, we have that |X1(z)| < τ1 for 1 < |z| < τT . Con-
sequently, U(X1(z), 0) is still analytic inside this region. Hence, α(X1(z) −
1)zU(0, z) can be analytically continued into the region τ2 ≤ |z| < τT via
(2.43). We conclude that the function U(z, 0) is meromorphic in τ2 ≤ |z| < τT ,
its poles being the zeros (if any) of X1(z)− 1 in τ2 ≤ |z| < τT . Analogously as
in in the proof of the first part of this theorem, it can be proven that z = τ2 is
the only zero in this region.

From Theorem 2.1 it follows that τ1 is an isolated singularity of U(z, 0). Let
us rewrite (2.42) as

U(z, 0) = −α(z − 1)Y1(z)U(0, Y1(z))

(1− α)(Y1(z)− 1)z
.

Multiplying the equation above by (z − τ1) and taking the limit to τ1 yields

lim
z→τ1

(z − τ1)U(z, 0) = − α− λ1

(1− α)2
1− λ1 − λ2

λ1
. (2.44)

Because the above limit is strictly negative (and hence different from zero), τ1
is a simple pole of U(z, 0). Obviously, τ1 must be the radius of convergence of
the power series (2.24).
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Analogously it follows that τ2 is the radius of convergence of the power series
(2.25) and that τ2 is a simple pole of U(0, z) with residue

lim
z→τ2

(z − τ2)U(0, z) = −1− α− λ2

α2

1− λ1 − λ2

λ2
. (2.45)

Continuation to |z| ≥ τT

The composition Y1(X1(Y1(z)))

We start this section with a useful observation for values of z where Y ′
1(z) and

X ′
1(z) vanish. Notice that we can compute Y ′

1(z) as

Y ′
1(z) = −K(1)(z, Y1(z))

K(2)(z, Y1(z))
. (2.46)

Consider now a value z∗ for which Y ′
1(z

∗) = 0. From Equation (2.46) it follows
that K(1)(z∗, Y1(z

∗)) = 0. Hence, z∗ is a zero with multiplicity (at least) two
of the polynomial z 7→ K(z, Y1(z

∗)). This is only possible if DX(Y1(z
∗)) = 0.

According to Lemma 2.3, we must have that Y1(z
∗) is equal to either y1, y2,

y3 or y4. Further, we cannot have that also Y ′′
1 (z∗) = 0, because otherwise

K(11)(z∗, Y (z∗)) = 0, which is impossible because DX(z) has no zeros with
multiplicity three or more.

We now study the graph of Y1(z) on the real interval [1, τ1]. Note that Y1(z)
and Y ′

1(z) are continuous on [1, τ1]. In the proof of Theorem 2.1, we have shown
that Y1(1) = 1, Y1(τ1) = 1. Likewise, it can be shown that Y1(τT ) = τ2. The
derivative of Y1(z), evaluated at z = 1, z = τ1 and z = τT is, using (2.46),
given by

Y ′
1(1) = − α− λ1

1− α− λ2
< 0 , (2.47)

Y ′
1(τ1) =

(1− α)λ1(α− λ1)

α(1− λ1)(1− λ1 − λ2)
> 0 , (2.48)

and

Y ′
1(τT ) =

(1− α)λ1(1− λ1 − λ2)

α(α− λ1)(1− λ1)
> 0 (2.49)

respectively. From (2.47) and (2.48) it follows that there exists a v∗ ∈ ]1, τ1[,
such that Y ′

1(v
∗) = 0. Because of Lemma 2.3 and the fact that |Y1(z)| < 1

for 1 < |z| < τ1, there can be at most two values such that the derivative of
Y ′
1(z) in ]1, τT [ vanishes. Hence, v∗ is the only value in ]1, τ1[ such that Y ′(z)

vanishes.
Similarly, there cannot exist a value in the interval ]τ1, τT [ such that Y ′

1(z) van-
ishes, since |Y1(z)| < τ2 for τ1 ≤ |z| < τT , Y ′

1(τ1) > 0, Y ′
1(τT ) > 0 and because

of Lemma 2.3.
We conclude that Y1(z) is strictly decreasing for z ∈ [1, v∗[ and strictly increas-
ing for z ∈ ]v∗, τT ].
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Analogously, there exists a w∗ ∈ ]1, τ2[, such that X1(z) is strictly decreasing
for z ∈ [1, w∗[ and strictly increasing for z ∈ ]w∗, τT ].

Without loss of generality, we assume that τ1 ≤ τ2 in the remainder of this
subsection. For every z, it holds that either X1(Y1(z)) = z or X2(Y1(z)) = z,
by definition of X1(z) and X2(z). For example, consider z = 1. Then we
have that X1(Y1(1)) = 1, while X2(Y1(1)) = τ1. Starting in z = 1, we use
the (real) inverse function theorem to investigate in what region the equation
X1(Y1(z)) = z holds. It can be seen that the inverse function theorem will
work as long as Y1(z) is continuously differentiable and Y ′

1(z) 6= 0. Because of
the analysis above, this yields X1(Y1(s)) = s if s ∈ [1, v∗[ and X2(Y1(s)) = s if
s ∈ ]v∗, τT ]. From Equation (2.40), we get

X1(Y1(s)) = τ1
Y1(s)

s
, s ∈ ]v∗, τT ] .

Analogously, we have that

Y1(X1(s)) = τ2
X1(s)

s
, s ∈ ]w∗, τT ] .

Substituting s = Y1(s) into the above equation yields

Y1(X1(Y1(s))) = τ2
X1(Y1(s))

Y1(s)
, Y1(s) ∈ ]w∗, τT ] .

Because Y1(τ1) = 1 and Y1(τT ) = τ2, there exists a t∗ ∈ ]τ1, τT [, such that
Y1(t

∗) = w∗. Hence Y1(s) > w∗ if s ∈ ]t∗, τT ], because Y1(s) is strictly increas-
ing on [t∗, τT ]. Because also v∗ < τ1 ≤ τ2 < t∗, we have the following key
property

Y1(X1(Y1(s))) =
τT
s
, s ∈ ]t∗, τT ] . (2.50)

A new functional equation

From the proof in Theorem 2.1, we have that for |z| < τT ,

(1− α)
zU(z, 0)

z − 1
= −α

Y1(z)U(0, Y1(z))

Y1(z)− 1
(2.51)

α
zU(0, z)

z − 1
= −(1− α)

X1(z)U(X1(z), 0)

X1(z)− 1
. (2.52)

If we restrict z to the real interval ]t∗, τT [ and use consecutively Equations
(2.51), (2.52) and (2.50) we find that

(1− α)
zU(z, 0)

z − 1
= −α

Y1(z)U(0, Y1(z))

Y1(z)− 1

= (1− α)
X1(Y1(z))U(X1(Y1(z)), 0)

X1(Y1(z))− 1
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= −α
Y1(X1(Y1(z)))U(0, Y1(X1(Y1(z))))

Y1(X1(Y1(z)))− 1

= −ατT
U(0, τT

z )

τT − z
, z ∈ ]t∗, τT [ , (2.53)

which can be rewritten as

U(z, 0) = −ατT (z − 1)U(0, τT
z )

(1− α)z(τT − z)
, z ∈ ]t∗, τT [ . (2.54)

Since U(0, τT
z ) is analytic for |z| > 1, z 6= τ1, the right-hand side of (2.53) is

analytic for |z| > 1, z 6= {τ1, τT }. Hence, the equality is valid for 1 < |z| < τT ,
z 6= τ1 and U(z, 0) can be analytically continued for |z| ≥ τT , z 6= τT via
Equation (2.54). U(z, 0) is therefore analytic in C \ {τ1, τT }. Using (2.54), it
follows that

lim
z→τT

(z − τT )U(z, 0) =
(α− λ1)(1− λ1 − λ2)

(1− α)λ1λ2
, (2.55)

hence τT is a simple pole of U(z, 0).

Further, using (2.53) it follows that U(0, z) is analytic in C \ {τ2, τT }, and τT
is a simple pole of U(0, z) with residue

lim
z→τT

(z − τT )U(0, z) =
(1− α− λ2)(1− λ1 − λ2)

αλ1λ2
. (2.56)

Using the new functional equation (2.54), it also easily follows that

lim
z→∞

U(z, 0) = 0 , (2.57)

lim
z→∞

U(0, z) = 0 . (2.58)

We are now ready to present our main theorem.

Theorem 2.2.

1. U(z, 0) is a rational function and its partial fraction expansion is given
by

U(z, 0) =
(α− λ1)(1− λ1 − λ2)

(1− α)

×
( −1

(1− α)λ1z − α(1− λ1)
+

1

λ1λ2z − (1− λ1)(1− λ2)

)

.

(2.59)

2. U(0, z) is a rational function and its partial fraction expansion is given
by

U(0, z) =
(1− α− λ2)(1− λ1 − λ2)

α



2.3 Independent Bernoulli arrivals in the two queues 39

×
( −1

αλ2z − (1− α)(1− λ2)
+

1

λ1λ2z − (1− λ1)(1− λ2)

)

.

(2.60)

Proof. We will only prove part 1, since part 2 can be obtained analogously.

U(z, 0) is an analytic function for all z with the exception of τ1 and τT as simple
poles. From (2.44) and (2.55), we obtain that the singular part of U(z, 0) at τ1
and τT is given by − (α−λ1)(1−λ1−λ2)

(1−α)2λ1(z−τ1)
and (α−λ1)(1−λ1−λ2)

(1−α)λ1λ2(z−τT ) , respectively. Hence

L(z) := U(z, 0)−
(

− (α− λ1)(1− λ1 − λ2)

(1− α)2λ1(z − τ1)
+

(α− λ1)(1− λ1 − λ2)

(1− α)λ1λ2(z − τT )

)

is an entire function. Because U(z, 0) → 0 as z → ∞, we have that L(z) → 0
as z → ∞ as well. Hence L(z) is bounded and tends to zero (as z → ∞). From
Liouville’s theorem we can conclude that L(z) = 0.

2.3.5 The joint distribution p(n,m)

Substituting Equations (2.59) and (2.60) into (2.16) yields

U(z1, z2) =
(α− λ1)(1− α− λ2)(1− λ1 − λ2)(1− λ1 + λ1z1)(1− λ2 + λ2z2)

(α(1− λ1)− (1− α)λ1z1)((1− α)(1− λ2)− αλ2z2)

× (1− λ1)(1− λ2)− λ1λ2z1z2
((1− λ1)(1− λ2)− λ1λ2z1)((1− λ1)(1− λ2)− λ1λ2z2)

. (2.61)

The joint PGF U(z1, z2) is now completely determined in terms of the system
parameters α, λ1 and λ2. From this joint PGF we can obtain the joint pmf.

Theorem 2.3. The joint probability distribution p(n,m) of the number of type-
1 and type-2 customers is given by

p(0, 0) =
(1− α− λ2) (α− λ1) (1− λ1 − λ2)

(1− λ2)α (1− α) (1− λ1)

p(n, 0) =
(α− λ1)(1− λ1 − λ2)

(1− α)(1− λ1)

(

1

α

1

τn1
− 1

1− λ2

1

τnT

)

, n ≥ 0

p(0, n) =
(1− α− λ2)(1− λ1 − λ2)

α(1− λ2)

×
(

1

(1− α)

1

τn2
− 1

1− λ1

1

τnT

)

, n ≥ 0

p(n,m) =
(α− λ1)(1− λ1 − λ2)

α(1− α)λ1(1− λ1)

1

τn1 τ
m
T

+
(1− α− λ2)(1− λ1 − λ2)

α(1− α)λ2(1− λ2)

1

τm2 τnT

− (1− λ1 − λ2)
2

λ1(1− λ1)λ2(1− λ2)

1

τn+m
T

, n ≥ 1,m ≥ 1 . (2.62)
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Proof. Expanding the factors in the denominator of (2.61) with respect to z1
and z2 yields the result. It can be verified that

∑∞
n=0

∑∞
m=0 Pr[u1 = n, u2 =

m] = 1 and that Pr[u1 = n, u2 = m] ≥ 0, ∀n,m ∈ N.

2.3.6 The marginal distribution pT (n)

Finally, from equation (2.61), we easily obtain an expression for the PGF UT (z)
by substituting z1 = z, z2 = z,

UT (z) =
(α− λ1)(1− α− λ2)(1− λ1 − λ2)(1− λ1 + λ1z)(1− λ2 + λ2z)

(α(1− λ1)− (1− α)λ1z)((1− α)(1− λ2)− αλ2z)

× (1− λ1)(1− λ2)− λ1λ2z
2

((1− λ1)(1− λ2)− λ1λ2z)2
. (2.63)

This PGF describes the total number of customers in the system. Let us denote
the pmf of the total number of customers in the system in steady state as pT (n),
i.e.

pT (n) , lim
k→∞

Pr[u1,k + u2,k = n] . (2.64)

Because

UT (z) =

∞
∑

n=0

pT (n)z
n ,

the pmf pT (n) can be obtained from (2.63) by expanding the factors in the
denominator and equating the coefficients of powers of z.

An alternative is to use the joint probility distribution from Theorem 2.3 and
use the identity

pT (n) =

n
∑

k=0

p(k, n− k)

Both alternatives give rise to the following result.

Theorem 2.4. The probability distribution of the total number of customers
is given by

pT (0) =
(1− α− λ2) (α− λ1) (1− λ1 − λ2)

(1− λ2)α (1− α) (1− λ1)

pT (n) =
(α− λ1)(1− λ1 − λ2)(αλ2 + (1− α− λ2)λ1)

(1− α)αλ1(1− λ1)(1− α− λ2)

1

τn1

+
(1− α− λ2)(1− λ1 − λ2)((1− α)λ1 + (α− λ1)λ2)

(1− α)αλ2(1− λ2)(α− λ1)

1

τn2

− (1− λ1 − λ2)((1− λ1)(1− λ1 − λ2)− λ2(α− λ1))

(1− λ1)(1− λ2)(λ2(α− λ1)

1

τnT
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− (1− λ1 − λ2)((1− λ2)(1− λ1 − λ2)− λ1(1− α− λ2))

(1− λ1)(1− λ2)(λ1(1− α− λ2)

1

τnT

− (1− λ1 − λ2)
2

λ1(1− λ1)λ2(1− λ2)

(n− 1)

τnT
, n ≥ 1 . (2.65)

2.3.7 Calculation of numerical characteristics

Moments

The moments of the type-1 and type-2 system contents can be obtained from
their PGFs, using the moment-generating property.

The mean type-1 system content is given by (using either (2.18), or (1.37) with
A′′(1) = 0)

E[u1] =
λ1(1− λ1)

α− λ1
. (2.66)

The mean type-2 system content is given by

E[u2] =
λ2(1− λ2)

1− α− λ2
. (2.67)

The mean total system content can be obtained using expression (2.63), yielding

E[uT ] =
(1− λ1 − λ2)((1− α)λ1 + αλ2 − λ1λ2)

(α− λ1)(1− α− λ2)
(2.68)

It is easily verified that equations (2.66), (2.67) and (2.68) satisfy E[uT ] =
E[u1] + E[u2] (which is expected since uT = u1 + u2).

The variance of the type-1 system content is given by

var[u1] =
d2U1(z)

dz2

∣

∣

∣

∣

z=1

+
d2U1(z)

dz2

∣

∣

∣

∣

z=1

−
(

d2U1(z)

dz2

∣

∣

∣

∣

z=1

)2

=
λ1(1− λ1)(α+ λ2

1 − 2αλ1)

(α− λ1)2
. (2.69)

The variance of the type-2 system content is given by

var[u2] =
d2U2(z)

dz2

∣

∣

∣

∣

z=1

+
d2U2(z)

dz2

∣

∣

∣

∣

z=1

−
(

d2U2(z)

dz2

∣

∣

∣

∣

z=1

)2

=
λ2(1− λ2)(1− α+ λ2

2 − 2(1− α)λ2)

(1− α− λ2)2
. (2.70)

The so-called content covariance, i.e. the covariance between the type-1 and
type-2 system contents at the same slot boundary is given by

cov[u1, u2] =
d2U(z1, z2)

dz1dz2
−
(

dU1(z)

dz

∣

∣

∣

∣

z=1

)(

dU2(z)

dz

∣

∣

∣

∣

z=1

)
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= −λ1λ2(1− λ1)(1− λ2)

(1− λ1 − λ2)2
. (2.71)

Expression (2.71) gives two noteworthy results. First, the covariance is inde-
pendent of the system parameter α, which is quite remarkable. Notice that
the correlation coefficient between both system contents does depend on the
parameter α, because the variances of u1 and u2 depend on α. Secondly, the
covariance is always negative, which could be more or less expected because if
u1 is exceptionally large, then either there were a lot of type-1 arrivals in the
previous time slots, or type-1 customers were not served often during the last
couple of slots. In the latter case, it is likely that u2 is small.

Since var[X + Y ] = var[X] + var[Y ] + 2cov[X,Y ] for two random variables X
and Y , we obtain the variance of the total system content

var[uT ] =
λ1(1− λ1)(α+ λ2

1 − 2αλ1)

(α− λ1)

+
λ2(1− λ2)(1− α+ λ2

2 − 2(1− α)λ2)

(1− α− λ2)
− 2λ1λ2(1− λ1)(1− λ2)

(1− λ1 − λ2)2
.

A measure of inefficiency

A performance measure related to the probability of an empty system p(0, 0) is
the probability that the server selects an empty queue while the non-selected
queue is non-empty. We emphasize that in case of a work-conserving scheduling
discipline, this probability is necessarily zero. Let us define this probability as
σ. For our model, we have

σ = lim
k→∞

(Pr[u1,k > 0, u2,k = 0, rk = 0] + Pr[u1,k = 0, u2,k > 0, rk = 1])

= lim
k→∞

(Pr[u1,k > 0, u2,k = 0](1− α) + Pr[u1,k = 0, u2,k > 0]α)

= lim
k→∞

(Pr[u2,k = 0](1− α) + Pr[u1,k = 0]α− Pr[u1,k = 0, u2,k = 0])

= p2(0)(1− α) + p1(0)α− p(0, 0) . (2.72)

Substituting the expressions for p1(0), p2(0) and p(0, 0) into the above, yields

σ =
(1− λ1 − λ2)((1− α)2λ1 + α2λ2 − (1− α+ α2)λ1λ2)

α(1− α)(1− λ1)(1− λ2)
. (2.73)

The mean maximum system content

As a final numerical characteristic, we compute the mean maximum system
content E[max(u1, u2)]. The computation of this mean value is possible since we
have an explicit expression for the joint pmf p(n,m). Using the joint pmf (2.62)
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of Theorem 2.3 and the fact that Pr[max(u1, u2) > L] = 1−Pr[u1 ≤ L, u2 ≤ L],
the expected maximum system content is given by

E[max(u1, u2)] =

∞
∑

L=0

Pr[max(u1, u2) > L]

=
τT

τ2T − 1
+

λ1(1− λ1)

α− λ1
− (1− λ1)(1− λ2)

α(1− λ1)τT − (1− α)λ1

+
λ2(1− λ2)

1− α− λ2
− (1− λ1)(1− λ2)

(1− α)(1− λ2)τT − αλ2
. (2.74)

2.3.8 Some numerical examples

In this section we present some numerical examples to show the influence of
the system parameters on the performance measures. We focus on the measure
of inefficiency σ and the mean maximum system content E[max(u1, u1)].

Figure 2.1 shows the measure of inefficiency σ versus the (scaled) mean type-
2 arrival rate with λ1 = 0.3 and α = 0.31, 0.5, 0.55 and 0.69 respectively.
Because the stability condition requires that λ2 < 1 − α, we have scaled the
horizontal axis by dividing by 1 − α, such that the four curves have the same
domain [0, 1[. Remark that σ is a measure of inefficiency, with values between
0 and 1. Values close to 0 correspond to an efficient system, while values close
to 1 correspond to an inefficient system. We say that the server is allocated to
the wrong queue, if it is allocated to an empty queue while the other queue is
non-empty. By definition (2.73) of σ, the more slots that the server is allocated
to the wrong queue, the higher the value of σ.

Figure 2.1: Measure of inefficiency σ versus the type-2 arrival rate (λ1 = 0.3 fixed).
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Let us start with the simplest case, namely when α = 0.5. In this case, the
two different queues get an equal share of the single-server capacity. If we
increase λ2, more type-2 customers arrive, leading to a higher type-2 system
content (on average). Therefore, it is expected that if we increase λ2, the
server idles less when it is allocated to queue-2. Hence, the queueing system
works more efficiently because there are less slots when the server is allocated
to the wrong queue. This is in accordance with Figure 2.1 . We observe that σ
decreases with increasing λ2, at least for α = 0.5. Looking at Figure 2.1, we see
different behaviors in case of asymmetric weights. Let us assume that 0 < α <
0.5. Recall that we still assume that λ1 = 0.3 is fixed. Because the stability
condition for queue-1 has to be satisfied, we actually assume 0.3 < α < 0.5. In
this case, more capacity of the server is distributed to queue-2. Hence, if we
increase λ2 (and thus the type-2 system content) this capacity is more often
used. Looking at Figure 2.1 with α = 0.31 (solid line), we see indeed a greater
efficiency of the system for increasing λ2. Finally, let us consider the case of
0.5 < α < 1. Discussing the (in)efficiency in this case is trickier. Remark that
in this case most capacity of the server is distributed to the first queue. For
ease of explanation, let us assume that α = 0.69. Hence, most of the time the
server is willing to serve a type-1 customer. However, since λ1 = 0.3, the server
will be idle during a lot of slots, regardless of the number of type-2 customers.
Because there are many slots that the server idles, we have that the more type-
2 customers arrive, the more slots the server is allocated to the wrong queue.
Hence, in this case the system becomes less efficient for increasing λ2. The same
reasoning explains why in Figure 2.1 with α = 0.55, σ increases for increasing
λ2 until a certain λ2-value.

Figure 2.2: Measure of inefficiency σ versus α (λ1 = 0.3 fixed).

We look again at σ, but with varying α while keeping the mean type-2 arrival
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rate fixed. Figure 2.2 shows the measure of inefficiency σ versus α with λ1 = 0.3
and λ2 = 0.2, 0.3 and 0.4. The stability condition requires λ1 < α < 1 − λ2.
In contrast to Figure 2.1, we did not scale the horizontal axis in Figure 2.2.
From Figure 2.2, we see that σ first decreases and then increases for increasing
α. This can be explained as follows. If α increases, more server capacity is
distributed to type-1 customers and less server capacity is distributed to type-
2 customers. This trade-off results in a more efficient use of the server, starting
from α close to λ1 = 0.3. This positive effect continues until α achieves a
critical value and from there, the negative effect of capacity loss for type-2
customers dominates the positive effect of capacity gain for type-1 customers.

Figure 2.3: The optimal value α∗ that minimizes the expected maximum system
content E[max(u1, u2)] versus the type-1 arrival rate λ1, for various values of λ2.

In practice of designing concrete systems, it is natural to determine the param-
eter α such that a certain cost function is minimized. Consider for example the
expected maximum system content E[max(u1, u2)] as the cost function for our
queueing system, in which α can be considered as the decision variable. We
want to compute the optimal value of α, denoted by α∗, that minimizes the
cost function, i.e. we want to compute

α∗ = argmin
α

E[max(u1, u2)], λ1 < α < 1− λ2 . (2.75)

E[max(u1, u2)] is, as a function in α, a rational function with poles λ1, 1− λ2,
λ1

(1−λ1)τT+λ1
and (1−λ2)τT

λ2+(1−λ2)τT
. Using the fact that τT > 1, it follows that

λ1

(1−λ1)τT+λ1
< λ1 and 1 − λ2 < (1−λ2)τT

λ2+(1−λ2)τT
such that E[max(u1, u2)] is well

defined for α ∈ ]λ1, 1 − λ2[. Moreover, E[max(u1, u2)] is strictly positive for
α ∈ ]λ1, 1 − λ2[ by definition. The optimization problem (2.75) can easily be
solved using numerical software. Fig. 2.3 illustrates the optimal values of α
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as a function of λ1, for λ2 = 0.05, 0.15, 0.3 and 0.5. Because the stability
conditions imply that λ1 + λ2 < 1, we scaled the horizontal axis by dividing
by 1− λ2, such that four curves have the same domain [0, 1]. From Fig. 2.3, it
can be seen that the optimal α, as a function of λ1, increases the most for λ1

close to 0. When λ1 → 1 − λ2, the optimal α approaches 1 − λ2. This is due
to the stability conditions λ1 < α < 1− λ2.

2.4 Identical Bernoulli arrivals in the two queues

As a second specific arrival distribution, suppose that during any slot k, the
number of type-1 arrivals is the same as the number of type-2 arrivals, i.e.

a1,k = a2,k, for all k .

We introduce the following new notation for the mean arrival rates,

λ1 = λ2 , λ . (2.76)

Moreover, we assume that for given j the random variables aj,k constitute a
sequence of independent and identically Bernoulli distributed random variables.
In this case, the joint PGF A(z1, z2) of the arrival process can be written as

A(z1, z2) = 1− λ+ λz1z2 . (2.77)

This is the simplest model in the case that the number of arrivals of type-1 and
type-2 customers are identical, i.e. A(z1, z2) = C(z1z2) with C(z) a PGF. In
contrast to the previous section, we now have that the numbers of type-1 and
type-2 arrivals are correlated. Indeed, the covariance of a1,k and a2,k is given
by

cov[a1,k, a2,k] = λ(1− λ) , (2.78)

which is always positive.

The mathematical analysis of the functional equation (2.12) with A(z1, z2)
given by (2.77) turns out to be considerably easier as compared to the analysis
in Section 2.3.

2.4.1 The marginal distributions p1(n) and p2(n)

Because the marginal arrivals are Bernoulli distributed, the expressions in Sec-
tion 2.3.1 are also applicable here. For definiteness, we have that

p1(0) = 1− λ

α
,

p1(n) =
α− λ

α(1− α)

1

τn1
, n ≥ 1 ,
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p2(0) = 1− λ

1− α
,

p2(n) =
1− α− λ

α(1− α)

1

τn2
, n ≥ 1 .

The values τ1 and τ2 are given by

τ1 =
α

1− α

1− λ

λ
, (2.79)

τ2 =
1− α

α

1− λ

λ
. (2.80)

As before, we have that K(1, 1) = 0, K(τ1, 1) = 0 and K(1, τ2) = 0.

Finally, we consider the total system content. The corresponding PGF UT (z)
is given by

UT (z) , U(z, z)

=
1− λ+ λz2

1− λ− λz
[(1− α)U(z, 0) + αU(0, z)]. (2.81)

This expression follows from Equation (2.12) with z1 = z2 = z and in which
we canceled the common factor z(z − 1) in numerator and denominator. The
dominant singularity of UT (z) is either the dominant singularity of U(z, 0), the
dominant singularity of U(0, z), or the zero of the denominator. Note that the
latter is given by 1−λ

λ .

2.4.2 Areas of convergence

It is not surprising that the same conclusions as in Section 2.3.2 also apply here,
since the results of Section 2.3.2 are based on the marginal distributions p1(n)
and p2(n). Consequently, U(z1, z2) is analytic in the two polydiscs |z1| < τ1,
|z2| ≤ 1 and |z1| ≤ 1, |z2| < τ2. Furthermore, the partial PGFs U(z1, 0) and
U(0, z2) are analytic in |z1| < τ1 and |z2| < τ2, respectively.

2.4.3 Analysis of the kernel K(z1, z2)

Substituting (2.77) into (2.13) yields

K(z1, z2) = z1z2−(1−α)(1−λ)z1−(1−α)λz21z2−α(1−λ)z2−αλz1z
2
2 . (2.82)

The kernel K(z1, z2) has the same form as the kernel that is studied in [81].
We follow the same steps as in [81] to analyze the zeros of the kernel K. To
that end, let us define

H1(z1) = (1− α)λ+ α(1− λ)− (1− α)λz1 − α(1− λ)
1

z1
(2.83)
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H2(z2) = (1− α)(1− λ) + αλ− αλz2 − (1− α)(1− λ)
1

z2
, (2.84)

such that the kernel K can be rewritten as

K(z1, z2) = z1z2(H1(z1) +H2(z2)) .

We have the convenient property that for complex values of z1 =
√

α(1−λ)
(1−α)λe

iθ,

H1(z1) is real and equal to

(1− α)λ+ α(1− λ)− 2
√

α(1− α)λ(1− λ) cos(θ) ,

which can be easily established by using the well-known identity eiθ + e−iθ =
2 cos(θ). Further, we have that

(1− α)λ+ α(1− λ)− 2
√

α(1− α)λ(1− λ) cos θ > 0 , (2.85)

because

(1− α)λ+ α(1− λ)− 2
√

α(1− α)λ(1− λ) cos θ

≥ (1− α)λ+ α(1− λ)− 2
√

α(1− α)λ(1− λ)

= (
√

(1− α)λ−
√

α(1− λ))2

> 0 .

We are now ready to prove the following lemma.

Lemma 2.5. For values z1 =
√

α(1−λ)
(1−α)λe

iθ, there is a unique z2 =: y(z1) ∈ ]0, 1[

such that
H1(z1) +H2(y(z1)) = 0.

Proof. For x ∈ [0, 1], the function H2(x) increases monotonically from −∞ at
x = 0 to 0 at x = 1. Moreover, it holds that,

H1

(
√

α(1− λ)

(1− α)λ
eiθ

)

> 0 ,

cf. (2.85). By virtue of the intermediate value theorem, there is a unique value
z2 in the interval ]0, 1[ such that

H2(z2) = −H1

(
√

α(1− λ)

(1− α)λ
eiθ

)

.
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2.4.4 Analytic continuation of U(z, 0) and U(0, z)

We can now proceed to determine the functions U(z, 0) and U(0, z) and hence
solve the functional equation (2.12). To accomplish this, it is crucial to note
that

y(z) = y(z̄), |z| =
√

α(1− λ)

(1− α)λ
,

with y defined in the previous subsection. The reason why the equality above
holds, is simply because

H1

(
√

α(1− λ)

(1− α)λ
eiθ

)

= (1− α)λ+ α(1− λ)− 2
√

α(1− α)λ(1− λ) cos(θ)

= (1− α)λ+ α(1− λ)− 2
√

α(1− α)λ(1− λ) cos(−θ)

= H1

(
√

α(1− λ)

(1− α)λ
e−iθ

)

.

