Cooperative Sensor Fusion for Autonomous Driving

Martin DimitrievsKki

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Engineering

Supervisors

Prof. Wilfried Philips, PhD - Prof. Peter Veelaert, PhD

Department of Telecommunications and Information Processing
Faculty of Engineering and Architecture, Ghent University

April 2023

—

GHENT
UNIVERSITY






Cooperative Sensor Fusion for Autonomous Driving
Martin Dimitrievski

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Engineering

Supervisors
Prof. Wilfried Philips, PhD - Prof. Peter Veelaert, PhD

Department of Telecommunications and Information Processing
Faculty of Engineering and Architecture, Ghent University

April 2023

GHENT
UNIVERSITY



ISBN 978-94-6355-701-6
NUR 984, 983
Wettelijk depot: D/2023/10.500/33



Members of the Examination Board

Chair

Prof. Patrick De Baets, PhD, Ghent University

Other members entitled to vote

Prof. Bart Dhoedt, PhD, Ghent University

Prof. Bart Goossens, PhD, Ghent University

Sebastian Griinwedel, PhD, CARIAD, Germany

Prof. Hiep Luong, PhD, Ghent University

Prof. Adrian Munteanu, PhD, Vrije Universiteit Brussel

Supervisors

Prof. Wilfried Philips, PhD, Ghent University
Prof. Peter Veelaert, PhD, Ghent University






Acknowledgement

I wish to express my gratitude to my supervisors, whose guidance and selfless
support have been instrumental throughout the years of my doctoral research. Their
continuous assistance not only helped me understand the theoretical framework but
also enabled me to apply seemingly abstract methodologies to real-world problems
and make meaningful interpretations of the results. Furthermore, I am deeply appre-
ciative of the members of the Jury for their thorough review and valuable suggestions,
which added the final touch to the dissertation.

I would also like to acknowledge the various funding organizations for their gen-
uine interest to venture into the unknown and provide me with the resources necessary
for this work. In addition, I would like to express my sincere appreciation to all the
other reviewers and academics I’ve come to know through my conference travels. I
am particularly grateful to Reviewer 2 for their constructive criticism, which identi-
fied the weaknesses in my study but greatly enhanced the quality of my research in
the end.

Although the journey of a PhD is not easy, at IPI I was surrounded by a team of
thoughtful, open-minded and appreciative colleagues, some of whom I now consider
as close friends. Despite our cultural differences, we worked together to make an
environment where everyone felt comfortable seeking advice and providing support.
Likewise, the technical and administrative staff worked with much understanding and
anticipation, which helped make our team greater than the sum of its parts.

Finally, I’d like to thank my long-standing friends, who have been with me since
before embarking on this academic journey. I appreciate that you never asked how
my research was doing, but were always willing to listen to me rattle on about it.
Above all, I thank my family and my girlfriend for giving me their unconditional love.
This thesis would not have been possible without your constant encouragement and
support.

Ghent, April 2023
Martin Dimitrievski






Table of Contents

Acknowledgement i
Samenvatting xvii
English summary xxi
1 Introduction 1
1.1 Motivation . . . . . . . . . o e 1
1.2 Problemstatement . . . . . . .. . ... ... 3
1.3 Novelties . . . . .. ... e 7
2 Environmental perception framework 11
2.1 Introduction . . . . . . . . ... e 11
2.2 Sensor fusionconcepts . . . . . .. .. ... 13
2.3 Observations and hypotheses . . . . . ... ... ... ... .. ... 16
2.4 Parameterizationofthescene . . . . . . ... ... ... L. 18
2.5 Beliefinthe object’sexistence . . . . . ... ... ... ... .... 20
2.6 Beliefinthe object’sposition . . . . . .. ... ... ... ... 26
2.7 Tracking multiple objects . . . . . . . ... ... ... ... 29
2.8 Generating hypotheses and associating detections . . . . ... .. .. 33
29 Conclusion . . . . . ... e 34
3 Ego-localization 37
3.1 Introduction . . . . . ... . .. ... ... 37
3.2 Literature OVEerview . . . . . . . ... ..o e 40
3.3 Overview of the proposed method . . . . ... ... ... ... ... 44
3.4 Modeling the environment . . . . . ... ... ... ... .... 45
3.5 [Ego-localization by registration of occupancy maps . . . . . . .. . . 50
3.6 Experimentsandresults . . . . . ... ... .. ... ... ... 55
3.7 Conclusion and practical implications . . . . . .. .. ... ..... 62
4 Single and multi-sensor depth reconstruction 65
4.1 Introduction . . . . . . . .. .. 65
4.2 Literature OVerview . . . . . . . . . .o e 67
4.3 Singe sensor depth reconstruction . . . . . ... ... L. 72



4.3.1 Lidar-only depth estimation . . . . ... ... ........ 72
4.3.2 Camera-only depth estimation . . . . ... .......... 76
4.4 Depth reconstruction by early camera-lidar fusion . . ... ... .. 78
4.4.1 Method 1: pre-processing using bi-linear interpolation . . . . 79
4.4.2 Method 2: pre-processing using learnable morphological filters 82
4.5 Experimentsandresults . . . . . . . ... ... ... L. 85
4.5.1 Single-sensor depth reconstruction . . . . . . ... ... ... 85
4.5.2 Lidar-only depth reconstruction . . . . . ... .. ... ... 86
453 Camera-only depth reconstruction . . . . .. ... ... ... 89
4.5.4 Depth reconstruction by early camera-lidar fusion (1) . . . . . 91
4.5.5 Depth reconstruction by early camera-lidar fusion (2) . . . . . 93
4.6 Conclusion and practical implications . . . . . ... ... ... ... 95
Cooperative sensor fusion for object detection 99
5.1 Introduction . . . . . . . .. . . . ... 99
5.2 Literature Overview . . . . . . . ... ..o 101
5.2.1 Cameraobjectdetection . . ... ... ............ 101
5.2.2 Lidar objectdetection . . .. .. ... ... ... ...... 107
5.2.3 Radarobjectdetection . .. ... ... ... ......... 112
5.24 Fusionobjectdetectors . . . . . . . . .. ... ... ... 114
5.3 Cooperative multi-sensor object detection architecture . . . . . . . . . 120
5.4 Camera object detection with Radar/Lidar feedback . . . . . . .. .. 124
5.5 Radar object detection with camera feedback . . . . . ... ... .. 128
5.6 Matching detections across modalities . . . . . . .. ... ... ... 136
5.7 Experimentsandresults . . . . . . ... ... L., 138
5.7.1 Cooperative fusion between Camera and Radar . . . . . . . . 139
5.7.2  Cooperative fusion between Radar/Lidar and Camera . . . . . 143
5.8 Conclusion and practical implications . . . . . ... ... ... ... 151
Cooperative sensor fusion for object tracking 153
6.1 Introduction . . . ... ... ... ... oo 153
6.2 Literature overview . . . . . . . ... oL o e 157
6.3 Proposedmethod . . ... ... ... ... ... ... ... 164
6.3.1 Object existence estimation with a Binary Bayes filter . . . . 168
6.3.2  Object location estimation with a Bayes filter . . . . . . . .. 172
6.4 Object tracking with a Particle Filter . . . . . . ... ... ... ... 174
6.5 Motionmodel . . . . .. ... 182
6.6 Observationmodels . . . . . ... ... ... ... ... ... 185
6.6.1  Uncertainty of the location of radar observations . . . . . . . 187
6.6.2  Uncertainty of the location of lidar observations . . . . . . . . 187
6.6.3  Uncertainty of the location of camera observations . . . . . . 188
6.6.4 Switching observationmodels . . . . . ... ... ... ... 189
6.7 Handling Missing Detections . . . . . . ... ... ... ....... 196
6.8 Track management . . . . ... ... ... ... ... ... 204



6.9 Experimental evaluation and results . . . . .. ... ... ... ...
6.9.1 Datasets . . . . . . ...
6.92 Metrics . . . ...
6.9.3 Experiments in simulation . . . . ... ... .. .......
6.9.4 Real-world experiments . . . . . ... ... ... .. .. ..
6.10 Conclusion and practical implications . . . . . ... ... ... ...

7 Overall conclusion and outlook
7.1 Conclusions . . . . . . . . . . . . e e
7.2 Valorisation . . . . . . . . .. .. ...
7.3 Outlook . . .. .. . . ...

A The pinhole camera model

B Contraharmonic Mean Filter derivation

207
207
213
216
222
241

245
245
248
251

275

279






1.1

2.1
22

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
53

List of Figures

General system diagram with contributions. . . . . . .. ... .. .. 5
Comparison of fusion concepts. . . . . .. ... ... .. ...... 14
Example of the scene parameterization model. . . . . . . . . ... .. 20
Change in image content due to egomotion. . . . . . ... ... ... 38
Cross sectionofa3-Dlidar. . ... ... .. ... ... ...... 40
Images of flat and inclined roads. . . . . . . .. ... ... ...... 42
Example of occupancy map (KITTI dataset). . . . . . ... ... ... 43
Visualization of the odometry steps. . . . . . .. .. ... ... ... 44
Tilted point cloud with estimated ground plane. . . . . ... ... .. 48
I-Drange sensormodel. . . . .. ... ... ... ... ... ... . 50
Visualization of the steps in the POC algorithm. . . . . . . . ... .. 54
Occupancy map and satellite image of KITTIseq00. . . . .. .. .. 55
Snapshot of submissions to the KITTI odometry benchmark. . . . . . 58
Self-reported run-time of the odometry algorithms evaluated on KITTI. 59
Robustness of odometry to noise and outlierdata. . . . . . . ... .. 61
Reconstructed trajectories for several KITTI sequences. . . . . . . . . 63
Camera, lidar and radar detecting road users. . . . . . ... ... ... 67
Early fusion of camera and lidar, a block diagram. . . . . . . ... .. 72
Example of sparse and complete depthmaps. . . . . . ... ... .. 74
Example of lidar point cloud segmentation. . . . . ... ... .. .. 76
Monocular depth estimation, a block diagram. . . . . . . ... .. .. 78
Depth completion by early camera-lidar fusion, a block diagram. . . . 80
Depth completion by end-to-end early camera-lidar fusion. . . . . . . 84
Early fusion detection results on KITTL. . . . . ... ... ... ... 87
Examples showing improved pedestrian detection. . . . . . . . . . .. 89
Examples of monocular depth estimation. . . . . .. ... ... ... 90
Examples of depth completion (1). . . . . . ... ... ... ..... 93
Examples of depth completion (2). . . . . . ... ... ... ..... 94
Camera, lidar and radar detectingroad users. . . . . . . . . ... ... 101
Network architecture of YOLOV3. . . . . . ... .. ... ...... 105

A point-voxel 3-D object detector architecture. . . . . .. ... ... 110



viii

54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

An intermediate fusion camera-lidar detector architecture. . . . . . . 116

General cooperative fusion architecture. . . . . . .. ... ... ... 123
Diagram of the proposed Radar/Lidar—camera feedback mechanism. 124
Example of recovered camera detection by cooperative fusion (1). . . 126
Example of recovered camera detection by cooperative fusion (2). . . 127
Example micro-Doppler signature of a pedestrian. . . . . . . .. . .. 130
Example of camera feedback information sent toradar. . . . . . . . . 131
Diagram of the cooperative radar CNN detector. . . . . . . ... ... 132
Camera, radar and lidar detections projected onto the image plane. . . 136
Three sensor detections in the city center of Ghent. . . . . . .. . .. 138
VRU detection performance of the radar CNN. . . . . . . ... ... 140
Examples of detected VRUs by theradar CNN. . . . . . ... .. .. 141
VRU detection performance of the radar CNN with feedback. . . . . . 143
Spatial distribution of the radar CNN precision. . . . . ... ... .. 144
Detection performance of the camera CNN w/ or w/o feedback. . . . . 144
Cooperative radar—camera fusion detector, nuScenes setup. . . . . . 146
Diagram of a sensor array with different modes of operation. . . . . . 155
Inverse measurement models for several object detectors. . . . . . . . 171
One-dimensional example of the standard particle filter. . . . . . . . . 178
One-dimensional example of the bootstrap particle filter. . . . . . . . 180
Simulated object motion using the proposed motion model. . . . . . . 183
Visualization of the proposed behavioral motion model. . . . . . . .. 185
Observation models for radar, lidar and camera detectors. . . . . . . 186
Example scene illustrating the switching observation model. . . . . . 193
Realization of samples from a Dirichlet distribution. . . . . . . . . . . 195
Example of sampled imputations and a corresponding proposal function. 199
Example object detection at different operating points. . . . . . . .. 201
Visualization of the proposed measurement model. . . . . ... . .. 203
State diagram of the track manager. . . . ... ... ... ... ... 205
Example evolution of the track score for one object. . . . . . . .. .. 206
Example frames and labels from the KITTI dataset. . . . . . . .. .. 208
Example frames and labels from the nuScenes dataset. . . . .. . .. 209
Example frames and labels from the IMEC vl dataset. . . ... . .. 211
Example data frames from the IMEC v2 dataset. . . . . . . ... ... 212
Tracking a simulated object using switching observation models. . . . 219
Tracking performance of classical methods in simulation. . . . . . . . 221
Tracking performance on the IMEC v1 dataset. . . . ... ... ... 224
Tracking performance using simulated missing detections. . . . . . . 225
Tracked objects by the proposed tracker on the IMECv2 dataset. . . . 226

People tracking performance (AP, MOTA) on the IMECv2 dataset. . 227
People tracking performance (TID, MOTP) on the IMECv2 dataset. . 228
Tracking performance of the proposed tracker on the KITTI dataset. . 232
Tracked objects by the proposed tracker on the KITTI dataset. . . . . 235



ix

6.28 Detection performance on the nuScenes validation dataset. . . . . . . 237

6.29 Tracking performance comparison on the nuScenes dataset. . . . . . . 238
6.30 Tracked objects by the proposed tracker on the nuScenes dataset. . . . 239
A.1 Example camera and lidar data from he KITTI dataset. . . . . . . .. 276

B.1 Learning a morphological dilation kernel using convolutions. . . . . . 280






3.1
32

4.1
4.2
43
44
4.5

5.1
52
53
54

6.1
6.2
6.3

List of Tables

Translation and rotation errors on the KITTI odometry dataset. . . . . 57
Accuracy of odometry methods developed at IPL. . . . . .. ... .. 59
Depth reconstruction results using multi-lateral filter. . . . . . . . . . 86
Pedestrian detection results using RGB-D. . . . . .. ... ... ... 89
Monocular depth completionresults. . . . . . .. .. ... ... ... 91
Depth completion results using linear interpolation pre-processing. . . 93
Depth completion results on the KITTI dataset. . . . . . ... .. .. 95

Performance evaluation results of radar detectors on the imec v1 dataset. 139

Camera-radar detection results on the imec v1 dataset. . . . . . ... 145
Camera-lidar detection results on the nuScenes dataset. . . . . . . . . 148
Camera-radar-lidar detection results on the imec v2 dataset. . . . . . . 149
Tracking results on the IMEC v2 people tracking dataset. . . . . . . . 230

Results on KITTT pedestrian tracking dataset sorted by MOTA score. . 233
Tracking results on the NuScenes dataset. . . . . ... ... ... .. 241






List of Acronyms

AP average precision

API application programming interface
ACF aggregated channel features

ADAM adaptive moment estimation

ADAS advanced driver assistance systems
CFAR constant false alarm rate

CHM contraharmonic mean filter

CNN convolutional neural network

DAG directed acyclical graph

DBN dynamic Bayes network

ESS effective sample size

FLOPS floating point operations per second
FMCW frequency modulated continuous wave
FOV field of view

GPS global position system

GPU graphics processing unit

HMM hidden Markov model

ICP iterative closest point

INS inertial navigation sensor

10U intersection over union



Xiv

KF
kNN

LIDAR
LSTM

MAE
MAP

MCMC
MHT
MOTP
MOTA
MT/ML
MRF
MIMO

NMS

RADAR
RANSAC
RFS
RGB-D
RIMCMC
RMSE
ROI

SI(R)S
SLAM
SOM
SGD

TOF
TID

V2E
VRU

Kalman filter
k-nearest neighbors

light detection and ranging
long short-term memory

mean absolute error
mean average precision / maximum a posteriori

Markov chain Monte Carlo
multiple hypothesis tracker
multi-object tracking precision
multi-object tracking accuracy
mostly tracked/mostly lost
Markov random field

multiple input multiple output

non-maximum suppression

radio detection and ranging

random sample consensus

random finite set

red, green, blue and depth

reversible jump Markov-chain Monte Carlo
root mean squared error

region of interest

sequential importance (re)sampling
simultaneous localization and mapping
switching observation model
stochastic gradient descent

time of flight
track initialization delay

vehicle to everything
vulnerable road user









Samenvatting

De snelle groei van de markt voor consumentenelektronica maakt verschillende
cruciale technologieén mogelijk die innovaties in de richting van autonoom rijden fa-
ciliteren. Goedkope sensoren, artificiéle neurale netwerken en snelle draadloze com-
municatie vormen de kern van een nieuwe autorevolutie, waardoor voertuigen onder-
ling kunnen communiceren, kunnen zien, interpreteren, beslissen en hun kennis kun-
nen uitwisselen. Op het moment van schrijven van dit proefschrift worden high-end
auto’s al uitgerust met semi-autonome systemen, die menselijke bestuurders helpen
veiliger te rijden. Er bestaat echter nog steeds een enorme kloof in de richting van
volledig autonoom rijden, en de aandacht van de menselijke bestuurder achter het
stuur is nog steeds vereist.

Het onderzoeksonderwerp van dit proefschrift is de perceptie van weggebruikers
in de omgeving van een rijdend voertuig. Er wordt speciale aandacht besteed aan de
systeemprestaties onder re€le omstandigheden. De taken van het observatiesysteem
omvatten het herkennen en classificeren van interessante objecten, het inschatten van
hun posities en het voorspellen van hun bedoelingen. In de context van autonome
voertuigen moet het observatiesysteem nauwkeurig en betrouwbaar zijn in verschil-
lende soorten weersomstandigheden en verkeerssituaties. Dit betekent dat de algorit-
men onveranderlijk moeten zijn voor veranderingen in verlichting, atmosferische om-
standigheden, elektromagnetische interferentie, sensorbewegingen, onoverzichtelijke
achtergronden, enz. Hieronder bestuderen we meerdere be-staande algoritmen en
stellen we meetbare verbeteringen en nieuwe methoden voor, met als doel een tech-
nologiedemonstrator te bouwen van een perceptiesysteem dat volledig autonoom rij-
den mogelijk maakt. De specifieke onderwerpen die in dit proefschrift worden behan-
deld, zijn ego-lokalisatie, objectdetectie, tracking en intentievoorspelling.

Ego-lokalisatie is de taak van het inschatten van de verandering in positie en
oriéntatie van het voertuig terwijl het door de omgeving beweegt. Nauwkeurige zelf-
lokalisatie is nodig om het waarnemingssysteem in de loop van de tijd overeen te laten
komen met overeenkomstige waarnemingen. Traditionele lokalisatiesystemen, zoals
systemen op basis van satelliettriangulatie, missen de nodige precisie voor autonome
voertuigen. Alternatieve, op camera’s gebaseerde technieken kunnen nauwkeurige
schattingen van egobewegingen opleveren, maar alleen overdag wanneer de weersom-
standigheden het mogelijk maken om kwaliteitsvolle foto’s te maken. In plaats van te
vertrouwen op externe satellietsignalen of camerabeelden die onder veel omstandighe-
den onbetrouwbaar kunnen zijn, stellen we een nieuwe egolokalisatiemethode voor
die gebaseerd is op de registratie van probabilistische 2D-kaarten die zijn opgebouwd
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uit lidar-metingen. Om aan de real-time vereiste te voldoen, schatten we de egobe-
weging als de relatieve offset tussen opeenvolgende 2D-kaarten met behulp van het
Phase-Only Correlation-algoritme. Deze methode maakt gebruik van de Fouriertrans-
formatie van de 2D-kaarten en is zeer robuust tegen willekeurige variaties van ruis
en outliers. Experimentele resultaten laten zien dat onze methode een bijna perfecte
schatting van ego-beweging heeft. Dit kan het temporeel volgen van objecten vereen-
voudigen, omdat de onzekerheid over egobeweging grotendeels wordt weggenomen.

In de context van autonome voertuigen omvat objectdetectie het classificeren van
verkeersdeelnemers en het lokaliseren ervan ten opzichte van het voertuig. Het meeste
werk in de literatuur is gewijd aan de classificatie en lokalisatie van de relevante ob-
jecten in RGB-beelden. Objectdetectie op basis van camera’s biedt echter gedeel-
telijke informatie omdat objectgroottes en -afstanden niet rechtstreeks kunnen wor-
den afgeleid uit een tweedimensionaal beeld. In deze dissertatie onderzoeken we
alternatieve manieren om afstand te bepalen op camerapixels met behulp van 3D-
metingen van radar en lidar. De belangrijkste technische uitdagingen komen voort
uit de schaarse afstandsgegevens die, wanneer ze op het camerabeeld worden ge-
projecteerd, resulteren in een schaarse dieptekaart. We stellen verschillende nieuwe
technieken voor diepteaanvulling voor, gebaseerd op het principe van geleide signaal-
reconstructie. De voorgestelde methoden extraheren contextuele informatie op hoog
niveau uit het camerabeeld en gebruiken deze om de voltooiing van ontbrekende diepte
te begeleiden, waarbij objectvormen en randen behouden blijven. Experimentele eval-
uatie toont state-of-the-art nauwkeurigheid bij het invullen van de diepte in termen van
afstandsfouten, wat leidt tot verbeterde objectdetectie.

Bij het gebruik van meerdere sensoren (camera’s, lidar, radar) om objecten te de-
tecteren, kan fusie van informatie een significante verbetering van de detectieresul-
taten opleveren, ver-geleken met detectie op elke sensor zelf. Fusie is vooral belan-
grijk ’s nachts of bij barre weersomstandigheden, waar individuele sensoren waarschi-
jnlijk slecht presteren. Traditionele technieken voor sensorfusie leveren bevredigende
resultaten op onder nominale omstandigheden, maar falen bij gecompromitteerd zicht.
Om deze problemen op te lossen, stellen we een nieuwe codperatieve fusiemethode
voor, waarbij de sensoren hun gelokaliseerde vertrouwen uitwisselen om de detectie
in gebieden van de scéne met een gecompromitteerd zicht te verbeteren. De codper-
atieve sensoren blijven voorwaardelijk onafhankelijk, wat een eenvoudige fusie van
detectiewaarschijnlijkheden mogelijk maakt, zoals standaaard bij late fusie. Om de
effectiviteit van cooperatieve fusie te evalueren, hebben we de precisie van objectde-
tectie grondig getest in verschillende camera/radar/lidar configuraties met behulp van
meerdere datasets. De experimentele resultaten tonen aan dat codperatieve fusie beter
presteert dan late fusie bij grensgevallen zoals weinig licht en objectocclusie. Boven-
dien biedt codperatieve fusie een aanzienlijk hogere robuustheid tegen sensorstoringen
dan vroege fusie.

Objecttracking bevestigt de locatie van gedetecteerde objecten van meerdere de-
tecties die over een tijdsperiode zijn gemeten. Door meerdere detecties in de loop van
de tijd te aggregeren en hun vertrouwen te vergroten, worden foutieve detecties gelei-
delijk weggegooid, wat leidt tot een groter vertrouwen de aanweigheid van wegge-



SUMMARY IN DUTCH XiX

bruikers in de directe omgeving. De voorkeursmethode voor het volgen van wegge-
bruikers in de literatuur is Bayesiaanse filtering, die een reeks priors en waarschijnli-
jkheidsmodellen gebruikt om de kansverdeling van gevolgde objecten te verbeteren.
Onze tracker breidt dit model uit tot het volgen van een onbekend aantal objecten
met behulp van detecties van meerdere onvolmaakte (mogelijk defecte) sensoren. We
stellen een probabilistisch model voor dat automatisch zijn waarschijnlijkheidsfunc-
ties aanpast aan de lokale sensorkarakteristiecken. Op deze manier kan de voorgestelde
tracker omgaan met een tijdelijke verandering in detectieckwaliteit die optreedt in
gebieden met occlusie, ruis of gecompromitteerd zicht. In situaties van volledige
afwezigheid van detectie, gebruikt de voorgestelde tracker detecties met een lage be-
trouwbaarheid om de positie van weggebruikers toch te voorspellen. Experimentele
evaluatie, zowel in simulatie als op vier real-world datasets, laat significante verbe-
teringen zien in vergelijking met andere optimale trackers. De voorgestelde tracker
vertoonde state-of-the-art trackingprestaties onder algemene omstandigheden, en was
vooral effectief in grensgevallen die de nauwkeurigheid van andere trackers uit de
literatuur belemmeren.

Naast de demonstratiesoftware is het interdisciplinaire onderzoek dat in dit doc-
toraat is gedaan, geintegreerd in verschillende systemen voor autonoom rijden die een
meetbaar voordeel opleveren voor de samenleving. Delen van de methoden die in
dit proefschrift worden uitgelegd, helpen de prototyperobots aan te drijven die zijn
ontwikkeld binnen vijf onderzoeksprojecten die worden gefinancierd door bedrijven,
evenals door lokale overheid en EU-financieringsprogramma’s. Dit onderzoek resul-
teerde verder in twee internationale tijdschriftpublicaties en tien publicaties in de pro-
ceedings van internationale conferenties.






Summary

The rapid growth of the consumer electronics market is advancing several key
technologies that facilitate innovations toward autonomous driving. Affordable sen-
sors, mobile neural computing, as well as fast wireless communication are at the core
of a new automotive revolution, where vehicles are becoming interconnected digital
devices able to see, interpret, act and exchange knowledge. As of the time of writing
this dissertation, high-end cars are already being equipped with semi-autonomous sys-
tems, assisting human drivers in safer driving. However, a huge gap still exists toward
reaching fully autonomous vehicles, and the attention of the human driver behind the
steering wheel is still required.

The core research topic addressed in this dissertation is the perception of road
users present in the surroundings of a moving vehicle, under real-world constraints.
The tasks of the vehicle’s perception system include recognition and categorization
of objects of interest, estimation of their positions, and prediction of their intentions.
In the context of autonomous vehicles, the perception system needs to be accurate
and reliable in diverse types of weather conditions and traffic situations. This means
that the algorithms should be robust to illumination changes, atmospheric conditions,
electromagnetic interference, sensor motion, cluttered backgrounds, etc. We study a
wide variety of existing algorithms and propose significant improvements and novel
methods, with the goal of building a technology demonstrator of a perception system
that could enable fully autonomous driving. The topics covered in this thesis are ego-
localization, object detection, tracking, and prediction.

Ego-motion estimation refers to the task of estimating the change in position
and orientation of the vehicle as it moves through the environment. Accurate self-
localization is necessary for the perception system to be able to match corresponding
observations through time. Traditional localization systems such as ones based on
satellite triangulation do not provide sufficient precision for autonomous vehicles. Al-
ternative, camera-based solutions, can provide accurate ego-motion estimation, but
only during daytime when the viewing conditions allow the capture of quality images.
Instead of resorting to external satellite signals, or camera images which can be unre-
liable under many circumstances, we propose a novel ego-localization method based
on the registration of 2-D probabilistic maps constructed from lidar measurements.
To comply with the real-time requirements, we estimate the ego-motion as the relative
offset between consecutive 2-D maps using the Phase-Only Correlation algorithm.
This method uses the Fourier representation of the 2-D maps and is highly robust to
measurement noise and outliers. Experimental results show that our method provides
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an almost perfect estimate of the ego-motion, which simplifies the tracking of object
detections over time by alleviating the need to model the ego-motion uncertainty.

In the context of autonomous vehicles, object detection involves classifying in-
stances of road users and localizing them relative to the vehicle. Most of the effort
in the literature is devoted to the classification and localization of the relevant ob-
jects in RGB image data. However, camera-based object detection provides only par-
tial information because object sizes and distances cannot directly be inferred from a
two-dimensional image. In this dissertation, we explore alternative ways for ranging
camera pixels using 3-D measurements from radar and lidar. The main technical chal-
lenges come from the sparsity of range data which, when projected onto the camera
image, results in a sparse depth map. We propose several novel depth completion tech-
niques based on the principle of guided signal reconstruction. The proposed methods
extract high-level contextual information from the camera image and use it to guide
the completion of missing depth, preserving object shapes and edges. Experimen-
tal evaluation shows state-of-the-art depth completion accuracy in terms of distance
errors, which leads to improved object detection.

When detecting objects using multiple sensors (cameras, lidar, radar), fusion of
information can bring significant improvement in detection results, compared to re-
lying on each sensor individually. Fusion is especially important at night or in harsh
weather, where individual sensors tend to underperform. Traditional techniques for
sensor fusion provide satisfactory results under nominal operation but fail in cases
of poor visibility. To overcome these issues, we propose a novel cooperative fusion
method, where the sensors exchange their localized confidences to improve the detec-
tion in areas of the scene with compromised viewing. The cooperating sensors remain
conditionally independent, which allows for the easy fusion of detection likelihoods in
a standard, late-fusion manner. To evaluate the effectiveness of cooperative fusion, we
have thoroughly tested the precision of object detection in various camera-radar-lidar
configurations using multiple datasets. The experimental results show that coopera-
tive fusion significantly outperforms late fusion in border cases such as low light and
object occlusion. Moreover, cooperative fusion offers significantly higher robustness
to sensor failures than early fusion.

Object tracking corroborates the location of detected objects from multiple obser-
vations over time. By aggregating multiple observations over time and increasing their
confidence, faulty detections are gradually discarded, leading to higher confidence in
the actual road users in the surroundings. The preferred method for tracking road
users in the literature is Bayesian filtering, which uses a set of priors and likelihood
models to update the probability distribution of tracked objects. Our tracker extends
this model to tracking an unknown number of objects using detections from multiple
imperfect (potentially faulty) sensors. We propose a probabilistic model which auto-
matically adapts its likelihood functions to the local sensor characteristics. This way,
the proposed tracker can cope with a transient decrease in detection quality which hap-
pens in regions with occlusion, clutter, or poor visibility. Furthermore, in situations
of complete absence of detection, the proposed tracker uses sub-threshold detection
information to better predict the position of road users. Experimental evaluation, both
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in simulation and on four real-world datasets, shows significant improvements over
other optimal trackers. The proposed tracker showed state-of-the-art tracking perfor-
mance under general conditions, and it was especially effective in border cases that
hinder the performance of other trackers from the literature.

Beyond software demonstrators, the interdisciplinary research done in this PhD
was integrated into several solutions for autonomous driving that are making a mea-
surable benefit to society. Parts of the methods explained in this dissertation help drive
the prototype robots developed within five research projects funded by companies as
well as local government and EU funding programs. This research further resulted
in two international journal publications and ten publications in the proceedings of
international conferences.






Introduction

1.1 Motivation

The physical harm and mental stress brought on by automobile accidents are a
huge global public health issue. Every year, traffic accidents alone result in the un-
timely death of almost 100,000 persons throughout Europe. Additionally, it is pro-
jected that 2.4 million people each year suffer injuries necessitating hospitalization.
Besides having a well developed road infrastructure, Belgium experiences an above
average rate of injuries and fatalities from traffic accidents throughout the European
Union [1,2]. Due to the unexpected need for emergency services and other compet-
ing priorities, the COVID-19 pandemic increased this strain on the hospital sector.
The World Health Organization report [3] estimates that road traffic accidents result
in significant economic losses to society that can amount to up to 3% of the gross
domestic product of any particular country. There is strong evidence that accidents
caused by motor vehicles can be avoided, making the current state of affairs even
more undesirable. Over 90% of traffic accidents, according to reports on road safety,
are the result of driver error [4,5]. Even when a crash is caused primarily by a vehicle
malfunction, issues with the road, or other environmental variables, certain additional
human factors, such as inattention, distraction, or speeding, frequently contribute to
the crash and the severity of the injuries. Reducing unnecessary driving through incen-
tives that discourage individual car ownership and promote the use of public transit is
a straightforward method of lowering traffic accidents. In places with high rates of car
ownership and sparse populations, this change may not always be welcomed or eco-
nomically sustainable. Thus, the number of cars on the road is not likely to decrease
in the near future.
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Even if we don’t take road safety into account, inefficient driving leads to traffic
congestion, which has serious detrimental effects on both the economy and people’s
mental health. According to the recent INRIX! global traffic scorecard report, the
urban areas with the highest number of hours lost in congestion during peak com-
mute periods compared to off-peak conditions in 2021 are: London (148 hours lost),
Paris (140), Brussels (134), Moscow (108) and New York (102). This is time lost
completely due to inefficient traffic which is on top of the normal commute time.
The economic implications to the cities are estimated to be $8.3B (New York), $5.8B
(Chicago), $3.3B (Philadelphia), 823M € (Berlin), etc.

These are expenses that can be cut by fewer people owning cars, as well as through
general traffic system optimization, increased use of mass transit, and recently, telecom-
muting. Instead of immediately discouraging people from owning automobiles, we
might attempt to improve the efficiency of the transportation system by designing
smarter, autonomous vehicles that do not require a human driver. But for such ob-
jectives to be accomplished, there must be strong collaboration between business,
government, and academics. Fully autonomous vehicles have been shown to bene-
fit society, and the author believes that the development of reliable and predictable
perception systems will hasten their introduction.

The consumer electronics industry is expanding quickly, pushing a number of key
technologies that are essential for enabling intelligent transportation systems. At the
center of a new automotive revolution, where vehicles are becoming networked digital
devices capable of seeing, interpreting, acting, and sharing their knowledge and expe-
riences, are affordable sensors, quick wireless connection, and mobile neural comput-
ing. High-end vehicles currently come with a variety of advanced safety features as
standard equipment, including adaptive cruise control, automatic parking, automotive
night vision, collision avoidance, emergency braking, hill descent, lane departure as-
sistance, traffic sign recognition, vehicle to everything communication, etc. However,
due to a number of technical and regulatory issues, intelligent vehicles available today
cannot yet do fully autonomous driving.

We are in a vulnerable position given the current status of intelligent transportation
systems because they may provide users with a false sense of security, which could
lead to distractions and increased risk—exactly what we are trying to avoid. System
whose accuracy, and more critically, uncertainty, can be better understood are thus
clearly needed. Large datasets that can be used to train autonomous robots have bene-
fited to some extent from advances in sensors and computers, but more progress in our
fundamental understanding of artificial intelligence and robotics is still required. Deep
learning-trained artificial neural networks have demonstrated ground-breaking percep-
tion accuracy and a remarkable capacity for adaptation to unforeseen circumstances.
However, there is still a significant discrepancy between the accuracy reported in sci-
entific literature and what is actually achieved in deployed systems. This thesis makes
an attempt to close this gap by applying algorithms from well-established probabilistic
theory to the practical problems encountered in everyday life. The main innovation

Thttps://inrix.com/scorecard/
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is the addition of sensor-sensor feedback loops, which enhance a vehicle’s ability to
perceive its surroundings under poor viewing conditions, such as sensor failures, un-
expected noise patterns, and ambiguities brought on by object occlusion. Some of the
algorithms were already being used in prototype vehicles, and the claimed increases in
accuracy and robustness were peer-reviewed and painstakingly tested on actual data.

1.2 Problem statement

An autonomous vehicle is a type of mobile robot that can navigate on the ground
without human input by using its sensors and control systems. The precise definition
of an autonomous vehicle varies across the literature and refers to various degrees of
automation, from assistive to fully autonomous. The driving automation features in in-
telligent vehicles can be divided into five levels, starting with level 1 (driver assistance
features) and going all the way up to level 5 (features that enable full driving automa-
tion), according to the report [6] published by the Society of Automotive Engineers
(SAE). In all cases, an autonomous car improves upon a human-driven car by ap-
plying four fundamental technologies: ego-localization, environment perception, and
map building, path planning and decision-making, and motion control. The concepts
in this thesis apply to all levels of autonomous driving in a self-driving car, meaning a
vehicle using car automation to achieve partial or complete driving autonomy.

One of the main tasks in autonomous driving is the prevention and reduction of
the severity of collision with obstacles or other road users through the use of scene
perception and interpretation. A perception system needs to build accurate represen-
tation of the position and intent of all objects in the environment including itself. Even
for the most basic collision warning tasks, which provide only a warning when the car
gets too close to an object, the system requires real-time detection with high accuracy
covering all weather and traffic conditions. Static objects need to be quickly detected
and ranged while objects in motion need to also be tracked over time. Then, by com-
paring the current traffic situation to a known map of the environment and putting its
own position on this map, the self-driving system needs to compute a trajectory with
optimal safety, comfort and energy consumption. Such a set of requirements poses
a variety of real-world as well as theoretical difficulties, both in terms of hardware
and software. The issue of real-time road user perception in all weather conditions
will be addressed in this thesis. This book divides the perception problem into three
tasks—ego-localization, object detection, and tracking—each of which is covered in
a different chapter.

Ego-localization is the task of estimating one’s location and orientation relative
to a reference point in the environment. For a perception system, this essential piece
of information is used to match current observations to observed objects from the
past. A well performing ego-localization method needs to be both accurate as well as
robust to allow for the uninterrupted autonomous navigation of the vehicle. Currently
installed satellite positioning does not have the accuracy needed for obstacle detection,
tracking and collision avoidance. Moreover, satellite reception is not always available,
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especially while driving in “urban canyons” or when driving in tunnels. State-of-the-
art methods from the literature extend satellite-based ego-localization with data from
the onboard perception sensors for more precise positioning relative to known markers
in the environment. These methods result in centimeter accurate positioning but the
accuracy can deteriorate at night, in bad weather and generally anytime when the
viewing conditions are poor.

Object detection refers to the task of estimating the position, shape and category
of objects of interest from sensor measurements. In the literature, this task is often
described as the instantaneous interpretation of data taken at a single time instance.
Since an autonomous vehicle has an array of sensors, object detection in this context
is performed by fusing the measurements of all sensors synchronized to a given time
instance. A significant part of the research was focused towards the reconstruction of
accurate depth images for the ranging of objects detected by a camera. The goal of
the proposed methods is to reconstruct or complete depth values for each pixel in the
camera image, which trivializes the process of object ranging because the distance to
an object can simply be looked up within the image area of a bounding box.

The two main challenges of sensor fusion in object detection are first: achiev-
ing maximal confidence in the detected objects against the background or clutter, and
second: reducing positional uncertainty. These challenges are often achieved by ap-
plying early or late sensor fusion on the aggregated sensor data or on individually
processed sensor information respectively. This thesis proposes the concept of coop-
erative fusion, an improvement on the paradigm of late-fusion where the strengths of
one sensor are used to mitigate the weaknesses of another by allowing an interaction
between sensors using sensor-agnostic feedback loops.

Object tracking refers to the task of aggregating detection information processed
over a longer time period. The main objective in tracking is to maximize the confi-
dence in the presence and location of the objects of interest. By integrating multiple
observations of the same object over time, object tracking exploits the stochastic na-
ture of sensor noise and improves the confidence of perceived objects. In autonomous
driving, the car encounters many other road users which greatly complicates the asso-
ciation of current and past observed evidence. For optimal results, the object tracker
needs to assign observations to the correct tracks and deal with appearing and dis-
appearing objects. Moreover, multi-sensor tracking needs to also decide how to best
fuse noisy, and potentially missing observations from multiple sensors over time. This
thesis proposes a probabilistic tracker with several adaptive strategies for aggregating
multi-sensor data, predicting the object motion and reconstructing missing observa-
tions.

Combining the above-mentioned algorithms, the proposed perception system pro-
duces a picture of the environment which consists of all observed road users, their
immediate intentions as well as the confidence/uncertainty in their position and the
likelihood of their existence. This comprehensible output data can be used as the
input for vehicle control systems, ensuring the best possible use of the sensor data
available in a variety of weather and traffic conditions.

The work in this thesis begins with Chapter 2 which explains the probabilistic con-
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cepts and models that will be used throughout the rest of the text. The remaining body
of work consists of three significant chapters that present contributions to three related
topics in environmental perception for autonomous vehicles. Knowledge and practical
experience from one chapter is incrementally applied into the next one: starting from
a novel solution to the ego-localization problem, to object detection and finally object
tracking. In Figure 1.1 we see a general overview of the complete perception system
built as a graph of interacting algorithms and feedback loops. Indicated in green, the
graph shows the most significant areas of contributions which will be explained in de-
tail. The three studies are presented as separate chapters following a similar structure:
a problem statement, overview of the literature and remaining challenges, then details
of the proposed innovation and finally, experimental evaluation.

The work presented in Chapter 3 focuses on the task of ego-localization using
on-board perception sensors in situations where satellite-based global positioning is
inaccurate or altogether unavailable. The loss of satellite-based localization signal
is a challenging border case which happens frequently in dense urban centers and is
frequently identified as an area where more research is needed. The proposed inno-
vation uses measurements from on-board sensors and takes over when satellite-based
localization fails. Based on the registration of local environmental maps constructed
from live lidar scans, the proposed ego-localization algorithm works without a GPS
signal, it is robust to ambient light changes; effective in both daytime as well as during
the night. Testing the algorithm in a batch of laboratory and real-world experiments
showed state-of-the-art ego-localization accuracy as well as exceptional robustness.
The estimated vehicle trajectories are accurate even in the presence of incorrect range
measurements as well as outlier noise simulating operation in extreme conditions such
as glare, rain, snow, fog, etc. The proposed algorithm has a high technology readiness
level, being already deployed and tested on real hardware.

In Chapter 4 we present details about the work on the problems of depth image
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prediction and completion. The inclusion of ranging sensors in the sensor arrays of
autonomous vehicles significantly improves their capability to perceive the environ-
ment. However, matching the content seen by the cameras and the range sensors is not
straight forward due to their large mismatch in sampling resolution. The main chal-
lenge in this topic is the accurate interpolation of missing depth values around object
edges. In this chapter we propose several techniques that project and upscale a lidar
point cloud to the resolution of a camera image using semantic information to guide
the interpolation process. This line of research is especially useful in multi-sensor
applications with limited computing resources where it is not feasible to run object
detection on the point cloud data. For example, in a camera-lidar sensor setup, the
camera image provides most of the object classification information while the lidar
point cloud provides ranging of detected objects in the image. Due to the sparsity
of lidar point clouds, small image bounding boxes are rarely covered by a lidar point
making their ranging ambiguous. Depth completion methods are therefore highly ben-
eficial for the accurate ranging of small bounding boxes which are usually sparsely
sampled by the lidar. This chapter proposes four different depth reconstruction meth-
ods with varying accuracy and computational complexity. The most accurate method
was designed as part of a public depth completion competition and achieves high ac-
curacy while the fastest method uses classical signal processing filtering to achieve
relatively accurate depth reconstruction at a very low computational cost.

The work presented in Chapter 5 analyzes various sensor fusion algorithms for the
task of instantaneous object detection. Fusing multi-modal data is challenging due to
the need of a common representation, the resulting data sparsity as well as robustness
to sensor failures. This study focuses on the combination of cameras and range (lidar
and radar) sensors, using the camera image for classification and the range data for
estimation of the position of detected objects. It outlines several depth completion al-
gorithms which apply early camera-lidar fusion to produce pixel-accurate depth maps,
which, together with the camera image can be used for accurate 3-D object detection.
Experimental evaluation on camera and lidar data captured by an autonomous vehi-
cle prototype show that the proposed early-fusion techniques achieve state-of-the-art
depth reconstruction in terms of pixel-level accuracy. A second contribution presented
in this chapter is the cooperative fusion of camera and radar information for object
detection with increased robustness. The proposed method of cooperating object de-
tectors applies information feedback which transmits attention cues from one sensor
to the other, improving detection precision and recall. At the same time, when one of
the sensors fails, detection accuracy does not deteriorate beyond the baseline accuracy
of the other sensor.

Finally, the study presented in Chapter 6 deals with the task of multi-object track-
ing in real-world autonomous driving settings. A special attention is given to the track-
ing of objects with unpredictable behavior, such as pedestrians, where the introduc-
tion of a novel behavioral motion model and non-parametric statistics led to improve-
ments beyond the state-of-the-art. The proposed tacker was deployed on multi-sensor
data captured in the real-world where its robustness to sensor failures was thoroughly
tested. These experiments led to the discovery of an important gap in the tracking lit-
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erature, namely tracking under faulty sensors and missing detections, an effect that is
frequently observed but rarely discussed among authors. The implications of missing
detections can be confounding in border cases of tracking, causing non-convergence
and tracking loss in safety-critical situations. This chapter presents a second innova-
tion in tracking aimed at border cases of missing detections where lost information
is reconstructed from sub-threshold detections by tracking before detection. Experi-
mental evaluation of the proposed method shows state-of-the-art tracking performance
over multiple datasets and multiple sensor configurations even with a loss of detection
as severe as 50%.

1.3 Novelties

The work explained in this thesis has been published in 2 peer-reviewed open-
access articles in the MDPI journal “Sensors” and 10 peer-reviewed papers in inter-
national conferences from which 5 were published in the proceedings of the flagship
conferences of the IEEE Intelligent Transportation Systems Society. The main contri-
butions of this thesis can be summarized as follows:

* Robust and accurate Lidar-based vehicle odometry method based on registra-
tion of occupancy maps.
Operating on Lidar data, which is invariant to ambient light conditions, the
proposed algorithm estimates the ego-motion by registering consecutive Lidar
scans using a 2-D bird eye view representation (an occupancy map). The reg-
istration is done by computing the phase-only correlation between consecutive
2-D maps using the Fourier-Mellin transform, resulting in accurate estimation
of the vehicle translation and rotation. At the time of writing, this novel odome-
try method showed state of the art accuracy on the KITTI odometry benchmark
and moreover, remains accurate under most weather conditions that can break
most visual odometry methods.

* Depth completion methods for computing accurate depth images from camera
and Lidar data.
The first method is a Lidar-only depth completion algorithm which relies on
semantical segmentation to guide a multi-lateral depth restoration filter. Experi-
mental evaluation of this method showed promising results, however its perfor-
mance remains limited due to the difficulty in obtaining high quality segmen-
tation from the low resolution Lidar input. Next, we propose a fusion-based
depth completion method which uses camera images to better guide the Lidar
depth completion. To that end, we designed two novel convolutional neural net-
works which take camera and sparse depth images as input and produce a dense
depth image as output. Since convolutional neural networks cannot easily han-
dle sparse inputs, we propose to pre-process the sparse input depth converting it
to dense depth using morphological dilation. The first network employs a pre-
processing block consisting of morphological operators with manually tuned
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support kernels. In the second approach, we propose a neural network that
performs the morphological pre-processing using a contraharmonic mean fil-
ter whose parameters are learnable and part of the neural network model. At
the time of writing, this last depth completion method showed state of the art
reconstruction accuracy on the KITTI depth completion benchmark.

Cooperative sensor fusion method for object detection using sensor-to-sensor
feedback loops.

This thesis proposes the novel concept of cooperative fusion for improved object
detection by two or more sensors. The proposed algorithm uses low-bandwidth
data links between the individual sensors which allows the exchange of detec-
tion information at runtime. We call these links feedback loops since detec-
tion information from one sensor is used as prior information to enhance the
detection in the other sensor and vice versa. Practically, we implemented the
cooperative feedback in two directions: range sensors to camera, and camera
to range sensors where the decision boundary of object detection adapts locally
to the availability of feedback information from the cooperating sensors. The
main benefit of this novelty is that the multi-sensor system retains the maximal
robustness of late fusion with an increase of performance similar to that of early
fusion approaches. The concept was tested and shown to be effective in several
sensor configurations including cameras, Radar and Lidar.

L]

Multi-object tracking in the presence of sensor failures and missing detections.
While convergence and optimality of traditional filtering-based object trackers
has been widely studied, little is known of the tracking performance under real-
world constraints. We propose a particle filter tracker which uses an adaptive
(switching) observation model that can switch between sensor modes of oper-
ation at runtime. The benefit of this approach is that optimal tracking can be
sustained even in situations of intermittent sensor failures such as degradation
due to low light, glare, clutter, occlusion, etc. Furthermore, we propose a novel
two-step tracking update algorithm which uses confident detections to update
well matching track hypotheses, but switches to weak detection cues to update
hypotheses which are unsupported by confident detections. The novelty of the
approach is that we use an efficient structure which stores the weak multi-sensor
detection cues, enabling the tracker to operate in real-time. These improvements
were thoroughly tested on 4 datasets and different sensor configurations of cam-
eras, Radar and Lidar.

Publications in international journals

The following research papers have been published in peer-reviewed scientific
journals as the first author.

1. “Behavioral pedestrian tracking using a camera and lidar sensors on a moving
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vehicle”, Martin Dimitrievski, Peter Veelaert and Wilfried Philips (2019) SEN-
SORS. 19(2), DOI: 10.3390/s19020391. [7]

2. “Cooperative multi-sensor tracking of vulnerable road users in the presence of
missing detections”, Martin Dimitrievski, David Van Hamme, Peter Veelaert
and Wilfried Philips (2020) SENSORS. 20(17), DOI: 10.3390/520174817. [8]

Publications in international conferences

The following research papers have been published in international peer-reviewed
scientific conferences as the first author.

1. “Robust matching of occupancy maps for odometry in autonomous vehicles”,
Martin Dimitrievski, David Van Hamme, Peter Veelaert and Wilfried Philips,
Proceedings of the 11th Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications. 3. p.626-633, DOI: 10.5220/
0005719006260633. [9]

2. “Semantically aware multilateral filter for depth upsampling in automotive Li-
DAR point clouds”, Martin Dimitrievski, Peter Veelaert and Wilfried Philips, in
the 2017 IEEE Intelligent Vehicles Symposium (IV) p.1058-1063, DOI: 10.1109/
IVS.2017.7995854. [10]

3. “High resolution depth reconstruction from monocular images and sparse point
clouds using deep convolutional neural network”, Martin Dimitrievski, Bart
Goossens, Peter Veelaert and Wilfried Philips (2017), Unconventional and In-
direct Imaging, Image Reconstruction, and Wavefront Sensing in Proc. of SPIE
10410, DOI: 10.1117/12.2273959. [11]

4. “Information feedback loop for improved pedestrian detection in an autonomous
perception system”, Martin Dimitrievski, Peter Veelaert and Wilfried Philips, in
the 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 3119-3124, 2018 p.3119-3124, DOI: 10.1109/ITSC.2018.8569968. [12]

5. “Learning morphological operators for depth completion”, Martin Dimitrievski,
Peter Veelaert and Wilfried Philips, in the 19th International Conference, ACIVS
2018, p.450-461, DOI: 10.1007/978-3-030-01449-0_38. [13]

6. “People tracking by cooperative fusion of RADAR and camera sensors”, Martin
Dimitrievski, Lennert Jacobs, Peter Veelaert and Wilfried Philips (2019) IEEE
Intelligent Transportation Systems Conference - ITSC 2019. p.509-514,
DOI:10.1109/ITSC.2019.8917238. [14]

7. “Tracking road users by cooperative fusion of radar and camera sensors”, Mar-
tin Dimitrievski, David Van Hamme, Lennert Jacobs, Peter Veelaert, Heidi
Steendam and Wilfried Philips (2019) 26th Symposium on Communications
and Vehicular Technology in the Benelux (SCVT 2019), Abstracts. [15]
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8. “Weakly supervised deep learning method for vulnerable road user detection in
FMCW radar”, Martin Dimitrievski, Ivana Shopovska, David Van Hamme, Pe-
ter Veelaert and Wilfried Philips (2020) 2020 IEEE 23rd International Confer-
ence on Intelligent Transportation Systems (ITSC), Proceedings. In IEEE Inter-
national Conference on Intelligent Transportation Systems-ITSC, DOI: 10.1109/
ITSC45102.2020.9294399. [16]

9. “Automatic labeling of vulnerable road users in multi-sensor data”, Martin Dim-
itrievski, Ivana Shopovska, David Van Hamme, Peter Veelaert and Wilfried
Philips (2021) 2021 IEEE International Intelligent Transportation Systems Con-
ference (ITSC). p.2623-2630, DOI: 10.1109/ITSC48978.2021.9564692. [17]

10. “Perception system based on cooperative fusion of lidar and cameras”, Martin
Dimitrievski, David Van Hamme, and Wilfried Philips (2022) 2022 IEEE SEN-
SORS Conference (SENSORS2022),

DOI: 10.1109/ENSORS52175.2022.9967331. [18]

Supervised theses

* “Pedestrian detection using heterogeneous sensor data”, Master’s thesis by Dwight
Kerkhove, Ghent University, 2016

* “Multicameratracking van weggebruikers op kruispunten”, Master’s thesis by
Nicolas Gelders, Ghent University, 2017

* “Object detection in LiDAR point clouds for autonomous vehicles”, Master’s
thesis by Alexander Vandenbulcke, Ghent University, 2017

* “Semantical reconstruction of depth images with deep convolutional neural net-
works”, Master’s thesis by Hao Qin, 2018

* “Automatisatie van zinktransport op galvanisatie”, Master’s thesis by Ben Vyvey,
Ghent University, 2019

* “Simultaneous localization and mapping using automotive”, Master’s thesis by
Adam Tassier, Ghent University 2020

* “A Deep Learning Approach for Moving People Detection Based on FMCW
Radar”, Master’s thesis by Adriaan Van Haecke, Ghent University, 2021

» “Towards Reliable Environmental Perception for Autonomous Vehicles”, Mas-
ter’s thesis by Tristan Dhoedt, Ghent University, 2022



Environmental perception framework

2.1 Introduction

In this chapter we present the concepts and principles which will serve as the
foundation for the proposed systems. Throughout the thesis we will be discussing
the concepts of vehicle intelligence which enable a vehicle to operate autonomously
by perceiving the environment and taking responsive actions. It comprises four fun-
damental technologies: environment perception and modeling, localization and map
building, path planning and decision-making and motion control [19]. This thesis is
focused on the tasks of environment perception and localization as deemed to be the
main requirements for autonomous driving.

One main requirement to intelligent vehicles is that they need to be able to perceive
and understand their surroundings in real time. Environmental perception, in this
context, refers to the task of interpreting the type, position and size of objects relevant
to the autonomous vehicle and tracking them through time. Since the vehicle is also in
motion, it is also crucial that the perception system knows its own position and speed
with respect to the environment. This way the objects of interest can be detected and
tracked in a global coordinate system which in turn will minimize the complexity of
path planning and decision making algorithms.

The proposed systems are inspired by the biological perception system of the hu-
man brain which interprets the information using stereo vision, contextual information
and prior experiences. Mirroring human perception, most systems in the literature
usually comprise of a camera and a ranging device. The camera is used to interpret
the scene from the visual content while range data is also needed to localize the inter-
preted objects. In this chapter we will discuss the parameterization of the environment
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and modeling the sensor measurements which represent information processed from
the raw sensor data, for example a box around a pedestrian in the camera image.
Additionally, we will present the concepts of sensor fusion which bring together in-
formation from multiple sensors in order to improve the confidence or localization of
perceived objects.

Object detection and tracking provides the autonomous vehicle with the position
and type of objects interest. Very importantly, too, the system has to do this under
various weather conditions in order to enable safe driving at all times. Relying on
a single camera for detecting objects can be risky because camera images become
noisy at night, lose contrast during haze, fog or rain, glare when looking at bright
light sources, camera lenses get dirty over time, etc. Moreover, measuring distance to
objects with cameras is ambiguous due to the loss of depth in the image formation pro-
cess. Additional sensors like Radar or Lidar provide the system with another source
of detection information as well as accurate ranging. These sensors operate outside of
the visible light spectrum and therefore do not suffer from the typical degradation of
a camera in bad weather.

Specifically, automotive Radars use modulated electromagnetic radiation in the
millimeter to centimeter wavelength to measure the distance and velocity of objects.
At these wavelengths effects such as clutter from fog/rain/mist/dust are minimized
making the Radar robust in situations where cameras images fail. Similarly, auto-
motive Lidar uses modulated infra-red laser pulses to measure the distance to objects
in the environment. Using its own modulated light, enables the Lidar sensor to be
unhindered by the infra-red radiation of the sun, while also being effective at night.
Currently, Lidar sensors offer a higher sampling resolution than Radar, but this is not
an intrinsic benefit of one technology over the other. The two technologies are in their
early development and since they operate on different principles we deem that both
should be considered when building a perception system.

It is clear to see that the high pixel resolution of cameras offers an advantage when
detecting and classifying objects under good lighting conditions. In these situations
the additional Radar and Lidar information mainly improves in the localization of
objects, however, when the viewing conditions deteriorate we are compelled to rely
heavily on the Radar and Lidar. A fusion system must therefore be designed to op-
timally combine the classification and ranging information from all sensors under all
viewing conditions. This means that camera detection performance must not dete-
riorate when fused with Radar and Lidar under good viewing conditions. Similarly,
when the conditions are poor for the camera, the fusion system must realize that its
interpretation of the environment is unreliable.

The material that follows provides the probabilistic architecture for fusing cat-
egorization and location data from various sensors. The content is presented in an
incremental manner, beginning with simpler notions for tracking a single object and
progressing to the Random Finite Sets (RFS) for tracking multiple objects by the end
of the section. In Section 2.2, we will begin by describing the prevailing sensor fusion
ideas. The sensor models and scene parameterization are then explained in Section
2.3 and Section 2.4. We offer details on the probabilistic modeling of belief in object
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existence and placement in the scene in Section 2.5 and Section 2.6. Finally, we ex-
pand these single-object concepts to a unified framework for tracking multiple objects
in Section 2.7.

2.2 Sensor fusion concepts

Environmental perception can be achieved using passive and active sensors and
sensing principles. Passive sensors observe the environment by sensing the radiation
emitted by the environment. Active sensors, on the other hand, emit their own radi-
ation into the environment and infer the scene structure by observing the reflections.
Analysis algorithms can then be applied on this data to extract useful information.
Examples of passive sensing are monocular and stereo depth estimation, while active
depth sensors include Radar, Sonar, Lidar and time of flight. Historically, much of the
depth sensing in computer vision applications has been based on extracting disparity
information from stereo images. This is clearly evident on the evaluation page on the
KITTT Stereo 2015 benchmark [20] which currently lists more than 270 algorithms.
Even though stereo vision, mimicking human binocular perception, has been effective
in many applications, it possesses shortcomings in flat image regions where the lack
of image features makes it impossible to estimate the distance. Moreover, since dis-
parity is inversely proportional to the perceived depth, small disparity errors may give
large depth errors, especially for distant objects. Authors have also successfully used
time-of-flight cameras in order to recover dense depth information without the use of
a second RGB image [21]. However, time-of-flight cameras have limited operating
range, especially in bright light conditions, and as such are not in the immediate focus
for autonomous vehicles research.

