

Reliability-Aware Management in Hybrid Memories: Evaluation through
Scale-Model Simulation

Wenjie Liu

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Lieven Eeckhout, PhD

Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

Supervisor

May 2022

Wettelijk depot: D/2022/10.500/36
NUR 980, 987
ISBN 978-94-6355-595-1

Members of the Examination Board

Chair

Prof. Filip De Turck, PhD, Ghent University

Other members entitled to vote

Prof. Trevor E. Carlson, PhD, National University of Singapore, Singapore
Prof. Koen De Bosschere, PhD, Ghent University

Prof. Jan Fostier, PhD, Ghent University
Wim Heirman, PhD, Intel ExaScience Lab
Jennifer Sartor, PhD, Ghent University

Supervisor

Prof. Lieven Eeckhout, PhD, Ghent University

To my family

Contents

Acknowledgements vii

Summary ix

Samenvatting xiii

List of Figures xvii

List of Tables xxi

List of Abbreviations xxiii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Soft Error Reliability in Hybrid Memory Systems 1

1.1.2 Large-Scale System Simulation 2

1.1.3 Managed Language Simulation 3

1.2 Key Contributions . 4

1.3 Structure and Overview . 8

2 Background 11

2.1 Memory System Trends . 11

2.1.1 DRAM Challenges . 11

2.1.2 Emerging Memory Technologies 12

2.1.3 Hybrid HBM-DRAM Memory System 15

2.2 System Reliability . 15

iii

iv CONTENTS

2.2.1 Terminology . 16

2.2.2 Fault-Tolerant Techniques for Memory 17

2.2.3 Metrics . 18

2.2.4 Architecture Vulnerability Factor Analysis 19

2.3 System Simulation . 23

2.3.1 Functional versus Timing Simulation 23

2.3.2 Trace-Driven versus Execution-Driven Simulation 25

2.3.3 Workload versus Architecture Scaling Simulation 26

2.4 Performance Modeling . 28

2.4.1 Machine Learning based Modeling 28

2.4.2 Analytical Modeling . 28

2.5 Java Workload Benchmarking 29

3 Reliability-Aware Garbage Collection for Hybrid HBM-DRAM
Memories 31

3.1 Introduction . 32

3.2 Exploiting High-Bandwidth Memory 35

3.2.1 3D-Stacked Memory . 35

3.2.2 Managing HBM in Hardware 35

3.2.3 Managing HBM in the OS 36

3.3 Background . 37

3.3.1 Soft Error Reliability . 37

3.3.2 Managed Runtimes . 38

3.4 Hotness and Risk Prediction . 39

3.4.1 Distribution of Hotness and Risk 40

3.4.2 Allocation-Site Homogeneity 40

3.5 Reliability-Aware Garbage Collection 42

3.5.1 Overview . 42

3.5.2 Profiling . 42

3.5.3 Allocation Site Classification 44

3.5.4 Bytecode Generation . 45

3.5.5 Heap Organization . 46

3.6 Experimental Setup . 48

CONTENTS v

3.7 Results . 51

3.7.1 Key Trade-Offs . 51

3.7.2 Soft Error Rate . 53

3.7.3 Performance . 54

3.7.4 RR-M versus Performance-Focused GC 57

3.7.5 Memory and Demographic Analysis 57

3.8 Evaluation on Real Hardware 58

3.9 Other Related Work . 59

3.10 Conclusion . 59

4 Scale-Model Architectural Simulation 61

4.1 Introduction . 62

4.2 Scale Model Construction . 65

4.3 Scale Model Extrapolation . 66

4.3.1 No Extrapolation . 67

4.3.2 Machine Learning-based Prediction and Regression . . . 67

4.4 Experimental Setup . 72

4.4.1 Simulation Setup . 72

4.4.2 Workloads . 72

4.5 Evaluation . 73

4.5.1 Scale Model Construction 73

4.5.2 Scale Model Extrapolation 74

4.5.3 Heterogeneous Workload Mixes 74

4.5.4 Simulation Speedup . 77

4.6 Sensitivity Analyses . 79

4.6.1 Memory bandwidth scaling 79

4.6.2 Regression . 81

4.6.3 ML model inputs . 81

4.6.4 Multi-core scale-models under regression 81

4.6.5 Memory bandwidth utilization 83

4.6.6 Multi-threaded workloads 83

4.7 Related Work . 83

4.8 Conclusion . 86

vi CONTENTS

5 Architectural Simulation of Reliability-Aware Memory Sys-
tems 87

5.1 Introduction . 88

5.2 Motivation and Opportunity . 90

5.2.1 Multicore Simulation . 90

5.2.2 Java Workload Simulation 91

5.2.3 CPI Stacks . 92

5.3 Experimental Setup . 92

5.3.1 Simulator and Java Virtual Machine 92

5.3.2 Simulated Processor Architectures 92

5.3.3 Workloads . 93

5.3.4 Scale-Model Simulation 94

5.4 Evaluation . 94

5.4.1 CPI Stacks . 95

5.4.2 Model Selection . 97

5.4.3 Performance . 98

5.4.4 Large Target System Prediction 100

5.5 Conclusion . 101

6 Conclusion and Future Work 103

6.1 Summary . 103

6.2 Future Work . 105

Bibliography 109

Acknowledgements

Doing a Ph.D. has been a dream since I am a master student. Reading my
Ph.D. abroad, however, was not the original plan and finally became an extra
gift of my life. Thanks to Professor Zhiying Wang, I began to think about the
possibility of studying abroad and took my first step to work on it. Thanks
to Professor Lieven Eeckhout, I got the opportunity to do research and finish
my Ph.D. at Ghent University. I have delayed writing this part until the last
minute because there are so many lovely people along my Ph.D. journey and I
cannot thank them enough in a few words.

I want to express my deep gratitude to my advisor, Professor Lieven Eeckhout,
for his valuable guidance and strong support during my Ph.D. I still remember
the introductions of Lieven by my colleagues about how kind a person he is and
how professional he is as a researcher. Working with him in the last four years
proves that he totally deserves these compliments and he is much better. He is a
hardworking and responsible advisor. He guides me how to conduct impactful
research in a systematic manner. Although he is very busy, he continues to
provide extensive feedback on my research, on the paper writings, and even on
the presentations. Both his guidance and his work attitude inspired me and
helped me become a better researcher. He is also a very caring person. I will
never forget his unconditional support when I was stuck with some family issues
and work pressure during the Covid outbreak. He gave me enough room to deal
with my private life and provided many practical solutions to my dilemma.
Without his patience, encouragement and support, I cannot imagine how to go
through those tough times and finally finish my Ph.D. successfully.

Many thanks to Shoaib Akram, who played an important role in the early days
of my Ph.D. life. I have been working with Shoaib in the first two years of my
Ph.D., and he really gave me many suggestions on the research. He taught me
to conduct valuable and interesting research instead of only focusing on paper
publications. He encouraged me to insist on solving a challenging problem
instead of giving up too early. His perfectionism at every step of research
impressed me and inspired me to develop good research habits like him.

I want to thank all the members in my examination committee who read my
thesis carefully and delivered valuable feedback despite their busy schedules.
Very special thanks to Jennifer B. Sartor and Wim Heirman. I have been

vii

viii ACKNOWLEDGEMENTS

working with Jennifer for my first project. She listened to my work progress
patiently and gave me practical suggestions whenever I needed. I met Wim
when I was stuck with some simulator issues. Wim is very professional in the
field of performance modeling and I benefited a lot from his sharpness in the
computer architecture design.

Many thanks to my colleagues in PerfLab: Ajeya Naithani, Yuxi Liu, Josue Fe-
liu, Xia Zhao, Lu Wang, Shiqing Zhang, Jaime Roelandts, Almutaz Adileh,
Seyyed Hossein SeyyedAghaei Rezaei, Cecilia Gonzalez-Alvarez, Sander De
Pestel, Sam Van den Steen, Shoaib Akram, Kartik Lakshminarasimhan, Mah-
mood Naderan-Tahan, Saeideh Sheikhpour and Benyamin Eslami. I am lucky
to work with them in the past four years as we spent so many happy hours in
the office. I want to thank Ajeya for his help with cluster-related issues and his
generous sharing of the experience on Ph.D. defense. I am very grateful to have
Yuxi, Xia, Lu, and Shiqing around in Ghent. Yuxi and Xia gave me sincere
suggestions on my research topics. Lu offered me considerable help to settle
in Ghent. Her kindness lightened the early days of my Ph.D. life. Shiqing is
always there for me, getting up early to help me test the meeting device and
congratulating me on passing the internal defense. I would also like to thank
the department staff for their help with administrative and technical issues.
Special thanks to Marnix for the help with arranging conference travels and
many thanks to Vicky and Inge for their help with various work/life related
paperwork.

I thank all my friends in Ghent: Xiaodong Liu, Yun Zhou, Yuhui Wu, Sheng
Yang, Xiangyu Xue, Qiming Sun, Lei Luo, Xin Cheng, Boxuan Gao, Yan Li,
etc. The happy moments spending with them made my life abroad precious and
unforgettable. I really cherish our friendship. I am so lucky to have Xiaodong
as my roommate in the last four years. We shared ups and downs studying
abroad and we supported each other whenever needed. I will never forget our
heart-to-heart talks. Yun and I prepared for the Ph.D. defense at the same
time, and we worked late together for the submission deadline. Her accompany
relieves me a lot from the anxiety of defense preparation. I also want to thank
my previous Chinese advisor in NUDT, Prof. Zhiying Wang. He encouraged
me to read Ph.D. abroad and helped me apply the CSC scholarship.

Finally, I want to thank my parents for raising me and giving me endless love.
Their love, wisdom, care, and strength have meant to the world to me. May
good luck follow my little brother for his forthcoming GaoKao. I also want to
thank my husband, Jianglong Song. If I could choose anybody at all to back
me up through all the difficulties of life, it would be my husband a hundred
times over. It’s been ten years since we were together and thank you for always
being the most reliable and supportive people to me.

Wenjie Liu
Gent, May 16, 2022

Summary

Emerging computer applications require increasing memory capacity as well
as increasing bandwidth to the memory system. Unfortunately, traditional
DRAM memories are constrained by the limited scalability of new chip tech-
nologies due to the decreasing reliability of individual memory cells and in-
creasing manufacturing complexity. Consequently, computer architects must
consider alternative memory technologies in order to meet the large capacity
and high bandwidth requirements. Recently introduced 3D-stacked memories,
such as High-Bandwidth Memory (HBM) in which different memory chips are
placed one above the other, provide considerably higher bandwidth and lower
access time at a relatively low cost. However, 3D-stacked memories have the
disadvantages that capacity is limited and that reliability is inferior to conven-
tional DRAM memories due to the higher density of memory cells. Temporary
errors (e.g., soft errors or transient faults) due to cosmic rays or energy par-
ticles can lead to incorrect executions. In order to circumvent the limitations
of different memory technologies, researchers have proposed hybrid memories
in which, for example, a 3D-stacked memory is combined with a conventional
DRAM memory. This makes it possible to offer high bandwidth (thanks to the
3D-stacked memory) and high capacity (thanks to the DRAM memory). How-
ever, the reliability of hybrid memory is limited by the weakest link, namely
the 3D-stacked memory.

A concrete practical problem that arises when evaluating and exploring new
architectural ideas, for example, the evaluation of hybrid memory systems, is
that current simulation methodologies are inadequate. The most commonly
used methodology is to model every detail of the design in a cycle-accurate
manner, leading to a number of experimental problems. More specifically, the
simulation time explodes when large systems have to be modeled, for example
when dozens of processor cores have to be simulated for modeling a future
multicore processor. In some cases, it is even impossible to simulate such large
systems due to limitations in computing or memory capacity on the server on
which the simulations are performed. However, existing techniques to solve
the simulation problem, such as sampling of the execution and modeling at
a higher abstraction level, do not fundamentally solve the problem and are
therefore inadequate.

ix

x SUMMARY

This doctoral thesis makes two contributions regarding the management
and improvement of the reliability of hybrid memories, and two contributions
regarding the simulation of large systems.

Homogeneity of Memory Allocation. Several modern programming lan-
guages use automatic memory management (e.g., garbage collection) to improve
the productivity of the software developer and the reliability of the resulting
software. Garbage collection manages memory at the level of individual ob-
jects. In this PhD thesis, we classify objects according to two criteria, namely
hotness and risk, in order to map their impact on performance and reliabil-
ity, respectively. Allocating hot objects in the 3D-stacked memory of a hybrid
memory system offers a performance advantage (due to higher bandwidth),
while allocating risky objects in the 3D-stacked memory leads to an increased
vulnerability (due to less reliability). We propose to allocate objects in the 3D-
stacked memory versus the conventional DRAM memory in a hybrid memory
system based on the hotness and risk of those objects. Our analysis shows that
the hotness and risk of an object are only weakly correlated. Consequently, it is
crucial to consider both the hotness and risk. The first important contribution
of this doctoral thesis consists of demonstrating that the location in the code
where an object is allocated (i.e., allocation site) is a very accurate predictor of
the hotness and risk of the object. In other words, all objects that are allocated
from the same location in the program code show a similar hotness/risk profile.
We refer to this property as the homogeneity of the memory allocation. We
exploit this important finding in the second contribution.

Reliability-Aware Memory Management. Hybrid memory systems al-
low us to combine the advantages of both memory technologies and suppress
the drawbacks. The advantage of the 3D-stacked memory in a hybrid mem-
ory system is the high bandwidth offered, while the disadvantages concern
limited capacity and reliability. The drawbacks can be overcome by reliability-
aware memory management (i.e., reliability-aware garbage collection). The
basic idea behind reliability-aware memory management is to allocate objects
in 3D-stacked memory only if those objects are hot (i.e., they are frequently ac-
cessed) and lead to a rather limited risk in terms of reliability. We propose two
variants of reliability-aware memory management, namely RiskRelief-Nursery
(RR-N) and RiskRelief-Mature (RR-M). RR-N places all newly allocated ob-
jects (allocated in the so-called nursery space) in the 3D-stacked memory; older
objects in the mature space that were allocated some time ago and are still
reachable are placed in the DRAM memory. RR-M also makes a distinction
for the mature space where hot and relatively risk-free objects are also placed
in the 3D-stacked memory. Whether or not an object is hot and risky (and
therefore should be placed in the 3D-stacked memory), is determined by the
place where this object was allocated in the program code (first contribution of
the thesis). Reliability-aware memory management in a hybrid memory system
significantly improves reliability compared to a memory system that only con-
sists of 3D-stacked memory, and at the same time improves the performance
compared to a memory system only consisting of conventional DRAM memory.

xi

More specifically, RR-N and RR-M improve the reliability by a factor of 18×
and 9× compared to a 3D-stacked memory, and improve performance by 20%
and 29% over a conventional memory system, respectively.

Scale-Model Simulation. To address the fundamental simulation problem
of future large systems (which we also encountered in the evaluation of the
second contribution), we propose a new methodology for predicting the perfor-
mance of large systems based on small scale models. A scale model is in fact a
miniaturized version of the large system that, because of its limited scale, can
easily be simulated with existing simulation techniques. The performance ob-
tained from the simulated scale model is then extrapolated to make a prediction
for the larger system. The question arises how to construct a scale model and
then extrapolate it. We show that different shared resources, such as the shared
caches, the interconnection network and the shared memory bandwidth, should
be scaled proportionally in the scale model. To extrapolate the performance
of the scale model, we use machine learning (ML) techniques and we consider
two variants, namely ML-based prediction and ML-based regression. ML-based
prediction requires a number of simulations of the target system as input for
training the ML model, while ML-based regression only requires simulations
of a number of scale models (and thus not of the much larger target system).
ML-based regression is therefore suitable in situations where it is impossible to
simulate the target system. Predicting a multicore system with 32 processor
cores based on a scale model with a single processor core results in a reduction
of the simulation time by a factor of 28×. ML-based prediction and regression
lead to a relative prediction error of 6.4% and 8.0%, respectively.

Scale Models for Reliability-Aware Memory Management. In the
fourth and final contribution, we apply the simulation and prediction method-
ology based on scale models to the evaluation of reliability-aware memory man-
agement. As mentioned earlier, it was not possible to rigorously evaluate our
second contribution with existing simulation methodologies because the tar-
get system is too large to simulate (32 processor cores with a hybrid memory
system). Consequently, in the initial evaluation of the second contribution,
we had to resort to the simulation of a proportional scale model without ML-
based prediction or regression. When we fully apply the newly proposed scale
model simulation methodology (the third contribution) to the evaluation of
reliability-aware memory management, we conclude that the obtained perfor-
mance predictions based on a proportional scale model were conservative. More
specifically, we show that the performance improvement reported above for a
hybrid memory system with RiskRelief memory management over a conven-
tional memory system is an underestimation of the expected performance im-
provement. Based on our prediction, we expect that a hybrid memory system
with RR-N and RR-M memory management improves performance by 62%
(instead of 20%) and 68% (instead of 29%) over conventional memory, respec-
tively.

Samenvatting

Hedendaagse computertoepassingen vereisen steeds meer geheugenca-
paciteit alsook steeds grotere bandbreedte tot het geheugensysteem. Jam-
mer genoeg zijn traditionele DRAM-geheugens gelimiteerd door de beperkte
schaalbaarheid naar nieuwe chiptechnologieën wegens een steeds afnemende
betrouwbaarheid van de individuele geheugencellen en een steeds toene-
mende productiecomplexiteit. Bijgevolg moeten computerarchitecten alter-
natieve geheugentechnologieën beschouwen teneinde aan de hoge capaciteit-
en bandbreedtevereisten te kunnen voldoen. Recentelijk gëıntroduceerde 3D-
geheugens, zoals bijvoorbeeld High-Bandwidth Memory (HBM) waarbij ver-
schillende geheugenchips boven elkaar geplaatst worden, leveren aanzienlijk
hogere bandbreedte en lagere toegangstijd aan relatief lage kost. 3D-geheugens
hebben echter als nadeel dat de capaciteit beperkt is en de betrouwbaarheid in-
ferieur is in vergelijking met conventionele DRAM-geheugens wegens de hogere
densiteit van geheugencellen. Tijdelijke fouten (Eng. soft errors of transient
errors) ten gevolge van kosmische straling of energiedeeltjes kunnen leiden tot
incorrecte uitvoeringen. Teneinde de beperkingen van verschillende geheugen-
technologieën te omzeilen, hebben onderzoekers hybride geheugens voorgesteld
waarbij bijvoorbeeld een 3D-geheugen gecombineerd wordt met een DRAM-
geheugen. Dit laat toe hoge bandbreedte (dankzij het 3D-geheugen) én hoge
capaciteit (dankzij het DRAM-geheugen) aan te bieden. Echter, de betrouw-
baarheid van hybride geheugens is beperkt door de zwakste schakel, namelijk
het 3D-geheugen.

Een concreet praktisch probleem dat zich stelt bij het evalueren en ex-
ploreren van nieuwe architecturale ideeën, zoals bijvoorbeeld de evaluatie van
hybride geheugensystemen, is dat huidige simulatiemethodologieën ontoereik-
end zijn. De meest gebruikte methodologie bestaat erin elk detail van het
ontwerp op een cyclusgetrouwe manier te modelleren, wat leidt tot een aantal
experimentele problemen. Meer bepaald explodeert de simulatietijd wanneer
grote systemenen gemodelleerd moeten worden, bijvoorbeeld wanneer tientallen
processorkernen (Eng. cores) gesimuleerd moeten worden voor het modelleren
van een toekomstige multicore processor. In sommige gevallen is het zelfs on-
mogelijk om dergelijke grote systemen te simuleren wegens beperkingen qua
reken- of geheugencapaciteit in de server waarop de simulaties uitgevoerd wor-
den. Bestaande technieken om het simulatieprobleem op te lossen zoals be-

xiii

xiv SAMENVATTING

monstering (Eng. sampling) van de uitvoering en het modelleren op een hoger
abstractieniveau, bieden echter geen soelaas en zijn derhalve ontoereikend.

Deze doctoraatsthesis levert twee bijdragen m.b.t. het beheren en verbeteren
van de betrouwbaarheid van hybride geheugens, en twee bijdragen m.b.t. het
simuleren van grote systemen.

Homogeniteit van geheugenallocatie. Verschillende moderne program-
meertalen maken gebruik van automatisch geheugenbeheer (Eng. garbage col-
lection) teneinde de productiviteit van de software-ontwikkelaar en de betrouw-
baarheid van de resulterende software te verbeteren. Garbage collection beheert
het geheugen op het niveau van individuele objecten. In deze doctoraatsthesis
classificeren we objecten aan de hand van twee criteria, namelijk belang (Eng.
hotness) en risico (Eng. risk), teneinde hun impact op respectievelijk prestatie
en betrouwbaarheid in kaart te brengen. Het alloceren van belangrijke objecten
in het 3D-geheugen van een hybride geheugensysteem biedt een voordeel qua
prestatie (wegens hogere bandbreedte), terwijl het alloceren van risicovolle ob-
jecten in het 3D-geheugen leidt een verhoogde kwetsbaarheid (wegens minder
betrouwbaar). We stellen voor objecten te alloceren in het 3D-geheugen versus
het conventioneel DRAM-geheugen in een hybride geheugensysteem op basis
van het belang en risico van die objecten. Onze analyse toont aan dat het
belang en het risico van een object slechts zwak gecorreleerd zijn. Bijgevolg
is het cruciaal om zowel het belang als het risico in rekening te brengen. De
eerste belangrijke bijdrage van deze doctoraatsthesis bestaat erin aan te tonen
dat de plaats in de code waar een object gealloceerd wordt (Eng. allocation
site) een zeer nauwkeurige voorspeller is van het belang en het risico van het
object. M.a.w. alle objecten die gealloceerd worden vanop eenzelfde locatie in
de programmacode vertonen een gelijkaardig belang/risico-profiel. We refer-
eren naar deze eigenschap als de homogeniteit van de geheugenallocatie. Deze
belangrijke vaststelling buiten we uit in de tweede bijdrage.

Betrouwbaarheidsbewust geheugenbeheer. Hybride geheugensyste-
men vereisen dat we de voordelen van beide geheugentechnologieën verenigen
en de nadelen onderdrukken. Het voordeel van het 3D-geheugen in een hy-
bride geheugensysteem is de hoge bandbreedte die aangeboden wordt, terwijl
de nadelen beperkte capaciteit en betrouwbaarheid betreffen. De nadelen kun-
nen overwonnen worden door betrouwbaarheidsbewust geheugenbeheer (Eng.
reliability-aware garbage collection). De basisidee achter betrouwbaarheidsbe-
wust geheugenbeheer bestaat erin objecten in het 3D-geheugen te alloceren
enkel en alleen als die objecten belangrijk zijn (d.i. frequent geconsulteerd wor-
den) én tot een eerder beperkt risico leiden qua betrouwbaarheid. We stellen
twee varianten van betrouwbaarheidsbewust geheugenbeheer voor, namelijk
RiskRelief-Nursery (RR-N) en RiskRelief-Mature (RR-M). RR-N plaatst alle
nieuw gealloceerde objecten (die galloceerd worden in de zogenaamde nursery
adresruimte) in het 3D-geheugen; oudere objecten in de mature adresruimte
die een tijd geleden gealloceerd werden en nog steeds bereikbaar zijn (m.a.w.
deze objecten kunnen nog steeds geconsulteerd worden), worden in het DRAM-
geheugen geplaatst. RR-M maakt daarenboven nog een onderscheid voor de

xv

mature adresruimte waarbij belangrijke en relatief risicoloze objecten eveneens
in het 3D-geheugen geplaatst worden. Of een object al dan niet belangrijk
en risicovol is (en dus in het 3D-geheugen geplaatst moet worden), wordt
bepaald door de plaats waar dit object gealloceerd werd in de programma-
code (eerste bijdrage van de thesis). Betrouwbaarheidsbewust geheugenbeheer
verbetert de betrouwbaarheid aanzienlijk t.o.v. een geheugensysteem dat enkel
uit 3D-geheugen zou bestaan, en verbetert tegelijkertijd de prestatie t.o.v. een
geheugensysteem dat enkel uit conventioneel DRAM geheugen bestaat. Meer
bepaald verbeteren RR-N en RR-M de betrouwbaarheid met een factor van
respectievelijk 18× en 9× t.o.v. een 3D-geheugen. RR-N en RR-M verbeteren
de prestatie met respectievelijk 20% en 29% t.o.v. een conventioneel geheugen-
systeem.

Simulatie van schaalmodellen. Teneinde het fundamentele probleem
van de simulatie van toekomstige grote systemen aan te pakken (waar we
eveneens op gestoten zijn bij de evaluatie van de tweede bijdrage), stellen
we een nieuwe methodologie voor voor het voorspellen van de prestatie van
grote systemen op basis van kleine schaalmodellen. Een schaalmodel is in feite
een geminiaturiseerde versie van het grote systeem dat wegens zijn beperkte
schaal eenvoudig te simuleren valt met bestaande simulatietechnieken. De
prestatie bekomen op basis van het gesimuleerde schaalmodel wordt vervol-
gens geëxtrapoleerd teneinde een voorspelling te maken voor het groter sys-
teem. De vraag stelt zich hoe een schaalmodel te construeren en vervolgens te
extrapoleren. We tonen aan dat de verschillende gedeelde componenten (Eng.
shared resources), zoals de gemeenschappelijk caches, het interconnectienetwerk
en de gedeelde geheugenbandbreedte, best proportioneel geschaald worden in
het schaalmodel. Voor het extrapoleren van de prestatie van het schaalmodel
maken we gebruik van machine learning (ML), en we beschouwen twee vari-
anten, namelijk ML-gebaseerde voorspelling en ML-gebaseerde regressie. ML-
gebaseerde voorspelling vereist een aantal simulaties van het doelsysteem als
input voor het trainen van het ML-model, terwijl ML-gebaseerde regressie enkel
simulaties vereist van een aantal schaalmodellen (en dus niet van het veel groter
doelsysteem). ML-gebaseerde regressie is bijgevolg geschikt in situaties waar-
bij het onmogelijk is het doelsysteem te simuleren. Het voorspellen van een
multicore systeem met 32 processorkernen op basis van een schaalmodel met
een enkele processorkern levert een reductie van de simulatietijd op van een
factor 28×. ML-gebaseerde voorspelling en regressie leiden tot een relatieve
voorspellingsfout van respectievelijk 6.4% en 8.0%.

Schaalmodellen voor betrouwbaarheidsbewust geheugenbeheer.
In de vierde en laatste bijdrage passen we de simulatie- en voorspellingsmethod-
ologie op basis van schaalmodellen toe op het evalueren van betrouwbaarhei-
dsbewust geheugenbeheer. Zoals eerder aangehaald was het niet mogelijk om
onze tweede bijdrage rigoureus te evalueren met bestaande simulatiemethod-
ologieën wegens de te grote schaal van het doelsysteem (32 processorkernen
met hybride geheugensysteem). Bijgevolg hebben we bij de initiële evaluatie
van de tweede bijdrage onze toevlucht moeten nemen tot de simulatie van

xvi SAMENVATTING

een proportioneel schaalmodel zonder ML-gebaseerde voorspelling of regressie.
Wanneer we de nieuw voorgestelde simulatie- en voorspellingsmethodologie op
basis van schaalmodellen (derde bijdrage) ten volle toepassen voor de eval-
uatie van betrouwbaarheidsbewust geheugenbeheer, concluderen we dat de
bekomen prestatievoorspellingen op basis van een proportioneel schaalmodel
conservatief waren. Meer specifiek tonen we aan dat de hierboven gerappor-
teerde prestatieverbetering voor een hybride geheugensysteem met RiskRelief-
geheugenbeheer t.o.v. een conventioneel geheugensysteem een onderschatting
is van de te verwachten prestatieverbetering. Op basis van onze voorspelling
verwachten we dat een hybride geheugensysteem met RR-N en RR-M geheugen-
beheer de prestatie verbeteren met respectievelijk 62% (i.p.v. 20%) en 68%
(i.p.v. 29%) ten opzichte van een conventioneel geheugen.

List of Figures

2.1 HBM architecture: HBM vertically stacks multiple DRAM dies
which are interconnected by microscopic wires called through-
silicon vias (TSVs). 14

2.2 Assumed memory and the computer system level hierarchy. . . 14

2.3 AVF of two bits in the memory system. Two bits in the memory
could have the same hotness but different AVFs depending on the
sequence of reads and writes. 22

3.1 Distribution of hotness and mature heap volume by allocation
site (left column), versus risk for the top hottest allocation sites
(right column) for Fop (top), Bloat (middle), and Pmd (bottom). 39

3.2 Percentage heap volume as a function of allocation-site homo-
geneity for hotness, risk, and combined hotness and risk assum-
ing a 10% cutoff threshold. 41

3.3 Overview of RiskRelief. Offline analysis records the number of
reads and writes to all objects. Then, per-object hotness and
risk metrics are used to generate an allocation site classification
advice which serves as input to a bytecode rewriter. The rewriter
annotates hot and low-risk sites as HBM, steering the garbage
collector to place objects in HBM. 43

3.4 Example of an access trace with allocation sites in the last col-
umn (a), per object hotness and AVF-X (b), and prediction of
allocation sites using the FMID and MRAT heuristics (c). . . 44

3.5 Main memory heap organizations. 47

3.7 Soft error rates normalized to HBM-Only for the RiskRelief col-
lectors and DRAM-Only through single-core and 4-core simula-
tions. 50

xvii

xviii LIST OF FIGURES

3.8 The execution time versus SER trade-off for the RiskRelief col-
lectors and the state-of-the-art OS approach, normalized to the
DRAM-Only and HBM-Only systems. RiskRelief-Nursery and
OS approach consume 128 MB HBM. RiskRelief-Mature uses a
larger fraction of HBM (364 MB) by placing part of the mature
space in HBM as well. 51

3.9 Soft error rates normalized to HBM-Only for the RiskRelief col-
lectors, the OS approach and DRAM-Only. 52

3.10 Execution times normalized to DRAM-Only for the RiskRelief
collectors, the OS approach and HBM-Only. 53

3.11 Execution time versus SER trade-off for different configurations
of RR-M and its performance-focused variant. 55

4.1 ML-based prediction involves a training and prediction phase.
The training phase requires simulation results for the target system. 68

4.2 ML-based regression involves a training, prediction and regres-
sion phase. The training phase requires simulation results ob-
tained for a number of multi-core scale models, but not the target
system. 70

4.3 Evaluating scale model construction using homogeneous work-
load mixes: NRS versus PRS with scaled LLC capacity, scaled
DRAM bandwidth, and both. Proportional Resource Scaling
(PRS) in which all shared resources are scaled proportionally
leads to the most accurate scale models. 75

4.4 Evaluating scale model extrapolation using homogeneous work-
load mixes: No Extrapolation versus ML-based Prediction (DT,
RF and SVM) and Regression (DT-log, RF-log and SVM-log).
SVM-based prediction yields the highest accuracy (6.4% average
absolute prediction error), while SVM-based regression (SVM-
log) is only slightly less accurate (8.0% average absolute predic-
tion error). 76

4.5 Evaluating scale model extrapolation using heterogeneous work-
load mixes: No Extrapolation versus ML-based Prediction (DT,
RF and SVM) and Regression (DT-log, RF-log and SVM-log).
The SVM-based Prediction method yields the highest accuracy
(13.2% average prediction error), while SVM-based Regression
(SVM-log) is only slightly less accurate (15.8% average predic-
tion error). 77

4.6 STP prediction error for ML-based regression across a total
of 80 heterogeneous workload mixes. SVM-log predicts system
throughput (STP) with an average prediction error of 3.8% and
at most 13.0%. 78

LIST OF FIGURES xix

4.7 Prediction error versus simulation speedup. SVM-based predic-
tion and regression achieve high prediction accuracy while yield-
ing high simulation speedups. 78

4.8 Evaluating memory bandwidth scaling alternatives under PRS.
ML-based regression achieves higher accuracy by first scaling the
number of memory controllers (‘MC-first’) compared to first scal-
ing memory bandwidth per memory controller (‘MB-first’). . . . 79

4.9 Linear, power and logarithmic regression under SVM. Logarith-
mic regression yields the lowest prediction error. 80

4.10 Varying the input variables to the ML-based extrapolation tech-
niques. Considering both performance and bandwidth utilization
as input variables leads to improved accuracy compared to using
only performance as input. 81

4.11 Prediction error as a function of the number of multi-core scale
models used for SVM-log regression. The prediction error only
slightly increases with a reduced number of multi-core scale models. 82

4.12 Prediction error for predicting memory bandwidth utilization.
SVM and SVM-log predict memory bandwidth utilization with
an average error of 8.7% and 11.3%, respectively. 84

5.1 Simulation time in hours for multiprogram Java workloads with
up to 16 cores on Sniper. Simulation time of multiprogram work-
loads is prohibitive and increases super-linearly with an increas-
ing number of cores. 89

5.2 The CPI stacks for multi-core systems normalized to a single-
core system. The instruction fetch latency and DRAM access
latency have a large contribution to CPI and keep increasing with
system scaling. The access latency to last-level cache (LLC) also
has a significant increase with increased core counts but it only
takes 1% of the total execution time on average. 96

5.3 Prediction error for the 8-core system using ML-based regression
models. SVM with logarithmic regression (SVM-log) yields the
highest prediction accuracy with an average prediction error of
13.0% and at most 35.8%. 97

5.4 Scaled and predicted 32-core execution time normalized to
DRAM-Only for the RiskRelief collectors and HBM-Only. The
1-core performance results are obtained from a single-core sys-
tem with all shared resources scaled down proportionally. The
32-core performance results are predicted using small-core sim-
ulation results and the SVM-log regression model. 98

xx LIST OF FIGURES

5.5 Execution times for the 32-core target system collected through
scaled-down simulations without extrapolation (the first 5 sets
of bars) and predicted using Machine Learning based regres-
sion techniques (the last 2 sets of bars): RiskRelief-Nursery,
RiskRelief-Mature and HBM-Only normalized to DRAM-Only.
The performance benefits from RiskRelief collectors and HBM-
Only increase with larger core simulations over DRAM-Only,
and the predicted target performance confirms this performance
benefit tendency. 99

List of Tables

2.1 Relationship between minimum Hamming distance and number
of bit errors that can be detected and corrected. 17

3.1 Simulated system parameters. 49

3.2 The number of page migrations (DRAM to HBM, HBM to
DRAM, and total), the number of 100ms migration epochs, and
the number of page migrations per epoch for the OS approach. 55

3.3 Object demographics: total allocation, heap size, nursery sur-
vival rates, and average and maximum mature heap usage (in
MB) for our 32-instance workloads. 56

4.1 Constructing scale models through Proportional Resource Scal-
ing: LLC capacity in MB; on-chip interconnection network in
GB/s: number of cross-section links (CSLs) and bandwidth per
CSL; main memory bandwidth in GB/s: number of memory
controllers (MCs) and bandwidth per MC. 65

4.2 Target system. 71

5.1 Target system parameters. 93

xxi

List of Abbreviations

ACE Architecturally Correct Execution

AI Artificial Intelligence

AVF Architectural Vulnerability Factor

CPI Cycles Per Instruction

CPU Central Processing Unit

CSL Cross-Section Link

DRAM Dynamic Random Access Memory

DT Decision Tree

ECC Error Correction Code

FeRAM Ferroelectric Random-Access Memory

FIT Failure In Time

FMID Fixed-Midpoint

GB Giga Byte

GC Garbage Collection

GP General Purpose

HBM High-Bandwidth Memory

HMC Hybrid Memory Cube

IPC Instructions Per Cycle

ISA Instruction-Set Architecture

JIT Just-In-Time

JVM Java Virtual Machine

xxiii

xxiv LIST OF ABBREVIATIONS

KB Kilo Byte

L1I Level-1 Instruction Cache

L1D Level-1 Data Cache

L2 Level-2 Cache

L3 Level-3 Cache

LLC Last-Level Cache

LOS Large Object Space

MB Mega Byte

MC Memory Controller

ML Machine Learning

MPKI Misses Per Kilo Instructions

MRAM Magneto-Resistive Random-Access Memory

MRAT Moving-Ratio

MTTF Mean Time To Failure

MTBF Mean Time Between Failures

NAND NOT-AND

NoC Network-on-Chip

NRS No Resource Scaling

NUCA Non-Uniform Cache Architectures

NUMA Non-Uniform Memory Access

NVM Non-Volatile Memory

OS Operating System

PC Program Counter

PCM Phase Change Memory

PRS Proportional Resource Scaling

ReRAM Resistive Random-Access Memory

RF Random Forest

ROB Re-Order Buffer

xxv

RR RiskRelief

RR-N RiskRelief-Nursery

RR-M RiskRelief-Mature

SER Soft Error Rate

SRAM Static Random Access Memory

STP System Throughput

STT Spin-Transfer Torque

SVM Support Vector Machines

TLB Translation Lookaside Buffer

TSV Through-Silicon Via

Chapter 1

Introduction

1.1 Motivation

In this section, we first focus on the challenges related to managing emerging
hybrid memory systems and then motivate the need for novel simulation and
prediction techniques for exploring and evaluating future large-scale systems.