Further, since α(1−λ)
(1−α)λ > 1 it obviously holds that

√

α(1− λ)

(1− α)λ
<

α(1− λ)

(1− α)λ
= τ1 .

Due to the inequality above and the fact that y(z) ∈ ]0, 1[, we have that
U(z, y(z)) remains finite. Hence, substituting {z1 = z, z2 = y(z)}, |z| =
√

α(1−λ)
(1−α)λ into the functional equation (2.12) yields

(1− α)(y(z)− 1)zU(z, 0) + α(z − 1)y(z)U(0, y(z)) = 0 ,

and substituting {z1 = z̄, z2 = y(z)}, |z| =
√

α(1−λ)
(1−α)λ into the functional equa-

tion (2.12) yields

(1− α)(y(z)− 1)z̄U(z̄, 0) + α(z̄ − 1)y(z)U(0, y(z)) = 0 .

Eliminating U(0, y(z)) gives us

(z̄ − 1)zU(z, 0) = (z − 1)z̄U(z̄, 0) .

When multiplying both sides of the relation above by z and using the relations

zz̄ = α(1−λ)
(1−α)λ ⇔ |z| = |z̄| =

√

α(1−λ)
(1−α)λ , we immediately get

z

(

α(1− λ)

(1− α)λ
− z

)

U(z, 0) =
α(1− λ)

(1− α)λ
(z − 1)U

(

α(1− λ)

(1− α)λ
z−1, 0

)

, (2.86)

with |z| =
√

α(1−λ)
(1−α)λ .
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We observe that the LHS of (2.86) is analytic in |z| < τ1. Due to
∣

∣

∣

∣

α(1− λ)

(1− α)λ
z−1

∣

∣

∣

∣

= τ1|z|−1

and the fact that U(z, 0) is analytic in |z| < τ1, it follows that the RHS of
(2.86) is analytic in |z| > 1. Both sides of (2.86) have a common region of
analyticity, namely the region 1 < |z| < τ1. Hence, using analytic continuation
we conclude that both sides of (2.86), in their respective regions of analyticity,
are equal to the same unique entire function, say h(z). The LHS of (2.86) is
clearly bounded for |z| < τ1. Moreover, the RHS of (2.86) is bounded by a first
degree polynomial for |z| > 1, because

lim
|z|→+∞

U

(

α(1− λ)

(1− α)λ
z−1, 0

)

= U(0, 0) = p(0, 0) < 1 .

Hence, the entire function h(z) must be a first degree polynomial by virtue of
Liouville’s theorem. Hence, we have obtained that for |z| < τ1,

z

(

α(1− λ)

(1− α)λ
− z

)

U(z, 0) = h(z) = C1z + C2

with Cj to be determined. Substituting z = 0 immediately yields that C2 = 0.
Substituting z1 = 1 and using that U(1, 0) = p2(0) = 1− λ

1−α , gives us

C1 =
α− λ

(1− α)λ

(

1− λ

1− α

)

.

We have thus obtained the following expression for U(z, 0):

U(z, 0) =
α− λ

α(1− λ)− (1− α)λz

(

1− λ

1− α

)

. (2.87)

For reasons of symmetry, we have that U(0, z) is given by

U(0, z) =
1− α− λ

(1− α)(1− λ)− αλz

(

1− λ

α

)

. (2.88)

Alternative solution method for equation (2.86)

If we substitute U(z, 0) =
∑

p(n, 0)zn into (2.86), we obtain that

z(τ1 − z)

∞
∑

n=0

p(n, 0)zn = τ1(z − 1)

∞
∑

n=0

p(n, 0)τn1 z
−n ,

where we wrote τ1 instead of α(1−λ)
(1−α)λ for ease of notation. The equation above

can be rewritten as
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∞
∑

n=0

τ1p(n, 0)z
n+1 −

∞
∑

n=0

p(n, 0)zn+2 =

∞
∑

n=0

p(n, 0)τn+1
1 z−n+1

−
∞
∑

n=0

p(n, 0)τn+1
1 z−n , (2.89)

or

∞
∑

n=1

τ1p(n− 1, 0)zn −
∞
∑

n=2

p(n− 2, 0)zn −
∞
∑

n=0

p(n+ 1, 0)τn+2
1 z−n

− p(0, 0)τ1z +
∞
∑

n=0

p(n, 0)τn+1
1 z−n = 0 .

This equation is valid for z-values such that |z| = √
τ1. Hence, by multiplying

by appropriate powers of z and integrating over the positively oriented circle
centered at 0 with radius |z| = √

τ1 we obtain the following relations

p(0, 0)− p(1, 0)τ1 = 0

τ1p(n, 0)− p(n− 1, 0) = 0, n ≥ 1 .

Solving this elementary difference equation yields

p(n, 0) =
1

τn1
p(0, 0) .

Finally, using the condition
∑∞

n=0 p(n, 0) = p2(0) = 1− λ
1−α gives us

p(0, 0) =
(α− λ)(1− α− λ)

α(1− α)(1− λ)
.

Hence, the sequence p(n, 0) is completely determined. The obtained expres-
sions for p(n, 0) and p(0, 0) lead to the same result for U(z, 0). It is worth
noting that p(n,0)

p2(0)
is a geometric distribution with parameter 1− 1

τ1
= α−λ

α(1−λ) .

The sequence p(n,0)
p2(0)

corresponds to the conditional probability distribution of
the type-1 system content, given that the type-2 system content is zero. Anal-
ogously, it can be shown that p(0,n)

p1(0)
is a geometric distribution with parameter

1− 1
τ2

= 1−α−λ
(1−α)(1−λ) .

2.4.5 The joint distribution p(n,m)

Substituting (2.87) and (2.88) into (2.12) yields

U(z1, z2) =
(1− λ+ λz1z2)(α− λ)(1− α− λ)

(α(1− λ)− (1− α)λz1)((1− α)(1− λ)− αλz2)
. (2.90)

The joint PGF U(z1, z2) is now completely determined in terms of the system
parameters λ and α. From this PGF we can obtain the joint pmf.



52 Exact analysis: specific arrival distributions

Theorem 2.5. The joint probability mass function of type-1 and type-2 system
contents is given by

p(0, 0) =
(α− λ)(1− α− λ)

α(1− α)(1− λ)
,

p(n, 0) =
(α− λ)(1− α− λ)

α(1− α)(1− λ)

1

τn1
, n ≥ 0 ,

p(0, n) =
(α− λ)(1− α− λ)

α(1− α)(1− λ)

1

τn2
, n ≥ 0 ,

p(n,m) =
(α− λ)(1− α− λ)

α(1− α)(1− λ)λ

1

τn1

1

τm2
, n ≥ 1,m ≥ 1 .

(2.91)

Proof. Expanding the factors in the denominator of (2.90) with respect to z1
and z2 gives the result.

Looking more closely at expression (2.90), we observe that

U(z1, z2) = A(z1, z2)
U1(z1)

A1(z1)

U2(z2)

A2(z2)
.

Let us rewrite this equation as follows

U(z1, z2)

A(z1, z2)
=

U1(z1)

A1(z1)

U2(z2)

A2(z2)
. (2.92)

The equation above might ring a bell to some. Actually, the LHS is nothing else
than the joint PGF of the queue contents, defined as the number of customers
in the queue (thus without the one in the server if any). The two functions in
the RHS are the PGFs of the marginal queue contents. The queue contents can
be easily derived from the system contents. For the sake of exposition, let us
define in this subsection q1,k and q2,k as the type-1 and type-2 queue content
at the beginning of the k-th slot. We then get the following relation between
the qj,k and the uj,k:

uj,k+1 = qj,k + aj,k, j = 1, 2 . (2.93)

This relation is explained as follows: the system content at the beginning of
slot k+1 consist of the queue content at the beginning of the previous slot (the
possible customer in the server during slot k has left the system at the end of
that slot) and the customers that arrive during slot k. Let us denote the joint
PGF of the stationary queue contents by Q(z1, z2), i.e.

Q(z1, z2) = lim
k→∞

E[z
q1,k
1 z

q2,k
2 ] .

From equations (2.93) we find

U(z1, z2) = Q(z1, z2)A(z1, z2) .
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From equation (2.92), we conclude that

Q(z1, z2) = Q(z1, 1)Q(1, z2) .

Since the joint PGF can be written as the product of the two marginal PGFs,
this proves that the two queue contents are statistically independent.

2.4.6 The marginal distribution pT (n)

From the two-dimensional PGF U(z1, z2), we can derive an expression for the
PGF UT (z) of the total system content at the beginning of an arbitrary slot,
yielding

UT (z) = U(z, z)

=
(1− λ+ λz2)(α− λ)(1− α− λ)

(α(1− λ)− (1− α)λz)((1− α)(1− λ)− αλz)
(2.94)

The pmf of the total system content can then be obtained by computing the
Taylor series expansion of UT (z) at z = 0 and identifying the coefficient at zn

with pT (n). We obtain the following result:

pT (0) =
(α− λ)(1− α− λ)

α(1− α)(1− λ)
,

pT (1) =
λ(α− λ)(1− α− λ)(1− 2α+ 2α2)

α2(1− α)2(1− λ)2
,

pT (n) =
(α− λ)(1− α− λ)

α(1− α)(1− 2α)λ(1− λ)

×
(

(

λ(1− 2α) + α2
) 1

τn1
+
(

λ(1− 2α)− (1− α)2
) 1

τn2

)

, n ≥ 2 .

2.4.7 Calculation of numerical characteristics

Moments

In this subsection, we give the expressions for the mean and the variance of the
type-1, type-2 and total system contents.

The mean type-1 and type-2 system contents are given by, cf. (2.66),

E[u1] =
λ(1− λ)

α− λ
, (2.95)

E[u2] =
λ(1− λ)

1− α− λ
. (2.96)

Furthermore, the mean total system content is given by, cf. (2.68),

E[uT ] =
(1− 2λ)λ(1− λ)

(α− λ)(1− α− λ)
. (2.97)
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Likewise, the variances of type-1 and type-2 system contents are given by, cf.
(2.69),

var[u1] =
λ(1− λ)(α+ λ2 − 2αλ)

α− λ
, (2.98)

var[u2] =
λ(1− λ)(1− α+ λ2 − 2(1− α)λ)

1− α− λ
. (2.99)

The content covariance is found as

cov[u1, u2] =
d2U(z1, z2)

dz1dz2
−
(

dU1(z)

dz

∣

∣

∣

∣

z=1

)(

dU2(z)

dz

∣

∣

∣

∣

z=1

)

= λ(1− λ) . (2.100)

Note that this expression is always positive. In fact, this is the same expression
as the covariance of a1,k and a2,k, cf. (2.78). However, we remark that the
arrival correlation corr[a1,k, a2,k] and the content correlation corr[u1, u2] are
not equal to each other.

Finally, the variance of the total system content can be calculated by taking
the appropriate derivatives of UT (z). Alternatively, the variance can also be
obtained using the formula for the variance of the sum of two random variables.
In either way, we obtain that

var[uT ] =
λ(1− λ)(α+ λ2 − 2αλ)

α− λ

+
λ(1− λ)(1− α+ λ2 − 2(1− α)λ)

1− α− λ
+ 2λ(1− λ) . (2.101)

A measure of inefficiency

Again, the probability σ that the server selects an empty queue while the non-
selected queue is non-empty is given by

σ = p2(0)(1− α) + p1(0)α− p(0, 0) .

For the derivation of the formula above, we refer to Section 2.3.7. In the current
section, the performance measure σ is given by

σ =
λ(1− λ− 3α+ 2αλ+ 3α2 − 2α2λ)

α(1− α)(1− λ)
. (2.102)

The mean maximum system content

The mean maximum system content is found by first computing

lim
k→∞

Pr[max(u1,k, u2,k) > L]
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from the joint pmf (2.91). This can for instance be done by writing

lim
k→∞

Pr[max(u1,k, u2,k) > L] = 1− lim
k→∞

Pr[u1,k ≤ L, u2,k ≤ L] .

Secondly, using the well-known formula for the mean of a discrete random
variable X: E[X] =

∑∞
k=0 Pr[X > k], the mean maximum system content is

obtained as

E[max(u1, u2)] =
∞
∑

L=0

lim
k→∞

Pr[max(u1,k, u2,k) > L]

=
(1− λ)λ

1− α− λ
+

(1− λ)λ

α− λ
− λ(1− λ)

1− 2λ
. (2.103)

2.4.8 Some numerical examples

To conclude this section, we demonstrate the influence of the system parame-
ters on the measure of inefficiency σ and the mean maximum system content
E[max(u1, u1)].

Figure 2.4: Measure of inefficiency σ versus the scaled arrival rate.

Figure 2.4 shows the measure of inefficiency σ versus the scaled arrival rate with
α = 0.31, 0.5, 0.55. Because the stability condition requires λ < α and λ <
1−α, we have scaled the horizontal axis by dividing by min(α, 1−α), such that
the three curves have the same domain [0, 1[. Obviously, for λ = 0, there are no
customers in the system and hence no slots are wasted (σ = 0). It is interesting
that for α = 0.31 the measure of inefficiency σ increases for increasing λ. The
efficiency is therefore the worst for the value λ = min(α, 1 − α) = 0.31. This
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is in sharp contrast to the cases α = 0.5 and α = 0.55. In these two cases,
there exists an intermediate value of λ ∈ ]0,min(α, 1−α)[ such that σ achieves
its maximum. This is explained by the fact that, from a particular value of λ
onward, both queues are less empty from time to time because λ is high. Hence,
less slots are wasted. Finally, it is interesting to note that for the symmetric
case α = 0.5 the system is completely efficient (σ = 0) for λ → α.

Figure 2.5: Measure of inefficiency σ versus α.

Note that since λ1 = λ2 = λ, the fractions of type-1 arrivals and type-2 arrivals
in the overall traffic mix are equal. Hence, we expect that α = 0.5 should be
the optimal value for α in terms of efficiency. In Figure 2.5, we see that σ for
varying α is symmetric around α = 0.5 and that the minimum value is indeed
found at α = 0.5.

Next, we shift focus to the mean maximum system content. For this per-
formance measure, we show that α = 1

2 is indeed always optimal. Consider
E[max(u1, u2)] as a function of α, with λ < α < 1−λ and λ < 0.5. This is a ra-
tional function with poles 1−λ and λ such that this is a well defined function for
α ∈ ]λ, 1− λ[. It can easily be verified that, as a function of α, E[max(u1, u2)]
is convex and E[max(u1, u2)] > 0 for α ∈ ]λ, 1 − λ[. Consequently, a unique
minimizer in α exists. If we take the derivative of (2.103) with respect to α
and require that this expression equals zero, we get

(1− λ)λ

(1− α− λ)2
− (1− λ)λ

(α− λ)2
= 0 .

Solving this equation to α yields

1− α− λ = α− λ ,
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such that indeed α = 1
2 . This proves that α⋆ = 1

2 minimizes the mean maximum
system content.

2.5 Geometric arrivals that are probabilistically

routed to the two queues

Suppose that, during any slot, the total number of arrivals to the system is
geometrically distributed with mean λT , i.e. the total number of arrivals during
a slot is fully characterized according to the following PGF

AT (z) =
1

1 + λT − λT z
.

Furthermore, an arriving customer is assumed to be of type-j with probability
λj

λT
, j = 1, 2 (with λ1 + λ2 = λT ). The arriving customer is then routed to his

designated queue. The joint PGF of the number of type-1 and type-2 arrivals

can thus be written as AT

(

λ1

λT
z1 +

λ2

λT
z2

)

, which gives us

A(z1, z2) =
1

1 + λ1 + λ2 − λ1z1 − λ2z2
. (2.104)

It is easy to verify that
cov[a1, a2] = λ1λ2 . (2.105)

While the specific choice of arrival process in the previous section has led to
independent queue contents, we obtain in this section that the system contents
are statistically independent.

2.5.1 The marginal distributions p1(n) and p2(n)

The type-1 and type-2 arrivals are geometrically distributed with mean λ1 and
λ2 since

A(z, 1) =
1

1 + λ1 − λ1z

and

A(1, z) =
1

1 + λ2 − λ2z
,

respectively. From Section 1.5, we have that the PGF U1(z) describing the
type-1 system content is given by

U1(z) , U(z, 1) =
α− λ1

α− λ1z
. (2.106)
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The reader will recognize the expression above as the PGF of a geometric
distributed random variable with parameter λ1

α . Hence the pmf of u1 is given
as

Pr[u1 = n] =

(

1− λ1

α

)(

λ1

α

)n

, n ≥ 0 . (2.107)

It easily follows that the radius of convergence τ1 of U1(z) is equal to

τ1 =
α

λ1
. (2.108)

For reasons of symmetry, we have that

U2(z) , U(1, z) =
1− α− λ2

1− α− λ2z
(2.109)

and

Pr[u2 = n] =

(

1− λ2

1− α

)(

λ2

1− α

)n

, n ≥ 0 . (2.110)

The radius of convergence τ2 of U2(z) is given by

1− α

λ2
. (2.111)

2.5.2 Areas of convergence

We have the same conclusions as in Section 2.3.2. The joint PGF U(z1, z2)
is analytic in the two polydiscs |z1| < τ1, |z2| ≤ 1 and |z1| ≤ 1, |z2| < τ2.
Furthermore, the partial PGFs U(z1, 0) and U(0, z2) are analytic in |z1| < τ1
and |z2| < τ2, respectively.

2.5.3 Analysis of the kernel K(z1, z2)

In this subsection, we investigate the zeros of the kernel K. We have that

K(z1, z2) = 0

⇔−z21z2λ1 − z1z
2
2λ2 + z1z2λ1 + z1z2λ2 + z1α− z2α+ z1z2 − z1

−λ1z1 − λ2z2 + λ1 + λ2 + 1
= 0

⇔− z21z2λ1 − z1z
2
2λ2 + z1z2λ1 + z1z2λ2 + z1α− z2α+ z1z2 − z1 = 0

⇔z1z2

(

−z1λ1 − z2λ2 + λ1 + λ2 +
α

z2
− α

z1
+ 1− 1

z2

)

= 0 .

Letting

H1(z1) = α+ λ1 − λ1z1 −
α

z1
, (2.112)
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H2(z2) = 1− α+ λ2 − λ2z2 −
1− α

z2
, (2.113)

we see that
H1(z1) +H(z2) = 0 ⇒ K(z1, z2) = 0 .

For complex values of z1, we will only observe that for z1 =
√

α
λ1
e±iθ, H1(z1)

is real and equal to
α+ λ1 −

√

λ1α2 cos(θ) .

Moreover, we have that

α+ λ1 −
√

λ1α2 cos(θ) > 0 , (2.114)

since

α+ λ1 −
√

λ1α2 cos(θ) ≥ α+ λ1 −
√

λ1α2

= (
√
α−

√

λ1)
2

> 0 .

We are ready to prove the following lemma.

Lemma 2.6. For values z1 =
√

α
λ1
e±iθ, there is a unique z2 =: y(z1) ∈ ]0, 1[

such that
H1(z1) +H2(y(z1)) = 0.

Proof. For x ∈ [0, 1], H2(x) increases monotonically from −∞ at x = 0 to 0 at
x = 1. Moreover, we have that

H1

(√

α

λ1
e±iθ

)

> 0 ,

cf. (2.114). By virtue of the intermediate value theorem, there is a unique value
z2 in the interval ]0, 1[ such that

H2(z2) = −H1

(√

α

λ1
e±iθ

)

.

2.5.4 Analytic continuation of U(z, 0) and U(0, z)

The steps in order to determine U(z, 0) and U(0, z) are analogous as in Section
2.4.4. First we notice that

y(z) = y(z̄), |z| =
√

α

λ
,
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for a proof we refer to Section 2.4.4. Moreover,
√

α

λ
=

√
τ1 < τ1

and y(z) ∈ ]0, 1[. Secondly, substitution of (z, y(z)) into (2.12) for values of z
such that |z|2 = α

λ1
gives us

(1− α)(y(z)− 1)zU(z, 0) + α(z − 1)y(z)U(0, y(z)) = 0

and substitution of (z̄, y(z)) for values of z such that |z|2 = α
λ1

gives us

(1− α)(y(z)− 1)z̄U(z̄, 0) + α(z̄ − 1)y(z)U(0, y(z)) = 0.

Thirdly, eliminating U(0, y(z)) and rearranging terms yields

(z̄ − 1)zU(z, 0) = (z − 1)z̄U(z̄, 0), |z| =
√

α

λ1
.

Finally, when multiplying both sides of the relation above by z and using the

relations zz̄ = α
λ1

⇔ |z| = |z̄| =
√

α
λ1

we find that

z

(

α

λ1
− z

)

U(z, 0) =
α

λ1
(z − 1)U

(

α

λ1
z−1, 0

)

, |z| =
√

α

λ1
. (2.115)

Using equation (2.115), we now show that U(z, 0) admits a meromorphic con-
tinuation beyond |z| < τ1. We observe that the LHS of (2.115) is analytic in
|z| < τ1. The RHS of (2.115) is analytic in |z| > 1, since U(z, 0) is analytic
in |z| < τ1. Both sides of the equation have a common region of analyticity,
namely the region 1 ≤ |z| < τ1. Hence, using analytic continuation we conclude
that both sides of (2.115), in their respective regions of analyticity, are equal
to the same unique entire function, say h(z). The LHS of (2.115) is clearly
bounded for |z| < τ1. Moreover, the RHS of (2.115) is bounded by a first
degree polynomial for |z| > 1. Hence, the entire function h(z) must be a first
degree polynomial by Liouville’s theorem. Hence, we have obtained that for
|z| < τ1,

z

(

α

λ1
− z

)

U(z, 0) = h(z) = C1z + C2

with Cj to be determined. Substituting z = 0 gives C2 = 0. If we substitute
z1 = 1 and use that U(1, 0) = p2(0) = 1− λ2

1−α , we obtain that

C1 =

(

α

λ1
− 1

)(

1− λ2

1− α

)

.

Summarized, we have obtained that U(z, 0) is given by the following expression

U(z, 0) =
(α− λ1)

(

1− λ2

1−α

)

α− λ1z
. (2.116)
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For reasons of symmetry, it can be shown that U(0, z2) is given by

U(0, z) =
(1− α− λ2)

(

1− λ1

α

)

1− α− λ2z
. (2.117)

The reader might have noticed that U(z1, 0) = U1(z1)U2(0) and that U(0, z2) =
U1(0)U2(z2). This suggests that u1 and u2 are statistically independent.

2.5.5 The joint distribution p(n,m)

If we substitute the expressions (2.116) and (2.117) for U(z, 0) and U(0, z),
respectively, into the functional equation for U(z1, z2), we get

U(z1, z2) =
(α− λ1)(1− α− λ2)

(α− λ1z1)(1− α− λ2z2)
. (2.118)

We can conclude that U(z1, z2) = U(z1, 1)U(1, z2), i.e., the system contents are
statistically independent. We emphasize that this is a striking result. However,
we cannot intuitively explain this result.

The joint pmf p(n,m) of type-1 and type-2 system contents is easily obtained
because the joint pmf can be factorized as

p(n,m) = p1(n)p2(m) .

We obtain that

p(n,m) =
(α− λ1)(1− α− λ2)

α(1− α)

(

λ1

α

)n(
λ2

1− α

)m

. (2.119)

Generalization: other PGFs A(z1, z2) such that the system contents
are statistically independent

We show that the solution of the functional equation (2.12) is given by

U(z1, z2) = U1(z1)U2(z2) , (2.120)

as soon as the joint arrival PGF A(z1, z2) satisfies

A(z1, z2) =
A1(z1)A2(z2)

A1(z1) +A2(z2)−A1(z1)A2(z2)
. (2.121)

Indeed, consider an arrival PGF A(z1, z2) for which (2.121) holds. We check
if U(z1, z2) = U1(z1)U2(z2) satisfies the functional equation (2.12). In a first
step, we notice that (2.120) implies

U(z1, z2) =
(α− λ1)(1− α− λ2)(z1 − 1)(z2 − 1)A1(z1)A2(z2)

(z1 −A1(z1)(α+ (1− α)z1))(z2 −A2(z2)(1− α+ (1− α)z2))
,

(2.122)
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whence,

U(z1, 0) =
(α− λ1)(z1 − 1)A1(z1)

z1 −A1(z1)(α+ (1− α)z1)

1− α− λ2

1− α
, (2.123)

U(0, z2) =
(1− α− λ2)(z2 − 1)A2(z2)

z2 −A2(z2)(1− α+ (1− α)z2)

α− λ1

α
. (2.124)

Substituting these two expressions for U(z1, 0) and U(0, z2) into the RHS of
equation (2.12) yields

A(z1, z2)((1− α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2))

= A(z1, z2)

(

(z2 − 1)z1(α− λ1)(z1 − 1)A1(z1)(1− α− λ2)

z1 −A1(z1)(α+ (1− α)z1)

+
(z1 − 1)z2(1− α− λ2)(z2 − 1)A2(z2)(α− λ1)

z2 −A2(z2)(1− α+ (1− α)z2)

)

= A(z1, z2)(z1 − 1)(z2 − 1)(α− λ1)(1− α− λ2)

×
(

z1A1(z1)

z1 −A1(z1)(α+ (1− α)z1)
+

z2A2(z2)

z2 −A2(z2)(1− α+ (1− α)z2)

)

.

Now notice that

z1A1(z1)

z1 −A1(z1)(α+ (1− α)z1)
+

z2A2(z2)

z2 −A2(z2)(1− α+ (1− α)z2)

=
z1z2(A1(z1) +A2(z2)−A1(z1)A2(z2))−A1(z1)A2(z2)((1− α)z1 + αz2)

(z1 −A1(z1)(α+ (1− α)z1))(z2 −A2(z2)(1− α+ (1− α)z2))

=
z1z2

A1(z1)A2(z2)
A(z1,z2)

−A1(z1)A2(z2)((1− α)z1 + αz2)

(z1 −A1(z1)(α+ (1− α)z1))(z2 −A2(z2)(1− α+ (1− α)z2))
,

where in the last equality we used (2.121). Hence

A(z1, z2)((1− α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2))

=
A(z1, z2)(z1 − 1)(z2 − 1)(α− λ1)(1− α− λ2)

(z1 −A1(z1)(α+ (1− α)z1))(z2 −A2(z2)(1− α+ (1− α)z2))

×
(

z1z2
A1(z1)A2(z2)

A(z1, z2)
−A1(z1)A2(z2)((1− α)z1 + αz2)

)

=
A(z1, z2)

A1(z1)A2(z2)
U(z1, z2)

×
(

z1z2
A1(z1)A2(z2)

A(z1, z2)
−A1(z1)A2(z2)((1− α)z1 + αz2)

)

= U(z1, z2) (z1z2 −A(z1, z2)((1− α)z1 + αz2)) ,

such that indeed (2.122) is a solution of equation (2.12). Moreover, (2.122) is a
joint PGF since it is the product of two proper marginal PGFs and hence our
claim is proved.
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We will now introduce a large class of PGFs A(z1, z2) that satisfy condition
(2.121). Consider

A(z1, z2) =
1

1 + µ1 + µ2 − µ1L1(z1)− µ2L2(z2)
, (2.125)

where L1(z) and L2(z) are PGFs. Note that the case where

L1(z) = L2(z) = z

corresponds to the arrival PGF (2.104). Now

A1(z) =
1

1 + µ1 − µ1L1(z)

and

A2(z) =
1

1 + µ2 − µ2L2(z)
.

Hence,

A1(z1) +A2(z2) =
2 + µ1 + µ2 − µ1L1(z1)− µ2L2(z2)

(1 + µ1 − µ1L1(z1))(1 + µ2 − µ2L2(z2))
,

such that

A1(z1) +A2(z2)−A(z1)A(z2) =
1 + µ1 + µ2 − µ1L1(z1)− µ2L2(z2)

(1 + µ1 − µ1L1(z1))(1 + µ2 − µ2L2(z2))

=
A1(z1)A2(z2)

A(z1, z2)
.

In conclusion, PGFs of the form (2.125) will lead to a product-form solution
for the joint PGF U(z1, z2) of the system contents.

2.5.6 The marginal distribution pT (n)

The marginal distribution pT (n) of the total system content can be easily ob-
tained. Because the system contents are statistically independent, it holds that

pT (n) =
n
∑

k=0

p1(k)p2(n− k) .

Whence,

pT (n) =
(α− λ1)(1− α− λ2)λ1

α((1− α)λ1 − αλ2)

(

λ1

α

)n

− (α− λ1)(1− α− λ2)λ2

(1− α)((1− α)λ1 − αλ2)

(

λ2

1− α

)n

. (2.126)
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2.5.7 Calculation of numerical characteristics

Moments

Since the type-1 and type-2 system contents are geometrically distributed, the
marginal moments of the type-1 and type-2 system contents can readily be
obtained. It follows that

E[u1] =
λ1

α− λ1
(2.127)

var[u1] =
αλ1

(α− λ1)2
. (2.128)

Likewise, we have that

E[u2] =
λ2

1− α− λ2
(2.129)

var[u2] =
(1− α)λ2

(1− α− λ2)2
. (2.130)

Finally, since the system contents are statistically independent, it follows that

cov[u1, u2] = 0 , (2.131)

and

var[uT ] = var[u1] + var[u2]

=
αλ1

(α− λ1)2
+

(1− α)λ2

(1− α− λ2)2
. (2.132)

A measure of inefficiency

As in Section 2.3 and Section 2.4, the probability that the server selects an
empty queue while the non-selected queue is non-empty is denoted by σ and
can be calculated as

σ = p2(0)(1− α) + p1(0)α− p(0, 0) .

If we substitute the expressions for p1(0), p2(0) and p(0, 0), we find that

σ =
(1− α)2λ1 + α2λ2 − λ1λ2

α(1− α)
. (2.133)

The mean maximum system content

The mean maximum system content is in this case easily computed since

lim
k→∞

Pr[max(u1,k, u2,k) > L] = 1− lim
k→∞

Pr[max(u1,k, u2,k) ≤ L]
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= 1− lim
k→∞

Pr[u1,k ≤ L] lim
k→∞

Pr[u2,k ≤ L]

= 1−
(

1−
(

λ1

α

)L+1
)(

1−
(

λ2

1− α

)L+1
)

=

(

λ1

α

)L+1

+

(

λ2

1− α

)L+1

−
(

λ1λ2

α(1− α)

)L+1

.