Active range sensors such as Light Detection and Ranging (Lidar), scan the envi-
ronment by shining infra-red laser beams and measuring the reflection delay in order
to determine the correct distance of objects. The accuracy of lidar sensors is limited
by the optical transparency of the medium i.e., the atmospheric conditions and over-
all clarity of the air. For example: rain droplets and mist have, on many occasions,
presented a significant challenge to the Velodyne VLP-16 and Ouster OS1-128 lidars
which we had available for experimentation. Rain droplets, and accumulated puddles
of water on the ground, act as specular reflectors and distort or return little of the
laser light back to the lidar detector. Lidar measurements in rain are commonly pol-
luted by random reflections from seemingly empty areas while wet surfaces register
as empty space. Mist and fog, on the other hand, act as ideal light diffusers and show
up as large objects, often difficult to distinguish from actual solid material. In nominal
conditions, however, these sensors can operate reliably in outdoor environments with
usable ranges of up to 200m.

Multiple-input multiple-output (MIMO) Radar technology uses coupled radio-
wave transmitters and receivers to estimate the range and velocity of an object mea-
suring the time delays in the radiated and received energy patterns. Most commer-
cial automotive radars operate either in the K-band, around 24GHz, or the W-band,
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Figure 2.1: Comparison of fusion concepts.

around 77GHz of the EM spectrum. The typical wavelengths of the carrier signal
in these bands ranges from a couple of millimeters to a centimeter, which makes the
propagation largely unaffected by atmospheric conditions such as rain, mist, snow or
fog. Owning to these unique properties, radars have been installed in numerous land,
maritime and airborne platforms for the tasks of object detection and tracking. Due
to safety regulations in automotive applications, the power output of installed radar
devices is limited, resulting in maximum target detection ranges between 100m and
200m. While classical signal processing can be applied efficiently to detect large ob-
jects, discriminating people (also referred to as vulnerable road users throughout the
thesis) from clutter in traffic environments remains a difficult task. This is manly due
to the fact that people are poor radar energy reflectors and they move slowly relative
to the static environment. Additionally, the effects of multipath propagation of radar
signals are difficult to model explicitly due to the unknown and ever changing scene
geometry. Yet, detecting moving people in radar data can be performed based on the
unique pattern of motion of the human body.

It is important to keep in mind that depth perception can also be achieved im-
plicitly through statistical modeling of observations that have a weak relationship to
depth. For instance, monocular depth reconstruction attempts to recreate the depth
information lost during the creation of a camera image. These algorithms attempt to
reassemble depth using pixel and contour data, temporal analysis of camera motion,
or offline learning. However, the majority of the literature and commercial prod-
ucts have utilized alternative sensing modalities since, as of right now, the accuracy
of state-of-the-art monocular depth reconstruction algorithms is insufficient for auto-
motive applications. As was mentioned in the beginning, in order to meet the strict
accuracy, cost, and safety requirements, autonomous cars must rely on the fusion of
many data sources. As a result, the majority of modern autonomous vehicles use a
variety of sensors that are installed on the roof or dispersed throughout the chassis.
This facilitates the availability of multi-modal data, which drives our research into
multi-modal object detection.

In order to robustly estimate the class and range of objects in the environment we
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need some level of information fusion between multiple sensors. The method used to
achieve this fusion can have a substantial impact on the accuracy, robustness, com-
plexity, and ultimately the system safety. Early or low-level fusion, Figure 2.1 left,
integrates raw sensor measurements from multiple sources using a common feature
extractor (shown as a CNN backbone), region of interest (ROI) extractor, classifier
and non-maximum suppression (NMS). The output of early fusion is a list of objects
described by their full 3-D position u;, shape s; and activation, usually class con-
fidence a;. Therefore, the task of selection, matching and fusion across sensors is
completely learned from training data. Using a large enough dataset, contemporary
deep-learning-based early fusion methods achieve the highest accuracy at the cost of
reduced robustness and interpretability of errors. A non-maximum suppression algo-
rithm is usually applied on the classifier output in order to reduce multiple detections
of a single object. NMS works by averaging shapes and detection scores of detections
with a significant spatial overlap. Early fusion CNNs usually output a single output
score which represents the confidence of the model for that specific task. For exam-
ple, an early fusion object detector will output a detection score a; representing the
confidence of detecting an object based on the multi-sensor data input. Depending
on how the model is trained, the fused confidence score can acquire any real number
which does not directly represent the probability of detection. When such outputs are
then used in probabilistic frameworks, this effect becomes significant and necessitates
additional modeling.

Late or high-level fusion, Figure 2.1 middle, applies sensor-specific processing
pipelines for each sensor and NMS on the activations of each individual sensor pipeline.
The list of outputs from each of the sensors consists of the position in sensor-specific
coordinates, its shape and features, and is usually supplemented with the respective
confidence scores. As in early fusion, the confidence scores of individual sensors can
be any real number and do not represent the detection probability. In order to merge
single-sensor outputs into a multi-sensor estimate, late fusion methods apply statisti-
cal models to detections which are in close spatial proximity. Usually, this is done
by projecting all sensor outputs onto a common representation and computing the
joint-likelihood of detection. The benefit of this approach is that the individual object
detectors can be trained independently, which is more practical, e.g. reuse of already
trained networks.. The downside to late fusion compared to early fusion is that part of
the information is lost in each individual processing pipeline which is then impossible
to to recover by the fusion logic.

Intermediate-fusion is a broad concept which covers any fusion technique that
merges multi-sensor information at an intermediate stage (using latent data representa-
tions) during the analysis process. Sensor data is usually processed by sensor-specific
feature and region of interest extractors. Then, all regions of interest are matched into
a common representation and classified by a common classifier. The fusion algorithm
in this case has access to a richer output from the individual sensor pipelines than in
late fusion, and therefore it can make a better informed classification. The fusion of
detection scores in this example is delegated to the common classifier and is more
akin to early fusion where the output of the network is a single activation score per
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object. Intermediate fusion techniques usually balance between complexity and accu-
racy given the requirements of the application. In practice, most intermediate fusion
methods are trained end-to-end and can be thought of a special case of early fusion
since they share similar failure cases.

In this thesis, we further explore the idea of cooperative fusion for object detec-
tion, Figure 2.1 right, where the system is based on the late fusion design but adds
an additional feedback line conveying cross-sensor attention cues as well as histori-
cal (from the tracker) signals. Each individual sensor has the option to tap into this
feedback line at any time and utilize it to modify its parameters in response to the
environment. For instance, the lidar is more effective at detecting objects at night
and can indicate their existence on the feedback line. The lens aperture, sensitivity,
or integration time of a camera may then be increased using this information. The
location of previously tracked objects can also be added by the tracker to the feed-
back line, letting the detectors know where to look for a successful detection. Within
these constraints, cooperative fusion can still be accomplished in a Bayesian frame-
work where the individual sensors maintain their independence and use the feedback
line as a probabilistic prior. Despite the fact that this cross-sensor information sharing
may appear to point toward an early or intermediate fusion design, it is important to
keep in mind that the feedback line only contains highly processed information and
not data or features. In the case of a faulty sensor or corrupt feedback information, a
cooperative fusion method can still revert to the baseline mode of operation as in late
fusion.

2.3 Observations and hypotheses

Sensor fusion for environmental perception combines observational evidence from
multiple sensors to form a more confident understanding of the state of its surround-
ings. Within the context of this thesis, we will use the term sensor data to refer to
the raw sensor outputs and sensor measurements to refer to the processed sensor in-
formation. Sensor data is therefore the RGB camera pixel values organized as 2-D
image arrays, the Radar range-azimuth-Doppler values organized as 3-D Radar cubes
and the Lidar point cloud organized as a list of 3-D coordinates and reflectance values.
Sensor measurements, are thus an interpretation of the sensor data and represent the
observations for our environmental perception system. For the task of localization and
object detection/tracking, a measurement can be thought of as a list of detections gen-
erated by the sensor processing algorithm. A detection generally consists of a position
and shape (in sensor coordinates) and an activation value indicating how confident the
sensor is about the detection.

The perception system generates hypotheses about the existence and position of
objects of interest (in our case road users) and uses the observations to either confirm
or reject them. We hereby assume two or more smart sensors, e.g., a Lidar and a cam-
era equipped with a neural network, which capture data frames at each time instance
t. They then compute a possibly empty list of detections. There is always exactly one
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measurement Zy (t) per sensor k and per time instant ¢ which we define as the set:

Zu(t) 2 {(zg’“),k) (zg,’:%k)}, @2.1)

where each element is a tuple containing sensor-specific measurements:
z®) = (u(k), s(k), a(k), f, k) . 2.2)

This measurement has a variable length depending on the number of detections. De-
pending on the practical implementation of the detector, the elements can be ordered
according to a specific property such as their activation score or the position in the data
frame. This ordering property can be useful in some algorithms where for example,
we want to give preference to detections with higher confidence.

A detection z(*) is a tuple containing various pieces of information: the location

u(®) and size s*) of the detection in a sensor-specific coordinate system, for example

a bounding box. We will use the index j to distinguish between detections zgk) in

the same sensor. The index k distinguishes between detections from different sensors.
The detections can also contain features f, which can be any piece of information that
could be useful to track objects from frame to frame or that could help to better predict
how reliable the detection really is in some more detailed analysis. All these features
are extracted from the data (image, radar cube, lidar point cloud) such as texture,
reflectivity, Doppler pattern, etc.

(+)
J
which pertain to the bounding box defined by (u

(k)

Each detection z;"’ also contains one or more reliability scores or activations a;

g-k), sgk)). Throughout this text we
will also use the functional form for the activation pertaining to a specific location and
(
J
mate of the probability that the sensor made a mistake, a quality index indicating the
degree of camouflage (e.g., pedestrian has almost the same color as the background),

the degree of occlusion, etc.

shape in sensor coordinates: ag-k) =a®) (u k), s;k)). This reliability score is an esti-

A road user (x,g) is a tuple of the road user’s pose x in world coordinates, and
a feature vector g defining the identity of this road user by describing the road user
in more detail. We use the Cartesian coordinate system to explain the pose which
consist of its location and orientation. In a 3-D coordinate system the location is
described as the 3-D vector (z,y, z) , where the elements are the offsets of the object
center with respect to the origin, while the orientation is the 3-D vector (6, 6,,0.),
where each element describes the angles that the object’s orientation vector makes
with the coordinate axes. Similarly, in 2-D coordinates, the road user is described
by its location on (z,y) on the coordinate plane and its orientation is explained by
a single scalar 6. In the literature this later convention is often referred to as a 2.5-
D system. The orientation of road users is always linked to their direction of travel,
unless otherwise noted. The orientation of the most recent known motion is retained
by static objects.



18 ENVIRONMENTAL PERCEPTION FRAMEWORK

Throughout the thesis we will use the generic vector notation x to explain the state
of a road user, referring to it as the object location, but the orientation and shape are
always present in the system. The feature vector g can contain the height h, but also
things like the dominant color, the velocity, the material i.e., anything which is useful
to predict what the road user should look like in the camera (e.g., size of bounding box
and color), or in the lidar (e.g., reflectance, shape). In practice g will probably contain
less detail then the corresponding observational features s and f, which is why we
have chosen to all denote them as g. Depending on the type of sensor used to observe
the state, its location and orientation relate to the measurements according to:

2. = W\ (x,,8) + wi, 2.3)
where hgk) (.) is a non-linear sensor-specific function and wgk) is sensor-specific
noise. Note that both the function and the noise are time-varying meaning that the
statistics of the observed measurements can change through time. In Section 6.6 we
give a detailed analysis on the shape of these models for lidar, radar and camera detec-
tors. Furthermore, we propose a novel switching observation model which conforms
to the changing characteristics of the observations over time.

We use a tack management algorithm to spawn, merge and remove hypotheses as
well as assign measurements to hypotheses. The algorithm is based on the indepen-
dent/local tracking principle (details follow in Section 2.7) where each road user is
modeled as an individual state variable and individual sensor measurements are opti-
mally assigned to each road user. This concept assumes that the interaction of individ-
ual road users does not influence the sensor observations enough to cause significant
ambiguities in the association. By taking this assumption the track management has a
significantly reduced algorithmic complexity and can be implemented to run in real-
time.

2.4 Parameterization of the scene

We will hereby choose appropriate variables to model the aspects of the scene we
are interested in. Primarily this is the location of road users and some distinguishing
features (shape and size). First we will present the definition of the scene model and
some of its properties, and then in Section 2.5, Section 2.5 and Section 2.7 we will
show how these variables can be optimally estimated.

The scene is specified in terms of the number of road users and their locations.
Implicitly, this also assumes that only 1 road user can be in any given location. We
model the scene in terms of occupancy of a 2-D surface. The physical assumption is
that all road users are on a “floor” surface (road; planar or not). For each x on that
floor surface we define a function o(x) whose value is zero everywhere except at x.
The values of o(x) at an occupied position x varies throughout the literature, where
the value 1 meaning occupied has been widely used in [22].

The vector x is scene related and as it lies on a 2D surface it is possible to represent
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it with 2 coordinates. We assume that occupancy is point-like in nature where the
shape of the object can be generally recovered from its class attribute. This allows us
to ignore the shape of the occupant (car, bicycle, pedestrian, frontal or side view...),
leading to simpler modeling of o(x). In practice, occupancy can be considered sparse
(impulse-like), and we might as well represent o(x) as a set of occupied positions.

We also use variables to model the shape g of road users. This information is
needed to evaluate likelihood of the measurements. For example a small road user
should appear smaller in the picture, so person height and width could be included
in g. Similarly, materials and surface properties could be included, or even scene
related features such as “distance between x and and the road surface. Of course these
variables only make sense for occupied positions, but we still can denote them as
g(x) to uniquely associate them with an occupied position x. In that case the value
of g(x) should be treated as “don’t care” for non-occupied positions x and it should
actually never be needed in numerical computations. Even in cases where individual
road users have been identified and are being tracked, the notation g(x) makes some
sense, as there can be only one road user in each position X.

The occupancy density po(x) (o(x) # 0) is related to positional uncertainty. When
we wish to evaluate the probability density px (x) of the road user position X in a
larger local neighborhood Vi , knowing for sure that such a road user exists in Vi
(and there is only one), then:

px (x) = /ev Po(x) (o(x) # 0) dVx, 24)

x

expresses the probability of a road user being near x, with “near” defined by the size
of dVy, see Figure 2.2 for an illustration. From a physical point of view, not all o(x)
functions are possible. Specifically, road users must be at minimum distances from
each other. This means that that some o(x) functions have prior probability equal
to zero i.e., those for which multiple x points with o(x) # 0 are too close together.
This type of requirement implies that the random variables o(x) cannot be treated as
independent, because po(x) (0(x)) and po(x) (o(x’)) cannot both be nonzero if x
and x’ are too close. Locally, the scene is often sparsely populated and we can assume
that for far enough x and x’ the two variables o(x) and o(x’) are independent. Also,
if they are far enough, any observations of the associated road users can also often be
considered as independent.

In the following we will verify hypotheses of presence/absence of road users with
certain features g at certain locations X by computing their prior and likelihoods and
thus select the most probable ones (a posteriori). In principle this should be done for
all possible combinations (x, g). Even when only considering sparse occupancy maps,
this would involve evaluating priors and likelihoods for all possible scene locations
(e.g., on a discretized grid). When the system starts, and we have very little prior
information, we can restrict all computations to (X, g) combinations compatible with
at least one of the detections in at least one sensor.
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Po(x)0(X)#0

Figure 2.2: Example of the scene parameterization model with three road users. Left: the
model of occupancy function with the definition that each road occupies exactly one position,
which is, e.g., the projection of the center of mass on the ground plane. Right: a possible prior
occupancy density, which is proportional to the probability that one of the binary variables o(x")
with x’ near x is non-zero, i.e., that a location near x is occupied.

2.5 Belief in the object’s existence

Having defined the measurements in Eq. (2.1) and how they depend on the state
variables in Eq.(2.3) we will estimate the dynamic object state based on these un-
certain measurements using the Bayes filter. This filter assumes the state variables
are memory-less (Markov property) and additionally uses the motion patterns of the
object to make a prediction of the state, which is then corrected from the observed
evidence. Because of the Markov assumption, the probability of the current true state
given the immediately previous one is conditionally independent of the other earlier
states. Similarly, the measurement at time ¢ is dependent only upon the current state,
so is conditionally independent of all other states given the current state. The details
and correctness of the Bayes filter will be analyzed in detail in Section 6.3.

We use the term belief to reflect the system’s internal knowledge about the state of
the objects of interest. We will denote belief over a state vector x by bel(x), which is
an abbreviation for the posterior px; z(x|z). It can be expressed in terms of two parts:
the belief in object existence regardless of the details of its position and shape, and the
belief in the objects position i.e., given that an object is present, what is the uncertainty
of its position over the ground surface. Beliefs are represented through conditional
probability distributions. A belief distribution assigns a probability (or density value)
to each possible hypothesis with regards to the true state. Belief distributions are
posterior probabilities over state variables conditioned on the available data.

Given the proposed scene model, the goal of sensor observations is to compute
likelihoods for each possible o(x) scene occupancy. For example, for a camera, this
likelihood computation must derive a single number p;|o,(ilo,g) from the image
i(u), modeled as a function of picture coordinates, the occupancy function o(x) and
the shape feature function g(x). The likelihood value should be high if the observations
agree very well with the hypothesized o(x) and g(x); they must be very small if they
don’t agree.

Object detection analysis extracts for each picture location u evidence for the pres-
ence of a road user in the corresponding world locations x. The evidence usually does
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not apply to a single point but rather to a region of interest, e.g., a bounding box around
the road user part of the image. That region of interest is also in essence a function
of x and the shape g. Object detectors are usually trained to output a maximum a
posteriori probability estimate of “presence at image coordinates u”. Also, often only
the binary decision itself is available, and not the posterior probability of detection.
In many cases the final stages of such a detector (e.g., YOLO [23, 24]) apply some
thresholding to an activation value to reach their decision. By analyzing the statistics
of these activations, it may in some cases be possible to estimate posterior probabili-
ties from these activations, and with information on the training set to convert them to
likelihoods.

For each sensor, we define an activation function a(u), which is some value which
the smart sensor computes and then thresholds to reach decision on presence/absence
of a road user at or near u. As explained above, this value may be missing for negative
detections in actual algorithms. Some sensors will compute activation not only in
terms of location but also scale or size s.

Sensor likelihoods serve to qualify the strength of the evidence for a specific scene
configuration. They answer the question: how well do the current sensor observations
agree with a hypothesized occupancy map o(x) and road user shape features g(x).
Assuming that we do not use the images, radar cubes or point clouds directly, but
rather the activations a(u) as “observations” produced by a smart sensor, the like-
lihood is a probability density functional: p4|0.¢ (alo,g). Its arguments are three
functions a(.), o(.) and g(.). In practical applications, a(u) is an input, o(x) and g(x)
are the unknowns to compute: they need to be selected such that the product of sen-
sor likelihoods and priors is maximized. Occupancy functions such as o(x) pose one
complication: in reality the spatial resolution of observations is limited and we can
only perform inference at the level of local neighborhoods. That means, we can never
hope to obtain o(x) in all detail but rather we can only analyze derived measures of
presence and absence, such as H (X, g) £ max,cq(x,g)0 (x'), which is non-zero if at
least one road user with physical features g is present in Q(x, g) which is a specific
region near X, and 0O if no road user is present in that region. In the following for the
values of H (x,g), we will often write H; and Hy, to make the link with detection
theory, where they are the standard names for the two detection cases. The shape of
the region {)(x, g) will often not be specified, but it is assumed to be in accordance
with the sensor resolutions. H (x, g) obviously cannot vary arbitrarily as a function
of x and g. It should be composed of Dirac-delta peaks: if a road user of a given size is
in a specific location, no other road user of another size can be in the same location, or
even in a too-nearby location. In the following, we will sometimes make abstraction
of the g dependency, but in principle it is always present. A practical method needs to
estimate two likelihood functions:

PaUHx,¢ (A, uk|Hi, X, 8), (2.5

for presence and
pau|H,x (ax, up|Ho, X, g), (2.6)
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for absence, where k is a sensor index. Note that the latter means: “no road user
present at location x and of specific size/shape/color as defined by g.” In other words,
Hj includes the possibility that a road user with physical features differing from g is
present at x. In reality, considering hypotheses depending on both x and g will be too
complex. So instead we prefer a simpler hypothesis H (x) which has the value H; if a
road user of any size is present at x and H( otherwise. In this case the two likelihood
distributions no longer depend on g. With a slight abuse of notation we can simplify
the equations to:

PavUlHx (ak, ug|Hi,X), 2.7

for presence and
pavU|H,x (ak, ug|Ho,x), (2.8)

for absence. Practically, these densities densities could be learned as follows:

1. Create training labels based on expert annotation on a dataset. Project each
ground truth road user location x and size g into sensor coordinates, thus de-
lineating a picture ROI (x, g) of “relevant” activation locations u and sizes
S.

2. Summarize the activation in Q(x,g) e.g., by picking the strongest one, or a
weighted average. This also involves computing a single summarized u; and
s and a summarized activation ay.

3. For each (binned) combination of uy, and s, maintain a histogram h(ag;u) of
the aj, values. After normalization h(«y;u) can serve as a relatively accurate
approximation of p4 vz, x (ak, Uk, sg|H1,X).

This of course only produces the likelihood density for presence. For absence, we need
a similar training set, but this time of locations void of road users. Apart from this,
the approach is similar and results in an approximation of p4 |z, x (ax, ux|Ho,X).
Note that the likelihood densities contain x and (sometimes) g as parameters. This
is for good reason: it can indeed be inspected that road user detection becomes more
difficult at larger distances. In extreme cases, one could even expect that the detector
outputs very often very low activations in distant regions and this irrespective of road
user presence. Then the two likelihood functions for I} and Hy will be very similar
and Dirac-impulse like. On the other hand, for closer distances, activation values will
tend to be high for H; and low for H, . Similar considerations apply to g. For instance,
people dressed in camouflage uniforms will tend to be more difficult to detect. Small
people will tend to more difficult to detect. Bicycles will be easier to detect with radar
than pedestrians. In order to simplify the modeling and computations in practical
applications, the following assumptions can be taken:

¢ Ignore the dependency on x and g. In that case two simple histograms of S
values should be computed on a small training set. Not much data is needed
for that, which opens the possibility to continuously re-estimate the likelihoods,
to adapt the changing circumstances (e.g., weather). This is the approach taken
later in Section 6.3.1.
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* Cluster (x, g) into a small number of context classes e.g., “close-by and large”,
“close-by and small”, “far away and large”, etc. This requires estimating two
histograms per context class and obviously requires more training data.

» Based on physical principles, derive a model equation for the functional shape
of the two likelihoods and estimate the model parameters from training data.

Let us assume a system composed of K sensors, each producing an observation in
the form of an activation image/volume a(u,s), where u is a specific point in the
image/volume and s describes the geometry and size and or shape of (e.g., bounding
box) the object to which this observation applies. For instance, a smart camera exam-
ines all locations u for evidence on the presence of a road user at that location, but
with s specific size and shape of a bounding box. The activation is high if there is
such an evidence and low otherwise. In practice, the sensor may rather output a list of
tuples zj(-k) : (uy, 84, aj)(’“),j = 0, 1.... describing strong activation peaks, where k is
a sensor index. In that case, it is to be understood that:

a(u,s) ~ Z agk)d (u — ugk), s — sgk)) + ag, 2.9)
J

with d (.) being a distance function between bounding box parameters u and s (e.g.,
Jaccard Index in image plane), and ag is a small constant which models the activation
in areas without road users, usually, ag ~ 0. The formulation in Eq. (2.9) gives a
practical way to evaluate the likelihood at an arbitrary coordinate u and shape s from
the detected bounding boxes with location u; and shape s;. The shape and eventual
parameters of the distance function will be specific to the employed sensor and can be
learned offline from training data.

To compute the belief for road user existence, with or without sensor fusion, in
general we need the likelihood p 4|0, (a("”’) |o, g) , but, we will rather adopt a local
view, and find evidence for either of two hypotheses about the location x and road user
size/features g: a road user is present near the specified location and with features
similar to the specified one (H;) or no such road user is present (Hy). The exact
meaning of “near” and “similar” is defined by the earlier introduced Q(x, g) and on
other details such has the definition of ”presence in” (center of gravity in, completely
in, overlapping with...). We can then condition on the binary hypothesis variable h at
(x,g), which equals either Hy or H; . Moreover, for h = H;, we can assume that
the likelihood is very small for all (x, g), except those which project near to one of the
“activation blobs” produced by the sensor. With an abuse of notation, and dropping
the sensor index £ for notational simplicity only, the H; likelihood has the following
form, in which only one specific blob j near (x, g) occurs:

pav.siax,c (aj, 05,8 Hi,%,8). (2.10)

The simplest (but sub-optimal) approach is to assume that this functional form
is independent of the scene variables x, g and the detection location and shape (u;
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and s;). In that case the equation simplifies to: p g (aj|H1), and this can be esti-
mated from a simple histogram of the activations of true positive ground truth samples.
The practical implementation of the fusion algorithm uses this assumption, as is later
described in detail in Section 6.3.1. A slightly better version would keep the depen-
dency on x and then compute different histograms for different parts of the scene. For
example, we expect that the confidence of an object detector decreases with distance
because of the constant resolution of the sensor data (a far away object appears smaller
in the camera image). Thus, we can safely expect that the function Eq. (2.10) rolls-
off with distance and the steepness can be modeled by repeating the steps 1-3 from
above by binning over ||x||- the distance to the sensor. This modeling results to a set
of histograms h(ay; u, ||x]|)

A complication occurs because sometimes the sensor will not output a detection
(false negative). This case is easily handled by assuming that the sensor then still out-
puts a value € — the “below threshold value”. Therefore we can define a, which equals
a; if the sensor detected an activation blob with activation value a;, or € (signifying
sub-threshold) if no blob was detected.

Without detailed knowledge of the scene structure it is safe to assume assume that
false positives do not depend much on the location u within the image or lidar cloud,
and perhaps not even much on s. Also, as the H hypothesis stipulates there are no
road users at that location, obviously the result cannot depend on x and g either. Hence
the model simplifies to p 4z (aj|Hp), in which a equals a; if the sensor detected an
activation blob with activation value a;, or the special value (signifying sub-threshold)
if no blob was detected. This too can be estimated from an activation histogram.

Computing the multi-sensor likelihood p 4|0, (a(k) o, g) even in a local view,
depends on matching the activations across each of the K sensors. This matching can
be done by projecting activations into the sensor domain which has the least positional
ambiguity. Within this domain, the joint-likelihood is computed as the product of
individual sensor likelihoods of the detections that match the closest to the projection
of 0 (x), g. When one of the sensors is a camera the projection is usually done on the
image plane. The matching of Lidar and Radar, on the other hand, can be done by
projecting of the Lidar activations onto the Radar plane.

When fusing multiple sensors, we must consider all their activations as well as
the priors in order to maximize the belief of existence and reach an optimal detection
decision. Such a decision can be made for all parts of the scene: for each x we can
find the relevant part of the image (u,s), radar or lidar space and the corresponding
sensor activation a(u,s) (this value may be €). Using the sensor-specific likelihood
functions we can compute lIr® (a(u, s)). According to Bayesian theory the belief in
the road user presence is the log posterior probability ratio, defined as:

(0) (K-1)
bel (H;a(o),...,a(Kfl)) :lan|a(0),.4.,a<K—1) (H1|a (ll, S)a-~'7a (u,s))’
PH|a® .. a(k-1) (H0|a(0) (u,8),...,alE=1 (u, s))
(2.11)
which determines the optimal maximum a posteriori outcome. If it is positive we
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should conclude road user presence, else absence. In case we wish to penalize false
positives and false negatives differently, we can also compare it to a threshold larger
or smaller than 0, to minimize the cost of a wrong decision. Assuming that the K
sensors operate on a different sensing principle (such as lidar, radar and camera) the
observations of one sensor are not conditionally dependent on the other sensors and
only depend on the state, thus according to the Bayes rule, this equates:

bel (H;a<0>,...,a<K—1>) —In + Z 1® (@P(u,5),  (2.12)

pH HOa

where the first term is the log-prior ratio. We need to note that the definition of the
priors in Bayesian filtering varies throughout the literature. The prior probability dis-
tribution defines the density function explaining the belief in the state of a random
variable before observing any evidence. In object tracking over time, however, it is
often the case that the belief summarized from the past (including the information
from the observations) is considered as prior probability density before making an
observation in the present. It will therefore be high in regions where we expect road
user presence i.e., close in value to the log poster probability ratio of road user pres-
ence found after processing all data at the previous time instance ¢ — 1. The values
llr(a®(x)) come from the sensors and are well defied, even when a sensor outputs
no detection corresponding to the 3D coordinates x.

The hypotheses H (x) in this case becomes: H(x) £ max,eq(x) 0 (x'), which
has the value H if no road user exists in {2 (x) and the value H; if one exists. Because
of the assumption that very locally, only one road user can exist if {2 (x) is about the
same size as a typical road user, we have:

g (Hi;x) = / o (x) dVy, (2.13)
Q(x)

and py (Ho;x) =1 — py (Hy; %) .

Due to practical limitations, we can only store a limited amount of hypotheses in
the computer memory which limits the extent of o (x). As the ego-vehicle is mov-
ing forward, the hypothesis space o (x) needs to also be able to evaluate the newly
observed regions that come into view of the sensors. Therefore, we need to make a
decision on how to practically model this limited hypothesis space o (x). The two
options are to use hypotheses in a local coordinate system attached to the ego-vehicle,
or use a global coordinate system with hypotheses attached to Geo-locations. A local
coordinate system will span the maximum sensor range and needs not be extended as
the vehicle is moving. However, at each time step all of the hypotheses have to be
corrected for ego-motion in order to match with the local sensor observations. Since
the number of hypotheses is generally much larger than the number of observations,
we chose to to use a global coordinate system for the hypotheses and only transform
the (fewer) observations into global coordinates at runtime. The common reference
is chosen as the Geo-location of the ego-vehicle when the system initializes. Newly
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observed detections are therefore transformed into this global coordinate system using
the vehicle odometry which is explained in the following chapter. This creates another
practical problem, namely old hypotheses which are no longer in sensor view become
irrelevant and need to be forgotten. To that end we employ a management system that
removes unlikely hypotheses and is explained in detail in Section 6.8.

After converting the current observations into global coordinates we can easily
evaluate the support of each hypothesis using the log-likelihood ratio. At time ¢ the
IIr is computed from the lIr in the past using the following recursion (dropping the
geometrical parameters X,g and u,s for brevity):

K—1
Ur(as) < Ur(a;—1) + Z llr(k)(agk)), (2.14)
k=0

where the initial ratio is an initialization prior that represents the likelihood of observ-
ing a road user without looking at the scene:

pu (Hi;x)

lIr(ap) = In o (Hoix)°

(2.15)

This ratio can be used as a measure of confidence which ranks hypotheses according
to our belief in their existence.

2.6 Belief in the object’s position

The belief in the object’s position can take into account detection location uncer-
tainties: instead of assigning a non-zero likelihood only when uy, and s exactly agree
with x and g after projection, we can also assign high or non-zero values to other
nearby values of x and g. This is to take into account that detectors typically pro-
duce multiple strong responses and which one is the largest can depend on random
influences. The non-maximum suppression therefore risks picking a wrong, nearby
location as the maximum. This approach will typically result in models with produce
“likelihood blobs” in (x, g) space. Taking into account detection location uncertain-
ties is necessary, but becomes less important if the noisy detections can be matched
with no ambiguity across multiple sensors. For instance, a camera will produce high,
non-zero likelihoods not for a single x position but rather for a “stripe-like” region,
because of the projective nature of image formation. Similarly, a radar will do so for
a “banana-shaped” regions along the azimuth. Detection uncertainty will cause these
regions to shift, but as long as the shift is small enough, the two regions will still over-
lap. As aresult, at least one position will have high likelihood values for both sensors.
Hence, the fusion system will still detect a road user, but perhaps in a slightly wrong
position.

The need for the following analysis comes from the fact that in autonomous driving
the car will encounter multiple objects of interest that will cause the object detectors to
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generate many, potentially ambiguous detections. Matching the detections across the
multiple sensors, and moreover, matching them to the correct hypothesis over time,
necessitates that we also take into account the positional uncertainty of observations.
Most modern object detectors employ non-maximum suppression and produce an ac-
tivation only at a limited number of sensor coordinates. The position of the true object
in sensor coordinates is usually close, but not exactly at the position of the detection
after non-maximum suppression. If we were to only use the sensor activation of the
detection after non-max suppression, then slight variations in the position of a hy-
pothesis would yield the same likelihood given this closest detection. Therefore, the
distance between the hypothesis and the closest detection (also the difference in their
shapes) can provide additional information for modeling the precise position of the
object. In this section we will explain the concept of likelihood based on distance in
sensor coordinates for optimizing the belief in the position of an object for which we
are certain that it exists.

The tracking of the spatial coordinates is performed similarly by using the Bayesian
framework. For a positive hypothesis H; defining a road user present in the hypoth-
esis region (x, g) we wish to optimize the belief in the spatial position of that road
user given the sensor measurements. The theory of Bayesian fusion is quite clear how
this should be taken into account: we consider many locations x() near the hypoth-
esized position (within Q(x, g)), evaluate Eq. (2.12) for these positions according to
the prior and all likelihood models. The most likely spatial position can then be found
by finding the mode of the posterior. The following analysis is for only one road user
hypothesis while Section 2.7 explains how the principle can be applied when tracking
multiple road users. In practice, we use a particle filter (with a finite number of x(%))
to model the uncertainty of measured positions u and shapes s of the true road user’s
position and shape x, g respectively. Ignoring the variation of activation scores within
a local neighborhood €2(x, g), the posterior distribution of x for a single road user is
given by the following recursion:

(0) (K-1)\ _
pXt,HIUé?t),--~,U0(§71) (xt7H1|u0:t, coy Uy =

Px, mul .. .ulE=D (Xt’H1|u(()?t)—17~-~7U-<()§:11)) (2.16)

0:t—17""

K-1 (k)
Hk:o prk)IH,Xf, (ut |H11Xt)a

where the multiplier is the prior and the multiplicand is a product of the K sensor
models (likelihoods with respect to the location measurements). The sensor models
are generally considered to be known, either given by the manufacturer or trained from
labeled data with known positions of road users. For example, the positional uncer-
tainty of a Lidar detection u given a positive hypothesis H; is accurately modeled by
a multi-variate Normal distribution centered around the hypothesis location x; for a
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3-D Lidar detection we have:

exp (—% (u—x)"2"! (u— x))
puia,x (U[Hy,x) = - , (2.17)
(2m)” %]

where ¥ is a 3x3 covariance matrix, typically estimated from labeled training data.
These models are explained in more detail in Section 6.6.

When tracking a single object, at time ¢ = 0 the prior px, g (X, H1) is usually
assumed uniform making the system initialize from the first set of observation u(()k).
However, at every consecutive time step ¢ we can make a better prediction about the
position of the tracked object if we analyze its motion patterns. If we know the velocity
of the object (up to a model), at time ¢t we can compute the expected position of the
object from its last known estimate at ¢ — 1 using px,|x, , . (X¢|X¢—1, H1). By
applying a motion model px,|x,_, # (%¢|X¢—1, H1) to the posterior from the previous
time step we obtain a more informative information of the likely places where we
can find the object in the present. Thus we can use the motion model and the past
posterior to compute an estimate in the present and use it as a prior by integrating over
all possible x;_1:

(0) (K-1)\ _
Px, mu®_ .. ulE=D (Xt7H1|u0;t71a s U1 ) = Pxy X, H (Xt Xe—1, H1)
(0) (K-1)
—y [ xe—1, Hy|uy,. .., ug. dxXi_q.
fpx,,,l,H\Uéf’tll,...,Ugfj,l“( -1 Hilugg g, g,y -1

(2.18)
Note that here we are only interested in the positional uncertainty in the positive hy-
pothesis case H; while for H the same quantity is meaningless, so in most of the
following analysis the hypothesis H; is omitted from the notation.

In real-world applications the effects of occlusion, missing detections, soft sensor
failures, etc. cause ambiguities in the observations and the posterior distribution of an
object’s location cannot be accurately explained by Gaussian models. For example,
consider a pedestrian that passes behind an occluding object. When this happens
we are faced with missing detections and if the pedestrian continues walking he can
reappear on the other side of the occluder or he can also turn around and reappear at
the same spot that he went missing. We deem that under real-world circumstances, the
positional uncertainty of road users (especially vulnerable road users) is best modeled
using mixture models which allow the belief to concentrate in multiple locations of the
hypothesis space at once. The particle filter formulation, explained in detail in Section
6.4, is a sampling-based implementation of the Bayes filter and offers an effective
solution for computing Eq. (2.16) and has well understood performance bounds and
convergence. The main benefit of using the particle filter comes from its ability to
model the posterior as a multi-modal distribution using weighted Dirac impulses. Thus
the posterior distribution of the location of one object is modeled as the sum of the set
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of particles:

Npts

px, v (%, Hiju) = Zw“é (x—x0), 2.19)

where w( are particle weights that sum up to 1 and the Dirac delta & (x — x(i))
defines the particle positions. The particle filter algorithm works in two steps, firstly
it predicts the position of particles (and thus the shape of the posterior) by applying
a motion model to each particle, and then it evaluates the likelihood of each particle
using the newly observed evidence. The idea is that predicted particles which are
well supported by observational evidence contribute more towards the shape of the
posterior. So, in order to compute the posterior in Eq. (2.16) at time ¢ we first apply

a motion model px, , mx, (xgi)|x§i_)1, H 1) to each particle and then update their
weights according to the sensor models:

K—
w ocw T ppo g v, (uﬁo),...,uﬁK‘”\Hl,xg”) . (220)

Note that this gives an overview of how the positional uncertainty is modeled by a
vanilla particle filter. In sections 6.6.4 and 6.7 of this thesis we will extend this for-
mulation to a switching observation model particle filter and adapt the algorithm to
continue to update with in cases of missing detections.

2.7 Tracking multiple objects

A perception system deployed in the real world needs to detect and track poten-
tially many objects of interest. The material presented in the previous sections implic-
itly assume that only one object is present in the scene and that the sensor measure-
ment may be directly mapped to the object’s hypothesis. However, most applications
require the simultaneous tracking of several objects and the measurement to track as-
signment task is challenging due to sensor noise, missed detections, and false alarms.
In this part, we provide the probabilistic framework applicable to multi-object tracking
based on Random Finite Set (RFS) statistics, with more details in [25].

Random finite sets provide the means to generalize the single-object Bayes fil-
ter using multi-object probability distributions over a random finite set. In Section
2.3 we defined the detections of each sensor as the set Z; of random observations

{(zgk), k) s e (z,(qli), k)} and in Section 2.4 we discussed how the function o (x)

referring to the scene occupancy can be represented as set of occupied positions with-
out loss of generality. We will therefore use the set state variable:

X ={x1,..,Xn},

which consists of n unordered random vectors xy, ..., X, (referring to object states,
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i.e. occupied positions), where n; n > 0, too is a random variable. Such a set
represents also the uncertainty about the number of objects in a multi-object state and
uses random vectors to represent the state of the individual objects. In 3-D tracking
problems, the state space of all state vectors x is R? whereas the finite subsets of space
R3 are denoted as F (]R3 ) and all possible subsets comprising exactly n elements are
represented by 7, (R?).

We use the notation 7 (X) to indicate the multi-object probability density function
which represents the uncertainty about the multi-object state X and also incorporates
the uncertainty about the number of objects represented by X. The generic form of
7 (X) can be written as:

() it X =0,
T (X) = ™ (ta)) X =t 221

m({x1,x2}) If X ={x1,%x2},

where we can write the probability that the random finite set X contains exactly n
vectors as the cardinality distribution over all possible x1, ..., X,:

1
Pr(|X|=n)= ﬁ/w({x17...7xn})dx1, vy Xy (2.22)

If the n vectors are independently identically distributed (i.i.d.), then we can use a
i.i.d. cluster RFS probability density function: 7 (X) = n!Pr (|X| =n)p (x1)...p (Xn),
where p (x;) denotes the spatial distribution of the i-th object. A commonly used
model to represent the uncertainty of the number of objects in the literature [26] is the
Poisson distribution:

e A\

Pr(X| =n) = =,

(2.23)
where ) is the expected number of objects, making the multi-object Poisson RFS PDF:
(X)) =e A" (x1)...p(Xn). (2.24)

To complete the system, we use the Poisson RFS with intensity density: & (z) =
Acc (z) for modeling the process of false positives, where A. is the expected number
of false positives per image and the probability density ¢ (z) models the variability
over the measurement space.

The use of a Bernoulli RFS is another obvious technique to model the uncertainty
regarding the presence of a single object. A Bernoulli RFS uses the existence prob-
ability r to indicate the existence (as discussed in Section 2.5) of an object with a
spatial distribution p (x) (as discussed in Section 2.6). Consequently, we can use the
probability 1 — 7 for an empty Bernoulli RFS. A Bernoulli distribution with parameter
r gives the cardinality distribution of a Bernoulli RFS, and its probability density is
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given by:

1—r  ifX=0,
m(X) = {7’ ‘p(x) ifX={x}. (225)

A simple extension of this method, which may model M objects, will be referred to
as multi-Bernoulli RFS. Assuming that the objects are independent of each other, the
parameter set { (7, pi)}ﬁlcompletely defines a multi-Bernoulli RFS with the proba-
bility density function:

I, (=) it X =0,

r(X)={ 2=t

(2.26)
where the probability density function for X = (J corresponds to the probability that
none of the M objects exists, while the probability for the case n > 0 sums over all

permutations of the vectors x; [25]. The cardinality distribution of a multi-Bernoulli
RFS is simply:

Pr(X=n)=J[a-r) > Il i, , 2.27)
j=1 2

1<ii#. F#in <M j=1

where the mean cardinality is estimated as Nobj = Zﬁl ;.

The effective multi-object tracking requires a mechanism for track ranking/extrac-
tion as well as association. We augment the state of each object by a label [ (part of
the feature vector g, recall Section 2.3) which lies in a label space LL of positive inte-
gers. This augmentation yields a labeled state, and we use the labeled random finite
set whose realizations of the labeled multi-object state X may not contain two or more
objects with the same label. To that end a distinct label indicator, d,, (|{l1, ..., I, }]), is
used to make the discrimination between valid and invalid labeled multi-object states.
A labeled Multi-Bernoulli Random Finite Set (LMB RES) is thus a labeled version of
the multi-Bernoulli RFS in which instead of the component indices ¢ we use labels [
which indicate unique track labels. The multi-object probability density function of a
LMB REFS is defined as:

n

1p (1) ripi (x5)

™ (X) =0 ({h o bIV [JO=r) [I == @2®)
i€l =1
where the 1x (Y) is the inclusion function defined by:
1 ifYCX
Ix(Y) = b= (2.29)
0 otherwise.

Using random finite set statistics, the single-object Bayes filter may be rigorously
extended to multi-object filtering. Because the random variable in the multi-object

ri Pi; (X5) .
H?=1 (1—ry) Z1§il¢...¢ing1\4 H?:l ]1—7;]7 it X = {x1, ..., x,};n >0,
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Bayes filter is a random finite set, the estimated number of objects naturally includes
the state uncertainty of the individual objects. Using the Markov assumption, the
entire information about the multi-object state at a time ¢ is captured by the multi-
object posterior density 7 (X;). The prediction of the multi-object posterior at the time
of the next measurement ¢ 4 1 is obtained using the Chapman-Kolmogorov equation
and the multi-object Markov density, while the update at time ¢ + 1 is done using the
multi-target likelihood function p(Z|, X;) integrating over all possible multi-object
Xt,11

prediction:  T(Xy) = [ p(X¢|Xem1)7(Xe—1]Z1:0—1)dXy—1,
update: T(Xe|Z1:t) = np(Ze], Xo)T(Xe).

This equation has the same form as the single-object Bayes filter prediction, but
the integral is a set integral and the random variables are random finite sets rather
than random vectors. The multi-object Bayes filter, like the single-object Bayes filter,
may be implemented utilizing sequential Monte Carlo (SMC) approaches. In practice,
most MOT using this RFS approach use the Reversible Jump Markov Chain Monte
Carlo (RJI-MCMC) particle filter implementation or some derivation of it. The particle
filter in such algorithms uses one set of “colored” particles which cover the joint state
space and whose “color” or identity switches from one object to another depending on
the observational evidence. However, most algorithms deploy simplification strate-
gies that put bounds on the state transition p(X;|X;_1) as well as the sensor model
p(Z:],X;). This means that even though the particle filter operates over a joint state
space, it uses models which only predict and update in local regions of this joint state
space (usually limited to small neighborhoods around each element in X;. Depend-
ing on the level of interaction between the individual elements in X, the association
between individual elements in p(Z;|X;) and how much the assumptions break these
rules, joint state trackers can potentially lead to highest tracking accuracy. However,
to date most such approaches are either computationally intractable or their accuracy
breaks down when assumptions in the models are scaled down to allow for real-time
execution. These SMC implementation of the multi-object Bayes filter are also not
readily applied to real sensor data due to the said computational complexity of the
multi-object likelihood function.

To overcome these issues and enable the real-time tracking of multiple objects,
our approach relaxes the LMB RFS model by treating each state vector as condition-
ally independent, where the position and existence of objects are usually estimated
separately for each object. This widely used assumption in multi-object tracking ap-
plications allows for the conditional probability densities to be more easily modeled.
For some road users, such as vehicles this is a sound line of reasoning. However,
when tracking smaller objects in a confined space, as seen in [27], we cannot apply
this assumption as their position on the ground plane can overlap, while their mo-
tion is largely defined by close object-object interactions. Khan et al. [27] propose
a RI-MCMC particle filter using localized detection mediated proposal function. In
practice this means that each hypothesis is updated using only the sensor evidence



ENVIRONMENTAL PERCEPTION FRAMEWORK 33

which falls withing a small region around it. At the same time, the motion of each
hypothesis is governed only by its own position in the state space and completely
independent of other objects.

Due to the hard time restrictions in on-line tracking, the proposed tracker is de-
signed using the independent/local principle. We decouple the estimation of the exis-
tence and number of hypotheses IV,,;,; from the estimation of the position of the tracked
objects. We assume non-interacting state models for all road user categories as well as
local measurement models that are confined to a small gating area )(x, g). The shape
of the gating area is specific to each sensor, for example, for a camera detection (due
to the loss of distance) it represents a function along a line defined by the azimuth of
the detected bounding box. Thus, the proposed tracker performs independent track
prediction for each object by applying a non-interacting state transition. Using this
formulation it is still possible to compute the belief in the joint state space 7(X) if we
simply the sum the predicted beliefs of all individual objects Nop;:

Nobj

7(X) =Y p(xi). (2.30)

i=1

At each time step ¢, the proposed tracker computes the optimal association between
individual detections z;; to hypothesis x; ; within the respective gating radius. The
optimal association between individual detections and hypotheses is achieved by op-
timizing an association cost matrix [d (z; ¢+, X; ¢)] using the Hungarian algo-
rithm [28].

Only one assigned detection z;; can be used for updating the state of only one
track x; ; using a localized measurement model p| g, x (z;,¢|X;,:). Generally, a detec-
tion can also be assigned to multiple tracks, which makes sense in situations of occlu-
sion and ambiguity, and we will use this notion to propose improvements in Section
6.7. Detections that do not match to any hypothesis are delegated to the track manager
and used to create new hypotheses, consequently update the cardinality number Nop;.
Notably, for the class person, object interaction can still occur and cause the forma-
tion of groups. In this edge case the group size and motion are largely coherent and
influenced by the mean behavior. Therefore, the conditional independence assump-
tion does not apply and the proposed MOT would achieve sub-optimal accuracy. To
combat this issue, we delegate the object-to-object interaction modeling to the track
manager, details in Section 6.8, which merges tracks that become too close to each
other.

Nget X Nopj

2.8 Generating hypotheses and associating detections

In principle, a generic approach would be to solve the detection problem for every
possible combination of (x, g). To reduce the number of computations, we rather re-
strict hypothesis checking to specific combinations of (x, g), which we call candidates.
Candidates are generated in multiple-steps: first, knowing that road users cannot dis-
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appear without trace all locations with a high prior probability of presence at time ¢ are
candidates. According to the Markov assumption, these prior probabilities equal the
posterior probabilities of presence resulting from the computations at time £ — 1. So in
essence, we consider the last known positions of all tracked road users as candidates.
In case we distinguish between weakly tracked road users (we are not sure yet that
these tracks are real) and strongly tracked ones, we have the option of also including
some weakly tracked road users.

Then, if one of our sensors is significantly more accurate than the rest e.g., a li-
dar, most road users will be detected by this sensor if we set detection thresholds
low enough. The locations of confidently detected road users by an accurate sensor
are strong indicators of the true position of objects in the scene. We use such detec-
tions to generate additional hypothesis combination (x, g). Therefore, such detections
are also added as candidates. When using lidar/radar detections as hypothesis seeds
the process is straight forward since they produce sensor coordinates u, which are
unambiguously (within a rigid transformation due to ego-motion) related to world co-
ordinates: x = u. However, when we use camera detections to seed hypotheses there
is a complication due to the loss of depth in the image formation process. Since we
don’t know the distance of a camera detection, u relates to a stripe along a single az-
imuth of the hypothesis space. Based on the shape of the image bounding box s, we
use statistical models of the average object height to spawn more hypotheses at the
most likely ranges along the azimuth stripe and less so elsewhere. This issue will be
addressed in Chapter 4 where we propose to use additional depth images to accurately
range camera detections, which in turn greatly reduces the hypothesis search space.

Finally, we add road users detected by at least two sensors that can jointly estimate
the coordinates x. These sensors could be two cameras in different locations, or a
camera and a radar. Again the detections must be above some minimal detection
threshold, but it is essential to not exclude candidates, so thresholds must be low.
Matching between sensors is performed in the domain which has the least positional
ambiguity, usually the image plane, and will be explained in detail in Chapter 4.

2.9 Conclusion

This chapter explained the general framework and concepts that will be used to
build the proposed environmental perception system. Each of the following chapters
expands on these principles, by providing novel approaches that lead to improved
accuracy, improved robustness or both. In the next chapter we start with the problem of
estimating the ego-motion of the vehicle which is crucial when matching local sensor
observations to hypotheses which in section 2.5 we defined in global coordinates. The
proposed novel ego-motion estimation method was published in the proceedings of an
international conference [9] and its implementation is used throughout this thesis.

Then, in Chapter 4 we will explain how to range camera detections using several
novel techniques for reconstructing dense depth maps. These ranged camera detec-
tions provide are very useful in reducing the hypothesis search space which reduces
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the algorithmic complexity of detection and tracking. The novel depth completion
methods resulted in research papers which were published in the proceedings of three
international conferences [10,11, 13].

Furthermore, we propose a novel algorithm for cooperative fusion of detections
between camera, lidar and radar. The principle of cooperative fusion applies infor-
mation feedback loops between sensors, practically modifying the activation function
for weak detection evidence of one sensor using confident detections from the other
sensors. The cooperative fusion system remains within the bounds of the Bayesian
framework, transparently computing the log-likelihood ratio, Eq. (2.12), with or with-
out using the sensor-sensor feedback loop. However, the inclusion of the coopera-
tive feedback allows for improved object detection in border cases of poor viewing
conditions. This work was published as research papers in the proceedings of four
international conferences [12,14,16,17].

Finally, Chapter 6 provides a detailed analysis on how to model the temporal di-
mension, i.e. track detections over time in order to improve the belief in their existence
as well as minimize the uncertainty in their location. We base our design choices on
the fact that the system will be deployed in a real-world traffic environment, faced with
various road users, imperfect sensors and changing weather conditions. There is also
the distinct possibility that the system may be faced with cyber attacks, vandalism or
other unexplained phenomena which can cause a complete sensor failure. Our tracker
has the flexibility to adapt its sensor model parameters and switch to using low-level
sensor cues to continue updating its hypotheses even in the complete absence of de-
tections. The novelties proposed in this chapter were published as two open-access
journal articles [7, 8].






Ego-localization

3.1 Introduction

One of the essential elements in a perception system is the ability to perceive
static and moving objects while the vehicle itself is also in motion. We are interested
in estimating the evolution of the location and orientation (pose) of other road users,
relative to a fixed, starting world coordinate, for example, the last known Geo-location
obtained when the system had access to satellite-based positioning. Any well perform-
ing environmental perception system must also incorporate its own pose information
in order to detect, track and predict the relative position of other objects in environ-
ment. Errors in estimating the evolution of its own pose (ego-motion) will accumulate
and make the prediction about other objects position more uncertain, ultimately re-
sulting in reduced autonomous driving efficiency. Therefore, the odometry needs to
be accurate consistently through the time window within object detection, tracking
and prediction is performed.

A naive object tracking implementation applies a motion model (in our probabilis-
tic framework: px,|m,x,_, (X¢|H1,X¢_1)) to every tracked object from the moment
t — 1 and matches it to the closest detection 2, ¢, seen in the present. Without taking
into consideration the motion of the vehicle itself, such techniques fail to accurately
predict the position of detections when the ego-motion is large or the frame-rate is
low. By also applying an appropriate motion model to the position of the vehicle, we
can achieve accurate object detection and tracking which is crucial for autonomous
driving. This chapter deals with the problem of modeling the own motion of the ve-
hicle by estimating its change in position and orientation over time, referred to as its
pose.
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Figure 3.1: Two camera frames captured 2 seconds apart (nuScenes scene-0518). Due to ego-
motion, the expected content based on motion prediction in the present differ significantly from
what is actually observed.

To illustrate the concept, consider the scene shown in Figure 3.1 captured by a
camera on the roof of a moving vehicle. As the vehicle is turning to the left, so too
is the camera which creates a shift in the apparent position of other road users in the
captured image. This creates a significant challenge for tracking because matching
observations over time needs to not only estimate the motion of other road users, but
also factor-in the pose change of the camera and its speed. Without knowing the
ego-motion, the expected position of the pedestrian does not match with the observed
content resulting in lost tracking and the spurious creation of new tracks which refer
to the same object in reality. Thus, having an accurate estimate of the ego-motion over
short time intervals is a safety critical task that cannot be underestimated.

Satellite-based navigation, a fairly common component in current vehicles, pro-
vides basic positional information by estimating the geographic latitude and longitude
from satellite signals and motion sensors like wheel and steering encoders. Depending
on the satellite reception quality, most current systems provide real-time positional in-
formation within a couple of meters of accuracy, which is not accurate enough for the
safety critical object detection and tracking in autonomous driving. Matching the po-
sition of detected objects over subsequent sensor observations, especially small, fast-
moving vulnerable road users, requires a positional accuracy in the range of several
centimeters which currently can only be achieved by processing sensor observations
captured by the vehicle itself.

Camera-based ego-motion estimation, called visual odometry, computes the rela-
tive motion of image features in subsequent camera frames and correlates this motion
to the physical motion of the vehicle. Visual odometry combined with offline maps
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has been shown [29] to provide localization that is accurate enough for autonomous
driving under ideal viewing conditions. However, the loss of visual features in camera
images under poor lighting conditions creates large, unpredictable localization errors
in visual odometry. Alternatively, ego-localization by means of active depth sensors
such as 3-D lidars has also been studied [30] and shown to produce the accuracy
needed under most conditions. 3-D lidar is a multi-beam, active-light range measur-
ing device which usually operates in the invisible infra-red part of the spectrum. A
typical 3-D lidar, shown as a cross section in Figure 3.2, directly measures the 3-D
scene geometry and is unaffected by ambient light levels. Such active light devices can
be very effective in perceiving features in the environment which can be used to com-
pute the vehicle ego-motion. Ego-motion can thus be computed through the apparent
shift between 3-D scene features between several capture intervals. Such an estimate
is independent of GPS signal or ambient light and can be reliably used in perception
applications. However, the matching of lidar features can become ambiguous when
the input data is sparse or polluted with outliers, requiring the use of voxelization or
other sorts of geometric-primitive modeling to retain its robustness.

At first glance, odometry for autonomous vehicles might seem like a mature topic
with many scientific contributions advancing the state-of-the-art by only a marginal
amount. However, most of the published research is designed and tested on synthetic
or small-scale datasets which do not contain the important difficult edge cases. For
illustration, a difficult and often referenced problem is the loss of GPS reception in
tunnels and city centers. Odometry systems in this situation switch to relying heavily
on on-board sensors such as inertial navigation or visual cues and wheel and steering
angle readings. Yet, this seemingly simple solution has its own downsides due to the
decay of accuracy over time (drift). Wheel speed accuracy decreases as tires wear
down or change their pressure due to temperature variations. Moreover, difficult to
estimate mechanical effects, such as wheel slip or steering dead-zone cannot guarantee
a centimeter-level positional accuracy. Visual cues from the camera, on the other hand,
become difficult to match in low light or glare.

This chapter explains a localization technique that is both centimeter-accurate and
robust under ideal as well as compromised viewing conditions. Assuming that the
vehicle is moving on a locally flat environment, the proposed method uses the sensor
features to compute a two-dimensional map of the environment which it then com-
pares to the map from the past using phase-only correlation. Shifts and rotations in
two maps correspond to physical translation and change in orientation of the vehicle.
The two-dimensional map representation efficiently stores the local occupancy infor-
mation and can be computed from any available sensor observation such as camera de-
tections, radar targets or lidar point clouds. For simplicity, we will show how to build
the proposed odometry system using lidar-only observations which is experimentally
shown to provide centimeter-accurate localization while being robust to various light
and weather conditions and simple enough to run in real-time.

Finally, the proposed method was designed to be simple enough to be deployed
in a real-time system and to be able to operate predictably in the presence of signal
degradation. As we will see in the literature study, this combination of requirements
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Figure 3.2: Cross section diagram showing the principle of operation of a multi-beam lidar.
This sensor uses pulsed infrared light and mechanically rotated transceiver (a light source and
a photo detector) to perceive objects on a 360° field of view.

poses a challenge for camera and lidar odometry and has motivated us to seek a so-
Iution beyond classical techniques based on GPS, visible light cameras or point cloud
matching. This chapter describes an important contribution to lidar-based odometry
research field, proposing a simple, yet accurate and robust odometry solution.

3.2 Literature overview

Odometry methods based on perception sensors can be divided into two broad cat-
egories: methods which estimate the full 6 degrees of freedom (DOF) pose change in
3-D space and methods which specialize in a domain (such as ground vehicles) where
the robot exercises fewer degrees of freedom. Methods in the former category com-
pute the full roll-pitch-yaw pose and x-y-z translation, usually requiring more complex
data interpretation. Contrarily, methods which estimate only the ground plane motion
are restricted to 3 degrees of freedom: x-y translation and yaw: the rotation along the
z-axis.

In the context of autonomous driving, perceiving the immediate surroundings of
the vehicle are of most interest. This is because the priority of safety critical tasks
such as collision avoidance outweighs optimal ride comfort or fuel economy. Since
the car and other road users generally move on the road surface, see example on the
left image in Figure 3.3, we are interested in modeling their motion along a surface
which, with small exceptions, is locally flat. In this context we deem a surface to be
locally flat if it can accurately be approximated as piece-wise planar function where
the pieces are comparable in size to the extent of the vehicle sensors. All objects,
therefore, move in a 2-D coordinate system and exhibit only 3 degrees of freedom
(yaw and x-y translation) instead of the 6 degrees of freedom (roll-pitch-yaw and x-y-
z translation) in a 3-D system. Assuming that the world is locally-flat, the matching of
camera and lidar features can be greatly simplified because features can more easily
be traced using their projection onto the local road surface.