1.1.1 Soft Error Reliability in Hybrid Memory Systems

High-bandwidth memory (HBM) is very popular in emerging hybrid mem-
ory designs as it satisfies the ever-evolving bandwidth requirements of new
throughput-oriented compute platforms. HBM delivers 4–8× higher bandwidth
than traditional DRAM memory using 3D die-stacking. Unfortunately, HBM
is limited in capacity and has a high soft error rate due to high bit density
and new failure modes [84, 130]. Combining HBM and DRAM into a hybrid
memory system can meet the need for high capacity provided by DRAM and
benefit from high bandwidth provided by HBM. The reliability of hybrid mem-
ory systems, however, is still a concern with no proper management, especially
for the HBM partition.

Hybrid memory systems are typically managed through hardware and op-
erating system (OS) approaches. For example, HBM is organized as a cache for
conventional DRAM memory in hardware approaches [43, 44, 89, 96, 107] and
OS solutions map frequently accessed pages to HBM [135, 145, 146, 165]. The
aforementioned proposals intensively focus on improving performance for hy-
brid memories, leaving the reliability problem as an open question. Soft error
rates in production systems are continuously increasing, and they grow pro-
portionally with information density [98]. Researchers have recently refocused
their attention on addressing the low reliability of emerging memory systems
but faced new challenges with proposals based on existing techniques. Specif-

1

2 CHAPTER 1. INTRODUCTION

ically, it is insufficient to tackle the reliability problem using hardware-only
approaches because they will require impractical error detection and correction
capabilities [117]. The OS-based approach leverages performance and reliability
for a heterogeneous memory architecture but it operates at a coarse-grained
page granularity and frequent page migrations incur significant performance
penalties [69].

Fortunately, garbage collection in managed programming languages pro-
vides a novel insight to manage data in hybrid memory systems. In this thesis,
we focus on how to improve the reliability of hybrid HBM-DRAM systems
while delivering high performance and memory capacity. The subchallenges
include: (1) how to quantify the performance and reliability characteristics of
applications executing on the target system, (2) how to predict the hotness and
risk of allocated data to guide data management, and (3) how to design a data
management policy and organize hybrid memory partitions.

1.1.2 Large-Scale System Simulation

Computer architects extensively rely on simulation to steer future processor
research and development. Simulating architecture and predicting performance
for a future computer system is a critical and challenging problem. Consider-
able approaches have been proposed to tackle this challenge from the perspec-
tive of either system simulation or performance modeling.

The traditional approach is to deploy detailed architectural simulations such
as cycle-accurate and cycle-level simulation. However, simulating every detail
of the target system increases the simulation complexity and incurs extremely
high simulation time overheads. Scaling down workloads speeds up the simu-
lation by selecting representative regions of an application to execute on the
system and extrapolating the evaluated results to the whole execution process.
This method saves simulation time to some extent but leaves a challenging prob-
lem for system simulation – that is, simulation infrastructures may not support
simulating a large-scale computer system because of infrastructure limitations
or insufficient compute and memory capacities in the simulation host system.

Performance modeling is an alternative approach to model interactions in
a designed processor. ML-based techniques first train prediction models using
simulation results obtained from detailed simulations and then evaluate per-
formance or other metrics for the target system through prediction models.
The key challenges of ML-based models are: (1) it is time-consuming to obtain
sufficient and representative training samples from detailed simulations, and
(2) such models provide limited insight into the evaluated system by treating
the system as a black box. Analytical models, on the other hand, use mathe-
matical formulas to model application behavior executing on a designed system
based on simplifying assumptions and first principles. Application profiling is
a one-time cost and the performance estimation is quite fast because it only
contains a set of mathematical equations, making it suitable for a fast, early-

1.1. MOTIVATION 3

stage architecture exploration. However, the lack of modeling overlap effects
and tracking timing-sensitive behavior makes analytical models infeasible to
simulate increasingly large systems.

In this thesis, we target efficient and accurate architectural simulation for
future large-scale systems. Specifically, we combine architectural simulation
with machine learning techniques to predict performance for large-scale sys-
tems based on detailed simulation of a scaled-down configuration of the target
system. The key challenges involve how to construct representative scale mod-
els for the target system and how to build an accurate extrapolation model
based on the scale model predictions.

1.1.3 Managed Language Simulation

Multiprogrammed managed language workloads have received considerable
attention from computer architects due to the emerging fields of cloud comput-
ing and micro-services [12, 67, 80, 120, 168]. Fast and accurate architectural
simulation of multiprogrammed managed language workloads is thus becoming
an increasingly critical problem.

Managed programming languages, such as Java, Python or JavaScript, ex-
pose a higher level of abstraction to the programmer than native programming
languages like C and C++. Higher abstraction characteristics of managed
programming languages incur much more memory allocation [5, 194], which
stresses the memory subsystem and further increases simulation time compared
to the simulation of workloads written in native programming languages. An-
other reason for the high simulation time of managed language workloads is
the presence of a runtime environment. For example, the Java Virtual Machine
(JVM), a widely-used language runtime, provides bytecode interpretation, just-
in-time compilation, and garbage collection to facilitate faster development
times and to provide platform independence. These services run in their own
context, and increase the overall execution and simulation time [2, 33, 132].
As a result, simulating a Java workload requires simulation of the entire ap-
plication, including the overhead introduced by the just-in-time compiler and
the garbage collector. A single-instance Java workload that we simulate ex-
ecutes up to 30 billion instructions and multiprogramming undoubtedly in-
creases the simulation overhead due to contention in shared resources. A fi-
nal factor that inhibits fast simulation of multiprogrammed managed language
workloads is the internal synchronization of parallel simulators. Simulators,
such as Sniper [36], provide high-speed, parallel simulation for multithreaded
and multiprogrammed workloads. To keep the simulation correct and accurate,
synchronization of cores and shared resources is required, which inhibits the
scalability of simulation time for multiprogrammed managed language work-
loads. All these challenges motivate our newly proposed scale-model architec-
tural simulation methodology for simulating a large-scale system with multi-
programmed managed language workloads executing on it.

4 CHAPTER 1. INTRODUCTION

1.2 Key Contributions

This thesis makes four major contributions.

Contribution #1: Allocation-Site Homogeneity

Garbage collection (GC) offered by managed programming languages au-
tomatically manages virtual heap memory and relieves the programmer from
performing manual memory management where the programmer specifies how
to allocate and deallocate objects. More specifically, generational GCs place
newly allocated objects in a small nursery space and copy nursery survivors
to a large mature space during a nursery collection. To address the perfor-
mance and reliability challenges for a hybrid HBM-DRAM memory, we need
to profile the application execution on the target system. We build upon two
notions, namely hotness and risk, to quantify the performance and reliability
characteristics of the evaluated applications. Intuitively, hotness refers to how
frequently an object is accessed and risk refers to how susceptible an object
is to soft errors. The simple placement of hot objects in HBM improves per-
formance, while significantly hurting the reliability of the overall system. The
first insight is to place objects in HBM versus DRAM based on their hotness
and risk to benefit from both memory components – that is, delivering high
reliability while achieving high performance.

We start by quantifying the distribution of object hotness and risk for sev-
eral representative benchmarks. We observe that a large fraction of mature-
object accesses are captured by a relatively small fraction of the mature heap.
For benchmark Fop for example, 90% of the mature-object accesses are concen-
trated to only 32% of the mature heap. This observation suggests an opportu-
nity to allocate a small fraction of hot objects in HBM to improve performance
while placing the bulk of the mature heap in DRAM to exploit its capacity. On
the risk side, we report the distribution of relatively hot objects and observe a
remarkable variation in risk, implying that hotness is not predictive for risk. In
other words, object hotness and risk are weakly correlated. Therefore, we need
a method to predict and classify objects for both hotness and risk combined.

The second key insight is that allocation site is an accurate predictor for
both object hotness and risk. To demonstrate this, we first compute the hotness
and risk for all objects and then compute the fraction of hotness and risk
across objects for each allocation site. We define homogeneity of an allocation
site with respect to hotness, risk or combined hotness/risk, as the fraction of
objects that are classified in the same category. For example, for the combined
hotness and risk metric, perfect (100%) homogeneity means that all objects
allocated from a certain site are both hot and low-risk, or they are not, i.e.,
they are either cold or high-risk. We report the heap volume distribution over
allocation-site homogeneity for hotness, risk and the combined hotness/risk and
make two observations. First, heap volume increases with decreasing allocation
site homogeneity. For example, a relatively small fraction of the total heap
volume is covered at 100% homogeneity and the entire heap is covered at 50%

1.2. KEY CONTRIBUTIONS 5

homogeneity. Second, the combined metric outperforms the isolated hotness
and risk metrics. For example, for 90% homogeneity, more than 97% of the
heap is correctly classified for the combined metric and the percentage numbers
are 79% and 72% for hotness and risk, respectively. This implies that allocation
site is a more accurate predictor for hotness and risk combined, than for hotness
and risk in isolation. Based on the two discussed observations, we conclude that
the allocation site is a very accurate predictor for object hotness and risk, which
enables the proposed garbage collection assisted with allocation-site prediction.

Contribution #2: Reliability-Aware Garbage Collection

We propose two reliability-aware garbage collectors for hybrid HBM-DRAM
memory to minimize the soft error rate while maximizing the overall perfor-
mance of the application. These collectors place hot and low-risk objects in
HBM memory to improve reliability and performance, and place the remaining
objects in DRAM memory to exploit its large capacity. Specifically, RiskRelief-
Nursery (RR-N) places the nursery space in HBM and the rest, such as the ma-
ture space and the large object space, in DRAM. It requires minimal changes to
Java runtime but is highly effective in delivering low soft error rates compared
to an HBM-Only system and improving performance compared to a DRAM-
Only system. RiskRelief-Mature (RR-M) also places newly allocated objects
in the nursery space in HBM, and copies hot and low-risk nursery survivors
to the HBM mature space instead of DRAM mature space during the nursery
collection for a larger performance improvement.

We observe that mature object hotness and risk are predictable on a per
allocation-site basis. Based on this observation, we propose a heuristic to clas-
sify allocation sites as DRAM and HBM. Allocation sites are classified as HBM
if most of the objects they allocate are hot and low-risk. All other allocation
sites default as DRAM. We generate this per allocation-site advice offline and
feed it to RR-M. In turn, RR-M uses the advice during runtime to place nursery
survivors in HBM or DRAM. Our proposed heuristics expose previously un-
seen Pareto-optimal trade-offs between execution time and soft error rate. A
single profiling run generates a range of advice files for the GC runtime. Thus,
depending upon factors such as environmental conditions, available HBM ca-
pacity and performance goals, a system operator can adjust the advice fed to
RR-M to meet specific demands, such as exploiting the rich trade-offs between
performance, SER and memory capacity.

Our experimental results show that RR-N reduces the overall soft error rate
by 18× on average compared to an HBM-Only system, while improving the
performance over a homogeneous DRAM-Only system by 20%. The state-of-
the-art OS solution by Gupta et al. [69] achieves similar SER as RR-N, however,
performance is substantially worse (even worse than the DRAM-Only system)
due to the high cost of TLB shootdowns on modern x86 multicores [135]. Both
RR-N and the prior OS approach use a modest 128 MB of HBM on a 32-core
platform. RR-M uses an additional 18% of HBM capacity but delivers 29%

6 CHAPTER 1. INTRODUCTION

higher performance compared to a DRAM-Only system. Higher HBM capacity
affects the overall SER, and RR-M reduces SER by 9× over HBM-Only.

The above two contributions are published in:

W. Liu, S. Akram, J. B. Sartor, and L. Eeckhout. Reliability-Aware Garbage
Collection for Hybrid HBM-DRAM Memories. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 18(1):1–25, 2021

Contribution #3: Scale-Model Architectural Simulation

We propose scale-model simulation, a novel methodology to predict perfor-
mance for future large-scale multicore systems. Scale-model simulation com-
bines architectural simulation with machine learning techniques to predict per-
formance for future systems based on a detailed simulation of a scaled-down
configuration of the target system, called the scale model. Scale-model sim-
ulation first simulates a scale model of the target system. Performance for
the target system is then predicted through extrapolation. Scale-model ar-
chitectural simulation involves two key concerns: (1) how to construct scale
models and (2) how to build an accurate extrapolation model based on the
scale-model predictions. For the first objective, the challenge when construct-
ing scale models for general-purpose multicore processors is how to deal with
shared resources. One option is to simply scale the number of cores in the scale
model while keeping the shared resources unchanged as in the target system –
we refer to this approach as No Resource Scaling (NRS). We find for our suite
of SPEC CPU2017 workloads that not scaling shared resources leads to largely
inaccurate scale models with an average 60% prediction error (and up to 94%)
for a single-core scale model versus a 32-core target system. The alternative op-
tion is to proportionally scale the shared resources – we refer to this approach
as Proportional Resource Scaling (PRS). More specifically, when scaling the
number of cores by a factor F in the scale model relative to the target system,
the shared resources are also reduced proportionally by the same factor, i.e.,
LLC capacity, NoC bisection bandwidth and memory bandwidth are reduced
by a factor F . We find that proportional resource scaling delivers substantially
more accurate scale models, with an average prediction error of 14.7% and at
most 32.2% for a single-core scale model relative to a 32-core target system.

After constructing scale models for the target system, we need to explore
extrapolation techniques to yield much more accurate performance predictions
for the target system based on the performance results obtained from scale
models. We propose and evaluate two extrapolation methods that leverage
Machine Learning (ML) to infer prediction models that predict target-system
performance based on scale-model measurements, namely ML-based prediction
and ML-based regression. The key difference between both methods is that ML-
based regression does not require simulation runs of the target system during
training, in contrast to ML-based prediction. This has important implications
in practice. We have to resort to ML-based regression if it is impossible to
simulate the target system for some reason (e.g., too long simulation time
or other infrastructure-related limitations). We explore a variety of machine

1.2. KEY CONTRIBUTIONS 7

learning techniques, including decision trees, random forest and support vector
machines (SVM) in the context of scale-model simulation, and we find that
SVM is the most accurate. In addition, we evaluate a number of regression-
based extrapolation methods (i.e., linear, power and logarithmic) and find that
logarithmic regression is the most accurate.

Our evaluation using multiprogram SPEC CPU2017 workloads demon-
strates high accuracy of the scale-model simulation. Considering a single-core
scale model and a 32-core target system, we report that for homogeneous mul-
tiprogram workload mixes, SVM-based prediction yields an average prediction
error of 6.4% (and 20.8% max error). SVM-based regression is slightly less
accurate as it does not involve simulations of the target system when training
the prediction model. SVM-based regression yields an average prediction error
of 8.0% (and 26.4% at most). Scale-model simulation leads to substantial sim-
ulation speedups. Training the prediction model is a one-time cost that can
be amortized across many predictions. Once the prediction model has been
trained, scale-model simulation is fast. It only requires running a simulation of
the application of interest on the single-core scale model, which is substantially
faster than running a simulation of the target system, i.e., in our experimental
setup in which we use Sniper [36] on a high-end 36-core Intel PowerEdge R440
server, we find that simulating a single-core scale model is 28× faster than
simulating the 32-core target system.

This contribution is published in:

W. Liu, W. Heirman, S. Eyerman, S. Akram, and L. Eeckhout. Scale-Model
Simulation. IEEE Computer Architecture Letters (CAL), 20(2):175–178, 2021

An extended version of this work is published in:

W. Liu, W. Heirman, S. Eyerman, S. Akram, and L. Eeckhout. Scale-Model
Architectural Simulation. In Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2022, Accepted

Contribution #4: Scale-Model Simulation for Reliability-Aware
Garbage Collection

Scale-model architectural simulation was proven to be a fast and accurate
simulation methodology for large-scale systems in the third contribution, which
encourages an optimized simulation of reliability-aware memory management
proposed in the second contribution. More specifically, a rigorous evaluation
of our proposed reliability-aware garbage collection was inhibited because the
designed system was too large to simulate. We find that simulating a single
16-instance Java workload on a 16-core processor takes more than two weeks on
average and over a month at most. The evaluation of a 32-instance workload
execution on a 32-core system was even impossible due to the limited comput-
ing and memory capacity in the simulation host system. As a result, we had to
evaluate the proposed reliability-aware memory management in a hybrid mem-
ory system with a scaled single-core model without ML-based extrapolation in
the second contribution.

8 CHAPTER 1. INTRODUCTION

In this fourth contribution, we apply the simulation and prediction method-
ology based on scale models to the evaluation of reliability-aware garbage col-
lection. We conclude that the performance improvement obtained based on a
scaled single-core model (reported in the second contribution) is conservative –
that is, the performance improvement obtained from the RiskRelief collectors is
expected to be even higher with a more accurate and elaborate evaluation. The
experimental results show that RR-N yields an average performance benefit of
20% compared to a DRAM-only system based on the single-core simulations
and 62% based on the 32-core predictions using ML-based regression. RR-M
improves performance by 29% on average over DRAM-only using single-core
simulations versus 68% using 32-core predictions with ML-based regression.

1.3 Structure and Overview

This dissertation is organized into six chapters.

Chapter 2 describes recent trends in memory system development, intro-
duces necessary background on system reliability, and discusses reliability es-
timation techniques for emerging hybrid memory systems. It also introduces
representative simulation and prediction methodologies for modern computer
processors. Finally, this chapter explains how to evaluate Java workloads us-
ing state-of-the-art techniques to ease the understanding of the experimental
setups in Chapters 3 and 5.

In Chapter 3, we first demonstrate the performance and reliability chal-
lenges for the current memory system and then explore allocation sites to pre-
dict the hotness and risk of objects. Finally, we propose reliability-aware mem-
ory management (i.e., reliability-aware garbage collection) for hybrid HBM-
DRAM memories. We evaluate the proposed garbage collectors with simula-
tion results from the simulator and emulation results for the real hardware.
The experimental results show that the proposed garbage collection can im-
prove system reliability while maximizing overall application performance. It
also manages hybrid HBM-DRAM memory significantly better than the state-
of-the-art OS approach.

Chapter 4 targets the performance prediction for future large-scale com-
puter systems. We propose a scale-model architectural simulation to predict
performance for the target system based on the simulation results of scale
model methodology. This chapter presents how to construct scale models and
how to extrapolate performance results obtained from scale models to predict
performance for a large target system. Two machine learning-based extrapo-
lation techniques, namely ML-based prediction and ML-based regression, are
proposed and evaluated using homogeneous and heterogeneous workload mixes.
We also evaluate the prediction accuracy, simulation speedups and sensitivity
of the proposed scale-model simulation technology.

1.3. STRUCTURE AND OVERVIEW 9

Chapter 5 first illustrates the challenges in simulating multi-programmed
Java workloads on a large-scale system. It then introduces the application of
scale-model simulation (proposed in Chapter 4) to the evaluation of the target
system (which is proposed in Chapter 3 and is too large to simulate with exist-
ing simulation techniques). We evaluate the simulation speedup achieved from
scale-model simulation, the performance prediction accuracy of the proposed
approach on multiprogrammed Java workloads executing on the target sys-
tem, and the feasibility of prototyping a future system that may be prohibitive
to be simulated due to infrastructure limitations and/or insufficient memory
and computing capability. We also verify a critical observation obtained from
Chapter 3 that the performance predictions based on small-scale models are
representative and conservative compared to those results expected from the
target system.

Finally, in Chapter 6 we conclude the dissertation and discuss some poten-
tial avenues for future work.

Chapter 2

Background

In this chapter, we present the background on recent trends in memory sys-
tem design, basic knowledge of system reliability, and existing simulation and
prediction methodologies. Section 2.1 discusses the challenges for DRAM scal-
ing, illustrates the development of emerging memory technologies, and briefly
introduces the assumed memory architecture used in this dissertation. Sec-
tion 2.2 introduces the basic knowledge related to system reliability. We first
explain terminology in the fault tolerance domain. We then introduce the eval-
uation metrics to quantify the reliability of a system and we describe Architec-
ture Vulnerability Factor (AVF) analysis, an estimation methodology used for
assessing soft error reliability in this dissertation. Section 2.3 and Section 2.4
summarize the existing simulation and modeling techniques to simulate the
(micro-)architecture and predict performance for a designed system. Finally
in Section 2.5, we describe the current state-of-the-art in benchmarking Java
workloads.

2.1 Memory System Trends

2.1.1 DRAM Challenges

Main memory is a critical component of a modern computer system. Dy-
namic random access memory (DRAM) has served as the main memory over the
past decades and is experiencing difficult architecture and technology scaling
problems derived from recent system design, technology trends and emerging
applications. On the architecture side, an increasing number of processing
cores [45, 93, 173] (e.g., multi-core homogeneous/heterogeneous processors, di-
verse accelerators and graphic processing units) are building upon the memory
system and delivering rapacious demand for memory bandwidth, system relia-
bility, power consumption, etc. [125, 128, 172] On the technology side, emerging

11

12 CHAPTER 2. BACKGROUND

memory structures/technologies launch a huge attack on well-established mem-
ory management policies. Simply implementing current DRAM-based memory
techniques on future memory architectures is usually incompatible and insuf-
ficient to achieve the best of new techniques. Several data placement tech-
niques [131, 179, 180] have been proposed to improve performance, reliability
and/or mitigate power overhead for heterogeneous architectures. Finally, on
the application side, applications executing on the cores are becoming increas-
ingly data and memory intensive, which requires efficient manipulation of large
amounts of data. For example, big data analytics uses advanced analytical
techniques [50, 61, 77, 187] to uncover information, such as hidden patterns,
unknown correlations and market trends, from very large diverse data sets. It
can be used for better decision making, preventing fraudulent activities, among
other things. One predominant challenge for such techniques is the process-
ing of massive amounts of data, which overwhelms the memory capacity and
bandwidth of today’s computer systems.

Putting it all together, emerging architecture, technology and application
trends exacerbate challenges for the scaling of conventional DRAM memory.
Techniques that leverage the advantages of multiple memory levels and pur-
sue cooperation across different computing layers appear to be promising and
crucial for solving problems related to performance, reliability, capacity and
energy efficiency for the memory or the whole system.

2.1.2 Emerging Memory Technologies

Emerging big data and artificial intelligence (AI) techniques, including ma-
chine learning, drive innovations across academic and industry fields, accompa-
nied with new memory technologies. Computer architects devote much effort
to alternative memory technologies that may replace DRAM, focusing on ei-
ther non-volatile or volatile memories. Another direction, instead of replacing
DRAM, is to combine competitive options with DRAM and devise appropriate
approaches to exploit the advantages of both worlds.

Non-volatile memories are extensively investigated and highly expected to
replace existing memories. Compared to DRAM-based main memory tech-
nologies, they are usually more reliable, easily programmable, and promise
better scalability. Emerging non-volatile memories include Magneto-Resistive
Random-Access Memory (MRAM), Ferroelectric Random-Access Memory
(FeRAM), Phase Change Memory (PCM), Resistive Random-Access Memory
(ReRAM), etc. MRAM [32, 63], implied by its name, stores the data using mag-
netic storage elements. The storage elements are formed by two ferromagnetic
plates, each of which can hold a magnetic field, separated by a thin insulating
layer. One of the two plates is a permanent magnet set to a particular polarity;
the other’s field can be changed to match that of an external field to store mem-
ory. Spin-transfer torque random-access memory (STT-RAM) is an advanced
MRAM but with better scalability over traditional MRAM. The spin-transfer

2.1. MEMORY SYSTEM TRENDS 13

torque (STT) is an effect in which the orientation of a magnetic layer in a
magnetic tunnel junction or spin valve can be modified using a spinpolarized
current. Spin-transfer torque technology has the potential to meet low current
requirements and reduce memory cost; however, the amount of current needed
to reorient the magnetization is currently too high for most commercial applica-
tions. PCM utilizes the unique behavior of chalcogenide glass whereby the heat
produced by the passage of an electric current switches this material between
two states – the amorphous and the crystalline state. The different states have
different electrical resistance which can be used to store data. The advantages
of PCM make it one of the most promising technologies for being an alternative
to existing memory. For example, PCM is byte-addressable, persistent and can
offer more capacity than DRAM. However, challenges, such as high latency
and low write endurance, still exist, preventing it from being widely deployed.
ReRAM is a nonvolatile memory similar to PCM. The technology concept is
that a dielectric, which is normally insulating, can be made to conduct through
a filament or conduction path formed after the application of a sufficiently high
voltage. Arguably, this is a memristor technology and should be considered as
a potentially strong candidate to challenge NAND Flash.

Volatile memory, DRAM specifically, has been the predominant physical
substrate for implementing main memory. Introducing the 3D die-stacking
technique to conventional DRAM opens up a promising avenue to mitigate the
growing demands of increased bandwidth and low power consumption at a rela-
tively low cost. Hybrid Memory Cube (HMC) [140] is a high-performance RAM
interface designed for 3D die-stacked DRAMmemory. HMC combines through-
silicon vias (TSVs) and microbumps to connect multiple dies of memory cell
arrays on top of each other. One of the major goals of HMC is to eliminate the
duplicative control logic of modern DIMMs. In the process streamline design,
HMC links the entire stack in a 3D configuration and then uses one control
logic layer to cater to all traffic. HMC is explicitly designed to respond to
multi-core scenarios and deliver data with substantially higher bandwidth and
lower overall latency. High bandwidth memory (HBM) [86], another 3D coun-
terpart to DRAM, is an innovative memory technology which stacks multiple
DRAM layers vertically, where layers are also connected by TSVs. HBM offers
more channels per device, smaller page sizes per bank, wider activation win-
dows and a dual command line for simultaneous read and write. These features
distinguish HBM to provide performance and power improvements in case of
bandwidth-sensitive workloads.

Memory technologies discussed above target increasing memory require-
ments from different perspectives. However, no existing or emerging single
memory module can provide the lowest latency, highest bandwidth, largest ca-
pacity, highest reliability, and lowest power consumption at the same time.
Therefore, homogeneous memory systems are often not sufficient for the
upcoming computing era with big data, artificial intelligence, IoT, cloud,
etc. Using combined DRAM technologies for main memory systems to im-
prove energy efficiency on traditional CPUs has been explored by several

14 CHAPTER 2. BACKGROUND

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

Logic Die PHY

CPU/GPU/SoC Die

PHY

Silicon Interposer

Package Substrate

TSV

Microbumps

Figure 2.1: HBM architecture: HBM vertically stacks multiple DRAM dies
which are interconnected by microscopic wires called through-silicon vias
(TSVs).

HBM DRAM

Object-based Memory
Management

ObjectsJava Applications

Jikes RVM

Operating System HBM_bit = 1

HBM DRAM

1
dataheader

HBM_bit

1. Motivation

HBM_bit = 0

Figure 2.2: Assumed memory and the computer system level hierarchy.

groups [22, 38, 100, 122, 139, 143, 147]. Such work has focused on overcoming
the performance limitations that future non-volatile memory technologies may
have compared to existing DRAM designs. In addition to off-package memories,
upcoming on-package memories provide opportunities for latency reduction by
either increasing the number of banks available to the application [51] or bal-
ancing the bandwidth with power consumption [193]. An alternative to treating
heterogeneous memory systems as a flat memory space is to treat one technol-
ogy as a cache for the other [92, 116]. Although this cache-oriented design
has the advantage of being transparent to the programmer, OS and runtimes,
few implementations [164] take advantage of the additional bandwidth when
employing heterogeneous memory.

2.2. SYSTEM RELIABILITY 15

2.1.3 Hybrid HBM-DRAM Memory System

Die-stacked DRAM is a technology that has recently been integrated into
high-performance systems. High bandwidth memory (HBM), a new 3D die-
stacked memory, has been explored as one of the most promising memory
technologies. Figure 2.1 illustrates a basic architecture of HBM [13]. The
fundamental components of HBM consist of multiple DRAM dies stacked one
above the other and an optional base die at the bottom. DRAM dies are
vertically stacked and interconnected by through-silicon vias (TSVs) and mi-
crobumps. The base die provides I/O buffers and test logic. HBM is often
connected to the memory controller on a GPU or CPU through a substrate,
such as a silicon interposer. Alternatively, the memory die could be stacked
directly on the CPU or GPU chip.

HBM can be integrated into the storage hierarchy in different ways due
to variable optimization targets. Some studies have focused on hardware
caching techniques [43, 70, 191] to make use of the stacked memory, but
these approaches require complex hardware changes and cannot leverage the
stacked memory to increase the overall memory capacity of the system. Recent
trends [44, 69] feature stacked memory next to traditional memory, making
them work side by side to obtain a hybrid or heterogeneous memory system.
The ensuing challenge is to figure out what the limitations and constraints are,
and how applications can make efficient use of new high-bandwidth memory
and the traditional memory to achieve best of both worlds.

In this thesis, we assume a hybrid HBM-DRAM memory system that com-
bines on-package HBM with off-package conventional DRAM memory – sim-
ilar to the memory system equipped on the Intel Knights Landing (KNL)
processor [169]. Specifically, HBM is integrated on-package while DRAM is
off-package and connected by DDR4 channels. Figure 2.2 demonstrates our
assumed memory system and the computer system level hierarchy we used.
We present HBM as an additional NUMA node to the OS to exploit full mem-
ory capacity. We modify the memory management toolkit (MMTk) of Java
Virtual Machine (JVM) – Jikes’ MMTk in our case – to split the virtual heap
into HBM and DRAM partitions. The key observations of Java applications
executing on such a system motivate us to propose a new class of garbage
collectors to manage our hybrid memory at the object level while requiring
no extra hardware support. The assumed HBM-DRAM memory system will
be built and evaluated in Chapters 3 and 5. We will introduce the detailed
proposals in Chapter 3.

2.2 System Reliability

We now introduce some basics about system reliability.

16 CHAPTER 2. BACKGROUND

2.2.1 Terminology

Reliability describes the capability of a system to continuously deliver ex-
pected services. It is formally defined as the probability that a system will
produce outputs without failure up to some given time t [114]. The definition
of reliability presents its correlation with failure which is a possible output of
an error caused by a hardware or software fault. We now discuss the definitions
of a fault, error and failure, along with their cause-and-effect relationships.

A fault is the physical defect or temporal malfunction from the hardware
perspective. For example, it can be caused by a flaw in the manufacturing
process of a silicon chip or undesirable changes in temperature. Programming
bugs, derived from incorrect specification or human mistakes, may lead to un-
expected errors and then defined as software faults. A fault in a device is
permanent if it is unrecoverable. For CMOS technology they can be classified
as extrinsic and intrinsic faults. Extrinsic faults are caused during device man-
ufacturing by contamination or burn-in testing. Intrinsic faults are directly
related to the CMOS ageing effects, where the performance of device degrades
over time. Permanent faults reappear upon every use of the device. Transient
faults occur when energy particles, such as alpha particles, cosmic rays or ther-
mal neutrons, strike the transistors or the logical gates. Such faults are random
and no longer present when the driving source disappears.

An error is a deviation from the required operation of a system or sub-
system, which is caused by a fault. For example, an error occurs when the
sequential logic of a circuit (e.g., register files or pipeline registers) generates
an unexpected value. An error makes the fault apparent, whereas not all faults
lead to errors. Masking mechanisms such as electrical masking, logic masking
and timing masking [9, 134] could prevent faults from forming errors. The
error caused by a permanent fault is called a permanent error or a hard error.
Hard errors need a fix at the hardware level or they are entirely unrecoverable,
which reaches out of our research. A soft error, on the other hand, stems from
a transient fault and causes a temporary unintended condition in the device.
Our research in this thesis mainly focuses on the analysis and tolerance of soft
errors caused by transient faults.

A failure indicates the occurrence of unanticipated behavior of a system –
that is, a possible outcome of an error. Unexpected behavior could be gener-
ating wrong outputs for a program execution or storing mismatched values in
memory. Not all errors lead to a failure. For example, failures will be avoided if
erroneous values in register files are overwritten before being stored in memory,
or the subroutine is not called, making its programming bugs invisible. Failures
can be avoided or reduced through detecting and correcting faults or errors in
advance; we discuss the detailed techniques in the next subsection.

2.2. SYSTEM RELIABILITY 17

Minimum Hamming Distance 1 2 3 3 4 4 5 5 5
Number of bit errors which can be detected 0 1 1 2 2 3 2 3 4
Number of bit errors which can be corrected 0 0 1 0 1 0 2 1 0

Table 2.1: Relationship between minimum Hamming distance and number of
bit errors that can be detected and corrected.

2.2.2 Fault-Tolerant Techniques for Memory

Information redundancy and coding techniques have been widely used to
protect computer systems. Coding techniques can be used to detect and/or
correct single-bit or multibit errors. Examples of common error codes used in
computer systems include some fundamental schemes such as parity codes, sin-
gle error correction double error detection (SECDED) codes and cyclic redun-
dancy check (CRC) codes, as well as some advanced versions like Chipkill and
parity prediction circuits. We mainly introduce SECDED codes and Chipkill-
based protection in this section, as they will be adopted in this thesis for the
following proposals.

The basic idea of error codes is to use a code word to protect data bits
against single-bit or multibit errors. Data bits are literally from the program
data and code bits are newly introduced to form a code word with data bits. For
example, a simple tuple code word can be formed as <data bit, code bit> and
the encoding scheme can be set as code bit = data bit. In line with the encoding
scheme, the fault-free code is then supposed to be either 00 or 11 because the
code bit must be equal to the data bit. When the data bit is needed by the
program, the whole code word will be read out and checked for the correctness.
A fault-free code word means no error in the data bit. Otherwise, the value 01
or 10 means that a bit flip happens to the data bit or code bit due to an alpha
particle or a neutron strike.

The number of bit errors a code word can detect or correct is determined
by its minimum Hamming distance. The Hamming distance [73] between two
words or bit vectors is defined as the number of bit positions they differ in.
Given a code word space, the minimum Hamming distance of the code word is
the minimum distance between any two fault-free code words. For the afore-
mentioned example, fault-free code words are 00 or 11, thus the minimum
Hamming distance for this code space is 2. Table 2.1 presents the number of
bit errors that can be detected or corrected by a code word given its minimum
Hamming distance. According to this table, the above discussed tuple code
word can detect a single-bit error but cannot correct it. For example, it can
be easily detected that a code word 01 is erroneous as it is opposite to the
encoding scheme. The error correction, however, cannot be performed because
it is difficult to determine whether the code word changes from 00 to 01 (due
to a code bit flip) or 11 to 01 (due to a data bit flip). Such a coding scheme is
defined as Single Error Detection (SED). We can also observe from the table
that a coding scheme can correct single-bit errors and detect double-bit errors if
its minimum Hamming distance is at least 4 – such a coding scheme is referred

18 CHAPTER 2. BACKGROUND

to as SECDED code. Over the years, a wide range of Error Correction Code
(ECC) techniques have been developed and implemented across different layers
of the entire computer system. SECDED [76] is a fundamental fault-tolerant
technique in the realm of ECC and is widely used due to its simple implemen-
tation. For a regular DDRx-based memory, a collection of x8 DRAM chips
operating in lockstep deliver a 64-bit word on the data bus, with each chip
contributing an 8-bit subset. In this case, an additional 8-bit chip is needed to
provide SECDED protection.