Whence,

E[max(u1, u2)] =

∞
∑

L=0

lim
k→∞

Pr[max(u1,k, u2,k) > L]

=
λ1

α− λ1
+

λ2

1− α− λ2
− λ1λ2

α(1− α)− λ1λ2
. (2.134)

We have studied the influence of α, λ1 and λ2 on the mean maximum system
content and on the measure σ. However, the behavior is very similar of that of
Section 2.3. Therefore the numerical results are omitted.

2.6 Concluding remarks

In this chapter, we have analyzed a discrete-time two-class queueing model
with randomly alternating service, single-slot service times and infinite waiting
room. Various assumptions for the arrival distribution have been made in order
to present an exact analysis. We will discus asymptotic and approximation
techniques to analyze this model in the next chapters. The usefulness of this
chapter is twofold.

Firstly, despite the fact that the results obtained in this chapter are only valid
for specific arrival distributions, these are useful in their own right. This is be-
cause the obtained expressions make it possible to demonstrate (in a relatively
simple way) the impact of the scheduling discipline on the performance of the
queueing model.

Secondly, we demonstrated the difficulty in solving functional equations like
(2.1) for relatively simple kernels K(z1, z2). The insight gained in the used
method will help us in the following chapter. The asymptotic analysis used in
the next chapter will be highly based on the analysis of Section 2.3.
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3
Asymptotic analysis: tail

asymptotics

In the previous chapter, we have analyzed our queueing model with randomly
alternating service discipline under various assumptions for the arrival distri-
bution. The closed-form analysis of the general queueing model, i.e. where
the numbers of arrivals per time slot have a general joint distribution, proves
to be unfeasible. Therefore, we shift focus to the asymptotic behavior of the
joint stationary distribution p(i, j) of the system contents (under less severe
restrictions on the arrival distribution). To make this chapter self-contained,
we briefly repeat the exact definitions of our queueing model as described in
Section 1.4. We consider a discrete-time queueing model with two infinite-sized
queues and one server. There are two types of customers, where the type of
the customer corresponds to a specific queue. Each customer has a service
time of a single slot. In each time slot, the server is available to queue-1 with
probability α and to queue-2 with probability 1− α. When an empty queue is
chosen, no service occurs in that slot, even when the other queue is non-empty.
The number of type-j arrivals in slot k is denoted by aj,k, j = 1, 2. The joint
PGF of a1,k and a2,k is denoted by A(z1, z2). Finally, we denoted the type-j
system content at the beginning of slot k by uj,k.

To better describe what we are trying to achieve in this chapter, consider the
special case of the arrival distribution in Section 2.3. The joint pmf p(i, j) of
the system contents in this case was given by, cf. (2.62)

p(i, j) = c1τ
−i
1 τ−j

T + c2τ
−i
T τ−j

2 + c3τ
−(i+j)
T (i, j ≥ 1) , (3.1)

with c1, c2 and c3 constants that are independent of i and j. Recall that
τT = τ1τ2, cf. (2.23). From (3.1), it is clear that, if we are only interested in
p(i, j) for large i and fixed j, we can only keep the term with τ−i

1 and neglect
the other terms. We then have

p(i, j) ∼ c1τ
−j
T τ−i

1 , as i → ∞ , (3.2)
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where we write f(i) ∼ g(i) if limi→∞ f(i)/g(i) = 1.

More formally, the tail asymptotic problem for a discrete non-negative random
variable X is that of finding an approximation for the probability Pr[X = n]
by a much simpler function of n, say h(n), such that

Pr[X = n] ∼ h(n), as n → ∞ .

Such a function h dictates the decay of Pr[X = n], for large n.

For a random vector (X,Y ), the formulation of the tail asymptotic problem
may differ since a joint distribution has several directions. In this chapter, we
will focus on the asymptotics along a coordinate direction. That is, for every
fixed m we search for a simple function hm such that

Pr[X = n, Y = m] ∼ hm(n), as n → ∞ .

The results in this chapter are closely connected to the asymptotic analysis of
two-dimensional Markov chains. The main difficulty in this analysis is that, in
general, no analytical expression for the joint PGF is available. Despite this
difficulty, the tail asymptotic problem for two-dimensional queueing models has
been investigated extensively for nearest-neighbor random walks the last two
decades, see for example [82–87] and references therein. In [88], Kobayashi and
Miyazawa obtain tail asymptotic results for the marginal stationary distribu-
tions of a nearest-neighbor random walk in {0, 1, . . .}2. They have established
that these distributions exhibit the following law: ∼ cnντ−n, with τ > 1,
ν ∈ {− 3

2 ,− 1
2 , 0, 1} and c unspecified. Their approach is comparable to the

method employed in [86, 89]. In essence, both methods succeed in determin-
ing the location and the nature of the singularities of the boundary functions
Φ(z1, 0) and Φ(0, z2) via the functional equation (2.1). Once these singularities
are obtained, the singularity analysis of the marginal PGFs Φ(z1, 1), Φ(1, z2)
and Φ(z, z) readily follows. Finally, the tail asymptotics follow from singularity
analysis.

It is worth noting that the tail asymptotic problem can be limited to that of
finding only the decay rate β, defined by

lim
n→∞

1

n
logPr[X = n] = −β

provided that this limit exists. Note that if Pr[X = n] ∼ cnντ−n, then it
follows that the tail decay rate β is given by ln(τ).

In [85], the tail decay rate is obtained for the marginal distributions of ran-
dom walks in the quarter plane for which the one-step displacements are not
restricted to neighboring states. In [90], the tail decay rates for a nearest-
neighbor random walk in the quarter plane that is modulated by a background
process are investigated. This modulation means that the transitions of the
random walk depend on the state of a background process. Assuming stability
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conditions for the background process, Ozawa and Kobayashi determine the
dominant singularity of the boundary functions Φ(z1, 0) and Φ(0, z2) in [91].
The general study of exponential decay in rare events is that of large-deviations
theory. We refer to [92, 93] for good introductions to this theory.

For clarity, we explicitly state the objectives of this chapter:

1. We investigate under which condition on the arrival process, the joint
distribution p(i, j) (for fixed i or j) has an asymptotic geometric behavior.

2. We compute the tail asymptotics under this condition.

For convenience, let the radius of convergence of the infinite series of the PGF
of the number of arrivals of type-j customers in a slot

Aj(z) =

∞
∑

n=0

aj(n)z
n ,

be denoted by Rj (j = 1, 2). We consider well-behaved functions Aj(z), there-
fore we assume throughout this chapter that

Assumption 3.1. Rj > 1 and limz→Rj
Aj(z) = +∞ , j = 1, 2 .

This class of discrete probability distributions contains many well-known distri-
butions, for example: the binomial distribution, the geometric distribution and
the Poisson distribution satisfy Assumption 3.1. In fact, distributions whose
PGF is entire (Rj = +∞) or whose PGF is a rational function are the most
common examples of arrival distributions for which Assumption 3.1 holds.

The method we apply to obtain asymptotic formulas, is singularity analysis
of the (partial) PGFs describing the system contents. There is general corre-
spondence between the asymptotic expansion of a generating function near its
dominant singularities and the asymptotic expansion of the coefficients of the
generating functions. For a detailed explanation of this method we refer the
reader to [11, Part B] or [94, Sect. 3]. The generating functions that will be
subjected to singularity analysis in this chapter, have poles as dominant singu-
larities (as we will show). Therefore, the following theorem will be sufficient.

Theorem 3.1. Let X(z) =
∑∞

i=0 x(i)z
i be a meromorphic function at all points

of the closed disc |z| ≤ R with poles at points β1, β2, . . . , βn with multiplicity
m1,m2, . . . ,mn respectively. Assume that X(z) is analytic at all points of
|z| = R and at z = 0. In a punctured disk around βl, X(z) has the Laurent
expansion

X(z) =
∞
∑

k=0

dl,k(z − βl)
k +

ml
∑

k=1

bl,k
(z − βl)k

,

with dl,k (k = 0, 1, . . .) and bl,k (k = 1, . . . ,ml) complex numbers. Then,

x(i) ∼
n
∑

l=1

ml
∑

k=1

(

i+ k − 1

i

)

(−1)kbl,kβ
−(i+k)
l . (3.3)
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Proof. See for example the proof of Theorem 5.2.1 in [95].

In the special case that there is only one pole and the multiplicity of this pole
is 1 (we call this a simple pole), then (3.3) simplifies to

x(i) ∼ −b1,1β
−(i+1)
1 ,

with b1,1 the residue of X(z) at β1, given by

res
z=β1

X(z) = lim
z→β1

(z − β1)X(z) .

This particular case is in fact the only case we will encounter throughout this
chapter. Without going into great detail, we want to remark that Theorem 3.1
is the simplest application of singularity analysis, since the dominant singular-
ities are in this case poles. However, singularity analysis is also applicable to
functions whose singular expansion involves fractional powers and logarithms.
For further details of this theory, we refer to the classic book [11].

The remainder of this Chapter is organized as follows. In Section 3.1 we re-
peat the most important definitions and give several preliminary results. In
Section 3.2 we introduce the major conditions on the PGF A(z1, z2) such that
a geometric tail behavior is obtained. This is followed by the derivation of
these conditions in Section 3.3. The tail asymptotics of the complete joint
distribution p(i, j) are provided in Section 3.4. Finally, in Section 3.5 we con-
sider the special case of independent arrivals in the queues, which allows for a
supplementary analysis.

3.1 Preliminaries

For definiteness, we repeat some of the most important definitions of Chapter
2. Under the assumption that the system can reach a steady state, we defined

p(i, j) = lim
k→∞

P[u1,k = i, u2,k = j], i, j ≥ 0 (3.4)

p1(i) =
∞
∑

j=0

p(i, j), i ≥ 0 (3.5)

p2(j) =

∞
∑

i=0

p(i, j), j ≥ 0 . (3.6)

We also defined the following PGFs

U(z1, z2) =

∞
∑

i=0

∞
∑

j=0

p(i, j)zi1z
j
2 (3.7)

U1(z) =
∞
∑

i=0

p1(i)z
i (3.8)
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U2(z) =

∞
∑

j=0

p2(j)z
j , (3.9)

which are the joint PGF of the numbers of type-1 and type-2 customers in
the system, the marginal PGF of the number of type-1 and the marginal PGF
of the number of type-2 customers in the system respectively. Of course, we
have that U1(z) = U(z, 1) and U2(z) = U(1, z). The joint PGF satisfies the
following functional equation, cf. (2.12),

K(z1, z2)U(z1, z2) = A(z1, z2)

× [(1− α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2)] , (3.10)

with
K(z1, z2) = z1z2 − [(1− α)z1 + αz2]A(z1, z2) . (3.11)

We now define the following new partial probability generating functions:

P1,n(z) =

∞
∑

i=0

p(i, n)zi, n = 0, 1, . . . , (3.12)

P2,n(z) =

∞
∑

j=0

p(n, j)zj , n = 0, 1, . . . (3.13)

as the partial PGF of the number of type-1 customers in the system when there
are n type-2 customers in the system and the partial PGF of the number of
type-2 customers in the system when there are n type-1 customers present,
respectively. Notice that P1,0(z) = U(z, 0) and P2,0(z) = U(0, z). Moreover,
we can expand U(z1, z2) as

U(z1, z2) =
∞
∑

n=0

P1,n(z1)z
n
2 , (3.14)

or

U(z1, z2) =

∞
∑

n=0

P2,n(z2)z
n
1 . (3.15)

3.1.1 Recurrence relations

In this subsection, we show that the functions P1,n(z) and P2,n(z) satisfy a
particular recurrence relation. This can be established by writing down the
balance equations and then taking the corresponding z-transform. However,
we follow a different approach. We substitute the expansions (3.14) (or (3.15))
into (3.10) and equate coefficients in z2 (or in z1).

Let us define

A1,n(z) ,
∞
∑

i=0

a(i, n)zi (3.16)
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as the partial PGF of the number of type-1 arrivals in a slot with n type-2
customers arrivals. Notice that

A(z1, z2) =

∞
∑

n=0

A1,n(z1)z
n
2 . (3.17)

We now first establish a recurrence relation for P1,n(z). If we substitute (3.14)
and (3.17) into (3.10), we get

∞
∑

n=0

z1P1,n(z1)z
n+1
2 −

∞
∑

n=0

(

(1− α)z1

n
∑

k=0

A1,n−k(z1)P1,k(z1)

)

zn2

−
∞
∑

n=0

(

α
n
∑

k=0

A1,n−k(z1)P1,k(z1)

)

zn+1
2 =

∞
∑

n=0

A1,n(z1)(1− α)z1P1,0(z1)z
n+1
2

−
∞
∑

n=0

A1,n(z1)(1−α)z1P1,0(z1)z
n
2 +

∞
∑

n=0

α(z1−1)

n
∑

k=0

A1,n−k(z1)P1,k(0)z
n+1
2 .

(3.18)

Hence, by equating coefficients in z2 we obtain that for n = 0, 1, . . .:

zP1,n(z) = α

n
∑

j=0

A1,n−j(z)[P1,j(z) + (z − 1)P1,j(0)]

+ (1− α)zA1,n(z)P1,0(z) + (1− α)z

n
∑

j=0

A1,n−j(z)P1,j+1(z),

(3.19)

For reasons of symmetry, we have the following recurrence relation for P2,n(z):

zP2,n(z) = αzA2,n(z)P2,0(z) + αz

n
∑

i=0

A2,n−i(z)P2,i+1(z)

+ (1− α)

n
∑

i=0

A2,n−i(z)[P2,i(z) + (z − 1)P2,i(0)] ,

(3.20)

where we defined

A2,n(z) ,

∞
∑

j=0

a(n, j)zj (3.21)

as the partial PGF of the number of type-2 arrivals in a slot with n type-1
customers arrivals.

If we can obtain the dominant singularities of P1,0(z) and P2,0(z), we see from
equations (3.19) and (3.20) that we can also recursively obtain the dominant
singularities of P1,n(z) and P2,n(z), n = 1, 2, . . .. In Chapter 2, we consid-
ered three special cases for A(z1, z2) and for each of these special cases it



3.1 Preliminaries 73

was possible to determine the dominant singularity of U(z, 0) = P1,0(z) and
U(0, z) = P2,0(z) without much difficulty. In fact, it turned out that the domi-
nant singularities of U(z, 0) and U(0, z) coincide with the dominant singularities
of U1(z) and U2(z), respectively. Therefore, we first investigate the dominant
singularities of U1(z) and U2(z).

3.1.2 Asymptotic analysis of U1(z) and U2(z)

A typical feature of the queueing model as described in Section 1.4 is the fact
that the expression for the marginal PGFs of the number of type-1 and type-2
customers in the system is known, see also Section 1.5. This information can
be used to obtain a lower bound for the radius of convergence of U(z1, 0) and
U(0, z2), as we did in Section 2.3.2 for a specific arrival process. For the sake
of completeness and since this is an essential element of this chapter, we repeat
the argument of Section 1.5. The reasoning is as follows. We investigate for
which values of z the infinite series

U(z, 0) =

∞
∑

i=0

p(i, 0)zi

converges. We observe that for every i ∈ N

p(i, 0) ≤ p(i, 0) + p(i, 1) + p(i, 2) + . . .

=
∞
∑

j=0

p(i, j)

= p1(i) .

Hence, the radius of convergence of U1(z) is a lower bound for the radius of
convergence of U(z, 0). Analogously, the radius of convergence of U2(z) is a
lower bound for the radius of convergence of U(0, z). For this reason, we feel
it is useful to first determine the radius of convergence of the marginal PGFs
U1(z1) and U2(z2).

The formulas for U1(z1) and U2(z2) are given by

U1(z1) = U(z1, 1) =
(z1 − 1)A1(z1)(α− λ1)

K(z1, 1)
, (3.22)

U2(z2) = U(1, z2) =
(z2 − 1)A2(z2)(1− α− λ2)

K(1, z2)
. (3.23)

Under Assumption 3.1, we have the following well-known result [40].

Lemma 3.1.

1. Equation K(z1, 1) = 0 has exactly two real positive roots inside the inter-
val [0,R1[, 1 and say τ1, such that 1 < τ1 < R1.



74 Asymptotic analysis: tail asymptotics

2. K(1)(τ1, 1) < 0.

3. K(z1, 1) has no other zeros with the same absolute value as τ1.

Although this lemma is well-known (and thus not new), we will give a proof
because we will use the same methodology again in Section 3.5.1.

Proof of Lemma 3.1. (1) and (2): Recall that A1(z1) is a PGF. Consequently,
for z1 ∈ [0,R1[, A1(z1) is a power series with non-negative coefficients. Hence,

K(11)(z1, 1) = −2(1− α)A′
1(z1)− ((1− α)z1 + α)A′′

1(z1)

< 0 ,

for z1 ∈ [0,R1[. Furthermore, it is easy to see that K(1, 1) = 0 and that

K(1)(1, 1) = α− λ1 > 0 .

The latter follows from the stability condition. Furthermore, by Assumption
3.1, we have that

K(z1, 1) → −∞ as z1 → R1 .

We can conclude that K(z1, 1) has a unique zero in ]1,R1[. This proves part 1
and 2 of the lemma.

(3): Consider z1 for which |z1| = τ1, z1 6= τ1. For these values of z1 we have
that

|(1− α)z1 + α| < (1− α)τ1 + α, ,

it follows that for |z1| = τ1, z1 6= τ1,

|(1− α)z1 + α)A1(z1)| < ((1− α)|z1|+ α)A1(|z1|)
= ((1− α)τ1 + α)A1(τ1)

= τ1

= |z1| .

Hence 3 is proven.

In other words, the graph of the function K(x, 1) resembles that of a parabola
that opens downward and which intersects the x axis at x = 1 and x = τ1 (with
τ1 > 1), see Figure 3.1.

Note that the value τ1 is thus the unique zero of K(z, 1) in ]1,R1[, i.e.

τ1 = ((1− α)τ1 + α)A1(τ1), 1 < τ1 < R1 . (3.24)

We now have the following theorem.
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1 τ1

0

Figure 3.1: Illustration of the function K(x, 1) for positive real x.

Theorem 3.2. The asymptotics of the distribution of the number of type-1
customers in the system are given by

p1(n) ∼ C1τ
−(n+1)
1 , (3.25)

with

C1 =
(τ1 − 1)A1(τ1)(α− λ1)

(1− α)A1(τ1) + [(1− α)τ1 + α]A′
1(τ1)− 1

. (3.26)

Proof. From Lemma 3.1, we know that τ1 is the unique dominant singularity
of U1(z) and that this is necessarily a simple pole. Furthermore, we have that

lim
z→τ1

(z − τ1)U1(z) = lim
z→τ1

(z − τ1)(z1 − 1)A1(z1)(α− λ1)

K(z1, 1)

=
(τ1 − 1)A1(τ1)(α− λ1)

K(1)(τ1, 1)

= − (τ1 − 1)A1(τ1)(α− λ1)

(1− α)A1(τ1) + [(1− α)τ1 + α]A′
1(τ1)− 1

.

By virtue of Theorem 3.1, the theorem is now proven.

We now turn our attention to the type-2 customers. We have the following
symmetrical result, compared to Lemma 3.1.

Lemma 3.2.

1. Equation K(1, z2) = 0 has exactly two real positive roots, 1 and say τ2,
such that 1 < τ2 < R2.
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2. K(2)(1, τ2) < 0.

3. K(1, z2) has no other zeros with the same absolute value as τ2.

Proof. Analogously as in the proof of Lemma 3.1.

The value τ2 is thus the unique zero of K(1, z) in ]1,R2[, i.e.

τ2 = (1− α+ ατ2)A2(τ2), 1 < τ2 < R1 . (3.27)

Finally, we also have the following theorem.

Theorem 3.3. The asymptotics of the distribution of the number of type-2
customers in the system are given by

p2(n) ∼ C2τ
−(n+1)
2 , (3.28)

with

C2 =
(τ2 − 1)A2(τ2)(1− α− λ2)

αA2(τ2) + [1− α+ ατ2]A′
2(τ2)− 1

. (3.29)

3.1.3 Areas of convergence

Using the results of U1(z1) and U2(z2), we can give trivial but nevertheless
useful results for the regions of convergence of U(z1, 0), U(0, z2) and U(z1, z2).
It holds that

U(z1, 0) is analytic for all complex z1 with |z1| < τ1 , (3.30)

and
U(0, z2) is analytic for all complex z2 with |z2| < τ2 . (3.31)

Furthermore, the region of convergence of the joint PGF U(z1, z2) contains at
least the region

{(z1, z2) : |z1| < τ1, |z2| ≤ 1} ∪ {(z1, z2) : |z1| ≤ 1, |z2| < τ2} . (3.32)

The proofs of these three statements are omitted, since they are exactly the
same as those of Section 2.3.2.

3.2 Sufficient conditions for a geometric tail be-

havior

In the introduction of this chapter, we already imposed an assumption on the
marginal arrival PGFs A1(z) and A2(z), namely Assumption 3.1. The following
two conditions are obtained in this chapter, such that the joint pmf p(i, j) has
a geometric tail behavior:
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Condition 3.1. Let τ1 and τ2 be the unique real positive zeros, greater than
one, of K(z, 1) and K(1, z), respectively. Then,

(a) K(1)(1, τ2) > 0,

(b) K(2)(τ1, 1) > 0.

In terms of A(z1, z2) these two conditions are written as

(a) τ2 − (1− α)A2(τ2)− (1− α+ ατ2)A
(1)(1, τ2) > 0 , (3.33)

(b) τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1) > 0 . (3.34)

We first discuss some examples of arrival processes where these conditions are
(not) fulfilled.

Condition 3.1 is always fulfilled when the type-1 and type-2 arrivals are uncor-
related, i.e. A(z1, z2) = A1(z1)A2(z2). Indeed, in this case we have that

K(1)(1, τ2) = τ2 − (1− α)A2(τ2)− (1− α+ ατ2)λ1A2(τ2)

= τ2(1− λ1)− (1− α)A2(τ2)

> τ2(α− λ1)

> 0 . (3.35)

Here we used (3.27) in the second step, the fact that A2(τ2) < τ2 (which follows
from (3.27)) in the third step and part of the stability condition in the last step.
Likewise, we have that

K(2)(τ1, 1) = τ1 − αA1(τ1)− ((1− α)τ1 + α)A1(τ1)λ2

= τ1(1− λ2)− αA1(τ1)

> τ1(1− α− λ2)

> 0 , (3.36)

in which we used (3.24) in the second step, the fact that A1(τ1) < τ1 (which
follows from (3.24)) in the third step and part of the stability condition in the
last step.

Next, we emphasize that Condition 3.1 can be true for dependent arrivals as
well. For example, Condition 3.1 is fulfilled when the arrivals come from an
output of an N × N queueing switch [17], i.e. the joint PGF of the arrivals
within a time slot is given by

A(z1, z2) =

(

1− λ1

N
(1− z1)−

λ2

N
(1− z2)

)N

, N ∈ N .

Indeed, since for this joint PGF

A(2)(τ1, 1) =
λ2A(τ1, 1)

1− λ1/N + (λ1/N)τ1
< λ2A(τ1, 1) = A1(τ1)λ2,



78 Asymptotic analysis: tail asymptotics

we can use the same inequalities that we used to prove (3.35).

However, it is possible to construct PGFs A(z1, z2) such that Condition 3.1
does not hold. To demonstrate this, let us consider arrivals a1, a2, whose joint
PGF is given by

A(z1, z2) = 1− 0.25

5
+

0.25

5
z51z

5
2 . (3.37)

It can be verified that

λ1 = 0.25,

λ2 = 0.25,

cov[a1, a2] = 1.1876.

If we choose α = 0.5, we have that τ1 = τ2 = 1.283 and

K(2)(τ1, 1) = K(1)(1, τ2) = −0.272 .

For the example above, it holds that cov[a1, a2] > 0. Initially, our conjecture
was that arrivals with negative covariance satisfy Condition 3.1 and arrivals
with positive covariance do not satisfy Condition 3.1. However, these two
conjectures turned out to be false. We now show counter-examples for both
conjectures.

First, consider arrivals a1, a2 whose joint PGF is given by

A(z1, z2) = 0.65 + 0.05z2 + 0.3z1z2 . (3.38)

It can be verified that

λ1 = 0.3,

λ2 = 0.35,

cov[a1, a2] = 0.195.

If we choose α = 0.4, we have that τ1 = 1.555, τ2 = 2.785 and

K(2)(τ1, 1) = 0.4, K(1)(1, τ2) = 0.38 .

In our second counter-example, we show that there exist arrival processes with
negative covariance such that Condition 3.1 is violated. Consider arrivals a1,
a2 whose joint PGF is given by

A(z1, z2) = 0.655 + 0.1635z1 + 0.125z2 + 0.055z22 + 0.0015z51z
5
2 . (3.39)

It can be verified that the mean arrival rates are

λ1 = 0.1710,

λ2 = 0.2425,
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cov[a1, a2] = −0.0039.

Let α = 0.5, then it follows that τ1 = 2.617, τ2 = 1.987 and

K(2)(τ1, 1) = −0.197.

The idea in the construction of this counterexample was to include a small
probability that there can occur a large number of arrivals in both queues, but
that the covariance is still negative.

Our initial conjecture turned out to be incorrect. We thus cannot make a
precise statement in case of correlated arrivals. In the following sections, we
will show that Condition 3.1 is sufficient for the (partial) generating functions
P1,n(z) and P2,n(z) to have a simple pole at τ1 and τ2, respectively. Using
Theorem 3.1, this will give rise to a geometric tail behavior of p(i, j).

3.3 Asymptotic analysis of U(z, 0) and U(0, z)

In this section we show that the dominant singularity of U(z, 0) is τ1 and that
it is also a simple pole. Likewise, we show that the dominant singularity of
U(0, z) is τ2 and that it is a simple pole as well. We start this section with the
dominant singularity of U(z, 0).

Theorem 3.4. Under Condition 3.1 (b), the function U(z, 0) has a simple pole
at z = τ1. Moreover, the residue at z = τ1 of U(z, 0) equals

res
z=τ1

U(z, 0)

=
(τ1 − 1)(α− λ1)(τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1))

(1− α)τ1(1− (1− α)A1(τ1)− ((1− α)τ1 + α)A′
1(τ1))

. (3.40)

Proof. We have that K(z1, z2), as defined in (3.11), is bivariate analytic near
z1 = τ1, z2 = 1. By the definition of τ1, we have that K(τ1, 1) = 0. Moreover,
we have that K(2)(τ1, 1) > 0 because of Condition 3.1. By the implicit function
theorem for analytic functions [11, Theorem B.4], a unique function Y (z) and
a radius r > 0 exist such that

1. Y (z) is analytic in a neighbourhood {z ∈ C : |z − τ1| < r} of τ1,

2. Y (τ1) = 1,

3. K(z, Y (z)) = 0 for z ∈ {z ∈ C : |z − τ1| < r}.

Furthermore, we have that

Y ′(τ1) = −K(1)(τ1, 1)

K(2)(τ1, 1)
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= −1− (1− α)A1(τ1)− ((1− α)τ1 + α)A′
1(τ1)

τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1)
. (3.41)

Moreover, since K(1)(τ1, 1) < 0 (see Lemma 3.1 on page 73) and K(2)(τ1, 1) > 0
(see Condition 3.1), we have that Y ′(τ1) > 0. Consequently, we have that

Y (z) < 1, if z ∈]τ1 − δ, τ1[ ,

for sufficiently small δ > 0. From the discussions of Section 3.1.3, we know
that U(z1, z2) is bounded if |z1| < τ1, |z2| ≤ 1. In particular, we have that
U(z, Y (z)) is bounded for z ∈ ]τ1 − δ, τ1[. Hence, the right-hand side of the
functional equation (3.10) vanishes for {z1 = z, z2 = Y (z)}, if z ∈ ]τ1 − δ, τ1[.
We thus obtain that

(1− α)z(Y (z)− 1)U(z, 0) + α(z − 1)Y (z)U(0, Y (z)) = 0, z ∈ ]τ1 − δ, τ1[ ,

or

(1−α)z(Y (z)−1)U(z, 0) = −α(z−1)Y (z)U(0, Y (z)), z ∈ ]τ1−δ, τ1[ . (3.42)

Both sides of this equation are analytic functions for z ∈ ]τ1 − δ, τ1[, because
U(z, 0), Y (z) and U(0, Y (z)) are analytic in this interval. However, we can take
any sufficiently small R > 0, such that |Y (z)| < τ2 in {z ∈ C : |z − τ1| < R}.
Consequently, the RHS in (3.42) is an analytic function for |z − τ1| < R.
Hence, we can analytically continue (1 − α)z(Y (z) − 1)U(z, 0) into the region
|z − τ1| < R via (3.42). Since Y (z) is analytic in this region, it follows that
U(z, 0) is meromorphic in |z − τ1| < R. The poles of U(z, 0) in |z − τ1| < R
are the zeros of Y (z)− 1 (if any).

Because Y is analytic in τ1 and Y ′(τ1) 6= 0, it follows that Y is an injective
function in a neighborhood of τ1. Hence, we take any R′ ≤ R such that Y is
injective in |z − τ1| < R′. The only zero of Y (z)− 1 in this latter region is the
point z = τ1. We conclude that τ1 is a pole of U(z, 0).

We now prove that τ1 is a simple pole of U(z, 0). Let us rewrite (3.42) as

U(z, 0) = −α(z − 1)Y (z)U(0, Y (z))

(1− α)(Y (z)− 1)z
.

Multiplying the equation above by (z − τ1) and taking the limit to τ1 yields

lim
z→τ1

(z − τ1)U(z, 0)

= lim
z→τ1

− (z − τ1)α(z − 1)Y (z)U(0, Y (z))

(1− α)(Y (z)− 1)z

= − (τ1 − 1)(α− λ1)

(1− α)τ1Y ′(τ1)
(3.43)

=
(τ1 − 1)(α− λ1)(τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1))

(1− α)τ1(1− (1− α)A1(τ1)− ((1− α)τ1 + α)A′
1(τ1))

(3.44)
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Since Y ′(τ1) > 0, τ1 > 1 and λ1 < α (because of the stability condition),
expression (3.43) is strictly negative. We can thus conclude that τ1 is a simple
pole of U(z, 0).