This assumption is acceptable as the extensive road study [31] indicates, where
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over 12-million road grade measurements in 1728 U.S. counties were analyzed and
found that around 80% of distances on highways exhibit less than 2% absolute road
grade. Note that discrepancies between the flat-world and the 3-D world model do
not occur on roads with constant grade, but rather when the road grade is changing,
for example: when the vehicle is at the foot of a hill such as the one shown on the
right image in Figure 3.3. In this scenario, features detected on the hill sit much
higher above the ground plane coupled to the vehicle and need to be projected on
the ground plane at a distance proportional to the sine of the road grade. It is not
difficult to imagine that applying a flat-world motion model will largely underestimate
the distance and velocity of road users moving on such slopes. Such situations are
only encountered at points of extreme change of road gradient and are rare, border
cases when the odometry and perception systems need to be specially tuned or the
ground surface be re-modeled using smaller planar pieces. For the remainder of this
thesis we will assume that the world is locally flat, modeling a stretch of road as
piece-wise linear function. Consequently, odometry on a 2-D plane can be done by
only estimating the yaw rate and x-y translation which reduces the solution space and
allows for more robust solutions using simpler data representations.

Mainstream of vehicle odometry approaches using cameras and lidars require key
feature detection and matching. This can be assessed from the submission details
in the KITTI odometry benchmark [20, 32]. The spatial alignment of detected fea-
tures (referred to as registration or matching) is often done using a variation of the
Iterative Closest Point (ICP) approach [33]. When using only camera sensors (visual
odometry), features can be accurately detected and matched across the image plane.
However, due to the loss of depth information during camera projection, the 2-D mo-
tion of features across the image plane is difficult to accurately relate to the physical
3-D motion of the camera. These approaches have the downside that they depend on
the existence of distinctive features. For example, matching features between two im-
ages taken on the ocean or in the dessert is very difficult due to the repeating content.
Additionally, due to the loss of depth during image formation, camera-based odome-
try can only be accurate up to a scaling factor which is closely related to the intrinsic
camera parameters.

When using stereo cameras and/or lidar, many approaches have been proposed
to register range images, [34], and then use features extracted from these images to
register consecutive scans. Other methods try to extract geometric primitives from
within the point clouds, such as planes and edges, and then use those for matching and
registration [35]. Although the reported results are promising, these approaches have
their problems in situations where the environment does not contain simple planes
and edges (open roads, forests, parks). There most important issue with feature based
registration approaches lies in the complexity of extracting features and their robust
registration which forces the algorithms to use layered system with feedback loops
such as local bundle adjustments. Such systems can be highly sensitive to outlier noise
which deteriorates their performance whenever a feature cannot be traced through the
sequence of data.

Approaches such as [36] combine RGB pixel information with depth measure-
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Figure 3.3: Examples of highway engineering in the United States. Left: A completely flat
avenue in Manhattan, New York; right: Lombard Street in San Francisco, California, built on a
hill with a 27% grade.

ments from a time-of-flight camera to integrate the depth data into a 3D model using
the ICP approach. If accurate depth information in the form of a depth image is avail-
able, then matching of such “image” features can be performed even purely using the
depth images alone. Depth data from a 3-D lidar consists of geometric measurements
of surfaces and provides an accurate representation of the 3-D structure. However,
directly matching between 3-D points from real 3-D lidar sensors is not trivial as
these point clouds tend to be anisotropic and sparse. Many authors ignore the fact
that lidar data is intrinsically captured in a fixed scanning pattern and is therefore spa-
tially correlated. By discarding the spatial correlation between neighboring points,
valuable information which could have been used to better register the data is being
discarded. Instead, authors propose alternative solutions [37] by fusion of data from
inertial navigation sensors (INS), global position system (GPS) or wheel rotation sen-
sors. Bayesian filtering techniques such as Kalman or particle filters are often used in
order to reinforce the measurements with the past data for more accurate estimation.

To mitigate the aforementioned issues, this chapter proposes an accurate 3-DOF
odometry method that uses a sensor agnostic data representation applicable in any
camera/lidar/radar sensor configuration. Instead of processing the heterogeneous sen-
sor measurements such as lidar depth, camera features or radar targets, we convert
them into the concept of occupancy, a binary random variable o (x) describing whether
a specific position x of space is occupied or not. This analysis follows closely the the-
ory in the exposition Section 2.4. However, for the task of odometry we will use
a more broad occupancy definition i.e., o (x) returns occupied value if there is any
object standing within a prespecified to x.

Occupied area, therefore, can contain any object which presents a collision risk to
the vehicle such as buildings, greenery, road infrastructure or other road users. Con-
versely, area that is not occupied represents drivable road surface. An occupancy grid
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Figure 3.4: Small section of a reconstructed occupancy grid map with cell size 12.5 X 12.5cm
(KITTI dataset). Black and white colors indicate free and occupied space respectively, while
gray is the prior probability of unobserved area.

map, in this respect, represents the external environment through concepts relevant
for autonomous driving. The proposed odometry method uses this representation to
aggregate new sensor measurements and simultaneously align them with what was
seen in the past, while updating the occupancy of already seen areas with the new
observations. The process is commonly refereed to as Simultaneous Localization and
Mapping (SLAM).

In the literature, authors make use probabilistic maps, first proposed by [38] in
1985. Besides mapping, the occupancy data can also be used for various other key
functions necessary for the mobile vehicle navigation, such as positioning, path plan-
ning, collision avoidance object detection and prediction of the future state of the
environment. Other authors have also suggested that occupancy grid maps are the
most successful environment representation in mobile robotics [39]. Moreover, in
the domain of autonomous vehicles, occupancy maps provide a very efficient way of
compressing sensor data when recording a background model of vast environments,
Figure 3.4. For example, range data from laser or radar sensors can be fused with
object detector outputs and 3-D points from stereo cameras within the same proba-
bilistic model. By assuming that the world around the vehicle is locally flat and that
it can be precisely modeled as a two dimensional map, the localization can be sim-
plified into an image registration problem which can be solved more robustly than a
full 3-D registration. The technique is not without downsides though, representing
the environment as an image/map requires us to discretize the space which puts the-
oretical limits on the registration accuracy. Moreover, maps are poor container for
sparse measurements requiring large amounts of memory to be wasted modeling the
unobserved space. Thus, the more dense and redundant the sensor data is (think of a
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Figure 3.5: Example data from a vehicle taking a right turn. The three images illustrate the data
flow in the proposed odometry method: a - overlay of two 3-D lidar point clouds (red-current,
white-old); b - overlay of the two occupancy grid representations of the respective point clouds
(red-occupied cells in the present, white-occupied cells in the past); ¢ - the computed phase
correlation.

wall scanned vertically at regular intervals of 2cm), the more sense it makes to use a
2-D map instead of registering the original sensor data. However, if the sensor data
is sparse but unambiguous, other techniques such as ICP offer better performance. In
the following analysis we rely on relatively dense data captured by a rotating 3-D lidar
sensor which effected the choice to do the registration using a 2-D map representation.
An efficient implementation of these maps has been proposed by [40], which will be
further explained.

3.3 Overview of the proposed method

The proposed ego-localization method estimates the motion of a land robot which
moves on a relatively flat surface. The solution assumes a locally flat world which
reduces the 6-DOF solution space to 3-DOF by discarding the pitch and roll as well as
vertical translation. In this context the ground surface is considered locally flat if the
region seen by the on-board sensors can accurately be approximated by a single plane.
The method uses a sensor-agnostic representation, a 2-D occupancy grid map, which
transforms observations into occupancy of the environment into small grid cells. In
this context of autonomous driving, a grid cell is considered occupied if the sensors
observe any obstacle for the vehicle in that area. All detected obstacles are ortho-
graphically projected onto the ground plane and converted into occupancy using an
appropriate sensor model. When aggregating measurements from multiple sensors
such as lidar range data, radar targets or camera detections, the occupancy map in-
tegrates these heterogeneous sensor observations into a single image-like container
which is then easy to interpret.

We use the notion that sensor measurements from a moving robot map into oc-
cupancy content which appears to move opposite to that of the robot’s own motion.
This is because the physical translation and rotation of the robot causes translation and
rotation changes to the sensor coordinate system over time. If the robot turns to the
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right, see example a) in Figure 3.5, the 2-D occupancy content appears to be turning
to the left. Similarly, if the robot moves forward, the computed occupancy content
seems to move to the back. Based on this observation, it’s clear that the motion of the
robot is proportional to the shift and rotation in computed occupancy maps over time,
b) in Figure 3.5. The proposed odometry method estimates these two quantities us-
ing the correlation-based image registration technique Phase Only Correlation (POC).
POC uses the phase information in the Fourier transform of two consecutive occu-
pancy maps, decoupling the estimation of rotation from the estimation of translation
in the following steps:

Step 0: At time ¢, compute the local occupancy map from the current sensor obser-
vations by projecting them onto the local ground plane and applying the appropriate
sensor model. An optional pre-processing step would include first the estimation of
the ground plane orientation (which might change during accelerated motion due to
the vehicle suspension).

Step 1: Estimate the vehicle’s yaw rate by measuring the rotation of consecutive
occupancy maps (captured at ¢ and ¢ — 1). This step uses the notion that an occupancy
map that rotates in Cartesian space exhibits linear shift in polar space. Thus, the
physical rotation of the vehicle is equal to the change in the theta coordinate which is
observed as a horizontal shift of the occupancy in polar coordinates. POC computes
this shift by correlating the phase information of two occupancy maps in the Fourier
transform domain. The Fourier transform preserves the original rotation information
and is invariant to the original translation.

Step 2: Estimate the robots franslation by measuring the residual shift in the
occupancy map. The algorithm works by first correcting the current occupancy map
using the angle computed in step 1. After the current occupancy map is “unrotated”,
the only difference between the two maps can mostly be attributed by to translation.
This translation is then estimated using the same procedure as in step 1, with the
difference that instead of the polar we now use the original x-y representation of the
two occupancy maps.

Step 3: Refine the initial POC solution using sub-pixel peak estimation. This step
is needed because the proposed method is constructed of several discrete algorithms
(finite occupancy map and discrete cells, discrete polar transform and discrete Fourier
transform). The position of the initial POC estimate (see example c) in Figure 3.5)
takes discrete (whole pixel) values which limits the precision of the estimate to the
resolution of the map. Therefore, the final x-y translation and yaw rate is computed
using sub-pixel peak estimation of the position of the POC estimate.

3.4 Modeling the environment

The proposed method compares current observations to the ones from the past and
estimate the egomotion as the inverse of the apparent disparity in the observations.
Assuming that vehicles move in a 2-D coordinate system, we chose to model the
environment as a map that describes the 2-D structure relevant to the vehicle’s motion.
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To illustrate this further, imagine a scene with a single vertical obstacle on the ground.
Since our vehicle is limited to moving on the ground, the area on the ground under the
obstacle is considered occupied regardless of its height i.e., the vehicle cannot fly over
or under an obstacle. Withing these restrictions, the 3-D structure of the environment
can safely be represented as a 2-D, birds-eye-view map that models which areas are
occupied and which ones are free. We refer to such binary maps as occupancy grid
maps.

The system considers a grid cell at location x to be occupied if the sensors observe
any object that sits sufficiently higher than the ground plane, so that it causes a po-
tential collision threat to the vehicle. The likelihood of observing an object above an
occupied grid cell increases with height above the ground. Each time a sensor mea-
surement is obtained, a new estimation of the orientation of the local ground plane
is performed and the data is projected onto this estimated plane to compute the oc-
cupancy for the currently perceived environment. Then, this current occupancy is
matched and registered onto a global occupancy map which contains all the occu-
pancy information form the past. Formally, an occupancy map represents a binary
random field which summarizes the sensor data into occupancy (position and to a de-
gree shape) of all objects on the ground plane. For practical purposes, we define the
occupancy map o as the matrix containing occupancy values o (x);x € Z? for cells
at regularly sampled positions x : (x, y) on a 2-D plane.

Occupancy maps can be estimated either using a single sensor scan or estimated
from sensor measurements over time, assuming that the pose (location and orienta-
tion) of the vehicle. In the first case, due to the limited range of sensors, we are only
estimating the occupancy of the local environment, while in the second case, the occu-
pancy of the environment along the complete trajectory of the vehicle over the given
time period.

When multiple sensor measurements zg.; are used to reconstruct the occupancy
over the time period O to ¢, we can use a probabilistic approach and maximize the belief
in the probability of occupancy for each grid cell at time ¢ given all previous observa-
tions: bel (0 (x¢)) = po,|z,.. (0(Xt) |2o:¢) . In the exposition Section 2.3, we defined
a measurement M (t) = {(z;)} as the list of detections, however, in this analysis we
will use the simpler notation z; to indicate the vector that aggregates all observations
made by the sensor at time ¢. These might be the center points of all objects detected
by lidar regardless of their class label, or for unprocessed lidar data, observations z;

represent the points of the scanned 3-D point cloud at time ¢. Each measurement point

leps being in Cartesian space with origin at the current position of the lidar.

zy

In the process of estimating the ego-motion, the proposed method applies the con-
cept of simultaneous localization and mapping (SLAM) which aligns the current ob-
servation to the ones from the past using occupancy maps. We define the ego-motion
as a series of rigid transforms defined as pose matrices P;. Formally, a 3-D pose ma-
trix P = (R |t), consists of a rotation 3-D matrix R € {R**3|RTR =1 ,|R| =1}
and a 3-D translation vector t € R3. It defines the rigid transformation between two
coordinate systems, and in our problem, effectively explaining the change in position
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and rotation of the vehicle through time. The SLAM procedure thus constitutes the
estimation of the current pose matrix P; by registering the current to the old measure-
ments, zg.;—1 and z;, while at the same time updating the probability of occupancy
PO Zowe,Pos (0 (Xt) |Z0:¢, Po:¢) using the now registered measurements z;.

Using a 3-D lidar as an example sensor, the measured set of 3-D points at time ¢
(using homogeneous coordinates) can be transformed to the corresponding set sam-
pled at time ¢ — 1 using the rigid transform defined by P;:

] R ot 2 Rl 4t
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Note that the origin of the coordinate system of o is defined as the location of the ve-
hicle at ¢ = 0 and the initial orientation R is relative to the orientation of the ground
plane at ¢ = 0. Even if the world is completely flat, the orientation of the vehicle
relative to the ground plane can change due to its suspension. This becomes impor-
tant for computing bel (o (x;)) from the current observations because small changes
of the orientation of the observed ground plane can cause the map to become inaccu-
rate and distorted. The problem becomes even more pronounced when the vehicle is
accelerating, braking or driving over bumps and potholes, see Figure 3.6.

At each time step t, the proposed algorithm first estimates the orientation of the
ground plane which will become the plane for mapping the occupancy. In the context
of autonomous driving, this plane can be assumed to coincide with the road surface
around the vehicle. Since the vehicle is driving on the ground plane, we expect that the
overwhelming majority of observed points belong to the road and use this notion to
find the plane which fits most of the points in z;. For the sake of brevity, we chose to
use the RANdom SAmple Consesnsus (RANSAC) which iteratively selects a random
sub-sample of points to generate a plane equation for which the average distance of
all other points is computed and the subset with the lowest average distance (highest
number of inliers) is selected. From the list of inliers of this optimal subset, a new
plane is fitted in a least squares sense. The orientation of the estimated local ground
plane is defined by its normal vector n = (a, b, ¢), which we can use to compute the
Direction Cosine Matrix i.e., the 3x3 rotation matrix of what transforms the captured
point cloud from its original reference frame to the reference frame of the estimated
ground plane:

11 C12 (13
C=|ca co2 co3 |, (3.2)
€31 C32 (33

where the element in the i*? row and j** column represents the cosine of the angle

between the i-axis of the reference frame n,..; = (0,0, 1) , and the j-axis of the ground
plane.

As proposed by [22], the process of occupancy mapping can be decomposed into
many one-dimensional estimation problems, which are solved independently of each
other. In most practical cases, a static-world assumption can be safely made i.e., the
world structure does not change over time. Moreover, occupancy maps make an even
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Figure 3.6: A side-view of a tilted lidar point cloud (blue) captured during accelerated motion.
The green dashed line coincides with the plane z=0, while the true ground plane lays close to
the plane estimated by the proposed method, shown with a red dashed line.

stronger assumption of local conditional independence given knowledge of each in-
dividual grid cell regardless of the occupancy of neighboring cells. Depending on
the type of sensor (camera/radar/lidar) and the relative size of grid cells, assuming
local conditional independence can be incorrect because a single sensor reading will
span over multiple grid cells. However, it allows us to decompose the map estima-
tion problem into multiple, independent local estimation problems. These local es-
timates correspond to the probability of occupancy for the individual cells o (x;) at
time t: po,|z,.,,py., (0(Xt)|Z1:t, P+ ). In order to avoid series of multiplication of
small numbers (which lead to rounding errors over time), it is common to compute the
log-odds, replacing multiplications with addition operations:

PO Z1.4,P1t (0 (x¢t) |Z1:t, Prut)

[ (x¢) =1In ,
() L= D0,121.4, Py (0(Xt) |Z1:4, Prit)

(3.3)

where the posterior probability of occupancy can be recovered from the log-odds I,
through:
1

1+ exp (=1 (x4)) 34

PO |2yt ,Prt (O (Xt) ‘Zlitv Pl:t) =

The log-odds in Eq. (3.3) can be estimated recursively by applying the Bayes rule

to the posterior po,|z,.,,p,., (0 (X¢) |21+, P1.¢ ) . For notational simplicity, the follow-

ing analysis assumes that the pose matrix P, is known and is contained in the obser-

vation vector z;. With these assumptions we can decompose the posterior probability
of occupancy into:

DZiZ1.4-1,0: (z¢ |Z1:0-1, 0 () )pOt‘let—l (0(xt)|Z1:4-1)
Po,|z,.. (O (Xt) |Z1:t) = -
Pz |Z1en (Zt ‘zl:t—l)

(3.5)
In order to reach a practical solution for Eq. (3.3) we will make the assumption that
the world is static, meaning that the map is not changing over time. This allows us to
consider all past sensor observations to be independent given knowledge of the map o
for any point in time ¢, and more so, since we assumed the conditional independence
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of individual grid cells o (x):
p (2t |21:0-1,0(xt)) = p(z¢ |o(xt) ) . (3.6)
Applying this assumption the posterior in Eq. (3.5) becomes:

p(ze|o(xt)) p(o(x¢) |Z1:6-1)
P (2¢ |21:4-1)

p (O (Xt) |Z1:t) = ) (37)

which can further be simplified by applying the Bayes rule to the term p (z; |o (x) ):

p(0(x¢)|z¢) p(2e) p(0(X¢) |Z1:0—1)
p(o(xt)) p (2t |21:4-1)

p(0(xt)]21:4) = , (3.8)

where p (0 (x;)) is the occupancy prior and p (z;) is generally equal for all observa-
tions. To complete the log-odds in Eq. (3.3), the probability of the grid cell to be free

D (0 (xt)) is computed by analogy:

) _ b (TXtHZt) p(z:)p (mhl:t—l)

p(o(xt) |21 — ) (3.9
( p(06) p (2 [21.01)
and plugged in Eq. (3.3) to eliminate several hard to compute terms:
p(o(xt)|2:) 1 —p(o(x) p(o(xt)|2i-1)
l =1 1 | . (3.10
) ol T 060 T oGz O

By substituting the previous log-odds [ (x;_1) = In % into Eq. (3.10),
we arrive at a recursive equation:

plo(x)lz) ., 1-p(o(x)
T ploG)z) ™ plo®)

where the initial values can be constructed from prior probabilities without observing
any data:

I[(x¢)=In

(o), (D)

p(o(x))

l(xg9) =In o))’ (3.12)

In order to implement the occupancy map model in practice, we need a way of
evaluating the sensor model po|z (0 (x)|z). We hereby present a model based on
lidar, but the similar analysis can be applied to radar, ultrasonic range sensor and, to
degree, a camera object detector. The measured distance by lidar depends on a va-
riety of properties, such as the surface material of the object and the angle between
the surface normal and the beam. Using known target positions we analyzed the er-
rors in measured range and azimuth for the Velodyne VLP-16 Puck 3-D lidar and
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Figure 3.7: Example of a 1-D lidar sensor model (left) and the computed probability of occu-
pancy map (right; brighter is more probable). The red line overlaid in the occupancy map shows
the 1-D occupancy model applied to a slice of the lidar scan from the car (blue ellipse).

concluded that both the range and azimuth measurement errors are accurately mod-
eled by a Gaussian distribution with a variance of 3c¢m and 0.35° respectively. When
we use accurate sensor such as the Velodyne lidar, depending on the grid cell size,
Po|z (0(x) |z) can be take form as the piece-wise linear function shown in Figure
3.7. Any lidar measurement higher than a collision threshold (for example 15¢m)
will cause cells in front of the point to have near-zero probability of occupancy, the
cell which contains the measurement to have near-one probability of occupancy, while
cells behind the measurement are unobservable and modeled with a constant proba-
bility of occupancy, in the literature it is common to use a non-informative value of
0.5. The example in Figure 3.7 demonstrates the missing lidar measurements behind
the car (indicated with a blue ellipse) and the resulting uninformative occupancy map
region in the shadow of the occupied cells (indicated with blue arrow).

Finally, it is worthy to mention that there exist an alternative approach for comput-
ing occupancy maps by using a forward sensor model which computes the likelihood
of the sensor measurements in the space of all possible maps. This approach max-
imizes the probability that the given measurement is observed over the entire state
space of all possible map configurations. However, when dealing with point cloud
data from lidar the forward model formulation is not suitable for real-time operation
since finding the optimal map configuration depends on all sensor measurements from
the past. Methods such as [34] propose simplifications using surface patches instead
the raw lidar points, yet a single optimization step requires around 5 seconds to com-
pute. Further information about the implementation of such forward models can be
found in [22].

3.5 Ego-localization by registration of occupancy maps

As the vehicle is moving through the environment, it experiences rotational and
translational changes to its pose and location. This change in pose is best illustrated
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through the change in Euler angles i.e., the angular velocities(wy, wy,w,) and the
change in location through the offsets(Ax, Ay, Az) between two time instants. We
refer to rotation around the x-axis (pointing to the right of the vehicle) as pitch, rotation
around the y-axis (pointing to the front of the vehicle) as roll and rotation around the
z-axis (pointing up) as yaw. When the vehicle is turning this motion is causing change
in yaw |w,| > 0. Similarly, when the vehicle is entering a ramp with change in the
incline (grade) the motion results in change in pitch |w,| > 0. Lastly, a change of road
camber causes change in roll |w,| > 0.

Ego-localization constitutes the estimation of the angular and positional changes
of the vehicle as it is moving through the environment. The estimation of these
changes can sometimes be complicated by the vehicle suspension which resists sud-
den forces applied to the vehicle’s body trying to dampen sudden changes in velocity
and keep the vehicle level to the ground. As we discussed in Section 3.2, it can be
generally expected that the vehicle is moving in a relatively flat environment which
makes the actual change in roll, pitch and elevation between two consecutive laser
scans negligible (w, ~ 0;w, ~ 0; Az =~ 0).

Assuming that the vehicle is moving through a mostly static environment, the
apparent change in the content of consecutive sensor measurements can be entirely
attributed to the ego-motion. Any measured point or feature in the present is thus
related to an appropriate point or feature measured in the past through the augmented
pose matrix P;. Estimating the pose then amounts to finding the augmented matrix
that minimizes the distance between the two sets of 3-D points after transformation:

P, ~ argmin . d (RZL”]_1 +t ZLi]) : (3.13)
Rt 5

using the point to point distance function d. The solution of the ego motion is a typical
non-linear least squares problem whose solutions are often highly sensitive to outliers.

A widely used technique to solve point cloud registration for odometry is the
Iterative Closest Point algorithm [41] which is iteratively searching for the nearest
neighbors for each point. Although effective, ICP is sensitive to errors in the correct
matching of points between input point clouds. Faulty matches cause large error in
Eq. (3.13) which throws the solution away from the global optimum. For example, the
point cloud generated by a rotating 3-D lidar sensor has a non-uniform sample den-
sity that can cause (distant) objects to sometimes be scanned, but sometimes missed.
A missing data point can be seen as an outlier and causes ambiguity which greatly
reduces the accuracy of ICP. Practical implementations of ICP often apply thresholds
or probability of distances to discard outliers, but this also creates the need for an ap-
propriate threshold which depends on the structure of point sets and thus is hard to
choose. Another strategy for coping with outlier noise is to reject outliers by adopting
a coarse to fine process, which can also perform poorly in the case of a large amount
of outliers in the point sets. A popular method for robust fitting in the presence of
outlier noise is the Random Sample Consensus (RANSAC) which is designed to cope
with large percentages of outliers in the data [42] and can be applied to iteratively
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estimate the rotation and translation by using a subset of 3-D points which produce
the maximum number of inliers. Although robust, RANSAC methods are based on
sampling which makes them slow to converge.

The approach taken in the proposed method is guided by the idea that the vehicle
motion happens on a 2-D plane and can be explained by matching the features of the
environment projected on the ground plane. A large proportion of the 3-D informa-
tion, which otherwise would increase the computational load in ICP based methods,
becomes irrelevant for this task. The proposed odometry algorithm starts by comput-
ing the occupancy map of the local environment, as explained in the steps in Section
3.4. Practically, we will use the log-odds representation from Eq. (3.11) to compute
the current log-odds map [ (x;) from only the current data z, (setting [ (x;_1) to zero),
and compare it to the previously built log-odds map [ (x;—1) which contains all past
observations. Computing I (x¢) can be performed independently for each log-odds
grid cell in a single step:

plo(x)lz)  1-p(o(x))
1—p(o(xt)]|ze) p(o(x))

where the term [ (x;_1) is zero by definition because we are using only the current
observations to compute [ (x;).

[(x¢) =In +1(x¢-1), (3.14)

The proposed algorithm then tries to register [ (x;) to the map [ (x,_1) using im-
age registration and approximate the solution in Eq. (3.13). Since the sensor is rigidly
attached to the vehicle, the pose of the sensor corresponds to the orientation and posi-
tion of the vehicle. At initialization, we set the pose at the origin and all consecutive
coordinate transforms are relative to the pose Fy:

Po=(R|t)=(I]0). (3.15)

Since our occupancy map consists of equally sized grid cells which are regularly
spaced, we can safely treat the two maps [ (x;) and [ (x,_) as gray-scale images
where each grid cell is a pixel. From the example shown in Figure 3.5 it is apparent
that vehicle rotation w, will produce rotation of the image features in I (x;) relative to
l (x¢—1) , and vehicle translation t will shift the rows and columns respectively.

Estimating the pose matrix P, in this image domain becomes as simple as es-
timating rotation and translation through image registration. We propose to use the
Phase-Only Correlation [43] (POC) registration method to solve for the optimal co-
ordinate transform of the two images. POC is a frequency domain technique used
to estimate the delay or shift between two copies of the same signal. This technique
is based on the shift properties of the Fourier transform. Compared to the classical
cross-correlation method the accuracy by which the peak of the correlation function
can be detected by POC is much higher [44]. It is known [45] that the phase correla-
tion always contains a single coherent peak at the point of registration corresponding
to signal power, and some incoherent peaks which can be assumed to be distributed
normally over a mean value of zero. The amplitude of the coherent peak is a di-
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rect measure of the degree of similarity between the two images. More precisely, the
power in the coherent peak corresponds to the percentage of overlapping areas, while
the power in incoherent peaks correspond to the percentage of non-overlapping areas.
The steps for estimating the rotation are visualized with example data in Figure 3.8.
The two input images I (x;) and I (x;_1) (a-I and a-II in Figure 3.8) are transformed
using the 2-D DFT, with a slight abuse in notation:

Li=F (z’ (xt)) CLey = F((xe-1)), (3.16)

where we use F (x) instead of F (u, v) to denote the two-dimensional Fourier trans-
form of image x at coordinates (u,v), while the respective amplitude spectra are ‘Lt’

and |L;—1| (b-I and b-II in Figure 3.8). Using the shift-invariance property of the
Fourier transform, we can use the amplitude spectra for estimating the rotation dif-
ference as follows. We first transform them into polar p, 6 coordinates (c-I and c-1I
in Figure 3.8). Recall that translation along the azimuth axis in polar space equals to
rotation in 2-D Cartesian space, thus the vehicle rotation w, can be estimated from the
2-D convolution using the cross-power spectrum R, written out entry-wise for element
index (j, k):

Ly jkLi—1jk

Ry ji = , (3.17)

‘Lt,jkLtq,jk

where L is the complex conjugate of the polar spectrum of the log-odds map [ (x).
The phase-only correlation is defined as the Inverse Discrete Fourier Transform of
Eq. (3.17):

ro=F (R, (3.18)

where r; in our case is a 2-D array of non-negative values (d in Figure 3.8). Recall
that r; is the phase-only correlation of the Fourier spectra of the input maps which
we converted into polar coordinates. The orientation of the vehicle along the z-axis
(and hence its ego rotation) is proportional to the horizontal (azimuth) coordinate the
horizontal coordinate in r;. The correlation peak in 7, (z,y) therefore estimates the
physical rotation along the z-axis (yaw) up to a scaling factor M :

Wy R % = [Az] + |Az] = arginaer (x,4) + |Az], (3.19)

where [Az] is the integer part of the horizontal coordinate of the peak in 7; estimated
as the position of the maximum of the sum of the POC along the vertical direction (e in
Figure 3.8) and the scaling factor M converts from the POC pixel values into physical
rotation in radians. The accuracy of the integer part of the solution is bounded by the
resolution of the grid cells, the resolution of the FFT as well as the polar transform.
The remaining fractional part | Ax | can estimated by means of sub-pixel fitting using
the Foroosh method [44] which fits a sinc() function through the peak and its adjacent
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Figure 3.8: Visualization of the steps in the POC algorithm registering two occupancy maps
a-I and a-II taken during a right vehicle turn. The images b-I and b-II represent the amplitude
spectra (suppressed low frequencies for visualization) computed from Eq. (3.16). The images
c-I and c-II represent the polar transform of the spectra in b-I and b-II respectively. The image
in d) represents the POC as computed from Eq. (3.18) and the plot in e) is the sum of the POC
along the range dimension. The red ellipse indicates the position of the peak in the POC.

cells.

The estimated ego-rotation w, is proportional to the integer position of the peak in
r plus the sub-pixel displacement (see the derivation [44], equations 18-22):

Ni . Yo (1+[Ax], )
w, = A ]"‘Zir(1+[Ax]7i):|;r([Ax],i)

(3.20)

Once w. has been estimated, this transform is applied to [ (x;) to match I (x;_).
The only remaining difference of the two maps can be assumed to be due to translation
of the vehicle. The longitudinal translation t, = Ap can thus be estimated by apply-
ing the same technique from Eq. (3.16) through Eq. (3.19), but without the polar trans-
form. Finally, for each time step ¢ the 6-DOF pose change matrix P, = (R; |t; ), ap-
proximated by the planar 3-DOF pose change (assuming w, = 0; wy = 0; Az, = 0)
is computed as:

cosw, —sinw, 0 | Ap;cos(w,)
P, =(Ry|ty) =~ | sinw, cosw, 0 | Apssin(w,) | . 3.21)
0 0 1 0

Recall that the algorithm presented in this section can also be used for the purpose
of mapping the environment through applying Eq. (3.11) with the current pose esti-
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—— Ground truth
——— Estimated trajectory

Figure 3.9: Left: estimated trajectory for KITTI sequence 00, middle: computed map with
probability of occupancy, right; satellite image of the area (Weiherfeld, Karlsruhe in Germany).

mate P;. Since the purpose of the method is odometry, the fidelity of the computed
maps is of secondary interest. However, since the current map is registered to the
aggregated map from the past, the quality of the odometry and mapping are intercon-
nected. The accuracy of the registration is affected by the quality of the past map and
how well it matches with the one reconstructed from the current observations. The
dependency is relative to the vehicle speed and sensor range since we need to register
the current map [ (x;) only to the the section of the past map [ (x¢—1) that is currently
observable. For example, using a lidar sensor the current map [ (x;) is computed in
a grid with a size of the maximum range of the lidar (usually "100m) and for its reg-
istration with [ (x;—1) we do not need the historic parts beyond this maximum range
because they do not influence the registration in any way. In this analysis we did not
give attention to this effect which remains to be addressed in the future.

As a closing remark, we present an example of a vehicle trajectory estimated by
this method (left plot in Figure 3.9) as well as the respective probability of occupancy
map (middle image in Figure 3.9) and a satellite image of the environment (right im-
age in Figure 3.9). Note that this map was reconstructed without the use of loop clos-
ing algorithms even though several trajectory loops can be identified. The accuracy of
the odometry and the fidelity of the computed map can be appreciated qualitatively by
comparing the shape to the satellite image. A more thorough quantitative evaluation
of the proposed odometry method follows in the experiments section.

3.6 Experiments and results

The presented algorithm was implemented and evaluated on data captured in a
real-world environment. Accuracy was measured in terms of pose estimation quality
for various trajectory lengths and traffic environments. Additionally, simulated tests
were carried out in order to find the limits of robustness in the presence of signal
degradation. Due to the hard real-time requirements for vehicle odometry, an efficient
GPU program was implemented in the programming language Quasar [46,47]. Poses



56 EGO-LOCALIZATION

estimated by the algorithm were compared to ground truth poses generated by a vastly
more accurate sensor. Raw data streams provided by the lidar recordings from the
KITTI dataset [20, 32] were used to perform mapping and registration analysis. This
particular dataset was chosen as it was the most comprehensive data gathering study
about autonomous vehicles driving through publicly accessible roads at the time of
development. The relevant data in this experiment was captured by the Velodyne
HDL-64E 3-D lidar as input, while the automotive grade Inertial Navigation System
OXTS RT3003 was used for ground truth. The lidar provides 10 point clouds per
second, using 64 laser beams to measure scene geometry up to 120m with accuracy
of 3cm. The ground truth INS provides 250 poses per second with pitch/roll accuracy
of 0.03°, yaw accuracy of 0.15° and 1cm positional accuracy.

Evaluation of trajectory accuracy

The experimental dataset contains 21 recordings from driving the vehicle through
urban, rural and highway roads in Germany. Since the proposed method assumes a
flat world for the mapping, the estimated odometry poses contain information for 3-
DOF changes of the vehicle, namely yaw rate and x, y position change relative to the
starting pose. Although during the ground plane estimation the pitch and roll angle of
the sensor relative to the road surface was estimated, these angles were not used in the
further analysis. Also, the absolute elevation is assumed to be the same throughout the
entire trajectory. Taking these choices we are able to evaluate odometry from a bird’s
eye view, i.e., in 3-DOF which is most relevant for the application of autonomous
driving. Other applications such as drones might be very sensitive to the estimation of
vertical displacements and changes in pitch/roll and the odometry must be analyzed
in full 3-D.

In order to compare to other works in the literature, we adopted the evaluation
methodology and metrics used in the KITTI dataset. The odometry benchmark in
the KITTI dataset compares short sub-sections of the traveled trajectory to the true
trajectory as recorded by an INS sensor. Practically, the evaluation measures how
much the estimated pose at the end of each sub-section differs from the true pose
in terms of average orientation (rotation) and translation error. Average errors for all
sub-segments of length {100m, 200m, 400m, 800m} ,, are computed for every KITTI
sequence where an average across the test set is used to rank different methods. The
error in orientation is defined through the difference between the ground truth and
estimated orientation matrices R, R.; while the error in translation through the dif-
ference between the translation vectors t,, t.; after traversing a segment of length J.
These errors are computed from the relative pose error AP, s:

1 -1 51
APZ',J = (Pest7ipest,i+6) Pgt77‘,Pgt,i+5> (322)
where i is the starting time of the segment and 9 is its duration in time. The time
interval defined by ¢ is variable and depends on speed of the vehicle i.e., the time it
takes for the car to cover any of the IV preset distances. P[l is the pose matrix at the
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Error 3-DOF 6-DOF
Sequence et [%] emr[deg/m] € [%] er [deg/m]
KITTI 00 0.661 0.0075 1.434 0.0151
KITTIO1 0.547 0.0053 2.004 0.0118
KITTI 02 0.720 0.0078 3.126 0.0246
KITTI 03 0.895 0.0192 3.068 0.0222
KITTI 04 0.506 0.0022 2.305 0.0074
KITTI 05 0.598 0.0054 1.323 0.0131
KITTI 06 0.562 0.0058 1.350 0.0146
KITTI 07 0.724 0.0076 1.165 0.0182
KITTI 08 0.838 0.0078 1.678 0.0149
KITTI 09 0.779 0.0082 3.890 0.0296
KITTI 10 1.136 0.0098 3.977 0.0254

KITTI 00-10 0.741 0.0079 2.301 0.0179
KITTI 11-21 / / 1.89 0.0083

KITTIrop 11-21 / / 0.54 0.0013
KITTIyworst 11-21 / / 21.47 0.0425
KITTIy gpan 11-21 / / 2.97 0.0069

Table 3.1: Translation and rotation errors of the proposed method, evaluated on 21 sequences
of the KITTI odometry dataset.

start of the segment and P;rl(s is the pose matrix at the end of the segment. Defining
the odometry error in such a way is highly relevant for object tracking which will
be addressed in the next chapters. Knowing the error in orientation and translation
with respect to a starting point 100m, 200m, etc., behind puts an upper limit in the
precision of tracked objects which the vehicle encounters as it is moving. For the

. . . _ -1
rotation error we use the rotation submatrix AR = (Resi iRest,z‘—HS) thliRgtﬂ;_s_(;
R

(recall P = [ 0

t . .
1 } ), and compute the rotation difference:

enis = dn (R Restins) | R Rovivs) (3.23)

where the angle of rotation along the axis of the starting pose is computed from the

trace of the matrix: R .
t —
dr (R) = cos™? <r(2)) . (3.24)

. . _ -1
For the translation error € ; 5 we use the translation vector At = (R L »Rest7i+5) R 'R

est,t

_ -1, _
€t = dy ((teslt_’itest,iJré) tgt}itgt,iJré) 5 (3.25)

gt,i

gt,i+
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Figure 3.10: Log-log plot of the accuracy of all odometry algorithms evaluated on the KITTI
odometry dataset (6-DOF) at the time of writing. The large markers indicate methods developed
within the IPI research group: purple-Vlaminck et al., red-proposed and green-Van Hamme
et al. The proposed method provides a very fast and simple implementation with accuracy
competitive with most methods in the literature.

such that:
dg (t) = [t][5 - (3.26)

Finally, dataset average errors are averaged over all possible combinations of sub-
trajectories of length 100m to 800m for all sequences. The dataset average rotation
error is expressed in degrees per meter traveled, while the dataset average translation
error is expressed in percent. For example, if the orientation of the vehicle after driving
for 1Km is one degree and its position is off by 1m, then the reported rotation error
will be 0.001°m~! while the reported translation error will be 0.1%.

The results shown in Table 3.1 and compared to other methods on Figure 3.10,
are in the form of average degrees per meter rotation error and average percentage
(meters per segment length) translation error for each sub-segment of length 100m to
800m. On the 6-DOF KITTI test set benchmark (sequences 11 to 21) the proposed
odometry method measures average translation error of 1.89% and average rotation
error of 0.0083°m 1. If we then evaluate the accuracy only on the 3-DOF that the
proposed method estimates, the average translation error is 0.29% while the average
rotation error is 0.0038°m !, Additionally, in Table 3.2 we compare the accuracy of
the proposed method to two odometry algorithms developed within the IPI research
group.

The bar plot shown in Figure 3.11 ranks all of the submitted methods on KITTI
according to the average run-time for a single frame. Note that this is a self-reported
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Figure 3.11: Self-reported run-time (in log-scale) of the odometry algorithms evaluated on the
KITTI benchmark.

€R
Method Sensor  Setting Loop €t [%]  [deg/m
closure x10?]
Proposed [9] Lidar 3-DOF No 2.3 1.8
Van Hamme et al. [48] Visual 3-DOF No 8.9 2.2
Vlaminck et al. [49] Lidar 6-DOF Yes 1.1 0.7

Table 3.2: Accuracy of the odometry algorithms developed within the IPI research group (6-
DOF test). Results from evaluation on the first 11 sequences of the KITTI odometry dataset
(KITTI 00-10).

metric that authors need to provide when submitting their results on the on-line evalu-
ation server. The values should be interpreted with caution since some of the methods
report CPU, while others GPU time. Regardless, our GPU implementation of the pro-
posed method was ranked among the top 10 fastest with an average time of 20ms per
frame.

At the time of the submission in 2016, there were multiple methods which scored
higher on both rotation and translation metrics; see the top two plots on Figure 3.10.
However, most of the top performing algorithms rely on a combination of camera and
lidar information, loop closure, scan to map matching, forward-backward optimiza-
tion, etc. Additionally, the evaluation server computes the full 6-DOF pose estimation
error which creates an unfair disadvantage because the proposed method only com-
putes 3-DOF pose changes.

When evaluated on the full 6-DOF ground truth, the proposed method achieves
accuracy which is 10% worse than the state of the art by means of translation error
and 20% worse by means of rotation error. This discrepancy is to be expected under 6-
DOF evaluation because even though the dataset contains mostly flat roads, there are
slight undulations which create changes in the roll-pitch aspects of the pose and the
z-axis in the translation which our method assume to be zero. However, when qual-
itatively evaluating the shape of trajectories from other methods, we found that even
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much worse methods than ours (in terms of the rotation and translation metrics) pro-
duce reasonably accurate odometry as judged by the fact that the estimated trajectories
form closed loops. It is in the opinion of the authors that the pursuit of significantly
more accurate odometry than the one estimated by the proposed algorithm has little
impact on the performance of perception systems such as object tracking, as will be
presented in the following analysis.

Evaluation of robustness

The KITTI odometry dataset was captured in 21 different locations of the same
city and all data captures were made under good weather conditions. This data set only
allows for the evaluation of odometry under a sub-set of conditions which does not
represent the complete set of working conditions in autonomous driving. For example,
a significant missing scenario is nighttime driving and driving in rain/snow/fog. Such
conditions will most certainly degrade the camera and lidar measurements which can
stress some odometry method that is not designed to cope with noise or outlier data.
The quantitative effect of such degradation on the computed vehicle trajectory remains
largely unknown.

In order to measure the robustness of the proposed method, in this block of ex-
periments we will simulate scenarios with bad weather conditions using the original
KITTI sequences. In order to keep the experiment sensible, we will apply two types
of errors to the input lidar data using realistic degradation models. These experiments
evaluate the robustness of the method to measurement noise as well as missing data
and outliers.

First, the effect of lesser quality 3-D lidar data produced under bad weather con-
ditions was evaluated by simulating a wet environment. During rain, snow or fog
when the environment becomes wet, a thin water film can cause the surface of ob-
jects to become darker [50]. The main cause for this darkening is the possibility of
total internal reflection at the water-air boundary. Some of the light reflected from
the Lambertian surface will be reflected back to the surface by the water-air inter-
face. This light is then subject to another round of absorption by the surface before it
is reflected again. This can lead to a sequence of multiple absorption, resulting in a
darkening of the surface. Such surfaces are more difficult to measure by lidar because
of the low signal-to-noise-ratio and cause the measured distances to be inarticulate.
Practically, we added white Gaussian noise to the position of each point of the input
lidar data, sampling from a zero-mean distribution A/ (0, o) with variance in the range
o € [3cm, 100cm] (the Velodyne HDL-64E used to capture the data has a typical er-
ror of 3cm). Then, the occupancy mapping and proposed odometry was run using the
same settings.

The effect of the parameter o on the translation and rotation accuracy was evalu-
ated by comparing the output to the ground truth as described in the previous experi-
ment. The left plot on Figure 3.12 shows the relationship between measured transla-
tion error (red line), rotation error (blue line) and various noise levels o. A trend of
increasing error with the increase of noise variance can be observed, however, both
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Figure 3.12: Destructive testing of the robustness of the proposed odometry method, left: test-
ing against measurement noise (Additive White Gaussian Noise), and right: testing against
presence of outliers (random measurements uncorrelated with the scene content).

accuracies remain relatively low until unrealistically large errors (o > 50cm) are sim-
ulated. Most contemporary 3-D lidar sensors have a reported measurement variance
well within this range.

Lastly, we test the robustness of the method to outliers by simulating environments
where the air is saturated with particles (heavy rain, snow, smog, dust, etc.). Compared
to the previous experiment, here we expect that the lidar beams will randomly reflect
off of particles in the atmosphere, spontaneously producing false range readings. For
this test, the input point clouds containing n points were polluted by the introducing
m random outliers.

The outliers were placed at random positions irrespective of the content of the
measured data. The limitation of this experiment is such that it is possible for an out-
lier point to be placed behind an object which is not entirely realistic. A more accurate
outlier model would be to perform ray-tracing on each point and only pollute the free
space with outliers. However, for computational reasons we were unable to perform
this and the results should be interpreted within the limitations of the experiment de-
sign. Regardless of the outlier process, the odometry will be challenged in a way that
the optimal solution will minimize the error between all points, both real and outliers.
Since the phase only correlation estimation technique is extremely robust to such out-
liers, it can be expected that a good translation and rotation estimate can be made as
long as most of the occupancy map consists of static content (n > m). Indeed, as
seen on the right plot on Figure 3.12, odometry accuracy remains largely unaffected
up to the point where half of the input data is static content. When the percent of out-
liers outgrows the percent of static content the estimation quickly becomes unreliable.
This, however, is an extreme example of outlier pollution rarely encountered in the
real world.
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3.7 Conclusion and practical implications

The proposed ego-localization method based on lidar odometry was published as
an article in the proceedings of the VISIGRAPP 2016 conference [9]. It demonstrated
competitive trajectory estimation even when compared to methods designed to esti-
mate ego-motion with 6-DOF. By assuming a locally flat world and the 2-D occu-
pancy grid model, registration of consecutive lidar point clouds becomes fast, accu-
rate and robust at the same time. The combination of these three qualities is rarely
achieved in the literature which makes the proposed method applicable for real-world
tasks. Thus far, the method has been implemented in various programming languages
(Quasar [46], MATLAB and Python) and has enabled the further research of environ-
mental perception throughout this thesis.

The practical applications of the proposed method are numerous, and throughout
the time of the research in this thesis, it has been re-used for multiple research projects.
To illustrate just how accurate the computed odometry is, consider that a state of the
art lidar-based object detector, such as Centerpoint [51], detects road users with mean
average translation error of 0.262m. Similarly, the state of the art camera object de-
tector FCOS3D [52] achieves a mean translation error of 0.69m using well calibrated
data. At typical driving speeds of 15m/s and typical sensor sampling rate of 10Hz, the
vehicle covers 1.5m per second during which the sensors make 10 observations. The
proposed odometry method is expected to make 1.1cm error in the positional estimate
between two samples (recall the mean the errors from Table 3.1: 0.74% translation
error and 0.007[deg/m] rotation error). When compared to the positional accuracy
of object detection, the proposed odometry is one to two orders of magnitudes more
accurate. The apparent lack of accuracy compared to other methods on KITTI can
mainly be attributed to the fact that the benchmark is designed to evaluate the full
6-DOF odometry which has limited value in real world applications.

For short-time object detection and tracking on the ground plane, the vehicle po-
sition, as estimated by the proposed lidar odometry, can be considered as perfectly
accurate. This simplifies the matching of object detections over time because the un-
certainty due to ego-motion can safely be ignored. The uncertainty of the detections
is thus governed only by the sensor model which greatly simplifies the tracking al-
gorithm presented later in this thesis. It can be concluded that, within the realm of
automotive environmental perception, any further improvements in odometry accu-
racy will have an insignificant impact on the perception accuracy and the effort should
be spent in identifying border cases of performance in order to increase the robustness.
The proposed odometry algorithm, being relatively simple and robust, is an excellent
candidate for the application. As an ultimate testament to the performance of this
method, a collage of estimated trajectories for several difficult KITTI sequences is
presented on Figure 3.13.
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Figure 3.13: Estimated trajectories (blue) for difficult KITTI sequences. Ground truth trajecto-
ries (red) are provided for some of the sequences.






Single and multi-sensor depth
reconstruction

4.1 Introduction

The human brain’s biological perception system interprets the various objects in
the 3-D environment using inputs from stereo vision, contextual information and prior
experiences. Using its visual short term memory our brains are able to store visual in-
formation for a few seconds so that it can be used in the service of ongoing cognitive
tasks. Such interpretation of the environment can therefore survive eye movements,
eye blinks, and other visual interruptions, maintaining continuity across these interrup-
tions. Although this process is highly subjective and difficult to accurately replicate,
scientists have exploited various ideas to come up with ways of reconstructing the 3-D
world from various sensor inputs.

Most perception systems comprise of a camera and use indirect principles for rang-
ing. The camera images are used to interpret the scene from the visual content while
ranging, needed to localize the interpreted objects, is inferred from the images using
statistical models. Such an artificial perception system could theoretically outperform
human vision by using more sensitive cameras, more precise ranging, smarter reason-
ing, faster processing, etc. Moreover, an artificial perception system does not suffer
from strain which sets in after prolonged cognitive tasks in most biological systems.
An artificial perception system can thus remain in optimal operation indefinitely.

Depth estimation is the process of computing the probable range for all points
within the field of view i.e., the camera image. In terms of detected objects, depth



66 SINGLE AND MULTI-SENSOR DEPTH RECONSTRUCTION

estimation refers to the ranging process i.e., computing the range of individual objects.
If we have the depth value for each image pixel, then ranging of detected objects
becomes as simple as looking up in the depth image. However, the estimation of
a depth image is not a trivial task. One method for computing a depth image is to
find the vanishing lines in the image and use them to infer object ranges from their
appearance along the vanishing lines. Closer objects appear lager and distant objects
are smaller. This task is called monocular or blind depth estimation and will be briefly
discussed in Section 4.5.3, however, as it leads to ambiguous depth estimates it is
given limited interest in this thesis.

More accurate depth perception can be achieved by means of sensors which di-
rectly (lidar, radar or ultrasound) or indirectly (stereo, structured light or structure
from motion) perceive the scene geometry. Stereo and structure from motion meth-
ods operate on a similar principle where the distance to objects is inferred from their
apparent shift (disparity) in the image content when the camera is moved. Stereo
reconstruction uses two, slightly horizontally offset, cameras that look in the same
direction in the scene and measure the image disparity for each pixel. Knowing the
distance between the two cameras (their baseline) and the camera focal lengths, we
can apply a simple trigonometric function to transform disparity values into ranges.
Structure from motion, on the other hand, uses a single camera which moves through
time and captures the scene from slightly different angels. Assuming that the scene
is static and knowing how far the camera moved, structure from motion methods can
accurately transform the perceived disparity of image content into depth values. Both
methods, however, suffer from estimation errors in image regions which are devoid of
textured content e.g., clear sky, road surfaces, walls, etc. The problem is especially
noticeable for distant objects which have very small disparity in the camera images.

Depth perception using 3-D lidars and imaging radars provides the most accu-
rate distance information, but due to the limited resolution of these sensors the depth
images contain only sparse measurements, see the example shown on the top row in
Figure 4.1. Estimating dense depth from accurate sparse measurements (i.e., depth
completion) is valuable as even smaller detections in the image can be accurately
ranged from the depth pixel values. This chapter of the thesis explores methods for
estimating depth images from camera and lidar which are both dense and accurate.
The remainder of the chapter is structured as follows, we start with an overview of the
state-of-the-art in Section 4.2. Then, in Section Section 4.3.2 we deal with the problem
of monocular depth estimation proposing a convolutional neural network which maps
images directly into depth values. In Section 4.3.1 we use a 3-D lidar sensor to gen-
erate sparse depth images which we then complete using a novel semantically-aware
filter. Finally, the two methods presented in Section 4.4 perform depth completion
by fusing camera and sparse lidar depth images using an early fusion convolutional
neural network. All of these methods have been evaluated for accuracy of their re-
constructions and the results of these experiments can be found in Section 4.5. We
conclude this chapter with an analysis on how to integrate the proposed methods into
a larger detection and tracking system and discuss the practical implications and future
directions of work in Section 4.6.
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Figure 4.1: Visualization of camera, lidar and radar measurements in a typical autonomous
driving use-case. 2-D detection of road users can be performed using the camera image (top)
3-D detection is done by lidar (middle) and radar (bottom). For reference, the images show also
the scene depth measured by lidar (middle) and reflected radar signal (bottom).

4.2 Literature overview

Depth reconstruction using a single camera

In the case of a single camera, where range information is not directly available,
depth estimation can be performed in one of two ways: depth estimated from cam-
era motion or depth estimated using statistical modeling of image cues. Assuming
a single moving camera, one can estimate the motion using matching of subsequent
key-points [53] and by knowing specifications such as camera focal length and optical
axis, tracked pixels can be back-projected into 3D space. This technique, most often
cited as structure from motion [54], can be effectively applied in realistic problems
such as Simultaneous Localization and Mapping as we saw in the previous chapter.
When the camera is static, depth can be modeled as a function of the focus [55] or
illumination changes [56] using prior knowledge of the lighting and the environment.
Without such assumptions, the inverse problem of projecting image pixels in the 3D
world has no unique solution. However, it is a fact that the human brain can grasp
the depth structure of the scene even with only one eye. This is because the brain
has capacity to learn high level concepts from past experiences and exploit monocular
cues such as perspective or color contrast.

One of the pioneering and most notable approaches in blind/monocular depth re-
construction is the work by Saxena et al. [57]. Using a 3-D laser scanner they col-
lected a small scale ground truth dataset that was used to train a Markov Random
Field (MRF) which predicts depth as a posterior distribution given a set of image fea-
tures. This basic model uses L-2 term in the MRF interaction potential computations
which captures depths and interactions of depths between several spatial resolutions.
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Although these results advanced the state of the art results at the time, these tech-
niques [57, 58]have limited applicability in a sense that they rely on a fixed set of
absolute and relative depth features. These fixed features must be adjusted individu-
ally for each specific setup where sensor size and lens type can vary greatly.

With the recent advancements in computer hardware and Deep Learning, convo-
lutional neural networks are becoming a more attractive solution for the monocular
depth reconstruction problem. Eigen et al. [59] propose a two scale CNN to learn
coarse and fine depth details directly from RGB images. They argue that much of
the reconstruction error using standard element wise metrics may be explained simply
by how well the mean depth is predicted, so they formulate a Scale-Invariant Error
metric to measure the relationships between points in the scene. This technique pro-
duces fairly accurate depth images at the cost of a high computational load, to miti-
gate this problem they only process the image at 1/4 of the input resolution. Authors
in [60] offer a different solution to the problem by using a super-pixel segmentation
as the domain of processing. The resulting system yields a 10x speedup over previous
approaches while maintaining state of the art accuracy on both indoor and outdoor
datasets. An obvious limitation to this approach is that it is severely affected by the
accuracy of the super-pixel segmentation which is a complex operation in itself. An-
other notable recent work by Laina et al. [61] proposes a multi-scale CNN approach
for monocular depth reconstruction that tackles the computational issues of the pre-
vious authors. They introduce a fully convolutional network with novel up-sampling
blocks that outputs higher resolution depth images and at the same time requires fewer
parameters and trains on one order of magnitude fewer data than the state of the art.
The novelty of the architecture comes from the use of Residual or Skip Layers, first
introduced in [62] which in part inspire our proposed approach. One of the proposed
methods in this thesis, Section 4.4, is built upon these findings extending them by
applying the multi-scale auto-encoder architecture of the U-Net [63].

Depth reconstruction using lidar

The topic of obtaining a dense depth map and interpolation from automotive li-
dar point clouds has been researched by researchers such as [64] and recently [65].
However, even though these resulting depth images look appealing to the eye, the
actual values around object boundaries are far from their correct values. One of the
pioneering depth completion methods, [66] considers estimating each missing pixel
location in the sparse depth image by means of local interpolation within a square
window. The authors analyzed various classical reconstruction techniques which rely
on depth information alone such as inverse distance weighting, Shepard’s Method,
ordinary Kriging, Delaunay triangulation and bi-lateral filtering. Furthermore they in-
troduced a modified bilateral filter which also considers depth dispersion within the
interpolation window. This method can crudely model the appearance of an object
edge or boundary into two categories: foreground and background. A local segmenta-
tion is performed on the depth pixels which produces two clusters from which only the
points that belong to the dominant cluster contribute to the bi-lateral filter. These au-
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thors found out that even simple techniques such as the minimum and median filter can
complete missing depth with comparable accuracy to the more complex bi-lateral fil-
ter. A major drawback in this work is the overly-simplified model of the environment
which doesn’t take into account the geometrical and contextual structure of objects.

Ku et al. [67] propose a surprisingly simple yet efficient depth completion method
using a sequence of morphological operations on the sparse depth image. In their
experiments they show that a small set of fine tuned dilations and erosions is enough
to reconstruct a high quality depth image. By experimenting with various kernel sizes
and shapes they come to the conclusion that 5 x 5 diamond shaped morphological
operators are able to outperform even some neural network based methods. However,
higher level information about object types and shapes is completely ignored, which
can potentially lead to even better reconstructions.

Recently, [68] proposed a method for semantically guided depth completion by
means of local plane fitting. They assume that the environment is locally smooth and
can be piece-wise modeled by 3D planes. With the intention of preserving depth dis-
continuities and tiny structures, they introduce an novel edge and semantics aware
geodesic distance metric. Additionally, they propose an outlier rejection scheme by
utilizing labels from the state-of-the-art semantical segmentation algorithm, FCN [69].
Their reported qualitative results are promising, however, the method is reliant on ex-
ternal segmentation technologies and has since been outperformed by special purpose
neural networks.

Uhrig et al. [70] propose a depth completion method by processing the raw RGB-D
data cube using a novel neural network. They propose a sparsity invariant convolu-
tional layer which is built using an additional sampling mask. The mask holds binary
information about which pixel is scanned by the LIDAR and is used to normalize the
convolutional operations. Therefore, the network can easily handle varying degrees
of input data sparsity without any adjustments or tweaking of the parameters. One
downside of this method is that the network is based on the Fully Convolutional archi-
tecture which has a high computational load. Each inference produces a single depth
pixel value and thus can not be employed in real time applications.

Depth reconstruction using camera-lidar fusion

The simplest depth completion methods using camera and lidar use the camera
image to extract semantic information which is then used to guide a classical image
reconstruction algorithm operating on sparse lidar depth images. The method in [71]
is one such typical example where the authors propose a guided depth reconstruction
filter where guidance is provided by an image of surface normals constrained by a so-
called local brightness normal (LBN) derived from the Lambertian model. As most
of the object’s surfaces are rough in outdoor scene, LBN constraint is derived ap-
proximately from the Lambertian model. It provides physical constraints for normal
estimation. With the guidance of dense normal, smooth and dense depth is obtained
from the guided filter. In the KITTI depth completion data sets, the proposed method
outperforms the current non-learning methods. However, it has some limitations that



70 SINGLE AND MULTI-SENSOR DEPTH RECONSTRUCTION

it over-smooths the results and does not run in real-time.