Error coding techniques like SECDED can protect the memory system
against bit failures. However, protecting large-granularity failures, such as
column/row/bank-failures, requires chip-level schemes. Chipkill is an IBM
trademark for an advanced ECC technique which can protect against up to
a full DRAM chip failure [49, 81]. One simple implementation is to distribute
the bits of a Hamming code ECC word across multiple memory chips, such
that the failure of any single memory chip will affect only one code bit per
word. In this way, even though an entire memory chip experiences complete
failure and stops functioning, data in that memory chip can be recovered using
the other chips and the ECC code. Chipkill-based correction provides stronger
protection for the memory system than traditional SECDED protection. Typi-
cal implementations use more advanced codes, such as a BCH code [185], which
can correct multiple bits with less overhead. IBM first introduced the concept
of Chipkill-correct [49] in 1997, which interleaved the ECC coding such that
two consecutive data bits were encoded in two different code words. This ap-
proach is capable of protecting the memory data against complete damage of a
single memory bank. AMD further optimized this technique by achieving the
same level of protection with a reduced number of required memory ranks [14].
Udipi et al. [174] proposed a novel implementation of the Chipkill-level relia-
bility technique for future energy-efficient memories.

Our first work in this thesis targets the performance and reliability of hy-
brid HBM-DRAM memories. For the fault-tolerant techniques, we assume
SECDED coding for on-package HBM because of its lower complexity and
power consumption. In line with production systems, we assume single-Chipkill
ECC for off-package DRAM.

2.2.3 Metrics

MTBF, MTTF and FIT-rate, three prevailing evaluation metrics, are widely
used by computer architects and manufacturers to quantify the reliability of a
system or a product. FIT rate and MTTF can be used to measure the number
of failures or the number of errors [126, 127, 184]. We now review them in the
context of soft errors.

Mean Time Between Failures (MTBF). MTBF is the average time be-
tween system breakdowns. This statistical value represents the average amount
of time between random failures over a long period of time for a given com-

2.2. SYSTEM RELIABILITY 19

ponent. It also indicates the system reliability that is calculated from known
failure rates of various components in the system. Assume n components exist
in the system, the system MTBF is computed from the MTBFs of the individ-
ual components:

MTBFsys =
1

∑n

i=1

1

MTBFi

(2.1)

Mean Time To Failure (MTTF).MTTF represents the mean time expected
until the next failure of a piece of equipment. Technically, MTBF is used in ref-
erence to a repairable item while MTTF is used for non-repairable items. How-
ever, MTBF is commonly used for both repairable and non-repairable items.
The system MTTF is calculated similarly as MTBF:

MTTFsys =
1

∑n

i=1

1

MTTFi

(2.2)

Failure In Time (FIT) rate. FIT rate is defined as the total number of
errors in a billion device hours. This term is particularly used by the semicon-
ductor industry and is also used by component manufacturers. If the evaluated
components in the system are independent, the system FIT is the addition of
FIT for individual components:

FITsys =

n
∑

i=1

FITi (2.3)

FIT values can also be calculated with the formulas below with the MTTF
shown in the reliability data.

FIT =
1

MTTF
(2.4)

FIT rate is a typical representation of the Soft Error Rate (SER); hence we
adopt this metric for the soft error reliability analysis in our work.

2.2.4 Architecture Vulnerability Factor Analysis

Recall that our first work in this thesis is about how to improve the per-
formance and reliability of a hybrid memory system, in which the reliability
analysis relies on the evaluation of system vulnerability to soft errors. Ar-
chitecture Vulnerability Factor (AVF) analysis is a well-established analytical
reliability estimation technique, proposed to perform a fast and accurate anal-
ysis of system reliability. In this subsection, we introduce AVF-based analysis
in detail, and this method will be adopted in this thesis for further proposals.

20 CHAPTER 2. BACKGROUND

2.2.4.1 AVF-based Analysis

Architecture Vulnerability Factor (AVF) analysis was proposed in [153] to
calculate the probability that a fault within a certain architecture unit leads to
an observable program error. AVF is calculated using the processor state bits
of Architecturally Correct Execution (ACE) as we will demonstrate later. The
AVF calculation usually involves a model of a hardware structure, for exam-
ple, a performance simulator, where performance counters are used to profile
and track the instructions. One representative example is to use the Asim
framework [54] of the IA64 architecture [99] to estimate AVF for instruction
queues and execution units. Others extended existing AVF models to estimate
the system-level vulnerability factor for on-chip instruction caches [183], data
caches [72], L2 caches [39] and register files [124]. Those optimized analyti-
cal models mitigate the overestimation problems by studying the system-level
effects of a particular behavior on a certain architecture component. For exam-
ple, Haghdoost et al. [72] improve the AVF estimation accuracy by up to 40%
through taking into account both the read frequency and error masking/detec-
tion of system-level vulnerability of data caches. In parallel with architectural
AVF analysis, other work takes advantage of such analysis for software reliabil-
ity. Rehman et al. [148] propose compiler optimization techniques to generate
reliable code which minimizes the ACE latency of program variables. The
work is further extended in [149] to jointly consider functional correctness and
timing reliability. In addition, Weaver et al. [184] propose both software and
hardware techniques to reduce the soft error rate based on fault tracking and
AVF analysis.

In summary, AVF-based analytical models are widely used and play an im-
portant role in the system reliability research. In addition, AVF analysis is fast
especially compared to fault injection campaigns. The collective advantages of
current AVF analysis motivate us to use such a methodology to quantify the
reliability of memory objects in our work.

2.2.4.2 AVF versus SER

To calculate AVF, Mukherjee et al. [153] group all bits in a hardware struc-
ture into two types: (1) those necessary for architecturally correct execution
(ACE), and (2) the remaining un-ACE bits. AVF of a hardware structure is
calculated as the fraction of its ACE bits to the total number of bits over a
period of time.

ACE bits. A fault in the ACE bits results in an observable program error
due to lack of error correction techniques, whereas a fault in un-ACE bits has
no impact on correctness. For example, all bits of the branch predictor are
un-ACE because a fault in the branch predictor can never lead to incorrect
updates to the architectural state of a program. Furthermore, a bit can be
ACE for only a fraction of the total program execution time and un-ACE for
the rest of the time. For example, a physical register is written into some bits

2.2. SYSTEM RELIABILITY 21

by an instruction at the beginning of the program execution, then the register
values are read in the middle of the execution and are no longer required after
that. In this case, these bits are ACE until they are required, namely, this
physical register contains ACE bits for only half of the total execution time.
From the architectural perspective, NOP instructions, performance-enhancing
instructions, predicated instructions with a false predicate and dynamically
dead instructions will produce un-ACE bits.

Architecture Vulnerability Factor (AVF). As mentioned above, the AVF
for a hardware structure is the fraction of the total execution time when it is in
ACE state. For example, a physical register is written at the beginning of the
execution, read half-way and dead thereafter. In this case, the AVF for this
register equals to 0.5 or 50%. In general, the AVF of a hardware structure H
over a period of N cycles can be computed as:

AV FH =

∑N

i=0
ACEi

BH ×N
(2.5)

where ACEi represents the ACE bits in structure H at cycle i and BH is the
total bit size of this structure.

Soft Error Rate (SER). SER is the probability for an uncorrectable error
resulting from incorrect program execution. For a hardware structure H, the
SER is the product of its FIT rate and AVF:

SERH = FITH ×AV FH (2.6)

The calculation of FIT rate has been illustrated in Section 2.2.3. The FIT
value in the equation presents the probability of a transient uncorrectable error,
while the AVF value captures the incidence of the application reading the
erroneous bit. Putting Equation 2.5 and Equation 2.6 together, we conclude
that SER of a certain structure is proportional to the ACE bits if the time
period, environmental factors and circuit characteristics are kept unchanged.

2.2.4.3 AVF Estimation for Memory System

AVF analysis is performed using a simulation model of a hardware structure,
and the accuracy of AVF estimation depends on the level of detail incorporated
in the model [24]. The more details, the longer it takes to estimate AVF but
the more accurate the estimation will be. For DRAM-based memory systems,
soft errors can be caused by either neutron particles from cosmic rays or alpha
particles present in the packaging material of a chip. These particles manage to
penetrate the die, generate a high density of holes and electrons in its substrate,
and finally create an imbalance in the device’s electrical potential distribution
that causes stored data to be corrupted. Corrupted data will be ACE if they are
loaded and processed by instructions and further affect the program execution.
Under such circumstances, accurately evaluating the vulnerability of a memory

22 CHAPTER 2. BACKGROUND

time

𝑊𝑅1 𝑅𝐷1 𝑅𝐷ଶ 𝑊𝑅ଶ
𝑊𝑅1 𝑅𝐷1 𝑊𝑅ଶ 𝑅𝐷ଶ

𝑡1 𝑡ଶ 𝑡ଷ
𝑡௧௢௧௔௟

particle
strike

particle
strike

Bit1

Bit2

Figure 2.3: AVF of two bits in the memory system. Two bits in the memory
could have the same hotness but different AVFs depending on the sequence of
reads and writes.

system to soft errors requires monitoring every bit in the memory during the
whole program execution.

The AVF of a bit is the fraction of time that the bit is in ACE state
(see Equation 2.5). We illustrate an example in Figure 2.3 to show the AVF
calculation for two bits in memory. Assume that both bits are read and written
twice during a program execution. Bit1 is written first, followed by two reads
and finally written again. Bit2, however, is written and read in an alternating
way. Any particle strike (e.g., neutron or alpha strike) could result in incorrect
execution in case of no correction before loading data. Therefore, Bit1 is in
ACE state from request WR1 to RD2, leading the AVF of this bit being equal
to ((t1 + t2)/ttotal). Bit2 sustains the same particle strike but has a different
sequence of reads and writes. Time between WR1 and RD1 contains an ACE
bit as the data for the first read operation RD1 is corrupted by the particle
strike. The data for the second read RD2, however, has been masked as a
correct value because it is overwritten by WR2. Hence, the AVF for Bit2 is
equal to (t1/ttotal). This example demonstrates that two bits with the same
number of reads and writes could potentially have very different AVF values;
thus a precise calculation of AVF requires the record of each read and write
operation, both the frequencies and time sequences, for every bit in memory
during the whole execution.

From a practical point of view, the granularity of the AVF analysis relies on
the memory access granularity. For OS-managed memory, we can perform AVF
analysis on the memory system at a cache line granularity because a cache block
is the fundamental unit of data transfer in memory. For the memory system
with modern managed programming languages, garbage collection organizes
the virtual memory heap at an object granularity, thus the AVF analysis can
be performed through tracking every read and write to an object. In addition
to the estimation accuracy, the AVF analysis also needs to compromise with
the analysis efficiency. In our work, we find that precisely computing the AVF
of an object, namely tracking all reads and writes, incurs too much overhead
to perform online profiling in the context of a managed runtime environment.

2.3. SYSTEM SIMULATION 23

Hence, we use proxy metrics that correlate well with AVF and are easier to
collect. Sections 3.3 and 3.4 explain the definition and usage of AVF proxies
in detail.

2.3 System Simulation

Prototyping a designed computer system is so time-consuming and inflexi-
ble that researchers and practitioners heavily rely on architectural simulation
to steer future system development. Specifically, computer architects employ
simulation to predict the performance and/or other characteristics concerned
with a set of workloads executing on a target system. Simulation techniques
can be classified into many different categories depending on the context –
functional versus timing simulation; trace-driven versus execution-driven sim-
ulation; workload scaling versus architecture scaling simulation. These tech-
niques may model the target system at different levels of abstraction, whereas
they are proposed with generally two goals – improving prediction accuracy
and/or reducing simulation time. We now discuss the aforementioned simula-
tion techniques and clarify which techniques we use in this thesis.

2.3.1 Functional versus Timing Simulation

2.3.1.1 Functional Simulation

Functional simulation models the functional characteristics of a designed
system. The instructions are simulated one at a time much like an inter-
preter, hence they are also called ISA simulators. Functional simulation can
also simulate specific components of the processor, such as the cache hierar-
chy or branch predictor. Some simulators, e.g., Sniper [34], offer a cache-only
simulation mode. Many other prevailing simulators, such as SimpleScalar [31]
and Gem5 [23], also offer functional simulation models. Pin [113], a binary
instrumentation framework developed by Intel for x86-applications, is widely
used to build functional simulators. This tool allows to instrument an ap-
plication as it is executed and collect statistics from the dynamic instruction
stream. The statistics collected can be used to build functional simulators such
as CMP$im [85], a functional cache simulator for multicore processors, as well
as full timing-based simulators such as Graphite [121] and Sniper [34]. In sum-
mary, functional simulation is favorable to verify the functionality of a system
or its certain substructures, or provide high-level statistics such as dynamic
instruction counts, cache miss rate, the number of mispredicted branches, etc.

Functional simulation for a system or a specific system component is rela-
tively fast because it only models the functional characteristics of a structure,
with no timing-related details involved. However, the lack of timing-related
simulations also induces its inability to deliver performance characteristics, that

24 CHAPTER 2. BACKGROUND

is, it cannot be used to predict performance or other timing-related statistics
for the target system.

2.3.1.2 Timing Simulation

Timing simulation keeps track of both functional characteristics and timing-
related details of a system. It simulates the system and evaluates applications
in an cycle-accurate way, further categorized into cycle-accurate simulation and
cycle-level simulation.

Cycle-accurate simulation models every component of the target system in
software, that is, simulating the instruction set, the pipeline and the memory
hierarchy of a system on a cycle-by-cycle basis. This detailed architectural
simulation generates accurate performance predictions compared to the real
system. However, such an accurate simulation is also accompanied by two dis-
advantages. The first disadvantage is the overwhelming overhead of simulation
time. For example, simulating an instruction may take up to several millisec-
onds in the simulator while it only takes one cycle in real hardware, leading to
a slowdown of several orders of magnitude. In addition, it is very difficult for
the academia to do cycle-accurate simulations of commercial products. The
processor company would keep simulators inside rather than release them, to
prevent third-parties from figuring out the design details of their products. This
action is intelligible in consideration of their research and development costs,
and profit needs. In conclusion, it is infeasible for computer architects (espe-
cially in academia) to explore processor designs using cycle-accurate simulator
either for its unavailability or unendurable simulation time overhead.

Fortunately, some alternative simulators have been proposed to academics
to perform cycle-level simulations. These simulators will provide high detail for
certain components of the system and do a fast and less accurate simulation of
the rest of the architecture. For example, Gem5 [23] simulates a target system
based on events rather than cycles, that is, the simulation directly jumps to
the time when an event is scheduled instead of going through all cycles. In this
way, it reduces the simulation time by not simulating cycles with no scheduled
events. On the other hand, Gem5 tracks events on a cycle-to-cycle basis and
its ‘Minor’ (in-order) and ‘O3’ (out-of-order) CPU models allow for simulat-
ing the pipeline in detail, both keeping its accuracy at a high level. Interval
simulation [65] is proposed to simulate multicore systems at a higher level of
abstraction compared to detailed cycle-level simulation. Carlson et al. [34]
further integrate the interval simulation methodology into Graphite [121], a
parallel simulation infrastructure, to build a fast and accurate multicore simu-
lator called Sniper [34]. ZSim [156] also implements high-abstraction simulation
models and it focuses more on simulating memory hierarchies and many core
heterogeneous (single-ISA) systems. Other example simulators include Sim-
pleScalar [31], PTLSim [192], etc. Overall, the cycle-level simulation achieves
a significant simulation speedup compared to the cycle-accurate simulations
while still maintaining a high level of prediction accuracy.

2.3. SYSTEM SIMULATION 25

Timing simulations offer different trade-offs in terms of prediction accuracy
and simulation time. However, their prominent simulation time still makes
them inappropriate to predict performance for emerging applications, especially
high-level programming applications executing on a large-scale target system.

2.3.2 Trace-Driven versus Execution-Driven Simulation

Architectural simulation can be categorized into functional simulation and
timing simulation according to the level of simulation details just described in
Section 2.3.1. It can also be classified according to the types of input. More
specifically, the input can be a trace collected from an execution of a program
on a real microprocessor (so called trace-driven simulation) or a program itself
(so called execution-driven simulation).

2.3.2.1 Trace-Driven Simulation

Trace-driven simulation [175] loads a fixed sequence of trace records from
a file as an input to a simulator. The information in the trace file depends
on the simulation target. For instance, simulating the cache hierarchy only
needs to record information of memory accesses. When it comes to a detailed
system simulation, the trace files need to contain information for the entire
system, such as memory references, branch outcomes, dynamically executed
instructions, among others.

The trace files fed into the simulator are first generated using a tracer or
profiler, which can be done offline or along with the simulation. Most of these
files only record instructions that were successfully completed and lack instruc-
tions that were executed on the wrong path after a branch misprediction. Such
a deterministic simulation makes trace-driven simulation comparatively fast,
and its results are highly reproducible. However, it is not always representa-
tive of the real execution of an application for lack of information on the wrong
path. On the other hand, detailed trace recording for an accurate simulation
requires a very large storage space, especially for long-running applications [66].

2.3.2.2 Execution-Driven Simulation

Execution-driven simulation [31] directly reads instructions for the evalu-
ated program as input and simulates the execution of machine instructions
on the fly. Since the input file contains instructions that are not necessarily
executed, it is easier to simulate wrong-path instructions in case of a branch
misprediction in contrast to trace-driven simulation. In addition, the input file
for execution-driven simulation only contains static instructions for a program
and every instruction appears only once in the file, which makes it typically
several magnitudes smaller than a trace file. The benefits of storage space

26 CHAPTER 2. BACKGROUND

obtained from the input program file come up with an overhead for the simula-
tion time. Specifically, the execution-driven simulation is much slower than the
trace-driven simulation because it has to process each instruction one-by-one
and update the status of all microarchitecture components involved.

In summary, the selection of input types for simulation is a trade-off be-
tween storage space and simulation time. A very detailed trace for a highly
accurate simulation requires a very large storage space, whereas a very accurate
execution-driven simulation takes a very long time to execute all instructions
in the program. Computer architects can propose or select different simulators
for their specific research purposes. Shade [46], MASE [103], Synchrotrace [157]
and TaskSim [150] are representative examples of the trace-driven simulators.
Typical execution-driven simulators include SimpleScalar [18], SPIM [138],
PTLSim [192], ESESC [17] and Fast [40].

2.3.3 Workload versus Architecture Scaling Simulation

Speeding up simulation can often be achieved through scaling. Existing
approaches have mainly focused on scaling the workload to be simulated or
raising the abstraction level of the simulation models. Another promising di-
mension is to reduce the simulation scale from an architecture perspective. We
now discuss these scaling techniques in detail.

2.3.3.1 Workload Scaling

Scaling down the workload opens up a new avenue to speed up simula-
tion from the perspective of workload abstraction. Sampling is widely used
to select representative regions of an application to execute and extrapolate
the simulation results to the complete application execution. There are a wide
range of sampling approaches previously proposed to explore the application
abstraction space.

Random sampling, firstly proposed by Conte et al. [47], selects an unbiased
set of regions randomly and simulates them in a detailed way. Systematic sam-
pling, on the other hand, can produce unrepresentative samples if a program
exhibits periodic behavior. A well-known example of systematic sampling is
SMARTS [188] which employs periodic statistical sampling. Both methods as-
sume that they are statistically representative with enough samples selected
throughout the entire application execution. The effectiveness of this assump-
tion is supported by the central limit theorem (CLT) [108] which implies that
the sampled mean of performance-related metrics will approach the overall
mean with a sufficiently large number of samples.

Other sampling approaches exhibit more characteristics of the target ap-
plication. A straightforward approach is to select samples based on certain
microarchitectures, such as functional cache and branch simulations [167].

2.3. SYSTEM SIMULATION 27

Its limitation is that such sampling depends on the observed microarchitec-
tures, leading the selected samples possibly being unrepresentative for other
microarchitectures. SimPoint [161] overcomes this limitation by selecting
microarchitecture-independent metrics and detecting phase behavior in appli-
cations. To be specific, SimPoint divides the execution of an application into
fixed intervals; it assumes that intervals with similar basic block behavior, called
a phase, will exhibit similar microarchitecture behavior and thus only one in-
terval per phase needs to be simulated. Phase detection and classification can
be done through either offline profiling based on basic block vectors [142, 161]
or dynamic branch profiling [162]. The SimPoint approach is further employed
by Patil et al. [137] to enable deterministic sample replay using Pin [113].

2.3.3.2 Architecture Scaling

Architecture scaling can be achieved by either abstracting away certain
details of the processor microarchitecture or constructing down-scaled models
to reduce the simulation scope.

Several models have accelerated the simulation through raising the level of
abstraction. For example, interval simulation [65] models the impact of miss
events on performance through mechanistic analytical modeling instead of de-
tailed simulation. ZSim [156] and Sniper [34] construct high-abstraction simu-
lation models for superscalar processors. MUSA [68] combines multiple levels of
simulation detail, ranging from cycle-accurate micro-architectural simulations
to high-level analytical models. The One-IPC model assumes that a single
instruction is executed per cycle in the absence of miss events such as cache
misses and branch mispredictions, which is further employed in CMP$im [85]
and Graphite [121]. BookSim [90] is very fast using cycle-accurate simulation
whereas it only models the network components.

Down-scaled simulation aims to construct a down-scaled model of the target
system while maintaining its key characteristics. It is difficult to build an exact
miniature of a target system, especially in the field of modern processor archi-
tectures. Eyerman et al. [59] proposed a down-scaled model for an experimental
Intel processor, called the Programmable Integrated Unified Memory Architec-
ture (PIUMA), which is specifically designed for the efficient execution of graph
analytical workloads. They simulate each component of the target large-scale
system in detail but on a smaller scale to limit the simulation overhead. This
work provides preliminary research on constructing scale models for modern
processors, even though it is limited to be widely used for domain-specific de-
signs since it lacks a method for modeling shared resource contention as we
generally observe in general-purpose multi-core processors.

28 CHAPTER 2. BACKGROUND

2.4 Performance Modeling

An alternative approach to simulation is to use mathematical models to
capture performance-related characteristics and component interactions in a
processor. The performance modeling itself does not simulate any component
of the processor, although it often requires simulation results as input to train
the prediction model. Performance modeling can be generally classified into
two types, namely machine learning based modeling and analytical modeling.

2.4.1 Machine Learning based Modeling

Machine Learning (ML) based modeling constructs prediction models using
training data obtained from detailed architecture simulation and then evalu-
ates metrics for the target system through prediction models. This approach
is established based on the premise that machine learning can predict the be-
havior of modern processors using sufficient input information and effective
training techniques. ML-based modeling avoids simulating complex (micro-
)architectures of target processors. Two steps are required for ML-based mod-
eling – prediction model construction and target system evaluation.

It is relatively easy to design a suitable machine learning approach to build
a prediction model. Another thing is to collect sufficient information to train
the prediction model. The collection of training information, however, is time-
consuming and difficult to operate because: (1) we need massive training exam-
ples obtained from detailed simulations; and (2) these training inputs should
reflect the impact of system components and involve characteristics of applica-
tions running on the processor. Once the prediction model is built, it is fast to
evaluate target systems using the prediction model.

A large number of ML-based performance modeling techniques have been
proposed over the years. For example, Lee et al. [104] and Ipek et al. [82] build
accurate performance prediction models using regression models and artificial
neural networks, respectively. These models are further extended to a large
design space. Lee et al. improve their previously proposed models, and apply
the optimized models to design space evaluation [105] and performance mod-
eling for parallel applications [106]. Azizi et al. [20] include power and energy
metrics to find power-performance trade-offs. Singh et al. [166] explore the pos-
sibility of using performance counters on real hardware to perform real-time
power modeling and thread scheduling. However, predicting performance for
larger-scale modern systems is still beyond the reach of these approaches.

2.4.2 Analytical Modeling

Analytical modeling portrays application behavior on an evaluated design
through mathematical equations and algorithms like probabilistic methods,
queuing theory, etc. The foundations of these modes are the fundamental

2.5. JAVA WORKLOAD BENCHMARKING 29

understanding of the evaluated systems. To be specific, they are constructed
through observing how applications behave on a designed platform and then
modeling these interactions using evaluation metrics such as instruction depen-
dency, cache miss rate, branch misprediction rate, etc. Evaluation metrics can
be derived from a functional simulation and served as inputs to the mathemat-
ical prediction model.

Over the years, a significant amount of research has been performed to
model processor performance using different analytical models. Emma et
al. [55] involve CPI stacks in the analysis of performance bottlenecks. Michaud
et al. [118] quantify the influence of instruction fetch bandwidth on performance
with respect to branch mispredictions and instruction-level parallelism (ILP).
Hartstein et al. [74] propose a model that details how the optimal pipeline
length can change as function of the ILP and pipeline stalls. A first-order
model focusing on pipeline stalls due to miss events is developed by Karkhanis
et al. [97]. The interval model is applied to the general problem of resource
scaling in out-of-order superscalar processors [58].

Analytical models are much faster and generally less accurate than ML-
based models as no more detailed simulation is required for the whole system.
The efficiency of analytical modeling makes it an attractive approach to quickly
explore large design spaces at their early stages in the design cycle. However,
an intrinsic downside of such a technique is its limited capability on deep explo-
ration and thorough analysis for a specific proposed architecture – for example,
how to analytically model overlap effects as well as timing-sensitive events in
large target systems.

2.5 Java Workload Benchmarking

Managed programming languages such as Java, C#, JavaScript and Python
have been increasingly popular among programmers. These languages provide
a range of services, such as garbage collection, zero initialization and just-in-
time (JIT) compilation, to the programmer. Such services are involved in a
managed runtime environment. In Chapter 3 and Chapter 5, we consider nine
Java applications from the DaCapo suite [29] to evaluate our proposals and use
Jikes Research VM (RVM) 3.1.2 [10, 11] as the platform.

Jikes RVM is a Java-in-Java VM that involves a baseline compiler and a
JIT optimizing compiler. Non-determinism is introduced into Java performance
evaluation due to the timer-based sampling for JIT optimization. To evaluate
Java workloads rigorously, we use replay compilation [79, 155] to eliminate
the non-determinism introduced by the JIT compiler. More specifically, replay
compilation requires a profiler and a replayer. The profiler records the profiling
information used to drive the compilation decisions and a single compilation
plan is determined from these decisions. The compilation plan then forces
the VM to compile each method to a predetermined optimization level (for

30 CHAPTER 2. BACKGROUND

the run with lowest execution time) in the replay run. During the replay
phase, a benchmark is iterated twice within a single VM invocation. The
first iteration applies the optimization plan to each method, which incurs a
compilation overhead. The second iteration does not recompile methods, which
excludes the compilation overhead and represents the steady-state behavior of
the application. We take our measurements during the second iteration. For all
experimental results of Java workloads in this thesis, we run each application
four times and report the arithmetic mean in the figures.

Chapter 3

Reliability-Aware Garbage

Collection for Hybrid

HBM-DRAM Memories

Emerging workloads in cloud and data center infrastructures demand high
main memory bandwidth and capacity. Unfortunately, DRAM alone is un-
able to satisfy contemporary main memory demands. High-bandwidth mem-
ory (HBM) uses 3D die-stacking to deliver 4–8× higher bandwidth. However,
HBM has two drawbacks: (1) capacity is low, and (2) soft error rate is high.
Hybrid memory combines DRAM and HBM to promise low fault rates, high
bandwidth, and high capacity. Prior OS approaches manage HBM by map-
ping pages to HBM versus DRAM based on hotness (access frequency) and
risk (susceptibility to soft errors). Unfortunately, these approaches operate at
a coarse-grained page granularity, and frequent page migrations hurt perfor-
mance.

This chapter proposes a new class of reliability-aware garbage collectors for
hybrid HBM-DRAM systems which place hot and low-risk objects in HBM
and the rest in DRAM. Our analysis of 9 real-world Java workloads shows
that: (1) newly-allocated objects in the nursery are frequently written, making
them both hot and low-risk, (2) a small fraction of the mature objects are hot
and low-risk, and (3) allocation site is a good predictor for hotness and risk.
We propose RiskRelief, a novel reliability-aware garbage collector that uses
allocation site prediction to place hot and low-risk objects in HBM. Allocation
sites are profiled offline and RiskRelief uses heuristics to classify allocation sites
as DRAM and HBM. The proposed heuristics expose Pareto-optimal trade-offs
between soft error rate (SER) and execution time. Compared to a state-of-the-
art OS approach for reliability-aware data placement, RiskRelief eliminates
all page migration overheads, which substantially improves performance while

31

32 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

delivering similar SER. Reliability-aware garbage collection opens up a new
opportunity to manage emerging HBM-DRAM memories at fine granularity
while requiring no extra hardware support and leaving the programming model
unchanged.

Section 3.1 elaborates on the dilemma of current memory systems, the pre-
vious improvements and limitations, and our key contributions to this field.
Section 3.2 characterizes the performance and reliability for HBM and presents
currently widely-used approaches to manage HBM, which is followed by the
background in soft error reliability and managed runtimes in Section 3.3. In
Section 3.4, we explore the characteristics of object hotness and risk in Java
applications and find that allocation site is a good predictor for object hot-
ness and risk. We then propose reliability-aware garbage collection (called
RiskRelief) for hybrid HBM-DRAM memory systems and describe RiskRelief
in detail in Section 3.5. Section 3.6 introduces the simulation and emulation
methodology used in the following experimental sections. The performance and
reliability experimental results are presented in Section 3.7 using a detailed ar-
chitectural simulation, and we report similar metrics with emulation results on
real hardware in Section 3.8. Section 3.9 complements some other related work
targeting hybrid DRAM-PCM memory systems, followed by the conclusion in
Section 3.10.

3.1 Introduction

Emerging cloud workloads, such as machine learning inference and stream
analytics, have encouraged new throughput-oriented compute platforms. These
platforms consist of many-core processors, graphic processing units, and a range
of accelerators. Altogether, these compute platforms have an insatiable demand
for main memory bandwidth. The confluence of ever-growing compute power
and the slow historical growth in pin count for off-chip communication [83]
has exacerbated the memory bandwidth wall [152]. High Bandwidth Memory
(HBM) [13], i.e., 3D-stacked DRAM, delivers higher bandwidth than traditional
DRAM, while consuming less power and space [25, 43, 44, 51, 70, 88, 91, 164].

HBM has two shortcomings though: (1) capacity is limited to a couple GBs,
and (2) soft error rate is high due to higher density and new failure modes [84,
130]. Hybrid HBM-DRAMmemory combines the best of both worlds to provide
high capacity and high bandwidth. Unfortunately, unless properly managed,
HBM reliability is a concern. Our experimental results reveal that an HBM-
Only system yields 34% higher performance than a DRAM-Only system, but
the entire program heap is capacity-limited and, moreover, is highly vulnerable
to soft errors. A DRAM-Only system, on the other hand, is substantially
more reliable (by at least two orders of magnitude), but at the expense of
considerably lower performance compared to HBM-Only. The goal of this
work is to achieve the best of both worlds, i.e., deliver high reliability while
achieving high performance.

3.1. INTRODUCTION 33

A flurry of prior work proposes hardware and OS approaches to optimize
hybrid memory performance. Specifically, hardware approaches use HBM as a
cache for DRAM [43, 44, 89, 96, 107], whereas OS approaches map frequently
accessed pages in HBM [135, 145, 146, 165]. Only recently have researchers
turned attention to data placement approaches to address the low reliabil-
ity of HBM [69]. Indeed, soft error rates in production systems are continu-
ously increasing, and they grow proportionally with information density [98].
Hardware-only approaches to tackle reliability are insufficient because they will
soon require impractical error detection and correction capabilities [117]. OS
approaches [69] also face drawbacks: (1) they are reactive, (2) page migrations
incur significant performance penalty, and (3) they are coarse-grained and re-
quire excessive HBM capacity.

This chapter takes a different, so far unexplored, approach by leveraging
garbage collection in modern managed languages to place program data in
hybrid HBM-DRAM memory at a finer granularity than state-of-the-art OS
approaches. Garbage collection (GC) in managed languages such as Java, C#,
JavaScript, Python, and Ruby manages virtual heap memory on behalf of the
programmer. Most high-performance GCs place newly allocated (young) ob-
jects in a small nursery space. A nursery collection copies surviving objects
to the mature space. This generational heap organization leads to short pause
times and high application (mutator) locality and performance [15]. Our anal-
ysis of various Java applications from the DaCapo suite [29] shows that: (1)
nursery objects are hot (frequently accessed) and low-risk (highly mutated),
and (2) only a small fraction of nursery survivors are hot and low-risk. These
results reveal an opportunity to effectively manage HBM-DRAM memory.

This work proposes a new class of reliability-aware garbage collectors for
hybrid memory. These collectors place hot and low-risk objects in HBM to im-
prove reliability and performance. The remaining objects are placed in DRAM
to utilize its large capacity. Reliability-aware garbage collection overcomes
the disadvantages of the state-of-the-art OS approach. Specifically, prediction
enables pro-active allocation of objects in HBM as opposed to reactive page
migrations. Moreover, placing objects using GC eliminates the overhead of
costly page migrations.

In this chapter, we propose two reliability-aware garbage collectors.
RiskRelief-Nursery (RR-N) places the nursery in HBM and the mature space in
DRAM. It requires minimal changes to the Java runtime but is highly effective
in delivering low soft error rates compared to an HBM-Only system, while im-
proving performance compared to a DRAM-Only system. RiskRelief-Mature
(RR-M) places the nursery in HBM and exploits offline program profiling to
place hot and low-risk nursery survivors in HBM. We show that mature object
hotness and risk are predictable on a per allocation-site basis. Surprisingly
perhaps, we find that object hotness and risk are weakly correlated. Hence,
placing objects in HBM based solely on hotness significantly hurts reliability.
The insight is to place objects in HBM versus DRAM based on hotness and
risk.

34 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

Based on these observations, we propose heuristics to classify allocation
sites as DRAM and HBM. Allocation sites are classified as HBM if most objects
they allocate are hot and low-risk. All other allocation sites default as DRAM.
We generate this per allocation-site advice offline and feed it to RR-M. In
turn, RR-M uses the advice during runtime to place nursery survivors in HBM
or DRAM. Our proposed heuristics expose previously unseen Pareto-optimal
trade-offs between execution time and soft error rate. A single profiling run
generates a range of advices for the GC runtime. Thus, depending upon factors
such as environmental conditions, available HBM capacity and performance
goals, a system operator can adjust the advice fed to RR-M to meet specific
constraints.

Our experimental results show that RR-N reduces the overall soft error
rate by 18× on average compared to an HBM-Only system, while improving
performance over a homogeneous DRAM-Only system by 20%. The state-of-
the-art OS solution by Gupta et al. [69] achieves similar SER as RR-N, however,
performance is substantially worse (even worse than the DRAM-Only system)
because of the high cost of TLB shootdowns on modern x86 multicores [135].
Both RR-N and the prior OS approach use a modest 128 MB of HBM on a
32-core platform. RR-M uses an additional 18% of HBM capacity but delivers
29% higher performance compared to a DRAM-Only system. Higher HBM
capacity impacts overall SER and RR-M reduces SER by 9× over HBM-Only.

In summary, the main contributions of this chapter are:

• hotness (access frequency) and risk (susceptibility to soft errors) characteri-
zation of objects in Java applications, showing that hotness and risk are only
weakly correlated;

• showing that allocation site is a good predictor for object hotness and risk;

• the design and implementation of reliability-aware garbage collection for hy-
brid HBM-DRAM memories to minimize soft error rate while maximizing
overall application performance — in contrast, performance-optimized HBM-
DRAM management significantly hurts reliability;

• profile-driven RiskRelief reliability-aware collectors that exploit allocation-
site prediction to place hot and low-risk objects in HBM and the rest in
DRAM;

• a profiling framework to measure object hotness and risk on a per allocation-
site basis; two heuristics to generate the allocation advice for GC; and a
compilation framework that exploits the advice to steer allocation of objects
in HBM and DRAM.

• simulation and real hardware emulation results motivating hybrid HBM-
DRAM memory for Java applications, and showing that RiskRelief collectors
manage hybrid HBM-DRAM memory significantly better than state-of-the-
art OS approaches.

3.2. EXPLOITING HIGH-BANDWIDTH MEMORY 35

3.2 Exploiting High-Bandwidth Memory

In this section, we discuss the motivation for HBM, and we describe its
distinct performance and reliability characteristics. We also review existing
approaches to manage HBM.

3.2.1 3D-Stacked Memory

Disruptive approaches to mitigate the memory bandwidth wall are
needed [152]. The bandwidth between conventional DRAM and the processor
is limited by pin count, which increases by roughly 10% every year [83]. How-
ever, compute power grows much more rapidly. Furthermore, having enough
pins to stream a 1024-bit word every cycle to the processor would require 40
Watt just for memory I/O [119]. High-bandwidth memory vertically stacks
DRAM chips in a 3D arrangement to deliver higher bandwidth than conven-
tional DRAM. Through-silicon vias (TSVs) interconnect the vertically stacked
chips using wide communication lanes.