We have proven that τ1 is a simple pole of U(z, 0). From Subsection 3.1.3,
we know that U(z, 0) is analytic for all complex z with |z| < τ1. Combining
these two properties imply that τ1 is a dominant singularity of U(z, 0). At this
point we have not proven that there are no other singularities of U(z, 0) for
|z| = τ1. Notice that there are no other zeros of the kernel K(z, 1) for |z| = τ1,
see Lemma 3.1 on page 73. Relying on the implicit function theorem yet again,
it can be proven that U(z, 0) is analytic in |z| = τ1, z 6= τ1. Intuitively, one also
does not expect to find multiple singularities. If U(z, 0) would possess multiple
singularities on the circle with radius τ1, this would lead to periodicity of the
coefficients p(n, 0) [11, IV. 6.1], which is very unlikely for the queueing model
under consideration.

In a similar way as Theorem 3.4, we can prove the following theorem.

Theorem 3.5. Under Condition 3.1 (a), the function U(0, z) has a simple
pole at z = τ2. Moreover, the residue at z = τ2 of U(0, z) equals

res
z=τ2

U(0, z)

=
(τ2 − 1)(1− α− λ2)(τ2 − (1− α)A2(τ2)− (1− α+ ατ2)A

(1)(1, τ2))

ατ2(1− αA2(τ2)− (1− α+ ατ2)A′
2(τ2))

.

(3.45)

Finally, it can be proven that τ2 is the dominant singularity of U(0, z).

We conclude this section with an important remark with respect to Condi-
tion 3.1. In view of Theorem 3.4, one might wonder if it is not sufficient to
assume that K(2)(τ1, 1) 6= 0 instead of assuming that K(2)(τ1, 1) > 0. Sim-
ilarly, is it not sufficient to assume that K(1)(1, τ2) 6= 0 instead of assuming
that K(1)(1, τ2) > 0? Although we explicitly needed Conditions 3.1 (a) and
(b) in order to analytically continue the functions U(z, 0) and U(0, z), suppose
a contrario that K(2)(τ1, 1) < 0 and K(1)(1, τ2) < 0. By taking the limits
limz→τ1(z − τ1)U(z, 0) and limz→τ2(z − τ2)U(0, z) it is seen that both limits
are strictly positive. By virtue of Theorem 3.1, this yields that the coefficients
of U(z, 0) and U(0, z) are negative, a contradiction. Hence, τ1 cannot be a
singularity of U(z1, 0) if K(2)(τ1, 1) < 0.

3.4 Asymptotic analysis of P1,n(z) and P2,n(z)

In this section we obtain asymptotics for p(i, j) for either i or j fixed. Our ap-
proach is that of determining the dominant singularity of the generating func-
tions of p(i, j), for fixed i or j. These generating functions are defined by P1,n(z)
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and P2,n(z), see (3.12) and (3.13). Recall once again that P1,0(z) = U(z, 0)
and that P2,0(z) = U(0, z). We thus already have obtained the dominant sin-
gularity of P1,0(z) and P2,0(z) in the previous section. Using the recurrence
relations (3.19) and (3.20), we first show that τ1 and τ2 are isolated singulari-
ties of all P1,n(z) and P2,n(z), respectively, for n = 1, 2, . . .. A point ẑ is said
to be an isolated singularity of a complex-valued function f if f is singular at
ẑ yet analytic in some deleted neighborhood of ẑ [96, Definition 9.6].

Lemma 3.3. τ1 is an isolated singularity of P1,n(z), n = 0, 1, 2, . . .

Proof. Notice that

p(i, n) ≤
∞
∑

j=0

p(i, j)

= p1(i) .

It easily follows that the radius of convergence of U1(z) is a lower bound for the
radius of convergence of P1,n(z). Consequently, the radius of convergence, and
thus also the dominant singularity, of P1,n(z) is at least τ1. Following a similar
reasoning, it can be proven that the radius of convergence of A1(z) is a lower
bound for the radius of convergence of A1,n(z). Hence, A1,n(z) is analytic for
|z| < R1.

We have shown in Theorem 3.4 that τ1 is a simple pole of P1,0(z). We prove
by induction that τ1 is an isolated singularity of P1,n(z), ∀n ∈ N. Suppose
that this is true for n = 0, . . . ,m. Then, by considering the Equation (3.19)
for n = m and solving for P1,m+1(z) it follows that

P1,m+1(z) =



zP1,m(z)− α

m
∑

j=0

A1,m−j(z)[P1,j(z) + (z − 1)P1,j(0)]

−(1− α)zA1,m(z)P1,0(z)− (1− α)z

m−1
∑

j=0

A1,m−j(z)P1,j+1(z)



 .

× 1

(1− α)zA1,0(z)
.

(3.46)

From the expression above, we conclude that the possible singularities for
P1,m+1(z) are the zeros of (1 − α)zA1,0(z), the singularities of A1,m−j(z) and
the singularities of P1,j(z), j = 0, . . . ,m. Notice that the numerator of the
above equation vanishes for z = 0. Furthermore, A1,0(z) has no positive real
zeros in [0,R1[, since it is a partial PGF. Because of the induction hypothesis,
τ1 is an isolated singularity of the functions P1,j(z), j = 0, . . . ,m. Hence, in
view of Equation (3.46), τ1 is an isolated singularity of P1,m+1(z).
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Remark that according to Lemma 3.3, it is still possible that τ1 is a removable
singularity of P1,n(z). From equation (3.19) with n = 0, it is however easy to
prove that τ1 is a simple pole of P1,1(z). However, this is not easy to prove for
general n. For example, let us assume that τ1 is a simple pole of P1,n(z) for n =
0, . . . ,m. In view of equation (3.46), we see that the limz→τ1(z− τ1)P1,m+1(z)
is a linear combination of the residues of P1,j(z) at τ1. Hence, we do a priori
not know that

lim
z→τ1

(z − τ1)P1,m+1

?

6= 0 .

Via a somewhat different reasoning, we will now show that the inequality above
is indeed true.

Let us define the following sequence

Bn , lim
z→τ1

(τ1 − z)P1,n(z) . (3.47)

Note that from (3.40),

B0 = − (τ1 − 1)(α− λ1)(τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1))

(1− α)τ1(1− (1− α)A1(τ1)− ((1− α)τ1 + α)A′
1(τ1))

, (3.48)

and that B0 > 0, cf. (3.43).

Multiplying Equation (3.19) by (τ1− z) and taking the limit z → τ1, we obtain
that

τ1Bn = α

n
∑

j=0

A1,n−j(τ1)Bj + (1− α)τ1A1,n(τ1)B0

+ (1− α)τ1

n
∑

j=0

A1,n−j(τ1)Bj+1, n = 0, 1, 2, . . .

(3.49)

Hence, we can recursively compute Bn+1 in terms of B0, B1, . . . , Bn by the
above equation, with B0 given by (3.48). In Theorem 3.4, we have proven that
U(z, 0) has a simple pole at z = τ1. Substituting n = 0 into (3.49) and solving
for B1 yields

B1 =
(τ1 − (α+ (1− α)τ1)A1,0(τ1))B0

(1− α)τ1A1,0(τ1)
.

Because

(α+ (1− α)τ1)A1,0(τ1) < (α+ (1− α)τ1)A1(τ1) = τ1 ,

it follows that B1 > 0. To prove that Bn > 0 for every n, we introduce the
generating function of the sequence {Bn}∞n=0. Let us denote this generating
function by B(z), i.e.

B(z) ,

∞
∑

n=0

Bnz
n .
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Multiplying all terms in (3.49) by zn and summing over all valid n leads to the
following expression for B(z):

B(z) =
(1− α)τ1A(τ1, z)(z − 1)B0

τ1z − ((1− α)τ1 + αz)A(τ1, z)
. (3.50)

Using l‘Hôpital‘s rule and Equation (3.48), it follows that B(1) = C1, where
C1 was defined in (3.26). This result is not surprising since

C1 = lim
z→τ1

(τ1 − z)U1(z)

= lim
z→τ1

(τ1 − z)

∞
∑

n=0

P1,n(z)

=

∞
∑

n=0

lim
z→τ1

(τ1 − z)P1,n(z)

=

∞
∑

n=0

Bn

= B(1) ,

where we could switch limit and summation because the series converges uni-
formly for |z| < τ1.

Consider now the normalized function B(z)
C1

. We rewrite this function as follows

B(z)

C1
=

(1− α)τ1B0

C1

A(τ1, z)(z − 1)

τ1z − ((1− α)τ1 + αz)A(τ1, z)

=
(1− α)B0

C1

A(τ1, z)(z − 1)

z − (1− α+ α
τ1
z)A(τ1, z)

=
(1− α)A1(τ1)B0

C1

A(τ1,z)
A1(τ1)

(z − 1)

z − ((1− α)A1(τ1) +
αA1(τ1)

τ1
z)A(τ1,z)

A1(τ1)

. (3.51)

For ease of notation, let us define

σ , (1− α)A1(τ1) , (3.52)

and

E(z) ,
A(τ1, z)

A1(τ1)
. (3.53)

Since,
τ1 = ((1− α)τ1 + α)A1(τ1) ,

see (3.24), we have that

1 = (1− α)A1(τ1) +
αA1(τ1)

τ1
. (3.54)
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Consequently,
σ < 1 (3.55)

and
αA1(τ1)

τ1
= 1− σ . (3.56)

Remark that E(z) is a PGF. Indeed, using the definition of A(z1, z2) we obtain
that

E(z) =

∞
∑

j=0

(∑∞
i=0 a(i, j)τ

i
1

A1(τ1)

)

zj .

From this expression, it is seen that the power series coefficients are positive.
Since these coefficients sum up to one, E(z) is a proper PGF.

Furthermore, from the expressions (3.48) and (3.26) we obtain that

B0

C1
=

τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1)

(1− α)τ1A1(τ1)

=
1− (1− σ)− (1− α+ α

τ1
)A(2)(τ1, 1)

σ

=
σ − A(2)(τ1,1)

A1(τ1)

σ

=
σ − E′(1)

σ
, (3.57)

where in the third equality we used (3.54). Using (3.57), we can rewrite (3.51)
as

B(z)

C1
=

(σ − E′(1))(z − 1)E(z)

z − E(z)(σ + (1− σ)z)
. (3.58)

Expression (3.58) is the PGF of the number of customers in a discrete-time
Bernoulli model, cf. Section 1.5, with the probability σ that the server is avail-
able during a slot and with arrival PGF E(z).

The stability condition of this queueing model is

E′(1) < σ ,

or
A(2)(τ1, 1)

A1(τ1)
< (1− α)A1(τ1) .

This condition is equivalent to Condition 3.1 (b) on page 77. Indeed, the latter
condition yields, cf. (3.34)

A(2)(τ1, 1)((1− α)τ1 + α) < τ1 − αA1(τ1) .
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The LHS and the RHS of the inequality above are equal to, cf. (3.24)

A(2)(τ1, 1)((1− α)τ1 + α) = A(2)(τ1, 1)
τ1

A1(τ1)

= E′(1)τ1

and

τ1 − αA1(τ1) = (1− α)A1(τ1)τ1

= στ1 ,

respectively. Hence, the stability condition of the Bernoulli model with the
probability σ that the server is available during a slot and with arrival PGF
E(z) is equivalent with Condition 3.1 (b).

Since B(z)
C1

can be defined as the PGF of the number of customers in a Bernoulli
model, the coefficients Bn of B(z) satisfy

Bn > 0, for every n . (3.59)

As a consequence, τ1 is a simple pole of P1,n(z) for every n and it is the unique
dominant singularity. To conclude, we obtain the following theorem.

Theorem 3.6. The asymptotics for the joint probabilities p(i, j) for large i are
given by

p(i, j) ∼ Bjτ
−(i+1)
1 , j = 0, 1, . . . (3.60)

The coefficients Bj are recursively defined by (3.49) with initial condition
(3.48).

In the first part of this section, we have focused on the partial PGFs P1,n(z).
With a very similar analysis, we can obtain results for the partial PGFs P2,n(z).
Define

Dn , lim
z→τ2

(τ2 − z)P2,n(z) . (3.61)

It can be shown that

D0 = − (τ2 − 1)(1− α− λ2)(τ2 − (1− α)A2(τ2)− (1− α+ ατ2)A
(1)(1, τ2))

ατ2(1− αA2(τ2)− (1− α+ (1− α)τ2)A′
2(τ2))

,

(3.62)
and

τ2Dn = (1− α)

n
∑

j=0

A2,n−j(τ2)Dj + ατ2A2,n(τ2)D0

+ ατ2

n
∑

j=0

A2,n−j(τ2)Dj+1, n = 0, 1, 2, . . . (3.63)
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The generating function of the sequence {Dn}∞n is obtained as

D(z) ,

∞
∑

n=0

Dnz
n

=
ατ2A(z, τ2)(z − 1)D0

τ2z − (1− α+ ατ2)A(z, τ2)
. (3.64)

It can be shown that D(z)
C2

is the PGF of the number of customers of a discrete-
time Bernoulli model, in steady-state. The stability condition of this model is
equivalent to Condition 3.1 (a). The theorem analogous to Theorem 3.6 is then
given by

Theorem 3.7. The asymptotics for the joint probabilities p(i, j) for large j
are given by

p(i, j) ∼ Diτ
−(j+1)
2 , i = 0, 1, . . . (3.65)

The coefficients Dj are recursively defined by (3.63) with initial condition
(3.62).

3.5 A more detailed analysis: independent ar-

rivals in the two queues

In Section 3.2, we showed that Condition 3.1 is naturally fulfilled in case of
independent arrivals. In this section, we will show that much more details
about the regions of convergence of U(z,0) and U(0, z) can be uncovered in
this particular case. We commence this section with a more detailed analysis
of the kernel K.

3.5.1 Analysis of the kernel K

In this subsection, we will examine some key properties of K(z1, z2) with respect
to the values τ1 and τ2 in the case that A(z1, z2) = A1(z1)A2(z2). The results
obtained in this subsection can be seen as generalizations of Lemma 2.2 on
page 32 and Lemma 2.4 on page 34.

We first investigate the function z1 7→ K(z1, τ2) for real values of z1. As a
reminder:

K(z, τ2) = zτ2 − ((1− α)z + ατ2)A1(z)A2(τ2) ,

where τ2 is defined in Lemma 3.2 on page 75. We have the following lemma.

Lemma 3.4.

1. Equation K(z1, τ2) = 0 has exactly two real positive roots inside the in-
terval [0,R1[, 1 and say ω1, such that 1 < ω1 < R1.
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2. K(1)(ω1, τ2) < 0.

3. K(z1, τ2) = 0 has no other roots with the same absolute value as ω1.

Proof. (1) and (2): We have that

K(11)(z1, τ2) = −2(1− α)A′
1(z1)A2(τ2)− ((1− α)z1 + ατ2)A

′′
1(z1)A2(τ2) .

Because A1(z) is a PGF, it follows that A1(z) > 0, A′
1(z) > 0 and A′′

1(z) > 0
for z ∈ [0,R1[. For the same reason, we have that A2(τ2) > 0. We can conclude
that

K(11)(z1, τ2) < 0 for z1 ∈ [0,R1[ .

By the definition of τ2, we have that z1 = 1 is a root of K(z1, τ2) = 0 .
Moreover, K(1)(1, τ2) > 0 (see (3.35)). Finally, K(z1, τ2) → −∞ as z1 → R1

because of Assumption 3.1. Combining these observations yields the result.

(3): Consider z1 such that |z1| = ω1, z1 6= ω1. Since

|(1− α)z1 + ατ2| < (1− α)ω1 + ατ2 ,

we have that

|((1− α)z1 + ατ2)A1(z1)A2(τ2)| < ((1− α)|z1|+ ατ2)A1(|z1|)A2(τ2)

= ((1− α)ω1 + ατ2)A1(ω1)A2(τ2)

= ω1

= |z1| .

Hence, (3) is proven.

In other words, the graph of the function K(x, τ2) resembles that of a parabola
that opens downward and which intersects the x axis at x = 1 and x = ω1

(with ω1 > 1), see Figure 3.2.

Let us now consider the function K(τ1, z2) for real values of z2. Note that

K(τ1, z) = τ1z − ((1− α)τ1 + αz)A(τ1, z) .

We mention the following equivalent of Lemma 3.4.

Lemma 3.5.

1. Equation K(τ1, z2) = 0 has exactly two real positive roots inside the in-
terval ∈ [0,R2[, 1 and say ω2, such that 1 < ω2 < R2.

2. K(2)(τ1, ω2) < 0.

3. K(τ1, z2) = 0 has no other roots with the same absolute value as ω2.
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1 ω1

0

Figure 3.2: Illustration of the function K(x, τ2) for positive real x.

We can specify the location of τ1 and τ2 relative to ω1 and ω2, respectively. We
have the following result.

Lemma 3.6. The following inequalities are valid

1 < τ1 < ω1 < R1 (3.66)

and
1 < τ2 < ω2 < R2 . (3.67)

Proof. We only have to prove that τ1 < ω1 and τ2 < ω2. From Lemma 3.4 and
Lemma 3.5 it follows that the functions z2 7→ K(τ1, z2) and z1 7→ K(z1, τ2) are
strictly positive when z2 ∈]1, ω2[ and z1 ∈]1, ω1[, respectively. Furthermore, it
also follows that the functions z2 7→ K(τ1, z2) and z1 7→ K(z1, τ2) are strictly
negative when z2 ∈]ω2,R2[ and z1 ∈]ω1,R1[, respectively. Hence, it is sufficient
to show that K(τ1, τ2) > 0.

Using (3.24) and (3.27), we can write

τ1τ2 = ((1− α)τ1 + α)A1(τ1)(1− α+ ατ2)A2(τ2) .

If we substitute the expression above into the expression of K(τ1, τ2), we obtain
that

K(τ1, τ2) = τ1τ2 − ((1− α)τ1 + ατ2)A1(τ1)A2(τ2)

= ((1− α)τ1 + α)A1(τ1)(1− α+ ατ2)A2(τ2)

− ((1− α)τ1 + ατ2)A1(τ1)A2(τ2)

= [(1− α)τ1 + α)(1− α+ ατ2)− (1− α)τ1 − α]A1(τ1)A2(τ2)
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= α(1− α)(τ1 − 1)(τ2 − 1)A1(τ1)A2(τ2)

> 0 .

We will now couple the values z1 and z2 such that K(z1, z2) = 0. The following
three technical lemmas will be used often in the next subsections.

Lemma 3.7. For every z2 for which 1 < |z2| < ω2, there exists a unique
zero, say X(z2), such that K(X(z2), z2) = 0 and |X(z2)| < τ1. Additionally, if
1 < |z2| < τ2, it holds that |X(z2)| < 1.

Proof. First, by virtue of Lemma 3.5, we have that

τ1x− ((1− α)τ1 + αx)A1(τ1)A2(x) = K(τ1, x) > 0, x ∈ ]1, ω2[ . (3.68)

Secondly, let the complex value z2 be fixed, 1 < |z2| < ω2. On |z1| = τ1, we
have

|((1− α)z1 + αz2)A1(z1)A2(z2)| ≤ ((1− α)|z1|+ α|z2|)A1(|z1|)A2(|z2|)
= ((1− α)τ1 + α|z2|)A(τ1)A2(|z2|) .

On the other hand, we have that |z1z2| = τ1|z2|. Because of (3.68), we have
the inequality

|((1− α)z1 + αz2)A1(z1)A2(z2)| < τ1|z2| .

By virtue of Rouché’s theorem, the number of zeros of z1 7→ z1z2 inside |z1| < τ1
is then the same as the number of zeros of z1 7→ K(z1, z2). The former number
is 1 (due to the trivial zero z1 = 0). Hence, we have found that for fixed z2,
1 < |z2| < ω2, the function z1 7→ K(z1, z2) has exactly one zero inside the disk
|z1| = τ1, say X(z2).

Notice now that, by virtue of Lemma 3.2 (on page 75),

x− (1− α+ αx)A2(x) = K(1, x) > 0, x ∈]1, τ2[ . (3.69)

Let the complex value z2 be fixed, 1 < |z2| < τ2. On |z1| = 1, we have

|((1− α)z1 + αz2)A1(z1)A2(z2)| ≤ ((1− α)|z1|+ α|z2|)A1(|z1|)A2(|z2|)
= (1− α+ α|z2|)A2(|z2|) .

On the other hand, we have that |z1z2| = |z2|. Because of (3.69), we have the
inequality

|((1− α)z1 + αz2)A1(z1)A2(z2)| < |z2| .
Application of Rouché’s theorem yields that for fixed z2, 1 < |z2| < τ2, the
function z1 7→ K(z1, z2) has exactly one zero inside the disk |z1| = 1. Because
of uniqueness, it necessarily follows that this zero is X(z2).
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Lemma 3.8. For every z1 for which 1 < |z1| < ω1, there exists a unique
zero, say Y (z1), such that K(z1, Y (z1)) = 0 and |Y (z1)| < τ2. Additionally, if
1 < |z1| < τ1, it holds that |Y (z1)| < 1.

Proof. The proof is similar to that of Lemma 3.7 and is therefore omitted.

Lemma 3.9. X(z) and Y (z) are analytic functions for z ∈ {z ∈ C : 1 <
|z| < ω2} and z ∈ {z ∈ C : 1 < |z| < ω1}, respectively.

Proof. The function K(z1, z2) is bivariate analytic at tuples (z1, z2) such that
|z1| < R1 and |z2| < R2. In particular, K(z1, z2) is bivariate analytic at tuples
(z1, z2) such that |z1| < τ1 and 1 < |z2| < ω2. Consider a complex value ẑ2
such that 1 < |ẑ2| < ω2. Since X(ẑ2) is the unique zero of z1 7→ K(z1, ẑ2)
we have that K(X(ẑ2), ẑ2) = 0 and K(1)(X(ẑ2), ẑ2) 6= 0. Consequently, the
implicit function theorem for analytic functions implies that X(z2) is analytic
at ẑ2.

The proof for Y (z) is analogous and is therefore omitted.

Finally, we present two more technical lemmas that will be used at the very
end of this chapter.

Lemma 3.10. If K(2)(ω1, τ2) > 0, then the function Y (z) can be analytically
continued in a neighborhood of ω1, such that Y (ω1) = τ2 and Y ′(ω1) > 0.

Proof. We have that K(z1, z2), as defined in (3.11), is jointly analytic near
z1 = ω1, z2 = τ2. By the definition of ω1, we further have that K(ω1, τ2) = 0.

By the implicit function theorem for analytic functions, a unique function Y̌ (z)
and a radius r > 0 exist such that

1. Y̌ (z) is analytic in a neighbourhood Vω1 of ω1,

2. Y̌ (ω1) = τ2,

3. K(z, Y̌ (z)) = 0 for z ∈ Vω1
.

Further, we have that

Y̌ ′(ω1) = −K(1)(ω1, τ2)

K(2)(ω1, τ2)
. (3.70)

We know from Lemma 3.4 on page 87 that K(1)(ω1, τ2) < 0. Because we
assume that K(2)(ω1, τ2) > 0, we obviously have that Y̌ ′(ω1) > 0.

Because Y̌ ′(ω1) > 0, we have that Y̌ (z) < τ2, z ∈]ω1 − δ, ω1[, for sufficiently
small δ > 0. In view of Lemma 3.8, Y (z) is defined as the unique function such
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that K(z, Y (z)) = 0, |Y (z)| < τ2 for z, 1 < |z| < ω1. But we also have that
K(z, Y̌ (z)) = 0, Y̌ (z) < τ2 for z ∈]ω1 − δ, ω1[. Hence, it must be that

Y (z) = Y̌ (z), z ∈]ω1 − δ, ω1[ . (3.71)

It follows that Y̌ (z) is the unique analytic continuation of Y (z) in Vω1 .

Lemma 3.11. If K(1)(τ1, ω2) > 0, then the function X(z) can be analytically
continued in a neighborhood of ω2, such that X(ω2) = τ1 and X ′(ω2) > 0.

Proof. The proof is similar to that of Lemma 3.10 and is therefore omitted.

3.5.2 Refinement for the singularity analysis of U(z, 0) and
U(0, z)

Using the results from the previous section, we are now ready to present a series
of results concerning the analytic behavior of U(z, 0) and U(0, z). The final
results are summarized at the end of this section. We first show that U(z, 0)
and U(0, z) can be meromorphically continued outside the open unit disk into
larger disks.

Theorem 3.8. U(z, 0) has a meromorphic continuation to the annulus τ1 ≤
|z| < ω1. The poles of U(z, 0) in τ1 ≤ |z| < ω1 (if any) are the zeros of
(Y (z)− 1).

Proof. Because of Lemma 3.8, tuples (z, Y (z)) such that 1 < |z| < τ1 belong
to the set defined in (3.32). Therefore, substituting {z1 = z, z2 = Y (z)} with
1 < |z| < τ1 into the fundamental functional equation (3.10) yields

(1− α)(Y (z)− 1)zU(z, 0) + α(z − 1)Y (z)U(0, Y (z)) = 0 ,

or

(1− α)(Y (z)− 1)zU(z, 0) = −α(z − 1)Y (z)U(0, Y (z)) = 0 . (3.72)

Both sides of the equation above are analytic functions for z, 1 < |z| < τ2.

In view of Lemma 3.8, we have that |Y (z)| < τ2 when 1 < |z| < ω1. Using
(3.31) and Lemma 3.9, we obtain that the RHS of (3.72) represents an analytic
function for 1 < |z| < ω1. This analytic function agrees with the LHS for
1 < |z| < τ1. Hence, we can analytically continue the LHS to τ1 ≤ |z| < ω1

via (3.72). Because (Y (z) − 1)zU(z, 0) is analytic in τ1 ≤ |z| < ω1, it follows
that U(z, 0) is meromorphic in τ1 ≤ |z| < ω1. The poles of U(z, 0) inside
τ1 ≤ |z| < ω1 (if any) are the zeros of (Y (z)− 1).

We mention the following equivalent of Theorem 3.8, but with respect to func-
tion U(0, z).



3.5 A more detailed analysis: independent arrivals in the two queues 93

Theorem 3.9. U(0, z) has a meromorphic continuation to the annulus τ2 ≤
|z| < ω2. The poles of U(0, z) in τ2 ≤ |z| < ω2 (if any) are the zeros of
(X(z)− 1).

Having determined regions in which U(z, 0) and U(0, z) are meromorphic, we
now have to determine the poles of these two functions inside these regions.
Using Theorem 3.4 on page 79, it follows that τ1 is the unique dominant sin-
gularity of U(z, 0). It is natural to ask if U(z, 0) has other singularities in the
area τ1 < |z| < ω1. In view of Theorem 3.8, the candidate singularities are
zeros of Y (z) − 1. This means that if K(q, 1) = 0 with τ1 < |q| < ω1, then
q is a singularity of U(z, 0). We emphasize that the existence of such zeros is
possible. For example, consider arrivals a1, a2 whose PGF is given by

A1(z1) = 1− λ1

2
+

λ1

2
z2 ,

and

A2(z2) =

(

1− λ2

7
+

λ2

7
z2

)7

,

respectively. If we choose the following system parameters

λ1 = 0.25, λ2 = 0.15, α = 0.4 ,

we have that
τ1 = 1.4820, τ2 = 5.809, ω1 = 3.312 .

The function K(z1, 1) is a third degree polynomial with zeros 1, τ1 and q∗ :=
−3.1487. Hence,

|q∗| < ω1 and Y (q∗) = 1 .

We can conclude that q∗ is a pole of U(z, 0). Its residue can be computed as

lim
z→q∗

(z − q∗)U(z, 0) = −α− λ1

1− α

(

1− 1

q∗

)

1

Y ′(q∗)
.

Furthermore, the quantity Y ′(q∗) can be evaluated as Y ′(q∗) = −K(1)(q∗,1)
K(2)(q∗,1)

.

A powerful technique to determine all the zeros of an analytic function in
subregions of the complex plane is described by [97]. This method can be
applied to the function K(z, 1) in the region τ1 < |z| < ω1. It suffices to apply
the method to the upper-half of the annulus τ1 < |z| < ω1, i.e. Im(z) ≥ 0,
because if K(z, 1) = 0, then also K(z̄, 1) = 0. Since these regions are compact,
K(z, 1) can only have a finite number (possibly zero) of zeros inside τ1 < |z| <
ω1. Hence, we have the following theorem.

Theorem 3.10. Suppose there are L1 zeros of K(z, 1), say q1,k, k = 1, . . . , L1,
such that τ1 < |q1,k| < ω1. Then q1,k is a pole of U(z, 0).

Proof. The proof is simple and is therefore omitted.
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We conclude the singularity analysis of U(z, 0) with one final question: can
ω1 be a singularity of U(z, 0)? We provide the answer through the following
theorem.

Theorem 3.11. If K(2)(ω1, τ2) > 0, then ω1 is a simple pole of U(z, 0) with
residue

res
z=ω1

U(z, 0) =
α(ω1 − 1)τ2

(1− α)ω1(τ2 − 1)

K(2)(ω1, τ2)

K(1)(ω1, τ2)
res
z=τ2

U(0, z) . (3.73)

The main idea for the proof of this theorem is as follows. Looking at Eq. (3.72),
the RHS has a simple pole for z = ω1. This is because we have that Y (ω1) = τ2
(guaranteed by Lemma 3.10 on page 91), Y ′(ω1) 6= 0 and τ2 is a simple pole
of U(0, z2). Therefore, ω1 must also be a singularity of the LHS of Eq. (3.72).
Because Y (z) is analytic in ω1, it is a singularity of U(z, 0). We will now prove
this more rigorously.

Proof of Theorem 3.11. Consider again Eq. (3.72). We have already shown
that this equation is also valid for 1 < |z| < ω1. Using Lemma 3.10 on page
91, it follows that Y is analytic in an open neighborhood Vω1

of ω1. Moreover,
Y (ω1) = τ2 and Y ′(ω1) > 0. Hence, we can always find an open neighborhood
V ′
ω1

of ω1 such that

1. |Y (z)| < ω2 if z ∈ V ′
ω1

,

2. V ′
ω1

∩ {z ∈ C : 1 < |z| < ω1} 6= ∅.