Similarly, the authors of [72] propose a novel non-learning depth completion
method based on camera and lidar exploiting the local surface geometry. The proposed
surface geometry model is inspired by the observation that most pixels with unknown
depth have a nearby lidar point. Therefore, it is assumed those pixels share the same
surface with the nearest lidar point, and their respective depth can be estimated as the
nearest lidar depth value plus a residual error. The residual error is calculated by us-
ing a derived equation with several physical parameters as input, including the known
camera intrinsic parameters, estimated normal vector, and offset distance on the image
plane. The proposed method is further enhanced by an outlier removal algorithm that
is designed to remove incorrectly mapped lidar points from occluded regions. This
method achieves competitive reconstruction accuracy on the KITTI benchmark and is
computationally efficient making it useful in any environment.

The method presented in [73] describes another image-guided lidar depth comple-
tion algorithm which works completely without deep learning. This method assumes
that separate objects in the depth maps mostly consist of the same color but typically
differ from the neighboring regions. Under this assumption, the method then decom-
poses the camera image into Superpixels corresponding to the regions with similar
depth value and then merges Superpixels corresponding to same objects by gathering
them using a cost map. At the end, the method applies morphological dilation on the
sparse lidar depth image and uses the Superpixel object boundaries to confine the di-
lation. The authors claim state of the art reconstruction accuracy among non-learning
depth completion techniques.

Besides these notable non-learning camera-lidar algorithms, there is a plethora of
end-to-end learning depth completion methods. We hereby provide a short overview
several such methods. The authors of [74] propose a convolutional neural network that
is designed to upsample a series of sparse range measurements based on the contextual
cues gleaned from a high resolution intensity image. Their approach draws inspiration
from related work on super-resolution and in-painting. The proposed dual-backbone
architecture seeks to pull contextual cues separately from the intensity image and the
depth features and then fuse them later in the network. They argue that this approach
effectively exploits the relationship between the two modalities and produces accurate
results while respecting salient image structures. These authors have encountered a
common problem when applying CNNs on sparse inputs. Namely the depth comple-
tion CNNs have poor performance when there is input sparsity. To mitigate this prob-
lem they experimented with replacing all convolutions in the depth branch with sparse
convolutions but noticed a significant drop in performance. They are more inclined
to believe that desirable performance can be achieved with the use of regular convo-
lutions and operations for multi-modal input with simple pre-processing hole filling
operations such as morphological filters, fill maps and nearest neighbor interpolation.
This notion motivates the pre-processing steps we take in our proposed methods in
Section 4.4.

Authors in [75] noticed that a significant challenge in designing CNNs for depth
completion is that their output tends to suffer from depth smearing between objects.
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They propose a new representation for depth called Depth Coefficients (DC) to address
this problem. DC use a one-hot encoding of depth using fixed number of discrete depth
values to represent the sparse input. DCs trade memory for precision while enabling
convolutions to more easily avoid inter-object depth mixing. Furthermore, they show
that the standard Mean Squared Error (MSE) loss function can promote depth mix-
ing, and thus propose instead to use cross-entropy loss for DC. The downside of this
approach is that due to GPU memory constraints, it can only process image patches
and has a slower execution speed. The authors show that their dense depth estimates
can improve object detection compared to sparse depth. Finally, they argue that MSE
is a flawed metric to evaluate depth completion, proposing to use thresholded tRMSE
and tMAE (where the threshold distance distinguishing within-surface variation from
inter-object separation) as they reward high-probable depth estimates and give equal
penalty to large errors, which are mostly mixed-depth pixels.

A deep neural network architecture to infer dense depth from an image and a
sparse point cloud is proposed in [76]. This approach uses a representation based on
inverse mapping of image pixels into 3-D space using the camera calibration matrix.
At inference time, the calibration of the camera is fed as an input to the network along
with the sparse point cloud and a single image. A Calibrated Back-projection Layer
back-projects each pixel in the image to three dimensional space using the calibration
matrix and a depth feature descriptor. The resulting 3D positional encoding is con-
catenated with the image descriptor and the previous layer output to yield the input
to the next layer of the encoder. A decoder, exploiting skip-connections, produces a
dense depth map. The resulting Calibrated Back-projection Network, or KBNet, is
trained without supervision by minimizing the photometric re-projection error. The
main benefit of this method is that it can easily use a model trained with a certain
sensor platform with a different one at inference time because the network also reads
the camera calibration parameters.

In [77] the authors propose a CNN for solving both depth completion as well as se-
mantic segmentation. They use an encoder-decoder network architecture and a sparse
training strategy and show that it can efficiently handle sparse inputs of various den-
sities without the need of retraining or any additional mask input. Furthermore, the
authors found that varying synthetic densities within range of [0, 1] naturally helps
networks to be invariant to different densities. They use a concatenation of RGB and
sparse depth at input and optimize the network parameters using the inverse mean av-
erage error (iMAE) as a loss function. The experimental results on depth completion
outperform all published methods on the KITTI benchmark and are qualitatively re-
markable with only 8 layers lidar. Changing only the last layer, the network can also
perform semantic segmentation on synthetic and real datasets showing that there is an
intrinsic link between the two tasks.

Finally, authors in [78] propose a lidar-only depth completion method that is
trained to reconstruct both a dense depth image as well as a corresponding camera
image. Specifically, they formulate image reconstruction from sparse depth as an aux-
iliary task during training that is supervised by the camera images. During testing, the
system accepts sparse depth as the only input, i.e., the image is not required. Such a



72 SINGLE AND MULTI-SENSOR DEPTH RECONSTRUCTION

Sparse lidar Sparse lidar Segmentation Reconstructed depth image
reflectance image depth image image

Figure 4.2: Block diagram of the proposed lidar-only depth completion algorithm as a com-
ponent in an early camera-lidar fusion object detector. The input to the detector consists of
an RGB image and a depth image reconstructed using a semantically aware multi-lateral filter.
Data from the KITTI dataset.

design allows the depth completion network to learn complementary image features
that help to better understand object structures in the sparse lidar data. The extra super-
vision incurred by image reconstruction is minimal, because no annotations other than
the image are needed. The authors claim that this unique design offers significantly
improved depth completion via the auxiliary supervision of image reconstruction. The
contributions that follow do not explicitly extend any of the aforementioned methods,
but were in part inspired by the novel ideas of the state of the art as well as the estab-
lished signal reconstruction theory.

4.3 Singe sensor depth reconstruction

The two techniques explained in this section outline novelties in single-sensor
(camera-only and lidar-only) depth map estimation. The main challenge for camera-
only depth perception is learning the inherently ill-posed transformation from 2-D to
3-D which can be approximated using statistical models and a large training dataset.
On the other hand, depth map estimation using only lidar data alone is also challenging
because of the significant measurement sparsity. The result of the proposed methods
has been re-used numerous times within the IPI research group and has resulted in the
publication of several novel object detectors: [79-81].

4.3.1 Lidar-only depth estimation

In this section we will analyze the problem of reconstructing accurate depth im-
ages from data captured by lidar. As with the previous approach, these reconstructed
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depth maps can then be used to range detections from a stand alone detector, or al-
ternatively, fused with camera images to train an object detector, see Figure 4.2. The
main focus of the following analysis is reconstruct the depth image from lidar most
accurately, while in the experimental section we provide an example of how depth can
be further used as additional channel to train an object detector operating on RGB-D
images.

We use a common representation for the lidar point cloud and the camera image:
a depth map matching the camera field of view and pixel resolution. A point-cloud
projected onto this view produces a sparse depth map which we then complete using a
signal de-noising and completion theory. At the time of writing, the proposed method
represented the state-of-the-art in classical depth completion of 3-D lidar data. The
method completes a depth image using high-level semantical information, extracted
by segmenting the lidar point cloud itself. This semantical information is used to guide
a semantically aware multi-lateral filter (SAML) which preserves not only edges, but
complete shapes of objects.

In this single-sensor method the semantical information is extracted also from the
lidar point cloud, while the methods in the following sections propose a sensor-fusion
approach where the much richer camera image information can be used for even better
discrimination between objects and the background. Much of the analysis here will
be focused on data captured by the Velodyne HDL-64E automotive lidar, however
the developed algorithm can be adjusted to operate over point clouds from other 3-D
sensors. During the later stages of the research covered in this thesis the multi-lateral
filter was successfully deployed on data captured by the Velodyne VLP-16 and the
Ouster OS1-128 lidars.

The method starts by computing a sparse depth image D (.) and a sparse infra-red
reflectance image I/ 7! (.) from the lidar point cloud using the pinhole camera model,
see formal definition in Appendix A. An example of how such sparse images look
like is shown on the left image in Figure 4.3, where the depth pixels are overlaid on
the camera image for reference. The goal of the proposed method is to estimate the
missing depth values for each pixel in the depth image, as shown on the right image
in Figure 4.3.

Due to the low sampling density of the projected depth image, object boundaries
are not well represented and simple interpolation techniques produce unsatisfactory
results. For example, reconstructing the missing depth values of pixels near object
edges using linear interpolation will produce ramp values which are unnatural. How-
ever, it can be expected that the empty depth pixels contain the same or similar struc-
ture to nearby, sampled pixels. Object edges can be seen as a discontinuity in the
depth function and flat regions have smoothly varying values. Thus it is natural that
we do the reconstruction of the depth image using a form of an edge preserving fil-
ter. This task has been performed with great success in the image domain using the
bi-lateral filter [82]. It follows the paradigm of locally varying filter coefficients that
process the image intensity in two directions simultaneously. Two functions, measur-
ing geometric closeness and photometric similarity, are adapting the filter coefficients
to the local image patches. The resulting filter is optimized to suppress noise while
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Figure 4.3: Section of a scene from the KITTI tracking dataset. Left: camera image overlayed
with projected range values from lidar, right: fully reconstructed depth image from the data on
the left.

preserving details around sharp edges. Formally the discrete bi-lateral filter output at
pixel coordinates u = (u, v) is defined as:

I'(u) = % > Lt (lw —ul) g (1 (w) — ()l (4.1)

u; €S

where the output I’ (u) becomes the weighted average of the input value and the prod-
uct of the kernels f (.) and g (.) over the local neighborhood S and the weight factor
w is a normalization constant. The first function measures the inverse Euclidean dis-
tance of pixel positions within S, and the second function measures the distance in
luminance values, usually following a radial basis function. The proposed depth up-
sampling method performs a similar filtering task on the sparse depth image D by
extending the bilateral filter Eq. (4.1) so that it not only depends on the spatial simi-
larity:

£ (Ju; — uf) = exp (—a u; —uf3). (42)

but also the infra-red reflectance similarity, a property measured by most lidars:

b (119 w) = 107 u,)) = exp (_5 (117 ) - 17 (ui))2> R
depth similarity:

£ (D(w) — D(u;)) = exp (=7 (D(u) - D(w))?) (44)

and semantical similarity computed from the semantic segmentation image O over the
local window S;:

f4 (O(u;), mode(O(S;))) = 4.5)

5 if O(u;) = mode(O(S;)),
1— 6 otherwise,
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where S; is an image patch, formally a set of pixel positions u; centered around u;,
O(u;) is the categorical label of the pixel at u; (semantical class, object id or similar)
and mode(O(S;)) computes the most frequent label of the image patch S; not counting
any missing values. The depth and reflectance similarities are defined as the convex
metrics, while the semantical similarity is the discrete metric over the discrete metric
space of segmented object labels.

The parameters «, 3,7 and & control the relative influence of each factor on the
reconstructed value. Formally the proposed depth upsampling is a multi-lateral exten-
sion of Eq. (4.1) which computes a new depth value D’(u) for each pixel position u
as:

D'(u) =23 cs D (Ju; —ul]) fa (175 (u) — 17E) (u;)) 4.6)

f3 (D(u) — D(u;)) f4 (O(u;), mode(O(S;))), '
where the empty inputs are assigned with object labels based on a local k-NN cluster-
ing, with the value of k varying based on the lidar model, usually k£ = 3.

In order to be able to combine the depth and infra-red reflectance filter terms we
rely on two important assumptions about the nature of the input signal. Firstly, depth
is a smoothly varying property except at object boundaries where the derivative is
infinite and secondly, properties of infra-red reflectance image can be approximated
with properties of natural light images i.e., smooth local variations and sharp object
edges. In practice, it is very difficult to model the infra-red reflectance image since
it is product of angle of incidence of the lidar light i.e., the scene geometry and the
surface material properties of the object. Based on this assumption, the first factor
of Eq. (4.6) allows more influence based on image pixel distance, the second factor
similarly looking infra-red measurements to contribute more, the third factor allows
similar depth measurements to contribute more while the last factor allows depth to be
interpolated from samples within the same object. The dominant object O(S) is re-
computed for each position u and thus every depth pixel D(u) will be reconstructed
from the data of the dominant object in its own neighborhood.

The novelty of this method is the proposed algorithm for computing the seman-
tical image O from lidar point cloud itself and not the camera image. This way the
semantical image is perfectly aligned with the sparse depth image D. In an automotive
context, the objects of interest are usually not physically connected to each other and
can be segmented in a birds-eye view based on the region growing algorithm. Object
boundaries are therefore very important and can be defined as the limits of free space
that spans around the vehicle. To that end, the occupancy grid maps defined in Section
3.4 can be re-used for segmenting the lidar point cloud into non-overlapping objects.
In this representation objects of interest can be segmented from the ground plane by
applying a threshold on the probability of occupancy.

The proposed method uses a RANSAC based ground estimation technique to fit
a plane to the point cloud around the vehicle. Then, an occupancy map is computed
by discarding points above the ground plane. In most this can be done using a simple
occupancy threshold. Following this step, we are left with a binary grid consisting of
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Figure 4.4: Example demonstrating the proposed Lidar point cloud segmentation. Left: the
input 3-D point cloud and the estimated ground plane with normal vector, middle: the computed
occupancy map for the same scene, and right: a color-coded segmentation map.

free and occupied space. Assuming that each unique object is completely surrounded
by free space, we treat every cluster of connected occupied space as a unique object.
The actual computation of clusters can be performed by any fast connected compo-
nents labeling algorithm. The object label of each cluster can then be traced back to
individual points in the point cloud and be projected onto the camera image to form
O(u). By varying the occupancy grid resolution and threshold parameter, we can tune
our segmentation to separate specific objects such as pedestrians, cyclists, cars, buses,
etc. A visualization of the intermediate steps of the proposed algorithm are presented
on Figure 4.4. On the left plot, the 3-D point cloud is overlaid with the fitted ground
plane model; the middle plot shows the computed occupancy map for the scene; and
the right plot shows the labeled occupancy map where the colors of the blobs corre-
spond to the segmented objects in Figure 4.5.

In the experimental section we will first measure the absolute accuracy of depth
maps reconstructed by the proposed algorithm. Then, we show how by to fuse the
reconstructed depth map with an RGB camera frame and train an early fusion camera-
lidar pedestrian detector based on the aggregated channel features (ACF) [83]. More
details are provided in the experimental evaluation Section 4.5.2.

4.3.2 Camera-only depth estimation

Estimating the depth or distance relative to the camera using the camera view is
called monocular depth estimation. This task is slightly different from the estimation
of missing pixels in sparse lidar data in a sense that the camera does not offer (not
even sparse) direct measurements of distance. Thus, depth needs to be inferred from
the content of the image. This process usually relies on assumptions of the scene
geometry and statistical and contextual modeling. From the seminal work done by
Saxena et al. [57] all the way to the current state-of-the-art monocular depth estima-
tor by Kim et al. [84] the task of mapping image pixel values into depth has been
mainly solved by means of supervised learning. Methods most commonly apply a
function that decomposes the input image into multiple resolutions and feature repre-
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sentations, and then uses regression to transform the feature space into depth values.
Best accuracy is achieved when the statistical model is trained using supervision in
the form of manually labeled depth maps. However, labeling for depth information is
a non-intuitive and expensive process.

Alternatively, training the model parameters can be done in a semi-supervised
manner, where ground truth information is provided by another, non-perfect depth
sensing device. For example, a stereo camera running a disparity estimation algo-
rithm can provide depth information which can be used to train a monocular depth
estimator. Similarly, depth estimated by structure-from-motion can also be used as a
semi-supervised ground truth for monocular depth estimation. Unfortunately, these
two techniques in themselves provide poor depth information, especially for distant
objects. As discussed in the introduction, sensor arrays installed in autonomous ve-
hicle prototypes often include a 3-D lidar or multiple radar sensors. Since these sen-
sors make direct distance measurements using active sensing, the depth information
they provide is much more accurate and robust than stereo and structure from motion.
Therefore, in our analysis we assume the availability of depth data captured by lidar
which we can then use to train our monocular depth estimator.

The proposed method is a convolutional neural network which takes camera im-
ages as input and maps them into depth values using supervised training from dense
lidar depth images. We use an encoder-decoder network architecture with skip con-
nections based on the U-Net [63] convolutional neural network. It consists of a feature
extractor, a fully connected layer and a generator part where each block is linked with
the corresponding feature extractor block by skip connections, Figure 4.5. The feature
extractor applies 5 consecutive blocks of convolutions and max-pool operations which
can compute useful features at different spatial resolutions. The fully connected layer
has the capacity to infer the global scale of the environment from a representation in
high-dimensional feature space. Finally, the generator is built as the inverse opera-
tion of the feature extractor: 5 consecutive blocks of transposed convolutions which
upscale the output from the fully connected layer together with the original features
from the respective skip connections. The CNN model provides a one channel output
with the same resolution as the input image. We use the L-2 loss function to regress
the CNN output to a depth map provided by a 3-D lidar. Training is performed in a
standard deep learning fashion, using the back-propagation algorithm and the stochas-
tic gradient descent optimizer. More implementation details as well as experimental
evaluation of the method is given in Section 4.5.3.

This method computes depth images with the same spatial resolution as the camera
image. This makes the process of ranging image detections i.e., their bounding boxes
as easy as looking up the depth values in the bounded image area, see the example
in Figure 4.5. This example shows how to range pedestrians detected in the image
using the depth values within the area of their torso: the center-most 25% region in
the upper part of the bounding box. We found that our depth completion and range
estimation method provides very reliable ranging when paired with pre-trained image
object detectors. We have therefore re-used this technique to compute the range of
objects in the image several times throughout this thesis.
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Figure 4.5: Block diagram of the proposed monocular depth estimator as a component of a late
fusion object detector. The proposed model learns the mapping between RGB pixel values to
depth using offline supervision from lidar depth images.

However, even though CNNs are universal function approximators, monocular
depth estimation is an ill-posed and inherently ambiguous problem. This practically
means that there does not exist any function which performs the back-projection of
2-D content into 3-D with 100% accuracy. As we will see in the evaluation section,
the proposed solution nevertheless outperforms classical reconstruction methods when
given sufficiently large supervision data for training. Nevertheless, the achieved ac-
curacy, especially at distance, is still behind what is needed for deployment in safety
critical applications such as autonomous driving.

4.4 Depth reconstruction by early camera-lidar fusion

So far we’ve seen that camera-only depth estimation has rich contextual informa-
tion but suffers from large range inaccuracy in the distance, while lidar-only depth
estimation provides excellent range accuracy but struggles to preserve fine contextual
information in sparsely scanned areas. Intuitively, it would be possible to achieve
both high density and high accuracy if we process the camera pixel data and lidar
range data simultaneously. The technique proposed in this section applies low-level,
or early, fusion of camera and lidar, combining the strengths of the two sensors while
mitigating their individual weaknesses. The main challenge in this task is finding a
common representation for the two modalities which will allow for efficient training
of the fusion model. We propose two solutions to the sparse depth input problem, the
first using a linear interpolation filter, Section 4.4.1, while the second is a trainable
approach which learns the common representation from the data, Section 4.4.2.
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The main idea behind both methods is that the camera image contains fine infor-
mation about object shapes and boundaries which can be used to guide the completion
of a sparse lidar depth image. A depth image reconstructed in this manner has more
accurate object boundaries and can therefore be used to easily match objects detected
in the camera image in order to estimate their range. The main drawback in such
an approach is the difficulty in extracting semantical information from images which
usually requires learning based, analysis techniques. Both of the methods proposed
in this section perform the image-guided depth completion using early-fusion convo-
lutional neural networks that take an aligned RGB-D tensor as input and produce a
single-channel, dense depth image as an output. The RGB channels come from a high
resolution camera while the D channel is an input depth image from a projected lidar
point cloud. The CNN models are trained using deep learning over large annotated
datasets. Both networks consist of multi-resolution processing blocks which system-
atically reduce and encode the image structure. The encoded structure goes through a
fully connected coding layers and, at the end, a series of up-sampling blocks are used
to reconstruct the wanted information in its original resolution.

As other authors have previously reported [70], training CNNs on arrays contain-
ing empty values such as lidar depth images is extremely difficult. The convolution
operators are not able to natively handle unobserved samples and this sparsity needs
to be taken care of in pre-processing. There are several ways to deal with unob-
served inputs: first, invalid inputs can be encoded using a default value e.g., zero
depth. The problem with this approach is that the network must learn to distinguish
between observed inputs and those being invalid. This is a difficult task as the number
of possible binary patterns grows exponentially with the kernel size. Alternatively,
the network can take an additional input in the form of a pixel sampling mask in the
hope that it learns the correspondence between the observation mask and the inputs.
Unfortunately, both variants struggle to learn robust representations from sparse in-
puts [70]. Finally, we can introduce domain knowledge which reduces the input spar-
sity by pre-processing the data with algorithms known to be effective. For example,
simply filling-in the missing pixels with depth data from the nearest sample fixes the
sparse input problem at very little computational cost.

4.4.1 Method 1: pre-processing using bi-linear interpolation

This method uses a similar CNN architecture as the monocular depth estimation
method from the previous section, which is loosely inspired by the semantical seg-
mentation U-Net [63] and the ResNet [62]. The input, however, consists of the rgb
camera image and a dense (interpolated) depth image projected from a lidar point
cloud. At the output end we expect a fully reconstructed dense depth image that
is much more accurate than the interpolated one at input. This network also uses
an encoder-decoder architecture which can be broken down into three distinct parts,
namely a down-sampling, reasoning and up-sampling part.

Down-sampling is performed by series of convolution filters and max pooling lay-
ers. Each down-sampling block halves the spatial resolution and doubles the number
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Figure 4.6: Block diagram of the first proposed early-fusion depth completion CNN as part of
a camera-lidar object detector. The sparse depth input is first interpolated using a bi-linear filter.

of channels of the data structure. This ensures that the input image is processed at sev-
eral spatial resolutions where increasingly more complex features are being extracted
down the pipeline. In other words, at the start where the spatial resolution is high,
the network computes a small set of features (16) and at the bottom block N, where
spatial resolution is very low, the amount of features equals to 16 - 2%V,

The motivation behind this down-sampling structure is that as the image gets
smaller in spatial resolution, we can extract an increasing amount of higher level
concepts. Modeling low level features like edges, local color distributions or texture
should take place at an early stage of the network while the image resolution is high,
but in order to model high level visual cues such as perspective and horizon lines the
network needs to operate on the entire image size, but not necessarily at the highest
resolution. Max pooling is preferred over other pooling techniques as we experimen-
tally found out that this operation requires less parameters, produces superior results
and allows the network to converge much faster. Authors in [85] made extensive tests
on various pooling operators and came to the same conclusion that max pooling is
better suited at modeling translation-invariant features.

Reasoning about the structure of the scene is performed at the lower spatial reso-
Iution level of the network where the feature vector has a high feature depth. This last
convolutional filter has a higher support of 5 x 5 and the number of feature channels is
kept at a reasonable number of 256. We suspect that the activations of this 5 x 5 filter
bank will correspond to higher concepts linking RGB to depth information as they are
able to link image features to object class concepts in object detectors such as [24]. It
is at this stage that the global scale or distance of the scene is being estimated.

The following up-sampling step needs to filter out the massive amount of channels
into a single depth image, at the same time increasing the spatial resolution. For this
task we use a series of up-sampling blocks, each doubling the spatial resolution of
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the previous block. Up-sampling blocks concatenate the output of the previous, lower
scale, block together with the output from the respective down-sampling block. We
perform this concatenation in order to re-introduce part of the original feature channels
that were computed during down-sampling.

After the channel maps are concatenated, we perform two additional convolutions.
The first convolution mixes the information coming up-stream from the reasoning
layer together with the leaked channels from the down-sampling block, and the sec-
ond performs the actual up-sampling of the channels. These convolution blocks are
designed to re-introduce the high-resolution features back into the output. We have
experimented different modes of information leak between down-sampling and up-
sampling blocks, where we also considered Residual and Linear Combination Layers.
We found out that that simple concatenations followed by a mixing layer works best
because this way the network can adapt its own optimal mixing protocol based on the
data itself. At the end a Rectifying Linear Unit fixes the network outputs to positive
depth values.

Ground truth is provided in the form of semi-sparse depth images produced by a
high resolution 64 beam Velodyne LiDAR. We used the previously explained multi-
lateral upsampling algorithm from [10] to produce accurate fully sampled dense depth
images for the semi-sparse ground truth data. The network is trained using the stochas-
tic gradient descent (SGD) by optimizing the L5 loss between the network output D
and the ground truth depth image D:

Lo (D, f)) -y (D(u) - f)(u))2 , “.7)

where D(u) is the depth value at pixel coordinate u = (u,v) . The choice for this
specific loss function was made in part due to its convenient capability for strongly
penalizing large errors in the estimate and partly because most benchmarks in the
literature measure the performance of depth completion by means of the root mean
squared error (RMSE) which correlates with the L5 loss function.

Additionally we experimented with the location of entry in the network for the
sparse depth data. The sparse or low resolution input can be plugged in at a point in
the network where the data structure has similarly low resolution, see dashed lines in
Figure 4.6. One can argue that all inputs should enter the first stage of the network and
the learning process itself can decide at which layer which information is extracted.
However, due to practical reasons (network depth, machine precision, optimizer con-
vergence, number of epochs, etc.) the point of entry at which the low-resolution input
depth is fused with the camera image can have practical implications on the training
speed. Thus, finding the optimal fusion point will enable the same model accuracy to
be reached with less training. Inserting the sparse depth in the beginning creates more
degrees of freedom for the network to adapt to the data. On the other hand, inserting
the sparse depth in the middle of the network relieves the computational load of an
additional high resolution channel at input.

We performed experimental evaluation of our network in an automotive context
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where input data comes from sensors mounted on a moving vehicle through urban
and rural environments. We followed the protocol in [59] and [60] using the KITTI
tracking sequences for training and ground truth data. A total of 20 video sequences
(8000 frames) are used for training, and a different set of 28 sequences (11000 frames)
serves as the test set. We use the color RGB camera data at half resolution as input
and we process the Velodyne HDL-64E point clouds using the method in [10] in order
to get fully sampled depth ground truth data. For the first experiment, laid out in detail
in Section 4.5.3, we establish a baseline using only RGB data as input, while for the
second experiment, detailed in Section 4.5.4, we inject sparse depth images in the
network in order to reinforce the RGB data.

4.4.2 Method 2: pre-processing using learnable morphological fil-
ters

The novelty of this method comes from the introduction of morphological layers
before the contracting part of the U-Net which eliminates the sparsity in the input. The
main idea is that the pre-processing step can also, with some constraints, be delegated
to the neural network and be learned from training data. The proposed method adds
a novel CNN block which replaces the bi-linear interpolation algorithm explained in
Section 4.4.1. It has been shown by Ku et al. [67] that a simple yet efficient depth
completion of sparse lidar depth images can be achieved by applying a sequence of
morphological operations on the sparse input. In their experiments these authors show
that a small set of finely tuned dilations and erosions is enough to reconstruct a high
quality depth image. Additionally, the authors discovered that better performance is
achieved when applying the morphological operations on the sparse disparity image
rather than on the sparse depth image. This is done because of the nature of the
morphological dilation operation in gray level images, where pixels with larger values
are extended by the shape of the structuring element. In cases where an area to be
dilated is completely filled with measurements, the resulting dilation will accentuate
objects that are closer to the camera (lower depth, greater disparity), rather than the
background. This result is more desirable since it is safer to assume that no object
with size less than half of the structuring element will be completely lost by applying
a dilation.

Since standard 2D convolution operations have difficulties in learning sparse data
input problems [70, 86], the proposed method uses a trainable morphological filter
block operating on the sparse disparity images, see Figure 4.7. The purpose of this
morphological sub-network is to better learn an initial disparity image estimate which
we then convert to depth and fuse with the image data. We approximate morphological
dilation and erosion operations by utilizing the limit behavior of the Contraharmonic
Mean Filter (CHM). These filters can be easily implemented in most contemporary
deep learning frameworks through differentiable programming using standard convo-
lutional layers and other arithmetical operators. In the later CNN layers, morphologi-
cally processed disparity, converted into depth, and RGB information are fused using
standard U-Net architecture.
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Morphological operators are the foundation of many image segmentation algo-
rithms. Using so called “structuring elements” they represent fundamental non-linear
operations which compute the minimum, maximum or the combination of both within
the element support. Morphological operations are also invariant to translation and
are strongly related to Minkowski addition. In the context of depth completion, it is of
interest for the system to learn the shape and the operation type that fits best the data.
However, due to the non-differentiable nature of minimum and maximum filtering,
only few approaches have been found to succeed in the literature. Note that CNNs do
support max-pooling operators with fixed support, but in this context we would like
the network to learn the shape of the maximum operator i.e., structuring element. To
this end, we find that the approximation of morphological operators by the contrahar-
monic mean (CHM) filter in [87] is the best founded technique which can easily be
integrated in a deep learning framework. In this method, we also use the CHM to
approximate our basic learnable morphological block.

Following the analysis in [87], [88] and [89], we use the same notation I (u) to
represent a 2-D real-valued image where the 2-D vector u : (u, v) represents the pixel
coordinate vector in the image domain. A filter kernel w is any positive 2-D matrix
w : W — Riwhere W is the support of the filter. We approximate the contra-
harmonic mean filter function ¥ (I (u),w) as the 2-D convolution of the image I*,
whose pixel values are raised to the power k, and a filter w representing the structuring
element:

(I"sw) (1) Jyew M (w) w(u—w;) du;

k u),w) = = :
ww(l( )> ) (Ik*w)(u) fmewlk(ui)w(u—ui)dui

4.8)

The CHM filter can also be interpreted as the k-deformed convolution ¥ (1) (u) =
(I * kw) (u) where the order k of the filter defines the desirable properties such as
morphological erosion when k£ < 0, or morphological dilation when k > 0:

I*+w) (u) .
ﬁ ifk€R

(I kw) (W) = § infy,ew {1 () — Llog (w(u—w,))} ifk<0. (49
Supy, e {1 (W) + 1 log (w(u—w;))} ifk>0

Due to the larger exponent in the divisor in Eq. (4.9), when £ is large the filter output
depends mostly on the pixels with the largest values within the support region W,
which in the limit case k — oo equates to the supremum i.e., morphological dilation:

lim 9* (I) (u) = max (I (u—w;)) = > (I). (4.10)
k—o0 u, W
Otherwise, when k is sufficiently small, the CHM filter will tend to select the small-
est valued pixels which in the limit case ¥ — —oo equates to the infimum i.e., the
morphological erosion:
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Figure 4.7: Block diagram of the second proposed early-fusion depth completion CNN as part
of a camera-lidar object detector. The sparse depth input is first interpolated using a morpho-
logical filter with a learnable structuring element.

lim y (u) = min (f (w—w)) =" (f). @.11)
k——o0 w,eW

In practice, the choice of k, and thus computing the derivative, will be limited
by the computer number precision, but we found that a value of k¥ = 5 produces the
desired morphological filtering effect using single-precision floating point filter and
pixel values in the range of [0, 1]. For a more detailed analysis of the filter properties
and their proofs we refer the reader to Appendix B as well as the works of van Vliet
[88] and Angulo [89].

We note again that I (u) indicates the pixel value at image position u, I* is a
pixel-wise power operator of order k£ and * indicates the 2-D valid convolution. In
practice we used the MatConvNet [90] framework with the AutoNN implementation
of automatic differentiation API which successfully computes the inference and back-
propagation of the gradient values. Formally, the CHM filter is implemented using two
convolution layers representing the denominator and numerator in Eq. (4.9), shown in
the learnable morphological block on the diagram in Figure 4.7. The convolution lay-
ers share the same filters and biases and have the same learning rates. The learned
structuring element can thus be visualized by taking the logarithm m = log (w).

Finally, the model is trained using supervised learning from dense depth images
generated by registering multiple lidar point clouds. The gradient of the errors of the
estimated depth is used to adjust the network model for more accurate reconstruction.
Deviations from the ground truth can be quantified by a multitude of different metrics,
such as absolute error, squared error, inverse absolute error, inverse squared error,
absolute and squared relative error, percentage of outliers, etc. but for this method
we decided to use a standard L-2 loss function. For training the entire network we
employ the stochastic gradient descent by adaptive moment estimation (ADAM) tech-
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nique, [91]. This method computes individual adaptive learning rates for different
parameters from estimates of first and second moments of the gradients. We set an
initial learning rate (a = 10_5) and two hyper-parameters: decay for the first mo-
ment vector (81 = 0.9) and decay for the second moment vector (52 = 0.999). More
details on how this method was trained and evaluated using real-world data are given
in the experiments and results Section 4.5.5.

4.5 Experiments and results

This section provides details about the experimental evaluation of the proposed
depth reconstruction methods. Each proposed method will be evaluated in a separate
experiment, tailored to compare it to relevant techniques from the literature which
solve the reconstruction problem using the same modality. We will use the KITTI
stereo and depth completion and depth prediction benchmarks which offer indepen-
dent evaluation of the accuracy of predicted depth images in urban driving. In all
experiments, the performance of the proposed methods are compared either to the
state-of-the-art or to a comparable control method. This way we are able to analyze
the experimental results and come to unbiased conclusions about the potential gains
in accuracy and efficiency.

4.5.1 Single-sensor depth reconstruction

In order to evaluate performance of the methods proposed in Section 4.3.1 and
Section 4.3.2, we followed the consensus protocol in the literature. The lidar-only
depth completion algorithm was developed in the early phases of this research and due
to lack of specialized depth estimation datasets for autonomous driving, at the time, it
could only be tested using the KITTI Stereo 2012 and Stereo 2015 [32] benchmarks.
These benchmarks rank algorithms according to the accuracy of their stereo disparity
image estimates which is a related task to depth estimation. We were able to easily
convert our reconstructed monocular depth images into disparity and test on the KITTI
Stereo benchmark using the standard protocol. Using an exhaustive search through
the provided raw data, Premebida et al. [66] have found a practical sub-set of the
Stereo 2015 ground truth images that we will also use to quantitatively compare our
dense depth map reconstructions against. The dataset consists of 100 original point
clouds and 100 corresponding dense point clouds considered as ground truth. For
fair comparison, the experiments in the following section will be performed using the
same dataset as [66].

The monocular depth estimator was developed later on in the research and we were
able tested its performance on the more recent KITTI tracking dataset which provided
substantially more depth data which could be used for training and testing. Training
and testing is performed using a content-independent split of 40 capture sequences,
each at least 10 seconds long. Ground truth information is represented as a dense depth
map computed from aggregating consecutive lidar point cloud scans (5 before and 5
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Method Outlier pixels
Proposed 2.75%
Premebida et al. [66] 3.35%
Bilateral filter 4.77%
IDW [66] 7.14%
KRI [66] 7.25%
Mean filter 7.56%

Table 4.1: Quantitative evaluation of reconstructed depth images using sparse LiDAR depth as
input. KITTTI Stereo 2015 dataset.

after the frame of interest) using the iterative closest point algorithm. Aggregated point
clouds are projected onto the camera view and then all ambiguous image regions such
as windows and fences are manually removed.

4.5.2 Lidar-only depth reconstruction

The lidar-only depth completion proposed in Section 4.3.1 serves as a first base-
line for interpreting the accuracy of the proposed fusion methods. It is implemented
as a filter with content-varying coefficients that processes sparse inputs. The filter in-
put consists of a sparse depth image, a reflectance image and a segmentation image.
Depth and reflectance are obtained directly from the raw lidar data while the segmen-
tation image is computed by projecting and clustering the lidar height data onto the
ground plane. The filter operates only on the missing pixel locations treating the miss-
ing values as unknowns which have no contribution in the output. In order to compute
the segmentation image we first project the sparse (input) lidar point clouds on the
ground plane and compute a local occupancy grid with cell size of 0.125x0.125m.
Then, non-overlapping objects are segmentation by applying the connected compo-
nents algorithm on the occupancy grid. The output of this step is an additional object
label that is attached to each lidar point which is then projected onto the camera view
to form the segmentation image, see the example in Figure 4.2.

The filtering and up-sampling works on local image patches with size 17x30 pixels
optimized for the Velodyne HDL-64E lidar used to capture ground truth information
in the KITTI stereo 2015 dataset. We used a grid-search technique to estimate the
optimal values for the parameters {«, 3,7, 0} from Eq. (4.6) on a content-independent
training set (30-70 split) and found the optimal values to be {0.129,0.011,0.999, 56.23}
respectively. All of the steps in the proposed method were implemented in the Quasar
programming language [46] and optimized for real-time execution on a CUDA device.

At the time of writing, we followed the evaluation protocol of the KITTI stereo
2015 benchmark which ranks algorithms according to their error in the number of dis-
parity pixel outliers. Accuracy is measured by means of the metric D — all[%] which
represents the percent of outlier image pixels averaged over all ground truth pixels.
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Figure 4.8: Precision-recall plots for detected pedestrians in KITTI object detection test set.
Left: baseline ACF detector, right: re-trained ACF detector using additional depth channel.

An outlier pixel is one that has a disparity error of more than 3 pixels from the ground
truth. To that end, we transformed all depth images to disparity images using a camera
baseline of 0.537m and compared our results to the given ground truth. We conducted
testing using the provided evaluation code in KITTI Stereo 2015 and obtained the ac-
curacies which we compare to the work of [66]. The proposed semantically aware
lidar depth upsampling method outperform all classical signal processing methods as
well as the algorithm proposed in [66] by a significant margin, see Table 4.1. Sev-
eral examples of the reconstructed depth images, reflectance images and segmentation
images can be seen on the project page. !

Contrary to classical edge-preserving filters, this method relies on semantic infor-
mation about object instances i.e., their shapes, to accurately predict the depth around
borders of objects. The developed prototype reconstructs depth images using segmen-
tation information extracted from the point cloud itself. The point cloud is segmented
into disjoint, free standing objects whose projection on the image plane guides the
proposed depth completion filter. However, since the lidar point cloud is sparse, its
segmentation also results in a sparse semantic image. This semantical information
can be easily substituted or reinforced by image-based segmentation which can offer
better spatial resolution of object boundaries and will be evaluated in more detail in
Section 4.5.4.

The proposed segmentation technique can cope well with nearly flat roads, how-
ever our projection on a 2D occupancy grid is sensitive to changing road gradient.
In traffic situations where the vehicle is approaching a ramp or a steep incline parts
of the road which are higher than the current surface will be segmented as separate
objects. In such cases, a more robust ground plane segmentation algorithm than the
one presented here is warranted. For example, ground plane fitting can applied over
smaller spatial patches in order to compute a local linear estimates.

To show the potential effectiveness of our reconstructed depth images in an auto-
motive application we trained an early-fusion camera-lidar pedestrian detection model

Ihttp://telin.ugent.be/~mdimitri/depth.html
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using the reconstructed depth as an additional channel. We expect that the addition
of dense depth information to the available RGB data can boost both accuracy and
robustness. At the time of writing this thesis, the KITTI object detection benchmark
is one of the most relevant dataset for evaluation and ranking of object detection al-
gorithms in the domain of autonomous and intelligent vehicles. It covers different
urban scenarios, from university campus to downtown and residential areas. At the
time when the experiment was conducted the ACF object detector [83] was one of
the best performing algorithms that has a publicly available real-time implementation.
We expanded the original ACF algorithm by adding our up-sampled depth maps to
the processing pipeline and re-trained a pedestrian detection model. The pedestrian
classifier we chose is a multi-stage cascade of weak decision trees. Once the models
are trained, the detection of pedestrians is performed on the combined RGB and our
reconstructed depth images.

In order to measure and compare our results to the literature, we uploaded the de-
tected bounding boxes to the KITTI evaluation server. The proposed method achieved
an average precision of 0.509, outperforming the RGB-D method “Fusion DPM” [65]
which achieves average precision of 0.467, and significantly outperforming the base-
line ACF method which achieves average precision of 0.398. This is a significant
result since it shows that, in a controlled experiment, the reconstructed depth images
by our method combined with the camera RGB information lead to better pedestrian
detection than the competing Fusion DPM method which uses a Bilateral filter to up-
sample the sparse depth data. In Figure 4.8 we show the complete precision-recall
curve for individual class sub-categories. On the left plot, the precision-recall curves
for easy, moderate and hard to detect pedestrians of the baseline ACF detector [83]
are shown, while the right plot shows the precision-recall curves for the re-trained
detector.

By directly extending ACF to an additional depth channel we observe more than
10% improvement over the original camera-only ACF algorithm, and more than 4%
improvement over the comparable RGB+D method in [65], see Table 4.2. These gains
are most noticeable in image regions of poor light conditions such as shadows and
generally poor visibility due to occlusion, appearance ambiguity, etc. In Figure 4.9
we present two such examples. In the first scene, two people (enlarged in the crop) are
walking in a shaded area and their appearance closely matches that off the background,
similarly, in the second scene the two people (enlarged in the crop) walking in a shaded
area suffer from poor contrast. In both cases the proposed ACF operating on RGB+D
data is able to detect all difficult objects without producing additional false positives.
Furthermore, our proposed detector runs real-time (depth upsampling on the GPU and
classification on the CPU) and is among the most accurate non-neural network based
algorithm at the time of writing of the analysis.> Finally, the results of the proposed
depth completion method has inspired the further development of occlusion-robust
object detectors using early-fusion techniques and has led to the publication of several
papers [79-81].

Zhttps://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
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Figure 4.9: Examples of increased detection performance of the proposed early fusion ACF
detector working on RGB and Depth images.

Method Average
precision
Proposed 0.509
Fusion DPM 0.467
ACF (baseline) 0.398

Table 4.2: Pedestrian detection results using reconstructed depth as additional input channel.
KITTI dataset

4.5.3 Camera-only depth reconstruction

In this sub-section we will evaluate the accuracy of the depth images reconstructed
by the monocular depth estimation algorithm described in Section 4.3.2. Our depth
prediction CNN model was trained to predict depth images from RGB channels by
minimizing the reconstruction error using annotated training data from the KITTI
dataset. The ground truth comes from sparse depth images captured by the Velodyne
HDL-64E lidar where each depth pixel is accurate within 0.03m. Note that during
both training and evaluation only the sampled depth pixels are being evaluated by the
loss function and the evaluation code while the CNN provides a fully sampled depth
output.

We trained our CNN model parameters using stochastic gradient descent which
was stopped after 20 epochs, a point after which no significant improvement in the
loss function could be observed. Error is measured in the form of RMSE to the ground
truth on a content-independent test set. Only pixels for which ground truth data is
available are considered as per the standard KITTI evaluation protocol. We report
an overall RMSE and also per sequence RMSE for every considered sequence. Our
practical implementation using MatConvNet [90] is built on the Directed Acyclical
Graph (DAG) model. Depth accuracy is maximized by minimizing the Mean Squared
Error (MSE) between the output and the respective ground truth image. We used
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Figure 4.10: Examples of monocular depth estimation. Scene from the KITTI dataset.

a momentum value of 0.95 and weight decay of 2 - 10~8 for all our experiments.
Data augmentation was performed in the form of flipping the input images along the
vertical axis. There are approximately 3.05 million free parameters in the network
model. A single inference operation needs 0.52 TFLOPS which is greatly sped up
using single precision floating point operations. In our experiments we measured an
average of 7.4ms (135FPS) for a single inference of image with resolution 1280 x 384
on a GTX1070 GPU.

For fair comparison to the method of [60], we followed their super-pixel based
approach combining the provided super-pixel segments and our reconstructed depth
image. Using the super-pixel segmentation as a guide, this approach produces high
quality depth images which seem to follow the natural contours of objects, however
the computation time for the initial segmentation is prohibitively high for real-time ap-
plications. On Figure 4.10, we present three typical results of the proposed approach
compared to the ground truth and the output from [60]. At the time of writing, the
KITTI depth completion benchmark became available and submitted methods could
no longer be compared using the obsolete stereo disparity error as in Section 4.5.2,
but rather the absolute depth error measured as the root mean squared error in meters.
For the remaining depth completion experiments in this thesis only the RMSE values
will be reported.

In Table 4.3, we summarize the accuracies for the raw depth image reconstruction
compared to several state of the art methods. We outperform all evaluated methods by
a small margin, at the same time our network does not rely on any pre-processing such
as the super-pixel segmentation applied in [60]. Finally, since we do not have ground
truth data for all pixels in the image, not all of the differences visible in Figure 4.10
lead to the numerical results shown in Table 4.3. This is especially true for the top part
of the image which is not covered by the lidar. Finally, due to the relatively high and
ambiguous depth reconstruction errors the practical impact of this method on object
detection in 3-D was not examined. However, monocular depth reconstruction is a
topic of interest in systems that only employ cameras for environmental perception.
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Method RMSE [m]
Proposed CNN 6.965
Fayao et al. [60] 7.046
Eigen et al. [59] 7.156
Saxena et al. [92] 8.734

Table 4.3: Performance evaluation results of monocular depth estimation. KITTI dataset

4.5.4 Depth reconstruction by early camera-lidar fusion
(pre-processing using bi-linear interpolation)

The following set of experiments experiments fuse an RGB camera image with a
sparse depth image from lidar in order to estimate a more accurate dense depth image.
For this experiment, we use the model based on the architecture described in Section
4.5.3 which we expect to outperform other methods due to the capacity to extract
semantic information about object shapes from the RGB image. The CNN model is
trained to perform early fusion where low resolution depth is introduced together with
the input RGB image. The low resolution depth input is computed by projecting a lidar
point cloud onto the camera view. As we saw earlier in this thesis, projecting a lidar
point cloud onto a camera image generates a very sparse depth map. This information
in addition to the RGB image is expected to yield much better depth reconstruction
than the monocular methods in the previous experiment.

In addition to the best possible depth reconstruction accuracy using all available
data, we want to investigate how much influence the input depth sparsity has on the
reconstruction quality. The lidar used for the KITTI dataset experiments is a fairly
modern and expensive sensor whose price limits the application in autonomous ve-
hicles, so we are also interested how accurate our CNN model is if we feed a much
more sparser depth input. To illustrate this, consider that when projecting a point cloud
from the Velodyne HDL-64E lidar onto an image with resolution (1244pxz x 378px) ,
around 3% of the image pixels contain depth values and the remaining 97% image
area is sparse. Even with this sparse input, out lidar-only depth upsampling method
was able to reconstruct accurate depth images which when fused with RGB images
offered significant improvements in object detection.

In order to measure the influence of the level of sparsity of the input depth, we
project only a small number of the already sparse lidar points, simulating an even
sparser input from a low-end lidar with 3,5,9 and 17 laser beams. In each experiment,
the beams are equally spaced along the elevation axis and the data density along the
azimuth is kept at the original 2000 samples per revolution. Before feeding the sparse
depth maps into the CNN we perform a bi-linear interpolation to fill in zero depth
values. Table 4.4 gives an overview of the input density at which depth was introduced
into the network.

After re-training each model, we evaluated the outputs of every sub-sampled set to
a fully sampled ground truth and report the errors in terms of RMSE, Table 4.4. Our
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first finding is that fusing the RGB image with even an extremely sparse (3 beam) lidar
information results in reconstruction error of 5.415m over the test set which is signifi-
cantly better than any monocular depth estimation methods, see Table 4.3. This shows
that even minimal depth cues from lidar are beneficial in removing the depth ambi-
guity of monocular estimation. Second, by increasing the number of lidar beams in
the input the proposed method produces depth images with drastically higher quality
as seen in the RMSE of the reconstruction in Table 4.4. Lastly, we find that the im-
provement that the fusion CNN brings over a simple linear interpolation diminishes as
the input depth density increases. This effect is because less contextual information is
needed to reconstruct an already dense input depth image. Without the need of contex-
tual information, simple techniques such as linear interpolation reach visually accurate
depth images. For example: the density of the sparse input of a 17 beam lidar at an
image resolution 1244px: x 378px is 0.76%. This input seems to contains enough in-
formation for reconstruction of smaller objects even using simple linear interpolation
(RMSE=2.877m) as compared to the CNN output (RMSE=2.676m). Some typical
results that were obtained in this experiment are shown on Figure 4.11. From visual
inspection of these results a very important observation can be made: the proposed
depth completion method is reaching a high level of quality with the data from current
hardware.

When choosing a depth sensor for a specific application like object detection and
ranging several factors should be taken into account. Obtaining a high quality depth
information can be achieved either by using a range sensor with high sampling density,
or by applying a reconstruction algorithm on data from a lower quality sensor. The
former usually results in higher cost and power usage by the physical sensor while
the later requires more computing capability, which also comes at an increased power
usage and cost. With these experiments we ultimately want to show that the proposed
depth completion method has diminishing benefits over using a higher quality sensor.

By minimizing the per-pixel MSE loss function we are able to quickly optimize
the model parameters and compute depth images with both high accuracy and low
number of outlier pixels. When sparse depth input data is not available, these ex-
perimental results show that our lightweight architecture can outperform the state of
the art in monocular depth reconstruction in outdoor traffic scenarios. The method
shows promising results when the input depth is fairly sparse, however once the input
depth becomes denser (e.g., more than 1%) the accuracy gains (in terms of recon-
struction RMSE) introduced by the network become marginal. The main drawback
of this method is that it relies on hand-tuned pre-processing for handling the missing
input values before the CNN is applied. This is a potential flaw in the depth comple-
tion process where we suspect that applying an end-to-end method will lead to bigger
improvements in accuracy. This has in turn motivated the design of the following
method, which removes the input depth sparsity using a a learnable pre-processing
CNN block. It should be noted again that dealing with sparse input is not a trivial task
for contemporary convolutional NN layers and great deal of care was taken to find a
suitable sparsity suppressing operator.
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Figure 4.11: Examples of depth completion using RGB images and linearly interpolated depth
as input. Scene from the KITTI dataset.

Input Tnput Reconstruction
Input data sparsity MSE RMSE [m] Improvement
(m]
RGB / / 6.965 /
RGB + LiDAR (3 beams) 0.09% 9.246 5415 41.4%
RGB + LiDAR (5 beams) 0.19% 6.061 4.209 30.6%
RGB + LiDAR (9 beams) 0.38% 3.827 3.349 12.5%
RGB + LiDAR (17 beams) 0.76% 2.877 2.676 7.0%

Table 4.4: Performance evaluation results for sparse depth completion using linear interpolation
of the input. KITTI dataset.

4.5.5 Depth reconstruction by early camera-lidar fusion
(pre-processing using learnable morphological filters)

The development and testing of the method proposed in Section 4.4.2 was enabled
by the availability of the recently published KITTI depth completion® dataset [20,32,
70]. It provided us with an excellent basis in the context of autonomous driving in
terms of both rich annotated data as well as standardized evaluation protocol. This
dataset consists of sequences captured by a stereo RGB camera pair as well as point
clouds from the Velodyne HDL-64E LiDAR. Each point cloud is projected on a virtual
camera image creating a sparse depth image. There is a total of 151 sequences with

3http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
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Figure 4.12: Typical use case scenario in an urban environment. Top: RGB camera frame,
bottom: depth image completed by the proposed method.

93505 frames split into ~ 92% training and the remaining ones for model validation.
Independent method evaluation is also provided by means of an on-line server which
compares uploaded results to frames with ground truth data that is stored on the server.

Due to limitations in computing power we decided to use only a sub-sample of
the training set for training. We noticed that, due to the relatively high sampling rate,
most of the 93K frames in the original data contain temporally correlated information.
Additionally, many of the sequences are recorded from a static vehicle and thus repeat
the same content. Thus, in all our experiments we removed most of the static se-
quences and used every sixth frame from the remaining data. The training set sampled
in this manner consists of ~ 4.3K frames of highly variable content. Input images are
padded to a fixed resolution of 1280 x 384 pixels from which we randomly sample
rectangular patches of size 96x96. Since our network uses 3 stage contraction, the
lowest resolution of the input image inside the network is 12 x 12 with a channel
depth of 256.

Learning of the optimal network parameters is done by presenting the network
with batches of the labeled training set. After each inference, batch-average MSE is
calculated from ground truth and the gradient is used to adjust the convolution filter
parameters and biases. Each successive layer is updated by backpropagation using
the chain rule. We employ the ADAM optimization method and, since we train using
small patches of images, we train until convergence for ~ 200 epochs. During training
we keep the hyper-parameters «, $1 and (5 fixed, but adaptively change the batch size,
starting from 4 increasing to 64. We found that model convergence was fastest when
training with collections of small random image patches as batches. Following every
epoch, we perform validation using a small sub-set of the validation dataset.

We deployed our trained neural network on the 1000 test samples from the KITTI
depth completion benchmark and submitted the results to the on-line evaluation server.
The accuracy of our method in terms of iRMSE, iMAE, RMSE and MAE is indepen-
dently measured by the KITTI on-line server and ranked along other methods. Results
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Method RMSE MAE Runtime Publication
[m] (m]
HMS _Net_v2 0911 0.310 0.02 s/ GPU Anonymous
Sparse-to- 0954 0288  0.04s/GPU Anonymous
Dense-2
HMS-Net 0.976 0.283 0.02 s/ GPU Anonymous
Morph-Net 1.045 0.310 0.17 s/ GPU Proposed
IP-Basic 1.288 0.302 0.01s/ 1 core Ku et al. [67]
ADNN 1.325 0.439 0.04 s/ GPU Anonymous
NN+CNN 1.419 0.416 0.02s Uhrig et al. [70]
SparseConvs 1.601 0.481 0.01s Uhrig et al. [70]
NadarayaW 1.852 0.416 0.05s /1 core Uhrig et al. [70]
SGDU 2.312 0.605 0.2s / 4 cores Schneider et al. [68]
NiN CNN 2.378 0.685 0.01s Anonymous
N‘l\&l\{\ﬂ”k 2534 0848  0.01s/GPU Anonymous

Table 4.5: Comparison of depth completion results on the KITTI depth completion benchmark.

are summarized on Table 4.5 and publicly available on the benchmark website. At
the time of submission, we outperform classical methods such as [68] and [67], as
well as the only published CNN method [70] in terms of RMSE error. Qualitatively,
our method also better preserves object boundaries which is visible from the results
shown on Figure 4.12. Using the RGB information in the contracting and expanding
network architecture, we are able to effectively fill in missing object parts with the
relevant depth information. This is especially noticeable in transparent objects such
as house and car windows and glass displays. The inclusion of morphological layers
makes the network flexible enough so that sparse data is handled in the initial layers,
while the rest of the network is dedicated to better extracting contextual information.
In terms of reconstruction accuracy, our method outperforms the state-of-the-art clas-
sical and neural network based approaches while operating on image batches which
are concatenated to form the final depth image. The run-time for completing a single
image of size 1280x384 pixels is on average 0.175s including the time needed for the
fixed morphological pre-processing. We suspect that this increased processing time
compared to the other methods is due to the size of our network and the use of non-
conventional morphological blocks. However, the results as well as the runtime in
Table 4.5 are self-reported and cannot be independently confirmed.

4.6 Conclusion and practical implications

In this chapter we proposed and evaluated several methods for reconstructing
depth images from camera and lidar sensors. Depth completion from sparse inputs
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such as lidar point clouds has traditionally been solved by local image processing that
handles sparsity using fine-tuned filters. However, in cases where the level of sparsity
varies spatially or parts of objects are completely missing, local processing is unable
to accurately reconstruct depth information. Contextual information from the entire
scene or parts of objects that are seen should be considered to better fill-in missing
depth. The proposed methods were published as articles in the proceedings of the
IEEE Intelligent Vehicles 2017 conference [10], the SPIE Optics and Photonics 2018
conference [11] and the IEEE Advanced Concepts for Intelligent Vision Systems 2018
conference [13].

The first contribution to depth completion was made based on classical signal pro-
cessing using semantic information from the lidar point cloud itself. This method
delivered dense depth images with a fidelity that outperformed the state of the art by
almost 20%. In a secondary contribution, a monocular depth completion method was
proposed to blindly reconstruct depth images from RGB pixel data. This method,
based on the encoder-decoder convolutional neural network, slightly outperformed
the state of the art on the KITTI depth completion dataset. However, the accuracy of
camera-only depth prediction is relatively low compared to lidar-based methods and
highly dependent on the scene content. Therefore, we deem that monocular depth
prediction be considered with caution especially for safety critical applications where
accurate ranging of objects is very important. The third and fourth contributions were
depth reconstruction methods based on early fusion of camera and lidar. By com-
bining the high pixel density of camera images and the high accuracy of sparse lidar
point clouds, the two proposed methods were able to estimate depth images with very
high accuracy. The main challenge in this research was the application of convolu-
tional neural networks for the fusion of RGB images and sparse depth data from lidar.
The literature has widely acknowledged that convolutional operators have difficulties
when dealing with sparse inputs. Our two methods apply data pre-processing on the
sparse depth inputs in order to expedite the CNN model training. The first proposed
method applies bi-linear interpolation, while the second proposed method learns the
pre-processing operator from the data.

The most accurate depth reconstruction results in terms of RMSE were obtained
when using a camera-lidar fusion CNN with learnable morphological filters which
outperformed the baseline depth completion method by more than 20%. From our
qualitative analysis of reconstructed depth images we deem that the output from our
most accurate method can be used to range even distant objects detected in the camera
image. By using this approach the system does not necessarily need to perform ob-
ject detection in 3-D, rather use state of the art camera object detection to find objects
on the image plane and rely on accurate depth images for their ranging. However,
we also showed that the reconstructed depth images offer very useful additional in-
formation source for training an object detector from scratch. We trained a proof of
concept RGB-D object detector that showed significantly better robustness to illumi-
nation changes and occlusion, resulting in an increase of average precision by almost
30% over detection using RGB data alone.

Finally it is important to note that depth reconstruction has some practical limita-
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tions that limit its deployment in real-world systems. Firstly, even the simplest of the
proposed methods require additional CPU processing power to accurately reconstruct
dense depth images and the methods using CNNs require significant GPU computing
power in order to run real-time. In perception systems with limited power/compute
capabilities it is prudent to use a lidar sensor and complete its sparse data using near-
est neighbor or bi-linear interpolation. However, if a lidar sensor is not available, then
monocular depth estimation should be performed using the camera images.