Conventional DRAM technology, e.g., DDR4, places two 64-bit words on
the data bus every cycle. Several DRAM chips work in tandem to produce the
word. For example, 16 ×4 chips each provide 4 bits every cycle to render a
64-bit word. In contrast, the state-of-the-art HBM standard allows up to 12
dies per stack, and each stack has 8 unique 128-bit channels per stack, lead-
ing to a much wider, 1024-bit memory interface [86]. Internally, each DRAM
chip consists of many banks. A 64-byte cache line is striped across banks in
different DRAM chips to maximize parallelism. Hardware employs error cor-
rection codes (ECC) to shield against soft errors. Typically, an additional chip
provides ECC protection to the data word. Most commonly, DRAM employs
single-error correcting, double-error detecting (SECDED) codes.

HBM inherits the failure modes of conventional DRAM because it uses a
similar cell technology and array layout. Unfortunately, new failure modes ex-
ist in HBM, for instance, due to TSV failures [84]. HBM also exhibits higher
bit density increasing susceptibility to soft errors [13, 69, 84, 87]. Further-
more, HBM employs weaker error correction due to cost and complexity con-
straints [69, 87]. Put together, HBM reliability is a major concern which ne-
cessitates hardware and software approaches to mitigate the vulnerability to
soft errors in HBM and improve the overall reliability of the memory system.

3.2.2 Managing HBM in Hardware

Exploiting HBM as a last-level DRAM cache is predominant. In particular,
prior work proposes new organizations for DRAM caches [88], intelligent tag
placement (for example, co-locating tags with data) [70, 96], new techniques to
reduce the bandwidth consumed by cache operations [43, 44], and techniques
to enable set associativity in giga-scale DRAM caches [191]. Prior work also

36 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

attempts to mitigate the performance overhead of DRAM caches for capacity-
limited applications [42]. Although transparent to the software stack, DRAM
caches have two drawbacks: (1) they limit the available memory capacity, and
(2) they require extensive hardware support because conventional SRAM-based
cache organizations are suboptimal for DRAM technology. Moreover, none of
this prior work considers the low reliability of HBM, thus rendering program
data in HBM highly vulnerable to transient faults. Liu et al. [112] propose
Binary Star which coordinates the reliability schemes in the 3D DRAM LLC
versus main memory to improve the reliability of the overall memory hierarchy.
Binary Star achieves high reliability for the overall memory system with limited
performance loss, while requiring modifications to both system software and
hardware. RiskRelief does not require any hardware changes.

ECC codes are the first line of defense against transient faults. DRAM
scaling relies on ECC hardware because smaller DRAM cells are more suscep-
tible to soft errors. Several works study DRAM soft error rates in the field
[159, 170, 171]. Weaker ECC is typically deployed in die-stacked memory due
to implementation costs [87] and thus requires soft error mitigation from other
sources, e.g., through software, as we discuss next.

3.2.3 Managing HBM in the OS

Existing OS approaches to manage hybrid HBM-DRAM memory aim
at either maximizing performance or balancing performance and reliability.
Performance-focused approaches hurt reliability [146], because they place all
hot pages in HBM while being agnostic to soft error vulnerability. Gupta et
al. [69] propose a dynamic page migration scheme which estimates page hot-
ness and risk using performance counters and which migrates (every 100ms)
cold and high-risk pages to DRAM, and hot and low-risk pages to HBM. In
contrast, we estimate hotness and risk at a much finer granularity of objects.
Our solution pro-actively places objects in HBM versus DRAM, and does not
require dynamic monitoring nor additional performance counter hardware. We
compare to the OS page migration approach in this work.

Oskin and Loh [135] propose OS-managed DRAM caches. Their work shows
the high cost of page migrations due to TLB shootdowns. They also explore
statically partitioning program data in C applications in DRAM and HBM,
albeit with negligible benefits. Their proposal does not consider the hetero-
geneity in reliability in a hybrid HBM-DRAM memory system. We expose
both DRAM and HBM to the OS to exploit full memory capacity. Further-
more, this is the first work to expose 3D-stacked memory to garbage collection
in the managed runtime for fine-grained object placement.

3.3. BACKGROUND 37

3.3 Background

Before describing how RiskRelief predicts hotness and risk and leverages
these predictions to manage hybrid HBM-DRAM systems, we first provide
additional background in soft error reliability and managed runtimes.

3.3.1 Soft Error Reliability

RiskRelief builds upon two notions, namely hotness and risk. Intuitively,
hotness refers to how frequently an object is accessed, whereas risk refers to
how susceptible an object is to soft errors. We now define both concepts and
focus on risk more because it is a less well-known metric.

Hotness. Hotness is a well-known concept and typically refers to how fre-
quently a particular code segment executes. Analogously, we define the hotness
of an object as to how frequently the object is accessed through read or write
operations. We define an object’s hotness as the sum of reads and writes to
the object. Our analysis shows that of all accesses to objects, 54% of the ac-
cesses on average are reads, and 46% are writes. The high percentage of writes
motivates our hotness criteria as the sum of reads and writes.

Risk. Quantifying the risk of an object in HBM is more involved. We build
upon the mechanistic notion of architectural vulnerability factor (AVF) to
quantify susceptibility to soft errors. AVF is the probability that a transient
fault leads to an observable program error. To compute AVF, Mukherjee et
al. [153] categorize all bits in a hardware structure into two types: (1) those
necessary for architecturally correct execution (ACE), and (2) the remaining
un-ACE bits. A fault in the ACE bits results in an observable program error
(assuming the fault evades ECC hardware), and a fault in un-ACE bits has no
bearing on program correctness. A bit can be ACE for only a fraction of the
total execution time. The AVF of a hardware structure is the fraction of all
bits that are in ACE state during each cycle.

Precisely computing AVF of an object requires tracking every read and write
operation. Consider an object O, stored at memory location M , is written at
time t1 and read at times t2 and t3, after which O is dead from the program’s
point of view (i.e., no other memory location points to O). O is ACE for t3− t1
time units, namely between the write at t1 and its last read at t3. In case the
object would have been written at times t2 and t3, the object would be un-ACE
throughout. In other words, to precisely compute the AVF of an object, one
needs to track all reads and all writes, which is too high overhead to do online
in the context of a managed runtime.

Instead, we build upon prior work [69] and use proxy metrics that are easier
to collect while correlating well with AVF. The proxies considered are the writes
to reads ratio (Wr/Rd) and the writes-squared to reads ratio (Wr

2/Rd). The
intuition behind these proxies is that an object that is written a lot is more

38 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

likely to lead to more un-ACE periods. We use the writes-squared to reads
ratio in this work because it places extra emphasis on the absolute number of
accesses [69]. Since writes-squared to reads ratio is inversely proportional to
AVF, we refer to it as AVF-X. In other words, a high writes-squared to reads
ratio (high AVF-X) means low risk, and vice versa. Soft error rate (SER) is
defined as the product of a device’s failure-in-time (FIT-Rate) and AVF. FIT-
Rate is defined as the raw failure rate due to single event faults, and depends
on environmental factors and circuit characteristics.

3.3.2 Managed Runtimes

Java Virtual Machine. This work uses the language runtime to improve
system reliability in hybrid memory systems. Our work generalizes to lan-
guages with garbage collection, but we use the Java Virtual Machine (JVM) in
this work. Exposing HBM to the JVM entails extending the OS NUMA inter-
face [6]. We use the open-source Jikes Research VM (RVM) as our platform.
Jikes RVM’s modular design makes it easy to modify [10, 11, 27, 62]. Jikes
RVM is a meta-circular VM written in Java. It has both a baseline and an
optimizing compiler, along with several garbage collectors [26, 28, 160]. The
object layout and metadata, and a variety of reference barriers can be changed
quickly because of the clean interface between the compiler and garbage col-
lector [62, 190].

Generational Garbage Collection. Despite other differences, garbage col-
lectors in modern languages have converged on a generational heap organiza-
tion. The generational organization delivers high performance because many
objects die young [176]. The application (mutator) allocates new objects con-
tiguously into a nursery. When the nursery memory is full, a minor collection
first identifies live roots that point into the nursery, e.g., from global variables,
the stack, registers, and the mature space. It then identifies reachable objects
by tracing references from these roots. It copies reachable objects to a mature
space. The nursery space is claimed en masse for fresh allocation.

Nursery size. Nursery size is critical to overall performance, pause time, and
space efficiency [15, 28, 177, 194]. A nursery collection incurs a fixed cost to scan
the root set and a variable cost depending upon the number of objects that
survive a minor collection. Large nurseries sometimes improve performance
because objects have more time to die. They, however, increase the overall
memory footprint, often unnecessarily retaining dead short-lived objects, and
they incur high pause times [132, 194]. We use a 4MB nursery because prior
work establishes that it performs well for our applications [29, 158].

GenImmix. We build on the best-performing collector in Jikes RVM: genera-
tional Immix (GenImmix) [26]. We use it as the baseline and modify it to create
the RiskRelief collectors. GenImmix uses a copying nursery and a mark-region
mature space. The mark-region mature space consists of a hierarchy of blocks

3.4. HOTNESS AND RISK PREDICTION 39

0
20
40
60
80

100

0 50 100 150

%
 m

at
ur

e

sites sorted by hotness

Hotness Volume
90%

32%

(a) Hotness and Volume for Fop

0
2
4
6
8

10

0 50 100

%
 A

VF
-X

sites sorted by hotness

Mean AVF-X AVF-X

(b) AVF-X for Fop

0
20
40
60
80

100

0 100 200 300

%
 m

at
ur

e

sites sorted by hotness

Hotness Volume
90%

21%

(c) Hotness and Volume for Bloat

0
1
2
3
4

0 50 100 150
%

 A
VF

-X
sites sorted by hotness

Mean AVF-X AVF-X

(d) AVF-X for Bloat

0
20
40
60
80

100

0 100 200 300

%
 m

at
ur

e

sites sorted by hotness

Hotness Volume
80%

66%

(e) Hotness and Volume for Pmd

0
5

10
15
20
25

0 50 100 150 200 250

%
 A

VF
-X

sites sorted by hotness

Mean AVF-X AVF-X

(f) AVF-X for Pmd

Figure 3.1: Distribution of hotness and mature heap volume by allocation site
(left column), versus risk for the top hottest allocation sites (right column)
for Fop (top), Bloat (middle), and Pmd (bottom).

and lines. Blocks are multiples of page sizes and constitute multiple lines.
Lines are multiples of cache line sizes. Objects can span lines but not blocks.
Nursery collections copy nursery objects consecutively in space into free lines
within blocks in the mature space by incrementing a bump pointer equal to
the size of the object. This contiguous allocation outperform free-list allocators
due to its locality benefits [26, 28, 79]. Immix reclaims memory at a line and
block granularity by marking lines and blocks live when it marks objects live
during tracing. To defragment blocks, it combines marking with copying based
on runtime heuristics. We use the default settings for the maximum object size
(8KB), for line size (256 bytes), and block size (32KB). The JVM manages
objects larger than an 8 KB threshold separately, allocating them directly into
a non-copying large object space [94].

3.4 Hotness and Risk Prediction

This section motivates allocation-site prediction for object hotness and risk.

40 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

3.4.1 Distribution of Hotness and Risk

We start by quantifying hotness and risk across allocation sites for three
benchmarks that are representative for the entire benchmark suite, namely Fop,
Bloat and Pmd. Figure 3.1 (left column) shows the cumulative distribution of
mature-object hotness and their total volume (as a percentage of total mature
allocation) per allocation site. Allocation sites are sorted on the horizontal axis
by their hotness. We observe that a large fraction of mature-object accesses
are captured by a relatively small fraction of the mature heap. For example,
for Fop, 90% of the mature-object accesses are concentrated to only 32% of
the mature heap. This result suggests an opportunity to allocate the relatively
small fraction of hot objects in HBM to improve performance while placing the
bulk of the mature heap in DRAM to exploit its capacity. Unfortunately, using
hotness as the sole criterion to place objects in HBM versus DRAM severely
compromises a program’s vulnerability to soft errors. The graphs in the right
column of Figure 3.1 report AVF-X for the objects allocated from the top-
100 hot allocation sites. To provide a point of reference, we also report mean
AVF-X across all mature objects. We observe a remarkable variation in AVF-X
across allocation sites from well below to well above the mean. It is clear from
these graphs that hotness does not imply low risk, i.e., a hot object may be
high-risk or low-risk. In other words, hotness is not predictive for risk. This
result implies that using hotness alone as a criterion to classify allocation sites
as low- versus high-risk severely compromises soft error vulnerability. Instead,
we need a method that classifies allocation sites for both hotness and risk
combined, which is what we describe next.

3.4.2 Allocation-Site Homogeneity

The key insight that underpins RiskRelief is that allocation site is a good
predictor for both hotness and risk. To demonstrate this is indeed the case,
we first compute the hotness and risk for all objects and we determine which
objects are among the top 10% (cutoff-threshold) for either criterion. More
specifically, we label an object as hot if it is among the 10% hottest objects; if
not, the object is classified as cold. Similarly for risk, we label an object as low-
risk if it is among the 10% lowest-risk objects; otherwise, the object is classified
as high-risk. We then compute for each allocation site, the fraction hot versus
cold objects, the fraction low-risk versus high-risk objects, and the fraction of
objects that are both hot and low-risk (i.e., combined). We define homogeneity
of an allocation site with respect to hotness, risk or combined hotness/risk, as
the fraction of objects that are classified in the same category. For example
for the combined metric, perfect (100%) homogeneity means that all objects
allocated from this site are both hot and low-risk, or they are not, i.e., they
are either cold or high-risk. On the other hand, a value of 50% means no
homogeneity, i.e., 50% of objects are hot and low-risk, whereas the remaining
50% is either cold or high-risk.

3.4. HOTNESS AND RISK PREDICTION 41

0

20

40

60

80

100

100 90 80 70 60 50

%
 o

f h
ea

p
vo

lu
m

e

Homogeneity (%)

Hotness
Risk
Combined

Figure 3.2: Percentage heap volume as a function of allocation-site
homogeneity for hotness, risk, and combined hotness and risk assuming a 10%
cutoff threshold.

Figure 3.2 reports the percentage heap volume as a function of allocation
site homogeneity for hotness, risk, and the combined metric; we report av-
erage results across all benchmarks. This graph shows the fraction of heap
volume allocated by sites that have a homogeneity of at least N%, with N
varying from 100 to 50%. The higher the fraction heap volume covered, the
better. As expected, heap volume increases with decreasing allocation site ho-
mogeneity. At 100% homogeneity, a relatively small fraction of the total heap
volume is covered. However, reducing homogeneity quickly increases the heap
volume covered. At 50% homogeneity, the entire heap is covered. The most
important, and perhaps surprising, insight from this graph is that the com-
bined metric outperforms the isolated hotness and risk metrics. For example,
for 90% homogeneity, more than 97% of the heap is correctly classified for the
combined metric, versus 79% and 72% for hotness and risk, respectively. This
implies that allocation site is a more accurate predictor for hotness and risk
combined, than for hotness and risk in isolation. The intuition is that fewer
objects satisfy both the hotness and risk thresholds. We thus conclude that
allocation site is a very accurate predictor to predict whether objects are hot
and low-risk for placement in HBM.

Note that high allocation site homogeneity does not imply that the ma-
jority of objects are both hot and low-risk. In fact, an allocation site can
have high homogeneity but produce predominantly cold objects, or produce
predominantly high-risk objects, or produce predominantly hot and low-risk
objects. We only want allocation sites that allocate hot and low-risk objects to
be classified as HBM. We find that RiskRelief is sensitive to the object hotness
and risk cutoff threshold, but is rather insensitive to the allocation site homo-
geneity threshold. We use a default object hotness and risk cutoff threshold of
20% and explore its sensitivity in the evaluation section. We use an aggressive
allocation site homogeneity threshold of 1% to classify allocation sites as HBM

42 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

that produce even a small fraction of hot and low-risk objects, i.e., at least 1%
of the objects allocated from this site are both hot and low-risk. (Note that
because of high allocation site homogeneity, this implies that most objects are
hot and low-risk.) We choose this aggressive threshold to make sure that hot
and low-risk objects are allocated in HBM to the extent possible.

3.5 Reliability-Aware Garbage Collection

Reliability-aware garbage collection places hot and low-risk objects in HBM,
and the rest in DRAM. We first provide a general overview of RiskRelief after
which we describe the different components in more detail.

3.5.1 Overview

Figure 3.3 shows the workflow of RiskRelief. We first profile the Java ap-
plication to collect per-object read- and write-intensity traces. We then group
objects in traces by their allocation site. We use per-object hotness and risk to
classify allocation sites as HBM to DRAM, based on heuristics. This classifi-
cation constitutes advice which we use to annotate allocation sites as HBM in
Java bytecode. All other allocation sites default to DRAM. During production,
RiskRelief uses a unique allocation sequence for HBM-marked allocation sites.
This sequence places hot and low-risk objects in HBM.

3.5.2 Profiling

RiskRelief relies on offline profiling of Java programs to discover hot and
low-risk objects. The outcome of profiling is an access trace of per-object reads
and writes, see Figure 3.4 for an example (we will discuss the example in more
detail later). We track reads and writes in an architecture-independent manner,
i.e., we count all load/store accesses to an object’s fields. We count accesses to
an object’s primitive and reference fields, and to its meta-data header, which
contains information such as the class type information, synchronization bits,
and garbage collector bits.

Profiling per-object accesses can be done in two ways: (1) using read and
write barriers in the managed runtime, or (2) using dynamic instrumentation.
All generational garbage collectors use reference write barriers for correctness.
Write barriers record all mature-to-nursery pointers in a remembered set, which
are processed during a minor collection to precisely identify all live nursery
survivors. Primitive write barriers are a straightforward extension of refer-
ence write barriers. Unlike write barriers, read barriers incur prohibitive over-
heads [115]. Most production JVMs include collectors that do not require read
barriers. Jikes RVM provides both primitive and reference write barriers [5],
but does not implement read barriers.

3.5. RELIABILITY-AWARE GARBAGE COLLECTION 43

F
ig
u
re

3.
3:

O
ve
rv
ie
w

of
R
is
k
R
el
ie
f.

O
ffl
in
e
a
n
a
ly
si
s
re
co
rd
s
th
e
n
u
m
be
r
o
f
re
a
d
s
a
n
d
w
ri
te
s
to

a
ll
o
bj
ec
ts
.
T
h
en

,
pe
r-
o
bj
ec
t

h
o
tn
es
s
a
n
d
ri
sk

m
et
ri
cs

a
re

u
se
d
to

ge
n
er
a
te

a
n
a
ll
oc
a
ti
o
n
si
te

cl
a
ss
ifi
ca
ti
o
n
a
d
vi
ce

w
h
ic
h
se
rv
es

a
s
in
p
u
t
to

a
by
te
co
d
e

re
w
ri
te
r.

T
h
e
re
w
ri
te
r
a
n
n
o
ta
te
s
h
o
t
a
n
d
lo
w
-r
is
k
si
te
s
a
s
H
B
M
,
st
ee
ri
n
g
th
e
ga
rb
a
ge

co
ll
ec
to
r
to

p
la
ce

o
bj
ec
ts

in
H
B
M
.

44 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

Object Reads Writes Method:Idx

O1 16 8 A():10

O2 16 4 A():10

O3 16 0 A():10

O4 4 8 B():14

O5 4 4 B():14

O6 1 0 B():14

Heuristic θh θt θhot θavf-x HBM Sites

FMID 1% --- 14 4 A

MRAT 1% 20% 24 16 None

MRAT 1% 40% 20 4 A

MRAT 1% 60% 16 4 A

MRAT 1% 80% 12 1 A & B

MRAT 1% 100% 1 0 A & B

(a) Example access trace (c) Allocation site prediction

Hotness AVF-X

24 4

20 1

16 0

12 16

8 4

1 0

(b) Hotness and
risk calculation

Figure 3.4: Example of an access trace with allocation sites in the last column
(a), per object hotness and AVF-X (b), and prediction of allocation sites
using the FMID and MRAT heuristics (c).

We therefore rely on dynamic binary instrumentation instead using
Pin [113]. Because Pin has no notion of an object’s boundary in memory, we
deploy a cooperative scheme in which Jikes RVM records each object’s starting
address, its size in bytes, and its allocation site identifier; in turn, Pin records
the number of read and write accesses to each memory location. At the end
of the program execution, we gather logs from Jikes RVM and Pin, and we
aggregate the two logs to create the access trace which contains all the objects
instantiated by each allocation site and the total number of accesses to each
object on a per allocation-site basis.

To give each object a unique address in the access trace, we size the ma-
ture heap during profiling to preclude full-heap collections. We further set the
nursery size to 4 MB. Using this nursery size is a good balance between the
size of the access trace and the coverage of mature object behaviors. We label
allocation sites with unique identifiers, as in [78].

3.5.3 Allocation Site Classification

After profiling, we analyze the access trace to generate allocation advice,
classifying allocation sites as HBM versus DRAM. Figure 3.4(a) shows an ex-
ample access trace. Two allocation sites contained in methods A() and B() al-
locate a total of six objects. The trace also shows the different number of reads
and writes to objects. We analyze the trace to compute per-object hotness and
risk using the definitions described in the previous sections, see Figure 3.4(b).
Next, we use two criteria to label allocation sites: (1) the fraction of total
objects allocated from a site that are hot and low-risk, and (2) heuristics to
decide which objects are hot and low-risk. If the fraction of hot and low-risk
objects allocated from a site is larger than the homogeneity threshold (θh), the
site is labeled as HBM ; otherwise, the site is a DRAM site. Next, we use two
heuristics to qualify objects as hot versus cold, and low- versus high-risk.

Fixed-Midpoint (FMID) is inspired by Gupta et al. [69] and uses the average
hotness (or AVF-X) across all mature space objects as the cut-off to quantify

3.5. RELIABILITY-AWARE GARBAGE COLLECTION 45

the hotness (or risk) of objects from an allocation site. Specifically, with FMID,
we qualify an object as hot if the sum of reads and writes to that object are
above the cut-off (average). FMID has the advantage that hotness and AVF-X
are straightforward to compute. The disadvantage is that it uses a single cut-off
value, which leads to a specific design point in terms of SER, performance and
HBM usage. In practice, a heuristic that exposes a trade-off is more desirable,
which we advocate in this chapter.

Moving-Ratio (MRAT) uses a ratio namely θt (e.g., top-10%) to divide
objects into two quadrants, e.g., hot and cold. The hotness cut-off (θhot) places
an object allocated from a site in the top-10% of hot objects. Similarly for
identifying low-risk objects, the risk cut-off (θavf−x) places an object within
the top-10% low-risk objects. The user or system administrator specifies the
ratio based on environmental constraints. Varying the ratio opens up a trade-
off between HBM capacity, performance, and overall SER.

3.5.3.0.1 Example. Figure 3.4(a) shows an example access trace consist-
ing of 6 objects from two allocation sites in methods A() and B(), respectively.
Per-object hotness and risk is shown in Figure 3.4(b). We analyze the trace
using the FMID and MRAT heuristics, and identify which of the two sites are
classified as HBM in Figure 3.4(c). We fix θh at 1%, and vary θt from 20%
to 100% for MRAT. The average hotness and risk is 14 and 4, respectively.
Therefore, with FMID, the allocation site in method A() has one object (O1)
with hotness larger than the average value, and risk larger than or equal to
the average risk. Since 1 out of 3 objects from this site are hot and low-risk,
which is higher than the homogeneity-threshold of 1%, this site is classified as
HBM. Next, we set θt to 20% for MRAT and compute the HBM sites. Since
θt is 20%, we only consider the hottest object (1 out of 6), and the lowest risk
object to compute θhot and θavf−x. O1 is the hottest leading to θhot of 24.
Similarly, O4 has the lowest risk, leading to a θavf−x of 16. Neither allocation
site in Figure 3.4(a) has an object with both hotness larger than or equal to 24,
and risk larger than or equal to 16. Thus, using MRAT with θt at 20% leads to
all allocations in DRAM. On the other hand, setting θt to 40% or 60% results
in allocation in HBM for A(). Finally, setting θt to 80% and 100% results in
all allocations in HBM. This example demonstrates the flexibility exposed by
MRAT in exploiting the rich trade-offs that exist between SER, performance,
and HBM capacity.

3.5.4 Bytecode Generation

The previous step generates allocation site advice as a file of <site-string,
advice> pairs. The advice file only includes the HBM-labeled allocation sites.
Unlabeled allocation sites default to DRAM. Since a minority of allocation sites
are labeled HBM, the size of the advice file is minimized. We use bytecode
rewriting to communicate allocation site labels to the managed runtime. The

46 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

bytecode rewriter first identifies the allocation site and then queries the advice
file to check whether the site is present. If it is not, the rewriter leaves the new
bytecode unchanged. If it is, the rewriter overwrites the new bytecode with a
newly introduced new hbm bytecode. The runtime, when interpreting or com-
piling the new bytecode, uses the default allocator, called ALLOC DEFAULT.
The runtime then copies all objects allocated by such sites to DRAM if they
survive a nursery collection. For the new hbm bytecode, the runtime uses the
newly added ALLOC HBM allocator. This allocator sets a bit in the object
header which notifies the garbage collector to copy these objects to HBM if
they survive a nursery collection.

Note that because RiskRelief is a profile-based approach, there might exist
allocation sites that were not seen during profiling, i.e., an allocation site was
not executed in the profile run while it gets executed in a production run.
These unprofiled sites will be unlabeled, and default to DRAM, following the
above procedure. Future work may explore whether labeling unprofiled sites as
HBM might be desirable, or whether dynamically profiling just these objects
might be tractable and beneficial.

3.5.5 Heap Organization

We now describe RiskRelief’s heap organizations. The heap organization
for a conventional homogeneous DRAM-Only system is shown in Figure 3.5(a).
The RiskRelief collectors place the nursery in HBM because the nursery is
highly mutated, and hence contains objects that are both hot and low-risk.
RR-N places only the nursery in HBM and the rest, i.e., the mature space and
large object space, in DRAM, see Figure 3.5(b). RR-M further partitions the
mature and large object spaces into DRAM and HBM regions, see Figure 3.5(c).

RR-N operates as follows. Nursery objects are allocated in the HBM nurs-
ery. Objects that survive a nursery collection are copied to the mature space
in DRAM. Large objects (larger than 8KB as in our baseline configuration)
are allocated directly in the Large Object Space (LOS) which is mapped in
DRAM.

RR-M is more complicated as it requires adjusting the allocation process.
In general, new allocation is a two-step process: (1) reserving space and (2)
initializing the object header, called post-allocation. For RR-M, post-allocation
sets a bit in the object’s header if its allocation site is labeled HBM, as shown
in Figure 3.6. We steal a bit, not in use from the object header in Jikes RVM,
and call it the HBM BIT. Objects with the HBM BIT set are predicted to be
hot and low-risk. During nursery collection, the garbage collector checks the
HBM BIT of each object. If the bit is set, it promotes the object to the mature
space in HBM. Otherwise, it promotes the object to the DRAM mature space.

3.5. RELIABILITY-AWARE GARBAGE COLLECTION 47

nursery mature large

DRAM

mutator mutatorGC

DRAM

(a) Homogeneous DRAM-only system

nursery mature large

HBM

mutator mutatorGC

DRAM

(b) RiskRelief-Nursery hybrid memory

nursery mature large

HBM

DRAM

mature large

GC

mutator mutatorGC

(c) RiskRelief-Mature hybrid memory

Figure 3.5: Main memory heap organizations.

@In l ine
pub l i c Address pos tA l l o c (ObjectReference r e f , i n t a l l o c a t o r) {

i f (a l l o c a t o r == Gen .ALLOCHBM) {
byte o ld = readHeaderByte (r e f) ;
writeHeaderByte (r e f , (byte) (o ld | HBM BIT)) ;

}
}

Listing 3.6: Our post-allocation sequence sets the HBM BIT in the header of
(predicted) hot and low-risk objects.

RR-M also involves changes to how large objects are treated. For these
objects, RR-M’s ALLOC DEFAULT allocates the object directly in the LOS
DRAM space, whereas ALLOC HBM places the object directly in the LOS
HBM space.

48 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

3.6 Experimental Setup

The main results presented in Section 3.7 are obtained through detailed
architectural simulation to accurately assess performance and reliability. This
section elaborates on this methodology. We complement these simulation re-
sults with emulation results on real hardware in Section 3.8.

Java Virtual Machine and workloads. We use Jikes RVM 3.1.2 [10, 11]
and nine applications from the DaCapo suite [29] that work with our simulation
and VM infrastructure. We use four benchmarks from the DaCapo-9.12-bach
benchmark suite (sunflow, lusearch, pmd, and xalan). We use an updated version
of lusearch, called lu.Fix [189], that eliminates useless allocation, and an updated
version of pmd, called pmd.S [52], that eliminates a scaling bottleneck due to
a large input file. We use three benchmarks from DaCapo 2006: fop, antlr
and bloat. As in established methodology, we use 2× the minimum heap size
for our benchmarks, and we use different inputs for profiling (default) versus
measurement (large). We consider 32-instance workloads of our benchmarks to
generate realistic memory traffic.

Measurement Methodology. We follow best practices in Java performance
evaluation [30, 71, 79]. We use replay compilation to eliminate non-determinism
introduced by just-in-time compilation. During a profiling run, the VM records
a plan with the optimization level for each method for the run with the shortest
execution time. We then run each benchmark for two iterations. In the first
unmeasured iteration, the JIT compiler applies the optimization plan to each
method. We then measure the second iteration, which excludes compilation
overhead and which represents application steady-state behavior. We report
the average across four simulation runs.

Simulator. We use Sniper [36] v6.0, a parallel and high-speed cycle-level x86
simulator for multicore systems, using its most detailed cycle-level hardware-
validated core model. Prior work extended Sniper for managed language run-
times, including dynamic compilation, and emulation of frequently-used system
calls [158].

Simulated architectures. We consider a 32-core processor with three mem-
ory systems: DRAM-Only, HBM-Only (both with 32 GB of main memory)
and a hybrid HBM-DRAM system with 2 GB HBM and 32 GB DRAM, see
also Table 3.1. We emphasize that the 32 GB HBM-Only system is an ideal-
ized but unrealistic point of comparison. We further assume a shared 32 MB
L3 cache, 25.6 GB/s DRAM bandwidth and 128 GB/s HBM bandwidth. We
assume SEC-DED ECC for HBM because of its lower complexity and power
consumption [133, 136]. In line with production systems, we assume single-
Chipkill ECC for DRAM.

Simulating multi-programmed Java workloads is time-consuming. Specif-
ically, simulating a 32-core system executing 32 instances of the same Java
benchmark in rate mode takes up to one month of simulation time for several

3.6. EXPERIMENTAL SETUP 49

Processors Parameters

Number of cores 1 socket, 32 cores
Core frequency 4.0 GHz
Issue width 4-wide out-of-order
ROB size 128 entries
Branch predictor hybrid local/global predictor
Caches Parameters

L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache shared 32 MB, 16 way, 30 cycle
HBM Parameters

Capacity 2 GB for hybrid, 32 GB for HBM-only
Bus frequency 500 MHz (DDR 1.0 GHz)
Bus width 128 bits
Channels 8 channels
Banks 8 banks/channel
ECC SEC-DED ECC [76]
tCAS-tRCD-tRP-tRAS 45-45-45-180 CPU cycles
DRAM Parameters

Capacity 32 GB
Bus frequency 800 MHz (DDR 1.6 GHz)
Bus width 64 bits
Channels 2 channels
Banks 8 banks/channel
ECC single-ChipKill ECC [49]
tCAS-tRCD-tRP-tRAS 45-45-45-180 CPU cycles

Table 3.1: Simulated system parameters.

benchmarks. Moreover, we ran into simulator infrastructure issues when sim-
ulating that many cores. We therefore report results for a single-core system
with all shared hardware structures scaled down proportionally. We simulate
an L3 cache of 1 MB/core, DRAM bandwidth of 0.8 GB/s for each core, and
HBM bandwidth of 4 GB/s per core.

Our analysis confirms that the reported experimental results are conser-
vative – in reality, the improvements in SER are almost the same while the
improvements in performance are much higher. Figure 3.7 reports the soft er-
ror rates for the RiskRelief collectors and a DRAM-only system compared to
a HBM-only system. These experimental results are collected from the single-
core and 4-core system simulations, in which the shared resources are scaled
using the same methodology described above. We find that the SER improve-
ment for a hybrid memory system with the proposed RiskRelief collectors based
on the single-core system simulations is nearly the same with the improvement
obtained from the 4-core simulations. We thus expect that the SER improve-
ment based on the single-core simulations provides a convincing quantification
of the expected SER improvement on the target system. The performance ben-
efit obtained from the target system is expected to be much higher than the
benefit as suggested from the single-core simulations, which will be confirmed
and analyzed in detail in Chapter 5.

50 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

0

0 . 2

0 . 4

0 . 6

0 . 8

1
SE

R
no

rm
. t

o
HB

M
-o

nl
y

DRAM- CP1 RR- N - CP1 RR- M- CP1 HBM- CP1
DRAM- CP4 RR- N - CP4 RR- M- CP4 HBM- CP4

Figure 3.7: Soft error rates normalized to HBM-Only for the RiskRelief
collectors and DRAM-Only through single-core and 4-core simulations.

Page migration overhead. We compare RiskRelief to the state-of-art
reliability-aware OS approach for hybrid memories proposed by Gupta et
al. [69]. Page migration overhead is critical to such OS approaches and in-
cludes (1) the latency for moving pages between HBM and DRAM, and vice
versa, and (2) TLB shootdown overhead.1 We assume the latency of copying
pages across DRAM and HBM to be 5,000 CPU cycles, which is in line with
prior work [19, 60]. We believe this is an optimistic assumption in favor of the
OS approach given the available bandwidth in the DRAM and HBM memory
subsystems — note that this only affects the OS approach and not RiskRelief
because the latter does not migrate pages but objects between the DRAM and
HBM memories. The total overhead of a TLB shootdown is independent of the
application and depends on the number of cores in the system. The OS keeps
track of the ‘slave’ cores that requested a modified virtual to physical page
mapping in the past. During a TLB shootdown, the ‘initiator’ core requests
all slave cores to invalidate the modified TLB entries, flushes its own TLB
and waits for the responses from all the slave cores. Following prior work by
Villavieja et al. [181], we model the overhead of a TLB shootdown in a system
with N cores as follows:

Tshootdown = N × Tslave + Tinitiator,

with Tslave and Tinitiator the time overheads incurred by each slave and initiator
cores, respectively. We use published overhead numbers [60] scaled to our
4 GHz processor.

SER calculation. SER, as mentioned before, is computed as the device’s
raw FIT-Rate times its AVF. We use the default configuration of FaultSim

1Gupta et al. [69] account for the page migration overhead but not the TLB shootdown
overhead.

3.7. RESULTS 51

DRAM-only

RiskRelief-Nursery (128M)

RiskRelief-Mature (364M) HBM-only

OS-PageLevel (128M)

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

Ex
ec

. t
im

e
no

rm
. t

o
DR

AM
-o

nl
y

SER norm. to HBM-only

Figure 3.8: The execution time versus SER trade-off for the RiskRelief
collectors and the state-of-the-art OS approach, normalized to the
DRAM-Only and HBM-Only systems. RiskRelief-Nursery and OS approach
consume 128 MB HBM. RiskRelief-Mature uses a larger fraction of HBM (364
MB) by placing part of the mature space in HBM as well.

for evaluating our hybrid HBM-DRAM architecture [130]. FaultSim’s default
transient FIT rate values for DRAM and HBM are based on a field study
conducted on the Oak Ridge ‘Jaguar’ supercomputer [170]. We further assume
SEC-DED and single-Chipkill ECC for HBM and DRAM, respectively. Using
this methodology, we find that the FIT-Rates equal 0.1140 and 0.0005 for HBM
and DRAM, respectively. Our simulation platform precisely computes AVF by
counting the number of reads and writes per cache line, which is not possible on
real hardware. More specifically, we logically divide memory into 64-byte cache
lines and measure the number of reads and writes per cache line, which we then
use to compute AVF per cache line. For a hybrid HBM-DRAM system, we first
compute the SER for DRAM and HBM as the product of their respective FIT-
Rate and AVF. We then scale the individual SER numbers by the percentage
of program heap that is placed in DRAM and HBM.