By virtue of Lemma 3.9 on 93, U(0, z) is an analytic function inside |z2| < ω2,
z2 6= τ2. Therefore, the composition U(0, Y (z)) is analytic inside z ∈ V ′

ω1
,

z 6= ω1. Hence, the RHS of Eq. (3.72) is an analytic function for z ∈ V ′
ω1

.
It follows that we can analytically continue the LHS of (3.72) into z ∈ V ′

ω1
,

z 6= ω1. In summary, we have proven that (Y (z) − 1)zU(z, 0) is analytic in
z ∈ V ′

ω1
, z 6= ω1.

From Eq. (3.72), it follows that limz→ω1(Y (z)−1)zU(z, 0) = ∞. Hence ω1 is a
pole of U(z, 0). Using transformation of residues, we can compute the residue
of U(z, 0) at z = ω1. We obtain that

lim
z→ω1

(z − ω1)U(z, 0) = − α

1− α

ω1 − 1

ω1

τ2
τ2 − 1

lim
z→ω1

(z − ω1)U(0, Y (z))

= − α

1− α

ω1 − 1

ω1

τ2
τ2 − 1

lim
z→τ2

(z − τ2)U(0, z)
1

Y ′(ω1)

=
α(ω1 − 1)τ2

(1− α)ω1(τ2 − 1)

K(2)(ω1, τ2)

K(1)(ω1, τ2)
res
z=τ2

U(0, z) .
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In summary, for the function U(z, 0) we have proven for the special case of
A(z1, z2) = A1(z1)A2(z2) that

1. U(z, 0) is analytic in |z| < τ1. The radius of convergence of U(z, 0) is τ1.

2. U(z, 0) can be meromophically continued into τ1 ≤ |z| < ω1.

3. τ1 is always a simple pole of U(z, 0) and this is the singularity of U(z, 0)
with the smallest norm.

4. U(z, 0) can have (if any) a finite number of additional poles in the region
τ1 < |z| < ω1. These are the roots of K(z, 1) = 0, if any.

5. If K(2)(ω1, τ2) > 0, then ω1 is a simple pole of U(z, 0).

6. All residues of the aforementioned poles can be computed exactly.

Without proof, we state the equivalent theorems of Theorem 3.10 and Theorem
3.11 with respect to the function U(0, z).

Theorem 3.12. Suppose there are L2 zeros of K(1, z), say q2,k, k = 1, . . . , L2,
such that τ2 < |q2,k| < ω2. Then q2,k is a pole of U(0, z).

Theorem 3.13. If K(1)(τ1, ω2) > 0, then ω2 is a simple pole of U(0, z) with
residue

res
z=ω2

U(0, z) =
(1− α)(ω2 − 1)τ1

αω2(τ1 − 1)

K(1)(τ1, ω2)

K(2)(τ1, ω2)
res
z=τ1

U(z, 0) . (3.74)

In summary, for the function U(0, z) it can be proven, for the special case of
A(z1, z2) = A1(z1)A2(z2), that

1. U(0, z) is analytic in |z| < τ2. The radius of convergence of U(0, z) is τ2.

2. U(0, z) can be meromophically continued into τ2 ≤ |z| < ω2.

3. τ2 is always a simple pole of U(0, z) and this is the singularity of U(0, z)
with the smallest norm.

4. U(0, z) can have (if any) a finite number of additional poles in the region
τ2 < |z| < ω2. These are the roots of K(1, z) = 0, if any.

5. If K(1)(τ1, ω2) > 0, then ω2 is a simple pole of U(0, z).

6. All residues of the aforementioned poles can be computed exactly.
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3.5.3 Further discussion

To check if ω1 is a singularity of U(z, 0), one can simply evaluate K(2)(ω1, τ2).
Is it possible to roughly predict when K(2)(ω1, τ2) > 0 in terms of the value of
τ2? First and foremost, we emphasize that simple examples can be found such
that K(2)(ω1, τ2) < 0. However, we will show that if τ2 is close to 1, then it is
likely that K(2)(ω1, τ2) > 0.

Consider K(2)(x, y) as a function in R
2. It is clear that K(2)(x, y) is continuous

in (τ1, 1). Hence, K(2)(x, y) does not change sign in a (real) neighborhood of
(τ1, 1), i.e. ∃δ, such that

K(2)(x, y) > 0 if
√

(x− τ1)2 + (y − 1)2 < δ .

The tuple (ω1, τ2) belongs to this neighborhood if

√

(ω1 − τ1)2 + (τ2 − 1)2 < δ . (3.75)

Let τ2 = 1 + ε, ε > 0. Remark that ω1 is defined as the unique zero of
z 7→ K(z, τ2) in ]1,R1[. To underline the dependency of τ2 = 1 + ε, we write
ω1(ε). The inequality above becomes

√

(ω1(ε)− τ1)2 + ε2 < δ . (3.76)

Intuitively, if τ2 is close to 1 (i.e. ε is close to zero), then ω1 will be close to
τ1. Moreover, ω1(0) = τ1 by definition of τ1. Hence, the bound (3.76) will be
satisfied if ε is small enough.

3.6 Concluding remarks

In this chapter, we focused on the asymptotic behavior of the joint pmf
p(i, j) of the system contents. We showed that requiring K(2)(τ1, 1) > 0 and
K(1)(1, τ2) > 0 is sufficient for obtaining a geometric asymptotic behavior of
p(i, j). We further showed that these intriguing conditions are equivalent to
the stability condition of a related queueing model. Even with the successful
completion of these results, several new questions arise. In this concluding
section, we mention the research gaps we encountered throughout this chapter
and did not have the time or inventiveness for.

Remark that at the end of Section 3.3 we showed that if K(2)(τ1, 1) < 0,
then τ1 cannot be a singularity of U(z, 0). In order that K(2)(τ1, 1) > 0 is a
necessary condition for τ1 to be a singularity of U(z, 0), we should also handle
the boundary case K(2)(τ1, 1) = 0. Hence, we have the following question.

Question 3.1. What happens in the case that K(2)(τ1, 1) = 0 and/or
K(1)(1, τ2) = 0?
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We discussed in Section 3.2 some examples of arrival processes where the con-
ditions K(2)(τ1, 1) > 0 and/or K(1)(1, τ2) > 0 are not fulfilled. Hence, we have
the following natural question.

Question 3.2. Can we determine the dominant singularity of U(z, 0) and
U(0, z) in the case that K(2)(τ1, 1) < 0 and/or K(1)(1, τ2) < 0?

Note that if (for example) K(2)(τ1, 1) < 0, then the dominant singularity of
U(z, 0) is strictly greater than τ1. The main hindrance for answering Question
3.2 is that we do not have a clue about the location of the dominant singularity
in this case.

As mentioned before, we showed that K(2)(τ1, 1) > 0 is equivalent to the sta-
bility condition of a related queueing model. It goes without saying that this
striking result cannot be a coincidence. Therefore, one final research question
we would have liked to study is the following.

Question 3.3. Can we give an intuitive interpretation to the condition
K(2)(τ1, 1) > 0 (and K(1)(1, τ2) > 0)? What is the connection of the related
queueing model with the original queueing model?
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4
Approximate analysis: a

novel approximation

method

In this chapter, we shift focus back to the complete joint pmf p(i, j) of the
system contents. The pmf p(i, j) is only known for a few special cases, see
also Chapter 2. In the general case, we obtained in the previous chapter an
intriguing condition (namely Condition 3.1 on page 77) in order to obtain
asymptotic expressions for p(i, j) when either i → +∞ or j → +∞. In this
chapter, we explore how these asymptotic results can be exploited to obtain the
probabilities p(i, j) that are not in the tail. Results for the latter probabilities
are not only interesting measures on their own, but are also required for the
computation of performance measures like the variance of the total system
content, the fraction of time that the server idles, etc. We make the same
restrictions as in Chapter 3, namely Assumption (3.1) and Condition 3.1. For
definiteness, we repeat these restrictions here. Let the radius of convergence
of Aj(z) =

∑∞
n=0 aj(n)z

n be denoted by Rj and define the τi as the unique
solution of the equations below

τ1 = ((1− α)τ1 + α)A1(τ1) , (4.1)

τ2 = (1− α+ ατ2)A2(τ2) , (4.2)

with 1 < τi < Ri.

Assumptions:

1. Rj > 1 ,

2. limz→Rj
Aj(z) = +∞,

3. K(2)(τ1, 1) > 0,

4. K(1)(1, τ2) > 0.
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These assumptions are sufficient to obtain the asymptotic expressions of the
previous chapter. We will use these asymptotic expressions in this chapter.

A key contribution of our paper [98] is a novel approximation method. Broadly
speaking, we approximate the boundary functions U(z1, 0) and U(0, z2) in the
functional equation (2.12) by rational functions. An approximation as a ratio-
nal function is obtained in two steps. First the dominant singularities (and the
corresponding residues) of U(z1, 0) and U(0, z2) are found. This step is actually
the result of Chapter 3. This result is used to approximate the coefficients of
the Taylor series of U(z1, 0) and U(0, z2), starting from a certain index onwards.
In the second step, the remaining finite number of coefficients is approximated
by substituting the Taylor series of the first step into the functional equation
(2.12). Linear equations between this finite number of unknowns are found by
considering zeros-tuples of the kernel K(z1, z2), such that the right-hand side
of the functional equation vanishes. This novel approximation method is also
the key contribution of this chapter.

This chapter is organized as follows. In the following section we survey some of
the most well-established approximation methods for multidimensional queue-
ing models. In Section 4.2, we present our novel approximation method. The
approximation results are validated against simulation results in Section 4.3.
We discuss further insights in Section 4.4, before giving some concluding re-
marks in Section 4.5.

4.1 State-of-the-art and related approximation

methods

Because of the drawbacks of the boundary-value-problem theory, some ap-
proximation techniques for two- as well as multidimensional queues have been
investigated in the past. We briefly discuss the state-of-the-art.

A first prominent approach is the Power Series Approximation Approach
(PSA) [18] for two-queue models. In [18], the joint PGF of the numbers of
customers in both queues is expressed as a power series in a specified parame-
ter of the model. The coefficients of the consecutive terms in this power series
are calculated recursively (either numerically or analytically). Truncation or
any other approximation based on the knowledge of a finite number of these
coefficients are the result of this technique. The major drawback of the PSA
approach as per [18] is that in practice only few series coefficients can be calcu-
lated within reasonable computing time [99]. The PSA was originally developed
to directly approximate the joint pmf (instead of the joint PGF) in [100, 101].
The joint pmf is then expressed as a power series (usually in the load). The
coefficients of the power series are calculated recursively via the equilibrium
equations. The disadvantage of the original PSA approach is that it does not
provide error bounds and that it suffers from the curse of dimensionality [102].
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If we would mimic the approach of [18], we should write U(z1, z2) as a power
series expansion in α (instead of the load) and substitute this power series into
(2.12). Unfortunately, in our case, this PSA approach as per [18] does not seem
to be applicable since for the boundary values α = 0 or α = 1, one of the two
queues becomes unstable (assuming that λ1 > 0 and λ2 > 0).

Series expansion techniques for Markov chains are sometimes referred to as
perturbation techniques. Perturbation methods are mainly motivated by
sensitivity analysis of the results with respect to some system parameter [103].
In particular singular perturbations where the perturbation does not preserve
the class-structure of the non-perturbed Markov chain, have received consid-
erable attention in literature [104]. Perturbation techniques can be used as
a numerical solution technique for two-dimensional queueing models, see for
example [38, 105] and references therein.

Among the class of nearest-neighbor random walks with no one-step displace-
ments to the North, North-East and East, it can be shown that the boundary
functions U(z, 0) and U(0, z) are meromorphic functions [78]. The so-called
compensation method [106] is a renowned analytic-algorithmic method that
can be considered as an alternative to analytic continuation when meromor-
phicity of the boundary functions is established. The compensation approach
works directly in the probability domain and only works for the specific sub-
class of random walks as in [78]. Several extensions of the original compensation
approach were developed over the years. For example, the studies [107–109]
indicate that the compensation method can be extended to a class of so-called
multi-layered two-dimensional random walks [107]. Furthermore, the compen-
sation method was generalized for three-dimensional models under additional
restrictions on the one-step displacements [110]. In [111] the compensation
method was applied to a two-dimensional random walk on the lattice of the first
quadrant with arbitrarily sized jumps on the boundaries and one-step displace-
ments to the North (lower part of the first quadrant) or the East (upper part
of the quadrant). Finally, it has been shown in [112, 113] that the framework
of the compensation method can be extended to a two-dimensional random
walk with bounded one-step displacements to non-neighboring states. Several
restrictions still apply on the one-step displacements in all the aforementioned
extensions. Therefore, the compensation method appears to be inapplicable to
our queueing model with general A(z1, z2).

Another, less satisfactory, approach is a brute-force truncation of the state
space. Broadly speaking, we are then solving a finite-capacity model. A finite
Markov chain can in principle always be analyzed. However, for large capacities
(or more than two queues) this chain becomes large and solving it is time-
consuming (the curse of dimensionality yet again). Instead of assuming that
all queue capacities are finite, it is better to assume that all queues but one are
finite. Such a system can be analyzed efficiently using the celebrated matrix-
geometric and matrix-analytic methods [4, 5]. The effect of state-space
truncation has received considerable attention, see e.g. [114–116]. In many of
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these studies, it is shown that the tail behavior can differ between the finite and
infinite capacity system, as the finite capacity grows. Extensions of the matrix-
analytic approach to nearest-neighbor random walks in the positive quadrant
exist. See for example [60, 117] and the references therein.

Instead of a state-space truncation or a perturbation in a system parameter,
one can search for a (slightly) modified system for which there is an explicit
characterization of the joint system-content distribution. This may be resulting
in analytical error bounds for the performance of interest in the original model.
Such bounds are provided by the Markov reward approach [118]. The
Markov reward error bounds can be formulated as linear optimization problems
[119, 120]. As noted in [120, Chapter 2], the linear programs for upper and
lower bounds are not always feasible. In particular, once the load exceeds some
threshold the problems often become infeasible and cannot return any bounds.
Some intuitions to this problem are given in Chapter 7 of [120].

4.2 Approximation for U(z, 0) and U(0, z)

The subject of this section is to find an efficient approximation for the coeffi-
cients of the power series

U(z, 0) =
∞
∑

n=0

p(n, 0)zn , (4.3)

U(0, z) =

∞
∑

n=0

p(0, n)zn . (4.4)

In view of Theorem 3.6 (see page 86) and Theorem 3.7 (see page 87), we have
that

p(n, 0) ∼ B0τ
−(n+1)
1 , (4.5)

and
p(0, n) ∼ D0τ

−(n+1)
2 . (4.6)

For definiteness, we repeat the expressions for B0 and D0. We have that

B0 = − (τ1 − 1)(α− λ1)(τ1 − αA1(τ1)− ((1− α)τ1 + α)A(2)(τ1, 1))

(1− α)τ1(1− (1− α)A1(τ1)− ((1− α)τ1 + α)A′
1(τ1))

, (4.7)

D0 = − (τ2 − 1)(1− α− λ2)(τ2 − (1− α)A2(τ2)− (1− α+ ατ2)A
(1)(1, τ2))

ατ2(1− αA2(τ2)− (1− α+ (1− α)τ2)A′
2(τ2))

.

(4.8)

Our purpose is to obtain accurate approximations for p(n, 0), p(0, n), for every
index n. Hence, for the indices for which the dominant-pole approximation
is not sufficiently accurate, we have to approximate p(n, 0) and p(0, n) in a
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different way. To accomplish this, we show in the following lemma that the
PGFs U(z, 0) and U(0, z) can be approximated by simple functions.

Lemma 4.1. Let r1 be any number between τ1 and the modulus of the next
singularity of U(z, 0). Let r2 be any number between τ2 and the modulus of the
next singularity of U(0, z). We have that

∣

∣

∣

∣

∣

U(z, 0)−
(

M
∑

n=0

p(n, 0)zn +
B0

τM+1
1

zM+1

τ1 − z

)∣

∣

∣

∣

∣

< C
r1

r1 − τ1

(

τ1
r1

)M+1

, |z| < τ1 ,

(4.9)
∣

∣

∣

∣

∣

U(0, z)−
(

M
∑

n=0

p(0, n)zn +
D0

τM+1
2

zM+1

τ2 − z

)∣

∣

∣

∣

∣

< C̃
r2

r2 − τ2

(

τ2
r2

)M+1

, |z| < τ2 ,

(4.10)

with C and C̃ positive constants.

Proof. By the residue theorem, we can write that

1

2πi

∫

|z|=r1

U(z, 0)

zn+1
dz = p(n, 0)− B0

τn+1
1

, (4.11)

where we denote with |z| = r1 the positively oriented circle with radius r1. The
contour integral is O(r−n

1 ) as n → ∞, so that we obtain again the dominant-
pole approximations (4.5) and (4.6).

Next, for ease of notation, we define the contour integrals as

In ,
1

2πi

∫

|z|=r1

U(z, 0)

zn+1
dz , (4.12)

Jn ,
1

2πi

∫

|z|=r2

U(0, z)

zn+1
dz , (4.13)

such that we can compactly write

p(n, 0) =
B0

τn+1
1

+ In , (4.14)

p(0, n) =
D0

τn+1
2

+ Jn . (4.15)

Substituting (4.14) for n = M + 1,M + 2, . . . into (4.3), yields

U(z, 0) =

M
∑

n=0

p(n, 0)zn +
B0

τM+1
1

zM+1

τ1 − z
+

∞
∑

n=M+1

Inz
n, |z| < τ1 . (4.16)
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Whence,

U(z, 0)−
(

M
∑

n=0

p(n, 0)zn +
B0

τM+1
1

zM+1

τ1 − z

)

=

∞
∑

n=M+1

Inz
n, |z| < τ1 .

Using that |z| < τ1 and |In| ≤ Cr−n
1 , for some constant C > 0, we obtain that

∣

∣

∣

∣

∣

∞
∑

n=M+1

Inz
n

∣

∣

∣

∣

∣

≤
∞
∑

n=M+1

|Inzn| < C
r1

r1 − τ1

(

τ1
r1

)M+1

.

Hence, (4.9) is proven.

Analogously, we can obtain (4.10).

In view of the lemma above, we approximate the functions U(z, 0) and U(0, z)
by the functions

U(z, 0) ≈ p̂(0, 0) +
M
∑

n=1

p̂(n, 0)zn +
B0

τM+1
1

zM+1

τ1 − z
, |z| < τ1 , (4.17)

U(0, z) ≈ p̂(0, 0) +

M
∑

n=1

p̂(0, n)zn +
D0

τM+1
2

zM+1

τ2 − z
, |z| < τ2 , (4.18)

where the p̂(n, 0), p̂(0, n) are approximations for p(n, 0) and p(0, n), respec-
tively.

4.2.1 Estimation of the remaining probabilities

Since U(z1, z2) is a joint PGF satisfying (2.12), see page 26, it must be that

(1− α)(wj − 1)vjU(vj , 0) + α(vj − 1)wjU(0, wj) = 0 , (4.19)

for any finite set of tuples (vj , wj), j = 0, . . . , N such that |vj | ≤ 1, |wj | ≤ 1
and K(vj , wj) = 0. We will now substitute Equation (4.16) (with z = vj) into
the equation above. Moreover, if we similarly substitute

U(0, wj) =

M
∑

n=0

p(0, n)wn
j +

D0

τM+1
2

wM+1
j

τ2 − wj
+

∞
∑

n=M+1

Jnw
n
j ,

we obtain that

(1− α)(wj − 1)vj

M
∑

n=0

p(n, 0)vj
n + α(vj − 1)wj

M
∑

n=0

p(0, n)wj
n

= −(1− α)(wj − 1)
B0vj

M+2

τM+1
1 (τ1 − vj)

− α(vj − 1)
D0wj

M+2

τM+1
2 (τ2 − wj)

− (1− α)(wj − 1)vj

∞
∑

n=M+1

Invj
n − α(vj − 1)wj

∞
∑

n=M+1

Jnwj
n .

(4.20)
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If we introduce the vectors εεε and s with components (j = 0, . . . , N)

εj = (1− α)(wj − 1)vj

∞
∑

n=M+1

Invj
n + α(vj − 1)wj

∞
∑

n=M+1

Jnwj
n , (4.21)

sj = −(1− α)(wj − 1)
B0vj

M+2

τM+1
1 (τ1 − vj)

− α(vj − 1)
D0wj

M+2

τM+1
2 (τ2 − wj)

, (4.22)

we can rewrite Equation (4.20) as

(1− α)(wj − 1)vj

M
∑

n=0

p(n, 0)vj
n + α(vj − 1)wj

M
∑

n=0

p(0, n)wj
n = sj − εj .

Or in matrix notation
Tp+ εεε = s , (4.23)

where p is the vector of unknown probabilities p(0, 0), . . . , p(M, 0), p(0, 1), . . .,
p(0,M), s is a known vector and T is the known coefficient matrix with entries

Tj,k =











(1− α)(wj − 1)vj + α(vj − 1)wj k = 0 ,

(1− α)(wj − 1)vk+1
j , 1 ≤ k ≤ M ,

α(vj − 1)wk+1−M
j , M + 1 ≤ k ≤ 2M .

(4.24)

The equations (4.23) can be seen as observations si that are noise-perturbed
representations of a linear transformation of p. Notice that we can make as
many observations N as we want. If we choose N = 2M , i.e. there are as many
observations as unknowns, we can estimate p by p̂

p̂ = T−1s , (4.25)

assuming that T is invertible and εεε is small. The error that we make is p̂−p =
T−1εεε.

The function U(z1, z2) can then be approximated by replacing U(z1, 0) and
U(0, z2) by (4.17) and (4.18) in expression (2.16).

The only thing left to do, is to decide which zeros (vj , wj) we will use in our
approximation method.

4.2.2 A suitable set of zero-tuples

There are infinitely many possible choices for the zeros of K, while for our
approximation method we only need a finite set. First of all, it is important
that the zeros can easily be found numerically. Hence, information about the
location of the zeros is desired. Secondly, the entries (4.24) of the coefficient
matrix T are also determined by the zeros and therefore the error T−1ε depends
on the choice of the zeros. Since it is a priori not clear what is the better choice,
we take inspiration from the boundary-value approach. The boundary-value
approach relies on the following lemma.
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Lemma 4.2. Suppose S1 and S2, with S1 ⊂ {z1 : |z1| ≤ 1} and S2 ⊂ {z2 :
|z2| ≤ 1}, are simple, smooth and non-self intersecting contours, and there
exists a one-to-one map g : S2 7→ S1, such that for every z2 ∈ S2, (g(z2), z2) is
a zero-tuple of the kernel K.
If functions U(z, 0) and U(0, z), both analytic in |z| < 1, satisfy (4.19) for
(z1, z2), with z1 = g(z2), z2 ∈ S2, then U(z, 0) and U(0, z) satisfy (4.19) for
all (z1, z2) with |z1| ≤ 1, |z2| ≤ 1.

Proof. The proof is given in [121, Sect. 1].

If we thus could find simple, smooth and non-self intersecting contours S1

and S2, such that (1 − α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2) = 0 for all
z1 ∈ S1, z2 ∈ S2, then by analytic continuation (1 − α)(z2 − 1)z1U(z1, 0) +
α(z1 − 1)z2U(0, z2) = 0 for all (z1, z2) with |z1| ≤ 1, |z2| ≤ 1. It is therefore
reasonable to choose a finite set of zeros from such particular contours.

As in [121, Sect. 6], we can consider tuples of the form (zeiϕ, ze−iϕ), with
ϕ ∈ [0, 2π[. The equation K(zeiϕ, ze−iϕ) = 0 is equivalent with

z2 = [(1− α)zeiϕ + αze−iϕ]A(zeiϕ, ze−iϕ) .

Canceling the common factor z on both sides of the equation yields

z = ((1− α)eiϕ + αe−iϕ)A(zeiϕ, ze−iϕ) . (4.26)

A direct application of Rouché’s theorem implies that

Theorem 4.1. Equation (4.26) has, for fixed ϕ, exactly one zero z =: f(eiϕ)
satisfying |z| < 1. Further we have that limϕ→0 f(e

iϕ) = 1.

Proof. See [49, Pg. 188].

The sets

S1 = {f(eiϕ)eiϕ | ϕ ∈ [0, 2π[} , (4.27)

S2 = {f(eiϕ)e−iϕ | ϕ ∈ [0, 2π[} (4.28)

present a pair of contours which satisfy the conditions discussed above [121].

The discussion above has led to the following choice of zeros

vj = f(eiϕj)eiϕj , wj = f(eiϕj)e−iϕj .

We point out some key properties of the choice of zeros. First, multiplying
both sides of Equation (4.26) by minus one and using the fact that −1 = eiπ,
yields

f(ei(ϕ+π)) = −f(eiϕ) ,
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whence,

f(ei(ϕ+π))ei(ϕ+π) = f(eiϕ)eiϕ and f(ei(ϕ+π))e−i(ϕ+π) = f(eiϕ)e−iϕ .

The contours S1 and S2 are therefore traversed twice if ϕ goes from 0 to 2π,
such that ϕ can be restricted to [0, π[.

Secondly, we exploit the fact that if (z1, z2) is a zero-tuple of K, then the
complex conjugate (z1, z2) is a zero-tuple of K as well. Therefore, an additional
linear equation is found by using the complex conjugate zero-tuple (vj , wj).
This will force p̂ to be real. Moreover, this halves the number of zero-tuples
that have to be found and we can further restrict ϕ to [0, π/2[. By restricting
ϕ to this interval, first only that part of S1 and S2 that lies in the upper-half
plane is considered. But by also adding the complex conjugates, values in the
lower-half plane are also considered.

We sample M equidistant values ϕj , j = 0, . . . ,M − 1 in ]0, π/2[ and com-
pute f(eiϕj) by means of a root-finding algorithm (e.g. the Newton-Raphson
method). An additional number of M linear equations is found by using the
complex conjugate zeros (vj , wj). The final equation that can be used is the
normalization condition (1−α)U(1, 0)+αU(0, 1) = 1−λ1−λ2. This equation
is obtained by considering the PGF of the total number of customers, i.e.

U(z, z) =
A(z, z)(z − 1)((1− α)U(z, 0) + αU(0, z))

z −A(z, z)
.

If we take the limit z → 1 in the expression above and use l’Hôpital’s rule, we
obtain that (1−α)U(1, 0)+αU(0, 1) = 1−λ1−λ2. The approximated equation
reads

(1−α)

M
∑

n=0

p̂(n, 0)+α

M
∑

n=0

p̂(0, n) = 1−λ1−λ2−
(1− α)B0

τM+1
1 (τ1 − 1)

− αD0

τM+1
2 (τ2 − 1)

.

The above linear equation in p̂(0, 0), . . . , p̂(M, 0), p̂(0, 1), . . ., p̂(0,M) yields an
additional row to the coefficient matrix T and an additional entry to the column
vector s:

T2M,k =











1, k = 0 ;

1− α, 1 ≤ k ≤ M ;

α, M + 1 ≤ k ≤ 2M ,

(4.29)

s2M = 1− λ1 − λ2 −
(1− α)B1

τM+1
1 (τ1 − 1)

− αB2

τM+1
2 (τ2 − 1)

. (4.30)

Summarizing, our numerical approach consists of the following steps:

1. Compute τ1 and τ2 (which boils down to computing a zero of a nonlinear
equation in a single variable, see (4.1) and (4.2)).
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2. Compute B0 and D0 using (4.7) and (4.8), respectively.

3. Solve a relatively small linear system T p̂ = s. The entries Tj,k of T are
given by (4.29) and (4.24) for j = 0, . . . , 2M − 1 with

vj = f(eiϕj )eiϕj ,

wj = f(eiϕj )e−iϕj ,

vM+j = vj ,

wM+j = wj ,

j = 0, . . . ,M − 1 . (4.31)

The entries sj of s are given by (4.30) and (4.22) for j = 0, . . . , 2M − 1.

In order to compute the vectors v and w, f(eiϕj ), j = 0, . . . ,M−1, is computed
by computing the unique zero inside the unit disk of Equation (4.26).

The condition number of the matrix T relative to a norm ‖·‖ is defined as
‖T‖ · ‖T−1‖. The condition number serves as a measure of stability for the
linear system T p̂ = s. Since the columns in the matrix T are powers of the
vectors v and w, the condition number of T is often too large (which indicates
instability) for high values of M , resulting in a (almost) singular coefficient
matrix. Therefore, in order to keep the linear system stable, we expect that
the truncation parameter M needs to be small. On the other hand, the bounds
in Lemma 4.1 require that M needs to be large enough. The strength of the
approach is that in case of light to moderate load, the tail-probabilities are
already close to the exact values for small M . We will also demonstrate this in
Sect. 4.3.

Besides the choice of truncation parameter M , there are plenty of possible
choices for the values ϕj , j = 0, . . . ,M − 1. Therefore, the matrix T can be
seen as function of ϕj , i.e. T (ϕ0, ϕ1, . . . , ϕM−1). In our main experiments in
Sect. 4.3, we have chosen ϕj equidistant in ]0, π/2[, since this seems the most
natural and is easy to implement. We will briefly come back to this choice in
Sect. 4.3 as well.

4.3 Validation of the approximation method

In this section we compare the obtained approximations to simulation results.
We assume that the customer types have different, mutually independent, ar-
rival distributions. More specifically, we assume that the number of type-1
arrivals per slot are geometrically distributed with mean λ1, i.e.

A1(z) =
1

1 + λ1 − λ1z
. (4.32)

Further, we assume that the number of type-2 arrivals per slot are Poisson
distributed with mean λ2, i.e.

A2(z) = eλ2(z−1) . (4.33)
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In Sect. 4.2 we have proposed a novel method to estimate the probabilities
p(n, 0) and p(0, n) for low index values of n. In order to investigate the accuracy
of this approximation method, we selected 5 arbitrary cases (α, λ1, λ2) from the
possible parameter space, the parameters of which are listed in Table 4.1. We
additionally give τ1, τ2 and the total mean system content E[u1+u2] to have a
rough idea about the traffic regime. Notice that the total mean system content
can be computed exactly by taking the sum of the marginal mean system
contents. The parameters are generated in a manner such that the total arrival
rate λ1 + λ2 is at least 0.3.