The main benefit of performing depth reconstruction independently of object de-
tection is the opportunity to use off the shelf camera object detectors. At the time of
writing, image-based object detection is a much more mature topic providing detec-
tion models that surpass the precision of detectors in any other sensor modality. This
is because of the abundance of annotated image datasets, many of which do not have
depth data. Therefore, given the more training data, it is obvious that image objects
detectors can be trained to detect in 2-D much more robustly than in 3-D. Ranging 2-D
detections is made trivial when we have an additional depth image, since the distance
to a detection can be easily looked up from the depth values under its image bounding
box.






Cooperative sensor fusion for
object detection

5.1 Introduction

Object detection is a fundamental computer vision topic which has its applications
in many modern camera based systems including autonomous vehicles. Detection, as
opposed to fracking which uses temporal information, is the process of detecting the
presence of objects and estimating their location using data captured over a short time
period. Considering that most perception sensors operate by sequentially recording
data into frames, detection is a discrete process done over short snapshots in time. In
the literature this is also referred to as instantaneous, single-frame or frame-by-frame
detection stemming from the short time integration of a single camera frame. As of
the time of writing, object detection is most accurate in camera images because their
high pixel density allows for better content interpretation over other sensors. However,
there exist situations where cameras tend to under-perform (low light, glare, inclement
weather, etc.) and detection is better done in other sensor modalities such as lidar or
radar. A detection system that remains effective in all weather circumstances must
therefore apply some sort of data fusion.

This chapter explores the details of multi-modal object detection using a combina-
tion of cameras, radar and lidar sensors, see Figure 5.1 for an example. The main goal
is the detection (classification and ranging) of road users which comprises the com-
putation of the belief in the existence as well as the belief in the location of objects
in the scene given the multi-sensor observations. We will start by analyzing different
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sensor fusion strategies designed to detect and range road users. By identifying key
challenges in this topic and analyzing the state-of-the-art, this chapter will then pro-
pose several novel sensor fusion methods which can lead to better object detection and
ranging. The main principle of operation of the proposed fusion methods is to use the
strengths of one sensors in order to mitigate the weaknesses of the other, especially
in border cases where single-sensor detection might be compromised. Therefore, the
proposed cooperative fusion methods provide increased robustness to sensor failures
while at the same time yielding higher detection accuracy than standard fusion tech-
niques.

Within the confines of a probabilistic framework, we propose several cooperative
techniques of feeding detection information from one sensor to another sensor and
using this information as a prior to further improve object detection. The feedback
system transmits only a small amount of information using low bandwidth sensor-
sensor transmission channels. By applying these feedback loops, individual detectors
detect more objects by focusing into regions of the scene indicated by the other sen-
sors. At the same time, this sensor-sensor cooperation reduces the number of false
alarms. The proposed fusion methods continue to effectively operate even in the case
of a complete single-sensor failure or the corruption of a data stream.

The proposed cooperative fusion can be thought of as a system which uses aware-
ness for the quality of its individual sensors in order to optimize the overall detection
performance. It has the ability to adjust the operating points of individual sensors on
the fly and moreover, vary the the operating point locally over the field of view. For
example, reduce the detection threshold of the camera object detector in a region with
low contrast in order to recall an object that is barely visible but detected by another
senor. The change of the detection threshold is applied only locally, and only in the
current frame. In Chapter 6 we will further extend this concept over time where confi-
dent tracking information is fed back to the detectors in order to improve the detection
thresholds in regions where objects have been tracked in the past. The common moti-
vation for the proposed methods is that measurements from multiple sensors are fused
cooperatively, discarding as little data as possible while still retaining the robustness
to sensor failures. Cooperative fusion offers the maximum robustness of late fusion,
at a minimal loss of accuracy as compared to early fusion.

The remainder of the chapter is structured as follows, we start with an overview
of the state-of-the-art in Section 5.2. Then, we explain the details of the proposed
cooperative camera-lidar, camera-radar and camera-lidar-radar fusion architecture in
Section 5.4, and we demonstrate how object detection can be improved in both camera
as well as radar. In Section 5.6 we give practical tips for transforming the heteroge-
neous sensor data into a common representation. Finally, in Section 5.7 we present a
detailed analysis of the experimental methodology, datasets and the results that were
obtained in this study.
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Camera

RADAR

Figure 5.1: Visualization of camera, lidar and radar measurements in a typical autonomous
driving use-case. 2-D detection of road users can be performed using the camera image (top)
3-D detection is done by lidar (middle) and radar (bottom). For reference, the images show also
the scene depth measured by lidar (middle) and reflected radar signal (bottom).

5.2 Literature overview

5.2.1 Camera object detection

Object detection in images is one of the most studied topics in computer vision.
The complete literature on object detection is too extensive to be fully covered. As
an illustration, at the time of writing even the KITTI [32] object detection benchmark,
which is highly specific to autonomous driving has more than 500 submitted methods
for evaluation. Similarly, the COCO [93] dataset which organizes yearly object detec-
tion competitions has around 250 methods submitted only in 2020. In this section we
will summarize the camera-based object detection literature through the most signifi-
cant papers which made strides in accuracy, efficiency or both. Object detection papers
can generally be split into two eras, the first being an era of hand crafted features and
specialized classifiers, while the second is the era of artificial neural networks and
deep learning.
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Era of detectors based on hand-crafted features and classifiers

One of the pioneering methods in the field of real-time image object detection is
the face detector described in the paper [94] by Viola and Jones. This paper describes
a machine learning approach for visual object detection which is capable of process-
ing images extremely rapidly and achieving high detection rates. The method uses
the integral image representation to compute Haar-like features in constant time and
applies a classifier tree trained using the Adaptive Boosting method which selects a
small number of critical visual features from a larger set and yields extremely efficient
classifiers. Individual classifier trees are connected in a cascade which can be viewed
as an object specific focus-of-attention mechanism which unlike previous approaches
provides statistical guarantees that discarded regions are unlikely to contain the object
of interest. In the domain of face detection the system yields detection rates compa-
rable to the best previous systems. Used in real-time applications, the detector runs at
15 frames per second without resorting to image differencing or skin color detection.

The seminal paper [95], show experimentally that grids of Histograms of Oriented
Gradients (HOG) descriptors significantly outperform existing feature sets for the task
of people detection. The authors study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine orientation binning, rela-
tively coarse spatial binning, and high-quality local contrast normalization in over-
lapping descriptor blocks are all important for good results. The new approach gives
near-perfect separation on the original MIT pedestrian database. The authors also de-
veloped their own, more challenging dataset containing over 1800 annotated images
with a large range of pose variations and backgrounds. They argue that although the
fixed-template-style detector has proven difficult to beat for fully visible pedestrians,
humans are highly articulated and we believe that including a parts based model with
a greater degree of local spatial invariance would help to improve the detection results
in more general situations.

The last significant method of this era is the Deformable Part Models (DPM) detec-
tor [96]. This method is an object detection system based on mixtures of multi-scale
deformable part models, able to represent highly variable object classes, achieving
state-of-the-art results in the PASCAL object detection challenges. The authors pro-
pose to combine a margin-sensitive approach for data-mining hard negative examples
with a formalism, which they call latent Support Vector Machines (SVM). A latent
SVM is a reformulation of Multiple Instance SVM in terms of latent variables. A
latent SVM is semi-convex, and the training problem becomes convex once latent in-
formation is specified for the positive examples. This leads to an iterative training
algorithm that alternates between fixing latent values for positive examples and opti-
mizing the latent SVM objective function.

Deep learning era: two stage detectors

Region-based convolutional neural networks or regions with CNN features (R-
CNNGs) are pioneering approaches that apply deep models to object detection. R-



COOPERATIVE SENSOR FUSION FOR OBJECT DETECTION 103

CNN models first select several proposed regions from an image (for example, anchor
boxes are one type of selection method) and then label their categories and predict
the shape of bounding boxes by regression of their offsets from the anchors. In R-
CNN [97], the input image is first divided into nearly two thousand region sections,
and then a convolutional neural network is applied for each region, respectively. The
size of the regions is calculated, and the correct region is inserted into the neural
network. Training time is significantly greater compared to later methods such as
YOLO because it classifies and creates bounding boxes individually, and a neural
network is applied to one region at a time.

SPP-Net [98] is a convolutional neural architecture that employs Spatial Pyramid
Pooling (SPP) to remove the fixed-size constraint of the network. Specifically, the au-
thors of this method add an SPP layer on top of the last convolutional layer. The SPP
layer pools the features and generates fixed-length outputs, which are then fed into
the fully-connected layers (or other classifiers). Doing so the CNN performs some in-
formation aggregation at a deeper stage of its hierarchy (between convolutional layers
and fully-connected layers) to avoid the need for cropping or warping at the beginning.
This method avoids repeatedly computing the convolutional features. In processing
test images, it is 20-100x faster than the R-CNN method, while achieving better or
comparable accuracy on Pascal VOC 2007.

Fast R-CNN [99] was developed with the intention to cut down significantly on
train time. While the original R-CNN independently computed the neural network
features on each of as many as two thousand regions of interest, Fast R-CNN runs the
neural network once on the whole image. This is very comparable to later approaches
such as YOLO. At the end of the network is a novel method known as Region of
Interest (ROI) Pooling, which slices out each Region of Interest from the network’s
output tensor, reshapes, and classifies it. This makes Fast R-CNN more accurate than
the original R-CNN. Fast R-CNN trains the very deep VGG16 network 10x faster
than R-CNN, is 200x faster at test-time, and achieves a higher mAP on PASCAL
VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x
faster, and is more accurate.

Faster RCNN [100] builds upon the notion that all of the previous CNN methods
suffer from bottleneck in the region proposal. The authors introduce a Region Pro-
posal Network (RPN) that shares full-image convolutional features with the detection
network, thus enabling nearly cost-free region proposals. Their RPN is a fully convo-
Iutional network that simultaneously predicts object bounds and objectness scores at
each position. The RPN is trained end-to-end to generate high-quality region propos-
als, which are used by Fast R-CNN for detection. Faster RCNN further merges RPN
and Fast R-CNN into a single network by sharing their convolutional features using
the recently popular terminology of neural networks with “attention” mechanisms, the
RPN component tells the unified network where to look. For the very deep VGG-16
model, the Faster RCNN detector has a frame rate of 5fps on a GPU, while achiev-
ing state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS
COCO datasets with only 300 proposals per image.

Mask R-CNN [101] is a significant improvement over the previous methods by
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focusing on the task of object instance segmentation. This approach efficiently de-
tects objects in an image while simultaneously generating a high-quality segmentation
mask for each instance. Mask R-CNN, extends Faster R-CNN by adding a branch for
predicting an object mask in parallel with the existing branch for bounding box recog-
nition. Mask R-CNN is simple to train and adds only a small overhead to Faster
R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other
tasks, e.g., al lowing us to estimate human poses in the same framework. This method
show top results in all three tracks of the COCO suite of challenges, including instance
segmentation, bounding box object detection, and person key-point detection.

Feature Pyramid Networks (FPN) [102] uses the inherent multi-scale, pyramidal
hierarchy of deep convolutional networks to construct feature pyramids with marginal
extra cost. A top-down architecture with lateral connections is developed for building
high-level semantic feature maps at all scales. This architecture shows significant im-
provement as a generic feature extractor in several applications. Using FPN in a basic
Faster R-CNN system, this method achieves state-of-the-art single-model results on
the COCO detection benchmark, surpassing all existing single-model entries includ-
ing those from the COCO 2016 challenge winners. In addition, the method can run
at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object
detection.

Lastly, G-RCNN [103] uses the recurrent convolution neural network (RCNN) ar-
chitecture, inspired by abundant recurrent connections in the visual systems of an-
imals. The critical element of RCNN is the recurrent convolutional layer (RCL),
which incorporates recurrent connections between neurons in the standard convolu-
tional layer. With increasing number of recurrent computations, the receptive fields
of neurons in RCL expand unboundedly, which is inconsistent with biological facts.
The paper limits the receptive fields of neurons by introducing gates to the recurrent
connections. The gates control the amount of context information inputting to the
neurons and the neurons’ receptive fields therefore become adaptive. The resulting
layer is called gated recurrent convolution layer (GRCL). Multiple GRCLs constitute
a deep model called gated RCNN (GRCNN). The GRCNN was evaluated on several
computer vision tasks including object recognition, scene text recognition and object
detection, and obtained much better results than the RCNN. In addition, when com-
bined with other adaptive receptive field techniques, the GRCNN demonstrated com-
petitive performance to the state-of-the-art models on benchmark datasets for these
tasks.

Deep learning era: single stage detectors

The popular You Only Look Once (YOLO) [23] object detector is a one-stage
CNN able to detect objects of multiple categories. The convolutional neural network
re-purposes classifiers and localizers to perform detection and applies the detection
model to an image at multiple locations and scales. At the output, high scoring regions
of the image are considered detections. As a single-stage detector, YOLO performs
classification and bounding box regression in one step, making it much faster than
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Figure 5.2: Visualization of the data structures and network architecture of a typical camera
object detector.

most convolutional neural networks. For example, YOLO object detection is more
than 1000x faster than R-CNN and 100x faster than Fast R-CNN.

Single-shot detector (SSD) [104] is a one-stage detector that can detect multiple
classes of objects in images using a single deep neural network by discretizing the
output space of bounding boxes into a set of default boxes over different aspect ra-
tios and scales per feature map location. The object detector generates scores for the
presence of each object category in each default box and adjusts the box to better fit
the object shape. Also, the network combines predictions from multiple feature maps
with different resolutions to handle objects of different sizes. The SSD detector is
easy to train and integrate into software systems that require an object detection com-
ponent. In comparison to other single-stage methods, SSD has much better accuracy,
even with smaller input image sizes.

The authors of RetinaNet [105] discovered that the extreme foreground-background
class imbalance encountered during training of dense detectors is the central cause for
the limited accuracy of one-stage object detectors. They propose to address this class
imbalance by reshaping the standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. The novel Focal Loss focuses training on a
sparse set of hard examples and prevents the vast number of easy negatives from over-
whelming the detector during training. The CNN uses a feature pyramid architecture
to efficiently detect objects at multiple scales. The results show that when trained with
the focal loss, RetinaNet is able to match the speed of previous one-stage detectors
while surpassing the accuracy of all existing state-of-the-art two-stage detectors.

YOLOv3 [24] outperforms existing state-of-the-art detectors such as DSSD513
[106] and RetinaNet [105] in multi-label classification by employing overlapping pat-
terns for training, see Figure 5.2 for an overview of its architecture. Hence it can
be used in more complex scenarios for object detection. Because of its multi-class
prediction capabilities, YOLOv3 can be used for small object classification while it
shows worse performance for detecting large or medium-sized objects. Owing to its
good balance between accuracy and algorithmic complexity, YOLOv3 has been im-
plemented in many deep learning frameworks. It is both easy to train as well as to
deploy in the real world. Throughout this thesis YOLOvV3 serves as the object detec-
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tor of choice and as such will be re-used several times to demonstrate the proposed
cooperative fusion concept.

The Scale-Aware Trident Network [107] performs Object Detection paying special
attention to the challenge of scale variation. By investigating the effect of the size
of receptive fields for scale variation in object detection the authors propose a novel
CNN aiming to generate scale-specific feature maps with a uniform representational
power. The method is based on a parallel multi-branch CNN architecture in which
each branch shares the same transformation parameters but with different receptive
fields. The model is trained in a scale-aware training scheme to specialize each branch
by sampling object instances of proper scales for training. On the MS-COCO dataset
it outperforms methods such as R-CNN and SNIPER [108] by a significant margin
without any extra parameters and computations.

YOLOV4 [109] represents a significant improvement over the previous YOLO de-
tectors in a way that it employs a set of universal features which are optimized for mul-
tiple computer vision tasks over multiple datasets. Specifically, the authors propose to
use weighted-residual-connection blocks, cross-stage-partial-connection blocks, cross
mini-batch normalization, self-adversarial-training and self-regularized MISH activa-
tions. The paper provides an extensive analysis and is an excellent resource on training
modern object detectors. At the time of publication it offers a state-of-the-art detection
performance which is faster and more accurate (in terms of AP50...95 and AP50 on
MS-COCO) than all available alternative detectors. Moreover, the authors of YOLOv4
make sure that the proposed method can be trained and deployed using a GPU with
8-16GB memory which makes it usable in broad range of applications.

YOLOR [110] is a recently proposed, novel object detector which applies implicit
and explicit knowledge to the model training. It can learn a general representation and
complete multiple tasks through this general representation. Implicit knowledge is
integrated into explicit knowledge through kernel space alignment, prediction refine-
ment, and multi-task learning. Most significantly, YOLOR achieves greatly improved
object detection performance results. Compared to other object detection methods
on the MS-COCO dataset benchmark, YOLOR improves upon the state of the art in
terms of average precision at the same inference speed. Compared with the Scaled-
YOLOV4, the inference speed has been increased by 88%, making it the fastest real-
time object detector available in 2021.

Finally, the recently proposed Swin Transformer V2 [111] uses principles from
the natural language processing and applies them to the task of object detection. This
method proposed three main improvements over the state of the art: first, a residual-
post-norm method combined with cosine attention which improves training stabil-
ity; second, a log-spaced continuous position bias method which effectively trans-
fers models pre-trained using low-resolution images to downstream tasks with high-
resolution inputs; and third, a self-supervised pre-training method, SimMIM [112],
which reduces the needs of vast amounts of labeled images. Through these techniques,
the authors of this paper successfully trained a 3 billion-parameter Swin Transformer
V2 model, which is the largest dense vision model to date, and makes it capable
of training with images of up to 1,536x1,536px resolution. It set new performance
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records on 4 representative vision tasks, including ImageNet-V?2 image classification,
COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video ac-
tion classification. This method gives a glimpse into the future of camera-based object
detection where the model backbones will be trained on variety of visual tasks employ-
ing self-supervised strategies that will enable the training of ever larger models using
unlabeled data.

5.2.2 Lidar object detection

In contrast to images where pixels are regularly distributed on an image plane,
point clouds are sparse and require additional transformations into representations
that are more easily processed by existing feature extraction and classification tools.
As we saw in the previous chapter, depth images offer a dense and compact represen-
tation, but range pixels contain 3-D information instead of RGB values and directly
applying conventional convolutional networks on range images may not be an optimal
solution. On the other hand, detection in autonomous driving scenarios generally has
a requirement on real-time inference. Therefore, how to develop a model that could
effectively handle point cloud or range image data while maintaining a high efficiency
remains an open challenge to the research community.

Depending on how the lidar point cloud data is represented, object detection meth-
ods can be categorized into one of the following categories. Point-based 3-D object
detectors propose diverse architectures to detect 3D objects directly from raw points.
Grid-based 3-D object detectors rasterize the point cloud into discrete grid representa-
tions, i.e. voxels, pillars, and bird’s-eye view (BEV) feature maps. Point-voxel based
approaches use to a hybrid architecture that leverages both points and voxels for 3-D
object detection. Finally, methods based on depth images rely on the fact that the lidar
point cloud is scanned from a single point and can be projected onto a 2-D surface (a
depth image) without loss of information.

Point cloud-based 3-D object detectors

Methods in this category firstly pass point clouds through a point-based backbone
network, in which the points are gradually sampled and features are learned by point
cloud operators. 3-D bounding boxes are then predicted based on the down-sampled
points and features. There are two basic components of a point-based 3-D object de-
tector: point cloud sampling and feature learning. The PointNet and more recently
PointNet++ methods [113, 114] which introduces a hierarchical neural network and
applies PointNet recursively on a nested partitioning of the input point set, exploit
metric space distances, and are able to learn local features with increasing contextual
scales. With further observation that point sets are usually sampled with varying den-
sities, which results in greatly decreased performance for networks trained on uniform
densities, the authors propose novel set learning layers to adaptively combine features
from multiple scales. Experiments show that the PointNet++ network is able to learn
deep point set features efficiently and robustly. In particular, results significantly bet-
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ter than state-of-the-art have been obtained on challenging benchmarks of 3-D point
clouds. Similarly, [115] uses two stages of furthest point selection strategies to pro-
gressively down-sample input point cloud and generate 3-D proposals from the down-
sampled points. Extensive experiments on the 3-D detection benchmark of KITTI
dataset show that this architecture outperforms state-of-the-art methods with remark-
able margins by using only point cloud as input. Feature learning is usually performed
using some sort of set abstraction on the point cloud. Specifically, ball query with a
pre-defined radius can yield context points which are ten aggregated through multi-
layer perceptrons and max-pool operators to obtain new features. Other methods use
graph operators [116], attention operators [117] as well as transformers [118].

The representation power of the point- based detectors is mainly restricted by two
factors: the number of context points and the context radius adopted in feature learn-
ing. Increasing the number of context points will gain more representation power but
at the cost of increasing much memory consumption. These two factors have to be
determined carefully to balance efficacy and efficiency of detection models. Point
cloud sampling is a bottleneck in inference time for most point-based methods. Fur-
thest point sampling and its variants can attain a more uniform sampling result by
sequentially selecting the furthest point from the existing point set. Nevertheless, fur-
thest point sampling is intrinsically a sequential algorithm and can not become highly-
parallel. Thus furthest point sampling is normally time-consuming and not ready for
real-time detection

Grid-based 3-D object detectors

Grid-based methods transform the point cloud data into rasterized format (voxels
or pillars). Then they apply conventional 2-D convolutional neural networks or 3-D
sparse neural networks to extract features from the grids. Finally, 3-D objects can
be detected from the BEV grid cells. There are two basic components in grid-based
detectors: grid-based representations and grid-based neural networks. There are 3
major types of grid representations: voxels, pillars, and BEV feature maps which are
related to occupancy maps described in Section 3.4. Voxels are 3-D cubes and contain
the point density inside voxel cells. Since point clouds are sparsely distributed, most
voxel cells in the 3-D space are empty and contain no points. In practical applications,
only those non-empty voxels are stored and utilized for feature extraction.

The VoxelNet method described in [119] removes the need of manual feature en-
gineering for 3-D point clouds proposing a generic 3-D detection network that unifies
feature extraction and bounding box prediction into a single stage, end-to-end train-
able deep network. The proposed method divides a point cloud into equally spaced
3-D voxels and transforms a group of points within each voxel into a unified feature
representation through the newly introduced voxel feature encoding (VFE) layer. In
this way, the point cloud is encoded as a descriptive volumetric representation, which
is then connected to a RPN to generate detections. Experiments on the KITTI car
detection benchmark show that VoxelNet outperforms the state-of-the-art lidar based
3-D detection methods by a large margin. Furthermore, this network learns an ef-
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fective discriminative representation of objects with various geometries, leading to
encouraging results in 3-D detection of pedestrians and cyclists, based on only lidar.

Pillars are special voxels in which the voxel size is unlimited in the vertical direc-
tion. Pillar features can be aggregated from points through a [113] and then scattered
back to construct a 2-D BEV image for feature extraction. The seminal method Point-
Pilalrs described in [120] introduces the pillar representation and uses a novel encoder
which utilizes PointNets to learn a representation of point clouds organized in vertical
columns. While the encoded features can be used with any standard 2-D convolutional
detection architecture, this method further proposes a lean downstream network. Ex-
tensive experimentation shows that PointPillars outperforms previous encoders with
respect to both speed and accuracy by a large margin. Despite only using lidar, the
full detection pipeline significantly outperforms the state of the art, even among fusion
methods, with respect to both the 3-D and bird’s eye view KITTI benchmarks.

Bird’s-eye view feature map based methods use a dense 2-D representation, where
each pixel corresponds to a specific region and encodes the points information in this
region. BEV feature maps can be obtained from voxels and pillars by projecting the
3-D features into the bird’s-eye view, or they can be directly computed from raw point
clouds by summarizing points statistics within the pixel region. The commonly-used
statistics include binary occupancy and the height and density of local point cloud, re-
call the lidar sensor model shown in Figure 3.7. There are 2 major types of grid-based
networks: 2-D convolutional neural networks for BEV feature maps and pillars, and 3-
D sparse neural networks for voxels. Conventional 2-D convolutional neural networks
can be applied upon the BEV feature map to detect 3-D objects from the bird’s-eye
view. In most works, the 2-D network architectures are generally adapted from those
successful designs in 2-D object detection, like the ResNet [62]. 3-D sparse convo-
lutional neural networks are based on two specialized 3-D convolutional operators:
sparse convolutions and sub-manifold convolutions, which can efficiently conduct 3-
D convolutions only on those non-empty voxels. The method SECOND [121] is a
seminal work that implements these two sparse operators with GPU-based hash tables
and builds a sparse convolutional network to extract 3-D voxel features. The authors of
this method also introduce a new form of angle loss regression to improve the orienta-
tion estimation performance and a new data augmentation approach that can enhance
the convergence speed and performance. The proposed network produces state-of-
the-art results on the KITTI 3-D object detection benchmarks while maintaining a fast
inference speed.

In contrast to the 2-D representations like BEV feature maps and pillars, voxels
contain additional 3-D information. In addition, deep voxel features can be learned
through a 3-D sparse network. However, a 3-D neural network brings additional time
and memory cost. It’s important to note that this network architecture has been applied
in numerous other works, and is the foundation of the CenterPoint [51] lidar detector
which we use extensively throughout this thesis.
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Figure 5.3: Visualization of the data structures and network architecture of a typical point-voxel
3-D object detector.

Point-voxel-based 3-D object detectors

Point-voxel based approaches use a hybrid architecture that leverages both points
and voxels for 3-D object detection. Those methods can be divided into two cate-
gories: the single-stage and two-stage detection frameworks. Single-stage point-voxel
based 3-D object detectors try to connect the features of points and voxels with the
point-to-voxel and voxel-to-point transform in the backbone networks, see the dia-
gram in Figure 5.3 which demonstrates a generic architecture of a method in this cat-
egory. Points contain the original, fine-grained geometric information and voxels are
efficient for computation, and combining them together in the feature extraction stage
naturally benefits from both two representations. Methods such as the Point-Voxel
CNN detector [122] and [123] are typical example detector that perform point-voxel
feature fusion in their backbones. The diagram shown in Figure 5.3 depicts a generic
network architecture of one such method.

PVCNN [122] represents the 3-D input data in points to reduce the memory con-
sumption, while performing the convolutions in voxels to reduce the irregular, sparse
data access and improve the locality. The PVCNN model is both memory and com-
putation efficient. Evaluated on semantic and part segmentation datasets, it achieves
much higher accuracy than the voxel-based baseline with 10x GPU memory reduction.
It also outperforms the state-of-the-art point-based models with 7x measured speedup
on average. Remarkably, the narrower version of PVCNN achieves 2x speedup over
PointNet (an extremely efficient model) on part and scene segmentation benchmarks
with much higher accuracy.

In [123] authors propose Sparse Point-Voxel Convolution (SPVConv), a lightweight
3D module that equips the vanilla Sparse Convolution with the high-resolution point-
based branch. With negligible overhead, this point-based branch is able to preserve the
fine details even from large outdoor scenes. To explore the spectrum of efficient 3-D
models, this method uses a flexible architecture design space based on SPVConv. The
authors performed a 3-D Neural Architecture Search to search the optimal network
architecture over this diverse design space efficiently and effectively. Experimental
results validate that the resulting proposed model is fast and accurate: it outperforms
the state-of-the-art ranking 1st on the competitive Semantic KITTI leaderboard. It also
achieves 8x computation reduction and 3x measured speedup over the competition
with higher accuracy. Finally, the model was transferred to perform 3-D object detec-
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tion where it achieved consistent improvements over the one-stage detection baseline
on KITTL

Two-stage point-voxel based 3D object detectors resort to different data repre-
sentations for different detection stages. Specifically, at the first stage, they employ a
voxel-based detection framework to generate a set of 3-D object proposals. At the sec-
ond stage, key-points are firstly sampled from the input point cloud, and then the 3-D
proposals are further refined from the key-points through novel point operators. The
most representative method of this category is PV-RCNN [124], which adopts SEC-
OND [121] as the first-stage detector, and the ROI-grid pooling operator is proposed
for the second-stage refinement. The following works try to improve the second-stage
head with novel modules and operators.

Range-based 3D object detection

Range-based methods address the detection problem from two aspects: designing
new models and operators that are tailored for range images, and selecting suitable
views for detection. Since range images are 2-D representations like RGB images,
range-based 3-D object detectors can naturally borrow the models in 2-D object de-
tection to handle range images. Most notably, LaserNet [125] leverages the deep layer
aggregation network to obtain multi-scale features and detect 3D objects from range
images. This method is a fully convolutional network to predict a multi-modal distri-
bution over 3-D boxes for each point and then it efficiently fuses these distributions to
generate a prediction for each object. Experiments show that modeling each detection
as a distribution rather than a single deterministic box leads to better overall detec-
tion performance. Benchmark results show that this approach has significantly lower
runtime than other recent detectors and that it achieves state-of-the-art performance
when compared on a large dataset that has enough data to overcome the challenges of
training on the range view.

Some works resort to novel operators to effectively extract features from range
pixels, including range dilated convolutions, graph operators, and meta-kernel con-
volutions. Depth images are captured and projected on a spherical projection. It has
been a natural solution for many range-based approaches to detect 3-D objects di-
rectly from this view. Nevertheless, detection from the range view will inevitably
suffer from the occlusion and scale-variation issues brought by the spherical projec-
tion. To circumvent these issues, many methods have been working on leveraging
other views for predicting 3-D objects, e.g. the cylindrical view leveraged in [126],
and a combination of the range-view, bird’s-eye view (BEV), and point-view adopted
in RangeloUDet [127]. RangeloUDet is an efficient and effective 3-D object detection
framework that uses the range image as input. Benefiting from the dense representa-
tion of the range image, RangeloUDet is entirely constructed based on 2-D convolu-
tions, making it possible to have a fast inference speed. This model learns pointwise
features from the range image, which is then passed to a region proposal network for
predicting 3-D bounding boxes. The authors optimized the pointwise feature and the
3-D box via the point-based IoU and box-based IoU supervision, respectively. The
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point-based IoU supervision is proposed to make the network better learn the implicit
3-D information encoded in the range image. The 3-D Hybrid GloU loss is intro-
duced to generate high-quality boxes while providing an accurate quality evaluation.
Through the point-based IoU and the box-based IoU, RangeloUDet outperforms all
single-stage models on the KITTT dataset, while running at 45 FPS for inference.

Compared to bird’s-eye view detection, detection from the range view is vulner-
able to occlusion and scale variation. Hence, the combination of feature extraction
from the range view and object detection from the bird’s eye view become the most
practical solution to range-based 3-D object detection.

5.2.3 Radar object detection

When working with automotive radar as the main ranging sensor, detection needs
to take into account the specifics and limitations of the radar. At the time of writing
this thesis, most commercially available automotive radars provide very limited angu-
lar resolution in the elevation plane. For example, more often than not, radar sensing
is performed in only one elevation plane and much of the vertical information of the
scene is lost. A typical radar data sample consists of signal strength sampled on a 3-D
range, azimuth and Doppler grid, often referred to as a radar cube. Radar, however,
has several distinct advantages over other sensors in real-world applications. First, the
cost of the sensor is much lower than lidar, second, radar signals are less susceptible
to extreme weather conditions, then, radar generally offers larger detection range than
lidar, and last, radar provides additional velocity measurements. Most of the classi-
cal radar perception literature focuses on radar super-resolution techniques [128] and
depth sensing at an object level irrespective from the resolution of the imaging cam-
era. Techniques such as late fusion can then be employed to match ranged objects by
the radar to detected regions of interest in the camera image. The following paragraph
lists some notable radar analysis methods for detecting moving objects, mainly road
users in automotive context.

Classical methods such as the Constant False Alarm Rate (CFAR) [129] can per-
form accurate moving target detection in radar signal by determining whether a target
exists in the clutter or noise background. Existing CFAR detection procedures are
commonly performed using sliding windows in the radar signal, from which the pa-
rameters of the hypothesized model are estimated, and the data available in the refer-
ence window are employed to compute the decision threshold. CFAR offers reliable
detection of moving targets, however, further processing on these detections is needed
for classification. In [130], the authors present one typical example of detecting the
motion of people using hand crafted range and Doppler features. Their method is
built on analyzing the radar waveform design i.e., the expected characteristics of the
return signal given the known radiation pattern and the most likely object motion fea-
tures. A comparative study [131] analyses the performance between random forests
and LSTM, see [132], network for classification of cars, pedestrians, groups, bikes
and trucks. Backed by large scale experiments, their conclusion is that the difference
between LSTM and random forest is surprisingly small (0.884 vs. 0.871 F1 score).
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They also found that the performance of the LSTM network, in particular, is highly
sensitive to the amount of training samples, a motivation which drives us towards
training with large dataset and weak supervision.

A semantical radar grid building algorithm is presented in [133]. The authors rely
on 4 radars, whose observations are first registered, to classify regions containing cars
and other objects. In this paper a shallow fully convolutional neural network was
used to classify input occupancy grid cells into classes of objects.a In contrast to this
approach, we’re interested in instantaneous road user detection and operate on a prac-
tical, short time window. In [134], the authors present a semi-supervised deep radar
detector operating on 3-D dense radar data. The method splits the input dimensions
by applying two independent CNNs that process in the range-Doppler and elevation-
azimuth dimensions respectively. A weakness of this method is that radar dimensions
are only combined in late feature space, thus the potential of inter-dimensional depen-
dencies is lost from the start. Since we are only interested in detecting VRUs, we can
discard any unnecessary Doppler data, for example velocities too high for a pedes-
trian, by pre-processing steps, and retain a complete 3-D radar space as input. The
authors of the paper [135] propose a CNN object detection and 3-D estimation based
on the U-Net architecture. They use a coupled Radar and Camera sensor to prepare
a set of training samples for a radar CNN which determines the presence or absence
of a car in the radar signal. This method uses a 3D network architecture, where the
input tensor consists of radar range, velocity and receiver channel information, and
the output consists of 3 layers: a binary probability of occupancy and two image plane
coordinates. The main drawback of this method is that its training protocol is lim-
ited to cars in the image plane and the authors do not provide extensive evaluation for
cluttered environments.

In [136] the authors propose a hybrid radar detection system consisting of initial
target detection by classical processing followed by radar target classification net-
work. The network operates on cropped range-azimuth-Doppler radar tensors ex-
tracted around the initial radar targets and outputs a class label and score for the cate-
gories car, person and cyclist. Finally, they apply clustering in order to group similarly
classified targets into complete objects. This method was evaluated on a real-world
dataset using automatically annotated ground truth from matched camera and stereo-
depth sensors. Even though the authors report promising results, this method relies on
single time integration radar cubes, therefore overlooking important micro-Doppler
cues needed for classifying VRUs.

Following a comprehensive analysis of applying deep learning to radar signals
presented in [137] the authors propose a deep learning method for vehicle detection
in bird’s eye view using Range-Azimuth-Doppler tensors. Interestingly, the method
doesn’t truly work with the full 3-D radar data, rather it computes three image-like in-
puts by collapsing each radar dimension respectively. This paper also proposes a semi-
automated annotation framework based on a 64-beam lidar sensor, however manual
human correction was needed to obtain ground truth. By controlling for various fac-
tors in their deep learning architecture the authors came to the following conclusions:
best performance is achieved by operating in the native polar coordinates and applying
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a Cartesian transformation on the latent features, second: incorporating Doppler in-
formation using their proposed model has marginal benefits and third: exploiting the
temporal dependency with a LSTM cell has marginal benefits . A potential weakness
of this method is the recurring loss of micro-Doppler information due to the collapse
of dimensions in the pre-processing.

Very recently, 4-D imaging radar based on the phased-array principle has promised
to bring cheap depth sensing to the automotive market. Using a limited number of
receive and transmit antennas, this type of radar can produce a sparse range image
spanning over range, azimuth and elevation. Reconstructing the pixel-level informa-
tion that remains missing between the radar beams can then be performed by any other
sparse depth completion techniques. This technology, however, remained unavailable
at the time of writing and will not be the subject of further analysis.

5.2.4 Fusion object detectors

Within the application domain of advanced driver assistance systems, a vast num-
ber of late sensor fusion techniques exist. The vast majority of autonomous driving
prototypes employ a combination of cameras and lidar/radar sensors. Since lidar-
based detection methods perform much better than camera-based methods for 3-D
detection, the state-of-the-art approaches are mainly based on lidar-based 3-D object
detectors and try to incorporate image information into different stages of a lidar de-
tection pipeline. Combining the two modalities together inevitably brings additional
computational overhead and inference time latency. Therefore, how to efficiently fuse
the multi-modal information remains an open challenge.

Early fusion 3-D object detectors

Early-fusion based methods aim to incorporate the knowledge from images into
point cloud before they are fed into a lidar-based detection pipeline. Hence the early-
fusion frameworks are generally built in a sequential manner: 2-D detection or seg-
mentation networks are firstly employed to extract knowledge from images, and then
the image knowledge is passed to point cloud, and finally the enhanced point cloud is
fed to a lidar-based 3-D object detector. Based on the fusion types, the early-fusion
methods can be divided into two categories: region-level knowledge fusion and point-
level knowledge fusion.

Region-level fusion methods aim to leverage knowledge from images to narrow
down the object candidate regions in 3-D point cloud. Specifically, an image is first
passed through a 2-D object detector to generate 2-D bounding boxes, and then the
2-D boxes are extruded into 3-D viewing frustums. The 3-D viewing frustums are
applied on lidar point cloud to reduce the searching space. Finally, only the selected
point cloud regions are fed into a LIDAR detector for 3-D object detection.

F-PointNet [138] first proposes this fusion mechanism for 3-D object detection
from RGB-D data in both indoor and outdoor scenes. A key challenge of this approach
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is how to efficiently localize objects in point clouds of large-scale scenes (region pro-
posal). Instead of solely relying on 3-D proposals, this method leverages both mature
2-D object detectors and advanced 3-D deep learning for object localization, achiev-
ing efficiency as well as high recall for even small objects. Benefited from learning
directly in raw point clouds, the method is also able to precisely estimate 3-D bound-
ing boxes even under strong occlusion or with very sparse points. Evaluated on KITTI
and SUN RGB-D 3D detection benchmarks, F-PointNet outperforms the state of the
art by remarkable margins while having real-time capability.

Frustum ConvNet [139] uses 2-D region proposals in an RGB image and generates
a sequence of frustums for each region proposal. Then it uses the obtained frustums to
group local points. F-ConvNet aggregates point-wise features as frustum-level feature
vectors, and arrays these feature vectors as a feature map for use of its subsequent
component of fully convolutional network (FCN), which spatially fuses frustum-level
features and supports an end-to-end and continuous estimation of oriented boxes in
the 3-D space. The authors also propose component variants of F-ConvNet, including
an FCN variant that extracts multi-resolution frustum features, and a refined use of
F-ConvNet over a reduced 3-D space. Ablation studies verify the efficacy of these
component variants. F-ConvNet assumes no prior knowledge of the working 3-D en-
vironment and is thus dataset-agnostic. F-ConvNet outperforms all existing methods
on SUN-RGBD, and claims to outperforms all published works on the KITTI bench-
mark.

A maritime object detection and fusion method is proposed in [140]. The method
is based on proposal fusion of multiple sensors such as infrared camera, RGB cam-
eras, radar and lidar. Their framework first applies the selective search method on
RGB image data to extract possible candidate proposals that likely contain the ob-
jects of interest. Then it uses the information from other sensors in order to reduce the
number of generated proposals by selective search and find more dense proposals. The
final set of proposals is organized by considering the overlap between each two data
modalities. Each initial proposal by selective search is assumed as a final proposal if
it is overlapped (Intersection over Union /OU > «) by at least one of the neighbor-
ing sensor proposals. Finally, the objects within the final proposals are classified by a
Convolutional Neural Network (CNN) into multiple types.

Point-level fusion methods aim to augment input point cloud with image features.
The augmented point cloud is then fed into a lidar detector to attain a better detec-
tion result. The most prominent example for method in this category is PointPaint-
ing [141]. This method leverages image-based semantic segmentation to augment
point clouds. Specifically, an image is passed through a segmentation network to
obtain pixel-wise semantic labels, and then the semantic labels are attached to the
3-D points by point-to-pixel projection. Finally, the points with semantic labels are
fed into a lidar-based 3-D object detector. This approach has later been taken by
many other authors to propose very effective early-fusion object detection. The work
in [142] proposes an approach to seamlessly fuse RGB sensors into lidar-based 3-D
recognition. This Multi-modal Virtual Point (MVP) approach takes a set of 2-D detec-
tions to generate dense 3-D virtual points to augment an otherwise sparse 3-D point
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Figure 5.4: Visualization of the data structures and network architecture of a typical interme-
diate fusion camera-lidar detector.
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cloud. These virtual points naturally integrate into any standard lidar-based 3-D de-
tector along with regular lidar measurements. The resulting multi-modal detector is
simple and effective. Experimental results on the large-scale nuScenes dataset show
that our framework improves a strong CenterPoint baseline by a significant 6.6 mAP,
and outperforms competing fusion approaches. We use MVP as a baseline to compare
against the performance of the proposed method in this chapter, details in Section
5.7.2.

Early-fusion methods generally perform multi-modal fusion and 3-D object detec-
tion in a sequential manner, which brings additional inference latency. Given the fact
that the fusion step generally requires a complicated 2-D object detection or semantic
segmentation network, the time cost brought by multi-modal fusion is normally non-
negligible. Hence, how to perform multi-modal fusion efficiently at the early stage
has become a critical challenge. Another important aspect of early fusion methods
is their inability to cope with sensor failures. As most neural networks are trained
on the assumption of a steady flow of camera and lidar data, even soft failures where
the camera information is degraded can cause domain shift and drastically reduce the
performance of the fusion model.

Intermediate fusion 3-D object detectors

Intermediate fusion based methods try to fuse image and range features at the inter-
mediate stages of a lidar-based 3-D object detector, e.g. in backbone networks, at the
proposal generation stage, or at the ROI refinement stage. These methods can also be
classified according to the fusion stages. Many contributions have been made to pro-
gressively fuse image and lidar features in the backbone networks. In those methods,
pixel-to-point correspondences are firstly established by camera-to-lidar transform,
and then with the pixel-to-point correspondences, features from a lidar backbone can
be fused with features from an image backbone through diverse fusion operators. The
multi-modal fusion can be conducted in the intermediate layers of a grid-based de-
tection backbone, with novel fusion operators such as continuous convolutions [143],
hybrid voxel feature encoding [144], and Transformer [145], see the diagram in Fig-
ure 5.4 which depicts a generic architecture of a method in this category. The multi-
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modal fusion can also be conducted only at the output feature maps of backbone net-
works, with fusion modules and operators including gated attention [146], unified
object queries [147], BEV pooling [148], learnable alignments [149], point-to-ray fu-
sion [150], and Transformer [151]. In addition to the fusion in grid-based backbones,
there also exist some papers incorporating image information into the point-based de-
tection backbones such as [152].

Intermediate fusion in proposal generation or the ROI head conducts multi-modal
feature fusion at the proposal generation and ROI refinement stage. In these methods,
3-D object proposals are first generated from a lidar detector, and then the 3-D propos-
als are projected into multiple views, i.e. the image view and bird’s-eye view, to crop
features from the image and ldiar backbone respectively. Finally, the cropped image
and lidar features are fused in an ROI head to predict parameters for each 3D object.

The Multi-View 3-D (MCV3D) detector proposed in [86] is one such interme-
diate sensor fusion framework that takes both lidar point cloud and RGB images as
input and predicts oriented 3-D bounding boxes. This method encodes the sparse 3-D
point cloud with a compact multi-view representation. The network is composed of
two sub-networks: one for 3-D object proposal generation and another for multi-view
feature fusion. The proposal network generates 3-D candidate boxes efficiently from
the bird’s eye view representation of 3-D point cloud. The design is a deep fusion
scheme which combines region-wise features from multiple views and enables inter-
actions between intermediate layers of different paths. Experiments on the challenging
KITTI benchmark show that the proposed approach outperforms the state-of-the-art
by around 25% and 30% AP on the tasks of 3-D localization and 3-D detection.

The AVOD detector [153] is another notable intermediate fusion example where
the proposed neural network architecture uses lidar point clouds and RGB images
to generate features that are shared by two sub-networks: a region proposal network
(RPN) and a second stage detector network. The proposed RPN uses a novel architec-
ture capable of performing multi-modal feature fusion on high resolution feature maps
to generate reliable 3-D object proposals for multiple object classes in road scenes.
Using these proposals, the second stage detection network performs accurate oriented
3-D bounding box regression and category classification to predict the extents, orien-
tation, and classification of objects in 3-D space. This architecture is shown to produce
state of the art results on the KITTI 3-D object detection benchmark while running in
real time with a low memory footprint, making it a suitable candidate for deployment
on autonomous vehicles.

In [154] the authors propose an improvement to the YOLO [23] image object de-
tection algorithm for detection of poorly lit road users using decision level fusion and
feedback from lidar depth. They increase the granularity of the YOLO anchor grid in
regions where people are detected with low confidence scores. This way, the improved
YOLO algorithm can try twice to detect the target at a certain distance according to
the characteristic of dim pedestrians and non-motor vehicles. Thus, it can reduce the
missing rate of the target and output a more comprehensive scene model and ensure
the safe driving of vehicles. This method compensates for a weakness of the original
YOLO algorithm where a predefined raster grid is used for region proposal.
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The intermediate methods encourage deeper integration of multi-modal represen-
tations and yield 3-D boxes of high quality. Nevertheless, camera and lidar features
are intrinsically heterogeneous and come from different viewpoints, so there still exist
some problems on the fusion mechanisms and view alignments. Moreover, due to the
entanglement of the modalities in the deeper layers of the network, intermediate fusion
methods too suffer from the effects of domain shift in situations of sensor failures.

Late fusion 3-D object detectors

Late fusion methods perform information fusion at the detection level i.e., the
output 2-D and 3-D bounding boxes from camera and lidar detectors. In these meth-
ods, object detection with camera and lidar sensor can be conducted in parallel, and
the output 2-D and 3-D boxes are fused to yield more accurate 3-D detection results.
Late fusion is traditionally performed using statistical models and information the-
ory which provides rules for the optimal combination of detection information from
multiple sources. As such, late fusion methods are relatively mature, offering im-
proved detection performance over single-modality detectors while having maximum
resilience to sensor failures. Nonetheless, there are challenges in late fusion, espe-
cially in the part of aligning the detection data between the modalities. The literature
on late fusion is saturated with approaches whose organization along the many cate-
gories is outside of the scope of this thesis. We direct the reader to the ProFusion2
project in the paper [155] as well as the survey papers presented in [156,157] for more
details on late fusion.

Notably, a recent method explained in [158], proposes a learning-based late fusion
approach using a novel Camera-Lidar Object Candidates (CLOCs) fusion network.
CLOC:s fusion provides a low-complexity multi-modal fusion framework that signif-
icantly improves the performance of single-modality detectors. CLOCs operates on
the combined output candidates before Non-Maximum Suppression (NMS) of any
2-D and any 3-D detector, and is trained to leverage their geometric and semantic
consistencies to produce more accurate final 3-D and 2-D detection results. The ex-
perimental evaluation on the challenging KITTI object detection benchmark, includ-
ing 3-D and bird’s eye view metrics, shows significant improvements, especially at
long distance, over the state-of-the-art fusion based methods. At time of submission,
CLOC:s ranks the highest among all the fusion-based methods in the official KITTI
leaderboard.

The late-fusion based approaches focus on the instance-level aggregation and per-
form multi-modal fusion only on the outputs of different modalities, which avoids
complicated interactions on the intermediate features or on the input point cloud.
Hence these methods are much more efficient compared to other approaches. How-
ever, without resorting to deep features from camera and lidar sensors, these methods
fail to integrate rich semantic information of different modalities, which limits the
potentials of this category of methods.
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Cooperative 3-D object detection

Cooperative object detection in the literature often refers to the process of object
detection from a network of spatially diverse sensors distributed around the environ-
ment [159]. Methods such as this apply either early or late fusion principles, with the
only difference being that the sensors are not collocated. This is in contrast to our
definition of cooperative fusion, where we allow sensors with overlapping fields of
view to share feedback information with each other, regardless whether they sit closer
or further apart.

In [160] authors address the problem of huge volume of raw sensor data required
to transfer between autonomous vehicles in a cooperative sensing system. They ar-
gue that it is practically infeasible to exchange raw data among vehicles, which would
cause severe bottlenecks in existing network infrastructures. To reduce network traf-
fic, a feature map based data sharing mechanism is proposed for 3-D object detection
on autonomous vehicles. They propose a mechanism that uses important features re-
ceived from other vehicles that could significantly improve the current vehicle’s object
detection performance. The proposed Cooperative Spatial Feature Fusion (CoFF) en-
ables a vehicle (referred to as the receiver) to effectively utilize the supplementary
information provided by another vehicle (referred to as the sender), and weighs the
sender’s feature map in the regions where its own feature map has a hard time detect-
ing objects. The authors use two strategies to selectively fuse features of the sender
and receiver in the overlapping areas. The first strategy uses the maxout function
which takes the maximum of the feature maps of the two sensors, while the second
strategy (Information-based Spatial Feature Fusion) takes the maximum along every
channel of the features independently.

This cooperative method assumes that the feature maps from the sender and re-
ceiver are similar to each other i.e., they originate from the same type of sensor/de-
tector, which limits the potential of the method. We argue that this method has a
weakness that it uses an ad hoc metric (L.-2 distance) to estimate the information gains
from the two feature maps which, in the case of CNNs can be potentially misleading.
This is because CNN feature maps can be quite sensitive to perturbations where small
differences of the input lead to large differences in the feature values and the effect of
the maximum operator is unpredictable. Moreover, by communicating feature maps
this method still transmits a significant portion of information between the vehicles.
In our cooperative fusion methods we transfer only high-level information between
the sensors, and use metrics with well understood behavior to improve the detection
rates in ambiguous situations.

A physics-based cooperative sensor fusion between visible and infra-red cameras
for moving object detection is proposed in [161]. This algorithm uses collocated sen-
sors and automatically adapts to the environmental changes that affect sensor measure-
ments. The adaptation is done through a cooperative co-evolutionary algorithm that
fuses the scene contextual and statistical information through a physics-based method.
The method assumes static cameras where observations carry the contextual informa-
tion used to build statistical (mixture of Gaussian) background model. The authors
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show that the proposed fusion model adapted to various illumination conditions and
is suitable for detection under variety of environmental conditions.

The idea proposed in this paper pertains to similar principles used in our coop-
erative fusion method i.e., by exchanging contextual information. In our work, the
cooperating sensors create a model of the scene (which we call feedback line) where
the presence of objects of interest is strongly indicated. This information serves as
context for other sensors and enables them to adapt to the local conditions of the
scene. Whereas in [161] use fixed sensor locations and low-level physics modeling
of the environment, we apply the concept on moving sensors, building a contextual
model of the scene using the same detection information that the sensors are tasked to
produce.

In [162] authors propose a cooperative ranging-imaging detector based on lidar
and camera for the task of road obstacle detection. The cooperation of the sensors
refers to the process of region selection in the camera image which is made more
effective by employing semantic information from the lidar. A lidar point cloud is
assumed to contain both the ground plane and all objects of interest. After a ground
plane removal and density-based segmentation step, 3-D objects are projected on the
camera image plane to form ROIs. The authors use heuristics to fit rectangular masks
to various objects such as cars, trucks, pedestrians, etc. The resulting image masks
are found to visually match with the image content. However it is not clear how these
masks can be used for classifying specific targets and whether there is a performance
improvement.

The literature on truly cooperative fusion methods is scarce with most of the re-
cent publications claiming to be cooperative being some variation of an intermediate
fusion CNN. In the following, we propose an object detection system using hetero-
geneous sensors and independent object detectors, and perform cooperative sensor
fusion at the decision level. All of the sensors are positioned on the same vehicle and
we use the detection confidence of individual object detectors to rank the detections
and only communicate confident ones between sensors. Sensor-sensor cooperation
is thus aimed at improving the detection rates from the point of view of the vehicle
without using any external data.

5.3 Cooperative multi-sensor object detection architec-
ture

This section of the thesis deals with the problem of instantaneous object detection
and localization in 3-D. We will assume that the reference coordinate system is fixed to
the center of mass of the vehicle and the coordinate transform between the sensors and
this center of mass is known. To achieve 3-D object detection, we will employ a cluster
(or an array) of heterogeneous forward-looking sensors. Even though the proposed
concepts focus on a forward-looking sensor array, they can be easily extended to a
sensor setup of multiple cameras and range sensors, for example: a camera/radar in
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one of each corners of the car covering an area of 360° in non-overlapping fields of
view.

In order to be integrated in a larger vehicle control system, the environmental per-
ception needs to meet the following requirements: it needs to have improved detection
precision under all operating conditions; it needs to have redundancy i.e., to remain in
operation if one of the sensors fails; and finally, it needs to operate in real-time. Due to
these requirements, the proposed perception method uses individual object detectors
trained for each sensor modality, akin to late fusion. The information extracted by the
multiple object detectors is then matched in a common medium (usually the camera
image plane) and communicated to an object tracker for temporal integration. If one
of the sensor fails, then this late-fusion architecture can continue to operate effectively
without the need for re-calibration.

At the architecture level, the proposed method extends late-fusion by allowing
cross-sensor information exchange during detection. The sensors communicate with
each-other through feedback lines which consist of prior detection information in a
sensor-agnostic format. Practically, each sensor makes a short selection of very con-
fident detections and computes the locations on the ground plane x where it thinks an
object of interest is likely to be present, see diagram in Figure 5.5. Other sensors can
then tap into this information and use it to make better decision in regions with poor
signal quality. Each sensor remains, however, fully capable of detecting without the
need of any feedback information if none is provided. Thus, the proposed cooperative
fusion method retains the robustness benefits of late-fusion, and offers increased pre-
cision in ambiguous situations. It is important to note that the feedback line can also
be populated by information from the object tracker, see diagram in Figure 1.1. The
effect of this additional temporal information will be analyzed in more detail when we
lay out the tracking details in the next chapter.

Prior to going into the specifics of the suggested solutions, it is crucial to briefly
discuss the requirement for matching observed objects across several sensor modali-
ties. Detection fusion needs to evaluate the likelihood of a hypothesis given detection
evidence from multiple sensors. We assumed that the existence of an object is sep-
arate from its location so that we can model the two as separate, semi-independent
concepts which allows for the better understanding and easier interpretation of the
models. Moreover, optimizing for the existence and location of an object step-by-step
avoids unnecessary localization computations for unlikely hypotheses which reduces
the algorithmic complexity. The system assumes that within a region Q(x,g) the
object existence is constant and thus evaluates a single object existence hypothesis
H, over all positions and shapes in 2(x, g) from all observational evidence captured
within this region. If the probability of presence is high enough, only then we look for
a position within the region §2(x, g), which has the highest probability of presence at
that location. Then, for regions where the existence hypothesis is significantly more
likely than the null-hypothesis H, we test various positions and shapes.

For the object existence, it is critical to evaluate the log-likelihood ratio using the
K sensor activation functions Zkl,(;()l 1r® (a(¥)(x)) within the region (x, g) around
each ground plane position x (and possibly for each object shape g). Similarly, for the
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belief in the object position, it is critical to evaluate product of the K sensor models:
K—-1
H pU(O),...,U(K*U |H,X (u(O), a3 u(K_l) |H17 X) ) (51)
k=0

where u(*) is the closest detection within the region (x, g) that comes from sensor k.
Computing the belief of object existence is more critical for the task of instantaneous
object detection where we need to make a decision whether to continue analyzing this
region in the next time instance, while computing the exact location is critical in ob-
ject tracking where the integration of detections over time can significantly improve
the position estimate. These choices are of course motivated by the limitations in com-
puting power and memory of practical perception systems, where it is not possible to
keep track of all detections, however unlikely they are to exist. In practice, instanta-
neous object detection operates at a certain precision/recall point and communicates
only confident detections to the tracking system.

Finding the variables that optimize these two beliefs, case 1: H; or Hy, which
maximizes the road user presence Eq. (2.11), and case 2: the specific x which maxi-
mizes the road user position Eq. (2.16), is not straight forward because of two impor-
tant reasons. First: each sensor’s output u®) is defined in sensor-specific coordinates
and we need to apply a transform in order to estimate the models at an arbitrary posi-
tion on the ground plane a(*) (x). Second: even with the correct transform it might not
always be possible to evaluate the activation function at an arbitrary position x, but
rather only at finite regions a(u) generated by the detector non-maximum suppression.

The proposed cooperative feedback mechanism consists of a feedback line i.e., a
sensor-agnostic scene descriptor that indicates areas of the scene where objects can
be detected with high degree of confidence. The feedback line is populated by re-
gions Q(x,g) of the scene where a sensor is highly confident of object existence:
Pprja(k) (Hl la(*) (u,s))
Diriak) (Ho la(®) (“75))
these regions can be either a list of confident object detections or can be aggregated
using an accumulator array. The feedback of confident detection regions is commu-
nicated to all cooperating sensors which then use this information to improve their
potentially weak detection by adjusting the parameters such as threshold for weak
detections near Q(x, g).

> 1. Depending on the implementation, as we will see later,
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Figure 5.5: General cooperative fusion architecture. The feedback line is populated with con-
fident detection information in a sensor-agnostic format which can then be used as an optional
input by the sensors.
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Block diagram of the proposed Radar/Lidar—camera feedback mechanism for recovering weak
camera detections which are in close proximity of strong Radar/Lidar detections. The hypoth-
esis generation mechanism shown in the diagram comes from temporal tracking which is ex-
plained in the next chapter.

5.4 Camera object detection with Radar/Lidar feed-
back

In this section we propose a cooperative sensor fusion method for instantaneous
object detection based on camera, radar and/or lidar. The sensors have overlapping
fields of view meaning that each object can potentially be seen by each sensor. Stan-
dard single-sensor object detection operates by analyzing the input sensor signal and
comparing the activations at the output to a detection threshold q. The working point
of the detector is determined by the detection threshold, which is constant and unique
to each sensor. If the k*"-sensor activation (a(k) (u, s)) around the region where the
object is located (Q2(x, g)) is above the k*"-sensor detection threshold ¢(*), then the
kt"-object detector makes the decision that the object is detected, and otherwise the
object is not detected.

The fusion of the multi-sensor evidence is performed by analyzing each region
Q(x, g) of the scene and finding the closest matches: detected (u®), s(*)) from each
sensor having activations that satisfy: a(*) (u,s) > ¢(*). The joint belief in object
existence within the region given the closest matching sensor evidence is computed

o (I ) D)
Pyial®), L= (Hola® (u,s),....a =D (u,s))
note that in regions where some or all of the sensors do not detect an object, we use

—_p® . - . ..
ln%, based on the the prior probability for detection Pp and false positives Prp

as the joint log-likelihood ratio: In

which are derived offline from the parameters of the detector. This indicates that the
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confidence of missed detections is not the same as the actual confidence and is instead
thought to be an average across the dataset.