3.7 Results

We now evaluate RiskRelief collectors across three primary metrics: (1)
SER, (2) performance and (3) HBM capacity. Unless otherwise stated, we set
θh to 1% and θt to 20%.

3.7.1 Key Trade-Offs

Using HBM to store a portion of the program heap provides a reliabili-
ty/performance trade-off, see Figure 3.8. An HBM-Only system delivers the
best performance, but the heap is highly susceptible to soft errors, i.e., the

52 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

0

0 . 2

0 . 4

0 . 6

0 . 8

1
SE

R
no

rm
. t

o
HB

M
-o

nl
y

DRAM O S RR- N RR- M HBM

Figure 3.9: Soft error rates normalized to HBM-Only for the RiskRelief
collectors, the OS approach and DRAM-Only.

overall normalized SER equals 1. On the other hand, a DRAM-Only system
is 34% slower than HBM-Only, but SER is close to 0 (0.003 to be precise).
RiskRelief-Nursery places the nursery in HBM and achieves 20% higher perfor-
mance than a DRAM-Only system. It also reduces SER by 18× compared to
an HBM-Only system. HBM capacity for the 32-core system equals 128 MB,
which is moderate relative to the total 2 GB HBM capacity.

The state-of-the-art OS approach achieves roughly similar SER as
RiskRelief-Nursery, while also requiring 128 MB HBM capacity. Our analy-
sis shows that the OS approach correctly predicts that the nursery is hot and
low risk. It thus migrates the nursery pages to HBM. Unfortunately, on x86
multi-core platforms, page migrations incur a substantial performance penalty.
The large number of page migrations results in high overhead, and the OS
approach performs 24% worse than RiskRelief-Nursery. The significant perfor-
mance penalty of the OS approach makes it unsuitable for Java applications
because the benefits of high HBM bandwidth to access highly mutated and
frequently read data is offset by the high cost of page migrations. Our analysis
further shows that the overhead of TLB shootdowns is the major contributor
to the high cost of page migrations.

Both the state-of-the-art OS approach and RiskRelief-Nursery place the
nursery in HBM, using only a modest fraction of the available HBM capacity.
Figure 3.8 shows that the RiskRelief-Mature collector uses a larger fraction of
the available HBM capacity by placing part of the mature heap space in HBM
as well. RiskRelief-Mature is highly effective at improving performance beyond
RiskRelief-Nursery. On average, the execution time reduces by an additional
9% compared to RiskRelief-Nursery, and by 29% compared to a DRAM-Only
system, while still improving SER by a factor 9× compared to an HBM-Only
system.

3.7. RESULTS 53

0

0 . 5

1

1 . 5

2
Ex

ec
. t

im
e

no
rm

. t
o

DR
AM

-o
nl

y
DRAM O S RR- N RR- M HBM

Figure 3.10: Execution times normalized to DRAM-Only for the RiskRelief
collectors, the OS approach and HBM-Only.

3.7.2 Soft Error Rate

We now discuss soft error rates for the different systems we evaluate in
this work. Figure 3.9 shows SER of DRAM-Only, RR-N, RR-M, and the
OS approach, normalized to HBM-Only for the individual workloads. We ob-
serve that a DRAM-Only memory system is highly reliable with negligible
SER compared to HBM-Only. This observation is consistent with prior work
which reports that in DRAM-Only systems, non-DRAM failures, such as those
in memory controllers and memory channels, dominate the majority of er-
rors [117]. Whereas HBM-Only is highly unreliable with a normalized SER of
1, RR-N reduces the SER by 18× on average. All benchmarks observe a reduc-
tion in SER and the reduction in SER varies from 9× (Fop) to 48× (Xalan).
The differences in per-benchmark SER reduction are due to access patterns in
the nursery, more specifically, the ratio of nursery writes to reads. RR-N is the
most reliable system of all systems we evaluate in this work, but it does not fully
utilize the available HBM capacity. We can utilize the available HBM capacity
to gain more performance. As mentioned before, RR-M is the best performing
system, however, it sacrifices reliability over RR-N. Still, RR-M reduces SER
by 9× over HBM-Only. Some benchmarks, such as Bloat, experience no change
in SER reduction with RR-M compared to RR-N. This phenomenon occurs be-
cause SER depends on several factors including the ratio of object writes to
reads, the rate of memory allocation, and how often the objects in the program
heap are accessed after the first allocation. Per-benchmark SER reduction with
RR-M compared to HBM-Only varies from 5× to 30×. For completeness, the
OS approach achieves a normalized SER that is comparable to RR-N.

54 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

3.7.3 Performance

We show per-benchmark performance results in Figure 3.10, normalized to
a DRAM-Only system. Execution time with an HBM-Only system reduces by
34% on average. Individual benchmarks show a variety of trends. For example,
the execution time of Xalan, Pmd, Pmd.S and Lusearch reduces by more than
40%. As reported in Table 3.3, these benchmarks are characterized by either
large heaps, high allocation rates, or high nursery survival rates. The compute-
bound Sunflow benefits the least from HBM bandwidth. Our analysis indicates
that memory read operations in Sunflow exhibit very high on-chip cache hit
rates, thus leading to limited traffic to main memory.

The RiskRelief collectors deliver performance in-between DRAM-Only and
HBM-Only. Placing the nursery in HBM with RiskRelief-Nursery (RR-N) re-
duces execution time by 20% on average compared to a DRAM-Only system.
Benchmarks that allocate rapidly benefit more from HBM bandwidth. For ex-
ample, Lusearch allocates the largest volume of objects across our benchmarks,
and RR-N reduces its execution time by 34%. The reasons for this large reduc-
tion in execution time include: (1) faster read and write operations to memory,
(2) higher throughput of memory zeroing to provide security as guaranteed by
Java semantics [1, 189], and (3) faster nursery collections. Surprisingly, Sunflow
allocates young objects rapidly in the nursery and has the largest number of
nursery collections of all of our benchmarks, yet its execution time reduction
with RR-N is only 15%. This small reduction is because Sunflow has a small
nursery survival rate (only 2%) and copying nursery survivors to the mature
space does not require high bandwidth. RiskRelief-Mature (RR-M) reduces
the execution time on average by an additional 9% over RR-N, and by 29%
over a DRAM-Only system. RR-M splits the mature and large object spaces
across DRAM and HBM. The benchmark that benefits the most from RR-M
is Lusearch. The execution time of Lusearch reduces by 43%. The performance
of Lusearch with RR-M is only 5% less compared to HBM-Only, showing the
effectiveness of RR-M in exploiting HBM’s high bandwidth. Similarly, the per-
formance of Xalan and the two variants of Pmd also improve substantially with
RR-M.

The OS approach leads to a significant performance degradation compared
to RR-N. Performance degrades for most benchmarks and we note a significant
performance degradation for Fop (42%) and Xalan (77%). The reason is the high
number of page migrations per unit of time, see also Table 3.2 which reports the
number of page migrations from DRAM to HBM and vice versa, the number
of 100ms migration epochs, and the number of page migrations per epoch.
We note that Fop and Xalan are the benchmarks with the highest number of
page migrations per unit of time: 347.3 and 463.5 migrations per epoch. Each
page migration incurs the overhead of copying the pages and TLB shootdowns.
Our measurements indicate that TLB shootdowns account for 41% and 45% of
the total execution time for Fop and Xalan, respectively. In other words, TLB
shootdowns lead to significant performance degradations for workloads that

3.7. RESULTS 55

 Migrated Pages Migration

Epochs

Migrated Pages

/Epoch DRAM→HBM HBM→DRAM Total

Fop 1037 5 1042 3 347.3

Bloat 1921 494 2415 33 73.2

Antlr 1038 12 1050 7 150.0

Sunflow 1574 556 2130 66 32.3

Lu.fix 1323 23 1346 26 51.8

Lusearch 3584 1522 5106 76 67.2

Pmd.S 1083 42 1125 10 112.5

Xalan 23011 3406 26417 57 463.5

Pmd 2263 111 2374 18 131.9

Avg 4093 686 4779 33 158.8

Table 3.2: The number of page migrations (DRAM to HBM, HBM to DRAM,
and total), the number of 100ms migration epochs, and the number of page
migrations per epoch for the OS approach.

10%

15%

20%
25%

30%
40%

1%

2%

5%
10%

15%0.7

0.71

0.72

0.73

0 0.1 0.2 0.3 0.4 0.5 0.6

Ex
ec

. t
im

e
no

rm
. t

o
DR

AM
-o

nl
y

SER norm. to HBM-only

RR-M Perf-focused

Figure 3.11: Execution time versus SER trade-off for different configurations
of RR-M and its performance-focused variant.

incur a large number of page migrations per unit of time. The OS approach
delivers performance that is better than RR-N for Sunflow, and only slightly
worse than RR-N for Bloat, Lu.fix and Lusearch. This is due to the relatively
small number of page migrations per 100 ms epoch for these benchmarks, see
Table 3.2. The number of page migrations per epoch is substantially smaller
for these benchmarks — Sunflow (32.3), Bloat (73.2), Lu.fix (51.8) and Lusearch
(67.2) — compared to the other benchmarks with more than one hundred and
up to several hundreds of page migrations per epoch; note that Sunflow has the
lowest number of page migrations which leads to a small performance overhead
(6%) and a net performance improvement over RR-N.

56 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

Al
lo

ca
tio

n
He

ap
RR

 n
ur

se
ry

M

B
M

B
su

rv
iv

al
 %

av
g

m
ax

av
g

m
ax

av
g

m
ax

av
g

m
ax

av
g

m
ax

Fo
p

17
92

25
60

20
%

16
9

18
4

21
5

26
9

23
0

29
6

23
5

30
2

10
6

12
9

Bl
oa

t
39

87
2

21
12

4%
16

2
18

0
16

7
19

0
16

7
18

7
18

5
21

4
12

8
16

8
An

tlr
78

72
15

36
15

%
25

0
34

1
27

6
39

3
32

4
49

1
33

9
51

8
12

8
12

8
Su

nf
lo

w
61

44
0

34
56

2%
19

0
24

5
41

0
70

7
47

9
85

0
48

4
86

0
12

4
12

7
Lu

.fi
x

27
13

6
21

76
2%

17
7

21
7

17
7

21
5

17
7

21
6

19
1

24
4

12
6

15
6

Lu
se

ar
ch

13
74

08
21

76
4%

97
2

14
78

95
9

14
74

96
6

14
87

96
0

14
91

12
1

15
6

Pm
d.

S
64

64
31

36
27

%
17

7
21

5
32

7
52

0
38

9
65

9
41

8
72

3
12

8
12

9
Xa

la
n

31
36

0
34

56
14

%
21

0
27

8
30

1
43

2
32

0
43

7
32

2
43

5
16

8
51

5
Pm

d
11

64
8

31
36

23
%

33
5

51
3

44
9

73
0

60
8

10
19

67
7

11
50

12
2

14
0

Av
g

36
11

0
26

38
12

%
29

4
40

6
36

4
54

8
40

7
62

7
42

3
66

0
12

8
18

3
He

ap
 %

12
%

18
%

21
%

23
%

5%OS
-P

ag
eL

ev
el

RR
-M

-1
0%

RR
-M

-2
0%

RR
-M

-3
0%

RR
-M

-4
0%

T
ab

le
3.
3:

O
b
je
ct

d
em

og
ra
p
h
ic
s:

to
ta
l
al
lo
ca
ti
on

,
h
ea
p
si
ze
,
n
u
rs
er
y
su
rv
iv
al

ra
te
s,

an
d
av
er
ag
e
an

d
m
ax

im
u
m

m
a
tu
re

h
ea
p

u
sa
ge

(i
n
M
B
)
fo
r
ou

r
32
-i
n
st
an

ce
w
or
k
lo
ad

s.

3.7. RESULTS 57

3.7.4 RR-M versus Performance-Focused GC

Utilizing HBM capacity is a trade-off between performance and reliability.
RR-M can be configured in a variety of ways to exploit this trade-off space.
Performance improves when RR-M is configured to place more mature-space
objects in HBM, but this compromises reliability. We show this trade-off in
Figure 3.11. We vary θt from 10% to 40%. Execution time reduces by 3%, but
the SER increases by 5.4×. The reason for the SER increase is that, as RR-M
tries to achieve higher performance by placing an increasingly larger fraction
of the mature space in HBM, it copies objects with low AVF to HBM. In other
words, as θt increases, allocation sites with a larger number of high-risk objects
are classified as HBM, which results in higher performance, but lower reliability.

Figure 3.11 plots a similar performance versus reliability trade-off curve
for a performance-focused variant of RR-M. This performance-focused variant
labels allocation sites as HBM based only on the percentage of hot objects
allocated from the site. Similar to RR-M, it uses the θt threshold to classify
objects as hot versus cold. The resulting trade-off curve with this performance-
focused collector clearly shows the benefits of RiskRelief in mitigating HBM’s
high susceptibility to soft errors. Specifically, for the same performance, RR-M
exhibits 4.8× lower SER than the performance-focused variant. RR-M takes
into account both how often an object is accessed and its AVF before placing
it in HBM.

3.7.5 Memory and Demographic Analysis

Table 3.3 summarizes total allocation, nursery survival rates, and percent-
age of mature heap in HBM for RR-M for the different 32-instance workloads.
Our applications allocate frequently ranging from 1.8 GB (Fop) up to 137 GB
(Lusearch). Our nursery survival rates vary from 2% to 27%. Copying ob-
jects to HBM is faster than DRAM, and hence benchmarks that copy a larger
fraction of objects to HBM on a nursery collection benefit more from HBM’s
high bandwidth. Examples include Xalan and Pmd. The next columns show
the average and maximum HBM (in MB) for different configurations of RR-M.
Specifically, we show the HBM capacity in MB for different θt thresholds. HBM
capacity with the most reliable RR-M configuration (θt of 10%) equals 294 MB
on average, and up to 972 MB. Lusearch consumes the largest HBM capacity
with close to 1.5 GB. RR-M places only 12% of the total heap volume in HBM
with a 10% θt threshold. The percentage of heap volume in HBM increases to
23% of the total heap volume in HBM with a θt of 40%. On the other hand,
the OS approach places only 5% of the total heap in HBM.

58 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

3.8 Evaluation on Real Hardware

Accurately assessing SER for a hybrid memory systems requires per-
cacheline read/write statistics which we can only obtain through simulation.
We now complement our simulation results with experimentation on commer-
cial hardware, for three reasons: (1) to demonstrate that we can deploy RiskRe-
lief on real systems, (2) to show that RiskRelief directs the vast majority of
writes to HBM, and (3) to report the runtime overhead of RR-M relative to
RR-N.

Emulation platform. Since we lack access to a commercial machine with
HBM, we emulate hybrid HBM-DRAM memory on an existing multi-socket
NUMA platform, as in [6]. Commercial HBM systems present HBM as an
additional NUMA node to the OS [141], which is exactly what we emulate.
In other words, by running Java workloads on the emulation platform with
RiskRelief collectors, we incorporate OS and runtime effects as expected on
commercial HBM systems. We isolate the Java workload on one socket and
disable the other socket. We populate both sockets with commodity DRAM
chips. Local memory emulates HBM, and remote memory emulates DRAM.
We modify Jikes’ MMTk to split the virtual heap into HBM and DRAM. Our
two-socket Intel Sandy Bridge E5-2650L processor has 8 physical cores per
socket and two hyperthreads per core. We use Ubuntu 12.04.2 with a 3.16.0
kernel. We run 8-instance workloads to utilize all the available cores.

Number of writes to HBM. We now quantify the number of writes to HBM
versus DRAM on the emulation platform which features 132GB of main mem-
ory, evenly distributed between the two sockets. We use all DRAM channels
on both sockets. All cores share the 20MB LLC on each processor. The avail-
able bandwidth to memory is 51.2GB/s, more than the maximum bandwidth
consumed by any of our workloads. A QPI link that supports up to 8GB/s
connects the two sockets. We use Intel’s PCM-memory utility to measure the
number of writes to HBM and DRAM.

RiskRelief allocates the frequently accessed low-risk objects in HBM and the
rest in DRAM. We thus expect that most writes happen to HBM. We observe
that in simulation, on average, 90% and 87% of writes happen to HBM for
RR-M and RR-N, respectively. On the emulation platform, we find that 87%
and 83% of writes happen to HBM, respectively. Simulation and emulation
thus confirm that RiskRelief captures the vast majority of writes to HBM —
this indicates that the frequently accessed low-risk objects are indeed allocated
in HBM. The small discrepancy between emulation and simulation is a result
of differences in the OS, hardware prefetcher, memory controller, among other
things.

RR-M runtime overhead. RR-M incurs runtime overhead because of the
extra steps involved during post-allocation and nursery evacuation. To quantify
these overheads as accurately as possible, we compare the performance of RR-

3.9. OTHER RELATED WORK 59

M versus RR-N on the emulation platform while placing the entire heap on one
socket of our NUMA platform. On average, the overhead incurred by RR-M is
less than 1%, with a maximum of 1.3% for lusearch.

3.9 Other Related Work

Beyond the related work already discussed in Section 3.2, some prior work
focuses on automated memory management for hybrid DRAM-PCM memories.
However, to the best of our knowledge, this is the first work to automatically
manage memory to improve soft error reliability in 3D-stacked memories by dy-
namically allocating objects to HBM versus DRAM through garbage collection
in the managed language runtime.

Production systems now combine DRAM with non-volatile memory (NVM)
to deliver high capacity and performance. The most promising NVM, Phase
Change Memory (PCM), suffers from low write endurance. Gao et al. [64] use
hardware and OS cooperation to expose defective lines in PCM to the garbage
collector to avoid allocation in defective lines.

Write-rationing garbage collection for hybrid DRAM-PCM memories [5]
places frequently written objects in DRAM to protect PCM from writes and
extend its lifetime. More specifically, Kingsguard-Nursery places the nursery
in DRAM because the nursery is highly mutated. Kingsguard-Writers dynami-
cally monitors objects to discover highly written mature objects. Crystal Gazer
exploits offline profiling to identify allocation sites that produce highly written
objects [7].

Wang et al. [182] focus on Big Data systems (e.g., Spark) and leverage
GC to place highly accessed information in DRAM in hybrid DRAM-PCM
systems. They exploit memory semantics in the Java runtime and focus solely
on performance.

3.10 Conclusion

Emerging high-bandwidth memory (HBM) uses 3D stacking to offer more
bandwidth than DRAM. Unfortunately, its capacity is limited, and soft error
rate is high. Due to greater bit density and new failure modes, hardware
error correction alone is insufficient to make HBM reliable. Prior software
approaches that leverage the OS to place hot and low-risk pages in HBM have
several drawbacks as they operate at a coarse-grained page granularity and
introduce page migration overheads that are prohibitive for multicore systems.

This work explores garbage collection in managed runtimes to balance re-
liability and performance for a hybrid HBM-DRAM memory system. We pro-
pose reliability-aware garbage collection to allocate fine-grained hot and low-
risk objects in HBM. Both RiskRelief-Nursery and RiskRelief-Mature place the

60 CHAPTER 3. RELIABILITY-AWARE GARBAGE COLLECTION

nursery for young objects in HBM because the nursery is highly accessed and
low-risk. RiskRelief-Mature further uses allocation-site prediction to map hot
and low-risk mature objects in HBM. We show that object hotness and risk are
weakly correlated. RiskRelief-Mature thus uses heuristics to classify objects
as hot and low-risk for allocation in HBM. Reliability-aware garbage collection
substantially outperforms the state-of-the-art OS approach, substantially im-
proves SER over an HBM-Only system, and significantly improves performance
over a DRAM-Only system. This work shows that exposing 3D stacking to lan-
guage runtimes is a promising avenue for balancing reliability and performance.

Chapter 4

Scale-Model Architectural

Simulation

Computer architects extensively use simulation to steer future processor
research and development. Simulating large-scale multicore processors is ex-
tremely time-consuming and is sometimes impossible because of simulation
infrastructure constraints and/or simulation host compute and memory limi-
tations. The most popular solution is sampled simulation but unfortunately,
it failed to solve the simulation problem, especially for a large-scale computer
system. A straightforward example is the simulation problem that we faced in
the evaluation of the proposed reliability-aware garbage collection (described
in Chapter 3). We had to resort to the simulation of a single-core model (as a
representative of the target system) because the target system was simply too
large to be rigorously evaluated with existing simulation technologies.

This chapter proposes scale-model simulation, a novel methodology to pre-
dict large-scale multicore system performance. Scale-model simulation first
constructs and simulates a scale model of the target system with reduced
core count and shared resources. Target system performance is then predicted
through machine-learning (ML) based extrapolation techniques. Configuring
the scale model (i.e., changing core count while proportionally scaling the
shared resources) enables trading off accuracy versus simulation speed. We
propose two extrapolation models in this work: ML-based Prediction and ML-
based Regression. Both models involve a training and a prediction phase and
ML-based regression has an additional regression phase. A performance model
is trained during the training phase using the scaled simulation results for
both models. The main difference between both methods is that ML-based
prediction requires simulation runs of the target system during training while
ML-based regression does not. The training phase of ML-based regression only
needs simulation results obtained from small-scale multi-core models instead of
the target system, which makes it possible for ML-based regression to predict

61

62 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

performance and other evaluation metrics for the target system not simulated
for time and/or infrastructure limitations. We believe that scale-model simula-
tion opens up a brand new avenue to predict performance for future large-scale
multicore system which speeds up architectural simulation and avoids unpre-
dictable simulation limitations. In this chapter, we evaluate the proposed scale-
model simulation in detail using multiprogram SPEC CPU workloads and the
evaluation results of Java workloads will be presented in Chapter 5. In the
next chapter, we will also apply the simulation and prediction methodology
based on scale models to the evaluation of reliability-aware garbage collection,
in order to solve the simulation problems aroused in Chapter 3.

Section 4.1 discusses the challenge to predict performance for a large-scale
future computer system and introduces the proposed scale-model simulation
technique. The first step of scale-model architectural simulation is to construct
scale models for the target system where core count and shared resources are
reduced proportionally – details are described in Section 4.2. We then pro-
pose three extrapolation models in Section 4.3: No Extrapolation, ML-based
Prediction and ML-based Regression. The simulation setup and workloads con-
struction are elaborated in Section 4.4. In Section 4.5, we first evaluate scale-
model construction and scale-model extrapolation using homogeneous work-
loads and then report the effectiveness of various prediction models under het-
erogeneous workload mixes. We also leverage the prediction accuracy and sim-
ulation speedup in this Section. The sensitivity analysis in Section 4.6 involves
evaluation on memory bandwidth scaling, regression models, ML models in-
puts, multi-core scale-models under regression, memory bandwidth utilization
and multi-threaded workloads. Section 4.7 concludes the prior related work on
scale models, performance prediction and simulation speed-up, followed by the
conclusion in Section 4.8.

4.1 Introduction

Predicting performance for a future computer system is a challenging and
critical problem. The traditional approach is to employ detailed architectural
simulation. Unfortunately, simulation is extremely time-consuming. In addi-
tion, simulation infrastructures have their limitations and may not be able to
simulate a future large-scale system because of excessive memory consumption,
simulator infrastructure limitations, or insufficient compute capability and/or
memory capacity in the simulation host system when simulating large num-
bers of cores. Researchers and practitioners employ a variety of techniques
to tackle the simulation challenge. A widely used solution is sampled simu-
lation [161, 188]. Unfortunately, this approach does not solve the simulation
problem when it comes to simulating increasingly large target systems. In
particular, we observe that simulating an 8-core, 16-core and 32-core target
system using Sniper [36], a fast and state-of-the-art parallel multicore simula-
tor, takes 8, 17 and 43 hours, respectively, on a powerful 36-core simulation

4.1. INTRODUCTION 63

host when running multiprogram SPEC CPU workloads with (only) one bil-
lion instructions per benchmark. The super-linear increase in simulation time
and complexity as a function of system size is a major challenge for computer
architects in academia and industry.

In this chapter, we propose scale-model simulation, a novel paradigm to
predict future system performance. Scale-model simulation combines architec-
tural simulation with machine learning to predict performance for large-scale
systems based on detailed simulation of a scaled-down configuration of the tar-
get system, called the scale model. Scale-model simulation first simulates a
scale model of the target system. Performance for the target system is then
predicted through extrapolation. Scale models solve the two problems afore-
mentioned: (1) scale models speed up the simulation of large-scale systems:
scale models are small enough to simulate in reasonable amount of time while
performance extrapolation is instantaneous; and (2) scale models make sim-
ulation feasible for large-scale systems that cannot be simulated on existing
infrastructure because of limitations in memory and compute capacity.

Scale models are widely used in a variety of engineering disciplines, in-
cluding civil engineering (e.g., construction, fluid dynamics), mechanical en-
gineering (e.g., aerodynamics, engine design), construction (e.g., architectural
design, city development), etc. The most familiar scale models are miniatures,
i.e., scaled-down versions of an original object. A key property of a scale
model is that it accurately maintains relationships between various important
aspects, but not necessarily all aspects, of the original object. Scale models
enable demonstrating or studying some behavior of the original object. To
the best of our knowledge, scale models have not been applied to the field of
general-purpose computer architecture. While building an exact miniature of
a target system may be hard in the context of processor architectures, if at
all possible, we leverage the idea of scale models to predict future computer
system performance.

The scale-model simulation paradigm can be decomposed into two sub-
objectives: (1) scale-model construction and (2) scale-model extrapolation.
The first objective relates to how to construct a scale model of a (much) larger
target multicore system, so that it takes substantially less time to simulate than
the target system, yet enables an accurate prediction of the performance of the
large-scale target system. A scale model is a scaled-down version of the target
multicore system by featuring a reduced number of cores, say by a factor F ,
relative to the target system. The question is what to do with the shared re-
sources, in particular the last-level cache (LLC), NoC and memory bandwidth.
One option may be to not scale the shared resources. Assuming no shared
resource contention, the performance of a single core in the scale model would
be similar to the performance of an individual core in the target system. Of
course, in reality, the actual performance will be less because of shared resource
contention. We find for our suite of SPEC CPU2017 workloads, that not scal-
ing shared resources leads to largely inaccurate scale models with an average
60% prediction error (and up to 94%) for a single-core scale model versus a

64 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

32-core target system. The alternative option is to proportionally scale the
shared resources. In particular, when scaling the number of cores by a factor
F in the scale model relative to the target system, the shared resources are
also reduced proportionally by a factor F , i.e., LLC capacity, NoC bisection
bandwidth and memory bandwidth are reduced by a factor F . We find that
proportional resource scaling leads to substantially more accurate single-core
scale models, with an average prediction error of 14.7% and at most 32.2%
relative to a 32-core target system.

Because the scale model is not an exact miniature of the target system,
the second objective relates to how to extrapolate performance from the scale
model to the target system to further improve accuracy. Shared resources lead
to a variety of complex interactions at the system level, which the scale mod-
els may or may not capture to a sufficient degree. Scale-model extrapolation
predicts the impact of contention effects in shared resources on target-system
performance based on the simulated scale model. We propose and evaluate two
extrapolation methods that leverage Machine Learning (ML) to infer prediction
models that predict target-system performance based on scale-model measure-
ments. The two methods are ML-based prediction and ML-based regression.
The key difference between both methods is that ML-based regression does
not require simulation runs of the target system during training, in contrast to
ML-based prediction. ML-based regression can thus be deployed when it is too
time-consuming or even impossible to run simulations of the target system. We
explore a variety of ML-based scale-model extrapolation techniques, including
decision trees, random forest and support vector machines (SVM), and we find
that SVM is most accurate. In addition, we evaluate a number of regression
methods (linear, power and logarithmic), and find that logarithmic regression
is most accurate. Our evaluation using multiprogram SPEC CPU2017 work-
loads demonstrates the high accuracy of scale-model simulation. Considering a
single-core scale model and a 32-core target system, we report that for homoge-
neous multiprogram workload mixes, SVM-based prediction yields an average
prediction error of 6.4% (20.8% max error). SVM-based regression is slightly
less accurate as it does not involve target-system simulations during training.
SVM-based regression yields an average prediction error of 8.0% (26.4% max
error).

Scale-model simulation is more challenging for heterogeneous multiprogram
workload mixes because of more diverse interaction and contention effects. Nev-
ertheless, we demonstrate that scale-model simulation is also effective and accu-
rate for heterogeneous workload mixes. We report that SVM-based prediction
achieves an average prediction error of 13.2% (max error of 27.5%) for SVM-
based prediction, and 15.8% for SVM-based regression (max error of 28.7%).

Scale-model simulation leads to substantial simulation speedups. Training
the prediction model is a one-time cost that can be amortized across many pre-
dictions. Once the prediction model has been trained, scale-model simulation is
fast. It only requires running a simulation of the application of interest on the
single-core scale model, which is substantially faster than running a simulation

4.2. SCALE MODEL CONSTRUCTION 65

#cores LLC NoC DRAM

32 32 MB: 32 slices 128 GB/s: 4 CSLs, 32GB/s per CSL 128 GB/s: 8 MCs, 16GB/s per MC
16 16 MB: 16 slices 64 GB/s: 4 CSLs, 16GB/s per CSL 64 GB/s: 4 MCs, 16GB/s per MC
8 8 MB: 8 slices 32 GB/s: 2 CSLs, 16GB/s per CSL 32 GB/s: 2 MCs, 16GB/s per MC
4 4 MB: 4 slices 16 GB/s: 2 CSLs, 8GB/s per CSL 16 GB/s: 1 MC, 16GB/s per MC
2 2 MB: 2 slices 8 GB/s: 1 CSL, 8GB/s per CSL 8 GB/s: 1 MC, 8GB/s per MC
1 1 MB: 1 slice 4 GB/s: 1 CSL, 4GB/s per CSL 4 GB/s: 1 MC, 4GB/s per MC

Table 4.1: Constructing scale models through Proportional Resource Scaling:
LLC capacity in MB; on-chip interconnection network in GB/s: number of
cross-section links (CSLs) and bandwidth per CSL; main memory bandwidth
in GB/s: number of memory controllers (MCs) and bandwidth per MC.

of the target system, i.e., in our experimental setup in which we use Sniper [36]
on a high-end 36-core Intel PowerEdge R440 server, we find that simulating a
single-core scale-model is 28× faster than simulating the 32-core target system.

In summary, we make the following key contributions:

• We propose scale-model simulation, a novel methodology to predict
target-system performance based on scale-model performance simula-
tions.

• We find that shared resources are best proportionally scaled in the scale
model relative to the target system.

• We demonstrate that extrapolation can significantly improve scale-model
prediction accuracy.

• We propose and evaluate two ML-based extrapolation techniques that do
or do not rely on target-system simulations during training.

• We evaluate scale-model simulation and demonstrate high accuracy and
simulation speed improvements for both homogeneous and heterogeneous
multiprogram workload mixes for a 32-core target system based on single-
core scale-model simulations.

• We find that ML-based regression is almost equally accurate as ML-based
prediction while not requiring target-system simulations during training,
making ML-based regression a more practical approach.

4.2 Scale Model Construction

Scale-model architectural simulation involves two key concerns: (1) how to
construct the scale models, and (2) how to build an accurate extrapolation
model based on the scale model predictions. We discuss the former in this
section and the latter in the next section.

66 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

A scale model is a scaled-down version of the large-scale target system
such that its performance is a (relatively) accurate representation of the target
system. More precisely, the scale model needs to be configured such that its
per-core performance is similar to per-core performance in the target system.
The challenge when constructing scale models for multicore processors is how
to deal with shared resources.

One option is to simply scale the number of cores in the scale model while
keeping the shared resources as in the target system— we refer to this approach
as No Resource Scaling (NRS). For example, a scale model consisting of a single
core would have access to the fully sized LLC capacity as well as the same NoC
and memory bandwidth as in the target system.

Another, more accurate, option is to proportionally scale the shared re-
sources with core count — we refer to this approach as Proportional Resource
Scaling (PRS). The intuition behind PRS is to provide balanced scale models
that exhibit similar degrees of resource contention as in the target system. In
particular, when scaling the number of cores by a factor F , we scale LLC ca-
pacity, NoC bandwidth and memory bandwidth by the same factor F . In other
words, we keep LLC capacity per core constant and we keep interconnection
and memory bandwidth per core constant. In our setup, we assume 1MB of
LLC per core, 4GB/s NoC bisection bandwidth per core, and 4GB/s memory
bandwidth per core. See Table 4.1 for how we scale shared resources in our
setup. Since we assume a NUCA LLC with a 1 MB slice attached to each core
in our setup, we proportionally scale down LLC capacity as we consider fewer
cores in the scale model. Scaling bandwidth is more complicated. We scale
DRAM bandwidth by changing both the number of memory controllers and
bandwidth per memory controller. Starting from the target system, we first
scale down the number of memory controllers from 8 (at 32 cores) to 1 (at 4
cores), and then scale down the amount of bandwidth per memory controller.
First scaling the number of memory controllers and then scaling bandwidth
per memory controller once there is only single memory controller left, enables
more accurate scale models compared to first scaling memory bandwidth per
memory controller and then scaling the number of memory controllers (as we
will quantify in the evaluation section). For the interconnection network, we
scale link bandwidth as the number of cross-section links reduces with core
count. In particular, scaling down from 32 to 16 cores, the number of cross-
section links remains unchanged, hence we have to halve bandwidth per link
from 32 GB/s to 16 GB/s. In contrast, when moving from 16 to 8 cores, the
number of cross-section links halves from 4 to 2, hence we maintain the per-link
bandwidth at 16 GB/s.

4.3 Scale Model Extrapolation

Scale model construction is only a first step. We need scale model extrap-
olation to yield even more accurate target system performance predictions.

4.3. SCALE MODEL EXTRAPOLATION 67

Scale-model extrapolation considers scale-model simulation results to predict
target-system performance. We consider two extrapolation models in this work:
no extrapolation and ML-based prediction and regression.

4.3.1 No Extrapolation

The simplest way to predict target system performance is to use the per-core
performance observed in the scale model as a prediction for per-core perfor-
mance in the target system. This approach implicitly assumes that the inter-
ference observed in the shared resources in the scale model is similar to (or the
same as in) the target system. The scale model that we assume is a single-core
system with the shared resources proportionally scaled following the PRS ap-
proach. The performance measured for this single-core scale model then is the
prediction for per-core performance in the target system.

While we primarily focus on a single-core scale model in this work, it might
be worth considering a two-core scale model or a four-core scale model (again,
with the shared resources proportionally scaled). This typically leads to higher
accuracy. On the flip side, simulating a scale model with more cores and
larger shared resources takes longer. In other words, increasing the size of the
scale model leads to an accuracy versus speed trade-off. The larger the scale
model, the higher the accuracy but the longer simulation takes. While we will
primarily focus on the results with a single-core scale model — as it yields the
highest possible simulation speedup — we will also explore the accuracy versus
simulation speed trade-off by considering larger scale models in the results
section.

4.3.2 Machine Learning-based Prediction and Regression

Leveraging Machine Learning (ML) enables achieving higher accuracy com-
pared to the No Extrapolation method. We consider two ML-based approaches:
ML-based Prediction and ML-based Regression. Both methods involve a train-
ing phase during which a performance model is trained. The training phase
incurs a one-time cost. The key difference between both approaches is that ML-
based Regression does not require simulation runs of the target system during
training, in contrast to ML-based Prediction. This has important implications
in practice. In case it is impossible to simulate the target system for some
reason (too long simulation time or other simulator limitations), one has to
resort to ML-based Regression. Higher accuracy is typically obtained through
ML-based Prediction, although that requires access to the target system. We
now explain both approaches.

68 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

∀	𝑖 ∈ 1, … , 𝑁 :𝑚𝑖𝑥𝑖 = 𝐵1, … , 𝐵𝑇	

𝐼𝑃𝐶!!(𝐵𝑗)
𝐵𝑊!!(𝐵𝑗)

4 𝐵𝑊!!(𝐵")
#

"$%,"'(

𝐼𝑃𝐶) 𝐵𝑗

𝑎𝑝𝑝_𝑚𝑖𝑥 = 𝐴1, … , 𝐴𝑇	

𝐼𝑃𝐶!!(𝐴𝑗)
𝐵𝑊!!(𝐴𝑗)

4 𝐵𝑊!!(𝐴")
#

"$%,"'(

𝐼𝑃𝐶) 𝐴𝑗

training

modelt

Training:

Prediction:

∀	𝑗 ∈ 1,… , 𝑇 :	

Figure 4.1: ML-based prediction involves a training and prediction phase.
The training phase requires simulation results for the target system.