Table 4.1: Parameter settings for the 5 random cases to validate the accuracy of
the approximation method to estimate p(n, 0) and p(0, n) for low index values n.

Case α λ1 λ2 τ1 τ2 E[u1 + u2]

1 0.587462 0.355125 0.125898 1.654240 3.914652 1.940062

2 0.478253 0.258507 0.396966 1.850058 1.429588 3.726257

3 0.796212 0.396695 0.177450 2.007114 1.165356 7.132573

4 0.617399 0.541399 0.288171 1.140377 1.407085 9.735655

5 0.214682 0.164818 0.762360 1.302539 1.049787 23.85433

Each subplot of Figure 4.1 and Figure 4.2 shows the approximations p̂(n, 0)
(left) and p̂(0, n) (right) for n = 0, 1, . . . , 10. The approximation method is
applied for different values of M and with ϕj equidistantly chosen in ]0, π/2[
(see also the discussion in Sect. 4.2.2). In addition, we also show the dominant-
pole approximations (DPA) (4.5) and (4.6). We have simulated the queueing
system (marks in the figure) for assessing the accuracy. The simulation results
were obtained based on 109 slots.

Figure 4.1 (a) and (b) show that the approximations are very accurate for the
particular parameter settings in Case 1 and Case 2. Notice that the dominant-
pole approximation is also already accurate at n = 5 in these cases. In Figure
4.1, we only show the result for M = 5, because the difference in accuracy
between M = 5, M = 10 and M = 15 is (in these cases) almost invisible.

As can be seen from Figure 4.2, the approximations are not necessarily accurate
for parameter settings in cases 3-5. Moreover, we see that large values of
M result in approximations that are not close to the simulation results. In
contrast to this, the estimation of the probabilities with smallest index (n =
0, 1) remains stable (it even improves in Figure 4.2 (c) (left)). We remark that,
for visibility reasons, we have shown only the approximation for M = 5 in the
right subplot of Figure 4.2 (c).
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(a) Case 1: α = 0.587462, λ1 = 0.355125 and λ2 = 0.125898.
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(b) Case 2: α = 0.478253, λ1 = 0.258507 and λ2 = 0.396966.

Figure 4.1: Approximated probabilities p̂(n, 0) (left) and p̂(0, n) (right) for trunca-
tion parameters M = 5.

We will use these three cases to rediscuss the estimation errors of the approx-
imation method. The bounds we can provide for the error estimation of the
non-tail probabilities are too conservative (even in Case 1 and 2). Therefore,
we will give an intuitive explanation of the errors at hand. We will explain this
using Case 3, i.e. Figure 4.2 (a).

From the left figure in Figure 4.2 (a), it is clear that in this case the problem
lies with the estimation of the coefficients p(n, 0) rather than p(0, n). A clear
difference between the two figures, is that the convergence of the dominant-
pole approximation is faster for p(0, n) (right) than for p(n, 0) (left).1 The
absolute error between this dominant-pole approximation and the simulated
result suggests that the next dominant singularity of U(z, 0) is very close to
τ1. Hence, the factor τ1/r1 appearing in bound (4.9) will be very close to 1

1Note that the scale in the two figures of Figure 4.2 (a) is different, so that all approxi-
mations are visible in the left figure.
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(a) Case 3: α = 0.796212, λ1 = 0.396695 and λ2 = 0.177450.
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(b) Case 4: α = 0.617399, λ1 = 0.541399 and λ2 = 0.288171.
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Figure 4.2: Approximated probabilities p̂(n, 0) (left) and p̂(0, n) (right) for trunca-
tion parameters M = 5, M = 10 and M = 15.
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(c) Case 5: α = 0.214682, λ1 = 0.164818 and λ2 = 0.762360.

Figure 4.3: Approximated probabilities p̂(n, 0) (left) and p̂(0, n) (right) for trunca-
tion parameters M = 5, M = 10 and M = 15. The values ϕj are equidistantly chosen
in [π/4, π/2[.
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and therefore the bound will only be acceptably small for considerable large
M . But, as already discussed in Sect. 4.2.2 this yields an ill-conditioned matrix
T . This largely explains why the approximations for M = 10 and M = 15 are
unreliable in this figure. Experiments show that the approximations for p(0, n)
also deteriorate from a certain M onwards, in Case 3.

Other experiments with different parameter settings confirm the behavior we
just described. There are two possible solutions to overcome this problem in the
future. The first possible solution is the determination of the second dominant
singularity of U(z, 0) and/or U(0, z). A second possible solution is a different
choice of ϕj , leading to different choices of zeros of the kernel. To investigate
the influence of the choice of zeros of the kernel to compose our set of equations
(4.23), we show in Figure 4.3 the result of the approximation method with ϕj

equidistantly chosen in [π/4, π/2[, instead of equidistant values in ]0, π/2[ as
before. It is fair to say that Figure 4.3 (a) and (b) show better results when
compared to Figure 4.2. This gives a minor indication that the approximation
can be improved by considering other sets of zeros of the kernel. Several other
choices for ϕj were also numerically investigated. Ideally, the values of ϕj are to
be chosen such that the condition number of T is minimized. Because we do not
have any explicit information of T−1 at the moment, this optimization problem
is unfortunately computationally demanding and is therefore considered to be
outside the scope of the present study.

Based on numerical experiments, the numerical procedure presented in this
chapter is mainly applicable for light to moderate traffic regimes, and this at a
very small computational cost. Regimes with a higher load cannot be tackled
(with sufficient accuracy) with our approach. If one is only interested in the
first few probabilities though (like p(0, 0)), the numerical examples show that
the method is well suited for all traffic regimes.

4.4 Further discussion

In this chapter we developed a novel, original approach to approximate U(z, 0)
and U(0, z). We used tail asymptotic results to obtain approximations for
the coefficients in the Taylor series of U(z, 0) and U(0, z), except for the first
M + 1 coefficients. The latter are estimated via the solution of a system of
linear equations, obtained by using zero-tuples of the kernel K. However, we
have seen that the approximation is not applicable to heavily loaded systems.
This is mainly because too many coefficients are to be estimated in these cases.
The idea of our approach is similar to the approach in [122], where a simple
algorithm for the computation of the stationary distribution of a Markov chain
on a semi-infinite strip is discussed. The approach in [122] exploits the geo-
metric tail behavior of the joint queue length distribution to reduce the infinite
system of equilibrium equations to a finite system of linear equations. Such
an approach is easier and more satisfactory than a brute-force truncation of



114 Approximate analysis: a novel approximation method

the state space. A truncation approach often leads to a very large system of
linear equations. In contrast to [122], we prefer to work within the framework
of generating functions instead of the balance equations, since this allows us to
make use of the first key step in the boundary-value technique.

Postscriptum

This chapter captures most of the results as in [98]. We mentioned in the pre-
vious paragraph that the method could be improved by determining the second
dominant singularity of U(z, 0) and/or U(0, z). This is precisely the subject of
Section 3.5.2, a result we did not have when we wrote article [98]. Therefore,
we discuss the influence of this new result to the approximation scheme in the
paragraph below. Of particular relevance to our approach method is the ap-
proximation method recently proposed by Timmerman in [123, Chap. 6]. This
method has many similarities with the one proposed in this chapter. In [123,
Chap. 6], a better choice of zeros has been found. Therefore we also devote an
additional paragraph to the approach as per [123, Chap. 6].

Second dominant singularity In Section 3.5.2, we obtained conditions for
which it is possible to compute the second dominant singularity of U(z, 0) and
U(0, z) in case of high loads. The results of Section 3.5.2 are applicable to
Case 3, Case 4 and Case 5 in this chapter. We examine Case 5 in more detail.
The second dominant singularity of U(z, 0) can be calculated as described in
Section 3.5.2. We denote with ω1 this singularity. Then ω1 is a simple pole
of U(z, 0) and ω1 is the unique solution of the following equation, cf. Theorem
3.11,

ω1τ2 = ((1− α)ω1 + ατ2)A1(ω1)A2(τ2), τ1 < ω1 < R1 .

In Case 5, it can be verified that

ω1 = 1.352929 .

The two-pole approximation of p(i, 0) then reads

p(i, 0) ∼ B0τ
−(n+1)
1 − F0ω

−(n+1)
1 ,

with F0 given by (3.73). We demonstrate both the dominant-pole approxi-
mation (4.5) and the two-pole approximation in Figure 4.4. From this figure,
we clearly see the improvement in accuracy of the two-pole approximation in
comparison with the dominant-pole approximation. It is clear that the latter
converges much more slowly to the (simulated) values of p(i, 0).

The method developed in this chapter to approximate U(z, 0) could be extended
as follows. Approximate U(z, 0) as, cf. (4.17),

U(z, 0) ≈ p̂(0, 0) +

M
∑

n=1

p̂(n, 0)zn +
B0

τM+1
1

zM+1

τ1 − z
− F0

ωM+1
1

zM+1

ω1 − z
.
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Figure 4.4: The dominant-pole approximation (DPA) and the two-pole approxima-
tion (TPA) for the probabilities p(n, 0) in Case 5.

The remainder of the approximation scheme is the same as per Section 4.2.1.
Broadly speaking, we now replace U(z, 0) by the approximation above. The
only difference in the approximation scheme is that the values sj (4.22) change.
Unfortunately, based on numerical experiments, we have observed that this
extension does not yield better results for Case 3, Case 4 and Case 5.

The choice of zero-tuples as per [123] The choice of zeros seems to cause
the problem in the poor approximations of Case 3, Case 4 and Case 5. The
relationship between the choice of zeros and the accuracy of the approximation
is also noticed recently in the PhD thesis of Timmerman [123, Ch. 6]. In this
PhD thesis, a similar approximation method is developed. This method does
not need the information of the tail probabilities. Broadly speaking, if we
set the tail probabilities to zero in our approximation method, we obtain the
method as per [123]. However, an important difference between our approaches
is the choice of zero-tuples. Furthermore, it should be noted that the method
in [123] is developed for a large set of multidimensional queueing models. The
method is applied to several two-dimensional and multi-dimensional queueing
models in Chapter 6 of [123]. In Section 6.4 of [123], Case 5 of this chapter
is studied. Four different approximations, including ours, are compared. The
results obtained in [123] are considerably more accurate. At first, we found
this surprising. Our method is much the same as in [123], with the added
exception that we make use of the tail asymptotic results wich should improve
the approximation. The reason why the results in [123] are considerably better,
is precisely because of the choice of zero-tuples. The results obtained in [123]
are higly useful for our research. If we opt for the zero-tuples as proposed
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in [123], our approximation method as we proposed in this chapter greatly
improves. Therefore we will explain the choice of zeros as per [123] in some
detail below.

Consider again the kernel function K(x, y). First a grid structure for the y-
variable is chosen. This means that a step size δ is chosen such that

y =
k

δ
+ i

l

δ
, for k = −δ, . . . ,−1, 1, . . . , δ and l = −δ, . . . ,−1 ,

with i the imaginary unit as before. Remark that k, l 6= 0. According to [123],
this prevents numerical problems. Moreover l does only run until l = −1 (and
not until δ). This is to exploit the fact that if K(x, y) = 0 then also K(x̄, ȳ) = 0.
Additionally to the grid structure for the y-variable, it is checked whether the
obtained y lies within the unit circle. Next for each y an accompanying x, say
x(y), is computed by means of a root-finding algorithm. Finally, it is checked
whether the obtained x lies within the unit circle. If so, the pair (x(y), y) is
added to a list of suitable zero-tuples. A while loop among increasing values of
δ is constructed to ensure that sufficiently many zero-tuples are found.

The rationale behind the choice of zero-tuples in [123] is outlined in Section
6.2.3 of [123]. We echo some of the most important intuitions gathered in
Section 6.2.3 of [123]. First and foremost it is observed that zero-tuples close to
(0, 0) are preferable. This intuition is based on the analogy with approximating
the Taylor series of a function, and is confirmed experimentally. Secondly,
also based on the approximation theory of one-dimensional Taylor series, it is
preferred that there are x-values with positive and negative real parts. In case
all zero-tuples satisfy a property like Re[x] < 0, the author suggests to use
a combination of the algorithm described in the previous paragraph and the
same algorithm but with x and y interchanged.

To illustrate the gain in accuracy by choosing zeros as per [123], we compare
it with our approximation results for Case 5. More concretely, we compare
the following two approximations: the one that was used to obtain Figure 4.3
(c) (with M = 15); and our approximation method (with M = 15) but with
zero-tuples obtained with the approach of [123]. We note that for the approach
as per [123], we used the combination approach as described in the previous
section. We obtain δ = 3 and 32 zero pairs (16 when a grid-structure for the
y-variable is chosen, and 16 when a grid-structure for the x-variable is chosen).
We used the first 30 zero pairs along with the normalization equation (4.2.2).
We show the two approximations in Table 4.2. From Table 4.2, we observe
that more accurate approximations are obtained with this new choice of zeros.
This shows yet again that the quality of the approximation strongly depends
on the choice of zeros.

High-precision arithmetic Besides the choice for the zero pairs of the ker-
nel, we have experienced that the number of digits used when making calcula-
tions may have a significant influence on the accuracy of the approximation as
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Fig. 4.3 (c) As per [123] Sim.
p(0, 0) 0.004174 0.003927 0.003954
p(1, 0) 0.004348 0.004063 0.004096
p(2, 0) 0.004032 0.003713 0.003753
p(3, 0) 0.003575 0.003210 0.003256
p(4, 0) 0.003109 0.002688 0.002745
p(5, 0) 0.002680 0.002197 0.002272
p(6, 0) 0.002298 0.001766 0.001855
p(7, 0) 0.001961 0.001402 0.001502
p(8, 0) 0.001660 0.001108 0.001207
p(9, 0) 0.001389 0.000855 0.000967
p(10, 0) 0.001143 0.000667 0.000774
p(0, 1) 0.004174 0.006372 0.006412
p(0, 2) 0.006767 0.007339 0.007390
p(0, 3) 0.007770 0.007742 0.007788
p(0, 4) 0.008148 0.007910 0.007948
p(0, 5) 0.008251 0.007937 0.007962
p(0, 6) 0.008138 0.007876 0.007887
p(0, 7) 0.008223 0.007758 0.007745
p(0, 8) 0.006041 0.007603 0.007562
p(0, 9) 0.014952 0.007411 0.007347
p(0, 10) -0.021735 0.007208 0.007113

Table 4.2: Two approximation methods for Case 5. Each row corresponds to a
probability that has to be estimated. Each column corresponds to an approximation
method. In the column ‘Fig. 4.3 (c)’ we show our approximation as in Figure 4.3
(c) with M = 15. In the column ‘as per [123]’, we show our approximation but with
the suggested zeros as in [123]. Finally in the column ‘Sim.’, we show the simulation
results.

well (with our implementation). This issue is experienced in the case of large
linear systems (which corresponds with high values of M). Typically, using 50
digit precision instead of double-precision arithmetic can give rise to different
(and better) results. Using high-precision arithmetic comes at the price of a
higher computation time. The need of requiring high-precision arithmetic is
definitely a point of concern.

Intuitively, this problem is due to the fact that the matrix T of the linear
system T p̂ = s is ill-conditioned. An improvement of the implementation
might possibly solve this problem. A further investigation on the practical
implementation is, however, beyond the scope of this chapter.
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4.5 Concluding remarks

In this chapter we have proposed a novel approximation method to approxi-
mate the joint pmf of the numbers of customers in the two queues of the system.
We want to remark that it is not essential for our approach to determine the
marginal PGFs U1(z) and U2(z). Therefore, the applicability of our method
goes beyond the queueing model studied in this dissertation. An approximate
performance analysis of two-dimensional queueing models governed by Equa-
tion (2.1), for which asymptotics of U(z1, 0) and U(0, z2) are available, can
be done using our approach. Such asymptotics exist for a fairly general two-
class queueing model with one-step displacements only to neighboring states
[86]. We want to emphasize that in this chapter, one-step displacements to
non-neighboring states are allowed as well (because the two queues have batch
arrivals). Even in cases where the tail distribution is not purely geometric,
the method can still be applied if the corresponding residue can be found.
The reason is that one only has to substitute this tail into the power series
expansions.



5
Heavy-traffic analysis: a

comparison study

In this chapter, we establish a heavy-traffic approximation for the correlation
coefficient between the numbers of type-1 and type-2 customers in the system.
The novel approximation method of Chapter 4 requires some numerical work.
Moreover, when the load is high, the approximation scheme leads to an ill-
conditioned set of linear equations. Besides the numerical motive, we are also
interested in understanding more about the behavior of the system in the case
of heavy traffic.

The heavy-traffic result is computed via the solution of a two-dimensional func-
tional equation, obtained by formulating a boundary-value problem on a hy-
perbola. Additionally, we compare our model with a related model. In most
server-sharing models, it is assumed that the system is work-conserving in the
sense that if one of the queues is empty, a customer of the other queue is served
with probability 1. In the second model, say the modified model, we include
this work-conserving rule such that the server is always allocated to a non-
empty queue. Contrarily to what we would expect, the resulting heavy-traffic
approximations reveal that both models remain different for critically loaded
queues.

As already elaborated in Section 1.5, the marginal distributions of the num-
bers of customers present in both queues are easy to calculate for the original
model. In contrast to this, in the case of the modified model, the distribution
of the total number of customers is easy to calculate since the total system is
identical to a single-server single-queue model. These two observations allow
for comparing both models by means of a simple mean value analysis. We are
however also interested in joint performance measures, in particular the correla-
tion coefficient between the two system contents. Obtaining joint performance
measures brings us back to the machinery of the boundary-value method, of
which we already argued in Chapter 2 that it rarely provides explicit, let alone
easy to calculate, performance measures.
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In this chapter, we will make the simplifying assumption of symmetry between
the two queues. In our case, the heavy-traffic limit means that we will let the
mean arrival rates go to their respective critical value of instability such that
the queues are nearly saturated. The reason for considering the heavy-traffic
limit is twofold. The first reason is that by considering the heavy-traffic limit,
the boundary-value method can be applied in a simpler manner compared to
the non-heavy-traffic case, such that the numerical work is limited (modified
model) or even not necessary (original model). Moreover, since it is typical
for heavy-traffic results to be rather insensitive to the exact form of the arrival
(and service) process [124], we can assume a general batch arrival process for
our queueing models. The second reason is that in heavy-traffic, we have the
interesting question whether (or not) both models converge to the same model.
It is reasonable to think that the answer to this question is affirmative since it
is expected that the queues empty less and less near saturation, and hence the
only rule that sets the two models apart applies less frequently. However, we
show in this chapter that this is not true.

Earlier studies that consider the heavy-traffic limit of similar, continuous-time,
queueing models are [125–127]. It is worth mentioning that these papers use a
heavy-traffic diffusion approximation (see for example also [128] and [129] for
a more detailed explanation of this method). Broadly speaking, with the diffu-
sion approximation one replaces the balance equations by a diffusion equation
with appropriate boundary conditions. Recently, in the doctoral thesis [130,
Ch. 4], a heavy-traffic limit is obtained using transforms, similar as in the
classic work of [124], but with the added difficulty that still a boundary-value
problem for analytic functions has to be solved. However, a nice boundary-
value problem is obtained, where the boundary consist of a parabola, for which
an explicit solution is obtained. We note that the model in [130, Ch. 4] is
a (continuous-time) two-queue random time-limited Markov modulated fluid
polling model, and is in a sense somewhat similar to the model as described in
Section 1.4. Recently in [131], the transient process-limit of the joint workload
in heavy traffic is investigated under less restrictive assumptions on the input
process (no longer constant fluid flows) and the server switching process (no
longer assumed to be exponential). By solving a boundary-value problem, the
stationary distribution of the limiting process is determined.

This chapter follows the lines of our contribution [132]. In Section 5.1, we de-
scribe the assumptions, notations and definitions used in this chapter. Section
5.2 presents the problem statement and lists the main results of this chapter.
In Section 5.3, the analysis for our model is carried out. Finally, Section 5.4 is
devoted to the analysis of the work-conserving variant of our model. In both
Section 5.3 and Section 5.4, we also discuss numerical results.
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5.1 Mathematical model and preliminary results

In this section, we introduce the assumptions, notations and definitions used
in the remainder of the chapter.

We consider a discrete-time single-server queueing system with two infinitely
sized queues, say queue-1 and queue-2, and two independent input lines. Cus-
tomers arriving at queue-1 and queue-2 are referred to as type-1 and type-2
customers respectively. Time is assumed to be slotted. The numbers of type-1
and type-2 arrivals during slot k are denoted by a1,k and a2,k respectively. The
sequences of discrete random variables (a1,k)k∈N

and (a2,k)k∈N
are assumed to

be i.i.d. and are specified by a common probability generating function (pgf)
A(z), i.e.

A(z) , E[zaj,k ], j = 1, 2 .

We thus assume that both types of customers have the same arrival process,
i.e. a1,k and a2,k have the same probability distribution. Moreover, we assume
that these two arrival processes are independent, i.e. the random variables a1,k
and a2,k are independent. For further use, let λ denote the mean numbers of
type-1 and type-2 arrivals per slot,

λ , A′(1) . (5.1)

At the beginning of every slot, the single-server selects either queue with prob-
ability 1

2 . In case a non-empty queue is selected, a customer of this queue gets
served. We assume that the service of each customer type requires exactly one
slot, regardless of whether the customer is of type 1 or type 2. Based on what
happens when an empty queue is selected, we make the distinction between the
following two service disciplines.

Service discipline 1 (Non-work-conserving policy). We assume that when
an empty queue is chosen, no service occurs in that slot, even when the other
queue is non-empty. We will refer to this service discipline as the non-work-
conserving policy.

Service discipline 2 (Work-conserving policy). When only one of both queues
is non-empty and the other is empty, the non-empty queue is served during that
slot, even when initially the empty queue was selected. We will refer to this
service discipline as the work-conserving policy.

Remark that the first service discipline is the same as described in Section 1.4,
but with α = 1

2 .

We now write down the key functional equations of the joint PGF of the system
contents.
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5.1.1 The non-work-conserving policy

Let u1 and u2 indicate the number of type-1 and type-2 customers respectively,
in steady-state. We define their joint PGF as

U(z1, z2) , E[zu1
1 zu2

2 ] . (5.2)

Because of the non-work-conserving property, the queues can be analyzed sep-
arately, cf. Section 1.5. Both queues are then equivalent to simple single-server
queues with geometric service times with mean 2. The arrival load offered by
type-j customers is given by 2λ. The stability condition of a single queue is
given by

2λ < 1 , (5.3)

which is therefore also the stability condition of the complete queueing system.

Recall that we found a functional equation for the joint PGF of the number
of type-1 and type-2 customers in Chapter 2, equation (2.12), for the general
setting with different arrival distributions for type-1 and type-2 customers and
the probability that the server selects queue-1 is parameterized by α. Account-
ing for the symmetry in this chapter, the functional equation for this chapter
reads:

K(z1, z2)U(z1, z2) = A(z1)A(z2)
1

2
[(z2 − 1)z1U(z1, 0) + (z1 − 1)z2U(0, z2)] ,

(5.4)
with

K(z1, z2) = z1z2 −
1

2
[z1 + z2]A(z1)A(z2) . (5.5)

As usual, we will refer to K(z1, z2) as the kernel of equation (5.4).

Equation (5.4) is a functional equation for U(z1, z2) as the boundary functions
U(z1, 0) and U(0, z2) are present in the RHS of the equation. These boundary
functions can be found by constructing a boundary-value problem for analytic
functions. As already mentioned in Section 2.1, this will require a numerical
approach. In this chapter, we however pursue a different objective: we propose
a heavy-traffic approximation that requires only a minimum amount of (or no)
numerical computations. We postpone this analysis to Section 3 and 4. First
we give some, more elementary, results of the joint PGF U(z1, z2).

It is not difficult to see that the joint PGF U(z1, z2) of the system contents is
symmetric in z1 and z2, i.e.

U(z1, z2) = U(z2, z1) .

In particular, this implies that there is only one boundary function present in
the functional equation for U(z1, z2), since

U(z, 0) = U(0, z) . (5.6)
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The PGF S(z) of the total number of customers in the system can be expressed
in terms of this boundary function. Substituting z1 = z2 = z into (5.4) yields

S(z) , U(z, z) =
A2(z)(z − 1)U(z, 0)

z −A2(z)
. (5.7)

On the other hand, the marginal PGFs U(z, 1) and U(1, z) of the numbers of
type-1 and type-2 customers do not depend on U(z, 0). Moreover U(z, 1) and
U(1, z) are identical and given by

U(z, 1) =
A(z)(z − 1)( 12 − λ)

z − 1
2 (z + 1)A(z)

. (5.8)

A first important performance measure that can be derived from this PGF, is
the probability of an empty queue at the beginning of a random slot:

P[u1 = 0] = P[u2 = 0] = U(0, 1) = 1− 2λ . (5.9)

Further, all the marginal moments of interest of the random variables u1 and
u2 can thus be computed. For example, the mean is given by

E[u1] = E[u2] =
dU(z, 1)

dz

∣

∣

∣

∣

z=1

= λ+
λ+A′′(1)

1− 2λ
. (5.10)

5.1.2 The work-conserving policy

Let v1 and v2 be the number of type-1 and type-2 customers in steady-state.
Their joint PGF is defined by

V (z1, z2) , E[zv11 zv2
2 ] . (5.11)

This model is a special case of the model studied in [18]. Introducing the
assumptions of the present paper (i.e. single slot service times, the same arrival
distributions and weights), the following functional equation for V (z1, z2) is
obtained:

K(z1, z2)V (z1, z2) =

A(z1)A(z2)
1

2
((z2 − z1)(V (z1, 0)− V (0, z2)) + V (0, 0)(2z1z2 − z1 − z2)) ,

(5.12)

where K is given by (5.5). Note that both functional equations have the same
kernel.
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In case of a work-conserving service discipline and single-slot service times, the
distribution of the total number of customers is easy to calculate since the total
system is identical to a single-server model with a single queue. Indeed, set
z1 = z2 = z in (5.12) to obtain

V (z, z) =
A2(z)V (0, 0)(z − 1)

z −A2(z)
, (5.13)

and then take the limit z → 1 to obtain (using l’Hôpital’s rule)

V (0, 0) = 1− 2λ . (5.14)

All the moments of the total system content v1+v2 can therefore be computed.
For example, we obtain that the mean total number of customers in the system
is given by

E[v1 + v2] =
dV (z, z)

dz

∣

∣

∣

∣

z=1

= 2λ+
λ2 +A′′(1)

1− 2λ
. (5.15)

It is not difficult to see that the joint pgf V (z1, z2) is symmetric in z1, z2, i.e.

V (z1, z2) = V (z2, z1) .

As a consequence, there is only one boundary function present in equation
(5.12). Moreover, the marginal pgfs V (z, 1) and V (1, z) of the system contents
of type-1 and type-2 customers are identical and given by

Q(z) , V (z, 1) = V (1, z) =
A(z)(z − 1)(1− 2λ+ V (0, 1)− V (z, 0))

2z − (z + 1)A(z)
, (5.16)

where we used (5.14). It is worth noting that (5.14) indicates the probability
that the total system is empty at the beginning of a random slot. Because
of the work-conserving service discipline, the stability condition of the system
is naturally given by 2λ < 1, i.e. (5.3). This is the same stability condition
as for the non-work-conserving policy. This is not a coincidence, and it is
precisely therefore that we assumed a symmetrical system. We emphasize that
in the case of a non-symmetrical system, both systems have a different stability
condition (cf. Section 1.5 and [48, Sect. 4.2]).

5.2 Problem statement and main results

We are interested in the influence of the service discipline on the correlation
structure between the numbers of type-1 and type-2 customers, when λ is near
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the critical value 1
2 . The simplest possible performance measure to quantify the

correlation structure is the correlation coefficient between the number of type-1
and type-2 customers. The objective of our analysis is to obtain expressions for
limλ↑ 1

2
corr[u1, u2] and limλ↑ 1

2
corr[v1, v2]. Our approach is to obtain the joint

Laplace-Stieltjes transform (LST) of the scaled system contents (1−2λ)u1 and
(1− 2λ)u2 as λ ↑ 1

2 and the joint LST of the scaled system contents (1− 2λ)v1
and (1− 2λ)v2 as λ ↑ 1

2 . Notice that for two random variables X and Y

corr[X,Y ] = corr[(1− 2λ)X, (1− 2λ)Y ] . (5.17)

The importance of equation (5.17) lies in the fact that if we are able to compute
the RHS for λ → 1

2 , then we have also obtained the LHS for λ → 1
2 .

Functional equations for the two limiting joint LSTs can easily be obtained
from (5.4) and (5.12). The kernel in these new functional equations is much
simpler than K(z1, z2), as will be shown in Section 5.3.

In this chapter, we assume that A′′(1) has a finite limit as λ ↑ 1
2 . We define

λ11 = lim
λ↑ 1

2

A′′(1) . (5.18)

This mathematical quantity can be expressed in terms of the physical quantity
var[aj,k], since var[aj,k] = A′′(1) + λ − λ2. Therefore, we define σ2

h as the
variance of the number of type-j arrivals per slot, as λ ↑ 1

2 , i.e.

σ2
h , lim

λ↑ 1
2

var[aj,k] = λ11 +
1

4
. (5.19)

Notice that σ2
h is the same for both customer types, because of the symmetry of

the arrival process. Since A(z) is a power series in z with positive coefficients,
we have that λ11 ≥ 0. Consequently, we have the following important lower
bound for σ2

h :

σ2
h ≥ 1

4
. (5.20)

When λ approaches its critical value 1
2 in the non-work-conserving model, it is

expected that the probability to select an empty server tends to zero because
P[u1 = 0] = P[u2 = 0] = 1 − 2λ ↓ 0, as λ ↑ 1

2 . In that perspective, the non-
work-conserving model resembles the work-conserving model when λ is close
to 1

2 , because the number of wasted slots in the non-work-conserving model
decreases. However, a simple mean value analysis already reveals that even
in the limit λ ↑ 1

2 the work-conserving model is still strictly more efficient.
Indeed, from (5.10) we have that when λ ↑ 1

2 the mean total scaled system
content (1− 2λ)(u1 + u2) tends to

lim
λ↑ 1

2

E [(1− 2λ) (u1 + u2)] = 2

(

1

2
+ λ11

)
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=
1

2
+ 2σ2

h , (5.21)

while from (5.15), we easily obtain that

lim
λ↑ 1

2

E [(1− 2λ) (v1 + v2)] =
1

4
+ λ11

= σ2
h . (5.22)

Hence, we have that for λ ↑ 1
2

E[u1 + u2] ∼
1
2 + 2σ2

h

1− 2λ
and E[v1 + v2] ∼

σ2
h

1− 2λ
, (5.23)

where f(x) ∼ g(x) means that f(x)
g(x) tends to 1 as x → x0. Consequently,

we have shown that the mean total system contents are asymptotically not
equivalent.