Before calculating the joint log-likelihood ratio, the proposed cooperative fusion
algorithm applies an additional step of reasoning based on the previously discussed
findings that the assumed LLR of missed detections does not always accurately re-
flect the belief that an object is present, particularly in regions with compromised
viewing Q(x, g). The core idea is that, before fusing, we want to improve the camera
detection using cues about the nature/context of the region from other, more accurate
sensors. We will do so by making the operating point of the camera adapt locally to
the context of the scene, thus the working point ¢ becomes a function of the spatial
parameters of the scene: ¢ (x,g). The notion is that by collecting information about
the context and nature of each region in the scene from other, more precise sensors,
we may locally decrease the camera detection threshold, recover missed detections
and be more accurate about their LLR.

For instance, if the lidar is certain that an item is present in a dimly illuminated
area of the scene, we may utilize this knowledge to guide the camera’s object recog-
nition process and increase the camera’s chance of recalling an object in that area.
Only in such indicated regions, lowering the camera detection threshold yields evi-
dence whose log-likelihood ratio is more accurate than the camera detection priors
Pp and Ppp. The approach results in more detections by the camera in regions of
poor viewing, which eventually leads to a better joint log-likelihood ratio after fusion.
Radar/lidar targets that match well with image bounding boxes are likely to belong to
the same object. False positives from complementary sensor modalities, on the other
hand, frequently do not arise in the other sensors. This is due to the varying modes
of operation of the sensors, which causes clutter in different areas of the scene. For
example, radar clutter caused by secondary reflections is not present in the image and
false detections in the image due to low light are not present in the radar measure-
ments. Therefore, adjusting the detection parameters using cues from other sensors
can potentially increase the detection recall while keeping the number of false posi-
tives constant.

The proposed algorithm for cooperative fusion operates as follows. Strong or con-
fident detections from radar/lidar define the regions of the scene €2'(x, g) where it is
highly indicative that an object is present (indicated with thin green line in Figure 5.6).
In contrast, weak camera detections identify regions of the scene Q” (x, g) where it is
possible that an object is there but belief in its presence is low due to poor viewing cir-
cumstances. Before the threshold is applied to camera activations, we interface with
the object detector and adjust the threshold depending on how well each detection
agrees with the strong evidence from radar and lidar. (indicated as Cooperative Feed-
back in Figure 5.6). Practically, we match Radar/Lidar targets and image bounding
boxes by projecting only the confident detections by the Radar/Lidar onto the image
plane using the same transforms explained in detail in Section 5.6. Recall that we
don’t want to reduce the detection threshold in regions where the other sensors do not
detect anything, which would result in more false positives. The same idea may be
used to various types of sensors without sacrificing generality as long as we are certain
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Figure 5.7: Example of a nighttime scene where the weak camera detection of the person in
the left side of the image is recovered by cooperative fusion (indicated by green box) due to the
proximity to a confident radar detection.

about which sensor will perform best in the particular scene setting.
Formally, the camera gating (dotted diamond block in Figure 5.6) adapts to pass
the weak local camera evidence in the intersection of '(x, g) and Q7 (x, g):

5.2
q(c‘“") otherwise, (5-2)

(cam) if Q N >
cam a(u 1 X? g X’ g — T?
™ (x,g) = { ( ) (x,8) (x,8)

where 7 is the overlap threshold and ¢(°*™) is the baseline camera detection threshold

at the set working point. The intersection of regions can be computed from the image

bounding box of a weak camera detection closest to € (x, g): u(¢®™); g(¢cam) (u,s) <

q(¢@™) | and the image bounding box of the projection of a confident Radar/Lidar de-

tection closest to Q7 (x, g): f (u(ren9¢)) ; a(range) (u,s) > ¢("*m9¢) onto the camera
image:

O'(x,8) N0 (x,g) = 10U (u(cam>, £ (u@“a”ge))) : (5.3)

where we use the Jaccard Index (intersection over union IOU(.)) as a metric for over-
lap/closeness on the image plane and use an overlap threshold of 7 = 0.5.

The proposed adaptive detection threshold is truly cooperative because it uses pro-
cessed information from the illumination-invariant range sensors to potentially adapt
the decision making of the camera. However, the sensors remain conditionally in-
dependent, meaning that the cooperative feedback is not a necessary component of
the system. If the range sensors do not report anything to the feedback line, then the
camera detector will continue to operate in its nominal state, applying the pre-defined
camera detection threshold over the entire imaging field. The effect of the method
is two-fold: first more camera evidence referring to the presence and position of true
objects can be recalled from the images without changes to the image analysis net-
work, and second: more of the camera false positives will remain suppressed below a
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Figure 5.8: Example of a nighttime scene where camera has poor detection performance in the
poorly lit region in the left side (top image). Late fusion with Radar and Lidar (middle image)
yields detection with reduced confidence due to the lacking camera evidence. Cooperative
fusion (bottom image) significantly improves the detection confidence for the poorly visible
people in the scene.

sufficiently high detection threshold which can be set at an operating point of higher
precision since we can be more certain that the Lidar/Radar sensors will help in re-
gions of difficult viewing.

To illustrate the effect of radar—camera feedback we analyze the traffic scene
shown in Figure 5.7. In this example there are three pedestrians, two to the left of the
image and one to the right. Due to the low ambient light of the scene, the shape, color
and texture of the pedestrians is not accurately recorded by the camera. Current object
detectors are not yet capable to confidently detect the presence of objects under such
circumstances resulting in bounding boxes with low detection scores. The camera de-
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tection confidence is especially low for the second person to the left of the frame and
when we use a constant detection threshold over the entire image this detection is lost.
Unaffected by the low ambient light, the radar detector is able to detect all VRUs,
indicated by the green ellipses on the ground plane. The lines overlaid on Figure
5.7 further shows the computed proximity (as computed in Eq. (5.3)) of all possible
camera-radar matches on the image plane. We can see that the weakly detected VRU
in the distance matches very closely to a radar detection. In these regions our approach
lowers the camera detection threshold to recover any missing camera detections, indi-
cated by a green bounding boxes in Figure 5.7. In section 5.7.1 we will experiment
with applying this feedback over a wider range of traffic scenes where we will exper-
imentally show that the proposed cooperative radar—camera mode of operation can
be very beneficial in scenes where camera detection is poor.

In another example, we apply the cooperative feedback mechanism in a three-
sensor perception system consisting of a camera, radar and lidar. Contrary to the
methods presented in Section 4.4 where the lidar was only used as means of obtaining
a depth map for ranging, in this example the lidar also performs independent object
detection based on the 3-D measurements. Thus, the system fuses three sets of detec-
tions: camera 2-D bounding boxes, radar 2.5-D ground plane targets, and lidar 3-D
bounding boxes. The proposed sensor cooperation method improves the camera object
detection prior to fusion, by feedback consisting of confident radar and lidar detections
which adjust the camera detection threshold to pass weak camera detections.

Practically, we compose a list of confident radar and lidar detections which we
project onto the image plane and boost weak camera detection using Eq.(5.3). In
Figure 5.8 we demonstrate the system output operating under very poor viewing con-
ditions. On the top image, the individual detections of the three sensors are visualized
in distinctive colors. The bounding boxes in the middle image show hypotheses (x, g)
which have maximum belief in existence computed by late fusion, while the bounding
in the bottom image show the corresponding hypotheses computed by cooperative fu-
sion using an adaptive camera detection threshold guided by radar and lidar evidence.
Encoded in the bounding box brightness are the posterior probabilities of the belief
in existence which clearly indicate improvements in the cooperative fusion case. In
the cooperative fusion example, all 6 vulnerable road users have been detected with
maximum confidence, whereas the confidence of many of the late fusion hypotheses
is quite low. In section 5.7.1 we present a systematic analysis of these improvements
through experiments conducted over a large data sample which shows the effective-
ness of the proposed method.

5.5 Radar object detection with camera feedback

Frequency modulated continuous wave (FMCW) radar has the capability to di-
rectly measure an object’s range and radial velocity (Doppler). A radar with an array
of antennas can use the technique of phase shifting to steer the signal and sample
range/Doppler over specific azimuth/elevation regions. While classical radar signal
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processing can be applied efficiently to detect large objects such as vehicles, discrim-
inating people from clutter in traffic environments remains a difficult task. This is
mainly due to the fact that non-metallic objects are relatively weak radar reflectors.
For this task techniques such Doppler-based background subtraction have been pro-
posed and shown to be effective to some extent when the scene is static. However,
when radar sensor is in motion, the Doppler shift of the perceived environment over-
whelms the signal of road users making them difficult to detect. Additionally, the
effects of multipath propagation of radar signals are difficult to model explicitly due
to the unknown and ever changing scene geometry. The only prospect for people
detection by radar is to look for their unique motion patterns in the time-frequency
domain.

A pedestrian or a cyclist exhibits an oscillatory motion of the limbs which is eas-
ily captured by radar. The resulting radar signal is commonly referred to as a micro-
Doppler signature. One such example is demonstrated on Figure 5.9 where the os-
cillatory nature of the micro-Doppler signature of the pedestrian is highlighted on the
bottom plot. In this example, the micro-Doppler signature of the person is clearly
evident in the time-frequency plot. Classifying whether the object is a person, regard-
less of its position, can be accurately done using the Doppler signal integrated over
all range and azimuth bins. However, in object detection we also need to estimate
the position of the objects. This task becomes more difficult when there are multiple
people in the scene and their micro-Doppler signatures superimpose.

When classifying whether an object is present in the scene or not it is sufficient
that algorithms look at the entire radar signal. However, in order to estimate the lo-
cation of objects, the patterns in the range-azimuth signal need to be interpreted at a
local level which, in turn, reduces its signal to noise ratio when compared to interpret-
ing the complete radar scan at once. It is clear that the problem of people recogni-
tion and localization in radar is exceedingly difficult even without taking into account
ego-motion. The scientific community agrees that radar signal processing has to be
extended to concepts from machine learning and pattern recognition in order to keep
radar in the leading edge of remote sensing [163].

The proposed radar detector improves upon the state-of-the-art by applying the
concept of cooperation feedback from the camera. However, the same principle can
be applied if the feedback line is populated by information from other sensors such as
lidar. The driving principle behind the cooperative radar detector is that radar provides
excellent ranging, but limited azimuth information which can be greatly improved by
using detection priors along the azimuth. For example, due to occlusion or noisy sig-
nal, an object might not entirely be separable from clutter by the radar, but confidently
detected in the camera image. The under-performing radar then uses confident de-
tections of the well-performing camera as feedback information to better detect the
missing object.

It should be noted that a naive implementation of such sensor-sensor feedback
can easily cause unpredictable system behavior, especially when one sensor’s false
positives are employed as strong priors. False prior information can lead to skewed
detection results by the radar making it inaccurate even in situations where it would
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Figure 5.9: Traffic scene where a pedestrian is walking towards the ego-vehicle which is static.
On the top plot, the RADAR signal is projected on a range-azimuth plane and overlayed with
the RGB camera image while on the bottom plot the RADAR Doppler signal is plotted over
time.

be otherwise quite reliable. The suggested object detector was taught to anticipate
potential loss of feedback information and prevent these kinds of instability while
achieving noticeably greater detection rates than the baseline detectors.

In order to do this, we employ an augmentation approach where the feedback
signal is randomly turned off during training. We turn off the feedback signal by
randomly decreasing the confidence of the camera detections (which feed back into
the radar) or completely missing. This simulation is intended to replicate low-light
conditions where the camera detector is compromised but the radar signal remains
unaffected. The network may then focus more on the radar signal and only use the
extra feedback data when it is available as a result. When the feedback line is empty,
the radar detector can switch to a nominal mode of operation where it doesn’t use the
feedback data but still performs at baseline (for instance owing to a malfunctioning
camera or an empty scene).

Our radar detector performs object detection by mapping the radar signal (and any
available feedback information) into a 2-D heat-map of VRU occupancy o. Local
clusters o (x) of high occupancy in the CNN output represent regions which are likely
containing people. The position and extent of detected people can be extracted from
this 2-D heat-map by a spatial clustering or local peak finding algorithm. The method
is based on a convolutional neural network which directly predicts the single-frame
spatial occupancy o (x;) at positions x; : (p;,0;) in polar coordinates on the local
ground plane. We train the model using dense ground truth occupancy maps where
cells containing people are labeled as occupied and the remaining cells are empty, see
section Section 2.4 for definitions.

The input to the CNN is a 3-D tensor consisting of temporal series of dense
radar measurements where each value (in range-azimuth-Doppler space) represents
the radar signal strength captured in this grid cell. The output value of each element
o (x;) is proportional to the probability that the grid cell at spatial position x; is oc-
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Figure 5.10: Visualization of the camera feedback information reinforcing the radar signal.
Left: the scene with detected VRUs, middle: the raw output from YOLOvV3 and right: the
camera feedback array.

cupied by a VRU. For convenience, we chose the output to have the same spatial
resolution as the input signal.

The radar CNN has an additional input, a temporal series of feedback arrays, each
representing confident detection information from other sensors along the previously
mentioned range-azimuth space. Practically, we use the camera feedback information
which consists of the camera detection scores for objects at various position on the
ground plane. We compute the camera feedback vector by projecting each point x; :
(pi, ;) of the ground plane onto the camera image using the same transformation
explained in Section 5.6. Then, we find the likelihood for it being occupied by a
person given the camera activation of the closest detected object in that image location
a(u, s). This procedure is illustrated with an example in Figure 5.10.

Due to large variations of detected bounding boxes in the vertical image direction,
the feedback array has poor localization along the range axis and excellent localization
along the azimuth axis. We find that this complementary information can be of great
benefit to the radar detection CNN since the radar data has a much lower azimuth
resolution.

Radar CNN architecture The task of detecting moving VRUs, consisting of local-
ization and classification, motivates a CNN architecture capable of both spatial and
semantical analysis of the input signal. While localization can be done relatively ef-
fectively using single-frame processing, VRU classification in radar through the use
of micro-Doppler cues necessitates the use of temporal information. A joint detector-
classifier therefore requires both a wide spatial receptive field, as well as significant
feature depth in the time-Doppler dimension. The former is needed for learning to
separate targets from each other and from multi-path reflections, while the later is es-
sential for gait classification. The combination of spatial layers and memory modules
has the disadvantage of costly training, where data sequences must be processed as
time series and GPU resources cannot be fully utilized. We therefore choose to con-
catenate five consecutive radar cubes along a common time-Doppler dimension and
use a 2D U-Net architecture.
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Figure 5.11: Diagram of the proposed cooperative radar CNN detector. Left: stacked raw
radar data cubes and camera feedback vectors, middle: the camera and radar detection CNN
structures, right: the weak supervision camera-lidar used in training.

Following pre-processing, our information dense tensor is fed to the contracting
head of the U-Net, Figure 5.11, where a series of convolutions and max-pooling op-
erators reduce the spatial information into a more dense feature space. The bridge of
the network, containing two Fully Connected (FC) layers, then classifies the presence
of moving VRUs. Up-sampling is performed in expansion blocks using the dense FC
features and high resolution information from the contracting blocks via skip and con-
catenation layers. Finally, a sigmoid activation function is used to map the network
output to predict the probability for occupancy of a VRU at each range-azimuth cell.
For training, we use a per-sample and per-class weighted, two-class cross-entropy
loss function. Per-sample weights account for the varying confidence in our weakly
supervised ground truth at the specific cell, while per-class weights adjust the desired
sensitivity of the output.

Pre-processing using domain knowledge Typical radar data is usually represented
as dense 3-D arrays containing time integrated range-azimuth-Doppler signals, or 4-D
arrays if the radar also measures elevation. Depending on the maximum unambigu-
ous Doppler velocity i.e., the maximum range of radial velocity that can be observed
without ambiguity by a Doppler radar, the captured consists of velocities far greater
than that of a human body. For example, if the radar is configured for a maximum
unambiguous Velocity of S0Km/h then most of the motion of a human body (in the
range of 0 to 10Km/h) will be captured in the first few Doppler bins while the re-
maining signal is of little relevance for the task of detecting people. Since most of the
radar data contains little relevant information, feeding the complete array to a CNN is
sub-optimal and computationally expensive. We therefore developed a pre-processing
function built on domain specific knowledge which resulted in data reduction at mini-
mal loss of information. Knowing that the mean frequency of human gait is around to
1Hz, while cyclists on average pedal at a cadence of roughly 60RPM, a single period
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of this motion carries the minimum detection information. Therefore, we concatenate
radar measurements spanning the time period from 1s in the past until the present.
In order to reduce the effect of range dependent signal decay, we also apply the stan-
dard power normalization step from the classical CFAR [164] algorithm.Practically,
this operation is performed as part of the CNN using a convolution layer with frozen
weights.

In moving radar systems, there exists a typical distortion of the signal structure
proportional to the ego-velocity and the cosine of the azimuth. The structure of the
radar data cube will therefore vary significantly from sample to sample and naively
teaching the CNN to detect people in such distorted inputs is sub-optimal. Knowing
that this distortion comes largely from the ego-motion of the vehicle, we can correct
the input tensor by compensating for ego-motion. The resulting, ego-velocity inde-
pendent space will be used to teach the CNN much more effectively, meaning that we
will need less training samples to cover the solution manifold because the road users
will appear to be moving through a static radar signal. We estimate the ego-velocity
from the Doppler bin which has the strongest radar signal strength. This technique
is effective if we assume that most of the radar energy is reflected from the static en-
vironment. Averaging the signal over all ranges in a forward-looking circular sector
(# € [—30°,30°]) we obtain an estimate of the radial velocity of the static environ-
ment with respect to the vehicle and the ego-velocity is simply the negative of this
value. After estimating the ego-velocity, we discard Doppler bins that far exceed
normal VRU velocities from the input tensor. We make sure that discarding Doppler
slices will not impact detection performance by taking a margin which will include
only the velocities expected from the road users of interest such as pedestrians and
cyclists. This helps us reduce the size of the input tensor and thus lessen the load on
the GPU for training.

Loss function and regularization We perform training of the radar CNN parame-
ters using a training set consisting of radar data samples and ground truth information
in the form of a dense 2-D occupancy array. As previously discussed, the radar CNN
is designed to output a 2-D array o predicting the ground truth occupancy with the
goal to make a local distinction between two categories, ¢ = 2, one encoding the
empty space, and the other the space occupied by VRUs. In this section we define the
supervised learning strategy for training the CNN model parameters by optimizing a
loss function between the network output and the ground truth. The loss function is
designed to lead to a minimal occupancy error which correlates with optimal detection
performance.

In order to train the network parameters using supervised learning, we need ground
truth information which in our application represents the ground plane occupancy for
each region in the scene. Manually annotating the ground plane is especially difficult
when working with radar datasets because the data is non-intuitive to the untrained
eye. We therefore used a calibrated radar-lidar-camera sensor array and used the cam-
era and lidar data to label the scene for the presence of road users. In order to reduce
the costs of labeling an adequately large dataset we used a weakly-supervised strategy
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where objects are pre-labelled by an algorithm and then checked for consistency by a
human annotator. Specifically we use detections from camera (YOLOvV3) and range
them with lidar using our own instance segmentation algorithm explained in Section
4.3. These ranged objects can then be easily projected on to the ground plane to form
the occupancy map which the radar will use as a ground truth. Ground plane grid cells
occupied by matched objects are therefore labeled as positive while the remaining
cells are labeled as negative.

Since the camera and lidar detectors themselves provide imperfect detection, we
use the camera detection scores as control for the radar CNN learning process. More
precisely, we employ a weighted loss function during the training process where the
weight for each positive sample is proportional to the camera detection score. This
way the radar CNN will be trained by using the most confident camera-lidar detections
as ground truth.

In most typical driving situations, the area occupied by VRUs (pedestrians, cy-
clists, etc.) is significantly lower than the area of the free space. This implies that,
in almost all frames, the ground truth occupancy map will be populated mostly by
zeros. Thus, when designing a loss function we need to make sure that the occupied
cells in the ground truth are given enough importance over the empty space. This
way we can achieve an application-specific balance between learning a model that ac-
curately detects empty space and one that accurately detects occupied space. At the
time of writing the thesis, cross-entropy is widely considered as the fastest converging
loss function for optimizing CNNs for multi-class prediction tasks. The loss func-
tion computes the average cross-entropy of the entire ground plane and propagates its
derivative back into the network parameters to adjust them for minimal error. In our
case, each output 0 (x;) is a 2-D array element of class predictions which we compare
to the ground truth element o (x;) and average into a single value:

‘C(évo) = wail(é(xi)vo(xi))v 5.4

where [() is the cross-entropy function:

1(p,g) == p(i)logq (i), (5.5)

i=1
and the sample element weights wy, incorporate the object detection score a(x;) using
an appropriate scaling factor o« depending on the ground truth class:
w (xi) = {apos if x; is occupied, (5.6)

Oneg Otherwise.

where the parameters oy, and oy, is adjusted for the desired detector specificity to
reduce the class imbalance. In our experience we found that a ratio @vos/an., > 1,
which heavily penalizes errors in occupied cells compared to the errors in empty cells,
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brings better model performance.

We also use the camera detection scores from the automatically generated labels
to weight positive samples which has the effect of penalizing errors in cells which
are strongly believed to contain VRUs by the camera. Additionally, we looked at an
automated method of weight adjustment based on classification error in the current
training epoch [165]. This way the weighting of each class is dynamically reallocated
by the supervised classification loss during the training stage, formally:

Le(0(xi),0(x:))
Zke{o,l} Ly (6,0)’

where L, (6, 0) is the average classification loss of a certain class k, and L: (6 (x;) , 0 (x;))
is the loss of the element x; for the predicted class ¢. In the beginning of the training
stage, w (x;) is initialized to 0.5 to enable a fair start. After several training iterations,

the background clutter would dominate the loss and make the model ignore the other
classes due to the huge contribution gap and the imbalanced sample number. How-
ever, once the model learns to classify the clutter, the adaptive weight will have an
equal value for the different categories, and the model will focus on the positive class
again. Note that w (x;) is updated regularly during the training iterations.

w(x;) =

(5.7)

The effects of both of the weighting schemes are two-fold: firstly, network coef-
ficients will adapt to produce strong activations at grid locations matched to highly
confident detections from the camera, and secondly: there will be strong activations
at locations with high quality matching between the camera and lidar objects. This
point in the CNN optimization has been further studied in [165] where by applying
a self-balancing, modulating loss term (focal loss), the network was able to achieve
even higher accuracy.

We use three different regularization techniques which help with parameter sta-
bility and minimize over-fitting. Firstly, the network architecture design itself in-
cludes dropout and batch-normalization layers. Regularized network parameters be-
come more robust to perturbations in the input data and are able to converge faster due
to the reduction of internal covariance shift [166]. Secondly, we apply a multi-epoch
training protocol using the (Adaptive Moment Estimation) ADAM optimizer [91] and
apply weight decay of 5 - 103 to all network parameters. We reduce the global learn-
ing rate by a factor of 10~ every 10 epochs starting from 1073, Lastly, we apply a
realistic data augmentation technique which randomly flips and rotates the input ten-
sor as well as the ground truth along the longitudinal axis. Such 2-D rotations and
reflections are Euclidean plane isometries and thus preserve geometrical properties
such as lengths and reflection angles. Additionally, we randomly attenuate the feed-
back tensor from the camera in order to simulate situations of poor camera detection
performance. Augmenting the dataset in this way creates an abundance of new real-
istic samples while the structure of the scene is generally preserved. More details on
the training and evaluation process are given in Section 5.7.1.
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Figure 5.12: Example of camera (YOLOv3), radar (RadarCNNv2) and lidar (CenterPoint)
detections projected onto the image plane.

5.6 Matching detections across modalities

Sensor fusion computes the belief of object existence as well as the belief in ob-
ject position given multi-sensor observations through the evaluation of the likelihood
functions Eq. (2.5), Eq. (2.6) (in the multi-sensor case Eq. (2.12)) and Eq. (2.20). This
requires us to find, within (x, g) which is a specific region on the ground plane near
X, the detector outputs zl(f); k = 1,2, ..., that match best to our hypothesis position and
shape (x, g) in the respective sensor coordinate systems. Moreover, when we need to
initialize the system with hypotheses and we have no significant prior information, the
best approach is to spawn hypotheses around regions (x, g) which match to confident
detection evidence. In multi-sensor systems, a detection is usually considered to be
confident if it is confirmed by two or more sensors. This means that the matching
between detections across modalities is a crucial task which can greatly influence the
fusion outcome.

In this analysis we give an example how to match detections between a camera,
radar and lidar which is representative of many fusion systems in automotive percep-
tion. Therefore, we seek to find the closest matching camera (k = 1), radar (k = 2),
and lidar (k = 3) detection zF) = (u(k), stk q(k), f) to a hypothesis at location x
with a certain shape g. The problem is constrained within a region {2(x, g) on the
ground plane which is specific to the object class, for example: if we are detecting
people then Q(x, g) may be a region where it’s unlikely to find another person i.e., the
personal space of a person at a candidate position x. We seek the detections from the
three sensors that are closest to the position x and shape g, formally for each sensor
we seek the detection z; which satisfies argmax; d (z;, 2(x, g)) where d (.) is a dis-
tance function measuring the proximity in distance and similarity in shape in image
coordinates.

Since our perception system uses a combination of cameras, radars and lidars,
computing the closest detection to a a hypothesis requires a distance function dy, (.)
unique to the sensor k and as we will see bellow, the design of this function is not
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trivial. The camera object detections are defined in the camera image plane and lack
range information and radar detections are defined on the ground plane and lack height
information making the matching between (u(®,s(")) and Q(x, g) ambiguous. For
example: a tall person in the distance appears similar to a shorter person that is closer
by in the image. In order to compute the best matching sensor evidence that will ulti-
mately optimize the multi-sensor belief in our objects of interest we need to overcome
this ambiguity.

When computing the best matching camera detections we chose to project the
hypothesis (x, g) and all detections on the image plane and find potential matches
whose projections overlap the most in terms of image area. Projecting a hypothesis
(x,8), a 3-D bounding box, can be done without loss of information if we simply
apply the perspective projection explained in Appendix A. The same holds true for
lidar detections since they too are fully defined by their 3-D location and shape. When
projected onto an image, each of the 8 bounding box corners form a convex hexagon
which we can then describe with a smallest enclosing box to make it compatible with
the image detections, see the example shown in blue in Figure 5.12. However, this
process becomes ambiguous for radar targets which lack height information because
we cannot compute the exact pixel positions of the top of the object. Instead, we
assume that each radar detection is of average height and width using models learned
off-line, see the example shown in green in Figure 5.12.

Having projected all of the detections onto the camera image, we can find match-
ing detections which match with a hypothesis using the Jaccard index of their pro-
jected (or assumed) bounding boxes: d (A, B) = I‘:Bg} , where A is the set of image
pixels for the hypothesis projection and B is the set of image pixels for the respective
detection projected on the image plane. If the sensor-to-sensor calibration is per-
formed accurately, then we can expect that detections stemming from the same object
will usually overlap with a ratio d (A, B) > 0.4. If the camera detections are ranged,
for example using a depth map, then the matching process can alternatively be per-
formed on the ground plane using the Euclidean distance. In order to range detections
on the image plane, we compute the median depth value within a central region (25%)
of a 2-D bounding box which we found to almost always coincide with the true dis-
tance of the object, see the example area in gray in Figure 4.5.

The example shown in Figure 5.13 demonstrates the projected detector outputs
in a typical urban driving scenario. It is important to note not every object will be
detected by all sensors and there will be many spurious single-sensor detections. In
object tracking, as it will become apparent in the following chapter, the positions and
shapes of hypotheses (x, g) will most often match with detections from more than one
sensor. However, at initialization, populating the hypothesis space is usually done by
finding (x, g) that match with confident detections from one sensor or less confident,
but matching detections from two or more sensors. The motivation behind this can
easily be illustrated by the example in Figure 5.13: consider the printed poster of a
person to the right of the frame which is detected only by the camera. This detection
does not stem from a real object of interest and is a bad evidence for the presence of a
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Camera detection

Lidar detection

Radar detection

Figure 5.13: Example of camera (YOLOv3), radar (RadarCNNv2) and lidar (CenterPoint)
detections in the city center of Ghent.

person given a hypothesis at that location. Populating the hypothesis space with such
data can lead to needless computations.

We use the same principle when computing the camera to radar feedback in Sec-
tion 5.5. The feedback is represented in a sensor-agnostic format i.e., ground plane
occupancy where the probability of occupancy for each position is computed the belief
for object existence based on the camera activations. In practice the feedback infor-
mation is stored as a 2-D array whose elements o(p;, ;) are populated by projecting
each location (p;, 6;) onto the camera image assuming an average person height and
width. Thus, in the image we have a set of hypothesis bounding boxes which we then
match with camera detection outputs using the Jaccard index. The example shown in
Figure 5.10 illustrates the feedback information computed from confident YOLOv3
detections.

5.7 Experiments and results

This section provides details about the experimental evaluation of all of the pro-
posed cooperative fusion methods for instantaneous object detection. Due to the lack
of a standardized benchmark for comparing the performance of the various sensor fu-
sion combinations, each proposed method will be evaluated in a separate experiment,
tailored specifically for the task. Methods that fuse lidar and camera information will
be tested on the evaluation principles of the KITTI and nuScenes datasets, while meth-
ods for lidar, radar and camera fusion will be tested on our internal imec datasets. In
all experiments, the performance of the proposed methods are compared either to the
state-of-the-art or to a comparable control method. Of special interest is the system
performance when one of the sensors becomes compromised. To test this border case
we will remove the camera signal from the fusion system and measure the object de-
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Method AP Recall at Training notes
0.5 prec.
RADAR raw 0.150 0%
RADAR non-static 0.302 26% Empirically optimized
CFAR 0.439 53%
Supervised
CNN-manual 0513 S1% 1351 frames, 3917 labels
Weakly supervised:
_ k
CNN-auto 0-536 61% 6955 frames, 7781 labels
CNN-auto** 0.600 69% Weakly supervised:

6955 frames, 30452 labels

Table 5.1: Performance evaluation results of radar detectors on a content-independent test set
of 489 frames and 1292 VRUs.

tection performance after fusion. This way we are able to analyze the experimental
results and come to unbiased conclusions about the potential gains in precision, recall,
robustness and redundancy.

5.7.1 Cooperative fusion between Camera and Radar

This section presents the experimental evaluation of the proposed cooperative
radar and camera detectors discussed in Section 5.4 and Section 5.5. The experiments
are designed specifically for testing the effect of the feedback information in a broader
context of traffic and weather conditions. We will firstly evaluate the radar-only CNN
against classical radar detection algorithms as well as test various weak supervision
techniques from camera and lidar. Then, we will introduce camera feedback infor-
mation to the input of the radar CNN model and test the further improvements in
detection performance. Finally, we will experiment with feeding back radar and lidar
detection information into a pre-trained camera object detector and evaluate the gains
in performance over the baseline.

Radar CNN baseline

For the purpose of evaluating the performance of the proposed radar CNN when
no camera feedback information is available, we captured and annotated a dataset
containing multiple scenarios with various traffic conditions and complexity. In these
experiments, the vehicle is driving on public roads in a dense city environment, where
multiple VRUs are encountered on the sidewalks and on marked and unmarked cross-
ing zones. The data covers situations from poorly lit environments (20% of the data)
to well lit sequences captured in daylight. The capturing vehicle was equipped with a
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Figure 5.14: Precision-recall curves for the test set (higher area under curve is better). The re-
sults of the proposed method “CNN auto” are compared with a control network “CNN manual”
and other classical peak finding techniques.

calibrated and synchronized sensor array consisting of an RGB camera (GoPro Hero 6
Black), a 77GHz FMCW radar (Texas Instruments AWR1243) and a 3-D lidar (Velo-
dyne VLP-16). Data was captured and timestamped in on a PC onboard the vehicle.
Due to time and restrictions, only part of this dataset was labeled by human anno-
tators. The rest of the data was labeled automatically by matching detections from
Faster R-CNN in the camera view to instance segmentation in the lidar point cloud.
This dataset is publicly available' and can be downloaded upon request.

In order to avoid cross-contamination of training and test data, we split the record-
ing into two content-independent parts by selecting data captured at different time
and in different parts of the city. The expert annotators were able to accurately label
1840 frames with 4988 VRU instances which took them about 30 hours to complete.
At the same time, by running our fully automated annotation tool over the remaining
data we labeled a total of 6955 frames containing 30452 VRUs that will be used for
weak supervision training. Note that the auto-labels are only used for training the
CNN model, while we perform evaluation only on the ground truth labeled by hu-
man experts. The high number of auto-labels stems from the high number of objects
detected by the individual camera and lidar detectors, however, many of these auto-
labels have a small contribution during training due to the low camera detection score,
see Eq. (5.6). Labels consist of the 2-D ground plane position of each person, relative
to the ego-vehicle origin. Due to the limited resolution of the available VLP-16 lidar,
the areas beyond 20m and outside of the view of the camera are considered as “don’t
care” regions and were excluded from the training and evaluation.

In a series of experiments we applied different supervision learning methods to

Radar data and annotations are available upon request at: radar-fusion.ipids.ugent.be
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N

Figure 5.15: Example frames comparing the qualitative difference of the input radar signal (left
column) and the radar CNN output (right column). A: suppression of clutter from vehicles; B:
spatial separation of VRUs in close proximity; C: suppression of clutter from infrastructure; D:
suppression of moving vehicles.

train the several models of the same CNN architecture. Specifically, a control model
(CNN-manual) was trained by using supervision from human annotated labels, then
we trained two weakly supervised models: CNN-auto* and CNN-auto** using only
confident auto-labels and using all auto-labels respectively. The hypothesis that we
want to evaluate in this section is that even though the auto-labels are imperfect, their
abundance can be beneficial for training a better performing detector. The weakly
supervised CNN models were trained using additional training data that was expensive
to label manually.

Due to the same network architecture and number of parameters, data pre-processing,
CNN optimizer and training hyper-parameters were all kept the same over every ex-
periment. Each model was evaluated on the same, content-independent test set, con-
sisting of 6 unseen sequences. We measure detection performance by matching peaks
in the CNN output array to the true positions of VRUSs in the ground truth. By varying
a detection threshold over the CNN output we also compute the proportion of true
positives, false positives and false negatives at multiple detector operating points. To
that end, a non-maximum suppression (NMS) algorithm finds peaks in the CNN out-
putin 5 x 7 cell range-azimuth neighborhoods. These polar patches equate to an area
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of 1.46m x 7.04° in the physical world and were chosen because they optimized the
detection performance in terms of Average Precision. A detection is considered true
positive if it is located within 3m of a ground truth object, while multiple matches
within this same gate are not allowed and counted as false positives. For testing ob-
ject identification on the ground plane, these parameters are typical. These statistics
are used to create a precision and recall curve for each detector. The average preci-
sion (AP) is calculated by averaging the precision samples taken at 100 evenly spaced
recall points.

We present a summary of the results in Table 5.1 and the computed precision-
recall plots on Figure 5.14. The detection performance of the proposed method (in
shades of blue) is compared to four other algorithms (yellow, orange and red lines).
The weakly supervised “CNN-auto**” significantly outperforms all other methods
in terms of Average Precision (AP). We report an increase of 8.7% AP over the
control “CNN-manual” which was trained using manually annotated training data.
Moreover, by allowing the proposed method to learn the uncertainties about detection
and matching in the automatically generated labels, “CNN-auto**” brings additional
performance benefit of 4.4% over training by using the most confident camera-lidar
matches in “CNN-auto*”. Finally, compared to classical peak finding, the proposed
method outperforms CFAR (yellow curve in Figure 5.14) by 16.1%. Naive detection
algorithms, such as peak finding in the raw signal and in the moving data, compare un-
favorably on our dataset. On Figure 5.15 we present typical cases of operation of the
proposed method where we compare the input radar signal (left column) to the CNN
output (right column). In order to visualize the 280 channels of the input signal, we
collapse it to a 2-D array by taking the maximum signal value along the time-Doppler
dimension and project it on the respective camera frame. On the right we project the
CNN output i.e., the estimated probability of occupancy of a VRU, onto the camera
image. From these typical examples it is clear that the network output dramatically
reduces false positives while at the same time improving the object localization.

Evaluating the effect of camera—radar feedback

For evaluating the effect of the camera feedback information on the radar CNN
performance, a larger dataset covering broader range of traffic and weather conditions
was captured and annotated. The dataset in this experiment consists of 317 sequences
captured in both day and night and in various weather conditions. 194 sequences are
used for training and otherwise parameter tuning while 123 sequences are used for
testing. The total number of frames in the selected sequences is 77587, divided into a
set of 46360 frames for training and 33957 frames for testing. As such , this dataset
provides a realistic benchmark for the camera object detection and consequently for
the camera feedback information that flows into the radar CNN.

In this experiment we compare a radar CNN model which was trained by setting
all values in the camera feedback vector to zero to a model which was trained using
nominal camera feedback. As a reference, we also provide evaluation results for the
CFAR detection algorithm on the same test set. We used a U-Net network structure
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Figure 5.16: Precision-recall curves for the radar CNN with feedback (purple line), radar CNN
with no feedback (blue line) and CFAR (orange line). The proposed method has higher re-
call and consistently higher precision at every recall point than the radar CNN model without
feedback as well as CFAR.

consisting of 5 contracting and 5 expanding blocks and a fully connected bridge. The
input tensor is a concatenation of 8 radar cubes and the respective camera feedback
arrays captured over a time-span of 1.2 seconds. The loss function is a weighted
cross-entropy with two classes: person and background.

Detection of people using radar-only signals, blue line on the plot in Figure 5.16,
confirms our findings from the previous experiment. The radar CNN model with cam-
era feedback has 23.7% higher AP than the model without feedback and 302% higher
AP than CFAR which scores unfavorably on this dataset. Moreover, the model with
camera feedback is able to detect significantly more objects with a best possible re-
call of 88.9% against the best possible recall of 73% of the model without feedback
67% of CFAR. Finally, because we are now evaluating using much larger dataset, it
is possible to evaluate the detection accuracy conditioned on specific regions on the
ground plane in front of the radar. In Figure 5.17 we show the average precision over
various range and azimuth bins for the Radar CNN without camera feedback (left)
and Radar CNN with camera feedback (right). The radar CNN without camera feed-
back performs well for objects in the middle of the field while detection performance
decreases to the sides and in the distance. Contrarily, the radar CNN model with
feedback performs significantly better in the distance and to the sides of the detection
field.

5.7.2 Cooperative fusion between Radar/Lidar and Camera

In this subsection we show the results from the experimental evaluation of the
proposed cooperative radar—camera feedback mechanism in Section 5.4. To that end,
a baseline camera object detector with a constant detection threshold will be compared
to the same detector whose operating point is locally controlled using targets from our
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Figure 5.17: Spatial distribution of radar CNN detection performance expressed in Average
Precision.
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Figure 5.18: Comparison of VRU detection performance of the proposed cooperative
radar—camera fusion to camera only and camera-radar with no feedback. The dataset splits
(low light and daylight) contain different traffic situations and are not directly comparable.

own radar CNN detector (running without camera feedback). For the camera object
detector we used the PyTorch implementation? of YOLOv3 [24] CNN. The specific
model we used was trained on 80 object categories in the MS-COCO dataset [93] and
for our experiments we only select the output for the class person. For processing
the radar signal, the radar detection CNN trained to detect micro-Doppler patterns of
human body in motion was used [16]. The output of this radar CNN is a 2-D grid
of detection scores predicting the position of people. Our first control algorithm is a
camera-only detector, where the estimated ground plane position of detected bounding
boxes in the image are computed using the back-projection method [167] assuming an
average person height of 1.65m. Our second control algorithm is a fusion technique
for matching camera and radar detections on the image plane which doesn’t use the
radar—camera feedback.

All detected VRUs within 1.5m to a ground truth object on the ground plane is

2Code available at: https://github.com/eriklindernoren/PyTorch-YOLOV3
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Dataset Detection [AP7]

4 4 Camera-

Seq. frames  VRUs Camera only  Camera-radar radar w/

feedback
01 175 55 0.177 0.177 0.397
02 205 190 0.423 0.448 0.778
03 345 443 0.704 0.694 0.694
04 125 530 0.632 0.681 0.695
05 145 705 0.515 0.599 0.612
06 205 1319 0.606 0.588 0.609
07 125 290 0.420 0.434 0.454
08 25 52 0.905 0.818 0.818
09 55 114 0.956 0.956 0.955
10 85 147 0.424 0.457 0.474

11 25 10 1.0 1.0 1.0

12 55 65 0.802 0.692 0.692
13 55 113 0.852 0.887 0.897
14 105 373 0.246 0.276 0.293
15 65 330 0.595 0.543 0.572
16 45 252 0.477 0.440 0.445
Low light 380 245 0.366 0.389 0.689
Daylight 1460 4743 0.560 0.564 0.583
All 1840 4988 0.545 0.549 0.582

Table 5.2: Summary of the dataset and results for single sensor (camera) and multi-sensor
(camera-radar) VRU detection. In terms of AP, the proposed cooperative fusion detector signif-
icantly outperforms both other methods in low light and daylight sequences. In terms of MODP,
the proposed detector outperforms both methods in low light sequences and has better overall
precision.

counted as a true positive, while other detections outside of don’t care regions are
treated as false positives. We report the results in Table 5.2 where we additionally
break down the results for each individual sequence comparing classification Average
Precision (AP) and ground plane multi-object detection precision (MODP) scores for
the three tested detectors. Set averages, presented on the bottom of the table and
visualized on Figure 5.18, measure the performance for the low-light and daylight
segments as well as for the complete dataset.

In terms of AP, the proposed radar—camera cooperative fusion (dark gray bars)
outperforms camera only detection by 3.7% and radar-camera fusion by 3.3%. The
performance difference is especially pronounced in low-light sequences where the
proposed method shows as much as 32.3% and 30% improvements over the controls
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Figure 5.19: System diagram of the proposed cooperative radar—camera fusion detector ap-
plied on the sensor setup of the nuScenes dataset.

respectively. This improvement is a direct consequence of the radar—camera feed-
back loop which controls the camera operating point locally and is much more effec-
tive in low-light where camera detection performance weakens. The proposed method
has increased maximal recall and precision meaning more VRUs are being detected
while at the same time producing less clutter. Otherwise, in well lit sequences, the
proposed cooperative fusion method produces slightly better results than intermediate
fusion which makes it robust and predictable.

Evaluating the effect of lidar and radar— camera feedback

In this subsection we show the results from the experimental evaluation of the
cooperative lidar and radar—camera feedback mechanism. For this purpose we will
use a perception system consisting of three sensor modalities, each performing an
object detection and ranging as shown in the system diagram in Figure 5.5. The three
sensors share their confident detection information and after fusion achieve increased
detection precision retaining a robustness to sensor failure.

In the first set of experiments we applied our method on the camera and lidar data
from the nuScenes dataset [168]. Our main objective is to test our two hypotheses: first
that the fused detections outperform both individual detectors in terms of precision,
and second, the fused detections are robust to sensor failure. NuScenes is a multi-
modal dataset with 360° coverage across all vision and range sensors collected from
diverse situations, including rainy and nighttime conditions. It consists of 6 camera
views, 1 3-D lidar and 5 radar data streams captured over 1000 scenes. Data frames are
recorded at a variable frame rate (2Hz"10Hz) and synchronization is achieved using
time stamps.
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The data is annotated for the presence of 8 classes of road users (car, truck, bus,
trailer, construction vehicle, pedestrian, motorcycle and bicycle) as well as 2 classes
of road infrastructure (traffic cone and barrier). The dataset is split onto 750 training
sequences, 150 validation sequences and 150 testing sequences. Training and valida-
tion can be performed using the publicly available ground truth, while testing is done
by an independent online evaluation server.

To test the effectiveness of the proposed fusion method we applied two state-of-
the-art object detectors in the image and lidar data and fuse their outputs using coop-
erative feedback. Specifically, we use the FCOS3D object detector [52] in the camera
data and the Centerpoint object detector [51] n the lidar data. Fusion is performed
by first matching lidar and camera detections on the respective image plane using the
methodology explained in Section 5.6, see Figure 5.19. Note that in these experiments
we do not use the nuScenes radar data because it provides semi-processed target-level
information consisting of target’s position and Doppler. This type of radar input is
incompatible with our Radar CNN object detector. Moreover, semi-processed radar
information is difficult to interpret since it does not provide classification information.

The nuScenes object detection evaluation measures the average detector precision
(AP) as computed at multiple recall values. A detection is considered to be a true
positive if the predicted class label matches a ground truth object within an association
radius on the ground plane. Thus, the detector needs to estimate the object category
and localize them accurately at the same time. In order to avoid over-optimizing the
algorithms for any specific class of objects or gating radius, the average precision
metric is computed for several gating radii (0.5m, 1m, 2m and 4m) and the mean over
all object categories is computed (mAP). The computed mAP values lie in the range
(0, 1) where higher values indicate better object detection performance.

We present the experimental findings by evaluating on the nuScenes validation
sub-set for which publicly available ground truth information is available. To test the
first hypothesis, we fused the camera and lidar detections and compared them to the
baseline detectors and a state-of-the-art early fusion object detector [142]. We found
that the proposed fusion method outperforms both individual detectors which shows
that cooperative fusion is effective. However, as expected, it is outperformed by the
early fusion method.

In a second experiment, simulating compromised camera operation, we deliber-
ately disable the camera feed to both fusion methods simulating a hard camera failure.
The proposed cooperative fusion method, in this case, shows the same performance to
the lidar-only detector (mAP=0.633), but the precision of the early fusion method de-
graded far below the baseline (mAP=0.247). This experiment shows the fragile nature
of early fusion when faced with out-of-domain input. The exact numerical values for
the measured precision in all settings are summarized in table Table 5.3.

Even though the nuScenes dataset does contain nighttime sequences, the evalua-
tion protocol computes average precision over all data samples which does not pin-
point the border cases where cooperative fusion is beneficial. In our experiments we
observed little to no benefit of activating the lidar—camera feedback on the average
detection performance (obtaining the same mAP=0.633). However, the benefit of the



148 COOPERATIVE SENSOR FUSION FOR OBJECT DETECTION

nuScenes Ceqter- Proposed MVP Proposed MVP
FCOS3D point ,
cate- . (Cam.- (Cam.- *faulty “*faulty
(Cam.) (Li- . .
gory dar) Lidar) Lidar) cam. cam.
Car 0.725 0.855 0.862 0.878 0.862 0.678
Truck 0.488 0.585 0.595 0.634 0.595 0.235
Bus 0.651 0.715 0.731 0.710 0.731 0.280
Trailer 0.344 0.372 0.385 0.391 0.385 0.070
C\‘;;Sltr' 0.138  0.171 0211  0.223 0211  0.020
Pedestrian 0.566 0.851 0.871 0.894 0.871 0.714
Motorcycle 0.445  0.588 0.644  0.732 0.644  0.029
Bicycle 0.411 0.433 0.543 0.634 0.543 0.010
T;glfgc 0.528  0.697 0759  0.799 0759  0.119
Barrier 0.492 0.685 0.729 0.703 0.729 0.270
All 0.479 0.595 0.633 0.660 0.633 0.247

Table 5.3: Mean Average Precision on the nuScenes object detection dataset (validation sub-
set).

cooperative feedback in this data is more pronounced in object tracking which will
be discussed in more detail in the following chapter. Finally, the nuScenes dataset
lacks the raw radar signal we need in order to apply our RadarCNN object detector. In
order to address these shortcomings, we performed additional testing using our own
camera-radar-lidar dataset (referred to as imec v2 dataset).

The imec v2 vulnerable road user dataset consists of a total of 316 sequences of du-
ration between 10s and 20s, captured throughout the year 2020 in several cities across
Belgium. This dataset is labeled for 1318 unique VRUs across 173095 instances.
Ground truth is evaluated within the range of [Om, 20m] and an azimuths of £35°
(the field of view of the RGB camera) while the area beyond these ranges is ignored.
The benchmark uses a spatial gate of 2m for accepting true positives. We applied the
YOLOV3 object detector in the camera data, RadarCNN model with feedback for the
radar data and Centerpoint for detection in the lidar data. Additionally, we computed
depth images using the algorithm in Section 4.3.1 and used the depth to range the de-
tections from YOLOV3. The precision of each individual detector and fusion methods
are summarized in Table 5.4. Unfortunately, due to incompatibilities in data formats
and limited time we were unable to run the early fusion detector MVP [142] and we
chose to not run the faulty camera testing as we did for the nuScenes data.

The proposed cooperative fusion method applies cooperative links from the radar
and lidar towards the camera and from the camera towards the radar. We compared
the cooperative fusion method to standard late fusion and noticed a significant im-
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RadarCNN YOLOv3
. Center- with Late
Category with . . . Proposed
point Lidar fusion
feedback
depth
Daytime 0.430 0.656 0.657 0.700 0.740
Nighttime 0.452 0.611 0.601 0.701 0.709
Unoccluded 0.478 0.639 0.696 0.742 0.729
Partly occ. 0.429 0.656 0.639 0.693 0.743
Heavily occ. 0.346 0.601 0.559 0.636 0.688
Pedestrians 0.458 0.659 0.665 0.695 0.744
Cyclists 0.393 0.633 0.600 0.705 0.715
All 0.450 0.650 0.641 0.699 0.734

Table 5.4: Mean Average Precision on the imec v2 object detection dataset (test sub-set).

provement of detection precision of 5% and an increase of the best possible recall
of 1.5% over the entire dataset. The improvements are consistent across all difficult
circumstances such as nighttime, heavy object occlusion and fast moving VRUs such
as cyclists. Biggest benefits of the three-sensor cooperative fusion over late fusion
can be observed for heavily occluded objects (8.1% in terms of AP) which confirms
the significant benefits of the additional feedback loop mechanisms which we propose
to add to the system. Interestingly, the performance of the proposed method drops
slightly (1.8% in terms of AP) compared to later fusion when evaluated on objects
with no occlusion. We deem that such results are not surprising as the parameters of
the adaptive threshold, Eq. (5.2), were optimized on a content-independent training
set. However, this peculiar finding warrants further investigation in the future.

Implementation details

For processing the camera video signals we used the state of the art FCOS3D [52]
and YOLOV3 [24] object detectors. YOLOvV3 divides the image into regions and pre-
dicts bounding boxes and probabilities for each region. The network predicts 4 coor-
dinates for each bounding box (center and size in image coordinates), an objectness
score and a class prediction. The input images are re-scaled to 608x608px prior to
feature extraction using the darknet-53 backbone. We use a detection threshold of
0.1 and a NMS overlap of 0.4. The feedback information is formed by aggregating
the activations for the VRU class across all output scales and back-projecting them
onto the ground plane using a model for the average person height which is trained
over the respective dataset. In the imec v2 dataset the average VRU object height
was 1.8m. FCOS3D performs object detection using the ResNet101 backbone, a Fea-
ture Pyramid Network for detection at different scales and multiple regression heads
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for estimating the object’s class, position and shape. Contrary to YOLOv3, FCOS3D
estimates the 3-D position of objects in the scene using the intrinsic camera matrix,
inferring the size and distance of objects from labeled 3-D training data. We use a
detection threshold of 0.05, a NMS overlap of 0.1 .

For object detection in the lidar data we use the state of the art CenterPoint [51]
object detector. This detector performs detection in 3-D, interpreting the objects as
3-D boxes defined by their center, size and orientation. The first stage of Center-
Point predicts a class-specific heatmap, object size, a sub-voxel location refinement,
rotation, and velocity. The original method also performs end-to-end object tracking,
predicting the object velocity, but this information was not used as we will develop a
novel tracking algorithm in the next chapter. The output detections are provided in a
sensor-specific coordinates spanning in the [—51.2m, 51.2m] on the ground plane and
[—5m, 3m] vertically. Internally, Centerpoint represents the lidar point-cloud data as
a voxel grid with resolution of [0.1m, 0.1m, 0.2m] along the X-Y-Z axes respectively.

Our radar CNN uses 3-D radar arrays representing signal strength over a dis-
cretized range-azimuth-Doppler space. The extent and discretization of the range-
azimuth-Doppler space is programmable and can be set by modifying the operating
parameters of the TI AWR1243 radar. The settings used in our experiments resulted
in range and Doppler encoding into 128 equally spaced bins, spanning from Om to
46.72m and +13.8m/s respectively. Azimuth is encoded in 16 equally spaced bins
over the range of +7/2. Power-normalization is performed by computing the local
Signal to Noise Ratio (SNR) [164] using a 3-D convolution of the input radar array
with a 3-D filter mask. We used a mask with support size of [15,11, 1] and a guard
size of [5, 3, 0] for range, azimuth and Doppler respectively. After estimating and cor-
recting for ego-motion, from the original 128 Doppler bins, we discard 5 Doppler bins
encoding the lowest velocities: |v| < vego + 2Km/h and 34 high velocity Doppler
bins: |v] > vego + 23Km/h. Each training tensor is created by concatenating 8
pre-processed radar arrays that span over a time interval of 1ms.

The radar CNN architecture is a U-Net [63] with 5 contraction blocks, a Fully
Connected (FC) bridge and 5 expansion blocks. The network outputs a 2D occupancy
grid in polar coordinates with spatial resolution matching the one from the input data.
Every contraction block applies 3 groups of convolution, batch-normalization (BN),
ReLU and a dropout layer followed by a max pooling operator at the end. At the
bridge, the input tensor is reduced to spatial resolution 1 x 1 and 512 dimensional
feature space which is input to two fully connected layers. The expansion blocks are
built as inverse convolutions (ConvT) initialized to perform up-sampling with linear
interpolation, followed by BN and ReLu. In order to preserve high resolution details,
up-sampled results are concatenated with feature maps from the respective contracting
blocks. Expansion blocks are exempt from dropouts since their task is data unpack-
ing and mixing. Fastest convergence was achieved by training both CNN-manual and
CNN-auto using weighted cross-entropy loss in conjunction with the ADAM opti-
mizer. In all our experiments, we apply early stopping i.e., we terminate the training
once the validation loss starts increasing. Generally, we observed model convergence
after ~ 15 epochs or after 110K back-propagations. We used variable training batch
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size (BS) starting from B.S = 1 in the first epoch to BS = 16 for the remaining. All
of these design choices have a direct impact on either the convergence speed or the
loss value at convergence. We note that each hyper-parameter value has been chosen
meticulously by running control experiments which are outside of the scope of this
analysis.

5.8 Conclusion and practical implications

In this chapter we proposed a cooperative sensor fusion method for improved ob-
ject detection by applying sensor-sensor feedback. The methods were published as ar-
ticles in the proceedings of the IEEE Intelligent Transportation Systems Conferences
2018 [12], 2022 [16] and 2021 [17]. Moreover, the cooperative fusion algorithms for
detection of people and other road users have been integrated in prototype systems
developed during several research projects, the scope and other details about these
projects are given in the valorization section of Chapter 7. Results from real-world
experiments confirm the benefit of our cooperative fusion method in terms of better
recall, lower false positives, and higher positional accuracy. The proposed detector
outperforms standard late fusion and significantly outperforms single-sensor detec-
tion. Differences are most evident in low-light sequences where the radar’s luminance
invariance recovers information lost in the camera image processing. When using
the proposed camera—sradar cooperative feedback we observed a 20% increase in the
number of recalled objects without an increase in false positives. Moreover, when us-
ing the proposed radar—camera feedback we were able to improve the image object
detection in low light situations by almost 80%.

In a three-sensor (lidar, radar and camera) setup, the cooperative fusion detector
was optimized to use information from the more accurate sensors into the least accu-
rate ones. Since there are multiple directions of flow for the feedback information,
the effectiveness of the feedback very much depends on the specific application. In
addition to the said radar<——rcamera feedback, we were able to evaluate the effect of
the cooperative lidar—camera feedback in two datasets. On the nuScenes dataset we
observed minimal gains using the cooperative feedback over standard late fusion, how-
ever the proposed method outperformed a state of the art camera-lidar detector when
the camera signal feed was lost. Due to limited granularity in the testing protocol of
the nuScenes dataset, we were unable to isolate the border cases where the cooperative
feedback is beneficial. Therefore, we tested the three-sensor cooperative detector on
the imec v2 object detection dataset where we measured a 5% improvement of late
fusion in all sequences. Moreover, the benefits were present across multiple difficult
scenarios such as nighttime, occlusion and fast moving objects. We did not analyze
any feedback links leading into the lidar object detector. This is partly due to lidar be-
ing quite effective in detection compared to the other sensors. Still, helping the lidar
to detect at high distance using high resolution camera detection information remains
low hanging fruit and should be the subject of analysis in the near future.

An overwhelming majority of the sensor-fusion literature at the moment focuses
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on fusion using neural networks and deep learning. As we saw in the overview, the
techniques which provide the highest detection rates on the standard benchmarks tend
to employ early fusion, thus relying on the steady flow of raw sensor data from to the
fusion center. Although this paradigm leads to the best precision overall, early fusion
methods are rarely applied in real-world systems because they require high bandwidth
links and assume uninterrupted flow of data. Whenever one of these requirements
fails, early fusion systems are faced with out-of-distribution data which causes a do-
main shift and drastic decrease in precision. We remain firm in our belief that the
robustness of a fusion system is equally as important as its precision, and we hope
that the autonomous driving benchmarks in the future will also include such tests.
The proposed method performs cooperative fusion at the decision level and is thus
robust to sensor failures. Moreover, the cooperative sensor-sensor feedback transfers
only a limited amount of confident detections and can be implemented on existing car
network hardware.

Our own testing as well as independent evaluation over multiple datasets showed
that the proposed methods provide improvements both in terms of robustness as well
as improved localization and classification of objects in 3-D. Although these findings
suggest a large increase in the instantaneous, frame-by-frame, object detection, at this
stage it remains unclear how such performance increase translates to a more complex
perception system e.g., in fully autonomous driving. Beyond simulators, there are
no publicly available tools which can be used to measure the impact of object de-
tection accuracy into safety critical parameters such as risk of collision. Moreover,
real-world systems process sensor data as a continuous temporal stream, and as such,
these systems suffer from additional temporal noise not covered in this chapter. This
combination of spatio-temporal artifacts makes the fusion and interpretation of the in-
formation much more complicated. Since the main goal of environmental perception
is tracking and prediction of the state of the environment, solving the remaining prob-
lems extends beyond instantaneous object detection. Capitalizing on the knowledge
gained in this and the previous chapter, the remainder of the thesis is focused on de-
veloping a spatio-temporal fusion system based on the principles of cooperation and
Bayesian inference.



Cooperative sensor fusion for
object tracking

6.1 Introduction

Object tracking increases the confidence of detected objects and corroborates their
location by integrating multiple observations of the same object over time. This chap-
ter focuses on the difficult problem of tracking road users for the purpose of collision
avoidance and path planning in autonomous vehicles. As autonomous vehicles are
envisioned to be able to safely drive under all weather and traffic conditions, the task
of detecting and tracking road users can become greatly influenced by the effect these
conditions have on the vehicle sensors. For example, glaring light can cause camera
detection to deteriorate due to loss of image contrast. Similarly, detection is com-
promised under rainy or foggy conditions, and the problem is further complicated at
night. As we discussed in the previous chapter, improving the capability of the percep-
tion system under such circumstances requires the employment of additional sensors.
Sensor fusion for tracking of road users must then reason about the transient loss of
detection in individual sensor modalities. A special focus in this work is given to
solving the challenges of tracking road users using multiple sensor modalities whose
characteristics change over time causing out-of-distribution, or sometimes completely
missing observations.