4.3.2.1 ML-Based Prediction

ML-based prediction involves a training phase in which a set of training
benchmarks are run on both the scale model and the target system, see also
Figure 4.1. We consider N benchmark mixes in our training set, with each
mix i (1 ≤ i ≤ N) consisting of T benchmarks Bj , 1 ≤ j ≤ T . There are as
many benchmarks per mix as there are cores in the target system, namely T .
We denote a performance number P obtained on the single-core scale model
with superscript ss (P ss), on the multi-core scale models with superscript msX
(PmsX), and on the target system with superscript t (P t).

On the single-core scale model, we measure performance (i.e., IPC) and
memory bandwidth utilization. The latter is a function of the number of LLC
misses per unit of time and has a significant impact on resource contention in
the memory subsystem during co-execution with other benchmarks. In other
words, it provides a measure for how much contention the particular benchmark
is going to create on the shared resources when co-executed with other bench-
marks. Our results confirm that considering both performance and memory
bandwidth utilization improves accuracy (as we will quantitatively demonstrate
in the evaluation section). The performance and bandwidth utilization numbers
on the single-core scale model serve as independent variables to the ML tech-
nique. More precisely, the input variables to the ML model are per-core perfor-
mance for each of the benchmarks in the training mix (IPCss(Bj)), alongside

4.3. SCALE MODEL EXTRAPOLATION 69

the per-core bandwidth utilization for the given benchmark (BW ss(Bj)) as well
as the sum of the per-core bandwidth utilization numbers for the co-running
applications in the workload mix (

∑T

k=1,k ̸=j BW ss(Bk)). On the target sys-
tem, we measure performance for each of the benchmarks in the multi-program
workload mix (IPCt(Bj)). Target system performance for each of the bench-
marks in the training mix serves as dependent variables to the ML technique. In
other words, the different training samples provide different observations: the
independent variables are the IPC and bandwidth utilization on a single-core
system, along with the total bandwidth utilization of co-running applications;
the dependent variable is the IPC of the target system for the training bench-
marks.

Overall, the input to the ML training phase consists of N×T data points as
there are N mixes and T benchmarks per mix. The end result of the training
phase is a performance model, denoted as modelt, that predicts target-system
performance of an application when co-run with T − 1 other applications.

The prediction, or inference, phase involves simulating a previously unseen
application Aj (i.e., the workload of interest) on the single-core scale model.
The measured performance and bandwidth utilization numbers serve as input
to the prediction model which then yields a prediction for performance of the
application of interest on the target system. More specifically, the prediction
model takes the IPC of the application of interest on the single-core scale model
as input (IPCss(Aj)), alongside its bandwidth utilization on the scale model
(BW ss(Aj)) as well as the total bandwidth consumption of the co-running
applications in the workload mix. The latter is computed as the sum of the
bandwidth consumption for each of the applications in the workload mix as
observed in the single-core scale model, i.e.,

∑T

k=1,k ̸=j BW ss(Ak). The model

modelt then predicts performance for application Aj on the target system.

We consider different ML techniques in this work to construct the predic-
tion model, namely decision tree (DT), random forest (RF) and support vector
machines (SVM) using the scikit-learn v1.0.1 framework.1 The DT algorithm
is an optimized version of the CART (Classification and Regression Trees) al-
gorithm which constructs binary trees by seeking for the largest information
gain at each node using Iterative Dichotomiser. RF includes a diverse set of
decision trees to avoid overfitting; this is done through two levels of random-
ization. First, each tree in the ensemble is built for a random subset from the
training set. Second, when splitting a node during the construction of a tree,
the best split is found for either all input features or for a random subset of
features. We use the radial basis function (RBF) as the SVM kernel to capture
non-linear performance scaling trends.

1http://scikit-learn.org/

70 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

𝑎𝑝𝑝_𝑚𝑖𝑥 = 𝐴1, … , 𝐴𝑇	

𝐼𝑃𝐶!!(𝐴𝑗)
𝐵𝑊!!(𝐴𝑗)

3 𝐵𝑊!!(𝐴")
#

"$%,"'(

𝐼𝑃𝐶)!% 𝐴𝑗modelms1

Prediction:

modelms2

modelmsR

…

𝐼𝑃𝐶)!* 𝐴𝑗

𝐼𝑃𝐶)!+ 𝐴𝑗

𝐼𝑃𝐶, 𝐴𝑗

…
…

∀	𝑖 ∈ 1, … , 𝑂 :𝑚𝑖𝑥𝑖 = 𝐵1, … , 𝐵𝑀	Training:

𝐼𝑃𝐶!!(𝐵𝑗)
𝐵𝑊!!(𝐵𝑗)

3 𝐵𝑊!!(𝐵")
#

"$%,"'(

𝐼𝑃𝐶)!% 𝐵𝑗𝐼𝑃𝐶)!* 𝐵𝑗
training

∀	𝑗 ∈ 1,… , 𝑇 :	

𝐼𝑃𝐶)!+ 𝐵𝑗

Regression: 𝐼𝑃𝐶)!- 𝐴𝑗

target system

training
training

…

Figure 4.2: ML-based regression involves a training, prediction and regression
phase. The training phase requires simulation results obtained for a number of
multi-core scale models, but not the target system.

4.3.2.2 ML-Based Regression

As mentioned above, ML-based prediction requires simulation runs of the
target system during training, which may be a significant impediment in prac-
tice. ML-based regression overcomes this drawback by relying on simulation
runs of a variety of scale models instead, which is typically easier to achieve in
practice. ML-based regression consists of three steps, see also Figure 4.2. In
the first step, ML-based regression leverages the ML-based prediction method
discussed above to train a number of prediction models. These prediction
models do not predict performance for the target system, as under ML-based
prediction, but they predict performance for a number of multi-core scale
models ms1,ms2, . . . ,msR. Note that these scale models feature multiple
cores. The training phase involves measuring performance and bandwidth uti-
lization on the single-core scale model, and measuring performance for the
multi-core scale models for each of the benchmarks in the training workload
mixes. The input to the training phase thus includes, as independent vari-
ables, the performance (IPCss(Bj)) and bandwidth utilization (BW ss(Bj))

4.4. EXPERIMENTAL SETUP 71

Processor

Number of cores 32 cores
Core frequency 4.0 GHz
Issue width 4-wide
ROB size 128 entries
Branch predictor hybrid local/global predictor
Max. outstanding 48 loads, 32 stores, 10 L1-D misses

Cache Hierarchy

L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 256 KB per core, 8 way, 8 cycle
LLC shared 32 MB, 64 way, 30 cycle

NUCA, 32 slices, 1 MB/slice, 1 slice/core

NoC

Mesh topology 4×8
Bandwidth 128 GB/s bisection bandwidth

DRAM

Memory controllers 8
Bandwidth 128 GB/s aggregate bandwidth

Table 4.2: Target system.

of each benchmark in the mix alongside the aggregate bandwidth utilization
of the co-running benchmarks (

∑T

k=1,k ̸=j BW ss(Bk)). The dependent vari-
ables are the performance numbers for each benchmark for the scale mod-
els ms1,ms2, . . . ,msR, or IPCms1(Bj), IPCms2(Bj), . . . , IPCmsR(Bj). The
ML-based prediction method is used to train the prediction models for the
various multi-core scale models.

As a second step, once these prediction models have been trained, we pre-
dict performance for a previously unseen application of interest Aj on the
multi-core scale models ms1,ms2, . . . ,msR. The input to the models includes
the application’s scale-model performance (IPCss(Aj)), its bandwidth utiliza-
tion (BW ss(Aj)) and the aggregate bandwidth utilization of the co-runners

(
∑T

k=1,k ̸=j BW ss(Ak)). The models then predict performance for application

Aj on the scale models, namely IPCms1(Aj), IPCms2(Aj), . . . , IPCmsR(Aj).

The third step involves regression to predict performance for the target sys-
tem based on the predicted performance numbers for the multi-core scale mod-
els. We consider a number of regression techniques, including linear, power-law
and logarithmic regression, to predict target-system performance. We find that
logarithmic regression yields the highest accuracy (a quantitative evaluation is
reported in the evaluation section).

72 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

4.4 Experimental Setup

4.4.1 Simulation Setup

We use Sniper v6.0, a parallel and high-speed cycle-level x86 simulator for
multicore systems, using its most detailed cycle-level hardware-validated core
model [36]. Our target system is a 32-core processor, see Table 4.2. We simulate
4-wide out-of-order cores with a 3-level cache hierarchy. The LLC is a 32 MB
NUCA cache, and we assume a 128 GB/s bisection bandwidth mesh NoC and
128 GB/s main memory system with 8 memory controllers.

Our simulation speed numbers are obtained by running Sniper on a 36-core
Intel PowerEdge R440 server. This server is dual-socket machine with 18 cores
per socket, 24 MB LLC per socket, 384 GB of memory.

4.4.2 Workloads

We consider both homogeneous and heterogeneous multiprogram workload
mixes in the evaluation. The benchmarks are taken from SPEC CPU2017
and we consider 1B-instruction simulation points per benchmark [161]. The
homogeneous workloads assume co-running instances of the same benchmark,
all starting at (slightly) different offsets. The heterogeneous workload mixes are
randomly composed. We finish the simulation and measure performance when
the first benchmark in the workload mix has reached the end of its simulation
point.

We make sure that the training set is completely disjoint from the evaluation
set in all of our experiments. For the homogeneous workload mixes, we use
a cross-validation setup in which we use N − 1 benchmarks for training the
models when evaluating prediction accuracy for the Nth benchmark, with N =
29 for SPEC CPU2017. There are hence 28 training benchmarks to train a
model to predict performance for the 29th benchmark. We use the prediction
and extrapolation models to predict performance for the previously unseen
application of interest on the target system when co-run with additional (T−1)
copies of the application of interest.

For the heterogeneous workload mixes, we consider 8 randomly chosen
benchmarks in the evaluation set while using the 21 remaining benchmarks
in the training set. The workload mixes in the training set are random mixes.
The number of training mixes is chosen such that the total amount of training
data is constant, i.e., we consider a total of 320 training results to train an
ML model. For ML-based prediction, this means that we consider N = 10
training mixes with T = 32 benchmarks each, yielding a total of N × T = 320
training results. For ML-based regression, when training an ML model for an
M -core scale model, we consider O training mixes, so that we have a total of
O ×M = 320 training mixes. In particular, when training a model for a two-
core scale model, we consider 160 training mixes, yielding 320 training results;

4.5. EVALUATION 73

when training a model for a quad-core scale model, we consider 80 training
mixes, again yielding 320 training results; etc. Prediction is done for a previ-
ously unseen application of interest which we simulate on the single-core scale
model. We predict performance for the application of interest on the target
system when co-run with 10 random heterogeneous mixes of previously unseen
applications from the evaluation set; we report the average prediction error
across these 10 mixes for each of application of interest.

4.5 Evaluation

We now evaluate scale model simulation. We first evaluate scale-model
construction, and then evaluate scale-model extrapolation. We quantify
accuracy using the following absolute prediction error metric: error =
∣

∣

∣

IPCpredicted−IPCactual

IPCactual

∣

∣

∣
. IPCactual is the IPC of the application of interest

on the target system — in our setup, this is the IPC of a single benchmark in-
stance in a 32-instance multi-program workload. IPCpredicted is the predicted
IPC of the application of interest on the target system based on measurements
obtained through simulation of the scale model. In case of No Extrapolation,
the predicted IPC on the target system is the IPC obtained on the scale model.
In case of ML-based Prediction and Extrapolation, the predicted IPC is pro-
vided by the ML model when given the performance metrics for the scale model
as input. We assume a single-core scale model in all of our experiments unless
mentioned otherwise.

4.5.1 Scale Model Construction

We consider the following four scale-model construction techniques: (1) No
Resource Scaling (NRS), i.e., the shared resources in the scale model are sized
identically to the target system, (2) Proportional Resource Scaling (PRS) in
which we only scale the LLC in the scale model (i.e., DRAM bandwidth in
the scale model is the same as in the target system), (3) PRS with scaled
DRAM bandwidth only (i.e., LLC capacity is the same in the scale model and
target system), and (4) PRS with scaled LLC size and DRAM bandwidth. (We
evaluated NoC scaling as well but found it to have (virtually) no effect for the
workloads considered in this work, hence we exclude it from the discussion.)

Figure 4.3 reports prediction error for the single-core scale model, i.e., we
consider a scale model with a single core to predict per-core performance in
the 32-core target system. The benchmarks are sorted by their LLC MPKI
from left to right. The benchmarks on the left-hand side are thus compute-
intensive for which NRS and PRS perform equally well. However, memory-
intensive benchmarks appearing on the right-hand side experience contention
in the shared resources and hence require that the scale models feature pro-
portionally scaled-down shared resources. Overall, NRS is generally inaccurate

74 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

with an average absolute error of 60% and up to 94%. PRS is more accurate,
especially for memory-intensive workloads: scaling the LLC brings down the
average error to 51.3%, while scaling DRAM bandwidth reduces the average
error to 40.5%. Scaling both LLC capacity and DRAM bandwidth has syner-
gistic effects, bringing down the prediction error to 14.7% on average and at
most 32.2% (milc). Proportionally scaling all shared resources leads to a scale
model that is a relatively accurate representation for per-core performance in
the target system.

4.5.2 Scale Model Extrapolation

While PRS leads to relatively accurate scale models, we can do even bet-
ter through scale model extrapolation. No Extrapolation uses performance
obtained for the scale model as a prediction for per-core performance in the
target system — this is effectively PRS with scaled resources from the previous
section. We further consider ML-based Prediction and ML-based Regression;
we consider three ML techniques — Decision Tree (DT), Random Forest (RF)
and Support Vector Machines (SVM) — and we use logarithmic regression for
the Regression approach.

Figure 4.4 reports the prediction error for these techniques assuming ho-
mogeneous workload mixes. ML-based Prediction brings down the average
absolute prediction error by a significant margin compared to No Extrapola-
tion (average error of 14.7% and up to 32.2%). SVM is the most accurate
ML-based Prediction technique with an average error of 6.4% (maximum error
of 20.8%). DT yields an average absolute prediction error of 9.3% (and up
to 29.1%), whereas RF leads to an average error of 8.3% (and up to 21.3%).
ML-based Regression is slightly less accurate than ML-based Prediction as it
does not require simulating the target system during training. Yet, accuracy
is still high and SVM with logarithmic regression (SVM-log) yields the highest
accuracy among the ML-based Regression techniques with an average absolute
prediction error of 8.0% (and at most 26.4%). While ML-based prediction out-
performs ML-based regression in general, the inverse is true for some bench-
marks. This is the case when performance across scale models (with 2, 4, 8 and
16 cores) follows a predictive trend line — favoring regression. If on the other
hand, the relative performance delta between the one-core scale model and the
32-core target system is relatively easy to predict, i.e., the relative delta is fairly
similar to previously seen training examples, then prediction is most accurate.

4.5.3 Heterogeneous Workload Mixes

So far, we considered homogeneous workload mixes. Figure 4.5 reports pre-
diction error for the various prediction techniques under heterogeneous work-
load mixes. The results are consistent with the homogeneous workload mixes,
i.e., ML-based Prediction is slightly more accurate than ML-based Regression,

4.5. EVALUATION 75

0%20
%

40
%

60
%

80
%

10
0%

Prediction error

NR
S

PR
S

LL
C-

on
ly

PR
S

DR
AM

-o
nl

y
PR

S
LL

C+
DR

AM

F
ig
u
re

4.
3:

E
va
lu
at
in
g
sc
a
le

m
o
d
el

co
n
st
ru
ct
io
n
u
si
n
g
h
om

og
en
eo
u
s
w
or
k
lo
ad

m
ix
es
:
N
R
S
ve
rs
u
s
P
R
S
w
it
h
sc
a
le
d
L
L
C

ca
p
ac
it
y,

sc
al
ed

D
R
A
M

b
an

d
w
id
th
,
an

d
b
ot
h
.
P
ro
po
rt
io
n
a
l
R
es
o
u
rc
e
S
ca
li
n
g
(P

R
S
)
in

w
h
ic
h
a
ll
sh
a
re
d
re
so
u
rc
es

a
re

sc
a
le
d

p
ro
po
rt
io
n
a
ll
y
le
a
d
s
to

th
e
m
o
st

a
cc
u
ra
te

sc
a
le

m
od
el
s.

76 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

0%10
%

20
%

30
%

40
%

Prediction error

No
 E

xt
ra

po
la

tio
n

DT
-lo

g
RF

-lo
g

SV
M

-lo
g

DT
RF

SV
M

F
ig
u
re

4.
4:

E
va
lu
at
in
g
sc
a
le

m
o
d
el

ex
tr
ap

ol
at
io
n
u
si
n
g
h
om

og
en
eo
u
s
w
or
k
lo
ad

m
ix
es
:
N
o
E
x
tr
ap

o
la
ti
on

ve
rs
u
s
M
L
-b
a
se
d

P
re
d
ic
ti
on

(D
T
,
R
F
an

d
S
V
M
)
an

d
R
eg
re
ss
io
n
(D

T
-l
og
,
R
F
-l
og

an
d
S
V
M
-l
og
).

S
V
M
-b
a
se
d
p
re
d
ic
ti
o
n
yi
el
d
s
th
e
h
ig
h
es
t

a
cc
u
ra
cy

(6
.4
%

a
ve
ra
ge

a
bs
o
lu
te

p
re
d
ic
ti
o
n
er
ro
r)
,
w
h
il
e
S
V
M
-b
a
se
d
re
gr
es
si
o
n
(S
V
M
-l
og
)
is

o
n
ly

sl
ig
h
tl
y
le
ss

a
cc
u
ra
te

(8
.0
%

a
ve
ra
ge

a
bs
o
lu
te

p
re
d
ic
ti
o
n
er
ro
r)
.

4.5. EVALUATION 77

0%
10%
20%
30%
40%
50%

gamess sjeng perlben hmmer xalan Gems omnetpp mcf avg

Pr
ed

ict
io

n
er

ro
r

No Extrapolation DT-log RF-log SVM-log DT RF SVM

Figure 4.5: Evaluating scale model extrapolation using heterogeneous
workload mixes: No Extrapolation versus ML-based Prediction (DT, RF and
SVM) and Regression (DT-log, RF-log and SVM-log). The SVM-based
Prediction method yields the highest accuracy (13.2% average prediction
error), while SVM-based Regression (SVM-log) is only slightly less accurate
(15.8% average prediction error).

and SVM is the most accurate ML approach. We do note higher prediction er-
rors for the heterogeneous workload mixes compared to the homogeneous work-
load mixes due to more complex and diverse interactions between co-running
applications: average prediction error of 15.8% (max 28.7%) for SVM-log versus
13.2% (max 27.5%) for SVM, versus 27.8% (max 44.7%) for No Extrapolation.

These per-application performance predictions can be used to predict sys-
tem throughput (STP) on the 32-core target system. STP is computed as the
sum of normalized IPC values (IPC on the target system divided by IPC on
the single-core scale model) across all applications in the workload mix [56].
Figure 4.6 reports the STP prediction error (sorted) for ML-based regression
for a total of 80 heterogeneous mixes. SVM-log is the most accurate regression
approach with an average error of 3.8% versus 5.6% for DT-log and RF-log.
Interestingly, the STP prediction errors are lower than the per-application pre-
diction errors reported above. The reason is that STP is computed as the sum
of normalized IPC values, hence over- and underestimations offset each other.

4.5.4 Simulation Speedup

Scale-model simulation yields a substantial simulation speedup because sim-
ulating a scale model takes considerably less time than simulating the target
system. And in some cases, it might not even be possible to simulate the tar-
get system, due to simulator infrastructure and/or simulation host constraints.
Once scale-model simulation results are available, predicting target-system per-
formance is almost instantaneous provided that the ML model has been trained
offline.

Figure 4.7 reports prediction error versus simulation speedup compared to
simulating the 32-core target system. The No Extrapolation curve consists of
5 data points. The data point on the far right refers to the case where the
scale model is a single-core system. Moving to the left, we have a dual-core,

78 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

0%

4%

8 %

12%

16 %

20%

Pr
ed

ict
io

n
er

ro
r

Sorted w ork loads

DT-log RF-log SVM-log

Figure 4.6: STP prediction error for ML-based regression across a total of 80
heterogeneous workload mixes. SVM-log predicts system throughput (STP)
with an average prediction error of 3.8% and at most 13.0%.

0%

4%

8 %

12%

16 %

0 5 10 15 20 25 30

Av
er

ag
e

ab
so

lu
te

 p
re

di
ct

io
n

er
ro

r

Simu lation speedu p

No Extrapolation SVM SVM-log

Figure 4.7: Prediction error versus simulation speedup. SVM-based prediction
and regression achieve high prediction accuracy while yielding high simulation
speedups.

quad-core, octo-core and finally a 16-core scale model. Prediction accuracy
generally improves as we move towards larger scale models2, while simulation
speedup decreases considerably. The ML-based prediction techniques, SVM
and SVM-log, rely on a single-core scale model simulation only, and hence
yield the highest possible simulation speedup, namely 28×. Overall, the con-

2The dual-core scale model is more accurate than the quad-core scale model due to how
memory bandwidth is scaled down, see also Table 4.1. Both the ‘MC-first’ and ‘MB-first’
scaling methods (discussed in Section 4.6.1) lead to similar trend anomalies, albeit at
different core counts.

4.6. SENSITIVITY ANALYSES 79

0%

5%

10%

15%

DT-log RF-log SVM-log DT RF SVM

Pr
ed

ict
io

n
er

ro
r

MB -first MC -first

Figure 4.8: Evaluating memory bandwidth scaling alternatives under PRS.
ML-based regression achieves higher accuracy by first scaling the number of
memory controllers (‘MC-first’) compared to first scaling memory bandwidth
per memory controller (‘MB-first’).

clusion is that ML-based prediction and regression is accurate while yielding
high simulation speedups.

4.6 Sensitivity Analyses

We now perform a couple analyses to evaluate the sensitivity of the proposed
scale-model simulation methodology. We consider the homogeneous workload
mixes throughout.

4.6.1 Memory bandwidth scaling

Recall from Section 4.2 that we explored two options for how to propor-
tionally scale down memory bandwidth from the target system to the scale
model. One option (‘MC-first’, our default) is to first scale the number of
memory controllers (while keeping memory bandwidth per memory controller
constant) and then scale memory bandwidth per memory controller when there
is only single memory controller left. An alternative option (‘MB-first’) is to
first scale down memory bandwidth per memory controller from 16 to 4 GB/s
while keeping the number of memory controllers constant, and then scale down
the number of memory controllers from 8 to 1. Figure 4.8 reports prediction
error for the various scale models under MC-first and MB-first. We find that
first scaling the number of memory controllers yields the highest accuracy, es-
pecially for the ML-based regression techniques. In particular, for SVM-log,
the average prediction error reduces from 9.3% to 8.0%; the improvement in
accuracy is even more substantial for DT-log: reduction in average prediction
error from 14.1% to 9.5%.

80 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

0%10
%

20
%

30
%

40
%

Prediction error

SV
M

-li
ne

ar
SV

M
-p

ow
er

SV
M

-lo
g

F
ig
u
re

4.
9:

L
in
ea
r,

p
ow

er
an

d
lo
ga
ri
th
m
ic

re
g
re
ss
io
n
u
n
d
er

S
V
M
.
L
og
a
ri
th
m
ic

re
gr
es
si
o
n
yi
el
d
s
th
e
lo
w
es
t
p
re
d
ic
ti
o
n
er
ro
r.

4.6. SENSITIVITY ANALYSES 81

0%

5%

10%

15%

DT-log RF-log SVM-log DT RF SVM

Pr
ed

ict
io

n
er

ro
r

I PC I PC + B W

Figure 4.10: Varying the input variables to the ML-based extrapolation
techniques. Considering both performance and bandwidth utilization as input
variables leads to improved accuracy compared to using only performance as
input.

4.6.2 Regression

As aforementioned in Section 4.3.2.2, we evaluated three regression ap-
proaches following a linear model (y = a · x + b), a power model (y = a · xb)
and a logarithmic model (y = a · ln(x) + b), in which x is the number of cores
and y is performance. We use least squares regression to obtain the parameters
a and b that yield the best fitting curve. Figure 4.9 reports the accuracy for
these three regression techniques under SVM-based regression. Logarithmic
regression outperforms the power and linear models by a significant margin
for most of the benchmarks, and leads to the lowest average prediction error:
10.7% (linear), 8.9% (power) and 8.0% (logarithmic).

4.6.3 ML model inputs

The proposed scale-model simulation methodology uses performance (IPC)
and bandwidth utilization as input to the ML models, see Section 4.3. Fig-
ure 4.10 reports the average prediction error for the different ML-based pre-
diction and regression methods when comparing using both performance and
bandwidth utilization as input versus using performance only. Using both per-
formance and bandwidth utilization improves the prediction error by a signifi-
cant margin compared to using only performance. In particular, for SVM-log,
the average prediction error reduces from 9.5% to 8.0%.

4.6.4 Multi-core scale-models under regression

As discussed in Section 4.3.2.2, the ML-based regression techniques use a
number of multi-core scale models to drive the regression. So far, we assumed
four multi-core scale models with 2, 4, 8 and 16 cores. Figure 4.11 reports
the prediction error when changing the number of multi-core scale models to 2
(dual- and quad-core scale models), 3 (dual-, quad- and octo-core scale models)

82 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

0%10
%

20
%

30
%

40
%

Prediction error

1,
2,

4-
>3

2
1,

2,
4,

8-
>3

2
1,

2,
4,

8,
16

->
32

F
ig
u
re

4.
11
:
P
re
d
ic
ti
on

er
ro
r
as

a
fu
n
ct
io
n
of

th
e
n
u
m
b
er

of
m
u
lt
i-
co
re

sc
al
e
m
o
d
el
s
u
se
d
fo
r
S
V
M
-l
og

re
g
re
ss
io
n
.
T
h
e

p
re
d
ic
ti
o
n
er
ro
r
o
n
ly

sl
ig
h
tl
y
in
cr
ea
se
s
w
it
h
a
re
d
u
ce
d
n
u
m
be
r
o
f
m
u
lt
i-
co
re

sc
a
le

m
od
el
s.

4.7. RELATED WORK 83

and 4 (our default). Reducing the number of multi-core scale models might be
of interest if the goal is to reduce model training time. Remarkably, the error is
only slightly higher when limiting the number of multi-core scale models. The
average prediction error equals 11.0% (2 and 4-core scale models) to 9.7% (2,
4 and 8-core scale models) to 8.0% (2, 4, 8 and 16-core scale models).

4.6.5 Memory bandwidth utilization

We focused on predicting performance throughout the result section. Scale-
model simulation can also be used to predict other metrics, such as bandwidth
utilization. This is done by considering bandwidth utilization (rather than
performance) as the dependent variable when training the ML models, see also
Section 4.3. Figure 4.12 reports the prediction error for predicting memory
bandwidth utilization. The result is in line with the previously reported accu-
racy numbers: SVM is the most accurate prediction approach (8.7% average
error) and SVM-log is the most accurate regression approach (11.3% average
error).

4.6.6 Multi-threaded workloads

We did not consider multi-threaded workloads in our work so far. We
note though that the homogeneous workload mixes considered in this work
can serve as a proxy for data-parallel multi-threaded workloads in which all
threads execute the same code (on different data elements) and there is very
little or no communication between threads. We hence expect that scale-model
simulation would perform similarly for data-parallel multi-threaded workloads
as for the homogeneous workload mixes considered here. As multi-threaded
workloads incur inter-thread communication and synchronization overhead, the
scale-model simulation methodology will need to be extended to take other
features into account including NoC delay and congestion, coherence effects,
synchronization overhead, etc. This is left as part of future work.

4.7 Related Work

The most closely related work by Eyerman et al. [59] proposes scale models
for an experimental Intel processor, called PIUMA (Programmable Integrated
Unified Memory Architecture), that is specifically designed for the efficient
execution of graph analytics workloads. The lack of resource sharing among
processor cores makes the development of scale models for this type of archi-
tecture relatively easy. More specifically, the PIUMA architecture does not
have shared caches; each core has a dedicated memory controller; and a highly
scalable interconnection network provides high bandwidth and low latency to

84 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

0%10
%

20
%

30
%

40
%

50
%

Prediction error

DT
-lo

g
RF

-lo
g

SV
M

-lo
g

DT
RF

SV
M

F
ig
u
re

4.
12
:
P
re
d
ic
ti
on

er
ro
r
fo
r
p
re
d
ic
ti
n
g
m
em

or
y
b
an

d
w
id
th

u
ti
li
za
ti
on

.
S
V
M

a
n
d
S
V
M
-l
og

p
re
d
ic
t
m
em

o
ry

ba
n
d
w
id
th

u
ti
li
za
ti
o
n
w
it
h
a
n
a
ve
ra
ge

er
ro
r
o
f
8
.7
%

a
n
d
1
1
.3
%
,
re
sp
ec
ti
ve
ly
.

4.7. RELATED WORK 85

each individual core. In contrast, the cores in a general-purpose multi-core
processor share the LLC, NoC and memory subsystem.

Machine learning (e.g., neural networks [82] and spline-based regres-
sion [104]) was previously proposed to explore single-core and multi-core design
spaces, however, predicting performance for larger-scale target systems fell out
of reach for these models. Analytical models have been proposed for multi-
core processors for both multiprogram workloads [95, 178] and multi-threaded
workloads [48]. An inherent challenge for such models is how to analytically
model overlap effects as well as timing-sensitive events in large target systems;
scale-model simulation addresses this challenge through extrapolation. Hoste et
al. [75] and Piccart et al. [144] determine the optimum platform among a set of
previously benchmarked platforms for an application of interest. Other prior
work predicts performance across architecture paradigms: Baldini et al. [21]
and Ardalani et al. [16] propose machine-learning based methodologies to pre-
dict GPU performance based on CPU implementations.

Scaling down the workloads to speed up simulation has received consid-
erable attention in the literature. Sampling is a widely used methodology to
select representative regions of execution of an unchanged workload. Prior
work has proposed sampling for single-threaded workloads [161, 188] as well
as for general multi-threaded workloads [35] and barrier-synchronized work-
loads [37]. Alameldeen et al. [8] propose a methodology for scaling down com-
mercial workloads in both size and runtime, allowing commodity machines
to simulate much more powerful server systems. Sabu et al. [154] present a
generic multi-threaded sampling methodology and achieve significant simula-
tion speedups, which is accomplished by using loop-based markers to identify
representative simulation regions and taking into account the inherent paral-
lelism of the application. These sampling methodologies speed up simulations
by scaling down the applications, which is actually complementary to the pro-
posed scale-model simulations. However, sampling applications alone cannot
solve the simulation problems of large-scale future systems.

Raising the level of abstraction is yet another, complementary, way to
speed up simulation. One-IPC models assume that a single instruction is exe-
cuted per cycle in the absence of miss events such as cache misses and branch
mispredictions [85, 121]. Interval simulation [65] models the impact of miss
events on performance through mechanistic analytical modeling. ZSim [156]
and Sniper [34] implement high-abstraction simulation models for superscalar
processors. While these high-abstraction models significantly speed up simu-
lation, they do not fundamentally solve the simulation challenge of large-scale
target systems.

86 CHAPTER 4. SCALE-MODEL ARCHITECTURAL SIMULATION

4.8 Conclusion

This chapter proposed scale-model simulation, a novel methodology that
combines architectural simulation of scale models with machine learning to
predict the performance of a larger-scale target system. We provide results
that demonstrate the effectiveness of scale-model simulation using both homo-
geneous and heterogeneous multiprogram workload mixes to predict 32-core
target system performance based on single-core scale model simulation runs.
We find that it is critical to proportionally scale the shared resources when
constructing scale models. Leveraging ML techniques to construct extrapola-
tion models further improves scale-model prediction accuracy. We find that
ML-based regression, which does not rely on target-system simulations during
training, achieves an average prediction error of 8% for homogeneous multipro-
gram workload mixes and 15.8% for heterogeneous mixes. Because scale-model
simulation makes these predictions based on single-core scale model simula-
tions, scale-model simulation leads to a 28× simulation speedup compared to
simulating a 32-core target system using Sniper on a high-end 36-core simula-
tion host system.

Chapter 5

Architectural Simulation of

Reliability-Aware Memory

Systems

The research on modern multicore processor architectures heavily relies
on system simulation. Simulating modern multicore processors, however, is
extremely time-consuming, especially for large core counts. Managed language
workloads written in Java, Python, and C# exacerbate the simulation challenge
even further and some simulations are prohibitive due to the simulation time
and/or infrastructure limitations. The architectural simulation of reliability-
aware memory systems in Chapter 3 also ran into this simulation problem which
motivated the exploration of scale-model architectural simulation in Chapter 4.

In this chapter, we apply scale-model simulation, as proposed in Chap-
ter 4, to predict performance for the proposed reliability-aware hybrid memory
systems in Chapter 3. Simulating a 32-core system executing 32 instances of
Java workloads is extremely time-consuming which takes up to one month of
simulation time for several benchmarks. Moreover, we ran into simulator in-
frastructure issues when simulating that many cores. In fact, we were unable
to complete some of the 16-core simulations and even more of the 32-core sim-
ulations. Therefore, in Chapter 3, we reported experimental results with a
simplified single-core system with all shared resources scaled down proportion-
ally. Our preliminary analysis showed that the reported results with scaled
models are conservative and are supposed to be consistent with the actual
results. This chapter verifies the aforementioned conclusion with a detailed ar-
chitectural simulation of large-scale hybrid memory systems and presents the
predicted performance using more accurate prediction models from Chapter 4.
Specifically, we first construct and simulate a series of scale models of the tar-
get hybrid memory systems with reduced core count and shared resources. The

87

88
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

performance for the target system is then predicted using Machine Learning
(ML) based regression techniques. The reason we adopt ML-based regres-
sion instead of ML-based prediction is that the training phase of ML-based
prediction requires simulation runs for the target system which is impossible
when simulating a 32-core hybrid memory system executing 32-instance Java
workloads. The ML-based regression model, however, only requires simulation
results obtained from small-scale multicore scale models, but not the target
system. Applying scale-model architectural simulation to the evaluation of
reliability-aware hybrid memory systems brings up new opportunities for eval-
uating a large-scale future computer system which is impossible to be simulated
due to current simulation limitations.

This chapter is organized as follows. Section 5.1 analyzes the simulation
challenges for future large-scale computer systems, especially with managed
language workloads. Section 5.2 motivates the application of scale-model ar-
chitectural simulations to multicore systems executing multiprogrammed Java
workloads. The details of the experimental setup are then introduced in Sec-
tion 5.3 which is followed by the evaluation in Section 5.4. In the evaluation
section, we first provide insight into the characteristics critical to the perfor-
mance increase with larger multicore simulations by generating CPI stacks for
multicore system simulations with different core counts. We then evaluate the
prediction accuracy of ML-based regression models to select the most accurate
prediction models for the target system. The predicted performance for the
target system is then presented and followed by an analysis of the evaluation
of future computer systems that cannot be simulated. The conclusion of this
work is discussed in Section 5.5.

5.1 Introduction

Computer architects heavily rely on detailed architectural simulation to
evaluate new processor architectures. Unfortunately, architectural simulation
is extremely time-consuming as even today’s fastest simulators run several or-
ders of magnitude slower than native execution. Historically, two trends have
motivated advances in faster and more accurate simulation methodologies. In-
creasing transistor budgets enable new processors with advanced capabilities.
On the software side, programming languages with higher abstractions enable
new applications that solve complex societal challenges. Both trends stress ar-
chitectural simulation. Modern simulation methodologies employ a variety of
techniques to keep simulation times reasonable.