In Sections 5.3 and 5.4 we obtain the limiting LSTs of the scaled system con-
tents. From these expressions, the correlation coefficient for λ ↑ 1

2 under the
different service disciplines is obtained. The final, complete expressions are
given in the theorem below.

Theorem 5.1. The correlation coefficient between the numbers of type-1 and
type-2 customers in the system with the non-work-conserving policy, for λ ↑ 1

2
is given by

lim
λ↑ 1

2

corr[u1, u2] =
32π2σ4

h − 128σ4
hϕ

2 + 16π2σ2
h − 112σ2

hϕ
2 − 21ϕ2

3ϕ2 (1 + 4σ2
h)

2 ,

where

ϕ = arccos

(

1

1 + 4σ2
h

)

. (5.24)

The correlation coefficient between the numbers of type-1 and type-2 customers
in the system with the work-conserving policy, for λ ↑ 1

2 is given by

lim
λ↑ 1

2

corr[v1, v2] =
σ4
h

2

(

3

4
σ4
h +

1

4
σ2
h + J

)−1

− 1 , (5.25)

where

J =

∫ +∞

0

r(t)

(tanh2
(

π
2ϕ t
)

+ 1)2
·

tanh
(

π
ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

dt , (5.26)

k =
1

2σ2
h

√

1 + 4σ2
h

1 + 2σ2
h

, (5.27)



5.3 The non work-conserving policy in heavy-traffic 127

r(t) =
π

ϕ2
(1 + 2σ2

h)
3
2

√

1 + 4σ2
h

(

tanh2
(

π

2ϕ
t

)

+ 1

)

+
π2

ϕ3
2
√
2σh(1 + 2σ2

h)
√

1 + 4σ2
h

(

tanh2
(

π

2ϕ
t

)

− 1

)

. (5.28)

The result of Theorem 5.1 is discussed in Sections 5.3.4 and 5.4.4, but we
already mention that both correlation coefficients are significantly different
when compared to each other.

5.3 The non work-conserving policy in heavy-

traffic

The purpose of the analysis in this section is to obtain the joint LST of the
scaled system contents (1− 2λ)u1 and (1− 2λ)u2 as λ ↑ 1

2 .

The joint LST of (1− 2λ)u1 and (1− 2λ)u2 is

Uλ(s1, s2) , E[e−s1(1−2λ)u1−s2(1−2λ)u2 ]

= U(e−s1(1−2λ), e−s2(1−2λ)) .

Hence, from (5.4) we obtain an equation for Uλ(s1, s2):

2K
(

e−s1(1−2λ), e−s2(1−2λ)
)

Uλ(s1, s2) = (5.29)

e−s1(1−2λ)
(

e−s2(1−2λ) − 1
)

A
(

e−s1(1−2λ)
)

A
(

e−s2(1−2λ)
)

U
(

e−s1(1−2λ), 0
)

+ e−s2(1−2λ)
(

e−s1(1−2λ) − 1
)

A
(

e−s1(1−2λ)
)

A
(

e−s2(1−2λ)
)

U
(

0, e−s2(1−2λ)
)

.

We assume that the following limit exists:

Uh(s1, s2) , lim
λ↑ 1

2

E[e−s1(1−2λ)u1−s2(1−2λ)u2 ]

= lim
λ↑ 1

2

Uλ(s1, s2) .
(5.30)

The subscript h is to indicate that the LST corresponds to the heavy-traffic
limit. We also define

Sh(s) , lim
λ↑ 1

2

E[e−s(1−2λ)(u1+u2)]

= Uh(s, s)

= lim
λ↑ 1

2

S(e−s(1−2λ)) .

(5.31)

as the limiting LST of the total scaled system content.
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The boundary function U(e−s(1−2λ), 0), as λ ↑ 1
2 , can be written in terms of

Sh(s). From (5.7), we obtain that

zU(z, 0)

z − 1
=

z(z −A2(z))

A2(z)(z − 1)2
S(z) . (5.32)

We have to use the change of variables z = e−s(1−2λ) in this expression and
take the limit for λ ↑ 1

2 . However, we have to be careful with derivatives of
A(e−s(1−2λ)) with respect to λ since A(·) itself also depends on λ. For ease
of presentation, we therefore make this dependency on λ explicit and write
A(λ, z), instead of A(z). Therefore, if we substitute z = e−s(1−2λ) in (5.32)
and take the limit for λ ↑ 1

2 we obtain that

lim
λ↑ 1

2

e−s(1−2λ)U(e−s(1−2λ), 0)

e−s(1−2λ) − 1

= lim
λ↑ 1

2

e−s(1−2λ)(e−s(1−2λ) −A2(λ, e−s(1−2λ)))

A2(λ, e−s(1−2λ))(e−s(1−2λ) − 1)2
S(e−s(1−2λ))

= Sh(s) · lim
λ↑ 1

2

e−s(1−2λ) −A2(λ, e−s(1−2λ))

(e−s(1−2λ) − 1)2
. (5.33)

Note that A(λ, 1) = 1 for all λ, because of the normalization condition of a
PGF. Hence, e−s(1−2λ) −A2(λ, e−s(1−2λ)) goes to zero as λ ↑ 1

2 . Therefore, we
will have to apply l’Hôpital’s rule at least once to the limit in (5.33). As we
will show further, the following partial derivatives will occur:

A(1)(λ, 1) = 0 , (5.34)

A(11)(λ, 1) = 0 , (5.35)

A(2)(λ, 1) = λ , (5.36)

A(22)(λ, 1) = A′′(1) , (5.37)

A(12)(λ, 1) = 1 , (5.38)

with

A(1n,2m)(x, y) ,
∂n

∂λn

∂m

∂zm
A(λ, z) ,

∣

∣

∣

∣

λ=x,z=y

, (5.39)

whereby kn represents a series consisting of n consecutive k’s.

Perhaps the easiest way to obtain (5.34)-(5.38), is to look at a series expansion
of A(λ, z) about z = 1. Since the first two moments of A(z) exist, we can write
the following series expansion of A(λ, z) about z = 1 for fixed λ:

A(λ, z) = A(λ, 1) +A(2)(λ, 1)(z − 1) +
1

2
A(22)(λ, 1)(z − 1)2 +O

(

(z − 1)3
)

= 1 + λ(z − 1) +
1

2
A(22)(λ, 1)(z − 1)2 +O

(

(z − 1)3
)

. (5.40)
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If we differentiate (5.40) with respect to λ once or twice, all terms have a
common factor (z − 1). Hence, by then evaluating at z = 1, we get (5.34)
and (5.35). Equations (5.36) and (5.37) follow from the first two moments of
A(z), where we used definition (5.1) to simplify (5.36). Finally, equation (5.38)
can be found by first taking the derivative of (5.40) with respect to z, yielding
λ+O(z − 1), and then taking the derivative with respect to λ. Thereafter, by
evaluating at z = 1 we obtain (5.38).

For further use, we remark that

lim
λ↑ 1

2

A(1n,2m)(λ, e−s(1−2λ)) = lim
λ↑ 1

2

A(1n,2m)(λ, 1) , (5.41)

since A(1n,2m)(λ, e−s(1−2λ)) can be written as a sum of products of (e−s(1−2λ)−
1)k with a factor that depends on λ, cf. (5.40).

Returning to the limit in (5.33), we have that

lim
λ↑ 1

2

e−s(1−2λ) −A2(λ, e−s(1−2λ))

(e−s(1−2λ) − 1)2

= lim
λ↑ 1

2

1

4s(e−s(1−2λ) − 1)e−s(1−2λ)
·
{

2se−s(1−2λ)

−2A(λ, e−s(1−2λ))
(

A(1)(λ, e−s(1−2λ)) + 2se−s(1−2λ)A(2)(λ, e−s(1−2λ))
)}

= lim
λ↑ 1

2

1

8s2(e−s(1−2λ))2 + 8(e−s(1−2λ) − 1)s2e−s(1−2λ)

·
{

4s2e−s(1−2λ) − 2
(

A(1)(λ, e−s(1−2λ)) + 2se−s(1−2λ)A(2)(λ, e−s(1−2λ))
)2

−2A(λ, e−s(1−2λ))
[

A(11)(λ, e−s(1−2λ)) + 4se−s(1−2λ)A(12)(λ, e−s(1−2λ))

+4s2e−s(1−2λ)A(2)(λ, e−s(1−2λ)) + (2se−s(1−2λ))2A(22)(λ, e−s(1−2λ))
]}

.

=
−2s2 − 8s− 8λ11s

2

8s2

=−
(

σ2
h +

1

s

)

.

In the second equality we used l’Hôpital’s rule again, since (5.34) and (5.36)
imply that the numerator in the first equality goes to zero. In the third equal-
ity, we used (5.34)-(5.38) and (5.18). The final equality follows from (5.19).
Substituting this result into (5.33) gives us

lim
λ↑ 1

2

e−s(1−2λ)U(e−s(1−2λ), 0)

e−s(1−2λ) − 1
= −

(

σ2
h +

1

s

)

Sh(s) . (5.42)

We can now proceed with the determination of a functional equation for
Uh(s1, s2). Dividing (5.29) by

(

e−s1(1−2λ) − 1
) (

e−s2(1−2λ) − 1
)

, taking the
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limit λ ↑ 1
2 and using (5.42), we obtain that

Kh(s1, s2)

4s1s2
Uh(s1, s2) =

(

σ2
h +

1

s1

)

Sh(s1) +

(

σ2
h +

1

s2

)

Sh(s2) , (5.43)

with
Kh(s1, s2) , (1 + 4σ2

h)(s
2
1 + s22)− 2s1s2 + 4(s1 + s2) (5.44)

as the kernel of the functional equation (5.43).

It is easily seen that the marginal LSTs Uh(s, 0) and Uh(0, s) can be obtained
by choosing either {s1 = s, s2 = 0} or {s1 = 0, s2 = s} in equation (5.43). We
obtain that

Uh(s, 0) =
4

(1 + 4σ2
h) s+ 4

, (5.45)

which is the LST of the distribution of an exponential random variable with
mean σ2

h + 1
4 . Clearly, we have the same result for Uh(0, s).

5.3.1 Areas of convergence

In this section, we examine in which region(s) the LSTs Uh(s1, s2) and Sh(s)
are analytic. From Laplace transform theory, we have that Uh(s, 0) is analytic
for Re[s] > − 4

1+4σ2
h

and so we may conclude that Uh(s1, s2) is at least analytic

in the region

{

(s1, s2) : Re[s1] > − 4

1 + 4σ2
h

,Re[s2] ≥ 0

}

∪
{

(s1, s2) : Re[s1] ≥ 0,Re[s2] > − 4

1 + 4σ2
h

}

. (5.46)

Since Uh(s1, s2) is joint analytic inside this region, this also holds for
Kh(s1, s2)Uh(s1, s2). Finally, using functional equation (5.43) we can conclude
that Sh(s) must be analytic for Re[s] > − 4

1+4σ2
h

.

5.3.2 Solution of the functional equation

In this section, we solve the functional equation (5.43) for Uh(s1, s2). In order
to solve this equation, we have to determine the function Sh(s). This can
be done by exploiting the fact that when Kh(s1, s2) vanishes for a certain pair
(s1, s2) for which Uh(s1, s2) is finite, it must be that the RHS of (5.43) vanishes
for that pair (s1, s2).

Observe that Kh(s1, s2) is a quadratic polynomial both in s1 and s2, where
s1 and s2 may be complex-valued. For any given value s1 there exist exactly
two values, say s̃2 and ŝ2, such that Kh(s1, s̃2) = 0, Kh(s1, ŝ2) = 0. Using



5.3 The non work-conserving policy in heavy-traffic 131

the well-known relations for the product and sum of the roots of a quadratic
equation, we always have that

s̃2ŝ2 =
(4 + (1 + 4σ2

h)s1)s1
1 + 4σ2

h

,

s̃2 + ŝ2 =
2s1 − 4

1 + 4σ2
h

,

(5.47)

since

Kh(s1, s2) = (1 + 4σ2
h)s

2
2 + (4− 2s1)s2 + (4 + (1 + 4σ2

h)s1)s1 .

If Uh(s1, s̃2) and Uh(s1, ŝ2) are finite, we obtain from (5.43) that
(

σ2
h +

1

s1

)

Sh(s1) +

(

σ2
h +

1

s̃2

)

Sh(s̃2) = 0 ,

and
(

σ2
h +

1

s1

)

Sh(s1) +

(

σ2
h +

1

ŝ2

)

Sh(ŝ2) = 0 ,

so that by eliminating Sh(s1)

(

σ2
h +

1

s̃2

)

Sh(s̃2) =

(

σ2
h +

1

ŝ2

)

Sh(ŝ2) . (5.48)

We consider zeros such that ŝ2 = s̃2. As we will see further, this choice of zeros
is sufficient to determine Sh(s). Letting

z = x+ iy ∈ C, s̃2 = z and ŝ2 = z̄ , (5.49)

we will first prove the existence and the exact location of such zeros. Subsituting
s̃2 = x+ iy and ŝ2 = x− iy into (5.47) yields

x2 + y2 =
(4 + (1 + 4σ2

h)s1)s1
1 + 4σ2

h

, (5.50)

and

2x =
2s1 − 4

1 + 4σ2
h

. (5.51)

Solving (5.51) for s1 yields

s1 = (1 + 4σ2
h)x+ 2 , (5.52)

and substituting this into (5.50) gives us

x2 + y2 =

(

4σ2
h + 1

) (

4σ2
hx+ x+ 2

)2
+ 16σ2

hx+ 4x+ 8

4σ2
h + 1

.
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x

y

0××

1
2σ2

h

Figure 5.1: Illustration of the hyperbola described by equation (5.53).

Completing the square and dividing by 2
σ2
h

yields the equation of a hyperbola:

4σ4
h(4σ

2
h + 1)(2σ2

h + 1)

(

x+
1

2σ2
h

)2

− σ2
h

2
(4σ2

h + 1)y2 = 1 . (5.53)

This hyperbola is shown in Figure 5.1 for a specific choice of the parameter
σ2
h. Notice that this hyperbola is symmetric with respect to the x-axis and

symmetric with respect to the vertical axis x = − 1
2σ2

h

. Moreover, it holds that

x = − 1

2σ2
h

± 1

2σ2
h

√

(1 + 4σ2
h)(1 + 2σ2

h)
, y = 0

are the two solutions of equation (5.53) intersecting the x-axis. Hence, for
values s2 = x+ iy on the right-branch of this hyperbola it holds that

Re[s2] ≥ − 1

2σ2
h

+
1

2σ2
h

√

(1 + 4σ2
h)(1 + 2σ2

h)
.

Since σ2
h ≥ 1

4 , a part of this branch is always located in the left half-plane.
In particular, s2 = 0 is located in the interior of the region bounded by the
right-branch of the hyperbola.
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We have thus shown that for all complex values z located on the hyperbola with
equation (5.53), there exists a unique, positive real s1 given by (5.52) such that
Kh(s1, z) = Kh(s1, z̄) = 0. However, in order to guarantee that Uh(s1, z) and
Uh(s1, z̄) are finite, we restrict ourselves to the right-branch of the hyperbola.
Because of (5.20), it holds that − 4

1+4σ2
h

< − 1
2σ2

h

. Consequently, by restricting

to the right-branch of the hyperbola, Uh(s1, s2) is certainly finite and we can
safely use equation (5.48). Let us denote the right-branch of the hyperbola by
Σ. More precisely, we define

Σ =

{

(x, y) ∈ R
2 | 4σ4

h(1 + 4σ2
h)(1 + 2σ2

h)

(

x+
1

2σ2
h

)2

−σ2
h

2
(4σ2

h + 1)y2 = 1, x > − 1

2σ2
h

}

. (5.54)

The curve Σ divides the complex plane into two parts. The region onto the
right of it, containing the origin, will in the remainder be referred to as the
interior region of Σ.

For s̃2 = s, ŝ2 = s̄, s ∈ Σ, equation (5.48) implies that

(

σ2
h +

1

s

)

Sh(s) =

(

σ2
h +

1

s̄

)

Sh(s̄) ,

or, using that Sh(s̄) = Sh(s),

Im

[(

σ2
h +

1

s

)

Sh(s)

]

= 0, s ∈ Σ . (5.55)

Observe that
(

σ2
h + 1

s

)

Sh(s) is analytic in the interior region of Σ, except at
s = 0 where it has a simple pole. We thus have reduced our problem to that of
determining a function that is analytic inside the interior region of Σ, except for
a simple pole at s = 0, with prescribed boundary values of its imaginary part
(5.55). The solution to this problem in case the boundary is the unit circle,
is given in [49, Sect. I.3.3]. Hence, our boundary-value problem can be solved
using a conformal mapping. Therefore let f0 be a conformal mapping from the
unit disk onto the interior of Σ. Since the real axis is an axis of symmetry of
the interior of Σ, it is natural to choose (as we may) f0 symmetric with respect
to the real axis [7, Ch. VI.4], i.e. f0(s̄) = f0(s), and hence that f0(1) = ∞. We
can then rewrite (5.55) as

Im

[(

σ2
h +

1

f0(s)

)

Sh(f0(s))

]

= 0, |s| = 1 . (5.56)

Finally, let us denote s0 as the unique value in the open interval ]− 1, 1[ such
that f0(s0) = 0. We are now facing the following problem: find a function
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(

σ2
h + 1

f0(s)

)

Sh(f0(s)) analytic inside the unit disk, except for a simple pole at

s = s0, satisfying the boundary condition (5.56). The solution of this problem
is given by : [49, Sect. I.3.3]

(

σ2
h +

1

f0(s)

)

Sh(f0(s)) = c0 − ic1
s− s0
1− ss0

+ ic̄1
1− ss0
s− s0

, (5.57)

with c0, c1 two unknown constants that still have to be determined. Let f =
f−1
0 be the conformal mapping from the interior region of Σ to the unit disk.

Then
(

σ2
h +

1

s

)

Sh(s) = c0 − ic1
f(s)− f(0)

1− f(s)f(0)
+ ic̄1

1− f(s)f(0)

f(s)− f(0)
, (5.58)

or

Sh(s) =

(

c0 − ic1
f(s)− f(0)

1− f(s)f(0)
+ ic̄1

1− f(s)f(0)

f(s)− f(0)

)

s

1 + σ2
hs

. (5.59)

Since Sh(s) is the LST of a random variable, it is required that Sh(0) = 1.
Taking the limit s → 0 into the expression above yields

1 = lim
s→0

(

c0 − ic1
f(s)− f(0)

1− f(s)f(0)
+ ic̄1

1− f(s)f(0)

f(s)− f(0)

)

s

1 + σ2
hs

⇔ 1 = lim
s→0

ic̄1
1− f(s)f(0)

f(s)− f(0)

s

1 + σ2
hs

⇔ 1 = ic̄1
1− f2(0)

f ′(0)
.

We thus see that ic̄1 = f ′(0)
1−f2(0) , yielding

Sh(s) =

(

c0 +
f ′(0)

1− f2(0)

(

f(s)− f(0)

1− f(s)f(0)
+

1− f(s)f(0)

f(s)− f(0)

))

s

1 + σ2
hs

.

Further, from the initial value theorem for LSTs, we must have that

lim
s→∞

sSh(s)

is finite, which can only be if (using that lims→∞ f(s) = 1)

c0 = − 2f ′(0)

1− f2(0)
.

As a result,

Sh(s) =
f ′(0)

1− f2(0)

(

−2 +
f(s)− f(0)

1− f(s)f(0)
+

1− f(s)f(0)

f(s)− f(0)

)

s

1 + σ2
hs

. (5.60)
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The function f can be explictly obtained. The linear function z1 = z + 1
2σ2

h

maps the region described by

4σ4
h(1 + 4σ2

h)(1 + 2σ2
h)

(

x+
1

2σ2
h

)2

− σ2
h

2
(1 + 4σ2

h)y
2 > 1 ,

z = x+ iy, to the region

4σ4
h(1 + 4σ2

h)(1 + 2σ2
h)x

2 − σ2
h

2
(1 + 4σ2

h)y
2 > 1 .

In [133] (page 186, Equation (13)), it is shown that the interior of the right
branch of such a hyperbola is mapped to the upper half-plane by the function

z2 = i
√
2 cosh

(

π
2ϕArccosh z1

k

)

, with

k =
1

2σ2
h

√

1 + 4σ2
h

1 + 2σ2
h

, (5.61)

cosϕ =
1

1 + 4σ2
h

, 0 ≤ ϕ <
π

2
. (5.62)

Finally, the Möbius function z3 = −
√
2+iz2√
2−iz2

, maps the upper half-plane to the

unit disk such that i
√
2 is mapped to 0 and −i

√
2 to infinity (see for example

[7], page 175, Equation (17)) . The composition of these mappings gives us the
mapping f :

f(s) = tanh2
(

π

4ϕ
Arccosh

{ s

k
+ cos

ϕ

2

}

)

, (5.63)

where we used that

1

2σ2
hk

=

√

1 + 2σ2
h

1 + 4σ2
h

= cos
ϕ

2
. (5.64)

Remark that due to the particular choice of the Möbius function z3, the hyper-
bolic tangent tanh shows up. One can verify that the function f(s) is indeed
symmetric with respect to the x-axis. Further it is not difficult to obtain that

f(0) = tanh2
(

iπ

8

)

= −3 + 2
√
2 . (5.65)

Substituting f(s) and f(0) into (5.60) and using some trigonometric identities
gives us the following final result for Sh(s):

Sh(s) =
π

ϕk sin(ϕ2 )

s

cosh
(

π
ϕArccosh

{

s
k + cos ϕ

2

}

)

(σ2
hs+ 1)

. (5.66)
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The joint LST of the random variables (1− 2λ)u1 and (1− 2λ)u2, as λ ↑ 1
2 is

then obtained by solving (5.43) for Uh(s1, s2) and substituting (5.66).

We note that, despite the presence of the function Arccosh, Sh(s) is indeed
analytic in the right half-plane (as it should be for the LST of a continuous
random variable). The function Arccosh is the analytic inverse of cosh : {z ∈
C : 0 < Im z < π} → C \ {a : a ∈ R, |a| ≥ 1}. Clearly, Arccosh is not
continuous on the branch cut [1,+∞[, since it holds that for x ∈ [1,+∞[,
limz−>x,Im z<0 Arccosh z = − limz−>x,Im z>0 Arccosh z = −Arccosh x. But
since cosh(−z) = cosh(z), the limit of the composite transformation yields in
both cases the same result. By the Riemann continuation theorem, the function
Sh is indeed analytic in the right half-plane.

Finally, remark that Sh(s) is the product of the LST of an exponential variable
with mean σ2

h and the function

π

ϕk sin(ϕ2 )

s

cosh
(

π
ϕArccosh

{

s
k + cos ϕ

2

}

) ,

which satisfies also the normalization property. It is not known to us if this
function is the LST of a known distribution.

5.3.3 Calculation of moments

The determination of all (mixed) moments of the scaled system contents, as
λ ↑ 1

2 , can be deduced from the LST Uh(s1, s2). In this section we are particu-
larly interested in the correlation coefficient. First recall that we obtained the
marginal LST of the scaled system contents already from the start, see (5.45),
which was the LST of an exponential distribution. In particular, we have that

lim
λ↑ 1

2

E[(1− 2λ)u1] = σ2
h +

1

4
(5.67)

lim
λ↑ 1

2

var[(1− 2λ)u1] =

(

σ2
h +

1

4

)2

. (5.68)

By symmetry, the mean and variance of (1− 2λ)u2 are equal to the mean and
variance of (1− 2λ)u1. Therefore, we also obtain the mean of the total scaled
system content

lim
λ↑ 1

2

E[(1− 2λ)(u1 + u2)] = 2σ2
h +

1

2
. (5.69)

Note that we already obtained this result as (5.21) in Section 5.2. Also, note
that this expression can be found by taking the first derivative of (5.66), sub-
stituting s = 0 and multiplying by −1. Making use of (5.66), we can compute
higher moments of the scaled total system content using the moment-generating
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property of LSTs. For the second moment, we get

lim
λ↑ 1

2

E[((1− 2λ)(u1 + u2))
2
] = S′′

h(0)

=

(

4σ4
h − 10σ2

h − 3
)

ϕ2 + 8π2σ4
h + 4π2σ2

h

6ϕ2
. (5.70)

Since for a random variable X it holds that var[X] = E[X2] − E[X]2, it easily
follows that

lim
λ↑ 1

2

var[(1−2λ)(u1+u2)] =
−
(

40σ4
h + 44σ2

h + 9
)

ϕ2 + 8π2σ4
h + 4π2σ2

h

12ϕ2 . (5.71)

Since also for two random variables X, Y it holds that var[X + Y ] = var[X] +
var[Y ] + 2cov[X,Y ], we get

lim
λ↑ 1

2

cov[(1− 2λ)u1, (1− 2λ)u2]

=
−
(

128σ4
h + 112σ2

h + 21
)

ϕ2 + 32π2σ4
h + 16π2σ2

h

48ϕ2 . (5.72)

The correlation between the system contents can then be found as

lim
λ↑ 1

2

corr[u1, u2] = lim
λ↑ 1

2

corr[(1− 2λ)u1, (1− 2λ)u2]

=
32π2σ4

h − 128σ4
hϕ

2 + 16π2σ2
h − 112σ2

hϕ
2 − 21ϕ2

3ϕ2 (1 + 4σ2
h)

2 . (5.73)

5.3.4 Examples and discussions

The results obtained in the previous subsection depend only on the system
parameter σ2

h. Note that ϕ is given by

ϕ = arccos

(

1

1 + 4σ2
h

)

.

Hence, if σ2
h ranges from 1

4 to +∞, it follows that ϕ ranges from

π

3
≤ ϕ ≤ π

2
.

We emphasize that the results from the previous subsection are valid for any
arrival distribution with pgf A(z), provided that A′′(1) has a finite limit for
λ ↑ 1

2 . Before discussing the results in general, we first treat the two extreme
cases for σ2

h, i.e. σ2
h = 1

4 and σ2
h → +∞.
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5.3.4.1 Bernoulli arrivals

Let us assume that the number of type-j arrivals within a slot is Bernoulli
distributed, i.e.

A(z) = 1− λ+ λz .

Since A′′(1) = 0, the lower bound (5.20) for σ2
h is an equality, i.e.

σ2
h =

1

4
.

The parameter ϕ defined in (5.62) is then given by

ϕ =
π

3
.

Using the fact that cosh(3z) = 4 cosh3(z) + 3 cosh(z) for every z, we obtain
that the LST Sh(s) simplifies to

Sh(s) =
32

(s+ 2)(s+ 4)2
.

We thus observe that, in case of Bernoulli arrivals, Sh(s) is the product of three
LSTs of exponential random variables. This simple expression is completely in
accordance with the results obtained in Section 2.3. In Section 2.3, we studied
the non-work-conserving model under the assumption of (not necessarily sym-
metric) Bernoulli arrivals. For this particular case of arrivals, we obtained the
joint probability distribution of the number of type-1 and type-2 customers, in
steady state. The corresponding joint probability generating function turned
out to be a rational function.

The correlation coefficient between the type-1 and type-2 customers, using
(5.73), is equal to

lim
λ↑ 1

2

corr[u1, u2] = −1

4
.

5.3.4.2 Arrivals with infinite asymptotic variance

We have made the restriction that A′′(1) has a finite limit for λ ↑ 1
2 . As a

consequence, this implies that σ2
h remains finite. However, in the correlation

coefficient (5.73) we still can take the limit as σ2
h → +∞. For this limit, we

have that ϕ → π
2 . Using (5.73), we obtain that

lim
λ↑ 1

2

corr[u1, u2] → 0, as σ2
h → +∞ .

This result suggests that in case the mean and the variance of the number of
arrivals is very high in both queues, the two queues become uncorrelated.
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5.3.4.3 Other arrival processes

For other well-known arrival processes, such as the geometric distribution, bi-
nomial distribution and the Poisson distribution, the LST Sh(s) does not sim-
plify to a rational function. Nevertheless, for every value of σ2

h ∈
[

1
4 ,+∞

]

, we
can easily compute the correlation coefficient using (5.73). In Figure 5.2, we
show the correlation coefficient for σ2

h ∈
[

1
4 , 10

]

, which quantifies the correla-
tion between the number of type-1 and type-2 customers in the system at the
beginning of a slot for λ ↑ 1

2 .

Figure 5.2: Correlation coefficient between the system contents for λ ↑ 1

2
, versus

the asymptotic arrival variance σ2
h.

Looking at Figure 5.2, we observe that the correlation coefficient is always
negative. It is worth noting that in Section 2.3, it has been shown that for
the special case of two independent Bernoulli arrival processes, the correlation
coefficient is negative for all allowed values of λ. The reason for this negative
correlation coefficient is the service policy. If a queue is getting longer, this
is because either there were a lot of arrivals in the previous slots or because
the queue was not getting served the previous slots. So in the latter case, if
queue-1 is large, it is likely that queue-2 is small. In the heavy-traffic limit
λ ↑ 1

2 , the lengths of both queues go to infinity. However, according to Figure
5.2, the correlation effect of the service policy is still present for σ2

h not too
high. Finally, we observe that the correlation coefficient is a strictly increasing
function of σ2

h and goes from − 1
4 to 0 as σ2

h increases from 1
4 to +∞.