In the scientific literature, researchers [169, 170] identify pedestrians as the most
vulnerable road users, arguing that more than 2.5% of the injured pedestrians in col-
lisions with vehicles in Germany, and 4% on the EU level, ended up with fatal con-
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sequences. Recent sustainable mobility studies such as [171], illustrating that bike-
sharing is on the rise in urban centers, corroborate that safe interaction between au-
tomated vehicles and cyclists is becoming equally important. The regulation (EC)
78/2009 [172] defines the key term Vulnerable Road Users (VRUSs) as all non-motorized
road users such as pedestrians and cyclists as well as motor-cyclists and persons with
disabilities or reduced mobility and orientation. Thus, fast and accurate prediction of
the position of VRUs is critical in avoiding collisions that often result unfavorably for
the VRUs. However, the detection and prediction of the position of vehicles is also an
important task which will not be overlooked in this chapter.

Object tracking has been widely studied in aerospace applications starting from
the 1960’s and has resulted in one of the most widely used technique used to this day,
the Kalman Filter (KF) [173]. However, the tracking of objects in a changing envi-
ronment poses additional problems, not covered by the classical tracking theory. Even
in the simplest case of tracking a single person with a single sensor, occlusion from
foreground objects increases the likelihood that a person will be detected at multiple
locations making the posterior probability density function to become multi-modal
which violates the basic assumptions of the KF. The problem becomes more difficult
when multiple objects are in the scene, which has led to the need for robust Multi-
Object Tracking (MOT) methods.

Any single sensor is typically inadequate to offer complete knowledge about the
environment, and the tracking literature as a whole generally agrees that a fusion of
various modalities is frequently necessary. As a result, the integration of multi-sensor
observations is crucial since no single sensor processing system has yet been able to
handle the entire perception task on its own. The real-time demands of autonomous
driving, however, make it difficult for traditional object tracking since the detectors
must be calibrated for speed rather than accuracy. This means that detectors output
only a few confident observations and throw away the clutter and any useful informa-
tion therein. Such settings cause the observation space to become sparse leading to
missing detections that make tracking update an ill-posed problem. Standard filtering
techniques such as Kalman or Particle filters do not perform state estimation for time
instances when data is missing which can be dangerous in safety-critical applications.
Therefore, in this chapter we seek to develop robust tracking system which will be
able to continue to estimate the sate even in the absence of observational data.

Furthermore, when inadvertent sensing failures do occur, the tracking system
needs to adapt to the new operating parameters i.e., the new sensor noise model, and
continue operating seamlessly. In such cases, it is necessary to detect that the detector
is no longer in its nominal state of work and switch to the true state of operation in
order to avoid large estimation errors. Finally, intermittent failures to detect an ob-
ject can also happen even when a sensor is in its nominal state, for example, because
of occlusion or ambiguous object configurations. A well-performing tracking system
should be able to cope with the transient changes in operating modes as well as the
occasional complete absence of detections.

To illustrate a few of the common difficulties let’s consider the example shown
as a bird’s eye diagram in Figure 6.1. In some places, object detection is hindered
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Figure 6.1: Diagram of an intelligent vehicle in a traffic situation showing the different modes
of sensor operation. Depending on the scene configuration, areas that are within the field of
view of the sensors can produce unreliable or missing object detections.

because of the geometrical layout of the scene. For instance, the vehicle to the left
makes the radar signal behind it weaker, making it impossible to see the person in
blue. Additionally, the truck’s flat surfaces produce clutter and secondary reflections
of previously identified objects, leading to radar blind spots or regions of low signal
strength. Objects of interest in the camera view might potentially be hidden by other
foreground objects. In the best-case scenario, occlusion reduces the confidence in
object detection; nevertheless, when an item is entirely obscured, object detection is
impossible. Even more challenging is the fact that detection quality might deteriorate
throughout the field of vision; for instance, accuracy decreases as distance increases.
Systems designed for nominal functioning will experience concept drift in such cir-
cumstances. It indicates that the model’s target variable’s statistical characteristics
vary in unexpected ways over time. This frequently causes an overestimation of the
error covariance when employing the Kalman filter, which makes the tracker unreli-
able. Techniques such as ensembles of variance-limiting Kalman filters [174] have
been proposed in simulation but never effectively applied to people tracking.

In the literature, tracking-by-detection is the recommended paradigm for track-
ing road users. By dividing the whole tracking process into two steps—detection of
positions separately in each frame and construction of tracks by linking matching de-
tections across time—algorithms based on this idea can make the task much simpler.
Tracking by detection, as opposed to tracking before detection, applies high confi-
dence thresholds in the object detection step and thus operates on a lower quantity of
detection evidence, requires less operations and memory. Performing object detec-
tion at a high-precision working point reduces the amount of detections that must be
linked over time, but it also results in brief bursts of missing detection information.
Missing detections can be extrapolated while monitoring a single target using mo-
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tion and sensor models. However, lost detection information in multi-object tracking
leads to ambiguity and is challenging to recover. Rarely does the literature address the
best way to handle such missed detection occurrences. However, the solutions, par-
ticularly in safety-critical applications, might significantly affect performance in the
actual world. The study in this chapter will concentrate on novelties in motion predic-
tion, as well as alternative statistical approaches, which are typically used to address
missing detections.

The proposed tracking method extends the instantaneous detection explained in
the previous section by temporal integration of multi-sensor information. It is capa-
ble of adapting to changing sensors configurations and changing modes of operation.
Furthermore, tracking continues seamlessly even in cases of missing detections where
the lost information is recovered using imputations sampled from a proposal function
based on the sensor evidence without association. Then, in order to further improve
the detection in difficult areas of the scene, we use the predicted positions of confi-
dently tracked objects as an additional cooperative information which populates the
detection feedback line, refer to the system diagram in Figure 5.5. The cooperative
feedback from the tracker allows under-performing detectors to adjust their working
point parameters in regions where we expect to detect an object with a high degree
of confidence. The output of the proposed tracker is a list of hypothesized positions
of road users, their category, orientation and velocity; attributes that can be easily
interpreted by most collision avoidance and path planning algorithms.

We evaluated the tracker first in simulation and then, tuned to operate on a real
sensor array consisting of cameras, lidar and radar with intersecting fields of view. As
described in the previous chapter, instantaneous object detection is a achieved through
a cooperative fusion of multi-sensor information where each sensor runs its own, high
recall, object detection neural network providing detection information. In the pro-
posed system, the radar detector [16] outputs dense probability maps in range-azimuth
space with peaks at expected road user’s positions, while the camera detector [24] and
lidar object detector [51] output a rich list of bounding boxes. Detection-to-track as-
sociation is performed by minimizing a matching cost consisting of a distance and
appearance terms using the Kuhn-Munkres (Hungarian) algorithm [28]. A switching
observation model particle filter handles individual track state estimation by adapt-
ing to changes in sensor modes of operation as well as sensor-to-sensor handoff. In
cases when detections are missing, the tracker samples particle weights from a pre-
computed grid of detection information containing all sensor evidence and recovers
part of the missing detections. The grid is computed using a joint-sensor measure-
ment model conditioned on detection probability before tracking. Track maintenance
is done based on the belief in the track existence using the log-odds ratio.

Experimental evaluation, both in simulation and on multiple datasets captured in
the real world, shows a significant improvement in detection and tracking performance
over other optimal trackers such as Kalman filter, particle filter (PF), switching ob-
servation model (SOM) PF and multiple imputations (MI) PF. The proposed tracker
outperformed all publicly available pedestrian trackers on the KITTI tracking bench-
mark and showed competitive performance on the nuScenes tracking benchmark. The



COOPERATIVE SENSOR FUSION FOR OBJECT TRACKING 157

proposed tracking system is especially effective in border cases where low light, com-
plex scenes with multiple VRUs, heavy occlusion, and large ego-motion hinder the
performance of other trackers from the literature. The resultant track estimates remain
within tolerable ranges of the ground truth position, even in cases where up to 50% of
detections are missing.

The remainder of this chapter is organized as follows: Section 6.2 gives an overview
on relevant tracking methods based on sensor fusion, and in Section 6.3 we lay out de-
tails of the Bayesian principles for tracking the position and the existence of object
hypotheses. Then, we explain the components of the proposed tracker: the algorithm
for estimating the location in Section 6.4, the proposed motion model in Section 6.5,
the proposed switching observation models in Section 6.6, the proposed algorithm for
handling missing detections in Section 6.7 and the track management algorithm in
Section 6.8. Finally, the experimental evaluation, results and discussion are given in
Section 6.9 and Section 6.10 respectively.

6.2 Literature overview

General overview

Multi-sensor, multi-object tracking is an interdisciplinary field with applications
reaching far beyond the scope of this thesis. This overview focuses on object tracking
papers relevant to the topic of autonomous vehicles, as well as papers whose ideas
inspired the proposed tracking method. Trackers can be split into ones that operate in
the present i.e., on-line, and ones that process historic data off-line. On-line methods
such as recursive Bayesian estimation are suitable for time critical applications like the
one covered in this thesis, while off-line methods can re-process historic information
at each estimation step to achieve higher tracking accuracy but have the downside of
being slower. Off-line methods are effective in applications where we are interested in
the highest tracking accuracy and are not limited by computing resources. Therefore
off-line trackers process all past as well as future observations to estimate the state
of each object at each time instant. There are of course a myriad of methods that lie
somewhere in between like “near on-line” methods that introduce small time lag by
using temporal windowing for better accuracy.

In terms of the input data, the same tracking methods can be applied in single or
multi-sensor systems. Single sensor systems are simpler to optimize and deploy, and
depending on the application, can produce satisfactory tracking. Moreover, the fail-
ure cases of single-sensor trackers are easier to predict and understand. Multi-sensor,
multi-modal trackers, on the other hand, becomes more effective when the other sen-
sors can help to discriminate ambiguities such as occlusions, missed detections and de-
tection clutter. In the past few years we have observed a trend of multi-sensor methods
in the literature that exploit heterogeneous modalities such as cameras, multi-spectral,
range and/or positional data. This trend is especially apparent in safety-critical au-
tonomous driving applications which will be covered in more detail in the following.
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The current state of the art in object tracking improves the performance by in-
novations in several key areas: fusion of multi-modal object detection for tracking,
assignment problem optimization, motion modeling, handling missing observations,
and lately, end-to-end detection and tracking using deep learning. For a broader review
of sensor fusion techniques for instantaneous object detection we refer to the litera-
ture study in Section 5.2. Regarding detection to track assignment, finding globally
optimal, solutions to the tracking association problem [175] has mainly been solved
using graphical models for connecting individual object detections into consistent set
of trajectories: k-shortest paths in DP NMS [176] or a Conditional Random Field as in
DCO-X [177] or a variational Bayesian model in OVBT [178]. Modeling the motion
of targets within the image, was also given a lot of attention with a some of successful
approaches: SMOT [179], CEM [180] and MotiCon [181]. Authors in these papers
based the matching costs for comparing pairs of detections on simple distances and
weak appearance models. These methods currently score around 10% worse than the
state of the art. Very recently, there was a shift towards designing a strong appear-
ance based similarity metrics for the pairwise matching. By doing so, authors have
reported a notable increase in their absolute tracker performance and also an increase
robustness towards operation in difficult and complicated scenarios.

Some of the recently best performing approaches are based on sparse appearance
models such as LINF1 [182] or on-line appearance updates in MHT DAM [183] and
channel feature appearance models, oICF [184] and aggregated local flow of long-term
interest point trajectories in NOMT [185]. In addition to the image based analysis au-
thors have proposed to exploit depth information in order to improve tracking perfor-
mance with one of the most recent notable advances using a combined 2D-3D Kalman
filter by [186]. A recent trend is the proliferation of deep learning into the tracking
community with sparse but notable examples such as MDPNN16 [187], which uses
Recurrent Neural Networks in order to encode appearance, motion, and interactions.
Another example is JMC [188] which uses deep matching to improve the association
metric. There usually is a correlation between strong affinity models and tracking
performance which, together with machine learning approaches, is believed to be one
of the key aspects to be addressed to further improve performance [175]. Regarding
object motion, trackers employ models ranging from simple zero-velocity [189-192]
or constant-velocity [193,194] to constant-acceleration and behavioral models like the
one used in this thesis.

The association of detections to tracks, a combinatorial optimization problem, is
largely solved using the Hungarian method [28]. The system proposed in [195] visu-
ally detects and tracks multiple persons using a stereo camera placed at an under-head
position. This method detects people from a face detector applied in ROI selected from
depth information. The matching stage finds the globally optimal associations of de-
tected candidates to existing tracks using the Munkres (Hungarian) method. Matching
likelihoods are computed from the distance to the predicted position and the similarity
to the color histogram appearance model estimated with the Bhattacharyya measure.
The appearance model is updated by linear combination of its current values and the
new observed color data.
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Almazén et al. [196] also use the Hungarian method for candidate matching. They
aggregate data from multiple RGB-D sensors using a polar coordinate space repre-
sentation of the common ground plane. Objects are detected from motion and size
cues using depth information which are then matched to trajectories. The correspon-
dence likelihood is based on the distance to the predicted position and on appearance
similarity computed using the Bhattacharyya measure. The appearance model com-
bines a height and color histograms and is updated every ten frames by replacing bins
and their associated distributions by newly observed ones if available. Mo et al. [197]
also exploit the Hungarian algorithm for matching detected and tracked objects, where
they identify background areas with a depth-based occupancy grid system. Candidate
targets are searched from foreground areas which is analyzed with a cascade of classi-
fiers, comprising face and skin detectors and a full body HOG-based human detector.
Detected objects are tracked simultaneously with a compressive tracker and a Kalman
filter.

Trackers based on Particle Filters

A particle filter is a sampling-based algorithm that computes an approximate solu-
tion to Bayesian inference. Particle filters use the paradigm of genetic algorithms in or-
der to re-sample state particles according to a fitness function. Munoz et al. [198-200]
use a single particle filter per track. They use a constant speed model to predict the
next location of the target and new target observations are located by maximizing a
detection probability. Specifically in [198, 199] candidate objects are identified from
ROI based on depth information and the probability of the presence of a person is
computed based on the number of points in a cluster and its maximal height. To com-
pute the probability of detecting the tracked person, this human presence probability
is combined with an interaction factor that allows handling trajectory crossings by im-
posing a minimal separation between the positions of different people. In [198], the
detection probability also includes the Bhattacharyya appearance similarity measure,
while in [199] it uses a measure of confidence on depth. Hence, the trajectory rep-
resentation in [199] does not include any appearance model, and in [198] it models
appearance by the color histogram of the cluster. This model is updated with new ob-
servations that have high detection and matching confidence by the linear combination
of the previous model and of the new histogram.

In [200] the detection probability is made up of three terms. It includes the prob-
ability of being a frontal-facing human, firstly by verifying that the cluster may be
approximated by a vertical plane at the expected distance from the camera, and sec-
ondly, by evaluating the fitting of an ellipse on the RGB image in order to validate
the presence of the elliptical shape of a head at this position. It also uses the Bhat-
tacharyya appearance similarity measure to compare to the trajectory representation’s
appearance model, made up of two color histograms inside two ellipses of predefined
sizes and respective positions that represent the head and torso respectively. This ap-
pearance model is updated dynamically as in [198]. In all three methods new tracks
are initialized when unknown targets are detected based on the use of generic person
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descriptions. Tracks are kept for a number of frames after occlusion or departure.

Choi et al. [201, 202] use particle filtering with Reversible Jump Markov Chain
Monte Carlo (RJI-MCMC) sampling to track multiple people simultaneously, as well
as static non-human objects (obstacles). Given the positions and velocities of all
tracked targets and the results from generic person detectors applied to ROI, at each
iteration a move is attempted to initialize, delete or update a trajectory. Each move
is sampled from a space of possible moves and a likelihood for the new solution is
estimated. Moves are accepted or rejected similar to MCMC sampling until the chain
converges. The moves are guided by the probability of continuous tracking, based on
a smooth target’s motion constraint, which may also account for people interactions
and the probability of being a human. The use of a global RI-MCMC method is com-
putationally heavy since the update of each hypothesis requires the evaluation of the
likelihood of all sensor observations. Authors usually overcome this issue by limiting
the extent of the likelihood functions to local windows in the hypothesis space which
greatly reduces the number of computations, but also departs from the global tracking
model. In our approach we break down the global problem into a set of independent
tracking problems assuming that the road users we are tracking cannot occupy the
same space at once. This way the track updates can be computed independently of
one another and the tracker can run in real-time.

While the authors of [202] model the appearance in the sensor model by computing
the distance from a target-specific appearance-based mean-shift tracker, in [201] they
do not use any appearance model at all and in [185] they define a novel Aggregated
Local Flow Descriptor (ALFD) that encodes the relative motion pattern between a pair
of temporally distant detections using long term interest point trajectories (IPTs). An-
other contribution in [185] is a near on-line tracking approach using data-association
between targets and detections in a temporal window, that is performed repeatedly at
every frame. Leveraging on the IPTs, the ALFD provides a robust affinity measure
for estimating the likelihood of matching detections regardless of the application sce-
narios. We argue that motion descriptors, albeit effective as an appearance metric, are
quite computationally heavy to compute in image data. For some other sensors such
as Radar, part of the motion (the radial component) is measured directly, yet and its
use in applications where computing power is limited should be reconsidered.

Trackers using Cooperative Fusion

Gruyer et al. [203] propose a fusion method based on single-line lidar and camera.
Detected regions of interest in the lidar data are projected on the camera image plane
and instigate tracks. The authors make strong assumptions about the object size in the
lidar point clusters which helps to reduce false positives, but only of the objects satisfy
the assumptions. Tracking based on belief theory therefore continues by evaluating
motion vectors within the projected ROIs. Regions that match with content from past
time instances get associated with existing tracks. This approach does not perform
object classification of any sort and relies on assumptions about the detected regions
based on their size and motion.
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In [204], a comprehensive cooperative fusion approach using a pair of Stereo Cam-
eras and lidar is presented for the task of robust, accurate and real-time detection of
multi-obstacles in the automotive context. The authors take into account the comple-
mentary features of both sensors and provide accurate and robust obstacles detection,
localization, and characterization. They argue that the final position of the detected
obstacles is likely to be the one provided by a laser scanner, which is far more accu-
rate than the stereo-vision. The width and depth will be provided also by laser scanner,
whereas the stereo-vision will provide the height of the obstacles, as well as the road
lane position. This cooperative system uses a scheme which consists of introducing
inter-dependencies: the stereo-vision detection is performed only at the positions cor-
responding to objects detected by the laser scanner, in order to save computational
time. The certainty about the laser track is increased if the stereo-vision detects an
obstacle at the corresponding position.

The authors of [205] propose a cooperative radar and infrared sensor fusion tech-
nique for the ultimate goal of reduced radar radiation time. They rely on a interacting
multiple model (IMM) and an unscented Kalman filter (UKF) to perform tracking
whereas the residual of the new information is used to adaptively control the sensor
working time. They use the first radar measurement to initialize a track and solve the
non-synchronized target detection of the radar and infrared sensors. Furthermore, the
probability of switching the Radar on or off is proportional to the residual of the inno-
vation obtained by comparing the filtering result with the estimated measurement. The
application of this paper is in aerial target tracking, however, the technique of using the
innovation residual for sensor control feedback is directly applicable for automotive
systems. In our tracking system, the observation model can switch between the indi-
vidual sensor modalities based on a control variable whose evolution depends on the
evidence likelihood. Our tracker can therefore send a signal to the individual sensor
detectors to adjust their detection thresholds in regions of poor detection performance.

In [206] the authors propose a radar and camera sensor fusion approach for the
tracking of vehicles. They use a combination of a smart camera and automotive-grade
radar in a cooperative fusion scheme. Tracks are initialized from within the narrow
Field Of View (FOV) of the radar, but can then be tracked also outside of this FOV as
long as they remain visible in the camera image. During an update, each track triggers
a raw image search to look for a vehicle in the area where it is predicted to be. The
likelihood of the object being a vehicle is calculated using histogram search techniques
and evaluating the symmetry of the region. Tests are carried out on highway, rural,
and urban scenarios and show a very good detection rate while keeping the number
of false positives very low. The paper does not provide details about the cooperative
aspect of the image search, which relies on basic edge and symmetry-based object
detection. Finally, the paper provides a subjective evaluation of the methods. It does
not quantify the effect of fusion on the performance. The general system design is,
nonetheless, highly applicable to our perception application.

A three-sensor fusion approach was presented in [207] proposing to match track-
ing outputs by radar, lidar and camera. The authors propose a Permutation Matrix
Track Association (PMTA) which treats the optimal association of tracks from two
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sensors as an integer programming problem. They relax the association optimization
by treating it as a soft alignment instead of hard decision. Thus each entry in the per-
mutation matrix is a value of an objective cost function consisting of spatial, temporal
mismatched cost and entropy terms. Of special interest to our approach is the model
of the spatial closeness, which these authors design as the joint-likelihood i.e., the
product of Radial Basis Functions (RBF) over the distance, velocity and heading of
objects. However, the choice of parameters for these functions is not well motivated
in the paper.

Tracking in clutter and handling missing detections

Sensor to sensor mismatches due to occlusion, sensing failure or various other fac-
tors will inadvertently occur in the real world. Besides the clutter and false detections,
measurements in regions where we expect to find objects can go missing, thus it is
of great interest to find an optimal strategy for dealing with missing measurements.
The literature on tracking in missing data has been so far overwhelmingly focused
on regression and classification analysis in big-data problems, while missing data in
object tracking remains understudied. A common practice being the usage of a miss-
ing indicator variable and propagation of the past estimate and covariance. However,
the authors of [208] demonstrate that in regression and classification problems, meth-
ods based on missing-indicator variables are outperformed by ones using statistical
imputation. In this context, imputation is the process of replacing missing data with
substituted values based on the statistics of available data from the past. Specifically,
the study [208] measures the difference between the standard method where missing
data is indicated by a missing-indicator variable and various imputation methods on 22
datasets when data is missing completely at random. The authors compared classifier
performances after applying mean, median, linear regression, and tree-based regres-
sion imputation methods with the corresponding performances yielded by applying the
missing-indicator approach. The impact was measured with respect to three different
classifiers, namely a tree-based ensemble classifier, radial basis function support vec-
tor machine classifier, and k-nearest neighbors classifier. In our work, we extend the
analysis to the multi-object tracking problem where we compare the missing indicator
Kalman and particle filter with a multiple imputations approach.

In [209] the authors look at a few track-to-track fusion methods comparing whether
it is better to estimate the missing information or ignore it. They use two 2-D (single-
model) Kalman filter trackers using identical and time-synchronized sensors. Three
different target motion behaviors were considered: discrete white noise acceleration,
constant velocity, and constant acceleration. Track fusion by three different methods
was analyzed: best-of-breed which selects the tracker with minimal covariance at the
update, fusion without memory where tracks from individual trackers are combined
and the estimate persists only for the current update, and fusion with memory which
maintains the combined state estimate and covariance from update to update. This
study showed that there is no clear winner meaning that tracking all types of mo-
tion depends on the estimation of the process noise and the target motion types. The
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authors note that accelerating targets are problematic for all methods.

In tracking situations where the observation is polluted with clutter, the proba-
bilistic data association filter (PDAF) has been studied in [210], where the authors
propose a multi-object extension: a joint probabilistic data association filter (JPDAF).
They argue that the proposed approach is far superior to standard heuristic tracking
approaches such as local and global nearest neighbor standard filters (NNSF). They
show that in a simulated space-based surveillance example, the PDAF can track a
target in a level of clutter in which the NNSF loses the target with high probabil-
ity. Additionally, they argue that the PDAF and JPDAF, using on-line, recursive state
estimation equations, has far lower complexity than the off-line multiple hypothesis
tracker (MHT) in terms of computation time, memory, and code length/debugging.
Depending on the scene complexity, mainly the number of VRUs being tracked, even
the JPDAF solution is rather complicated since all detection-track pair likelihoods
need to be evaluated and updated. To combat this problem, Tchango et al. [211] pro-
pose to update the state of multiple tracks by selecting and separately updating groups
of targets in interaction. The complexity of the update step is reduced by data associ-
ation and gating heuristics. Inspired by both these works, we concluded that no single
technique provides desirably high tracking precision as well as low computational
complexity. Therefore, we propose a dual approach where a high detection threshold
is applied and only confident detections are associated to tracked objects for optimiz-
ing execution time. When inadvertent assignment ambiguities or missing detections
do occur, we revert to a probabilistic association approach by re-using sub-threshold
sensor evidence.

Handling of missing detections by multiple imputations particle filter (MIPF) has
been successfully applied in astrometry by [212]. Albeit defined as a tracking-before-
detection, the same principles have been applied in other domains as well. One no-
table example is underwater acoustic signal processing in [213] where the low signal-
to-noise ratio, random missing measurements, multiple interference scenarios, and
merging-splitting contacts in measurement space are found to pose challenges for
common target tracking algorithms. The authors of this paper propose a tracking-
before-detection particle filter that estimates particle likelihood functions directly us-
ing the beam-former output energy and adopts crossover and mutation operators to
evolve particles with a small weight. The state estimate is therefore largely inde-
pendent of the availability of detection and significantly outperforms a track-after-
detection method based on a Kalman filter. Due to the differences in domains between
this paper and our own, the direct application of the proposed method is not possible.
However, we adopt the idea of using the raw sensor evidence values as an estimate
of the missing detection likelihood function and draw imputations accordingly when
detections are missing.

Finally, a very relevant analysis on dealing with missing data in non-linear state
estimation with particle filters is presented in [214,215]. The authors propose a mul-
tiple imputations particle filter formulation that uses randomly drawn values called
imputations to provide a replacement for the missing data. Under the assumption that
the missingness is conditioned on the available data (missing at random), opposed to
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missingness being completely independent of observable data (missing completely at
random), imputations can be drawn using a proposal sampling function similar to the
estimated posterior distribution in tracking. Then, using the particle filter the tracker
can estimate the non-linear state with a complete dataset. The paper also presents a
convergence analysis of the proposed filter in a non-linear system where observations
are missing at random and shows that it is almost surely convergent. The performance
analysis is compares the proposed MIPF with existing techniques such as extended
Kalman filter, sigma-point Kalman filter and Expectation-Maximization algorithm.
They conclude that the multiple imputations particle filter has superior performance
when up to 50% of the data is missing. This method provides us with the theoretical
framework for handling missing data and has inspired the work proposed in this chap-
ter. The following text extends the idea to a switching observation model particle filter
and a novel imputation proposal function based on the likelihood without association
for better conditioning of the sampled imputations on the sensor evidence.

6.3 Proposed method

Multi-object tracking must answer the following critical questions: are there any
objects of interest based on sensor evidence throughout time, if so, how many, where
are they situated, and what is their predicted location in the future? Within the appli-
cation of autonomous vehicles, tracking needs also be computationally and memory
efficient, and introduce very little time lag. In order to be accurate and keep within the
limits of these requirements, we make the following assumptions about the nature of
the problem.

Assumptions:

1. We assume that, the existence of a road user is independent of the specific lo-
cation within a small region of the state space €2 (x). This enables us to split
the estimation of the object existence and its exact location into a chain of semi-
independent tasks. The estimation of object existence can thus be done using
the sensor activations « (.) within this region, and, assuming that an object ex-
ists, the estimation of its exact location can be performed using the geometric
part of the sensor measurements: (u,s).

2. We assume that every road user has a Markov property i.e., the future state
(both their location and existence) depends only upon their present state. This
assumption enables us to apply Bayesian filtering for the estimation of both the
object existence state as well as the object location state. Bayesian filtering can
be implemented on low-power, low-memory hardware and can generally allow
real-time tracking.

3. We assume that multiple road users cannot occupy the same space € (x), which
in most cases results in sensor observations which largely independent from
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each-other. This means that every object causes the sensor to generate a unique
observation, independent of the presence or position of other objects. It al-
lows us to apply simple, localized detection to track association which greatly
reduces the combinatorial space in scenes with many objects and many observa-
tions. We will later see that this assumption does not hold in cases of occlusion,
causing missing detections which will be handled by a separate mechanism.

4. We assume that the motion of road users (especially pedestrians) is a non-linear
dynamic system that cannot be modeled by standard linear models such as con-
stant velocity or constant acceleration. We also assume that the posterior distri-
bution of the belief in the location of a road users can become skewed or multi-
modal. Under these assumptions we chose to apply sampling-based Bayesian
filtering i.e., Particle Filters, which model beliefs using a set of weighted par-
ticles. Moreover, Particle Filters allow us to apply highly non-linear motion to
each particle which in turn enables the tracking of unpredictable road user be-
havior e.g., a pedestrian walking, then turning around and jogging in another
direction etc.

5. We assume that the operating characteristics of our sensors change not only
over time, but also over the field of view. For example, the detection rate of a
camera sensor varies locally over the area of the image plane, but it can also
quickly deteriorate due to loss of brightness the moment the vehicle enters a
tunnel or passes under a bridge. Under these assumptions tracking based on
a single sensor model becomes sub-optimal, and we propose to use latent in-
dicator variables that encode various modes of sensor operation to adjust the
characteristics of the sensor model at runtime.

6. We assume that in cases of intermittent missing sensor observations, the miss-
ingness is not completely at random and it can be explained by the other avail-
able observations in the scene. Therefore, the proposed tracker uses multiple
imputations to reconstruct any missing observation and continue the state esti-
mation.

Despite the fact that this may seem like a lengthy list of assumptions, each one is based
on a sound understanding of the characteristics of the objects we are attempting to
track. Formally, our goal with tracking is to locate the unique road users in the scene,
increase our confidence that they exist or do not over time, and reduce the uncertainty
of their positions. We will do this using model-based reasoning and spatiotemporal
sensor data. The proposed method extends the probabilistic concepts explained in
the book “Probabilistic Robotics” by Thrun et al. [216] to tracking of multiple objects
from a moving platform. Before we proceed with explaining the details, it is important
to note the slight abuse of notation we will use p(x) = px(x) for the probability
density function of the vector stochastic variable X, p(x|y) = pxy(x|y) for the
conditional probability density function of X conditioned on the vector stochastic
variable Y and p(x,y) = px y(x,y) for the joint probability density function of X
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and Y. For the same reason, instead of X (¢) the notation X will be used to indicate
a random variable that changes over time. A single realization at time ¢ will therefore
be indicated as x; instead of x (¢) .

Following the exposition of concepts in Chapter 2, we will use the tuple (x, g) to
indicate the state of a road user at x with features g; and measurement z(¥) from
the k'"sensor consisting of: the location u(k), size s(*) of the detection in a sensor-
specific coordinate system, reliability score or activation a(*) and other observational
features £(*). We further use H; to model the state pertaining to the existence of
a road user within Q(x,g) and Hy to model the absence of road users within this
small region, see Section 2.5 for details. The measurement is gathered in the process
of perception explained in Chapter 5 by which the system uses its sensors to obtain
information about the state.

Another crucial element of tracking is the matching between current measure-
ments and measurements of the from the past. In autonomous driving the ego-vehicle
is in motion which causes the measurements zik) at each time step ¢ to be observed
from a different point of view. Since we rely on sensors to estimate the ego-position
of the vehicle carrying the sensors, the error in the coordinate transform estimate be-
tween two time moments can propagate into the tracker. The proposed system uses
coordinate transforms estimated by our own lidar odometry algorithm, which given
the accuracy demonstrated in Chapter 3, has negligible error in the short term. There-
fore, we will assume that each observation zl(?
global coordinate system.

can be translated perfectly back into a

Assuming each road user is tracked independently from the rest, the following
single-object tracking analysis applies to every individual track. The sequence of
states and measurements time ¢y up until time ¢, (¢ < t), is summarized with the
notation:

Xto:it = Xtgy Xtg+15 Xtg+2y -0y Xty (61)
Zto:it = Ztgs Zto+1s Ztg+2 o0y Dty

where the evolution of state and measurements is governed by probabilistic laws. The
state x; is generated stochastically from the state x;_; under the following law:

x¢ = fr (Xe—1) + Vi, (6.2)

where we use the generic function notation f; (.) to indicate the state transition model
which is applied to the previous state x;_; and vy is the process noise (more details
on this in Section 6.5). We use the probabilistic law to characterize the evolution
of the state: p(x¢|x;—1) which is called the state transition probability. Note that
the features g, unique to each object, are absent from this model and assumed to not
change over time. This is of course true for rigid objects such as cars whose shape
stays the same over time, but for other categories such as pedestrians g can have slight
variations. For example,while walking the 3-D bounding box of a person changes its
dimensions due to the moving arms and legs. For simplicity, in our approach we use
the same, class-specific shape g for every object. For the class pedestrian g is the
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maximum spanning 3-D bounding box of an average person which is derived from a
statistical model. The process by which measurements are being generated is given
by the measurement process:

zi = b (x;, 8) + Wi, (6.3)
where hgk) (.) is the observation model of the k*" sensor and ng) is the observation
noise. It is appropriate to think of measurements as noisy projections of the true, un-
known state. After a sensor has made a detection, we can use p(z:|x¢, g) to test the
support of a state (x;,g) given this observational evidence z;. We will refer to this
function as the measurement likelihood or sensor model which is the joint probabil-
ity of the observed data viewed as a function of the parameters of the chosen statistical
model.

Under the Markov assumption no variables prior to x; may influence the stochas-
tic evolution of future states, unless this dependence is mediated through the state
x;. Temporal processes that meet these conditions are commonly known as Markov
chains. The state at time ¢ is stochastically dependent on the state at time £ — 1 through
the model explained in Eq. (6.2). The measurement z, depends stochastically on the
state at time ¢ through the observation model in Eq. (6.3). Such a temporal generative
model is also known as hidden Markov model (HMM) or dynamic Bayes network
(DBN).

Belief reflects the system’s internal knowledge about the state of the objects it is
tracking. We therefore distinguish the true states from the internal belief with regards
to those states. Following the probabilistic framework, beliefs are represented through
conditional probability distributions. A belief distribution assigns a probability (or
density value) to each possible hypothesis with regards to the true state. In object
tracking we want to recall true objects by maximizing the belief in hypotheses that
such objects exist, and if they do, minimize the uncertainty about their location. Due
to the computational difficulties when optimizing the two beliefs simultaneously, as
we will see later, the proposed method decouples the belief in the object’s existence
from the belief in object’s location.

Thus, for every object we formulate two sets of hypotheses, first the existence
hypotheses: {Ho =0,Hy =1} : H (x,8) £ maX,eq(x,g)0 (x'), which equals 1 if
at least one road user with physical features g is present in 2(x, g) which is a specific
region near X, and O if no road user is present in that region; and second, the location
hypotheses: given that H;is more likely than Hjy we seed the region around x with
weighted location hypotheses w4 (dx(”). The existence hypotheses Hy and
H, are maximized using the detector activations a (.) as evidence evaluated at the
hypothesis location x and shape g. Contrarily, the location hypotheses are maximized
using the detector locations u®), sizes s(¥) and the features f at each location x(¥).

Both the existence and location beliefs are distributions modeled as the posterior
probabilities over state variables conditioned on the respective observational evidence.
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We will denote the belief in object’s existence as:

. _ p(H1|a(0)7"'7a(K_1))
bel (B (x.8):0) = G @) )

6.4)

where the dividend is the posterior probability that the object with shape g located
at x does exist, and the divisor is the probability of the null hypothesis for (x, g)
respectively. The activation evidence a(*) has been collected from the K sensors
at sensor coordinates u and shapes s that lie closest to (x,g). Assuming that an
object does exists within €2 (x, g), the belief in this object’s position is given by the
distribution:

bel (x,g, Hi;u,8) =p (X,Hl\u(o)7 eouED g0 s(K_l)) ) (6.5)

Before we incorporate the measurement z;, both beliefs go through a mutation step
independent of the outcome of the sensor observation (referred to as state transition
or motion model) giving the belief estimates for Eq. (6.4) and Eq. (6.5). The mutation
step for the belief of existence is trivial since hypotheses that exist continue to exist
and hypotheses that do not exist continue to not exist: the predicted belief before
observing the sensor activations is simply transferred from the belief in the previous
time step. The belief for the object location is however predicted using the motion
model in Eq. (6.2). In the context of probabilistic filtering this probability distribution
is often referred to as a prediction. These prediction and update steps constitute
exactly the Bayes filter which we will explain in more detail in the following. The
Bayes filter applies the state transition model to predict the state at time ¢ based on the
previous state posterior, before incorporating the measurement at time ¢. Calculating
the current belief from the current observations and the predicted belief in the past is
called a correction or a measurement update. For optimizing the belief in the object’s
location we will use a standard Bayes filter where the state is a real valued random
vector, while for optimizing the belief in the object’s existence we will use a binary
Bayes filter with a static state. Our method uses the Particle Filter implementation of
the Bayes filter which will be explained in detail in the following.

6.3.1 Object existence estimation with a Binary Bayes filter

When tracking objects in noisy environments, false sensor observations often cre-
ate hypotheses pertaining to clutter that resembles the object of interest. Tracking
exploits the temporal persistence of detections around real objects and the random-
ness of clutter in order to maximize the belief in the existence of real objects and
suppress the belief in the existence of false hypotheses. In this section we propose
a probabilistic method which, based on the observational evidence, computes how
likely are we tracking a real object as opposed to tracking clutter. We are mainly in-
terested in answering the question whether the observational evidence better supports
H, -the existence of a true object or Hy-a null-hypothesis. Logically, this hypothesis h
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is best modeled as a binary (Bernoulli) state variable where only one of the two values
(Ho, H1) can be correct for the life-cycle of a tracked object, and moreover, the two
values are mutually exclusive:

Pr(h=Hy)=r=1-Pr(h=H). (6.6)

We will use a Bayes filter to maximize the belief in this state based on the observations
over time, bel; (h;a1.+). Another example of binary Bayes filters with static state are
occupancy grid maps, which we discussed when computing the ego-motion in Chapter
3.

Formally, the belief for the existence of an object at a given position x with features
g: bel (h;a®) (u,s)), is a function of the detector activations a¥) (u,s) (in sensor
coordinates) pertaining to this object over time. Note that in practical applications we
usually limit the analysis only to sensor evidence at positions(u, s) that closely match
the location of the object in sensor coordinates. The belief can be computed from all
previous activations of the K sensors belonging to this hypothesis:

p (Hilaf?) (w,5), .0l (u,5))

bel; (h;a1.4) = -
p(Holal?) (w5)..aly ™ (u9))

. (6.7)

where the lack of a time index for the state h reflects the fact that the state does
not change for the duration of the life cycle of an object. For numerical stability,
this belief is commonly implemented as a log-odds A; (k). The log-odds of state h
then assumes values in the range [—oo, oo]. The Bayes filter for updating beliefs in
the log-odds representation, see Eq.(2.12), is computationally effective as it avoids
truncation problems that arise for probabilities close to 0 or 1. This algorithm uses
an inverse measurement model in the form of p(h|z) instead of the familiar forward
model p(z|h) (recall that z consists of u and s, Eq. (2.1)). The inverse measurement
model specifies a distribution over the (binary) state variable i as a function of the
measurement z, or more specifically the activations from all K sensors: a(*) (u,s).

Inverse models are often used in situations where measurements are more complex
than the state. Here the state is an extremely simple binary variable, but the space of
all measurements is huge. It is easier to devise a function that calculates a probability
of a true object from a camera image, than describing the distribution over all camera
images that show a true object. In other words, it is easier to implement an inverse
than a forward sensor model. The belief is then simply recovered from the log-odds
ratio A (h) as:

1

bel; (h;a1:) =1 — 1+exp (A¢ (h))

(6.8)

In practice, the binary Bayes filter for the positive and negative hypothesis values
can be computed recursively [216]. In order to improve the readability of the following
analysis and be consistent with notation in object tracking literature, we make a slight
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abuse of notations where we substitute z1.; for {ag?z (u,s), ..., ag) (u, s)}, thus:
p (Hi|ze) p (z) p (Hi|21:4-1)
Hylz14) = , (6.9)
P(Hhie) p(H1)p (2e|z1:-1)
and by analogy for the negative hypothesis:
p (Holzt) p (2z¢) p (Ho|z1:0-1)
Holz14) = , (6.10
pUHol10) = = (Ho) p (afare) :
where their ratio can be simplified to the following form:
p(Hi|z1.e)  p(Hilze)  p(Hilzi4-1) 1—p(Hy) ©.11)

p(Holzi:) 1 —p(Hilz) 1 —p(Hilz1y—1) p(Hy)

The log-odds ratio of the belief at time ¢, denoted as A; (h), is then computed using
the following recursion:

A (B) = Ayy () +1n —2UHLlZe) -y p(HY) 6.12)

1 —p (Hilz) 1—p(Hy)’

where p (H7) is the prior probability of the state h for the value 1. Each measurement
update involves the addition of the prior (in log odds form). The prior also defines the
log odds of the initial belief:

p(Hy)
1—p(H)

For a more detailed analysis please refer to chapter 4.2 of [216].

The proposed tracker uses this log-odds existence ratio as a measure of the quality
of each track during track maintenance. For example, a track can be declared a false
positive and removed from further processing if the log-odds of its existence drops
below a predefined track removal threshold. Moreover, most tracking benchmarks
require a track existence score of some sort to be provided in order to compute tracking
accuracy at various sensitivities. The binary Bayes filter therefore is a very useful tool
to optimally integrate detection beliefs over time.

A practical implementation of the binary Bayes filter requires the prior object exis-
tence probability p (H7) and the inverse measurement function p (h|z). The proposed
system uses a prior which is inferred from labeled training data using the charac-
teristics of the employed object detector. The inverse measurement function p (h|z)
can be modeled using a labeled training dataset as well. For example, after apply-
ing the CenterPoint object detector on the nuScenes [168] we matched all detections
to ground truth labels and split them into true positives H; and false positives H
using a gating function € (x,g). The probability p (H;|z) can be represented as a
histogram of true positive vs. total number of detections with a certain detection score
range. After applying the same analysis for the false positives, we can compute the

Ao (h) =In (6.13)
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Figure 6.2: Inverse measurement models for the object detectors CenterPoint, YOLOV3 and the
proposed RadarCNN. The markers represent the log-likelihood ratios, Eq. (2.11), of the three
detectors for various detection scores respectively. Data from the IMEC training dataset.

ratio of true positives and false positives for each detector activation score. The plot
shown in Figure 6.2 represents the proportion between true positives and false posi-
tives at several detection score bins for the detectors Centerpoint [S1], YOLOV3 [24]
and RadarCNN [16]. An object detector which achieves a good class separability will
have a monotonic log-likelihood ratios relative to its activations, which as can be seen
in Figure 6.2 is the case for all considered detectors.

Finally, in multi-sensor systems where the same object is detected by several ob-
ject detectors, it becomes important to accurately model the joint belief of existence
given the detections from different sensors at time ¢. Assuming the sensors are operat-
ing independently, it is reasonable to assume statistical independence of the detections.
Therefore, the log-odds ratio at time ¢ Eq. (6.12) in a multi-sensor setup is computed
by adding the log odds of the individual sensors:

K—1 p (Hy|z®
At (h) = Atfl (h) =+ Z In ( 1‘ ! ) —1In p(Hl) (6]4)

k=0 1—10(H1|Z§k)) 1=p(H)’

where K is the number of sensors that perceive the same object. This means that
the evidence of existence about the same object is summed along all sensors to form
the current log-likelihood. The more sensors perceive the same object, the higher the
belief in its existence and vice versa. In the case when a missing detection, the constant
log-likelihood ratio for that sensor is applied. This ratio is derived empirically from
the detector recall rate at the lowest detection threshold.
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6.3.2 Object location estimation with a Bayes filter

The Bayes filter is a two-step probabilistic optimization method for maximizing
the belief of a state variable using observations and a model of the process. Assuming
a Markov process, the Bayes filter algorithm recursively calculates the belief from a
prior, a motion model and a measurement. In this section we show the correctness of
the Bayes filter applying it to estimate the location x;.; of a tracked object from obser-
vations over time z;.;, assuming that the object exists. For notational simplicity, in the
following we will drop the object shape g (which in principle are always present), its
existence hypothesis H; and simplify the observation vectors u and s using a unified
notation z. We can thus rewrite Eq. (6.5) as:

bel (x4 21:4) = p (X¢[X¢—1,Z1:¢) - (6.15)

The Bayes filter computes the belief bel(x;; z1.;) at time ¢ using the belief bel(x;_1; z1.

at time ¢ — 1 as a prior. The algorithm then applies a motion model to predict
l;e\l(xt; z1.4—1) and finally, integrates the most recent measurement z;. The predic-
tion Ee?l(xt; Z1.t—1) that the tracked object is at location x; is obtained by the integral
(sum) of the product of two distributions: the prior assigned to x;_1 , and the prob-
ability that the state induces a transition from x;_; to x;. This update step is called
the control update, or prediction. In the measurement update step, the Bayes filter al-
gorithm multiplies the prediction by the likelihood that the measurement z; may have
been observed. The resulting product is generally not a probability as it may not in-
tegrate to 1. Hence, the result is normalized, by virtue of the normalization constant
7. This leads to the final belief estimate which is a probability distribution whose
mode and statistical moments (mean, variance, etc.) will constitute the output of our
algorithm and reported to the later steps in the autonomous vehicle control. In or-
der to compute the posterior belief recursively, the algorithm requires an initial belief
bel(xg) at time ¢t = 0 as boundary condition. In Section 6.3.1 we will show hot to use
a simplification of the Bayes filter to maximize the belief in the object existence using
a static state.

Assuming that the object exists, the correctness of the Bayes filter algorithm can
be shown by induction, showing that it correctly calculates the posterior distribution
p(x¢|z1.¢) from the corresponding posterior one time step earlier, p(x;—1|21.t—1), un-
der the assumption that we correctly initialized the prior belief bel(x() at time ¢ = 0.
We can apply the Bayes’ rule to the current belief i.e., the conditional probability
defined in Eq. (6.4):

bel(Xt;ZLt) = P(Xt|21:t) = TIP(Zt|Xt,Zl:t71)p(xt|z1:t—1), (6.16)

where 7 is the probability of the evidence which in the analysis of the belief acts as a
normalization constant. If we now analyze the first term in Eq. (6.16), assuming the
state has a Markov property and (xg, ..., x¢) forms a Markov chain, we can ignore all
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the past observations and controls:

bel(x¢;z1:1) = np(ze|x¢)p(X¢|Z1:0-1), (6.17)

where p(z:|x;) is the observation model. Then, by applying the law of total probabil-
ity, we use the variable x;_; to decompose the second factor, by integrating over all
possible x;_1:

bel(x¢; 21:¢) :np(zt|xt)/p(xt|xt—1,Zl:t—l)p(xt—l|let—1)dxt—1~ (6.18)

The first factor of the integral in Eq. (6.18) represents the posterior probability of the
current state given the previous state, all observations up until the previous time and
all state transitions up to the present. Under the Markov chain assumption, the second
factor can be further simplified as:

bel(xy; z14) = np(z¢|x;) /p(Xt\Xt—l)p(Xt—1|Z1;t—1)dxt—1, (6.19)

where the resulting factor p(x¢|x;—1) is simply the state transition probability dis-
cussed in the introduction and the second factor inside the integral is exactly the belief
attimet — 1 :

bel(x;z1:4) = np(ztlxt)/p(xtlxt_l)bel(xt_l;Zu_1)dxt_1. (6.20)

The last factor in the recursion in Eq. (6.20) is the state transition likelihood, while the
first factor is the update step:

prediction: l;gl(xt;zlzt_l) = fp(xt|xt_1)be/1£xt_1;zlzt_l)dxt_l, ©621)
update: bel(x¢;21.¢) = np(ze|xt)bel(X4;21.4-1).

Any implementation of the Bayes filter requires the following three probability distri-
butions: the initial belief p(x(), the measurement probability p(z;|x;), and the state
transition probability p(x;|x;—1). Depending on how we model these probability dis-
tributions, the Bayes filter can be implemented using various algorithms such as the
Kalman Filter (KF), Extended Kalman Filter (EKF), Particle Filter (PF), mixture mod-
els, etc. KF and EKF use Gaussian models for all probability distributions and a linear
or piecewise linear motion models respectively. Particle filters, on the other hand,
have the advantage to represent arbitrary probability distributions and motion models
using sampling and pointwise evaluation of the observation model.

Although computationally efficient, Kalman Filters and their derivations produce
inaccurate estimates when tracking the position of objects with unpredictable motion
in the presence of occlusion, clutter, ambiguity and possible sensing failure. To illus-
trate why this is so, imagine a person that suddenly decides to change their direction
of motion or gets occluded behind a parked vehicle. The belief of where this person
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is expected to appear in the next time instances strongly depends on the motion and
the interactions between the person and the environment. It is not difficult to imagine
that in such situations the person is likely to be expected at multiple locations. There-
fore, it is best to use multiple hypotheses about the expected position of the person in
the future, each defining a corresponding density in the hypothesis space. The shape
of this predicted belief can even become multi-modal if enough time passes without
observing the person. Filters which assume uni-modality in the belief in the location
of objects will simply be unable to accurately estimate the state in such scenarios.
The Particle Filter, however, allows for modeling of the belief distribution as a density
function with, potentially, arbitrary number of modes. Furthermore, as long as we can
perform sampling from it, we can also use an arbitrarily complex motion model to rep-
resent the state transition. Due to the complex nature of the dynamics of the tracked
objects, we choose to use Particle Filter as an implementation of the Bayes filter, and
trade the increased computational load of Monte Carlo simulations in order to be able
to accurately estimate the position of road users under difficult circumstances. Note
that Particle Filters can be implemented to vary their sample size over time and adapt
to the ambiguity of the observations.

6.4 Object tracking with a Particle Filter

The proposed method uses particle filters to compute the recursion in Eq. (6.21)
in order to estimate the locations of road users from sensor observations over time.
The particle filter is a sampling-based, non-parametric Bayes filter which we apply to
track the positions of objects. This filter does not rely on a fixed functional form of
the posterior, such as a Gaussian. Instead, it approximates the posterior distribution
using a finite number of weights w (™) and particles x("™), each roughly corresponding
to a region in state space. The number of particles used to approximate the posterior
can be varied and it influences the quality of the approximation. PF is well-suited to
represent complex multi-modal beliefs and it is for this reason that is the method of
choice for tracking the position of people when facing hard data association problems
that yield separate, distinct hypotheses.

In particle filters, the samples of a posterior distribution are called particles and
are denoted as the set of:

state samples: {x(M), x@) _ xNoea) ]

iy

sample weights: {w®), w®, ... wMee) ] 6.22)

where each sample xim)(with 1 < m < Np) is a concrete instantiation of the state at
time ¢, and w§’”> is its corresponding weight. In order to make this into a probability

distribution, we use a Dirac delta function positioned at each particle, ¢ (x — xgm)),

and constrain all weights to sum to one: Zgﬁl w(™ £ 1. The particle filter then ap-
proximates the belief in Eq. (6.16) using the set of particles and weights as a weighted
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sum:

Npts
p(Xt|ze) = Z wt(m)é (x - xgm)) , (6.23)
m=1

of Ny Dirac deltas & (X - xﬁm)) positioned at the particle locations xﬁ’”) ,and wgm)

are the corresponding particle weights. At time ¢, each particle is distributed according

to this posterior:

x(™ ~ p (xe|z1) | (6.24)

The complete set of particles represents a probability mass function, and the maxi-

mum a posteriori state estimate XEMAP) can be obtained by searching for the mode

of this discrete (potentially multi-modal) distribution, usually using clustering den-
sity estimation algorithms. The denser a sub-region of the state space is populated by
samples, the more likely it is that the true state falls into this region. In practice, the
number of particles N, is often a large number e.g., N,y = 10° and it can be a func-
tion of ¢ or other quantities such as the spread/skewness of the posterior distribution.

Being a Bayesian filter, the PF algorithm constructs the posterior recursively from
the posterior one time step earlier. For a given observation z;, the observation model
p(z¢|x:¢) can, usually, be obtained experimentally, details in Section 6.6. Addition-
ally, the state transition or motion model characterizing the evolution of the state:
p(X¢|x:—1) is generally known or assumed using domain knowledge, details in Sec-
tion 6.5. The only remaining challenge is how to compute the particle weights wim).
Since at time ¢ the posterior distribution can not be sampled directly, but its likeli-
hood can easily be evaluated, an approximation of this distribution can be obtained by
means of importance sampling. Instead of sampling the posterior distribution, sam-
ples are drawn from any other distribution, called the proposal distribution ¢ (.), the
support of which must include the support of the true posterior, [217]. The weights
wgm) of the samples from this proposal distribution are then obtained by evaluating
these samples using the observation model, the state transition model and the pro-
posal function, such that the weighted set of samples approximates the true posterior
distribution.

Let the proposal density, also called importance density, be ¢ (.). Recall Eq. (6.21),
according to Bayes’ rule, we can write the posterior as p(x;|z;) = np(z: |xt)ggl(xt; Z1:4-1),
where 7 is a normalization factor that is equal for all the samples drawn from ¢ (.) .
Then the importance weight of each particle can be calculated as:

p (2u/x™) px™ % (™)

(m) ) ’

(m)
w. =
' g™ x™) 7

Ui (6.25)

where the enumerator is the product of the observation model, evaluated for the newest

observation z; at each particle xgm), and the state transition model p(xgm)|x§Ti)
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evaluated at each hypothesis location xgm). Note that for brevity we are simplify-

ing the observations z®) : (u®,s*) o(®) £(*)) and omitting the object features
g. The process of estimating the position of an object is generally reliant only on
the positional part of the observation u(*) and not so much on the shape, activa-
tions and the features. We also simplify the notation for detections from the mul-
tiple sensors with a single variable z, where the joint sensor model indicated with

D (zt\xgm)) consists of the individual sensor models evaluated at each particle po-

sition: p (zt|x§m)) = Hf:_ol Py© gy, (ugo), ...,u§K71)|x§m)) . We will
give the details of two implement/ationszl a standard particle filter using an opti-
mal proposal function ¢(.), and a bootstrap particle filter which approximates g (.)
resulting in a much lower algorithmic complexity. It is clear that the design of the
proposal function ¢ (.) is also of great importance as its density serves for sampling,
but the values also are used as a divisor for the particle weights in Eq. (6.25). A typi-
cal problem arising from a poorly chosen proposal function are the effects of particle
depletion and particle impoverishment. Particle depletion refers to a situation where
most of the particles have zero-weights and do not contribute towards the posterior dis-
tribution. In order to solve this problem particle filters apply Sequential Importance
Sampling (SIS) where only particles with high weights are propagated to the next time
step. This procedure solves the depletion problem, but causes particles to concentrate
towards the peaks of the posterior distribution, called particle impoverishment. Next,
we will present the general concepts of the two particle filter implementations and
state their advantages and disadvantages as well as give a solution to the particle de-
pletion and impoverishment problem. The general working principles of a particle
filter are explained in Algorithm 6.1.

Standard Particle Filter

The optimal proposal distribution has been shown to be the one that minimizes
the variance of the particle weights [218]. Not only do we need an analytic expres-
sion of the proposal distribution such that it can be sampled, we also need to cal-
culate the actual state transition probability during weight assignment. An optimal
proposal distribution which satisfies these requirements is the probability density out-
put of the standard Kalman filter applied on each particle [217]. This approach has
been successfully applied for the problem of hand tracking in video by researchers
of our department [219]. Due to the Kalman filter’s properties, the resulting proposal
distribution represents an optimally weighted average of the motion model and the
observed measurement. The standard Particle Filter using a proposal function medi-
ated by Kalman Filter treats each particle as an independent Kalman Filter and runs
the standard Kalman prediction/update equations with each new observation. For the
sake of brevity, this analysis assumes that the reader is familiar with the details of the
Kalman filter design as they are hereby performed in the standard way, see [219] for
details. During importance sampling, the particle is drawn from a normal distribution
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Initialize

(m)

* sample: x; ~ p(z O|x(m))

(m) . 1
. Npts ’

* set weights: wy
Predict Bgl(xt; Z1:4—1)

e sample with replacement: xi’”) from the state transition distribution

p(x™ |x(™)
Measure z;

Update (standard PF) bel(x;; z;.+)

* sample with replacement: xg ™) from the proposal distribution ¢(x; (m) |xtm1) \Zt)

)Y (™ ™)
. p( 2z |x; (™ %"
« compute weights w!™ =7 (=™ )p

a(x{™ %™ 20)
Update (bootstrap PF) bel(x;; z1.¢)

« compute weights w™ = np (zt|x§m))

MAP estimate
« compute x\M ") = mode [Zﬁ?ﬁ w™ s (X - Xgm))}
Re-sample

 Sample with replacement: X,Em) ~ bel(x¢;z1.1)

Algorithm 6.1: Particle filter algorithm.

that serves as the proposal distribution:
q (xg”” x(™) 7 ) ~N (xt P(’”)) (6.26)

where iﬁm) represents the Kalman filter’s state estimate for the m*" particle and Pt(m)

represents its covariance matrix. In the update step, Algorithm 6.1, the particle filter
uses the current observation z, to update the KF of each particle and draws NV,,;; new

particles, each from their corresponding proposal distribution. Let xgm) be the state of
the particle that is sampled from this proposal distribution of particle m at time and let

)"cgm) be the state estimate of the same particle, obtained by the state transition model.
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Figure 6.3: A one-dimensional example demonstrating the sampling and weight updates of a
standard particle filter using the Kalman Filter estimate as a proposal function.

In the case of a Gaussian state transition model centered at the state that was predicted
by a constant velocity model, then the state transition is:

- (M . (m 1 . (m < (m — .(m ~.(m
p(™ %) ~ exp(—5 (5™ = %) TQT ™ —x™M)),  ©627)

where @ is the KF process noise covariance matrix. The proposal function from which
(m)

samples x;  are drawn is defined as a Gaussian distribution:
- (m - (m 1 1 - (m =(m m -1 - (m =(m
aG™ (") ~ = exp(—5 (" = =" (B) ™ = =™,
7]
t

(6.28)

computed as the distance between the motion model estimates Xﬁm) and the KF esti-

mates X,Em), Eq. (6.26). The particle weights are then updated according to:

o (™) o™ ™)
(6.29)

The example shown in Figure 6.3 illustrates a one-dimensional example of a stan-
dard particle filter prediction and update on the horizontal axis. In this example the
observation (yellow) greatly overshoots the expected position from the motion model
(blue). The KF estimate after updating all particles is shown in red, while the proposal
distribution is shown in green. The newly sampled particles, according to Eq. (6.28),
are scattered bellow the plot with their size relative to their updated weights according
to Eq. (6.25).

It is clear the in order to update the weights of particles, we need to compute the
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positions of three different sets of particles: one using the state transition model, one
by updating each particle as a KF and one by sampling from the proposal function.
Then, the weight of each particle sampled from the proposal function can be com-
puted using Eq. (6.29) which requires the evaluation of tree Gaussians. The combined
computational load of these steps reduces its potential for practical applications where
we have limited processing and memory resources. If we, however, model the pro-
posal function to ignore the latest observation, and instead approximate it using the
estimate from the previous step g(%\™ %) z,) ~ p(x!{™ %{"™)) we come up with
the Bootstrap Particle Filter which has much less complicated particle sampling and
update steps.