Researchers and practitioners employ a variety of techniques to tackle the
simulation challenge, as previously discussed in this thesis. The most popu-
lar solution is sampled simulation in which a set of representative samples are
simulated in detail [161, 188]. Other techniques include high-abstraction sim-
ulation [34, 156], parallel simulation [121, 123], analytical modeling [36, 156],
statistical simulation [53], among others. Although successfully applied for

5.1. INTRODUCTION 89

0

200

400

600

800
Si

m
ul

at
io

n
tim

e
(h

ou
rs

) 1-core 2-core 4-core 8-core 16-core

Figure 5.1: Simulation time in hours for multiprogram Java workloads with
up to 16 cores on Sniper. Simulation time of multiprogram workloads is
prohibitive and increases super-linearly with an increasing number of cores.

native language workloads, such as C and C++, these techniques are not as
easily deployed for managed language workloads written in Java, Python or
JavaScript. The dynamic nature and the tight interaction between application
code and the underlying runtime complicate the task of identifying a short-
running, yet representative workload for simulation. Current ‘good practice’
advice is to simulate the entire workload [30], which leads to prohibitive simu-
lation times.

We find that simulating a single 16-core Java workload using Sniper [36],
a fast and state-of-the-art parallel multicore simulator, takes more than two
weeks on average, see Figure 5.1 which reports simulation time in hours of real
time for a set of multiprogram DaCapo Java workloads[29]. (We provide details
about our experimental setup later in Section 5.3.) We consider multiprogram
workloads in this work to mimic today’s cloud infrastructures which commonly
run multiple independent services on a server, each within their own language
runtime [186]. As Figure 5.1 reports, simulation time increases super-linearly
with the number of application instances in the workload mix, and quickly
becomes impractical for modern-day multicore systems.

Scale models are scaled-down but functionally equivalent versions of the
(much) larger target multicore system. Scale models are chosen such that
simulating a scale model takes substantially less time than the target system.
More specifically, a scale model of a target multicore processor features a re-
duced number of cores, say by a factor N . The shared resources, in particular
the last-level cache (LLC), interconnected network (NoC) and memory band-
width, are also reduced proportionally by a factor N . Next, we simulate the
scale model in detail. Assuming no resource contention in the LLC and memory
sub-system, the performance of a single core in the scale model would be identi-
cal to the performance of an individual core in the target system. Of course, in
reality, the actual performance will be less because of resource contention in the

90
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

shared resources, i.e., due to limited cache capacity, conflict misses, memory
bandwidth, etc. Hence, naively assuming that resource contention does not af-
fect per-core performance leads to inaccurate scale-model simulation. We thus
need more sophisticated extrapolation techniques.

We leverage Machine Learning (ML), regression in particular, to extrapo-
late and predict larger-scale system performance based on the scale model(s),
as discussed in Chapter 4. Recall that the ML-based regression involves three
phases called training, prediction and regression. We evaluate a variety of ML
techniques including decision tree, random forest and Support Vector Machines
(SVM) models in the prediction phase and we explore linear, power and log-
arithmic models in the regression phase. We find that SVM with logarithmic
regression (SVM-log) performs best among the ML-based regression techniques,
thus we select SVM-log model to predict the performance for the target 32-core
hybrid memory systems. We conclude that the reported performance for the
proposed hybrid memory systems obtained from a scaled single-core simulation
(see Chapter 3) is conservative, that is, the actual improvement in performance
through RiskRelief compared to the baseline DRAM-Only system is higher
than what single-core scale model simulations suggest. The experimental re-
sults show that RiskRelief-Nursery (RR-N) improves performance of the hybrid
HBM-DRAM memory system by 62% rather than 20% over the DRAM-Only
memory system. RiskRelief-Mature (RR-M) improves the performance by 68%
instead of 29% compared to the DRAM-Only system.

We make the following contributions in this work:

• We apply scale-model architectural simulation that relies on scaled-down
variants of the target multicore system to the evaluation of reliability-
aware hybrid memory systems, which takes much less simulation time.

• We evaluate scale-model architectural simulation for emerging multipro-
grammed Java workloads and demonstrate the high prediction accuracy
of our proposed approach.

• Scale models enable us to use them to analyze the scalability behavior
of multiprogrammed Java workloads. We bring new insights into the
scaling behavior of multiprogrammed managed language workloads with
increasing number of cores.

5.2 Motivation and Opportunity

5.2.1 Multicore Simulation

The de facto standard in computer architecture research and development
is to pursue detailed cycle-level simulation. Unfortunately, detailed cycle-level
simulation does not scale with system complexity (i.e., increasing core counts).

5.2. MOTIVATION AND OPPORTUNITY 91

Raising the level of abstraction and parallel simulation are employed to speed
up multicore simulation, as exemplified by Sniper [36] and ZSim [156]. In spite
of these enhancements, simulation time is still problematic, especially when
simulating large multicore systems and running long-running workloads (e.g.,
managed language workloads), as reported in Figure 5.1. Note that simulation
speed is not limited by the number of cores and/or the available memory ca-
pacity in the simulation host: Sniper is a parallel simulator that significantly
benefits from the available number of cores in our 32-core simulation host.

More specifically, Sniper [36] uses the mechanistic interval-analysis core
model [65] to improve simulation speed by an order of magnitude. Reduced
simulation time with mechanistic models allows architects to explore and pro-
pose optimizations for managed languages that use a higher level of abstraction
than native C and C++ applications [2, 3, 4, 5, 7, 41, 151, 158, 163].

Sniper is a parallel simulator, which enables faster simulation of multipro-
grammed workloads. Internally, the simulator maintains per-core data struc-
tures, and each core advances its instruction stream independently of the other
cores. Periodically, the cores synchronize (barrier-synchronization interval) to
correctly advance global (simulated) time, and to synchronize access to shared
resources such as the last-level cache. Although the parallel nature of Sniper
allows fast simulation, as Figure 5.1 shows, synchronization inhibits perfect
scalability of simulation times for multiprogrammed Java workloads. Note fur-
ther that the simulator’s performance and scalability are also inhibited by lim-
itations in the host environment, such as the number of cores and the physical
memory.

5.2.2 Java Workload Simulation

Java exposes a higher level of abstraction to the programmer than the C lan-
guage. To facilitate faster development times and to provide platform indepen-
dence, a runtime environment, i.e., the Java Virtual Machine (JVM) provides
bytecode interpretation, just-in-time compilation, memory safety, and security.
These services run in their own context, and increase the overall execution time
of a Java program. For instance, garbage collection can cost up to 30% of the
total execution time [2, 33, 132]. Therefore, simulation times of Java programs
are high, partly due to the presence of a language runtime. Higher abstraction
object-oriented languages encourage copious object allocation [5, 194], which
stresses the memory sub-system, and consequently increases simulation times.
The single-programmed Java workloads we simulate execute up to 30 billion
instructions. Multiprogramming increases the simulation workload due to con-
tention for shared resources, which results in even higher simulation times.

As can be deduced from Figure 5.1, simulation times increase tremendously
beyond 4-core scale models. These high simulation times are partly because
the state-of-the-art Java simulation methodology is execution-driven, and the
methodology is to execute the entire Java application. Unlike C benchmarks,

92
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

no prior work has experimented with sampling-based approaches for Java ap-
plications, which further motivates our scale-model architectural simulation for
multiprogrammed Java workloads.

5.2.3 CPI Stacks

Ideally with a core-count-proportional multicore architecture, the increase
in total execution time (i.e., the last application to finish) when running multi-
ple instances of the same application should be negligible. However, contention
for shared resources such as the last-level cache, and the shared memory band-
width change the picture. To visualize the performance scaling bottlenecks in
multiprogramming workloads, we use cycles per instruction (CPI) stacks [57].
CPI stacks divide the total CPI into components. Each component represents
the impact of a certain event on total performance. The bottom component
is the base component which represents the instruction-level parallelism inher-
ent in the simulated program. The other components show the impact of stall
events such as cache misses at different levels of the hierarchy. The length of
a component is proportional to its impact on overall performance. All com-
ponents are stacked in the form of a stack with the base component typically
shown at the bottom. We use CPI stacks to analyze the scaling behavior of
multiprogrammed Java workloads, because they are an intuitive way to visu-
alize performance scaling bottlenecks and provide insights to the parameters
measured in the performance prediction.

5.3 Experimental Setup

5.3.1 Simulator and Java Virtual Machine

We use Sniper v6.0, a parallel and high-speed cycle-level x86 simulator for
multicore systems, using its most detailed cycle-level hardware-validated core
model [36]. Prior work extended Sniper for managed language runtimes, includ-
ing dynamic compilation and emulation of frequently-used system calls [158].

We use Jikes RVM 3.1.2 and best practices from prior work to evaluate Java
workloads [30]. We focus on steady-state performance and therefore use replay
compilation to eliminate non-determinism due to the VM’s dynamic optimizing
compiler. See Chapter 3 for more specifics.

5.3.2 Simulated Processor Architectures

The processor architecture that we evaluate in this chapter is consistent
with that in Chapter 3. Specifically, we simulate processors with up to 32 cores
in this work, see Table 5.1 for the processor’s key architecture parameters. We
simulate out-of-order cores with a 3-level cache hierarchy. We evaluate three

5.3. EXPERIMENTAL SETUP 93

Processor

Number of cores 32 cores
Core frequency 4.0 GHz
Issue width 4-wide
ROB size 128 entries
Branch predictor hybrid local/global predictor
Max. outstanding 48 loads, 32 stores, 10 L1-D misses

Cache Hierarchy

L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
LLC shared 32 MB, 64 way, 30 cycle

NUCA, 32 slices, 1MB/slice, 1 slice/core

NoC

Mesh topology 4×8
Bandwidth 128 GB/s bisection bandwidth

HBM

Capacity 2 GB for hybrid, 32 GB for HBM-only
Bandwidth 128 GB/s aggregate bandwidth
ECC SEC-DED ECC [76]
tCAS-tRCD-tRP-tRAS 45-45-45-180 CPU cycles

DRAM

Capacity 32 GB
Bandwidth 25.6 GB/s aggregate bandwidth
ECC single-ChipKill ECC [49]
tCAS-tRCD-tRP-tRAS 45-45-45-180 CPU cycles

Table 5.1: Target system parameters.

memory systems: DRAM-Only, HBM-Only (both with 32 GB of main memory)
and a hybrid HBM-DRAM system with 2 GB HBM and 32 GB DRAM, see
also Table 5.1. We consider two proposed garbage collectors to manage the
hybrid memory systems: RiskRelief-Nursery (RR-N) and RiskRelief-Mature
(RR-M), which can be recalled in Chapter 3. We further assume a shared
32 MB NUCA cache, a 128GB/s bisection bandwidth mesh NoC, 25.6 GB/s
DRAM bandwidth and 128 GB/s HBM bandwidth. We assume SEC-DED
ECC for HBM because of its lower complexity and power consumption; we
use single-ChipKill ECC for DRAM to be in line with production systems. As
previously discussed, we scale the number of cores, the size of the LLC and
memory bandwidth proportionally as we construct scale models of the target
multicore processor.

5.3.3 Workloads

We use the same Java workloads for the evaluation in this chapter with that
in Chapter 3. Specifically, we use 9 applications from the DaCapo suite [29]
that work with our simulation and VM infrastructure. We use four benchmarks

94
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

from the DaCapo-9.12-bach benchmark suite (sunflow, lusearch, pmd and xalan).
We use an updated version of lusearch, called lu.Fix [189], that eliminates useless
allocation, and an updated version of pmd, called pmd.S [52], that eliminates
a scaling bottleneck due to a large input file. We use three benchmarks from
DaCapo 2006: fop, antlr and bloat. As in established methodology, we use 2×
the minimum heap size for our benchmarks, and we use the default inputs for
measurements.

In addition to the workloads, the evaluation methodology for Java workloads
is also consistent with that in Chapter 3. We create multiprogram workloads
with up to 32 application instances. Each workload runs multiple instances of
the same application, i.e., a so-called rate workload. We synchronize the start
of execution of the different instances in the workload using a barrier. We do
not restart instances after they finish execution. We use the average execution
time of the various instances as a measure for per-application performance.
Prediction error is computed as the absolute relative difference between the
predicted execution time versus the measured execution time.

5.3.4 Scale-Model Simulation

Scale-model architectural simulation involves two key phases: scale-model
construction and scale-model extrapolation. For scale-model construction, we
keep consistent with the methodology introduced in Chapter 4. For scale-model
extrapolation, we adopt the Machine Learning (ML) based regression model.
The ML-based prediction model requires simulation results for the target sys-
tem during the training phase while it is prohibitive to simulate 32-core perfor-
mance for the Java workloads on the proposed hybrid memory system due to
infrastructure limitations. The ML-based regression model, however, does not
have requirements to the simulations for the target system and the simulation
results of the target system can be predicted by the regression models.

To select the most accurate ML-based regression models to predict per-
formance for the target 32-core memory system, we need to first predict per-
formance for a small-scale target system to compare the prediction accuracy
among all evaluated models. We evaluate the prediction accuracy for an 8-core
scaled system to facilitate the selection of prediction models. The reason of
evaluating 8-core systems rather than 16-core systems is that there are simu-
lation limitations on the 16-core system for pmd and pmd.S. We also miss the
16-core simulation results for pmd and pmd.S in the figures shown in Section 5.4
for the same reason.

5.4 Evaluation

We now evaluate scale-model simulation for multiprogrammed managed
language workloads. We first focus on the CPI stacks to explore the reasons

5.4. EVALUATION 95

for the increase in execution time with increasing core counts, which can help to
provide insights into the selection of measured characteristics for the prediction
model. Then we evaluate the prediction accuracy of the ML-based regression
model for a small-scale (8-core) target system, which can help to select the most
accurate prediction models to predict performance for a larger target (32-core)
system. Finally, we predict the performance for the target system and compare
the predicted performance with the simulation results in Chapter 3.

5.4.1 CPI Stacks

Accurate estimation requires identifying the reasons for the increase in exe-
cution time. As shown in Figure 5.2, we identify three components in the CPI
stack that are the reasons for the increase in execution time: (1) increase in
instruction fetch latency, (2) increase in execution time due to contention in
the last-level cache, and (3) increase in DRAM access latency. Since the core
microarchitecture of the scale model is similar to the target multicore, there
is no change in the base component, and components that pertain a full issue
queue etc. Next, we discuss in detail the three components of the CPI stack,
which are responsible for the increase in execution time of a multiprogrammed
Java workload.

Java applications demand high instruction fetch throughput [129]. This
is because object-oriented program design encourages modularity, and thus
results in programs with a large number of methods. Jumping between methods
leads to high instruction cache miss rates. Multiprogramming increases the
probability of off-chip DRAM accesses to fetch instructions. Since DRAM
latency is an order of magnitude longer than the access latency to the last-level
cache, the instruction fetch component of the CPI stack increases as we add
more instances to the Java workload.

The scale model methodology proportionally increases the shared last-level
cache size. Nevertheless, sharing in the last-level cache leads to contention,
which means more cache lines need to be fetched from DRAM, increasing the
overall execution time. For our chosen Java applications, the contribution of the
L3 cache latency to the CPI is not significant. However, for several applications
such as Sunflow and Lu.fix, we still observe an increase in the L3 cache latency.

The third component that changes with more cores is DRAM access latency.
We model DRAM access latency as the sum of: (1) the data transfer latency
which depends on the transfer medium, (2) the access time which depends on
whether the memory request is resolved in the row buffer or the memory ar-
ray, and (3) the queuing delay which depends on memory bandwidth. Memory
bandwidth is dictated by pin count, power and packaging constraints. There-
fore, if the cores generate more requests than the memory system can sustain,
the requests queue in the memory controller. The data transfer latency in
our model is fixed; the access time is distinguished by row buffer hit or miss;
whereas the queuing delay varies on a per-request basis. Generally, the queuing

96
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

0
0.

51
1.

52
2.

53

1
2

4
81

6
1

2
4

81
6

1
2

4
81

6
1

2
4

81
6

1
2

4
81

6
1

2
4

81
6

1
2

4
81

6
1

2
4

81
6

1
2

4
81

6
1

2
4

81
6

Fo
p

Bl
oa

t
An

tlr
Su

nf
lo

w
Lu

.fi
x

Lu
se

ar
ch

Pm
d.

S
Xa

la
n

Pm
d

Av
g

Exec. time norm. to 1-core

m
em

-d
ra

m

m
em

-l3

m
em

-l2

m
em

-l1
d

ife
tc

h

se
ria

l

rs
_f

ul
l

ba
se

F
ig
u
re

5.
2:

T
h
e
C
P
I
st
ac
k
s
fo
r
m
u
lt
i-
co
re

sy
st
em

s
n
or
m
al
iz
ed

to
a
si
n
gl
e-
co
re

sy
st
em

.
T
h
e
in
st
ru
ct
io
n
fe
tc
h
la
te
n
cy

a
n
d
D
R
A
M

a
cc
es
s
la
te
n
cy

h
a
ve

a
la
rg
e
co
n
tr
ib
u
ti
o
n
to

C
P
I
a
n
d
ke
ep

in
cr
ea
si
n
g
w
it
h
sy
st
em

sc
a
li
n
g.

T
h
e
a
cc
es
s
la
te
n
cy

to
la
st
-l
ev
el

ca
ch
e

(L
L
C
)
a
ls
o
h
a
s
a
si
gn

ifi
ca
n
t
in
cr
ea
se

w
it
h
in
cr
ea
se
d
co
re

co
u
n
ts

bu
t
it
o
n
ly

ta
ke
s
1
%

o
f
th
e
to
ta
l
ex
ec
u
ti
o
n
ti
m
e
o
n
a
ve
ra
ge
.

5.4. EVALUATION 97

0%

10%

20%

30%

40%

50%

Pr
ed

ict
io

n
er

ro
r

DT-log RF-log SVM-log

Figure 5.3: Prediction error for the 8-core system using ML-based regression
models. SVM with logarithmic regression (SVM-log) yields the highest
prediction accuracy with an average prediction error of 13.0% and at most
35.8%.

delay increases by 2× on average from a 1-core scale model to a 4-core scale
model of a 32-core multicore processor.

5.4.2 Model Selection

Recall that we proposed two ML-based extrapolation models in Chapter 4:
the ML-based prediction and the ML-based regression. The training phase of
ML-based prediction requires simulation results for the target system. How-
ever, running multiprogrammed Java workloads on a 32-core target system
is extremely time-consuming and impossible for some benchmarks due to the
simulator infrastructure issues. On the other hand, ML-based regression needs
no simulation runs of the target system and the performance of target sys-
tem can be predicted by the regression phase. Therefore, ML-based regression
is suitable for predicting the performance of a 32-core system that executes
multiprogrammed Java workloads.

We consider three machine learning models: Decision Tree (DT), Random
Forest (RF) and Support Vector Machines (SVM) during the prediction phase
and we use logarithmic regression for the regression phase. Considering that the
loss of 32-core simulation results makes it impossible to compare the prediction
accuracy of the aforementioned techniques, we need prediction accuracy for a
small-core system to determine which model is the most accurate to predict
performance for the 32-core target system.

Figure 5.3 reports the prediction error for an 8-core system using the afore-
mentioned ML-based regression techniques. SVM is the most accurate ML-
based regression model with an average error of 13.0% and a maximum error

98
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

0

0. 2

0. 4

0. 6

0. 8

1

Fop B loat A ntlr Su nflow L u . fix L u search Pmd. S X alan Pmd A vg

Ex
ec

. t
im

e
no

rm
. t

o
DR

AM
-o

nl
y

1-core DRA M 1-core RR-N 1-core RR-M 1-core H B M
32-core DRA M 32-core RR-N 32-core RR-M 32-core H B M

Figure 5.4: Scaled and predicted 32-core execution time normalized to
DRAM-Only for the RiskRelief collectors and HBM-Only. The 1-core
performance results are obtained from a single-core system with all shared
resources scaled down proportionally. The 32-core performance results are
predicted using small-core simulation results and the SVM-log regression
model.

of 35.8% for Lusearch. RF produces an absolute prediction error of 16.5% on
average and up to 39.4%. DT is the least accurate model of the three models
with an average error of 18.0% and a maximum error of 38.8%. The general
conclusion is consistent with what we obtained in Chapter 4 — namely, SVM
with logarithmic regression (SVM-log) yields the highest accuracy among the
ML-based regression techniques. Unless otherwise stated, we report the pre-
dicted performance for the 32-core target systems using the SVM-log technique
in the remaining parts of this chapter.

5.4.3 Performance

We report the performance results for the scaled single-core system and the
target 32-core system in Figure 5.4, normalized to their corresponding DRAM-
Only systems. The 1-core performance results are collected from the simulation
of single-core scale models without extrapolation, where the shared resources,
the last-level cache (LLC), interconnection network and memory bandwidth in
particular, are reduced proportionally. These numbers are also consistent with
those shown in Figure 3.10 in Chapter 3 and we use them as a comparison with
the following 32-core performance results. The 32-core performance results are
firstly predicted using the SVM-log regression model, and then the performance
numbers for the RiskRelief collectors and the HBM-Only system are normalized
to the DRAM-Only system.

Given a 32-core target system with an HBM-Only memory, execution time
collected from a single-core scale model reduces by 34% and up to 48% (Luse-
arch) compared to a DRAM-only memory. As a comparison, execution time
predicted for the target system – predicted using single-core simulation results
and ML-based regression techniques – is reduced by a significant margin com-

5.4. EVALUATION 99

0

0.
2

0.
4

0.
6

0.
81

Fo
p

Bl
oa

t
An

tlr
Su

nf
lo

w
Lu

.fi
x

Lu
se

ar
ch

Pm
d.

S
Xa

la
n

Pm
d

Av
g

Exec. time norm. to DRAM-only

1-
co

re
 R

R-
N

1-
co

re
 R

R-
M

1-
co

re
 H

BM
2-

co
re

 R
R-

N
2-

co
re

 R
R-

M
2-

co
re

 H
BM

4-
co

re
 R

R-
N

4-
co

re
 R

R-
M

4-
co

re
 H

BM
8-

co
re

 R
R-

N
8-

co
re

 R
R-

M
8-

co
re

 H
BM

16
-c

or
e

RR
-N

16
-c

or
e

RR
-M

16
-c

or
e

HB
M

16
-c

or
e

RR
-N

16
-c

or
e

RR
-M

16
-c

or
e

HB
M

32
-c

or
e

RR
-N

32
-c

or
e

RR
-M

32
-c

or
e

HB
M

F
ig
u
re

5.
5:

E
x
ec
u
ti
on

ti
m
es

fo
r
th
e
32
-c
or
e
ta
rg
et

sy
st
em

co
ll
ec
te
d
th
ro
u
gh

sc
al
ed
-d
ow

n
si
m
u
la
ti
on

s
w
it
h
ou

t
ex
tr
a
p
o
la
ti
o
n

(t
h
e
fi
rs
t
5
se
ts

of
b
ar
s)

an
d
p
re
d
ic
te
d
u
si
n
g
M
ac
h
in
e
L
ea
rn
in
g
b
as
ed

re
gr
es
si
on

te
ch
n
iq
u
es

(t
h
e
la
st

2
se
ts

o
f
b
a
rs
):

R
is
k
R
el
ie
f-
N
u
rs
er
y,

R
is
k
R
el
ie
f-
M
a
tu
re

an
d
H
B
M
-O

n
ly

n
or
m
al
iz
ed

to
D
R
A
M
-O

n
ly
.
T
h
e
pe
rf
o
rm

a
n
ce

be
n
efi

ts
fr
o
m

R
is
kR

el
ie
f

co
ll
ec
to
rs

a
n
d
H
B
M
-O

n
ly

in
cr
ea
se

w
it
h
la
rg
er

co
re

si
m
u
la
ti
o
n
s
o
ve
r
D
R
A
M
-O

n
ly
,
a
n
d
th
e
p
re
d
ic
te
d
ta
rg
et

pe
rf
o
rm

a
n
ce

co
n
fi
rm

s
th
is

pe
rf
o
rm

a
n
ce

be
n
efi

t
te
n
d
en

cy
.

100
CHAPTER 5. ARCHITECTURAL SIMULATION OF

RELIABILITY-AWARE MEMORY SYSTEMS

pared to a DRAM-only memory, with an average of 72% and at most 77%. The
reason for a larger performance gap with ML-based regression models compared
to the single-core system is that the single-core simulations assume shared re-
source contention observed in the single-core model is the same as in the target
system. The contention, in reality, is supposed to be more intense and therefore
puts more pressure to the memory system than assumed. Consequently, the
performance benefits obtained from HBM are expected to be much more than
we observed in Chapter 3. In other words, HBM-only can improve performance
by 72% instead of 34% compared to DRAM-only.

For the RiskRelief-Nursery (RR-N) collector, the average execution time
reduces by 20% for a single-core system and by 62% for the 32-core target
system compared to a DRAM-Only system. To further benefit from the HBM
bandwidth, RiskRelief-Mature (RR-M) reduces the execution time on average
by an additional 9% for a single-core system and 6% for the 32-core system
over RR-N by partitioning mature space and large object space into DRAM
and HBM regions. The percentage numbers are 29% and 68% on average
compared to a DRAM-Only system, respectively. Across all results reported in
Figure 5.4, we confirm that the performance tendency of a 32-core target system
is consistent with what we concluded in Chapter 3 — performance results for a
scaled single-core system are conservative and the actual performance benefits
from RiskRelief collectors for a 32-core target system are higher than what the
single-core simulations in Chapter 3 suggested.

5.4.4 Large Target System Prediction

For target systems that cannot be simulated (the reliability-aware 32-core
memory systems in our case), the evaluation statistics like performance can
be either collected by small-core scale-model architectural simulation with no
extrapolation, or predicted by Machine Learning (ML) based regression tech-
niques.

Figure 5.5 reports the execution time for four 32-core target systems (i.e.,
DRAM-Only, HBM-Only, RiskRelief-Nursery and RiskRelief-Mature) using the
aforementioned methodologies normalized to a DRAM-Only system. Small-
core simulations with no extrapolation are constructed with a small-scale core
count ranging from a single core up to 16 cores with shared resources scaled
down proportionally. The proposed reliability-aware techniques, RR-N and
RR-M, yield higher performance benefits compared to a DRAM-Only system
at higher core counts because resource contention is better simulated and then
benefits more from HBM bandwidth with more cores. Grouped bars on the
right for each benchmark in Figure 5.5 report the execution time for 16-core
and 32-core systems predicted using ML-based regression models — SVM-
log, specifically. The predicted 16-core performance results for the RiskRelief
collectors and the HBM-Only system compared to the DRAM-Only system
represent conservative benefits compared to the simulation performance for the

5.5. CONCLUSION 101

16-core simulations. The 32-core predictions demonstrate higher performance
improvements than the 16-core predictions.

All together, small-core scale-model simulation is an effective alternative
option to a large-scale system where the simulation is time-consuming or even
impossible to launch. The performance tendency of scale models is consistent
with the real target system but with some conservative numbers. ML-based re-
gression techniques can improve the prediction accuracy of performance for the
target system and bring the predicted performance results closer to the simu-
lated results obtained from an actual target system. Scale-model architectural
simulation with Machine Learning based regression techniques opens up a new
avenue to explore and evaluate promising techniques on a future large-scale
system where the simulation is time-consuming or technically prohibitive.

5.5 Conclusion

In this chapter, we apply scale-model simulation, a novel methodology that
combines architectural simulation of scale models with machine learning based
extrapolation techniques, to evaluate the proposed reliability-aware garbage
collection implemented on a large-scale hybrid memory system with multipro-
grammed managed language workloads executing on it. The experimental re-
sults present the effectiveness of ML-based regression techniques in predicting
the performance of a 32-core target hybrid memory system that is impossible
to simulate due to limitations of the simulator infrastructure. We verify that
previous simulation results collected from single-core models reported in Chap-
ter 3 are indeed representative and conservative results for the real 32-core
target system. The improvement in performance benefiting from RiskRelief
garbage collectors is suggested to be higher than what is reported in Chap-
ter 3. We find that placing the nursery space in the HBM partition (RR-N)
yields a performance benefit of 20% on average based on the single-core simula-
tions and the improvement number is 62% for the 32-core target system using
SVM-based logarithmic regression compared to DRAM-only. RR-M further
improves average performance by 9% over RR-N and by 29% over DRAM-only
shown from the single-core results and it achieves at 6% over RR-N and 68%
over DRAM-only for the target system.

Chapter 6

Conclusion and Future

Work

We pass through the present with
our eyes blindfolded. We are per-
mitted merely to sense and guess at
what we are actually experiencing.
Only later when the cloth is untied
can we glance at the past and find
out what we have experienced and
what meaning it has.

– Milan Kundera

This chapter concludes the key contributions drawn from this dissertation
and provides several potential avenues for future work.

6.1 Summary

Conventional DRAM memory is experiencing severe scaling challenges de-
rived from emerging applications and memory trends. On the application side,
emerging workloads deliver increasing requirements for memory bandwidth and
capacity. Big data analytics, for example, use advanced analytic techniques to
uncover information from large data sets, requiring efficient manipulation of
large amounts of data. On the main memory side, manufacturing complexity
has encouraged hybrid memories that combine HBM and DRAM to deliver
high bandwidth and large capacity. However, the soft error reliability, espe-
cially for HBM, is becoming a concern without proper management while it
attracts limited attention. In this thesis, we propose reliability-aware memory
management for hybrid HBM-DRAM memories to minimize the soft error rate

103

104 CHAPTER 6. CONCLUSION AND FUTURE WORK

while maximizing the overall performance. The key design is to predict hot and
low-risk objects which are then placed in the HBM space to improve system
reliability and performance.

System simulation is an enduring problem and computer architects have
made unremitting efforts to improve prediction accuracy and reduce time over-
head. Unexpectedly but reasonably, simulation challenges hit our research on
reliability-aware memory management when we evaluate the proposed tech-
niques on the hybrid memory. Specifically, simulation is excessively time-
consuming for a large-scale system, and the infrastructure limitation makes
things worse – it is even impossible to simulate the target system with some
unsolvable constraints such as insufficient computing and memory capacity.
We solve the aforementioned problems by introducing scale models into the
architectural simulation of large-scale future systems. Scale-model simulation
combines architectural simulation with machine learning techniques to predict
performance for large-scale systems, achieving high prediction accuracy with
limited simulation time overhead.

Allocation-Site Prediction for Object Hotness and Risk. Exploring the
performance and reliability trade-offs for the memory system depends on the
profiling of memory data. The proposed hybrid HBM-DRAM memory system
is automatically managed by garbage collection at an object-level granularity.
We propose the notion of hotness and risk as the performance and reliability
metrics of an object. The profiling reveals a relatively weak correlation be-
tween object hotness and risk, thus both metrics need to be considered for
object classification and prediction. We further propose a profiling framework
to measure object hotness and risk on a per allocation-site basis. It turns out
that hotness and risk present high homogeneity across objects allocated from
the same allocation site. Therefore, we conclude that allocation site is an ac-
curate predictor to predict whether objects are hot and low-risk for placement
in the HBM memory.

Reliability-Aware Garbage Collection for Hybrid Memories. Garbage
collection relieves the programmer from the burden of manually managing
memory. In this thesis, we explore garbage collection to balance reliability
and performance for a hybrid HBM-DRAM memory system. We propose two
reliability-aware garbage collectors to predict and allocate hot and low-risk ob-
jects in HBM. Both RiskRelief-Nursery (RR-N) and RiskRelief-Mature (RR-M)
place the nursery space for young objects in HBM because the nursery is highly
accessed and low-risk. RR-M further places hot and low-risk mature objects
in HBM using allocation-site prediction. RR-N achieves an averaged 20% per-
formance benefit compared to a DRAM-only system through placing nursery
objects in HBM, and the overall soft error rate is reduced by 18x compared to
a HBM-only system through keeping the remaining objects in DRAM. RR-M
obtains an additional 9% performance benefit over RR-N and reduces SER by
9x over HBM-only with the hot and low-risk mature objects also placed in
HBM. Both RR-N and RR-M eliminate page migration overheads, substan-

6.2. FUTURE WORK 105

tially improving performance compared to the state-of-the-art OS approach for
reliability-aware data placement.

Scale-Model Architectural Simulation for Native Language Work-
loads. We propose scale-model architectural simulation to predict performance
for the larger-scale future system. One key insight behind this proposal is that
it is critical to proportionally scale the shared resources when constructing
scale models. Leveraging machine learning techniques to construct extrapo-
lation models further improves the prediction accuracy of scale-model simula-
tion. We construct two ML-based extrapolations called ML-based regression
and ML-based prediction, respectively. The evaluation on SPEC CPU work-
loads presents that scale-model simulation leads to a 28× simulation speedup
compared to simulating a 32-core target system. In addition to the substan-
tial simulation speedup, scale-model simulation is also effective and accurate.
ML-based regression achieves an average prediction error of 8% for homoge-
neous multiprogrammed workload mixes and 15.8% for heterogeneous workload
mixes. ML-based prediction is slightly more accurate compared to ML-based
regression, with an average prediction error of 6.4%, as it involves target-system
simulations during the training phase.

Scale-Model Simulation for Managed Language Workloads. The ini-
tial motivation of scale-model simulation is the simulation challenges that we
encountered when evaluating the proposed garbage collection on a hybrid mem-
ory system. More specifically, it is very time-consuming and often prohibitive
for multiprogrammed managed language workloads to be executed on a 32-core
hybrid memory system due to simulator infrastructure constraints. We tackle
this simulation problem by constructing scale-model simulation for the target
hybrid memory to relieve host limitations and reduce simulation time overhead.
The experimental results illustrate the feasibility of predicting performance for
a designed system that cannot be simulated. Moreover, we conclude that the
evaluation results obtained from a proportional scale model without ML-based
regression were conservative. When extrapolating to the 32-core system, a hy-
brid memory system with RR-N and RR-M memory management are expected
to improve performance by 62% (instead of 20%) and 68% (instead of 29%)
over conventional memory, respectively.

6.2 Future Work

In this section, we discuss several promising directions for future work,
mainly focusing on the improvements of reliability-aware garbage collection,
the application of reliability-related optimizations to a heterogeneous system,
and the extensions for scale-model simulation.

Reliability-Aware Garbage Collection. We propose two reliability-aware
garbage collectors that exploit allocation-site prediction to place hot and low-
risk objects in HBM and the rest in DRAM. These garbage collectors rely

106 CHAPTER 6. CONCLUSION AND FUTURE WORK

on an offline profiling framework to measure object hotness and risk on a per
allocation-site basis. Offline profiling efficiently guides data placement while
unseen allocation site might exist during the profiling. Specifically, an allo-
cation site may not be executed in the profile run while it is executed in a
production run. Our current solution is to place objects allocated from un-
profiled allocation sites in DRAM by default to minimize the soft error rate.
Future work could be conducted from two aspects: (1) exploring the distribu-
tion of unprofiled allocation sites; and/or (2) dynamically profiling allocation
sites. The former direction focuses on the homogeneity analysis of unprofiled
allocation sites. There would be a performance loss by simply placing ob-
jects from unprofiled allocation sites in DRAM if these sites were proven to
be heterogeneous, especially when a considerable number of them are hot and
low-risk. For the second potential, it could be feasible by dividing the execution
of the application into a sampling phase and a normal execution. The garbage
collector monitors reads and writes to the objects during the sampling phase
and the sampling information is stored in the object headers by the compiler.
During the normal execution, the collector places hot and low-risk objects in
HBM and the rest in DRAM according to the sampling information.

Profiling work requires one to record the number of reads and writes for
each object. We adopt dynamic binary instrumentation to profile per-object
access frequency using Pin [113]. The drawback of Pin is that it does not have
a notion of an object’s boundary in memory. Therefore, we need to aggregate
memory access logs from Jikes RVM and Pin, then create the access trace which
contains all objects allocated from a certain allocation site and the total number
of accesses to each object on a per allocation-site basis. One promising alterna-
tive is to employ read and write barriers in the managed runtime. Generational
garbage collectors use reference write barriers for correctness [177, 190]. Write
barriers record all mature-to-nursery pointers in a remembered set, which are
processed during a minor collection to precisely identify all live nursery sur-
vivors. Primitive write barriers are a straightforward extension of reference
write barriers. Prior work shows that the overhead of write barriers is low,
ranging from less than 1% to 3% on modern hardware [190]. On the other
hand, read barriers are limited to be used in existing garbage collectors due to
their huge overhead [102]. Jikes RVM, the Java virtual machine that we used
in this thesis, provides both primitive and reference write barriers [15] while
lacking the implementation of read barriers.