5.4 The work-conserving policy in heavy-traffic

We now analyze the joint distribution of v1 and v2 in case of heavy traffic. More
concretely, the purpose is to obtain the joint LST of the scaled random variables
(1 − 2λ)v1 and (1 − 2λ)v2 as λ ↑ 1

2 . We assume that this limit distribution
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exists and we define the corresponding LST of this distribution as

Vh(s1, s2) , lim
λ↑ 1

2

E[e−s1(1−2λ)v1−s2(1−2λ)v2 ] . (5.74)

The subscript h is used again to indicate that the LST corresponds to the
heavy-traffic limit. Similarly we define

Qh(s) , lim
λ↑ 1

2

E[e−s(1−2λ)v1 ]

= Vh(s, 0)
(5.75)

as the limiting LST of the number of type-1 customers in the system. Obviously
because of the symmetry we also have

Qh(s) = lim
λ↑ 1

2

E[e−s(1−2λ)v2 ]

= Vh(0, s)

as the limiting LST of the number of type-2 customers in the system. To
obtain a functional equation for Vh(s1, s2), we can substitute z1 = e−s1(1−2λ)

and z2 = e−s2(1−2λ) into (5.12) and take the limit λ ↑ 1/2. Let us first rewrite
the boundary function V (e−(1−2λ)s, 0) as a function of Qh(s). To that end, we
solve equation (5.16) for V (z, 0)− V (0, 1). This gives us

V (z, 0)− V (0, 1) = 1− 2λ− 2z − (z + 1)A(z)

A(z)(z − 1)
V (z, 1) .

Next, we divide both sides by 1 − 2λ and use the change of variable z =
e−s(1−2λ). Finally, taking the limit λ ↑ 1/2 we obtain that

lim
λ↑1/2

1

1− 2λ

(

V (e−s(1/2−λ), 0)− V (0, 1)
)

= 1−
((

σ2
h +

1

4

)

s+ 1

)

Qh(s) .

(5.76)

The detailed computations to obtain the limit above are omitted. The com-
putations are very similar to the ones in Section 5.3 to obtain equation (5.42),
i.e. by carefully taking into account the dependency of A(z) on the arrival rate
λ and applying l’Hôpital’s rule several times.

A functional equation for Vh(s1, s2) can now be obtained, similarly as in Section
5.3. Rewrite (5.12) as

K(z1, z2)

(z2 − z1)(1− 2λ)
V (z1, z2) = A(z1)A(z2)

1

2

(

1

1− 2λ
(V (z1, 0)− V (1, 0))

− 1

1− 2λ
(V (z2, 0)− V (1, 0)) +

2z1z2 − z1 − z2
z2 − z1

)

. (5.77)
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Next, we substitute z1 = e−s1(1/2−λ) and z2 = e−s2(1/2−λ) into the above.
Finally, taking the limit λ ↑ 1

2 , we obtain the following functional equation for
Vh(s1, s2)

Kh(s1, s2)

4(s2 − s1)
Vh(s1, s2) =

((

σ2
h +

1

4

)

s2 + 1

)

Qh(s2)

−
((

σ2
h +

1

4

)

s1 + 1

)

Qh(s1) +
s1 + s2
s2 − s1

.

(5.78)

The LST of the total scaled system content can easily be obtained by substi-
tuting s1 = s2 = s in equation (5.78), yielding

Vh(s, s) =
1

σ2
hs+ 1

. (5.79)

The above LST is the LST of an exponentially distributed random variable
with mean σ2

h.

5.4.1 Solution of the functional equation

In this section, we will determine the boundary function Qh(s), and hence
the solution Vh(s1, s2) of the functional equation (5.78). We solve equation
(5.78) in the same manner as we did in Section 5.3, i.e. using the bounded-
ness of the function Vh(s1, s2) and the zeros of Kh(s1, s2) in order to obtain
a boundary-value problem for the remaining unknown function Qh(s). Re-
garding the boundedness, we observe from (5.79) that Vh(s1, s2) is analytic for
Re[s1] = Re[s2] > − 1

σ2
h

. Hence, since Vh(s1, s2) is a joint LST it follows that

Vh(s1, s2) is also analytic for

Re[s1] > Re[s2] > − 1

σ2
h

and Re[s2] > Re[s1] > − 1

σ2
h

. (5.80)

In particular, the marginal LST Qh(s) = Vh(s, 0) is analytic for at least Re[s] >
− 1

σ2
h

.

We now proceed as in Section 5.3. For any given value s1 there exist exactly
two values, say s̃2 and ŝ2, such that Kh(s1, s̃2) = 0, Kh(s1, ŝ2) = 0. If moreover
Vh(s1, s̃2) and Vh(s1, ŝ2) are finite, we obtain from (5.78) that
((

σ2
h +

1

4

)

s̃2 + 1

)

Qh(s̃2)−
((

σ2
h +

1

4

)

s1 + 1

)

Qh(s1) +
s1 + s̃2
s̃2 − s1

= 0 ,

and
((

σ2
h +

1

4

)

ŝ2 + 1

)

Qh(ŝ2)−
((

σ2
h +

1

4

)

s1 + 1

)

Qh(s1) +
s1 + ŝ2
ŝ2 − s1

= 0 ,
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so that by eliminating Qh(s1) we find
((

σ2
h +

1

4

)

s̃2 + 1

)

Qh(s̃2)−
((

σ2
h +

1

4

)

ŝ2 + 1

)

Qh(ŝ2) =
s1 + ŝ2
ŝ2 − s1

− s1 + s̃2
s̃2 − s1

.

(5.81)

We emphasize that the kernel Kh(s1, s2) in Equation (5.78) is the same as in
Section 5.3. The analysis of the kernel in Section 5.3 can thus be applied in
this section as well. For every s2 ∈ Σ, defined by (5.54), there exists a unique,
positive real s1 such that Kh(s1, s2) = Kh(s1, s̄2) = 0. Since for every s2 ∈ Σ
it holds that Re[s2] > − 1

2σ2
h

> − 1
σ2
h

, Vh(s1, s2) is bounded whenever s2 ∈ Σ

and when s1 is given by (5.52). Then, equation (5.81) implies that for s̃2 = s,
ŝ2 = s̄, s ∈ Σ, (with x = Re[s], y = Im[s]):
((

σ2
h +

1

4

)

s+ 1

)

Qh(s)−
((

σ2
h +

1

4

)

s̄+ 1

)

Qh(s̄) =
4s1iy

x2 + y2 − 2s1x+ s21
,

where s1 is given by (5.52). Substituting (5.52) and (5.50) into above gives us
((

σ2
h +

1

4

)

s+ 1

)

Qh(s)−
((

σ2
h +

1

4

)

s̄+ 1

)

Qh(s̄) =
iy

2
1+2σ2

h

1+4σ2
h

+ 2σ2
hx

.

Since Qh(s) = Qh(s̄), we have obtained that

Im

[((

σ2
h +

1

4

)

s+ 1

)

Qh(s)

]

=
Im[s]

4
1+2σ2

h

1+4σ2
h

+ 4σ2
h Re[s]

, s ∈ Σ . (5.82)

Let f0 again be a conformal map from the unit disk to interior region of Σ,
such that f0 is symmetric with respect to the real axis. We can thus write that

Im

[((

σ2
h +

1

4

)

f0(s) + 1

)

Qh(f0(s))

]

=
Im[f0(s)]

4
1+2σ2

h

1+4σ2
h

+ 4σ2
h Re[f0(s)]

, |s| = 1 .

(5.83)

The solution of this boundary-value problem is given by Schwarz integral for-
mula [96, Th. 7.38], yielding
((

σ2
h +

1

4

)

f0(s) + 1

)

Qh(f0(s)) =
1

2π

∫

C0

ζ + s

ζ − s
v(f0(ζ))

dζ

ζ
+D, |s| < 1 ,

(5.84)
where C0 is the positively oriented unit circle, D a normalization constant
constant and

v(s) =
Im[s]

4
1+2σ2

h

1+4σ2
h

+ 4σ2
h Re[s]

. (5.85)
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Finally, let f = f−1
0 be the inverse mapping of f0. Then Qh(s) is given by

Qh(s) =

((

σ2
h +

1

4

)

s+ 1

)−1(
1

2π

∫

C0

ζ + f(s)

ζ − f(s)
v(f0(ζ))

dζ

ζ
+D

)

, (5.86)

for all s in the interior of Σ. The function f is given by (5.63). We emphasize
that s = 0 is located in this region, hence we can obtain integral formulas from
(5.86) for all derivatives of Qh(s) evaluated at s = 0. The joint LST Vh(s1, s2)
is fully determined by substituting (5.86) into (5.78).

In the remainder of this section, we will rewrite the contour integral in (5.86)
as a real integral that is suitable for numerical integration.

5.4.2 Rewriting the contour integral in (5.86) as a real
integral

Using transformation of contour integrals, we can write

1

2π

∫

C0

ζ + s

ζ − s
v(f0(ζ))

dζ

ζ
=

1

2π

∫

Σ

f(z) + f(s)

f(z)− f(s)
v(z)

f ′(z)dz

f(z)
. (5.87)

The most natural parametrization z(t), t ∈ R, of the contour Σ is given by

z(t) = k cosϕ cosh(t)− k cos
ϕ

2
+ ik sinϕ sinh(t)

= k cosh(t+ iϕ)− k cos
ϕ

2
. (5.88)

Notice that using this parametrization, the contour Σ moves clockwise around
s = 0. Further, straightforward calculations yield

f(z(t)) = tanh2
(

π

4ϕ
t+

iπ

4

)

, (5.89)

f ′(z(t))z′(t) =
π

2ϕ

tanh
(

π
4ϕ t+

iπ
4

)

cosh2
(

π
4ϕ t+

iπ
4

) , (5.90)

v(z(t)) =
k sin(ϕ) sinh(t)

4 cos2
(

ϕ
2

)

+ 4σ2
h(k cos(ϕ) cosh(t)− k cos

(

ϕ
2

)

)

=
k tan(ϕ) sinh(t)

2 + 4σ2
hk cosh(t)

. (5.91)

With the parametrization (5.88), the contour integral in (5.87) becomes
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1

2π

∫

Σ

f(z) + f(s)

f(z)− f(s)
v(z)

f ′(z)dz

f(z)

= − 1

2π

∫ +∞

−∞

f(z(t)) + f(s)

f(z(t))− f(s)
v(z(t))

f ′(z(t))z′(t)dt

f(z(t))

= −k tan(ϕ)

4ϕ

∫ +∞

−∞

f(z(t)) + f(s)

f(z(t))− f(s)

sinh(t)

sinh
(

π
2ϕ t+

iπ
2

)

(1 + 2 cosh(t)kσ2
h)

dt

=
i k tan(ϕ)

4ϕ

∫ +∞

−∞

f(z(t)) + f(s)

f(z(t))− f(s)

sinh(t)

cosh
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

dt . (5.92)

The minus sign in the first equality is because the parametrization z(t) for Σ is
negatively oriented. The second equality follows by substituting (5.89), (5.90),
(5.91). Observe that

sinh(t)

cosh
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

(5.93)

is an odd function in t ∈ R. We will now write

f(z(t)) + f(s)

f(z(t))− f(s)

as the sum of an even and an odd function. To accomplish this, we multiply
the expression above by

f(z(t))− f(s)

f(z(t))− f(s)

Using that |f(z(t))| = 1,

f(z(t)) + f(s)

f(z(t))− f(s)
=
1− f2(s)− i2 Im[f(z(t))]f(s)

1 + f2(s)− 2f(s)Re[f(z(t))]

=
1− f2(s)

1 + f2(s)− 2f(s)(2 tanh2
(

π
2ϕ t
)

− 1)

− i
4 tanh

(

π
2ϕ t
)

sech
(

π
2ϕ t
)

f(s)

1 + f2(s)− 2f(s)(2 tanh2
(

π
2ϕ t
)

− 1)

and we notice that the first term of the right-hand-side is an even function
in t ∈ R, while the second term is an odd function in t ∈ R. Therefore the
first term does not contribute in the integral of (5.92) and we obtain that the
expression (5.92) simplifies to

2k tan(ϕ)

ϕ

∫ +∞

0

χ1(s, t)χ2(t)dt , (5.94)
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where

χ1(s, t) =
f(s)

(1 + f(s))2 − 4f(s) tanh2
(

π
2ϕ t
) , (5.95)

χ2(t) =
tanh

(

π
2ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

. (5.96)

We have thus obtained that Qh(s) is given by

Qh(s) =

((

σ2
h +

1

4

)

s+ 1

)−1(
2k tan(ϕ)

ϕ

∫ +∞

0

χ1(s, t)χ2(t) +D

)

dt .

(5.97)

The constant D can be obtained from the normalization condition Qh(0) = 1,
yielding

D = 1 +
k tan(ϕ)

4ϕ

∫ +∞

0

tanh
(

π
ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

dt , (5.98)

where we have used (5.65).

5.4.3 Calculation of moments

In this section we will compute the mean and the variance of the number of
type-j customers (j = 1, 2) and the mean and variance of the total number
of customers, as λ ↑ 1

2 . From these performance measures, the covariance and
correlation between the number of type-1 and type-2 customers can be deduced.

We commence with the total number of customers. Notice that we have ob-
tained the LST of the total number of customers (5.79) without much effort.
More precisely, (5.79) is the LST of an exponential distribution with mean σ2

h.
Hence (1 − 2λ)(v1 + v2) is exponentially distributed with mean σ2

h for λ ↑ 1
2 .

We can thus write that

lim
λ↑ 1

2

E [(1− 2λ)(v1 + v2)] = σ2
h ; (5.99)

lim
λ↑ 1

2

var [(1− 2λ)(v1 + v2)] = σ4
h . (5.100)

Since we are considering a symmetric system, v1 and v2 have the same distri-
bution. Therefore, the scaled random variables (1− 2λ)v1 and (1− 2λ)v2 must
have the same mean for λ ↑ 1

2 . As a consequence, we thus also obtain the mean
number of type-1 and type-2 customers:

lim
λ↑ 1

2

E [(1− 2λ)v1] = lim
λ↑ 1

2

E [(1− 2λ)v2] =
σ2
h

2
. (5.101)
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Next, we will compute var[(1− 2λ)v1] as λ ↑ 1
2 . The moments of (1− 2λ)v1, as

λ ↑ 1
2 , are determined by the derivatives of Qh(s) at s = 0. Write

Qh(s) =

((

σ2
h +

1

4

)

s+ 1

)−1

I(s) , (5.102)

where

I(s) =
2k tan(ϕ)

ϕ

∫ +∞

0

χ1(s, t)χ2(t) +D . (5.103)

Differentiating (5.102) and using I(0) = 1 gives

Q′
h(0) = −σ2

h − 1

4
+ I ′(0) (5.104)

Q′′
h(0) = 2

(

σ2
h +

1

4

)2

− 2

(

σ2
h +

1

4

)

I ′(0) + I ′′(0) . (5.105)

Using (5.101) we find that Q′
h(0) = −σ2

h

2 , and from (5.104) it must be that

I ′(0) =
σ2
h

2
+

1

4
. (5.106)

Differentiating (5.103) twice with respect to s and substituting s = 0 yields

I ′′(0) =

∫ +∞

0

r(t)

(tanh2
(

π
2ϕ t
)

+ 1)2
·

tanh
(

π
ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

dt , (5.107)

with

r(t) =
π

ϕ2
(1 + 2σ2

h)
3
2

√

1 + 4σ2
h

(

tanh2
(

π

2ϕ
t

)

+ 1

)

+
π2

ϕ3
2
√
2σh(1 + 2σ2

h)
√

1 + 4σ2
h

(

tanh2
(

π

2ϕ
t

)

− 1

)

. (5.108)

For ease of notation, let us denote the integral (5.107) as J , i.e.

J ,

∫ +∞

0

r(t)

(tanh2
(

π
2ϕ t
)

+ 1)2
·

tanh
(

π
ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kσ2
h)

dt . (5.109)

From (5.105) it follows that

lim
λ↑ 1

2

E[
[

((1− 2λ)v1)
2
]

= Q′′
h(0) = σ4

h +
1

4
σ2
h + J . (5.110)
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Further, we can compute the variance

lim
λ↑ 1

2

var [(1− 2λ)v1] =
3

4
σ4
h +

1

4
σ2
h + J , (5.111)

and the covariance

lim
λ↑ 1

2

cov[(1− 2λ)v1, (1− 2λ)v2] = −1

4
σ4
h − 1

4
σ2
h − J . (5.112)

Finally, the correlation coefficient is given by

lim
λ↑ 1

2

corr[v1, v2] = lim
λ↑ 1

2

corr[(1− 2λ)v1, (1− 2λ)v2]

=
σ4
h

2

(

3

4
σ4
h +

1

4
σ2
h + J

)−1

− 1 . (5.113)

5.4.4 Examples and discussion

The only parameter that is present in the results that we have obtained in the
previous subsection is the asymptotic variance of the number of arrivals per
slot, i.e. σ2

h. We recall that if σ2
h ranges from 1

4 to +∞, it follows that ϕ ranges
from π

3 ≤ ϕ ≤ π
2 .

5.4.4.1 Arrivals with infinite asymptotic variance

Let us rewrite (5.113) as

lim
λ↑ 1

2

corr[v1, v2] =
1

2

(

3

4
+

1

4σ2
h

+
J

σ4
h

)−1

− 1

We are interested in the case that σ2
h → +∞. To that end, we have to compute

the limit

lim
σ2
h
→+∞

J

σ4
h

.

For ease of notation, we make the change of variables µ = σ2
h. Thus, we write

lim
µ→+∞

J

µ2

= lim
µ→+∞

∫ +∞

0

1

µ2

rµ(t)

(tanh2
(

π
2ϕ t
)

+ 1)2

tanh
(

π
ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kµ)
dt ,

(5.114)
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with

rµ(t) =
π

ϕ2
(1 + 2µ)

3
2

√

1 + 4µ

(

tanh2
(

π

2ϕ
t

)

+ 1

)

+
π2

ϕ3
2
√

2µ(1 + 2µ)
√

1 + 4µ

(

tanh2
(

π

2ϕ
t

)

− 1

)

=
π

ϕ3
(1 + 2µ)

√

1 + 4µ

(

ϕ
√

1 + 2µ

(

tanh2
(

π

2ϕ
t

)

+ 1

)

+π2
√

2µ

(

tanh2
(

π

2ϕ
t

)

− 1

))

.

We now consider the limit of J
µ2 as µ → +∞. We have that

ϕ → π

2
k → 0

kµ →
√
2

2
,

as µ → +∞, cf. (5.61), (5.62). Hence,

lim
µ→+∞

1

(tanh2
(

π
2ϕ t
)

+ 1)2

tanh
(

π
ϕ t
)

sinh(t)

cosh2
(

π
2ϕ t
)

(1 + 2 cosh(t)kµ)

=
tanh (2t) sinh(t)

(tanh2 (t) + 1)2 cosh2 (t)
(

1 +
√
2 cosh(t)

) (5.115)

Next, we consider the limit of rµ(t)
µ2 as µ → +∞. We write

rµ(t)

µ2
=

π

ϕ3

(

1

µ
+ 2

)
√

1

µ
+ 4

(

ϕ

√

1

µ
+ 2

(

tanh2
(

π

2ϕ
t

)

+ 1

)

+π2
√
2

(

tanh2
(

π

2ϕ
t

)

− 1

))

.

Whence,

lim
µ→+∞

rµ(t)

µ2
=

16
√
2

π

(

5 tanh2(t)− 3
)

. (5.116)

Due to (5.115), (5.116), and the fact that the absolute value of the integrand
in (5.114) is bounded by the integrable function

C
sinh(t)

cosh2(t)
, where C is a positive constant ,
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we can apply Lebesgue’s dominated convergence theorem to pass to the limit
on the right-hand side in (5.114) and to obtain

lim
µ→+∞

J

µ2
=

16
√
2

π

∫ +∞

0

(

5 tanh2(t)− 3
)

tanh (2t) sinh(t)

(tanh2 (t) + 1)2 cosh2 (t)
(

1 +
√
2 cosh(t)

)dt

= 3− 32

3π
. (5.117)

Thus, we have

lim
λ↑ 1

2

corr[v1, v2] →
128− 39π

45π − 128
≈ 0.409664 , as σ2

h → +∞ . (5.118)

5.4.4.2 Other arrival processes

To the best of our knowledge, the integral (5.109) cannot be calculated analyt-
ically for π

3 ≤ ϕ < π
2 . Even for specific values of σ2

h, such as σ2
h = 1

4 , it seems to
be unfeasible to calculate (5.109) analytically. The formulas for the moments
in the work-conserving case are therefore visually more complicated, compared
to those in the non-work-conserving case. However, since an explicit expression
for the integrand in (5.109) is available, the integral can be determined numer-
ically without much difficulties. The examples presented in this chapter were
all obtained by applying the substitution x = tanh( π

2ϕ t) into (5.109) such that
the integration interval is [0, 1] and no truncation procedure is needed. This
integral is then approximated by repeated application of the trapezoidal rule
[134, Ch. 9], in which we partition the interval [0, 1] into 250 equal subintervals.

In Figure 5.3, we show the correlation coefficient between the system contents
for both the work-conserving-service policy and the non-work-conserving ser-
vice policy. We emphasize that we already discussed the correlation coefficient
for the non-work-conserving service policy in Section 5.3.4. In the case of the
work-conserving policy, we see from Figure 5.3, that the correlation coefficient
between the system contents is always positive, at least for λ ↑ 1

2 . This result
reveals that the correlation structure between the system contents in case of the
work-conserving policy differs significantly to that of the non-work-conserving
policy, even for λ ↑ 1

2 .

The difference is quite remarkable since for λ ↑ 1
2 , more and more customers

are being queued. We would have thought that, with the non-work conserving
policy, the server is always allocated to a non-empty queue if λ ↑ 1

2 (just like
with the work-conserving policy). However, a simple mean value analysis (5.23)
already reveals that the system contents must be different for λ ↑ 1

2 , since in
this case,

E[u1 + u2]− E[v1 + v2] ∼
1
2 + σ2

h

1− 2λ
,

cf. (5.23), which is nonzero. To strengthen this observation, we compare the
correlation coefficient and use the fact that the correlation coefficient between
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the scaled system contents equals the correlation coefficient between the system
contents, cf. (5.17). Regarding the great difference in Figure 5.3, we can con-
clude that both stochastic processes, i.e. the non-work-conserving policy and
the work-conserving policy, are considerably different for λ ↑ 1

2 .

Figure 5.3: Correlation coefficient between the system contents for λ ↑ 1

2
versus the

asymptotic arrival variance σ2
h.

5.5 Concluding remarks

We compared two similar, albeit slightly different, discrete-time two-class
queueing models that fall within a class of queueing models that are known to
be hard to analyze. In this chapter, we have combined two well-known meth-
ods, namely the heavy-traffic limit method and the boundary-value method.
By combining these two approaches, we have succeeded in deriving easy-to-use
formulas for the correlation coefficient between the numbers of type-1 and type-
2 customers, when the queues are close to saturation. We emphasize that we
have assumed a symmetrical arrival process, but that it can have any distribu-
tion. The results reveal that the two queueing models are in fact very different
from each other in heavy-traffic, which goes against our prior intuition.
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Conclusions

In this last chapter, we end our journey and summarize the contributions of
this dissertation and describe some interesting future directions.

6.1 Overview of the main contributions

In this dissertation, we have studied a two-class queueing system with a ran-
domly alternating service discipline. The numbers of arrivals in the two queues
are assumed to be general but independent from slot to slot and the service
times of the customers are assumed to be deterministically equal to a single
slot. In each time slot, the single server is available to queue-1 (queue-2) cus-
tomers with probability α (resp. 1−α). If a queue happens to be empty at the
moment that the server is allocated to that queue, no-one gets service during
that slot.

In Chapter 2, various special cases from the perspective of the nature of the
joint arrival distribution are analyzed in detail. The first case considers in-
dependent Bernoulli arrivals in the two queues. The second case considers
identical Bernoulli arrivals in the two queues. The third case considers one
stream of geometric arrivals and probabilistic routing to the two queues. The
main contributions of this chapter are listed below.

• We succeeded in obtaining exact, closed-form, expressions for the joint
probability distribution of the numbers of customers in both queues.

• The work in Chapter 2 laid foundations for the work done in Chapter 3.

• Exact, closed-form, expressions for several interesting numerical charac-
teristics were provided.

• By means of numerical examples, we illustrated the influence of the ser-
vice discipline on some of the most important performance measures of
the queueing model.
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• We determined a large class of arrival distributions such that the numbers
of type-1 and type-2 customers in the system are independent.

We performed an asymptotic queueing analysis in Chapter 3. The results
are related to the asymptotic analysis of random walks in the quarter plane.
Hereafter, the main contributions of this chapter are summarized.

• We obtained an intriguing condition for the dominant singularities of the
functions U(z, 0) and U(0, z) to be simple poles.

• Asymptotic expressions for the joint probabilities of the numbers of cus-
tomers in the system are obtained.

• In particular, we showed that it is possible to obtain asymptotic expres-
sions for the stationary distribution of a random walk in the quarter plane
for which the one-step displacements are not restricted to neighboring
states.

• In the case of independent arrivals at the two queues, additional results
were obtained. More concretely, in this case we showed that it is possible
to determine the second most dominant singularity of U(z, 0) and U(0, z)
in case of high loads.

The asymptotic results of Chapter 3 do not give rise to accurate results for
probabilities that are not in the tail. An approximation method for the latter
probabilities is the subject of Chapter 4. The main contributions are listed
here.

• We developed a novel approximation method.

• We showed that our results are highly accurate in case of light to moderate
loads.

• We discussed the possible problems in case of high loads and gave some
examples to illustrate our results.

In Chapter 5, we investigated the joint system-content distribution in heavy-
traffic. To that end, we restricted ourselves to a symmetric system. A func-
tional equation for the joint LST of the scaled system contents was derived.
The main results we obtained are the following.

• The joint LST was obtained explicitly.

• We obtained a closed-form expression for the correlation coefficient be-
tween the numbers of customers in both queues when the queueing system
is brought to the border of instability.

• We applied the same methodology to a slightly modified queueing model
and compared the correlation coefficients of both models in heavy-traffic.
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6.2 Future research

The to-do list with possible interesting extensions has kept growing during the
previous four years. To conclude this dissertation, we describe some of the
bullet points of this to-do list.

In this dissertation, we have assumed that the state of the server (available
to either queue-1 or queue-2) changes independently from slot to slot. This
feature was modeled by means of a sequence of i.i.d. random variables with
common Bernoulli distribution. A logical extension of our queueing model, is
to model the state of the server by a two-state Markovian process.
This means that the state of the server in a slot depends on the state of the
server during the previous slot. This server process is then specified by means
of two parameters, for instance the conditional probabilities that the server is
allocated to the first queue or the second queue during two consecutive time
slots.

Another possible direction for future research could be to include switch-over
times, see for example [135] for a closely related model and [136] for a survey
paper. The switch-over time is defined as the number of slots taken for the
server to switch to the other queue. Note that no customers can be served
during switch-over times. If we want to include switch-over times, we have to
take into account the state of the server. If the server switches, the number
of arrivals during the switch-over time should be included in the system equa-
tions. The switch-over times can be modeled by i.i.d. random variables with
a common PGF. To simplify the analysis, we would assume that the arrivals
are independent of the switch-over times. Although the system equations be-
come more complicated, we believe that an analysis as per Chapter 3 and/or
Chapter 4 is possible. Finally, we remark that in case of (on average) long
switch-over times, our non-work conserving queueing model might outperform
its work-conserving variant. This is because in the case of long switch-over
times, it might be sometimes beneficial to stay at an empty queue to anticipate
for arrivals in the subsequent slots.

We have assumed a symmetrical system in Chapter 5 to establish the heavy-
traffic limit. It would be interesting to obtain such a limit in the case of
a non-symmetric system. However, in the non-symmetric model it is not
obvious how to scale the system contents because our model has two stability
conditions. Mathematically, we have to take the limits λ1 → α and λ2 → 1−α
simultaneously. One possible approach we can think of to accomplish this, is
to keep the ratio λ1

λ2
constant. Furthermore, we note that the computations

of the boundary-value problem in the non-symmetric case might be trickier
in comparison with the symmetric case. Another research direction is to in-
corporate correlation between the type-1 and type-2 arrivals. For example,
one could consider a joint arrival PGF of the form A(z1, z2) = C(z1z2) or
A(z1, z2) = C( z12 + z2

2 ), with C(z) a one-dimensional PGF. If α = 1
2 , these two

PGFs lead to a symmetric system yet again. Therefore, we believe that a similar
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analysis as in Chapter 5 is feasible. Note that A(z1, z2) = C(z1z2) corresponds
to the case of identical arrivals in the two queues and A(z1, z2) = C( z12 + z2

2 )
corresponds to arrivals that are routed to the queues with equal probability.

Closely related to the concept of heavy-traffic approximation is that of light-
traffic approximation. The latter approximation is usually easier to obtain
than the heavy-traffic approximation. This is also true for the model studied in
this dissertation, at least in the symmetric case. As in Chapter 5, let us assume
a symmetric system such that λ , λ1 = λ2 and α = 1

2 . If we expand U(z1, z2) in
a Taylor series in the variable λ, substitute this expansion into the fundamental
functional equation and equate coefficients of corresponding powers of λ, we
obtain for each coefficient a functional equation like (2.1). The upshot is that
the kernel of this functional equation is equal to z1z2− 1

2 (z1+ z2). This simple
form of the kernel allows to obtain an explicit expression for the boundary
functions present in the functional equation. We have found that the first
four coefficients already provide a good approximation for small λ. A definite
advantage of this approach in comparison with (for example) the approach
of Chapter 4 is that a closed-form expression is obtained. Just like with the
heavy-traffic approximation, it is not clear how to deal with an asymmetric
system.

Finally, the most challenging future direction for the queueing model studied
in this dissertation is the generalization to higher-dimensional queueing
models. Although we emphasize that any knowledge gain for 3-dimensional
problems is a huge leap forwards. This is because the generalization of the
boundary-value approach to three dimensions is still an open problem. In
the review paper [121] about the boundary-value method in queueing theory,
the author indicates that the mathematical analysis as well as the numerical
analysis are very complicated, based on the few attempts into this research
direction. From an application point of view, considering 3 dimensions offers
the possibility to investigate more complex queueing systems. From a mathe-
matical point of view, there is a big gap in knowledge between 2-dimensional
and 3-dimensional models.
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