Bootstrap Particle Filter

In practice it is often the case that the optimal proposal distribution ¢ (.) cannot be
formulated analytically or too complex to compute in real-time given limited hardware
resource. Most current particle filter implementations, such as the well known CON-
DENSATION algorithm [220], simply predict the new state using the state transition
model as the proposal distribution, ignoring the latest observation z;:

a(x{™ x{™ 20) = p(x{™ x{™). (6.30)

Particle filter implementations that employ this strategy are called bootstrap filters and
are the most widely used particle filter variant. Bootstrap filters ignore the fact that the
proposal distribution is conditioned on the latest observation. Instead, in the prediction
step they assume that the current state is only a function of the previous state and the
motion while the latest observation has no influence. In other words, the posterior
is assumed to change smoothly over time thereby closely resembling the transition
probability at each time step t.

Logically, using the state transition model as a proposal would yield two sets of
particles igm) and >‘<§’") that are equally distributed and we need only sample once
according to Eq.(6.30). Then, plugging the state transition as a proposal function

Eq. (6.25) makes for a greatly simplified weight update step (q(xff”) |x,(fi, 7)) = p(x§’”> |x£7_n} )) :

wgm) = ngl)p (zt|x§m)> , 6.31)

where the proposal distribution is canceled out, and as a result only a prediction using
the state transition model p(xgm)|x§iq) and an update using the likelihood model

D (zt \xgm)) needs to be performed, see Algorithm 6.1.

Although bootstrap filters are the most widely used type of particle filter, failing
to introduce the latest observation into the proposal distribution can cause problems.
The worst case scenario for the bootstrap particle filter is a badly modeled outlier
observation i.e., one which adheres poorly to the observation model. The example in
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Figure 6.4: A one-dimensional example demonstrating the sampling and weight updates of a
bootstrap particle filter using the state transition distribution as a proposal function. The person
is expected at position: mode [bel(mt; Zl:t—l)] (around 0), while an observation is measured
at z¢ = 2.

Figure 6.4 illustrates this issue through the same one-dimensional tracking scenario as
we previously analyzed. The bootstrap particle filter uses the motion model to sample
new particles which are scattered around the expected value, 0 in this example. Due
to the limited number of samples there are only a few newly sampled particles which
support the new evidence z; = 2. Therefore, almost all of the particles will have near-
zero weights with most of the weight concentrated around a few particles close to
the observation. The problem becomes worse at the next time instance, ¢ + 1, when
particles with a low weight will probably be assigned an even lower weight, since the
new estimate is based on the bad state approximation of the previous time instance
t. Due to the limited computer precision, after a while, only few particles with a
corresponding high weight will model the mode of the posterior, whereas most of the
particle weights will corresponding to the tails of the posterior distribution will have
zero weights.

The problem where many of the particles have zero weights, and are thus unin-
formative, is called particle depletion. Sparse sampling of the mode of the posterior
distribution causes the filter to get easily distracted by noise towards the tails of the
distribution (outliers). To solve this problem, resampling techniques are often used to
replicate particles with high weights, while removing particles with a low weight. SIS
particle filters that employ resampling are called Sequential Importance Re-sampling
(SIR) filters. A widely used resampling scheme is multinomial resampling. In multi-
nomial resampling, the set of new particles is sampled with replacement from the set
of old particles. The probability that a particle with index m is picked at each sam-
pling round is defined by its weight wt(m). This way zero-weight particles are removed
from the model and after re-sampling, the weights of all remaining particles are re-set
to ﬁ such that the new sample set represents a probability distribution.
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Although re-sampling solves the particle depletion problem, it introduces a new
problem called particle impoverishment. After resampling, most samples are located
on or around the peaks of the distribution, while few samples are available to repre-
sent the tails. As a result, the tracker fails to explore the complete search space and
easily gets stuck on local maxima. As a compromise, most SIR filters only perform
re-sampling when needed, instead of re-sampling at every time instance ¢. In order to
determine when re-sampling should be performed, an estimate is needed for the per-
formance of the particle filter state estimation at each time step. A common strategy
is to use the Effective Sample Size (ESS) of the posterior:

1
s (wf™)

and re-sample only when the ESS satisfies a certain fraction of the number of particles.
If all particles are assigned the same weight, the effective sample size equals the real
sample size. If a single particle has a weight of 1 and all other particles have a weight
of 0, then the effective sample size is 1. In order to avoid impoverishment, most SIR
filters therefore only re-sample if E£SS < aNp, with o € [0,1]. In general, we
want to re-sample as little as possible, while still being able to model the mode of the
posterior density accurately. Hence, a proposal distribution ¢ (.) that closely matches
the posterior distribution is extremely important as it greatly reduces the need for re-
sampling. For a detailed mathematical derivation of the Particle Filter, see section 4.3
in [216] and chapter 3 in [217].

ESSt =

Application-specific considerations

The particle filter is designed to approximate the posterior probability distribution
of a state variable (the position of a road user in our application) from sensor obser-
vations over time. Therefore, we need to devise a strategy on how to apply particle
filters when we want to track several objects of interest in the scene. As discussed
in the introduction, Section 2.7, we found that one tractable approach for real-time
applications is to disentangle the states of every object into independent states tracked
by independent particle filters. This bottom-up principle relies on association between
detections and individual hypotheses and applies local sensor models that are confined
to a small gating region (x, g) around each hypothesis. Although this simplification
of the state-space allows for accurate tracking of multiple objects in most circum-
stances, it also causes problems under border cases of ambiguous observations where
we deem the bootstrap PF is the preferred algorithm over the standard PF.

Whenever the objects of interest are positioned close to each other, it is difficult
to estimate the correct association of measurements to hypotheses. Faulty association
results in outliers (a track is assigned an observation from another object) which com-
pared to noisy observations reduce the statistical power of the sensor model. In this
situation, conditioning the PF proposal function on the latest (potentially outlying)
observation as does the standard PF algorithm has the potential to incorrectly lead the
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the posterior distribution estimate away from the true state. In object tracking this
effect results in divergence of the track and identity switches between nearby objects.
Therefore, besides it being less computationally complex, we are more motivated to
use the simpler bootstrap PF. To further address the problems created by confusing
data association, we shall implement a switching observation model method, details
follow in Section 6.6.4.

Over time, the object motion of people is affected by many factors and is diffi-
cult to predict without accurate observations. Even predicting the position of moving
people in the short-term is challenging around occluding objects. The problem be-
comes especially difficult when, due to the occluding objects, the person is impossible
to detect causing intermittent loss of detection data. In such situations the tracked
object can be expected to re-appear in the sensor view at multiple places with a low
probability density. This means that the posterior density becomes less peaked and
we need to use more particles and more computations which would not be the case if
the motion of the object is predictable. Moreover, due to the imperfect recall of ob-
ject detectors, intermittent loss of detection is to be expected even in normal viewing
conditions. Whenever there are no detections, the proposal Eq. (6.28) is meaningless
because there is no z; to update the individual particle KFs. Therefore, both the stan-
dard PF and the bootstrap PF predict based on the motion model and have the same
performance.

Finally, the quality of associating detections to tracks is dependent on how often
the system receives data updates. Since we are tracking multiple objects that move in
unpredictable ways, the longer the system waits for new data the less motion models
can predict the object motion. Using the latest observation to condition the proposal
function for sampling, the standard PF is theoretically better suited than the bootstrap
PF. In order for these PF characteristics to translate into significant performance dif-
ferences, the data update frequency has to be lower than the rate of change of the
object motion i.e. its motion is highly predictable within the time frame between two
detections. Typical camera/lidar/radar sensors produce tens to hundred of samples per
second. The period between data updates is therefore relatively short and not enough
for an object to change its motion before a new detection is made. This motivates us to
suggest using the bootstrap PF over the standard PF, however, we propose the use of a
stochastic, behavioral motion model which will be explained in the following section.

6.5 Motion model

In this analysis we will largely restrict to object tracking in planar environments.
The pose (location and orientation) of objects in such environments is summarized by
three variables: two-dimensional planar coordinates and an angular orientation. In the
literature, this reference system is often referred to as a 2.5-D, defining the location

. . . . . . T
using z and y, and the orientation using #, forming the following vector: (x,y,6)" .
The orientation is referred to as heading direction and, for convention, follows the
compass heading: 6 = 0 points into the direction of the y-axis. A pose without



COOPERATIVE SENSOR FUSION FOR OBJECT TRACKING 183

Y [m]
S

Y [m]
o

X [m] X [m]

Figure 6.5: Visualization of 20 Monte Carlo realizations of a pedestrian moving according

to the proposed behavioral motion model. Initial parameters: pose xi?) = (0,0,7/2) and
velocity of 2K'm/h (left) and 5Km/h (right).

orientation will be called location.

The probabilistic kinematic model, or motion model plays the role of the state tran-
sition model. Assuming that the object does exist at x; and has a shape g, H (x;,g) =
Hy;Vt, and its shape doesn’t change over time, the motion model is the conditional
density p(x:|x;—1) where x; and x;_; are both 2.5-D object poses. This model de-
scribes the posterior distribution over kinematic states that an object assumes when
exercising motion at x;_;. Since our perception system does not provide direct mea-
surement of the object velocity, we will use a velocity motion model. The true nature
of p(x;|x;—1) explaining the motion of road users on the ground plane is dependent
on both scene geometry as well as high-level reasoning which is difficult to model
completely. Oftentimes in high frame-rate applications, the motion of road users (es-
pecially pedestrians and cyclists) is commonly modeled using a constant velocity mo-
tion model. This, however, is a gross underestimation of the unpredictable human
motion which we will address with a novel, behavioral motion model.

The proposed transition probability density explores the state space through mu-
tating the rotational velocity w and a radial velocity v using a behavioral model. The
radial velocity at time ¢ is denoted as v; while the rotational/tangential velocity is w;
making the motion vector (v, wt)T . Positive rotational velocities w; induce a clock-
wise rotation (right turns) and positive radial velocities v; correspond to forward mo-
tion.

Since we will be using particle filters, computing the conditional probability p(x;|x:—1)
needs to be performed by sampling xim) given the previous set of particles xi’_”{. The
proposed sampling algorithm perturbs the motion vector parameters by noise, drawn
from error parameters that we train from labeled road users motion in traffic. The
noise parameters are then used to generate the sample’s new pose consisting of a new
location and a new orientation. Note that p(x;|x;_1) does not apply on the shape of
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For each particle x\") = (zETE, g Gng)) with velocity (v;—1,w;—1):

o sample: 0, ~ N (v_1, 01071 + asw?_;)

 sample: &, ~ N (wt717042vt2_1 + Ol3Wt2—1)

« compute: z\") = z,_; — :j’t sin 01 + 2= sin (6p—1 + W At)

« compute: yt(m) =41 — Ztt

cos@p_1 + Z—’t cos (0—1 + W At)
» compute: ng) = 0;_1 + G At

T
return: xgm) : (mim),yt(m),et(m))

Algorithm 6.2: Algorithm for sampling poses xgm from an initial pose x;—1 =
(xt—1,yt—1,9t—1)T.

the object which remains the same throughout time. Thus, the sampling procedure
implements the motion model that incorporates control noise in its prediction in the
most straightforward way, summarized in Algorithm 6.2.

In order to train the parameters motion model parameters we used the labeled
KITTTI pedestrian dataset and analyzed the motion of road users through typical urban
environments. In [7] we confirmed the hypothesis that pedestrians exert a motion
behavior which is highly non-uniform. Moreover, we measured a distinct dependency
between the person’s walking speed v and the likelihood for change in their orientation
Aw. Specifically, a static person is more likely to start moving in any direction, while
a person in motion is likely to continue to walk in the same direction. The faster the
walking pace, the less likely it is the person will change their heading.

The proposed behavioral motion model is a Gaussian random-walk where the lon-
gitudinal and lateral acceleration components (Av and Aw) are sampled from zero-
mean normal distribution. The variance of the longitudinal acceleration distribution
is constant while for the lateral acceleration we use a variance factored on the current
velocity magnitude, details in [7]. This model can be sampled by taking the steps ex-
plained in Algorithm 6.2. In Figure 6.5 we present the realization of several random-
walk chains by sampling new states using p(x|x;—1) for a slowly moving (left) and
a fast moving (right) pedestrian motion model. In this simulation we are tracking a
single object purely on the motion model without applying a correction step with an
observation. We let the simulation run until the object has traversed 10m and show the
means of 20 estimated trajectories with unique colors. The distribution of the newly
sampled poses varies greatly depending on the initial motion vector. A slowly moving
pedestrian is more likely to change direction than a fast moving one.

In order to better illustrate the characteristics of the motion model, consider the
example depicted in Figure 6.6. This experiments draws the new states for 10° parti-
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Figure 6.6: Visualization of the proposed behavioral motion model. The plots show the out-
come of drawing 10° new samples from an initial state x;, = (O, 0, g)T and a motion vector
for a slowly moving pedestrian (left) and a pedestrian with a normal walking speed (right).

cles initialized at x;, = (O, 0, g)T and shows the density of these new states. At each
time step, the object in the left plot is assumed to be moving with an initial radial and
angular velocity of (2Km,/h,Orad/s)”, while the object in the right plot is moving
with an initial velocity of (5Km,/h, Orad/s)” respectively. The left plot demonstrates
the probability density p(x;|x;—1) for a pedestrian walking at a slow pace of 2K'm/h
while the right plot demonstrates the same density for a person walking at a faster pace
of 5K'm/h, respective to the single time step motion models shown in Figure 6.6.

The added benefit when using the proposed behavioral motion model is that the
system can explore the state space much more effectively than using constant velocity
or even constant acceleration models. Before the Particle Filter update with obser-
vational data, the location and orientation of each particle is mutated according to
the motion of the tracked object. This becomes especially important in tracking with
missing detections where the loss of sensor information for a longer period of time
causes loss of tracking due to track divergence. In the experimental evaluation sec-
tion, 6.9.3, we use simulations to measure the objective tracking performance of the
proposed model implemented in a Particle Filter as opposed to a Kalman Filter with a
linear motion model.

6.6 Observation models

In Section 6.3.1 we showed how to model the belief in object existence from mul-
tiple detectors using the observation model for detection confidence based on the K
detector activations Z?:_ol 11r™ (a®) (x)). In this section we assume an object is al-
ways present (H (x,g) = Hy) and analyze the observation models that update the
belief in the location of a tracked object in Eq. (6.21). Decoupled from the belief in
existence, these observation models describe the spatial measurement formation pro-
cess i.e., the laws by which an object in physical space is projected into sensor space.
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Figure 6.7: Example with a single pedestrian at 3.5m distance visualizing the observation
models for radar, lidar and camera object detectors.

In the following we use the general observation model mapping an object (x, g) into a
sensor measurements z that we defined earlier in Eq. (2.3). Note that the observation
function is also time-varying and in this analysis we will assume that it can change be-
tween multiple known shapes which we will analyze in detail in Section 6.6.4. Since
autonomous vehicles use a variety of different sensors, such as lidar, radar, or cameras,
the specifics of the observation model depends on greatly the sensor: Imaging sensors
are best modeled by 3-D to 2-D projective geometry, whereas radar and lidar sen-
sors are best modeled by describing the propagation of the electromagnetic wave and
its reflection on surfaces in the environment. An observation model, in this context,
explains the uncertainty in the perceived location of an object. For a more detailed
theoretical formulation the reader is referred to chapter 6 in [216].

In a multi-sensor perception system running object tracking, each track update
needs to compute the K -sensor product: Hf;ol pUt(O)7...7Ut(K—1) \H,X, <u§0), ey u,EK_l) |xt) .
We hereby assume that the track does exist and drop H; as a conditioning value. In
a Particle Filter, this update evaluates the said product of observation models for each
particle xﬁm) and each detection location ugk), recall Eq. (6.25). When the scene con-
tains a single object, computing the joint observation model is straight forward and
yields accurate state estimation, however, when tracking multiple objects the associ-
ation between multiple detections and multiple tracks can sometimes be ambiguous.
In these situations it is not always guaranteed that the multi-sensor evidence matched
to a hypothesis within € (x, g) belongs to the correct track. Depending on the size
of Q (x, g) the joint-measurement model might not be entirely accurate i.e., it is quite
possible that a detection belongs to another object (a false positive). This motivates
us to propose an adaptive observation model that, instead of using a fixed observation
model, allows the tracker to adapt the observation model to the spatial distribution of
observations over time.
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6.6.1 Uncertainty of the location of radar observations

Object detection by radar yields observations z("4%") = (u,s, a, f) consisting of
the object center in polar coordinates u("447) : (p, §), the object shape s, an activa-
tion a and features f. When modeling the positional uncertainty of a radar detection
for object tracking we are generally interested in the relationship p(u;|x;) where the
shape and features of a target are of secondary importance. Due to its intrinsic ability
to measure range, the measured object range is fairly accurate and independent on the
distance to the sensor. However, the measured object azimuth is dependent on the
number of antennas in the radar array as well as external factors such as multi-path
fading. Since the radar uncertainty differs greatly along the range and azimuth we will
define the radar observation model separately along these two dimensions.

Our proposed radar detector is designed specifically to reduce this uncertainty by
using a wide receptive field along the azimuth dimension and feedback information
from other sensors. In Section 5.7.1 we showed that radar detection greatly benefits
from camera feedback, however, when the feedback information is unavailable the
radar detector has reduced azimuth accuracy. The uncertainty of detections from the
proposed object detector is therefore bi-modal. Depending on the quality of the cam-
era feedback, the uncertainty along the azimuth can be either high (if no feedback is
present) or greatly reduced if the camera detects the same object. The radar observa-
tion models for the position of a detection are formally described as:

(radar)

p = h{reton) (x, g) +w, ", (6.32)
, arctan (%) 4 @y 7% Radar CNN with feedback,
= ‘ ’ (6.33)
arctan (%) + wérta dar) " Radar CNN without feedback,
where the range mapping is simply the Euclidean distance: hffadw) (xt,8) = [|%¢]5,
and the scalars wf(:ta dm), wg’”f dar) and w((;fa dar) are Gaussians whose parameters are

learned offline using labeled data which is unseen during training. The shape of these
models was confirmed in controlled experiments with a single target (a person) mov-
ing across the Radar field of view where its true position (measured with lidar) was
compared to the detection data from the Radar. Usually the variance along the azimuth
is much smaller in situations where the radar CNN has access to feedback informa-
tion. The example shown on the left plot in 6.7 illustrates the radar CNN observation
model p(u;|x;) for a target at 3.5m in front of the sensor. In this example the radar
doesn’t have any additional feedback information which makes the uncertainty along
the azimuth much greater than the range uncertainty.

6.6.2 Uncertainty of the location of lidar observations

A lidar detection z(ider) — (u,s,a,f) consists of a 3-D bounding box defined
by its center u : (z,y, 2), its size s : (w,d, h), and an activation a and features f.
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Depending on how the lidar object detector is implemented, the bounding box can
also contain a 3-D orientation vector or an orientation scalar indicating its compass
heading. When modeling the positional uncertainty of detected objects we will focus
on the measurement of the object center u, while the orientation, size, activation and
features are of secondary importance. Assuming the lidar detection is a true positive,
the positional uncertainty of the observed vector u is a function of the true position
x, largely influenced by the lidar analysis algorithm, non-maximum suppression of
the raw activations as well as the quality of the raw lidar data points. Due to the
properties of propagation of the laser beams, objects at distance are expected to be
sparsely scanned resulting in much less data for object detection. Contemporary lidar
sensors such as the Velodyne HDL series have a nominal range error of 3cm-5cm,
however, most state of the art lidar object detectors such as [51] yield detections with
an order of magnitude lower positional accuracy.

Even though lidar object detectors operate on extremely accurate range data and
are extensively trained to minimize positional errors, the accuracy of detections varies
across the detection field. For example, the lidar can only perceive the front-facing
surface of objects which makes estimating the object center dependent on trained geo-
metrical models and contextual information. Given a large enough dataset, object de-
tectors perform this task fairly accurately for close-by objects, however, further away
objects are scanned more sparsely making the fitting of geometrical shapes less accu-
rate. Positional uncertainty in the context of object detection refers to the inability for
a range sensor to reliably measure the center of objects, and is represented as noise.
This noise has predictable characteristics that can be learned off-line from training
data. For the detector Centerpoint [51] we have:

uglidar) _ h(lidar) (Xt, g) + ngidar)’ (634)
where the mapping is a linear function: h(#dar) (x¢,8) = x; and the noise is zero-
mean with range dependent covariance matrix: w; ~ N3 (0,X;x;). This model
was confirmed using the nuScenes dataset where we compared lidar detections to true
object positions of various classes that were manually labeled by human annotators.

Since we are using a rotating lidar which has the same sensing properties in all
direction, the sampled data is isotropic along the azimuth and decays with range. Thus
the covariance matrix 3 is a diagonal matrix defined by the range of the object and a
correcting coefficient r: diag (r ||x¢|| , r ||x¢||) . The characteristics of this model are
illustrated with the example shown on the middle plot in Figure 6.7. In this example
there is a single pedestrian at 3.5m from the sensor. The plot shows the density of the
conditional probability p(u;|x;) using the model in Eq. (6.34).

6.6.3 Uncertainty of the location of camera observations

Depending on the implementation of the camera detector, camera observations
can be defined in image coordinate space or in 3-D if we apply object ranging using
depth images as we saw in Section 4.3. Camera object detections which are ranged
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using depth images exert the positional uncertainty of the ranging sensor which was
used to generate the depth maps. In this case we can generally use the positional
uncertainty model defined by Eq. (6.34). When no ranging information is available
to the camera, the observations z(¢%") = (u, s, a, f) are completely defined in image
pixel coordinates. The position vector consists of the 2-D image bounding box edge
points containing the image object boundaries. The observation model p(u;|x;) in
this case will be defined in terms of the image pixel uncertainties of a 2-D bounding
box ul®®™) = (ug, uy, v, v;) given an object position and shape in 3-D:

ugcam) —_ h(cam) (Xtyg) + Wgcaﬁb)j (635)

where h(¢@™) () applies the pinhole camera model and perspective transformation,
explained in Appendix (A), to project a 3-D bounding box defined by (x, g) into four
corners defining a 2-D bounding box in image coordinates u(“®™) . The uncertainty of
the 2-D bounding box coordinates depends on several factors. Firstly, the accuracy
of the camera extrinsic and intrinsic matrices used for the projection h(¢*™) (.) can
cause small systemic skew of observed image bounding boxes. Second, occlusion
causes parts of the object to be hidden from camera view resulting in a bounding box
covering only the visible portion of the object. Lastly, difficult image textures and poor
viewing conditions can cause the object detector to misinterpret the position/shape of
the object bounding box. We model all of these effects as a 4-D noise vector wa“’”>

which applies horizontal and vertical perturbations to the observed image bounding

box corners u{“™. In practice, w "™ consists of two 2-D Gaussians referring to

the bottom left (ug, vo) and top-right (w1, v1) corners of an image bounding box. This
model is in line with the probabilistic bounding boxes concept [221]. The parameters
of these Gaussians are learned offline using the KITTI object detection dataset labeled
for both the 3-D and 2-D position of objects in the scene and in the camera image.
The right image shown in Figure 6.7 illustrates the camera model p(z;|x;) for the
YOLOV3 object detector. In this example, there is a single pedestrian at 3.5m which
is visible to the camera. The positional uncertainties of an expected camera object
detection are illustrated as two probability densities with red color and the most likely
detection with a red bounding box.

6.6.4 Switching observation models

The spatial distribution of detections fused using K sensors follows a general-
ized, fused measurement model Hf:_ol PU©,.. UK-D|H,X (u@, .., uEYHy, x)
which models the uncertainty of the measurement attributes of all sensors. Using
a single model per sensor has the advantage that the model will fit most situations
and will be optimal under the general case of conditions. However, in border cases
when the characteristics of the observations change, the general sensor models are no
longer optimal. At run-time, observation conditions can change dramatically due to
changing light levels, occlusions, transmission channel errors, battery power level. A
camera will react to such changes by adjusting its integration time, aperture, sensitiv-
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ity, white balance etc. which inadvertently results in detection characteristics different
from the nominal ones. Any sensor, in general, can stop working altogether in cases
of mechanical failure caused by vibrations, overheating, dust contamination, etc. Ad-
ditionally, manufacturing defects, overheating, physical or cyber-attacks can alter the
characteristics of measured data. Lastly, real-world sensor configurations employed to
measure a wide area of interest often have “blind spots” where information is missing
by design.

Another factor which can influence the current observation likelihood to be dif-
ferent from a nominal one is the in-between step of ranging camera detections using
depth images. When fusing these ranged detections with other sensor data we use
the positional uncertainty model of the range sensor. However, due to depth image
sparsity and errors in its reconstruction, camera detections will not always get the cor-
rect range. For example, an object in the distance with a small image bounding box
may fall between two lidar depth measurements. The ranging of this object depends
entirely on the depth image reconstruction algorithm that can sometimes introduce
wrong 3-D position.

One possible solution for modeling the changing characteristics of sensor observa-
tions is to use heavy-tailed or multi-modal distributions that, on average, explain the
sensor observations under all conditions. Such distributions, on the other hand, are
sub-optimal under normal circumstances. Moreover, a completely missing detection
from one sensor will require a special case of the location likelihood indicating an
unknown/constant contribution of that specific sensor. We can see that modeling all
scenarios of sensing failures as a uni-modal function can quickly lead to a measure-
ment model which is less informative in the general case. In this section we propose
the switching observation model (SOM) concept which allows the system to automat-
ically determine the optimal parameters of the measurement model based on the fit of
the evidence to the hypothesis. The proposed method uses a hidden categorical vari-
able which we refer to as a local context variable. The local context variable models
the type of uncertainty of the current viewing conditions and the scene complexity at
a given region in the scene. Based on the state of this context variable, a different
sensor likelihood function can be applied locally, when introducing the current mea-
surement to the system. The SOM principle is especially suitable in sampling based
filters where each sample/particle can use a different measurement model.

Formally, the SOM represents the context of a local region in the environment and
the characteristics of the sensor operation in this region as a latent random variable ¢
that can switch between categorical values relating to different sensing modes of op-
eration. Note that c is not part of the tracked object state x, but it explains the context
in which the observation is made and is related to the position in the scene where the
object is located. For example, the sensor observing an object in a well lit area of
the scene can be considered to be in a nominal state ¢ = 1 and the detections can be
explained through the nominal measurement model. A degenerate mode of operation
¢ = 0 means that the sensor has failed to produce any measurement and refers to
a sensor model which is independent of the state. For tracking multiple objects we
will use separate contextual variables which are specific to the unique regions where
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we hypothesize the presence of objects, but for simplicity in the following we will
present the details for a single object tracker and a single contextual variable referring
to a single location in the scene. The concept can be easily extended to multiple ob-
jects since the contextual variables do not interact with each other. In a multi-sensor
system we will denote ¢(*) as the contextual state for the k" sensor. The collection
of K contextual variables forms the contextual vector c. If the individual sensors use
unique sensing principles (like is the case with camera, radar and lidar), then the indi-
vidual ¢'*) can be thought to be conditionally independent. For each sensor, we keep

a collection of ngk) contextual states that it can cycle through: ¢(*) ¢ {O, e ngk) },

making the general observation model for the joint evidence:

K
p(z|x,c) = Hp (z(k’)\x7 c(k)) , (6.36)
k=1

and the individual sensor models:

n®

p (Z(k)|x’ C(k)> = 0p,c(m Do (Z(k)) + Z 5 eI Dy (Z(k)\x) ) (6.37)

j=1

where ; . is the Kronecker delta.

Currently, most sensors on the market do not have the capability to estimate the
quality of their own performance at an arbitrary location in the scene. Therefore, for
every sensor k, we will use an observation model p (z*)|x, c(*)) where the optimiza-
tion is performed without directly observing the contextual variable ¢(*), but rather
using its most likely estimate given past observations of objects in a small region
Q (x) around the hypothesis x. In a general case, for every constituent sensor the
following modes of operation are possible:

0 if the detection is independent of object presence at x,

cgk) ={1 if the sensor is in its nominal state of work,
7, J € {2, e ngk) — 1} if the sensor is in its j-th state of work.

(6.38)
In a nominal state of work ¢(*) = 1, the sensor k is assumed to be producing detections
under general operating conditions, while in the other j states of work the sensor is
producing various (degraded) levels of service. It is important to note that the sensor
mode of operation also varies across the field of view and over time. This means
that the detection quality will change in different regions of the field of view due to
transient occlusions, atmospheric conditions, light changes due to shadows or multi-
path reflections which can cause an object detection score to briefly drop below the
detection threshold. Generally, the positional accuracy of detections degrades with
distance, switching between more degraded modes of operation as the range of targets
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increases.

Formally, the local context variable ¢ follows a categorical probability distribu-
tion whose sample space is the set of n. individually identified items (sensor states).
For convenience, we will define the sample space as the finite sequence of integers as
presented in Eq. (6.38). The probability mass function defining the categorical distri-
bution is given by:

Prc=j)=oaj,j€ {0, ) — 1}, (6.39)

which is parameterized by the real-valued numbers «; that sum to 1:

ne—1

> ai=1, (6.40)
j=0

forming the n.-dimensional probabilistic simplex c. This simplex defines the prob-
abilities that our sensor is in any of its n. states which, as we previously explained,
are conditioned on the location of the scene. Since the local context can dramatically
change throughout the scene and over time, using a single set of parameters o; for
the categorical distribution defining our context variable c is insufficient. Therefore,
our method parameterizes the categorical distribution of ¢ by treating ¢ as a random
vector which is subject to estimation over time. In a K-sensor system, the categorical
probability distribution of each ¢(*) is then parameterized by the sensor-specific ran-

dom vector a(¥) = (cu(()k)7 . agi)) defining the probability mass that the k" sensor

is in a certain sensor mode. Finally, at time ¢, we use the notation cgk) to indicate a

sensor-specific local context variable, and agk) the probabilistic vector with the pa-

rameters of its distribution at this time.

The visualization in Figure 6.8 shows an example perception system consisting of
two sensors which can be in one of 3 different sensor states based on the location and
the configuration of the scene. The person in blue is outside of the field of view of
the camera and occluded by a large vehicle in the radar field, therefore both sensors
are most likely in a degenerate or blind sensor state in this region € (x) (shown as a
shadow behind the truck in Figure 6.8). The person in black is visible by both sensors,
however the radar signal in that region is compromised due to the presence of a large
vehicle making the radar to be likely in a degraded state. Similarly, the person in red
is occluded in the camera view making the camera to likely be in a degraded state for
that location. Lastly, the person in green is clearly visible by both camera and radar,
thus the two sensors are likely in a nominal state.

Before we give the details on how to estimate the vector a, we define the posterior

PDF for the state x over the time interval [0, ¢] given the switching observation model
formulation for a system with K sensors, which now expands to:

p (Xt7ct7az(fk)‘zg.kt))agli)lvo-z(fk)) 7k = 17 >K (641)
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Figure 6.8: Example demonstrating the switching observation model for a scene with several
VRUs. The tracker relying on measurements from two sensors: a camera (yellow) and a radar
(green). Depending on the VRU position and scene complexity each sensor can be in one of 3
sensor modes: degenerate (gray), nominal (light shade) and degraded (darker shade).

For estimation of the state vector x; we first need to estimate the state of the K -sensor

local context vector c;. This, in turn, requires the estimation of the K-sensor pa-

rameter vectors agk), for which, assuming they both have Markov property, Bayesian

tracking can be employed. Caron et al. [222] have also found out that these PDFs

of ¢'*) are difficult to know a priori due to the possibility of rapid changes of exter-

nal conditions and propose to tune them adaptively using a Markov evolution model.
(k)

Thus the transition of sensor state probabilities of the k*" sensor, o ;> over time is

D (agk) \a§’i)1, o-ili) with a'gk) being a vector of hyper-parameters that control this
state transition model. We use the following state evolution model structure, as pro-
posed by [222]:

X~ p(Xe|xt-1),

o ~ (ol 0

) ~ Pr(c”e;”),

k k k
o) (1)

(6.42)

In order to effectively explore the state space of parameters o for the probabil-
ity mass function of our local context variable ¢, we use treat o as a random vector
following the n.-dimensional Dirichlet distribution. The Dirichlet distribution is pa-
rameterized using only a vector a = (ayg, ..., an,) of positive real-valued numbers,
and the Dirichlet random variables are often used to parameterize the probabilities o
in categorical random variables (such as our c). That is, the vector of probabilities o
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for a categorical random variable is itself a Dirichlet random variable. Recall that the
probability density function of the n-variate Dirichlet distribution is given by:

r (Z?:o a,;)

ezt (6.43)
7ol (a;) =0

Dir (29, ..., Tnj G0y ey Gp ) = ;
where I (.) is the Gamma function.

Our proposed method uses the parameters ;1 from the previous time step ¢ — 1
(referring to location in the scene x) and a set of hyper-parameters o to parameterize
a Dirichlet distribution and generate new parameters a. This procedure forms the

state transition model agk) ~p (a%k)|a,(£)1, X, ng)> in Eq. (6.42). Formally, we

use the Hadamard product of o; o oy to parameterize the Dirichlet distribution at
time ¢ making:

p(oy|oy—1,%¢,04) = Dir (04104115 -, Ot n. —1,m, ) » (6.44)

where the vector o is a sensor-specific coefficient that adjusts the spread of the dis-
tribution. The intuition behind this approach lies in the interpretation of the parameter
vector as a measure of how concentrated the probability of sensor state will be. For
example, if o;a; < 1 the sample is very likely to fall in the ¢-th component i.e., the
sensor to be in that mode of operation. If o;c; > 1 then the uncertainty of the sensor
state will be dispersed among all components. Since || = 1, it becomes clear that
the variation is mainly controlled by|o| . The larger the values in o, there will be less
category variance in our Dirichlet samples, practically meaning that each new sample
will explore less of the contextual state space and vice versa.

To better illustrate the properties of applying samples from a Dirichlet distribution
as parameters for our categorical random variable ¢ we show the experiment in Figure
6.9. In this experiment we perform three sampling series of 20 samples for ai;;n. =
5, parameterizing its PDF using a;—1 = (0.2,0.2,0.2,0.2,0.2) and three different
sets of hyper-parameter vectors o, with equal components. The visualization clearly
demonstrates the impact of the parameter o in the uncertainty of the states. The
experiment shown in the left plot has the highest variance of the newly sampled values
meaning that the contextual variable ¢ will likely switch to a different state regardless
of the PDF of « in the previous step. Contrarily, the plot on the right shows newly
sampled o, that differ very slightly from the parameters in the past, meaning that the
contextual variable ¢ will likely remain in the same state.

Caron et al. [222] propose to model p (o|o;—1) using a Gaussian noise model
with variances oy that are also estimated. To reduce the complexity of the estimation
process, in our approach we use the following transition equation:

log (0¢) = log (o1—1) + A, (6.45)

where ) is a zero-mean white Gaussian noise with known constant variance and the
logarithm is used to ensure that the variances remain positive. As long as the individual
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Figure 6.9: Realization of samples from a Dirichlet distribution using various parameter sets.
Left: ; < 1 resulting in a high-variance state largely independent of «;; middle: o; > 1
resulting in a state with lower variance depending on both «; and o;; right: o; > 1 resulting in
state with very low variance.

measurement models defined by the sensor states c; in Eq. (6.38) can be sampled, we
can apply the standard or bootstrap Particle Filter to estimate Eq. (6.41). Thus, the
posterior (for a single sensor) can be rewritten as a weighted sample average of particle
locations:

Npts
p (Xta Ct, at|zl:ta a1, o-t) ~ Z wgm)(s (X - Xgm)> ) (646)
m=1

where the particle weights wim) are computed using the appropriate context as:

wt(m) =np (zlzt\xt, cgm)) , 6.47)

where we use a context variable cﬁm) that is specific for the location of each particle

xgm). This posterior can be easily extended for a K -sensor setup where we will use
the following weight update function instead:

K-1
m k m k,m
wf™ = T p (420, o)
k=0

The proposed switching observation model particle filter can be interpreted as a
single observation model whose PDF is a mixture of the various context-specific PDFs
whose contribution distributes according to the fit of the data to the hypothesis in the
past and varies locally throughout the scene. Under nominal tracking conditions the
mixture context model trains itself to track optimally given the nominal sensor input
and can handle transient losses of detection. When a sensor switches to a failure
mode then the mixture model learns (at runtime) from the faulty (or missing) data that
the current model is a poor fit and adjusts the context parameter c; to retain optimal
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tracking under the newly formed sub-optimal conditions. Its application has thus far
been limited to non-linear systems in simulations and to our best knowledge has not
been used for tracking of moving road users. In our experience we found that the
SOMPF can be an excellent road user tracker in difficult real-world scenarios. These
findings are supported by the experimental results in Section 6.9.3 and Section 6.9.4
where we compare the SOMPF to standard PF using both simulated and physical
multi-sensor perception systems.

6.7 Handling Missing Detections

Bayesian filtering defines the mechanism for performing state estimation based on
priors and updates given sensor evidence. Monte-Carlo implementations of the Bayes
filter, such as PF, offer a sampling-based solution to compute the posterior distribu-
tions. Sampling is performed by means of a proposal function conditioned on the
new observations and sample weights are computed relative to the fit of the model
to the data. In the previous sub-section we saw how this framework can be extended
to handle transient changes in the statistics of the observations and soft sensing fail-
ures using an adaptive mixture-measurement model which conforms to the available
observations.

However, even in multi-sensor setups, it is possible that at time ¢ a tracked ob-
ject is not confidently detected by any of the sensors. As detections become missing,
observation-mediated sampling in the standard Particle Filter is impossible and sam-
ple weights can no longer be updated in an informative way. This is mainly because
the proposal functions are conditioned on the new detection. When using the bootstrap
Particle Filter, sampling of new particles can still be performed, but the update of par-
ticle weights is impossible without an observation. In situations where a detection is
completely missing, Bayesian filters cannot make a state estimate. This is problem-
atic for the tasks in autonomous driving because disappearing object estimates can
drastically affect the actions taken by collision avoidance and path planning.

To combat the problem of missing detections, trackers in the literature often part
from the Bayesian theory, skipping the update step and still providing an object esti-
mate which in reality is only a prediction based on the state transition model. Han-
dling missing detections without leaving the Bayesian framework can be achieved by
imputation i.e., replacing missing data with substituted values. In the following, we
propose two solutions for multi-sensor, multi-object tracking that deal with missed
detections. The first is a particle filter that reconstructs a missed detection using sta-
tistical modeling and multiple imputations, while the second is a particle filter with
a two-step update cycle that only switches to tracking-before-detection in ambiguous
circumstances. In the field of missing data reconstruction, the first approach is re-
garded as the state-of-the-art methodology, but as we shall show in the experimental
assessment, it yields poor results since it offers little gains in accuracy at a substantial
increase in computational complexity. However, compared to the first one, the second
method, which only uses tracking-before-detection when necessary, is able to attain
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greater accuracy at a lower computational cost.

Multiple Imputations Particle Filter

Originally introduced in the book [223] and later used in the papers [212] and
[214], the Multiple-Imputations Particle Filter (MIPF) extends the PF algorithm for
cases of missing detections. The main statistical assumption in this approach is that
the sensor detections are missing-at-random (MAR). This means that the predisposi-
tion for a detection to be missing can be related to the observed ones. It is a solid
assumption in tracking-by-detection systems where the detectors use a high precision
working point and some true positive detections are missing due to a low detection
score. A low detection score is usually the result of poor viewing conditions or occlu-
sion. The missing detection is indicated whenever there is a presence of an occluder,
so, good techniques for imputing MAR data need to incorporate variables that are
related to the “missingness”. In the following we will lay out the standard MIPF
formulation as a baseline method for handling missing observations.

The general principle of operation of MIPF is the following: first the filter’s par-
ticles are propagated using the state transition model, then the missing detection is
substituted by multiple, random samples (imputations) sampling from the the sensor
model centered at the hypothesized positions of each particle. Finally, the particle
weights are updated by taking a weighted sum of the likelihood of all imputed sam-
ples. In the paper [215] authors provide more details about the MIPF and prove the
almost sure convergence of this filter. Formally, the MIPF [212,215] uses a parti-
tioned vector v = (y, z) to model a detection which consists of a missing part and an
observed part. The missing part is modeled using the auxiliary variable y. This formu-
lation allows the particle filter to apply updates as defined in Eq. (6.29) and Eq. (6.31)
even when a detection z; is missing. In the following we will lay out the method for
sample the imputations and update the particle weights.

To make the following analysis compatible with the SOM model proposed in the
previous chapter, a detection v; can be explained by the switching observation model:

Vi if ¢; = 0, (missing obseration)
v = q hi (x¢,8) +wi,; if ¢, = 1, (nominal state) (6.48)

hj (x¢,8) +wjy;  if ¢, = j, (j-th degraded stete)
where h; (.) are nonlinear observation functions and w; ; is an observation noise for
the j-th sensor state at time ¢, and c; is the local context variable estimated at time

t using the transition models in Eq. (6.42). The posterior PDF for the location of a
tracked object x;, Eq. (6.41) can be written as:

p(Xt \Zt,Ct) = /p(Xt|Zt,Yt7€t)P(Yt |Zt70t)dYt» (6.49)

integrating over all possible y;, where for clarity, we will omit the parameteriza-
tion variables o; and o, assuming they have been estimated by applying Eq. (6.42)
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through Eq. (6.45). Consequently, let’s assume that the method by which a detection
was missed depends only on the detected ones [223], we will rewrite the posterior as:

P (Xt |2e,00) = /P(Xt |z, Yt ¢t ) p (Ve |22 ) dys, (6.50)

which means that the statistical model of the missing information is not necessary. In
this special case, the posterior distribution, can be computed using 7, number of
imputed particles:

Nimp

1
p(x¢|ze, ) = lim —— P(xt

Nimp—00 Nimyp P

zoyiha), (65D

where the imputations y§”) ~ p(y: |z ) are not conditioned on past detections and the
state transition model. We adopt the proposed solution devised in [215] to resolve this
deficiency by drawing imputations from the missing data probability density which is
unknown, but can be approximated from the posterior assuming no detections went

missing prior to ¢:

P (ye|zow) = /P (¥t ce|xe) p (Xt |Bowt, €1 ) dXy, (6.52)

This assumption is true for brief periods of time when there are few missed and much
more seen detections. In order to get a good estimate of the posterior it is required
that detections were present in the time instances leading up to the missing detection.
When a detection is missing, we cannot update the posterior in the standard way which
means that we can not sample directly from it, so we use an approximation by applying
the state transition model. This means that the particles ngi are propagated using the

state transition model to obtain an estimated PDF, formed by ﬁgm)

In practice, a missing detection will almost certainly be caused by a localized
change of sensor mode c¢; due to the loss of signal strength, occlusion, ambiguous
association or noise. An imputed detection can therefore be simulated using the last
known sensor model and the expected position from the motion model. At the mo-
ment when a detection went missing, we can let the sensor evolution model Eq. (6.42)
choose the most likely course of evolution of ¢;. It is safe to assume that the miss-

(m) |5z ) _
<(m)

ing detection PDF is the same as that of the observed data, p (yt, c
D (zt, & ‘xt ) , S0 we can use the imputation proposal function ¢ (y: |, Zo.t ) :

(m)

Npts

P 200) = 0viz Vel zoa) = Y o™ (voa &™), ©653)
m=1

from which we draw imputations yij ) g (¥¢ |, 0.t ) - Practically, this equation stip-

ulates that the set of simulated detections (imputations) will be generated using the
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Figure 6.10: Visualization of the set of 10 particles and 500 imputations drawn by a standard
MIPF for a single VRU x; = (0, 20). The left plot shows one realization of sampling imputa-
tions from particles whose colors indicate their respective sensor state variable cim). The right

plot illustrates the underlying imputation proposal function ¢ (y, |z ).

most likely observation models applied at the location of each predicted particle. This
procedure is illustrated on the two plots on Figure 6.10.

According to [224] we can use these complete data sets, v, = ( ( ), ) 3] =

0, ..., Njmp, to compute an approximation of the posterior PDF. Substituting v, in
Eq. (6.50) yields:

P (elzr ) = / (5 [V, B2, ¢ ) (¥ 22) dys, (6.54)

where the approximate PDF is computed as the Monte Carlo simulation using 7y,
imputations. The posterior computed using a particle filter then becomes:

Nimp MNpts

p (Xta |Z0:t7 CO:t) lim Z Z wy g ( Xt — izﬁjwm)) ’ (655)

Nimp =0 Nimp G=1 m=1
which is computed by performing particle filtering treating each imputation v( D asa
z(3m); (4,m)

detection, where x;”"""is the m-th particle for the j-th imputation at time ¢ and w;,

is the respective weight estimated from the most likely observation model from C,E ),
Two problems arise when applying the multiple imputations PF for real-time ap-
plication. Firstly, its computation is prohibitively expensive because each time a de-

tection is missing, the particle filter needs to perform 7, > 1 updates treating each

imputation v(] ) as a simulated detection and then average the results (double sum in
Eq.(6.55)). The complexity lies mainly in sampling the measurement model when
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computation of the weights which requires nys X nipmp evaluations. Second, since
we are dealing with a switching observation model, the accuracy of imputed particles

relies on the accuracy of the estimates (ii””, cgm)) which are in turn driven by avail-

able detections from the past. In cases when detections are missing in short bursts,
updating the model with imputations yields an accurate estimate of the posterior PDF.
However, when detections are missing over an extended time interval e.g., more than

a few update cycles, the context variable state transition model can quickly lead to an

uninformative vector aﬁ”’/), meaning that the states of all context particles ctm) be-

come uniformly distributed. This results in diminished informativeness of the impu-
tations and tracking becomes no better than using motion prediction alone, which we
experimentally show to be true using realistic tracking simulations in Section 6.9.3. To
overcome these issues, in the next section we propose a two-stage tracking mechanism
based on the same variable threshold principle proposed in Section 5.3. Specifically,
the particle filter can update its state in locations where a detection is expected but
not seen, by using sub-threshold observations without association. We will experi-
mentally show that even without association, uncertain sensor data helps the tracker
to overcome the problem of missing detections better than using imputations.

Proposed method

Detections missing at random can mostly be attributed to two main factors. Firstly,
due to poor viewing conditions, the detection confidence of individual objects can
sometimes dip bellow the detection threshold set by the working point of the detec-
tor. In such cases, the fact that a detection is missing (referred to as missingness) is
generally not dependent on the scene geometry or the presence of other objects in the
scene. In this case, the imputation filter can offer little advantage over tracking based
on motion prediction. Second, in situations where the scene contains multiple objects,
a missing detection can be caused by ambiguous matching of evidence to hypotheses.
This means that a detection that is associated to the wrong hypothesis may cause a de-
tection to be missed by the correct hypothesis. In the context of multi-object tracking,
a missing detection caused by ambiguous association can be considered to be weakly
conditioned on the nearby observations. The imputation filter can here be effectively
applied, but at a great computational cost. In this section we propose a novel, alter-
native method for tracking with missing detections by using a two-step update cycle
with a locally varying detection threshold.

The proposed method updates the tracking hypotheses in two steps by controlling
the operating points of the object detectors locally: first, hypotheses (both their ex-
istence and location) are updated in the standard way i.e., using confident detections
obtained at a high precision point, and second, the location of the remaining hypothe-
ses are updated with detection evidence obtained at a high recall point. Running the
detectors at a high recall point generates lots of false positives and clutter. It is im-
portant to note that the proposed tracker employs this data in particular areas of the
scene where there is suspicion of object presence based on previous observations. The
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Figure 6.11: Visualization of objects detected by camera (bounding boxes) and radar (ellipses)
at different operating points. Top: objects detected at high precision, bottom: objects detected
at high recall.

High precision

High recall
Detection confidence

idea behind this method is that rather of relying just on motion estimates, the position
of hypotheses for which we do not have detections may be better inferred from the
low confidence evidence (even if it may be a false positive). However, with time, the
belief of existence of such hypotheses will decrease. Before we delve into the details
of the method, let’s give an example of how the observational evidence look like at
the two separate working points of an image and radar object detector. On the top
image in Figure 6.11, we illustrate detection at high precision, consistent with the
tracking-by-detection principle, while on the bottom image the same detectors oper-
ate at maximum recall. It is apparent that in the first case some difficult-to-classify
objects are not detected while in the second case all objects are detected, although at
a large cost of false positives.

In order to overcome the issues of missing detections when tracking at high-
precision (track by detection) and the high computational load of tracking at high-
recall (track before detection) we will devise the following strategy which combines
the useful properties of the two principles and avoids their downsides. Strong (high
precision) detections are used to update confident hypotheses in the standard track-
by-detection way, while weak (high recall) evidence updates uncertain hypotheses in
a track-before-detection way. Therefore, the proposed algorithm achieves both high
tracking accuracy while retaining low algorithmic complexity.

The first step is to select only the confident detections and match them to the
tracking hypotheses to which they correspond the most. To that end we make use of
a heterogeneous distance measure d (.), that mixes distance, shape and appearance.
Depending on the specific sensor in question, the distance measure operates either on
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the ground plane or on the image plane. For measuring the similarity in the position
and shape we use the Euclidean distance, while for measuring the appearance similar-
ity we use the Kullback-Leibler divergence of the color histograms. The set of Nge;
confident detections and N,;; hypotheses gives Ngye; X N,p,; combinations of pos-
sible matches. The optimal association of detections and hypotheses is achieved by
optimizing an association cost matrix [d (X;,¢,2;,¢)] v, N,,; Using the Hungarian al-
gorithm [28]. The result of the matching is a set of association pairs: tuples (x; ¢,z j’t)
where the indices ¢ and j refer to a detection and a hypothesis with high similarity.
Each confident detection z;; will update the belief in existence and location of each
hypothesis with location x; ;.

It is not unlikely that some confident detections cannot match to a hypothesis, and
also, some of the hypotheses might not match with the confident detections. These
leftover confident detections will spawn new hypotheses which we add to the pool of
tracked objects, while the unmatched hypotheses are processed in a second step where
we use sub-threshold evidence and matching based purely on position. Additionally,
because these hypotheses were not matched to confident detections in the first step,
the belief in their existence (P(H112)/p(H,|z)) will decrease. The motivation to use a
weaker matching function in the second step is due to the abundance of sub-threshold
evidence which makes the number of detection-hypothesis combinations very large.
Computing appearance similarity in a high-dimensional feature space is much more
computationally intensive than computing the Euclidean distance in R3. Formally, for
each unassociated hypothesis from the first step (indicated by index 7), we compute the
likelihood of the position x; ; (in polar coordinates) using the sub-threshold evidence
based purely on their positions in the respective sensor coordinate system:

K-1
D (u;?t), ...,ugf_1)|xi’t) = H Py x, (u§-?|xi7t) , (6.56)
k=0

where ugkt) is the location of the sub-threshold detection from sensor k that is closest

to the location X; ;. Since we are using particle filters to track objects, Eq. (6.56) needs
to be evaluated many times in order to update all particle weights for all unassociated
hypotheses. Due to the large number of sub-threshold detections, this procedure can
become intractable even for small number of hypotheses. We propose an approxima-
tion of Eq. (6.56) where at each time step we pre-compute the likelihood values over
a grid of positions x with a finite size and resolution. This grid of likelihoods can be

used to quickly update particle weights w( ™) by approximating the likelihood at parti-

cle position X( ™) with the likelihood value computed at the nearest grid cell. In Figure
6.12 we show an example of the weak camera and radar evidence aggregated in a 2-D
grid for the same scene shown in Figure 6.11. The assumption in our approach is that
the number of grid cells is far lower than the number of sampling operations needed to
update the weights of N, particles of the N/ opj Unassociated hypotheses using [V, -
sub-threshold detections. This method becomes especially effective as the number of
tracked objects in the scene increases.
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Figure 6.12: Visualization of the proposed measurement model computed over a 2-D grid of
size 128 x 128 for the scene in Figure 6.11.

It is important to note that our weak evidence grid contains detection information
which falls below the high precision detection threshold. As such, this evidence is
used to update only the belief in the location of each hypothesis, while the belief
in the existence and the sensor state contextual variables ¢(*) are only predicted by
transition probabilities. We found that updating the locations of particles with this
weak evidence provides additional information over using motion models alone or the
multiple imputations filter in 6.7. Still, the confidence for the existence of such tracks
decreases, as explained in Section 6.3.1.

Using the proposed second step to update particle positions of unassociated objects
causes the particle position to conform to any weak observational evidence which
improves tracking accuracy compared to using motion models or imputations. The
weight of the posterior in this missing detection case is independent of appearance
association as it depends only on the closest weak detection. Compared to MIPF
the proposed approach has a reduced computational load for updating the particle
weights at the increased cost of pre-computing the likelihood grid. For most of our
experiments in the following section we used a grid of size 128 x 128 which spans
the range of £90° in the azimuth and [0m, 40m] in polar coordinates which resulted
in measurable improvements of tracking performance in cases of missing detections
over methods such as Kalman Filter, Particle Filter and Multiple Imputations Particle
filter. The improvements are most significant in complex traffic scenes where failures
in the object detection cause most problems for standard object trackers.

The downside to this approach is that we allow for the rasterized likelihood infor-
mation to update any particle of any track which happens to be closest to the particular
grid cell. In rare cases, the positions of particles of multiple nearby tracks can be up-
dated using the same information which can inadvertently lead to hypotheses spatially
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converging to each other and merging. However, one can argue that in such situations
the limited evidence does not support the existence of more than one hypothesis and
they should be merged anyway.

6.8 Track management

There are extra difficulties when tracking a potentially high number of objects
from a moving vehicle with several sensors since the perception system must keep
track of the number, location, and identity of objects over time. An object of interest
may move into the sensors’ field of view, leave it, or stay there. Track management
refers to the process of organizing the existence, identity and the number of tracked
objects. In a well performing multi-object tracker the belief in existence of true hy-
potheses should be maximized while minimizing the belief in existence of clutter.
Moreover, the number of tracking hypotheses should reflect the number of true ob-
jects in the scene. Since this thesis does not bring significant contributions to track
management, this section only briefly explains the employed management algorithm.

To illustrate the necessity of track management, consider the following example. A
perception system based on a forward-looking sensor array performs object detection
and tracking. New and unseen objects will most likely appear near the borders of a
camera frame or near occlusion zones. When such an event does happen, it creates
evidence which does not explain any existing hypotheses. The track manager needs
to treat this as a creation event where a new object enters the scene, give it a unique
identity and increase the number of hypotheses. Similarly, when the vehicle drives
past objects that exit the sensor field of view, it is likely that such objects will not be
re-acquired in the near future. In this case, a hypothesis is not expected to be supported
by evidence for a longer period of time and the track manager needs to remove it from
the state space. Finally, in situations of object occlusion such as groups of people, we
can observe ambiguous evidence which supports some, but not all of the hypotheses.
When this type of evidence persists and some of the hypotheses become similar, the
tracker needs to decide which one to keep and which one to remove. Lastly, the
opposite event where the tracker starts to persistently get multiple detections around a
single hypothesis is considered as a track splitting scenario.

In the proposed track management method object hypotheses can switch between
several logical categories of existence, referred to as states in this section. These ex-
istence states are in direct correlation with the belief in existence explained that we
explained in Section 6.3.1. Switching between logical tracking states is defined by
taking actions that are unique to the specific state. Our track manager is a finite state
machine computing the states of hypotheses by taking actions defined by the state dia-
gram shown in Figure 6.13. Before initialization, we have a pool inactive hypotheses
which consists only of a unique track identifier (ID) but have no spatial or appearance
attributes. An inactive track becomes active by spawning from novel observational
evidence and is defined by its position, features and track score. The track manager

uses the maximum a posteriori (MAP) value of the random variable: X,EMAP) as its
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Figure 6.13: State diagram of the proposed track management finite state machine.

track location, while the track score is the log-odds ratio of the track existence defined
in Section 6.3.1. Active hypotheses that are well supported by observational evidence
over time become confirmed tracks. The confirmation happens when the track score,
Eq. (2.11), reaches a certain threshold which defines the tracker operating point. Con-
trarily, active hypotheses that over time do not adhere to any observational evidence
get removed from the system.

The set of actions consists of adding a new hypothesis to the solution (add/spawn),
predicting the state of an existing hypothesis, updating an existing hypothesis, merger
of two hypotheses and, finally, removal. Add and update actions are mediated by
observational evidence or data while predict, merge and update are conducted by tran-
sition models. The outcome of each action is a transition to a state as a function of the
track score. For example, the track manager changes the logical state of an inactive
hypothesis to active by executing the add action given confident novel detection. We
consider a detection to be novel if it does not associate with existing hypotheses with
respect to the association metric. The decision to downgrade a confirmed hypothesis
to “active” is based on a set threshold on the log-odds existence ratio. During merger
between two tracks, the one with a lower track score gets removed from the system
and switches to a lost state, not shown on the state diagram in Figure 6.13.

Track management systems such as the one we describe here can be thought of a
Markov Decision Process (MDP) where the transitions between states are partly ran-
dom and partly under the control of a decision maker. A MDP randomly transitions
through the states defined by the finite state diagram of the system driven by appropri-
ate reward functions. In our case the reward computes how well the newly computed
track score matches the state the track is in. To illustrate this, imagine an “active” hy-
pothesis that gets updated, and its track score reaches the track confirmation threshold.
The reward for moving this hypothesis from “active” to “confirmed” is greater than
the reward for staying in the “active” state. In other words, based on the evidence we
are more confident that this hypothesis is a real object than not. A MDP (stochastic)
track manager should, in this case, randomly switch the state of the hypothesis from
“active” to “confirmed” with a higher probability than keeping in the state unchanged.
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Figure 6.14: Example evolution of the track score for one tracked object over its life cycle. This
track gets confirmed, then briefly lost and re-identified, and, finally, removed due to lacking
support by the observational evidence.

MDP solvers discover such policies through iterative traversing the graph of possible
states and actions and computing the total reward. However, this means that the solver
needs access to track states in the future and is therefore not applicable for on-line
tracking. Thus, we did not investigate more complex track management methods and
reduced the MDP to a deterministic, sequential decision driven process by fixed rules
based on the current track scores which we optimize empirically.

The diagram in Figure 6.14 illustrates an example of the evolution of a track score
for one hypothesis over its life cycle. This example track moves through the follow-
ing chain of states: inactive—active—confirmed—active—confirmed—active—lost.
After spawning, the track gets associated with good observational evidence and be-
comes a confirmed track when its track score reaches a confirmation threshold. This
threshold defines the tracker operating point. After a while, the same track is lost
from sensor view and its track score decreases, then it’s reacquired and its track score
reaches the confirmation threshold again. Finally, the track gets out of view without
the chance of re-acquiring and its track score drops below the track deletion threshold
when the track manager ultimately removes this hypothesis from the system.
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