Reliability Improvements for Heterogeneous Systems. Heterogeneous
multicores [101, 102] are widely explored and optimized these days for differ-
ent targets including high performance, low power consumption, etc. Preva-
lent designs involve multiple core types such as high-performance (big) cores
and energy-efficient (small) cores to allow flexibility in the power-performance
trade-off of a processor. Other work, on the other hand, pays attention to
the trade-off between performance and reliability for a heterogeneous system.
For example, prior work [131] observed that applications exhibit different soft
error reliability characteristics on big cores and small cores, and proposed a

6.2. FUTURE WORK 107

reliability-aware scheduler to dynamically schedule applications on different
cores to improve the overall system reliability.

In this thesis we propose reliability-aware garbage collection to improve
performance and reliability on heterogeneous memories. One avenue for future
work is to employ reliability-aware garbage collectors in a system where both
processors and memory are heterogeneous. We could propose a novel reliability-
aware scheduling policy to improve the overall system reliability while achiev-
ing high performance. On the application side, we evaluate reliability-aware
garbage collection using Java applications from the DaCapo benchmark suite.
Emerging big-data platforms such as Apache Spark are also implemented by
managed programming languages, which can be further scheduled and evalu-
ated on a heterogeneous system using the proposed methodology.

Scale-Model Simulation. We proposed scale-model architectural simula-
tion to predict performance for future large-scale systems. The evaluations
are performed using both homogeneous and heterogeneous multiprogrammed
workload mixes generated from SPEC CPU workloads. We also simulate a
large-scale system with hybrid memory using multiprogrammed Java work-
loads. This novel simulation methodology provides a range of opportunities for
future work. On the application side, we could extend scale-model simulation
for multithreaded applications. Challenges focus on quantifying the effects of
more interference factors, such as inter-thread communication and synchroniza-
tion overhead, on the simulation model construction. On the architecture side,
future work could extend scale-model simulation to other architectures includ-
ing throughput processors such as GPUs. On the commercial field, scale-model
simulation could help to make procurement and purchasing decisions as it is
feasible for scale-model simulation to predict performance for next-generation
processors and systems.

Bibliography

[1] S. Akram, J. B. Sartor, and L. Eeckhout. DVFS performance prediction
for managed multithreaded applications. In Proceedings of IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 12–23, 2016.

[2] S. Akram, J. B. Sartor, K. V. Craeynest, W. Heirman, and L. Eeckhout.
Boosting the priority of garbage: Scheduling collection on heterogeneous
multicore processors. ACM Transactions on Architecture and Code Op-
timization (TACO), 13(1):1–25, 2016.

[3] S. Akram, J. B. Sartor, and L. Eeckhout. DEP+BURST: Online DVFS
performance prediction for energy-efficient managed language execution.
IEEE Transactions on Computers (TC), 66(4):601–615, 2017.

[4] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout. Managing
hybrid memories by predicting object write intensity. In Proceedings of
the International Conference on the Art, Science, and Engineering of
Programming (Programming’18), pages 75–80, 2018.

[5] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout. Write-rationing
garbage collection for hybrid memories. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), page 62–77, 2018.

[6] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout. Emulating
and evaluating hybrid memory for managed languages on NUMA hard-
ware. In Proceedings of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 93–105, 2019.

[7] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout. Crystal
Gazer: Profile-driven write-rationing garbage collection for hybrid memo-
ries. Proceedings of the ACM on Measurement and Analysis of Computing
Systems (SIGMETRICS), 3(1):1–27, 2019.

[8] A. R. Alameldeen, M. M. Martin, C. J. Mauer, K. E. Moore, M. Xu,
M. D. Hill, D. A. Wood, and D. J. Sorin. Simulating a $2 M commercial
server on a $2 K PC. Computer, 36(2):50–57, 2003.

109

110 CHAPTER 6. BIBLIOGRAPHY

[9] D. Alexandrescu, E. Costenaro, and M. Nicolaidis. A practical approach
to single event transients analysis for highly complex designs. In Proceed-
ings of IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), pages 155–163, 2011.

[10] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño virtual machine. IBM Systems Journal, 39(1):
211–238, 2000.

[11] B. Alpern, S. Augart, S. M. Blackburn, M. A. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. J. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. A. Ngo, V. Sarkar, and M. Trapp. The
Jikes RVM Project: Building an open source research community. IBM
System Journal, 44(2):399–418, 2005.

[12] Amazon Web Services, Inc. AWS Lambda. https://aws.amazon.com/

lambda/.

[13] AMD. High bandwidth memory. https://www.amd.com/en/

technologies/hbm.

[14] AMD. BIOS and kernel developers guide for AMD NPT family 0Fh
processors. Technical report, AMD, 2007. URL https://www.amd.com/

system/files/TechDocs/32559.pdf.

[15] A. W. Appel. Simple generational garbage collection and fast allocation.
Software: Practice and experience, 19(2):171–183, 1989.

[16] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu. Cross-
architecture performance prediction (XAPP) using CPU code to predict
GPU performance. In Proceedings of the 48th International Symposium
on Microarchitecture (MICRO), pages 725–737, 2015.

[17] E. K. Ardestani and J. Renau. ESESC: A fast multicore simulator us-
ing time-based sampling. In Proceedings of the 19th IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
448–459, 2013.

[18] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for
computer system modeling. Computer, 35(2):59–67, 2002.

[19] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh. Avoiding
TLB shootdowns through self-invalidating TLB entries. In Proceedings
of the 26th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 273–287, 2017.

111

[20] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-
performance tradeoffs in processor architecture and circuit design: a
marginal cost analysis. ACM SIGARCH Computer Architecture News,
38(3):26–36, 2010.

[21] I. Baldini, S. J. Fink, and E. Altman. Predicting GPU performance
from CPU runs using machine learning. In Proceedings of International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pages 254–261, 2014.

[22] R. A. Bheda, J. A. Poovey, J. G. Beu, and T. M. Conte. Energy efficient
phase change memory based main memory for future high performance
systems. In Proceedings of International Green Computing Conference
and Workshops (IGCC), pages 1–8, 2011.

[23] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5
simulator. ACM SIGARCH computer architecture news, 39(2):1–7, 2011.

[24] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee. Computing accurate
AVFs using ACE analysis on performance models: A rebuttal. IEEE
Computer Architecture Letters (CAL), 7(1):21–24, 2008.

[25] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang,
G. H. Loh1, D. McCauley, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb. Die stacking (3D) microar-
chitecture. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 469–479, 2006.

[26] S. M. Blackburn and K. S. McKinley. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance.
In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 22–32, 2008.

[27] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 137–
146, 2004.

[28] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. In Proceedings of the
Joint International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS), pages 25–36, 2004.

[29] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The Da-
Capo benchmarks: Java benchmarking development and analysis. In Pro-
ceedings of the Annual ACM SIGPLAN Conference on Object-oriented

112 CHAPTER 6. BIBLIOGRAPHY

Programming Systems, Languages, and Applications (OOPSLA), pages
169–190, 2006.

[30] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovik, T. VanDrunen, D. von Dincklage, and B. Wiedermann. Wake
up and smell the coffee: Evaluation methodology for the 21st century.
Communications of the ACM, 51(8):83–89, 2008.

[31] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
ACM SIGARCH computer architecture news, 25(3):13–25, 1997.

[32] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy. Overview of candidate device technologies for storage-class
memory. IBM Journal of Research and Development, 52(4.5):449–464,
2008.

[33] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin and
yang of power and performance for asymmetric hardware and managed
software. In Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA), pages 225–236, 2012.

[34] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), pages 1–12, 2011.

[35] T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of
multi-threaded applications. In Proceedings of International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 2–12,
2013.

[36] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An
evaluation of high-level mechanistic core models. ACM Transactions on
Architecture and Code Optimization (TACO), 11(3):1–25, 2014.

[37] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. Barri-
erpoint: Sampled simulation of multi-threaded applications. In Proceed-
ings of International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 2–12, 2014.

[38] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang,
R. Illikkal, and R. Iyer. Leveraging heterogeneity in dram main memories
to accelerate critical word access. In Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 13–24, 2012.

[39] Y. Cheng, A. Ma, and M. Zhang. Accurate and simplified prediction
of l2 cache vulnerability for cost-efficient soft error protection. IEICE
transactions on Information and Systems, 95(1):56–66, 2012.

113

[40] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. John-
son, J. Keefe, and H. Angepat. FPGA-accelerated simulation technolo-
gies (FAST): Fast, full-system, cycle-accurate simulators. In Proceedings
of the 40th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 249–261, 2007.

[41] J. Choi, T. Shull, M. J. Garzaran, and J. Torrellas. Shortcut: Architec-
tural support for fast object access in scripting languages. In Proceedings
of the 44th Annual International Symposium on Computer Architecture
(ISCA), pages 494–506, 2017.

[42] C. Chou, A. Jaleel, and M. K. Qureshi. CAMEO: A two-level memory
organization with capacity of main memory and flexibility of hardware-
managed cache. In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 1–12, 2014.

[43] C. Chou, A. Jaleel, and M. K. Qureshi. BEAR: Techniques for miti-
gating bandwidth bloat in gigascale DRAM caches. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture
(ISCA), page 198–210, 2015.

[44] C. Chou, A. Jaleel, and M. Qureshi. BATMAN: Techniques for maxi-
mizing system bandwidth of memory systems with stacked-DRAM. In
Proceedings of the International Symposium on Memory Systems (MEM-
SYS), pages 268–280, 2017.

[45] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-Chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and
GPGPUs? In Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 225–236, 2010.

[46] B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for
execution profiling. In Proceedings of ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS),
page 128–137, 1994.

[47] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. In Proceedings of
International Conference on Computer Design. VLSI in Computers and
Processors, pages 468–477, 1996.

[48] S. De Pestel, S. Van den Steen, S. Akram, and L. Eeckhout. RPPM:
Rapid performance prediction of multithreaded workloads on multicore
processors. In Proceedings of International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 257–267, 2019.

[49] T. J. Dell. A white paper on the benefits of chipkill-correct ECC for PC
server main memory. IBM Microelectronics division, 11(1-23):5–7, 1997.

114 CHAPTER 6. BIBLIOGRAPHY

[50] Y. Demchenko, C. de Laat, and P. Membrey. Defining architecture com-
ponents of the big data ecosystem. In Proceedings of International Con-
ference on Collaboration Technologies and Systems (CTS), pages 104–
112, 2014.

[51] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple but
effective heterogeneous main memory with on-chip memory controller
support. In Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
SC, pages 1–11, 2010.

[52] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle graphs:
Visualizing scalability bottlenecks in multi-threaded applications. In
Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
pages 355–372, 2013.

[53] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. Statistical
simulation: adding efficiency to the computer designer’s toolbox. IEEE
Micro, 23(5):26–38, 2003.

[54] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, et al. Asim: A performance
model framework. Computer, 35(2):68–76, 2002.

[55] P. G. Emma. Understanding some simple processor-performance limits.
IBM journal of Research and Development, 41(3):215–232, 1997.

[56] S. Eyerman and L. Eeckhout. System-level performance metrics for mul-
tiprogram workloads. IEEE micro, 28(3):42–53, 2008.

[57] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A perfor-
mance counter architecture for computing accurate CPI components. In
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 175–
184, 2006.

[58] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A mecha-
nistic performance model for superscalar out-of-order processors. ACM
Transactions on Computer Systems (TOCS), 27(2):1–37, 2009.

[59] S. Eyerman, W. Heirman, Y. Demir, K. Du Bois, and I. Hur. Projecting
performance for PIUMA using down-scaled simulation. In Proceedings of
IEEE High Performance Extreme Computing Conference (HPEC), pages
1–7, 2020.

[60] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. Unified
instruction/translation/data (UNITD) coherence: One protocol to rule
them all. In Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), pages 1–12, 2010.

115

[61] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker. Interactions with
big data analytics. Interactions, 19(3):50–59, 2012.

[62] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove, J. E. B.
Moss, and S. I. Salishev. Demystifying magic: High-level low-level pro-
gramming. In Proceedings of the International Conference on Virtual
Execution Environments (VEE), pages 81–90, 2009.

[63] W. J. Gallagher and S. S. P. Parkin. Development of the magnetic tun-
nel junction MRAM at IBM: From first junctions to a 16-Mb MRAM
demonstrator chip. IBM Journal of Research and Development, 50(1):
5–23, 2006.

[64] T. Gao, K. Strauss, S. M. Blackburn, K. S. McKinley, D. Burger, and
J. Larus. Using managed runtime systems to tolerate holes in wearable
memories. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 297–
308, 2013.

[65] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising
the level of abstraction in architectural simulation. In Proceedings of
International Symposium on High-Performance Computer Architecture
(HPCA), pages 1–12, 2010.

[66] S. R. Goldschmidt and J. L. Hennessy. The accuracy of trace-driven simu-
lations of multiprocessors. ACM SIGMETRICS Performance Evaluation
Review, 21(1):146–157, 1993.

[67] Google Cloud Platform. Cloud functions - serverless environment to build
and connect cloud services. https://cloud.google.com/functions/.

[68] T. Grass, C. Allande, A. Armejach, A. Rico, E. Ayguadé, J. Labarta,
M. Valero, M. Casas, and M. Moreto. MUSA: a multi-level simulation
approach for next-generation HPC machines. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 526–537, 2016.

[69] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat,
D. Tullsen, and R. Gupta. Reliability-aware data placement for hetero-
geneous memory architecture. In Proceedings of the 24th IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 583–595, 2018.

[70] G. H. Loh and M. D. Hill. Efficiently enabling conventional block sizes for
very large die-stacked DRAM caches. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 454–564, 2011.

[71] J. Ha, M. Gustafsson, S. M. Blackburn, and K. S. McKinley. Microar-
chitectural characterization of production JVMs and Java workloads. In
IBM CAS Workshop, 2008.

116 CHAPTER 6. BIBLIOGRAPHY

[72] A. Haghdoost, H. Asadi, and A. Baniasadi. System-level vulnerability
estimation for data caches. In Proceedings of the 16th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pages 157–
164, 2010.

[73] R. W. Hamming. Error detecting and error correcting codes. The Bell
system technical journal, 29(2):147–160, 1950.

[74] A. Hartstein and T. R. Puzak. The optimum pipeline depth for a micro-
processor. ACM Sigarch Computer Architecture News, 30(2):7–13, 2002.

[75] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere. Performance prediction based on inherent program
similarity. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 114–122, 2006.

[76] M.-Y. Hsiao. A class of optimal minimum odd-weight-column SEC-DED
codes. IBM Journal of Research and Development, 14(4):395–401, 1970.

[77] Y. Huai, R. Lee, S. Zhang, C. H. Xia, and X. Zhang. DOT: A matrix
model for analyzing, optimizing and deploying software for big data ana-
lytics in distributed systems. In Proceedings of the 2nd ACM Symposium
on Cloud Computing (SOCC), pages 1–14, 2011.

[78] J. Huang and M. D. Bond. Efficient context sensitivity for dynamic anal-
yses via calling context uptrees and customized memory management. In
Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
pages 53–72, 2013.

[79] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: Improving mutator
locality. In Proceedings of the ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 69–80, 2004.

[80] IBM. Cloud functions. https://www.ibm.com/cloud/functions.

[81] IBM. Enhancing IBM netfinity server reliability: IBM chipkill mem-
ory. Technical report, 2000. URL http://www.ece.umd.edu/courses/

enee759h.S2003/references/chipkill_white_paper.pdf.

[82] E. Ipek, S. McKee, R. Caruana, d. B. R., and M. Schulz. Efficiently ex-
ploring architectural design spaces via predictive modeling. In Proceed-
ings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 195–206,
2006.

[83] ITRS. Internatial technology roadmap for semiconductors: ASSEMBLY
AND PACKAGING, 2005.

117

[84] P. J. Nair, D. A. Roberts, and M. K. Qureshi. Citadel: Efficiently protect-
ing stacked memory from large granularity failures. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 51–62, 2014.

[85] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A pin-based
on-the-fly multi-core cache simulator. In Proceedings of the Fourth Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS), pages
28–36, 2008.

[86] JEDEC. High bandwidth memory. https://www.jedec.org/

standards-documents/docs/jesd235a.

[87] H. Jeon, G. H. Loh, and M. Annavaram. Efficient RAS support for
die-stacked DRAM. In Proceedings of the International Test Conference
(ITC), pages 1–10, 2014.

[88] D. Jevdjic, S. Volos, and B. Falsafi. Die-stacked DRAM caches for servers:
Hit ratio, latency, or bandwidth? have it all with footprint cache. In
Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA), pages 404–415, 2013.

[89] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi. Unison Cache: A
scalable and effective die-stacked DRAM cache. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 25–37, 2014.

[90] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally. A detailed and flexible cycle-accurate
network-on-chip simulator. In Proceedings of IEEE international sympo-
sium on performance analysis of systems and software (ISPASS), pages
86–96, 2013.

[91] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian. CHOP: Adaptive filter-based
DRAM caching for CMP server platforms. In Proceedings of the 16th
International Symposium on High-Performance Computer Architecture
(HPCA), pages 1–12, 2010.

[92] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian. Chop: Integrating dram caches for
cmp server platforms. IEEE micro, 31(1):99–108, 2010.

[93] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. Bottleneck iden-
tification and scheduling in multithreaded applications. In Proceedings
of the 17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), page 223–234,
2012.

118 CHAPTER 6. BIBLIOGRAPHY

[94] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, Inc., 1996.

[95] R. Jongerius, A. Anghel, G. Dittmann, G. Mariani, E. Vermij, and
H. Corporaal. Analytic multi-core processor model for fast design-space
exploration. IEEE Transactions on Computers (TC), 67(6):755–770,
2017.

[96] M. K. Qureshi and G. H. Loh. Fundamental latency trade-off in architect-
ing DRAM caches: Outperforming impractical SRAM-Tags with a simple
and practical design. In Proceedings of the 45th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages 235–246,
2012.

[97] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA), pages 338–349, 2004.

[98] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture
(ISCA), pages 361–372, 2014.

[99] K. Krewell. Intel’s McKinley comes into view. Microprocessor Report, 15
(10):1, 2001.

[100] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Eval-
uating STT-RAM as an energy-efficient main memory alternative. In
Proceedings of IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 256–267, 2013.

[101] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-ISA heterogeneous multi-core architectures: The poten-
tial for processor power reduction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 81–92, 2003.

[102] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA heterogeneous multi-core architectures for multi-
threaded workload performance. In Proceedings of the 31st Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 64–75,
2004.

[103] E. Larson, S. Chatterjee, and T. M. Austin. MASE: A novel infrastruc-
ture for detailed microarchitectural modeling. In Proceedings of IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 1–9, 2001.

119

[104] B. C. Lee and D. M. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. In Proceedings
of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 185–194,
2006.

[105] B. C. Lee and D. M. Brooks. Illustrative design space studies with mi-
croarchitectural regression models. In Proceedings of IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
340–351, 2007.

[106] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and
S. A. McKee. Methods of inference and learning for performance model-
ing of parallel applications. In Proceedings of the 12th ACM SIGPLAN
symposium on Principles and practice of parallel programming (PPoPP),
pages 249–258, 2007.

[107] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Leet. A
fully associative, tagless DRAM cache. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture (ISCA), pages 211–
222, 2015.

[108] D. J. Lilja. Measuring computer performance: a practitioner’s guide.
Cambridge university press, 2005.

[109] W. Liu, S. Akram, J. B. Sartor, and L. Eeckhout. Reliability-Aware
Garbage Collection for Hybrid HBM-DRAM Memories. ACM Transac-
tions on Architecture and Code Optimization (TACO), 18(1):1–25, 2021.

[110] W. Liu, W. Heirman, S. Eyerman, S. Akram, and L. Eeckhout. Scale-
Model Simulation. IEEE Computer Architecture Letters (CAL), 20(2):
175–178, 2021.

[111] W. Liu, W. Heirman, S. Eyerman, S. Akram, and L. Eeckhout. Scale-
Model Architectural Simulation. In Proceedings of IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2022, Accepted.

[112] X. Liu, D. Roberts, R. Ausavarungnirun, O. Mutlu, and J. Zhao. Bi-
nary star: Coordinated reliability in heterogeneous memory systems for
high performance and scalability. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
page 807–820, 2019.

[113] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 190–200, 2005.

120 CHAPTER 6. BIBLIOGRAPHY

[114] E. McClusky and S. Mitra. Fault tolerance. Computer Science
Handbook 2ed. ed. AB Tucker. CRC Press Amazon EC2 home page,
http://aws.amazon.com/ec2, 2004.

[115] M. Meyer. A true hardware read barrier. In Proceedings of the 5th
International Symposium on Memory Management (ISMM), pages 3–16,
2006.

[116] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan. Enabling ef-
ficient and scalable hybrid memories using fine-granularity DRAM cache
management. IEEE Computer Architecture Letters (CAL), 11(2):61–64,
2012.

[117] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field. In Proceedings of the 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 415–526, 2015.

[118] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch band-
width requirement in wide-issue superscalar processors. In Proceedings
of International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 2–10, 1999.

[119] Micron. Tn-41-01: Calculating memory system power for DDR3.
https://www.micron.com/-/media/client/global/documents/

products/technical-note/dram/tn41_01ddr3_power.pdf, 2007.

[120] Microsoft Azure. Azure functions serverless architecture. https://

azure.microsoft.com/en-us/services/functions.

[121] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Ce-
lio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel simula-
tor for multicores. In Proceedings of International Symposium on High-
Performance Computer Architecture (HPCA), pages 1–12, 2010.

[122] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi. Operating
system support for NVM+DRAM hybrid main memory. In Proceedings
of the 12th Conference on Hot Topics in Operating Systems (HotOS),
pages 4–14, 2009.

[123] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and N. S.
Kim. dist-gem5: Distributed simulation of computer clusters. In Pro-
ceedings of IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 153–162, 2017.

[124] P. Montesinos, W. Liu, and J. Torrellas. Using register lifetime predic-
tions to protect register files against soft errors. In Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 286–296, 2007.

121

[125] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of
memory service in multi-core systems. In Proceedings of the 16th USENIX
Security Symposium on USENIX Security Symposium (SS), pages 1–18,
2007.

[126] S. Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann
Publishers, 2008.

[127] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 29–40, 2003.

[128] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In Proceedings of the 40th International Sym-
posium on Microarchitecture (MICRO), pages 146–160, 2007.

[129] P. Nagpurkar, H. W. Cain, M. Serrano, J.-D. Choi, and C. Krintz. Call-
chain software instruction prefetching in J2EE server applications. In
Proceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques (PACT), pages 140–149, 2007.

[130] P. J. Nair, D. A. Roberts, and M. K. Qureshi. FaultSim: A fast, con-
figurable memory-reliability simulator for conventional and 3D-stacked
systems. ACM Transactions on Architecture and Code Optimization
(TACO), 12(4):1–24, 2015.

[131] A. Naithani, S. Eyerman, and L. Eeckhout. Reliability-aware schedul-
ing on heterogeneous multicore processors. In Proceedings of the IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 397–408, 2017.

[132] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and O. Mutlu.
Yak: A high-performance big-data-friendly garbage collector. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 349–365, 2016.

[133] NVIDIA Corp. NVIDIA Pascal Architecture. https://www.nvidia.

com/en-us/data-center/pascal-gpu-architecture/.

[134] M. Omana, G. Papasso, D. Rossi, and C. Metra. A model for transient
fault propagation in combinatorial logic. In Proceedings of the 9th IEEE
On-Line Testing Symposium (IOLTS), pages 111–115, 2003.

[135] M. Oskin and G. H. Loh. A software-managed approach to die-stacked
DRAM. In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT), pages 188–200, 2015.

[136] M. O’Connor. Highlights of the high-bandwidth memory (HBM) stan-
dard. https://www.cs.utah.edu/thememoryforum/mike.pdf, 2014.

122 CHAPTER 6. BIBLIOGRAPHY

[137] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. Pinplay: a
framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–11,
2010.

[138] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann, 2013.

[139] M. Pavlovic, N. Puzovic, and A. Ramirez. Data placement in HPC ar-
chitectures with heterogeneous off-chip memory. In Proceedings of the
31st IEEE International Conference on Computer Design (ICCD), pages
193–200, 2013.

[140] J. Pawlowski. Hybrid memory cube (HMC): Breakthrough DRAM per-
formance with a fundamentally re-architected DRAM subsystem. In Hot
Chips, volume 23, 2011.

[141] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis.
Exploring the performance benefit of hybrid memory system on HPC en-
vironments. In Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), pages 683–692,
2017.

[142] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. In Proceedings of the 12th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
pages 244–255, 2003.

[143] S. Phadke and S. Narayanasamy. MLP aware heterogeneous memory
system. In Proceedings of Design, Automation & Test in Europe (DATE),
pages 1–6, 2011.

[144] B. Piccart, A. Georges, H. Blockeel, and L. Eeckhout. Ranking commer-
cial machines through data transposition. In Proceedings of the Interna-
tional Symposium on Workload Characterization (IISWC), pages 3–14,
2011.

[145] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D. M. Tullsen.
MemPod: A clustered architecture for efficient and scalable migration in
flat address space multi-level memories. In Proceedings of the 23rd IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 433–444, 2017.

[146] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G. H. Loh. Heterogeneous memory architectures: A HW/SW approach
for mixing die-stacked and off-package memories. In Proceedings of the
21st International Symposium on High Performance Computer Architec-
ture (HPCA), pages 126–136, 2015.

123

[147] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page placement in hy-
brid memory systems. In Proceedings of the International Conference on
Supercomputing (ICS), pages 85–95, 2011.

[148] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. Reliable software
for unreliable hardware: Embedded code generation aiming at reliabil-
ity. In Proceedings of the 9th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
pages 237–246, 2011.

[149] S. Rehman, A. Toma, F. Kriebel, M. Shafique, J.-J. Chen, and J. Henkel.
Reliable code generation and execution on unreliable hardware under
joint functional and timing reliability considerations. In Proceedings of
the 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 273–282, 2013.

[150] A. Rico, F. Cabarcas, A. Quesada, M. Pavlovic, A. J. Vega, C. Villavieja,
Y. Etsion, and A. Ramirez. Scalable simulation of decoupled accel-
erator architectures. Universitat Politecnica de Catalunya, Tech. Rep.
UPCDAC-RR-2010-14, 2010.

[151] A. Rodchenko, C. Kotselidis, A. Nisbet, A. Pop, and M. Luján. MaxSim:
A simulation platform for managed applications. In Proceedings of IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 141–152, 2017.

[152] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin.
Scaling the bandwidth wall: Challenges in and avenues for CMP scaling.
In Proceedings of the 36th Annual International Symposium on Computer
Architecture (ISCA), pages 371–382, 2009.

[153] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 29–40, 2003.

[154] A. Sabu, H. Patil, W. Heirman, and T. E. Carlson. Looppoint:
Checkpoint-driven sampled simulation for multi-threaded applications. In
Proceedings of the 28th International Symposium on High-Performance
Computer Architecture (HPCA), pages 1–15, 2022.

[155] N. Sachindran and J. E. B. Moss. Mark-Copy: Fast copying GC with less
space overhead. In Proceedings of the 18th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programing, Systems, Languages, and Appli-
cations (OOPSLA), pages 326–343, 2003.

[156] D. Sanchez and C. Kozyrakis. ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems. In Proceedings of the Inter-

124 CHAPTER 6. BIBLIOGRAPHY

national Symposium on Computer Architecture (ISCA), pages 475–486,
2013.

[157] K. Sangaiah, M. Lui, R. Jagtap, S. Diestelhorst, S. Nilakantan, A. More,
B. Taskin, and M. Hempstead. Synchrotrace: Synchronization-aware
architecture-agnostic traces for lightweight multicore simulation of CMP
and HPC workloads. ACM Transactions on Architecture and Code Op-
timization (TACO), 15(1):1–26, 2018.

[158] J. B. Sartor, W. Heirman, S. M. Blackburn, L. Eeckhout, and K. S.
McKinley. Cooperative cache scrubbing. In Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation (PACT),
pages 15–26, 2014.

[159] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
A large-scale field study. ACM SIGMETRICS Performance Evaluation
Review, 37(1):193–204, 2009.

[160] R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley. Taking
off the gloves with reference counting Immix. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Lan-
guages & Applications (OOPSLA), pages 93–110, 2013.

[161] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), page 45–57, 2002.

[162] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
ACM SIGARCH Computer Architecture News, 31(2):336–349, 2003.

[163] T. Shull, J. Huang, and J. Torrellas. AutoPersist: An easy-to-use Java
NVM framework based on reachability. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 316–332, 2019.

[164] J. Sim, G. H. Loh, H. Kim, M. OConnor, and M. Thottethodi. A mostly-
clean DRAM cache for effective hit speculation and self-balancing dis-
patch. In Proceedings of the 45th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 247–257, 2012.

[165] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim. Trans-
parent hardware management of stacked DRAM as part of memory. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 13–24, 2014.

[166] K. Singh, M. Bhadauria, and S. A. McKee. Real time power estima-
tion and thread scheduling via performance counters. ACM SIGARCH
Computer Architecture News, 37(2):46–55, 2009.

125

[167] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch pre-
diction, instruction-window size, and cache size: Performance trade-offs
and simulation techniques. IEEE Transactions on Computers (TC), 48
(11):1260–1281, 1999.

[168] S. Smith. Announcing Oracle Functions. https://blogs.oracle.com/

cloud-infrastructure/announcing-oracle-functions, 2018.

[169] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights landing: Second-
generation intel xeon phi product. IEEE Micro, 36(2):34–46, 2016.

[170] V. Sridharan and D. Liberty. A study of DRAM failures in the field. In
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC), pages 1–11, 2012.

[171] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stear-
ley, J. Shalf, and S. Gurumurthi. Memory errors in modern systems:
The good, the bad, and the ugly. In Proceedings of the 20th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 297–310, 2015.

[172] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. MISE:
Providing performance predictability and improving fairness in shared
main memory systems. In Proceedings of the 19th IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
639–650, 2013.

[173] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerat-
ing critical section execution with asymmetric multi-core architectures. In
Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), page
253–264, 2009.

[174] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Rethinking DRAM design and organization
for energy-constrained multi-cores. In Proceedings of the 37th Annual
International Symposium on Computer Architecture (ISCA), pages 175–
186, 2010.

[175] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: A survey.
ACM Computing Surveys (CSUR), 29(2):128–170, 1997.

[176] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In Proceedings of the 1st ACM SIGSOFT-
/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments (SDE), pages 157–167, 1984.

[177] D. Ungar and F. Jackson. An adaptive tenuring policy for generation
scavengers. ACM Transactions on Programming Languages and Systems
(TOPLAS), 14(1):1–27, 1992.

126 CHAPTER 6. BIBLIOGRAPHY

[178] K. Van Craeynest and L. Eeckhout. The multi-program performance
model: debunking current practice in multi-core simulation. In Proceed-
ings of IEEE International Symposium on Workload Characterization
(IISWC), pages 26–37, 2011.

[179] A. Venkat and D. M. Tullsen. Harnessing ISA diversity: Design of a
Heterogeneous-ISA chip multiprocessor. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture (ISCA), page
121–132, 2014.

[180] A. Venkat, S. Shamasunder, H. Shacham, and D. M. Tullsen. HIPStR:
Heterogeneous-ISA program state relocation. In Proceedings of the 21st
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), page 727–741, 2016.

[181] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal. DiDi: Miti-
gating the performance impact of TLB shootdowns using a shared TLB
directory. In Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages 340–349, 2011.

[182] C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos, O. Mutlu, F. Lv, X. Feng,
and G. H. Xu. Panthera: Holistic memory management for big data
processing over hybrid memories. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 347–362, 2019.

[183] S. Wang. Characterizing system-level vulnerability for instruction caches
against soft errors. In Proceedings of IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pages 356–363, 2011.

[184] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques
to reduce the soft error rate of a high-performance microprocessor. In
Proceedings of the 31st Annual International Symposium on Computer
Architecture (ISCA), pages 264–275, 2004.

[185] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and
S.-l. Lu. Reducing cache power with low-cost, multi-bit error-correcting
codes. In Proceedings of the 37th Annual International Symposium on
Computer Architecture (ISCA), pages 83–93, 2010.

[186] C. Wimmer. Initialize once, start fast: Application initialization at
build time. In Proceedings of the ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 1–29, 2019.

[187] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data mining with big data.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(1):
97–107, 2014.

127

[188] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Ac-
celerating microarchitecture simulation via rigorous statistical sampling.
In Proceedings of the Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 84–97, 2003.

[189] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S. McKin-
ley. Why nothing matters: The impact of zeroing. In Proceedings of the
ACM Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 307–324, 2011.

[190] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking. Barriers
reconsidered, friendlier still! In Proceedings of the ACM SIGPLAN In-
ternational Symposium on Memory Management (ISMM), pages 37–48,
2012.

[191] V. Young, C. Chou, A. Jaleel, and M. Qureshi. ACCORD: Enabling
associativity for gigascale DRAM caches by coordinating way-install and
way-prediction. In Proceedings of the 45th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 328–339, 2018.

[192] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In Proceedings of IEEE International Symposium
on Performance Analysis of Systems & Software (ISPASS), pages 23–34,
2007.

[193] J. Zhao, G. Sun, G. H. Loh, and Y. Xie. Energy-efficient GPU design
with reconfigurable in-package graphics memory. In Proceedings of the
2012 ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED), pages 403–408, 2012.

[194] Y. Zhao, J. Shi, K. Zheng, H. Wang, H. Lin, and L. Shao. Alloca-
tion wall: A limiting factor of Java applications on emerging multi-core
platforms. In Proceedings of the ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
pages 361–376, 2009.

	Contents
	Acknowledgements
	Summary
	Samenvatting
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Soft Error Reliability in Hybrid Memory Systems
	Large-Scale System Simulation
	Managed Language Simulation

	Key Contributions
	Structure and Overview

	Background
	Memory System Trends
	DRAM Challenges
	Emerging Memory Technologies
	Hybrid HBM-DRAM Memory System

	System Reliability
	Terminology
	Fault-Tolerant Techniques for Memory
	Metrics
	Architecture Vulnerability Factor Analysis

	System Simulation
	Functional versus Timing Simulation
	Trace-Driven versus Execution-Driven Simulation
	Workload versus Architecture Scaling Simulation

	Performance Modeling
	Machine Learning based Modeling
	Analytical Modeling

	Java Workload Benchmarking

	Reliability-Aware Garbage Collection for Hybrid HBM-DRAM Memories
	Introduction
	Exploiting High-Bandwidth Memory
	3D-Stacked Memory
	Managing HBM in Hardware
	Managing HBM in the OS

	Background
	Soft Error Reliability
	Managed Runtimes

	Hotness and Risk Prediction
	Distribution of Hotness and Risk
	Allocation-Site Homogeneity

	Reliability-Aware Garbage Collection
	Overview
	Profiling
	Allocation Site Classification
	Bytecode Generation
	Heap Organization

	Experimental Setup
	Results
	Key Trade-Offs
	Soft Error Rate
	Performance
	RR-M versus Performance-Focused GC
	Memory and Demographic Analysis

	Evaluation on Real Hardware
	Other Related Work
	Conclusion

	Scale-Model Architectural Simulation
	Introduction
	Scale Model Construction
	Scale Model Extrapolation
	No Extrapolation
	Machine Learning-based Prediction and Regression

	Experimental Setup
	Simulation Setup
	Workloads

	Evaluation
	Scale Model Construction
	Scale Model Extrapolation
	Heterogeneous Workload Mixes
	Simulation Speedup

	Sensitivity Analyses
	Memory bandwidth scaling
	Regression
	ML model inputs
	Multi-core scale-models under regression
	Memory bandwidth utilization
	Multi-threaded workloads

	Related Work
	Conclusion

	Architectural Simulation of Reliability-Aware Memory Systems
	Introduction
	Motivation and Opportunity
	Multicore Simulation
	Java Workload Simulation
	CPI Stacks

	Experimental Setup
	Simulator and Java Virtual Machine
	Simulated Processor Architectures
	Workloads
	Scale-Model Simulation

	Evaluation
	CPI Stacks
	Model Selection
	Performance
	Large Target System Prediction

	Conclusion

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

